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1, Introduction

This paper deals with estimating regression coefficients in the
usual linear model, Let y be a T-component random vector with

~

expected value

(l) Eg = 78 ’

~

where Z dis a T x p matrix of numbers and B is a p-component
vector of paragmeters. (All vectors are column vectors.) For con-
venience we assume that the rank of Z is the number of columns, p .

The covariance matrix of y is

~

@ L@y = Ky -G -2 =1

(Transpositionc6f a vector or matrix is denoted by a.prime.) Again
for convenience we shall assume that I is positive definite. The

~

problem is to estimate B on the basis of one observation on. N
when - Z is known.
When Y 1is known or is known to within a constant multiple, the

|
Markov or Best Linear Unbiased Estimate (BLUE) is given by

—F‘Z)_l Z'Z_ly .

@ b= @'

The least squares estimate is given by

(4) b* = (2'Z)



The covariance matrix of the Markov estimate is

T, -1

(5) | L) = (2’22

the covariance matrix of the least squares estimate is:

(6) eem = @ lerzE'n T .

~ ~ A oA~

Both of the estimates are linear and unbiased.
TheKOptimality property of the Markov estimate implies that

E(E*) - f(P) is positive semidefinite; that is, any linear functdon
of the Markov estimate has a variance no larger than the variance of
that linear function of the least squares estimate: Since the least
squares estimate can always be calculated, but the Markov estimate is
unavailable if the covariance matrix § is now known to within a
constant of proporticnality, an interesting problem is to find under
what conditions the least squares estimate is identical to the Markov
estimate. It.will be noted that they are identiéal when L is a
multiple of the identity, I. The generél answer 1s given by the
following theorem:

Theorem 1, The least squares estimate (4) is identical to the best

linear unbiased estimate (3) if and only if % = V*C , where the op

columns of V*# are p linearly independent characteristic wectcrs of

L and C is a nonsingular matrix.

The sufficiency of the condition was essentially given by myself
in 1948 in the Skandinavisk Aktuarietidskrift [1]. In that paper I

showed that if y is normally distributed, then the least squares

~



estimate is identical to the maximum likelihood estimate; under normality,
of course, the maximum likelihood estimate is best linear unbiased.

Watson [9], [10], G. S. Watson and Hannan [12] studied the efficiency

of least squares estimates; the inequality given in the first two papers
shows the necessity of the condition for p = 1 . Magness and McGuire [6]
rediscovered the condition, proving sufficiency and necessity. Watson [11]
and Zyskind [13] have made more intensive studies and surveyed the
literature.

A problem that is more explicitly and épecially a time series problem
occurs in the case where the residuals constitute a stationary stochastic
process. The property g . = g(s - t) ., where I = (Ost) denotes station-
arity in the wide sense. In general, the least squares estimate and the
best linear unbiased estimate will be different. The characteristic
vectors of § depend on the values of the serial or lag covériances
and hence the best linear unbiased estimate depends on these parameters,
which are generally unknown.

In this case we consider the covariance matrices of the estimates,
normalize them suitably and identically, and consider the limits of them
as T»w , Grenander [4], Rosenblatt [7] in the Third Berkeley Symposium,
and these two authors [5] found conditions for which the two limiting
covariance matrices are the same. They did not indicate that their
results were asymptotic analogues of the result for a finite sample,
and the statement of their results and their methods of proof do not

make it easy to see the relationship.



In this paper I shall prove the results for the finite-dimensional
case and the limiting case in a similar fashion in order that the rela-
tionship between the results be clearer and that the asymptotic results
be more easily understood. The emphasis here .is on the linear algebra; =5
the rigorous derivation of the limits, wpich is rather involved is
omitted (but is given in Section 10.2 ofl[3]).

The method of proof is not the most direct for Theorem 1, because
the proof uses covariance matrices instead of the structure of the
estimates themselves. On the other hand, the asymptotic results must
be derived in terms of the covariance matrices because the order of
the observation vector increases, and thus the structure of the estimate
changes. To obtain comparable proofs, covariance matrices must be
used throughout. A by-product of my proof of the theorems is a different
statement of the conditions of Grenander and Rosenblatt, which, I hope,
is more enlightening than the original. Watson [9] related the two sets
of results by considering the finite-sample case in the framework of

the approach of Grenander and Rosenblatt.

2, The Finite-Sample Case.

We shall now proceed to prove Theorem 1 by considering the conditions
for which the two covariance matrices, (5) and (6), are identical. To
study this problem it will be convenient to transform the coordinate
system in the T-dimensional space to the coordinate system defined by

the characteristic vectors of the covariance matrix L . Let
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0 AZ oo O
(7 é = s
0 0 . AT
where Al i_kz > .. E_AT(> 0) are the characteristic roots of I

Let V bea Tx T matrix with columns as corresponding normalized
characteristic vectors. These properties can be summarized in the two

matrix equations

(8) IV = VA,
D) Viv=1,
which imply % = VAV and I = VV' . We can refer the matrix of indep-

endent variables to this coordinate system. Then

(0) z- 70,

where

(11) G' = (8y5 ++- » 8B >

and 8¢ is a p-component vector, t =1, ... , T . The two covariance
matrices depend on three matrices involving % and § . These can be

written in terms of A and G as

[
109

[

(12) Z'Z = G'V'VG = G'G =

t
il
—



(13) Z'%Z = G'V'IVE = G'AG = > A gg',
e e e . ~t2t3t
t=1
=i =) -1 I
' 7 = tyr? = 1 = - 1
as) 22z - GGG Te - 2 S gg

The columns of vV are characteristic vectors of E—l corresponding to
roots which are the reciprocals of the characteristic roots of § . We
shall follow these matrices along.

The characteristic roots may not all be different. Let us indicate
the multiplicity of the roots by writing the diagonal matrix é in the

partitioned form

I 0 0
Y1
0] vZI ..o DO
(15) A= R
0 0 .o vHI
where vl > vz > e B vH (> 0) are the different characteristic roots.

The orders of the diagonal blocks are the multiplicities of the corres-

, H A
ponding roots, say ml, m2, 500 O mH ( E h=1 By = T) . We partition

V and G similarly,

(16) _ v=(ﬁ”,vwx “.,vmﬁ :
eR

an ¢ = 9#%) :
U(H)

2
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Now let us go back to the matrices we considered previously, and express

them in these new terms. Z is written as

H
s 22> Y

~ ~

The three matrices appearing in the covariance matrices are

H \
(19) 2'7 = ¢
2'z Zh=l GG
i ()" .(h)
(20) Z'1z = thl (2N RN
o -1 H 1 mm
(21) z'v Tz = > —¢Ve
o~ imy ~ h=1 \)h ~ ~

The definition of a submatrix of V may have some indetefminacy in it.

ORI NORNEENOINGE

~

We can replace V by and replace by

h . :
where Q( ) is an orthogonal matrix of order mh . Such a transforma-
tion leaves each of the last four equations invariant.

Theorem 1 shall be shown to be equivalent to the following theorem:

Theorem 2. () = ¢(b*) if and only if
H
h
(22) >~ oe®™®)y =y,
h=1 -
where p(G(h)) denotes the rank of G(h)

In order to simplify the study of the conditions for the equality
of the covariance matrices, it is convenient to transform the matrices

again. Let P be a nonsingular matrix such that



(23) P'(Z2'Z)P

]
18]

(24) : P (2'TZ)P

~ N A ~

1]
[/

>d >0 . [These

> ...
- 11 22 — - PP

are the characteristic roots of Z'XZ(Z2'Z) .} Let us also make the

~ A A

where D is a diagonal matrix with d .. > d
-1

transformation of the other matrix, P'(Z'Y "Z)P . The covariance matrix
-1 S , o . .
of P b is the inverse of this last matrix. The covariance matrix of

P "b* is D . (This can be seen from the original expression for the
covariance matrix of b* , (6), by multiplication on the left by P_'1
and on the right by P'“l and with use of the properties of the matrices

we have just discussed.) The question of equality of the original covar-

iance matrices has now been reduced to the problem of when the covariance

matrix of Pl is D .

~

The three matrices in C(b) and CF(b*) can be written

i m
(25) I =p'Z'7ZpP = C ,
I=p'z'zp Zh=l~
H
(26) D =P'Z' ZP E
Lt 1
Z Z —_—
(27) P2y zp = sz

where C(h) = P'g(h)‘g(h)f . Note that p(C(h)) = p(g(h? . Let us

~ ~

consider the diagonal elements of each of the last three equations.

They are

H
(28) 1= S ™

h=1 't



H .
(29) 4, = S ve®

H
S- L. ®
(30) c v €ii

(h)

Since the matrix C is positive semidefinite, each diagonal element
is nonnegative. For each i the sum of these nonnegdtive components is
1 ; hence, the elements in the i-th diagonal positioh can be ‘considered

as probabilities. Let Xi be a random variable that takes on the value

with probability c(h) h=1, ..

Vv .. 5
h ii ?

H . Then dii is the expected
value of this random variable. The last expression is the expected value
of the reciprocal of this positive random variable. If the two covariance
matrices are to be the same, the i-th diagonal element of the last matrix

must be the reciprocal of that diagonal element of the second matrix.

Thus, the random variable just defined.can take on only one value with

probability 1 . (This is basically the condition for equality in the
Cauchy~-Schwarz inequality.) This implies that for each i , cig) = 1

for one index h and is 0 for other values of h because the v

h
are distinct. These facts imply that the diagonal elements of the matrices
(h) 5 ' , (h) .
C are 1l's and O0's . The matrices C _have diagonal elements as
follows: : :
i R ( '}
1 : . 0 &
1 . 0] 1
Gy W= g , ¢@) = S Ve
~ ‘0 ~ 1
0] 0
L 0 . 0




(h)

If a'matrix C has 1 in the i-th diagonal position, the other

matrices haver 0 in that position. (Then dii = Vh . Since the Vh's
and dii's are numbered in descending order, the . 1's in C(l) are
in the upper left-hand corner, etc.)

Some matrices may only have 0's on the main diagonal. Since C(h)

~

is positive semidefinite, a diagonal element of O implies that the

entire corresponding row and column are O . Thus
S . ( —
a B 0 | O 0 0
G M=l o1 - - -
~ S . 2) ; 1
§ 0 0 c =E 0 " 0 H
,;\‘ b > ~ 1 ~ .l_ ~
’ - Lo 0 0
. .
Since the C(h)'s sum to I , and the nonzexo blocks are not overlapping
£ R
I 0 0 0 0
33 P - , @ |
' 0o 0 R I 91>
= ~ é.Lo 0 0

(1)

with an identity in the upper left-hand corner and

(h)

We have then C

~

so on. The rank of each C is equal to the number of diagonal elements

that are 1 . Thus, the sum of the ranks is equal to p . Therefore,
the equality of the covariance matrices implies that the sum of the
ranks is p .

The converse can be obtained by use of Cochran's theorem. (See

Lemma 7.4.1 of [2], for example.) However, we shall use a simplified

proof of a generalization of one part of Cochran's Theorem due to

10
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Styan [8]. We assume the sum of the ranks of the C is p . Let
the nonnull C(h)'s be Ll, 0ag o LK (K < p) and let the ranks of these
matrices be Tis eee s Tp o respectively. Then %, can be written
A; Aj , where A, is rj xp,j=1, ... , K. Let U be the diagonal
~ ~ ~J : ~
matrix with j-th diagonal blocks of order rj consisting of u I ,
J—v
respectively, where uj is the j-th wvalue of Vis ree vy corres-
ponding to a nonnull C(h) » j=1, ... , K. Let
b\
.
(34) A= : |
A f
=y
Then (25) and (26) are
(35) I=A'A,
(36) D = A'UA
_ K
Equation (35) shows that A 1is orthogonal as E rj = p , and so it
~ =1
follows from (36) that
(37) ot = a7l
which is (27). Since
H (h) K
(38) E p(C7) = :E r, =p
h=1 ~ =1 3

Theorem 2 is proved. (That equality of covariance matrices implies the
rank condition can be proved by the method used in the converse, but it
does not generalize directly to the case of stationary residuals.)

11



As was indicated earlier, G(h) in Z = E H V(h)C(h) can be

= h=1 ~ =
1 . .
replaced by Q(h) G(h) where Q(h) is orthogonal. In particular,
(h) (h) ' . =
Q can be chosen so that G has as many nonzero rows as its rank.

~

(For the nonnull C

~

(h)'s or G(h)'s , the resulting mafrices are

A

10 e A_ .) This proves Theorem 1 for the finite-dimensional case. ‘

~K

3. Large-Sample Theory for Stationary Residuals.

We now turn to the problem involving stationary time series. The

elements of the covariance matrix of y are

~

m RICEN

gl

(39) o, =0(s~=-1t)= f £ dx
st _ .

where f(A) 1is the spectral density, which is assumed to exist. Also

we assume that the spectral density satisfies the inequalities

m M
(40) 0 <= < £ <5 s

when m and M are some positive constants. In developing the
asymptotic theory I shall not attempt to state all of the conditioms.

(They are given in Section 10.2.3 of [3].) We write i
[oe]

(41) £Q) = ;—TF ST HMhym

h=—00

Let the diagonal matrix D, by defined by

T

(42) diag (2'Z) = diag (Di) ,

~

where we take the positive square roots. Since we are interested in
T»o , we shall use the index T when convenient to emphasize that we

12
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have a sequence of estimates. The suitable normalization of the estimates

is multiplication by this matrix D, . We consider the limits of the
covariance matrices of DTb and of DTb* . The question is what are

necessary and sufficient conditions on the independent variables and

the spectral density such that

(43) 1im €(DTb) = lim T p*) .
T-so0 il Toroo il

Let
(44) %' = (El, L ET)

. 1 . . "l
Consider the sum on t of =z z and multiply on each side by D

~t+h~t ~T

to obtain the matrix of lagged correlations of order h . Let the limit

of this matrix as T?*® be

. -1 :E: =1
(45) B(h) = lim PT ft+hEtPT
T-o0 t
We assume that these limits exist for t =0, +1, +2, ... . Then

this sequence of matrices has the spectral representation

T iAn
(46) R<h>=f P @
~ _W -

where M(A) has complex-valued elements, is Hermitian, and has incre-
ments that are positive semidefinite.

We shall now consider the limits of the covariance matrices of the
normalized estimates. Those covariance matrices involve the limits of
1 1 1

. -1, - 5 -1 -1 -1 -1 -
the matrices PT g'gPT , PT g'%%PT , and PT %E ZD . In fact,

13



(47) lim £@.b) = 1im (@ ‘z's tzp 1yt |
~T~ ~T ~ ~ ~~T
Torco Teroo
, -1 =1, -1 -1
(48) lim ¢(@M.b*) = R “(0) 1im D_~Z'ZZD_"R ~(0)
o » Jr 22t B
Terco Tooo

The second matrix is

T-1 o
, -1 ' -1 _
(49) lim PT E E Z o nZt G(h)PT = E g(h)c (h)
T-)-OO h:—(T—l) t h=—00
i

fl

ST ome?Panoy

_']T h=-—00

i
J[ 2mf () d@(l)

(i
0f course, these operations need to be justified to give a rigorous
proof, but that requires considerable detail. The full proof is given
in section 10.2.3 of my book [3] and is along the lines indicatea by
Grenander and Rosenblatt [5]. The three matrices we are interested in

can be written

-1 -1 i
(50) lim D Z'ZD = J[ a) ,
~T ~ ~~T ~
T-o0 —Tr
-1 -1 m
(51) 1lim D Z'ZZDT = 27 J’ £ duHQ) |,
Toco ~T ~ =~ - .
-1 -1, -1 T 1
(52) lim D, Z'Y “ZD_~ = —[- —= dM(\)
Tooo ~T - < X7 T 2nE() <

The derivation for the third matrix is an involved demonstration also
given in [3]. These three expressions are the analogues of (12), (13),
and (14) in the finite-dimensional case. Carrying the analogy to the
finite—dimenéional case further, we shall write these integrals in
another manner to resemble (19), (20), and (21). Let

14



(53) S (u)

{A|2mE) < u} m<u<M,

f M)

S(u)

(54) T(u)

The component functions of T(u) are real. Then our three matrices can

be written as

-1 ,..-1 M
(55) Lin p772'20 " - J dT(u)
Dy 2'ZD .
-1 -1 N
(56) lim DT Z'ZZDT = JP udT (u) ,
Dy 2'2ZD I
M
(57) 1im D;lZZ-lZD;l . J L ar(w)
T ~T ~~ <~ o u o~

Similar to the finite-dimensional case we let P be a nonsingular

matrix such that

(58) B! Jf dT(u) P=1 ,
(59) P! [‘udT(u) P=0D,
~ ~ ~ o~
i i > N > . -
where P is diagonal and dll- d22.Z > dpp- 0 The same trans

formation is applied to the third matrix, ‘[M u-ldM(u) , which is the
m

inverse of lim% ‘ﬂ(DTb) . The other limiting covariance matrix is

1 D * =
limp,, €@b*) =D .
If we let

(60) L(w) = P'TW?P ,

then the three matrices of interest are

15



(61) I = lim P'D; Z'ZD; P = dL(u) ,
~ T Iom ~ I R T R J. =
-1 -1 M
(62) D= lim P'DT Z'ZZDT P = u dL(u) ,
~ T ~ o~ ~ o ~ J o ~
1,1, -1 !
(63) lim P'DT Z'L TZD P = — dL(u) .
T30 > 25 ~ ~ ~~T ~ Ja u o~

A diagonal element of L(u) , say lii(u) , has the properties of a
cumulative distribution function. The corresponding diagonal elements
M M
of (62) and (63) are ( ud® ., (u) and u "d%.. (u) , which are
Jn ii J n ii
the expected values of the random variable with this distribution and

its reciprocal. Thus, if the two limiting covariance matrices are equal,

the matrix (63) is the inverse of (62) and

M Mo -1
(64) [ udlii(u)= [ Edélii(u)i 3

m m

this implies that lii(u) has one point of increase and the increase is
1 at this point.Let the points of increase be u, >u, . > up > 0,
and let L, be the increase of L(u) at wu,, j=1, ... , K. Then

- = J

the three matrices can be written

K
(65) I = lim P'D;l z'zn;l P =>_ L ,
Y e VYT v oL j=1 ~3
-1 -1 S
(66) D = lim P'D;” 2'52D, P =2>  ul
~ T")OO ~ o~ ~ A (5 j=1 J"'J
-1 -1, -1 K 1
(67) lim P'D_ 2'$ "ZD P = > =—1L,
oo % b~ = =1 Y%y 3

We are now back to the same forms that we had for the finite-—dimensional

case, (25), (26), (27) . The only difference is that in the earlier

16
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(h)

case we had not culled out the vacuous matrices C From this

point on the reasoning is the same. The matrices El’ EZ’ ees 5 L
have the form of (33); that is, the diagonal blocks are E's and 9'3
and off-diagonal blocks are 9'3 .

The converse is similar to the finite-dimensional case. If %(u)
has K points of increase and the sum of the ranks of the increases
is p (and the increases are positive semidefinite with sum of I
and weighted sum of P ), then by the previous reasoning, they are of
the form (33) and (67) is P—l . We put these properties in terms of

M(\) and summarize them in a theorem.

Theorem 3. The limiting covariances of D_b and D_b* are

~ L~

identical if and only if f(Q) takes on no more than p values on

the set of )\ for which HMQ) increases and the sum of the ranks of

J-M(A) over the sets of A for which £()\) takes on these values

is p

The set of ) for which M(\) increases is called the spectrum of

M()A) . The sets of ) for which £f()\) assumes its values are called
the elements of the spectrum. The properties of Ll, soa ¢ LK (idem-

potent and orthogonal) determine these sets; Grenander and Rosenblatt
used them, though indirectly.

When the residuals are uncorrelated, f(\) = 0(0)/(27) and the
conditions of Theorem 3 are satisfied. However, we may be interested
in conditions on the independent variables also which insure that least

squares be asymptotically efficient regardless of £f())

17



Theorem 4. The limiting covariances of D_b and DTb* are iden-

tical for all stationary processes with spectral densities which are

bounded and bounded away from O if and only if M(A) increases at

not more than p values of A, 0 <A < m , and the sum of the ranks

of the increase in M(A) is p .

Tf the number of points at which y(k) increases is at most p
(0 <A f_ﬂ) , then the spectrum of y(A) consists of these p points
and their corresponding negative values. The spectral density (which
is symmetric) can then take on at most p values, namely, its values

at these p points (0 < A < 7) . On the other hand if M()A) increases

at more than p points (0 < A < mw) then an £(A) can be constructed

so that it takes on more than p points.

An example of independent variables {zjt} such that #M()\) has

one point of increase is zjt = t‘—]-_l v J= 1, we. , py £ =1, 2, ... ;

the jump is at O and the increase in M(A) at A = 0 is a positive

definite matrix

(687 Mo=l7 57w -1
In this case R(h) = M0 , h=0,+1, ... If
H
(69) z = 0. + E (0., cos v, ,t+B, sin v.t) ,
=i =0 =1 =

then M()) has an increase of rank 1 at A = 0 and an increase of
rank 2 as ) = vj (with O < vj <®w) ,i=1, ... , H. 1In these

examples the spectral distribution function of each independent variable

18
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is a pure jump function, which can be considered as the opposite of a
density. Trigonometric functions act like characteristic vectors of a
covariance matrix in the sense that they are involved in spectral repre-
sentation. Comparison of § = VAV' and (39) suggests that columns of

~ e

) iis .
V correspond to functions e , the diagonal components of A correspond

to the values of 27mf()) , and summation with respect to the index of
diagonal components of /A corresponds to integration with respect to
A/ (2m) . The analogue of V'LV = A is (41), which involves a limiting

procedure.

19
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