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1,  Introduction 

This paper deals with estimating regression coefficients in the 

usual linear model.  Let • y be a T-component random vector with 

expected value 

(1) Ey•- Z3 , 

where Z is a T x p matrix of numbers and 3 is a p-component 

vector of parameters.  (All vectors are column vectors.)  For con- 

venience we assume that the rank of Z is the number of columns, p . 

The covariance matrix of y is 

(2) £(y> = Ul ~  5§)(X - ZB)' - S , 

'(Transpositioncof a vector or matrix is denoted by a prime.) Again 

for convenience we shall assume that £ is positive definite.  The 

problem is to estimate $ on the basis of one observation on y 

when Z is known. 

When £ is known or is known to within a constant multiple, the 

j 

Markov or Best Linear Unbiased Estimate (BLUE) is given by 

(3) b = (Z'Z^Z)"1 Z'Z_1y . 

The least squares estimate is given by 

(4) b* = (Z'Z)""1 Z'y . 



The covariance matrix of the. Markov estimate is 

(5) 1(b)   = (Z'Z h)   X ; 

the covariance matrix of the least squares estimate is 

(6) t(b*)   = (Z«7) VEZCZ'Z) X 

Both of the estimates are linear and unbiased» 

The optimality property of the Markov estimate implies that 

if(b*) - £(b)  is positive semidefinite; that is, any linear function 

of the Markov estimate has a variance no larger than- the variance of 

that linear function of the least squares estimate.  Since the least 

squares estimate can always be calculated, but the Markov estimate is 

unavailable if the covariance matrix E  is now known to within a 

constant of proportionality, an interesting problem is to find under 

what conditions the least squares estimate is identical to the Markov 

estimate.  It will be noted that they are identical when X is a 

multiple of the identity,  1 0  The general answer is given by the 

following theorem: 

Theorem 1.  The least squares estimate (4) is identical to the best 

linear unbiased estimate (3) if and only if Z"= V*C , where the p 

columns of V* are p linearly independent characteristic vectors of 

£ and C is a nonsingular matrix. 

The sufficiency of the condition was essentially given by myself 

in 1948 in the Skandinavisk Aktuarietidskrift [1]„  In that paper 1 

showed that if y is normally distributed, then the least squares 



estimate is identical to the maximum likelihood estimate; under normality, 

of course, the maximum likelihood estimate is best linear unbiased, 

Watson [9], [10], G. S. Watson and Hannan [12] studied the efficiency 

of least squares estimates; the inequality given in the first two papers 

shows the necessity of the condition for p = 1 .  Magness and McGuire [6] 

rediscovered the condition, proving sufficiency and necessity.  Watson [11] 

and Zyskind [13] have made more intensive studies and surveyed the 

literature, 

A problem that is more explicitly and specially a time series problem 

occurs in the case where the residuals constitute a stationary stochastic 

process.  The property g       = g(s  -  t) , where E = (a  )  denotes station- 
ST.. SL 

arity in the wide sense.  In general, the least squares estimate and the 

best linear unbiased estimate will be different.  The characteristic 

vectors of £ depend on the values of the serial or lag covariances 

and hence the best linear unbiased estimate depends on these parameters, 

which are generally unknown. 

In this case we consider the covariance matrices of the estimates, 

normalize them suitably and identically, and consider the limits of them 

as T-x» .  Grenander [4], Rosenblatt [7] in the Third Berkeley Symposium, 

and these two authors [5] found conditions for which the two limiting 

covariance matrices are the same.  They did not indicate that their 

results were asymptotic analogues of the result for a finite sample, 

and the statement of their results and their methods of proof do not 

make it easy to see the relationship. 



In this paper I shall prove the results for the finite-dimensional 

case and the limiting case in a similar fashion in order that the rela- 

tionship between the results be clearer and that the asymptotic results 

be more easily understood- The emphasis here is on the linear algebra; 

the rigorous derivation of the limits, which is rather involved is 

omitted (but is given in Section 10.2 of [3]). 

The method of proof is not the most direct for Theorem 1, because 

the proof uses covariance matrices instead of the structure of the 

estimates themselves.  On the other hand, the asymptotic results must 

be derived in terms of the covariance matrices because the order of 

the observation vector increases, and thus the structure of the estimate 

changes.  To obtain comparable proofs, covariance matrices must be 

used throughout.  A by-product of my proof of the theorems is a different 

statement of the conditions of Grenander and Rosenblatt, which, I hope, 

is more enlightening than the original.  Watson [9] related the two sets 

of results by considering the finite-sample case in the framework of 

the approach of Grenander and Rosenblatt. 

2.  The Finite-Sample Case. 

We shall now proceed to prove Theorem 1 by considering the conditions 

for which the two covariance matrices, (5) and (6), are identical.  To 

study this problem it will be convenient to transform the coordinate 

system in the T-dimensional space to the coordinate system defined by 

the characteristic vectors of the covariance matrix £ .  Let 



(7) A 
X2 ...  0 

where A.. _> X„ _> > A. (> 0)  are the characteristic roots of E 

Let V be a T x T matrix with columns as corresponding normalized 

characteristic vectors.  These properties can be summarized in the two 

matrix equations 

(8) EV = VA 

(9) V'V = I , 

which imply E = VAV and  I = VV' .  We can refer the matrix of indep- 

endent variables to this coordinate system.  Then 

(10) Z = VG , 

wnere 

(11) ?' = %.' > Srp)       » 

and g  is a p-component vector,  t = 1, . , T .  The two covarlance 

matrices depend on three matrices involving Z and E .  These can be 

written in terms of A and G as 

(12) Z'Z = G'V'VG - G'G = ]T 
t=l Mt 



(13) Z'EZ = G'V'EVG = G'AG = 3>~ U §' 
   ~ ~    t=l ~t~t'vt 

(14) •iv 1--. 1 tT7 I V   -1- Z'E  Z = G'V'E VG = G'A G = ^ ' A !/• 

t=l FMt 

The columns of V are characteristic vectors of E corresponding to 

roots which are the reciprocals of the characteristic roots of E . We 

shall follow these matrices along. 

The characteristic roots may not all be different. Let us indicate 

the multiplicity of the roots by writing the diagonal matrix A in the 

partitioned form 

V 
(15) A = 

0 

V 

where vn > v„ > . .. > v„ (> 0)  are the different characteristic roots. 
12 H 

The orders of the diagonal blocks are the multiplicities of the corres- 

ponding roots, say m , m , ... , m I ^> m = T 1 = We partition 

V and G  similarly, 

(16) v= iv(i\v(2),... ,V(H>; , 

/ oOA 

(17) 
(2) 

,(H) 



Now let us go back to the matrices we considered previously, and express 

them in these new terms.  Z is written as 

(18) Z = JZ    V(h)G(h) . 
~ h=a ~  ~ 

The three matrices appearing in the covariance matrices are 

(i9) z'z- it  G(h)'G
(h) , 

~ ~   h=1 -   ~ 

(20) Z'EZ = yZ   V^G(h)'G
(h) , 

~ ~~   h=l  h~   ~ 

(21) Z'Z-1Z= ±_   i-G(h),G(h) . 
h=l  h 

The definition of a submatrix of V may have some indeterminacy in it. 

We can replace V(h)  by V(h)Q(h)  and replace G(h)  by Q(h)'G(h) , 

where Q    is an orthogonal matrix of order m  .  Such a transforma- 
~ h 

tion leaves each of the last four equations invariant. 

Theorem 1 shall be shown to be equivalent to the following theorem: 

Theorem 2.   £(b) =  £(b*)  if and only if 

H 
(22) ]>~ p(G(h)) = p , 

h=l 

where p(G  )  denotes the rank of G 

In order to simplify the study of the conditions for the equality 

of the covariance matrices, it is convenient to transform the matrices 

again.  Let P be a nonsingular matrix such that 



(23) P'(Z'Z)P = I , 

(24) P'(Z'SZ)P = D , 

where D is a diagonal matrix with d.., > d„„ > ...   > d  > 0 „  [These 
11 — 11  —    — pp — 

are the characteristic roots of Z'EZ(Z'Z)   .]  Let us also make the 

transformation of the other matrix,  P'(Z'E Z)P .  The covariance matrix 

of P b is the inverse of this last matrix.  The covariance matrix of 

P b* is D .  (This can be seen from the original expression for the 

covariance matrix of b* , (6), by multiplication on the left by P 

and on the right by P'   and with use of the properties of the matrices 

we have just discussed.)  The question of equality of the original covar- 

iance matrices has now been reduced to the problem of when the covariance 

matrix of P b is D . 

The three matrices in  C(b)  and  äf(b*)  can be written 

(25) I = P'Z'ZP = ^T    c(h) > 
h=l ~ 

H 
(26) D = P'Z'EZP = y~    v  C 

 ~  fe  h ~ 

(h) 

(27) P'Z'E ZP = 2Z — c 
H   '   (h) 

h=l  h 

where C(h) = P'G(h)'G
(h)P .  Note that pfc(h)) = pJG(h)) .  Let us 

consider the diagonal elements of each of the last three equations. 

They are 

H 
(28) 1 = ^r 

h=l 
c(h) 
ii 



H 
(29) d...- X 

ii h=l 

00 
h ii 

(30) 
(h) 
i 

.(h) Since the matrix C    is positive semidefinite, each diagonal element 

is nonnegative.  For each i the sum of these nonnegätive components is 

1 ; hence, the elements in the  i-th diagonal position can be considered 

as probabilities.  Let X.  be a random variable that takes on the value 

(h) 
V,  with probability  c 
h ii 

, H .  Then d..  is the expected 
ii 

h = 1, . 

value of this random variable.  The last expression is the expected value 

of the reciprocal of this positive random variable.  If the two covariance 

matrices are to be the same, the i-th diagonal element of the last matrix 

must be the reciprocal of that diagonal element of the second matrix. 

Thus, the random variable just defined can take on only one value with 

probability  1 .  (This is basically the condition for equality in the 

Cauchy-Schwarz inequality.)  This implies that for each  i , c..  =1 

for one index h and is  0  for other values of h because the V, 
h 

are distinct.  These facts imply that the diagonal elements of the matrices 

C    are  l's  and  0's .  The matrices  C    have diagonal elements as 

follows: 

f 

(31) ,(D = ,(2) - 

J- 



If a matrix C    has 1 in the i-th diagonal position, the other 

matrices have 0 in that position.  (Then d.. = V, .  Since the V, 's 
11   h h 

(1) 
and d..'s are numbered in descending order, the l's  in C    are 

in the upper left-hand corner, etc.) 

Some matrices may only have O's on the main diagonal.  Since C 

is positive semidefinite, a diagonal element of 0 implies that the 

entire corresponding row and column are 0 .  Thus 

(h) 

r 

(32) XI) 

I 

.(h), 

,(2) 

0 

0 

0 

0 

0 
•1 

•J. 
Since the C  's sum to I , and the nonzero blocks are not overlapping 

(33) ,(D 
,(2) 

r 
o 

o 

0 

"^ 

I 

0 

0 

0 

0 

,(1) We have then C    with an identity in the upper left-hand corner and 

so on.  The rank of each C    is equal to the number of diagonal elements 

that are 1 .  Thus, the sum of the ranks is equal to p .  Therefore, 

the equality of the covariance matrices implies that the sum of the 

ranks is p . 

The converse can be obtained by use of Cochran's theorem.  (See 

Lemma 7.4.1 of [2], for example.)  However, we shall use a simplified 

proof of a generalization of one part of Cochran's Theorem due to 

10 



Styan [8].  We assume the sum of the ranks of the C   ' s is p .  Let 

the nonnull C   's be L , . . , , L  (K < p)  and let the ranks of these 
~ ~JL       ~K   — 

matrices be r. , ... , r  , respectively.  Then L.  can be written 
IK -vj 

A! A. , where A  is r. x p , j = 1, ... , K .  Let U be the diagonal 
-3-3 ~3 3 ~ S 

matrix with j-th diagonal blocks of order r  consisting of u I , 
3 3~ 

respectively, where u.  is the j-th value of \> , ... , v„ corres- 
J 1        H 

ponding to a nonnull C   , j = 1, ... , K .  Let 

(34) A = 

M 

hj 

Then (25) and (26) are 

(35) I = A'A , 

(36) D = A'UA . 

K 
Equation (35) shows that A is orthogonal as  ^>  r. = p , and so it 

follows from (36) that 

(37) D_1 = A'U """A , 

which is (27).  Since 

H     .   . K 
(38) 21 p(C^ O - 21 r^ = p 

j=l  J 

h=l   ~       j=l 3 

Theorem 2 is proved. (That equality of covariance matrices implies the 

rank condition can be proved by the method used in the converse, but it 

does not generalize directly to the case of stationary residuals.) 

11 



/•u \ ix ^HY   (h} 
As was  indicated earlier,     G in     Z =    >     .    n   V       G can be -^  h=l ~ 

replaced by  Q   G    where  Q    is orthogonal.  In particular, 

Q    can be chosen so that  G    has as many nonzero rows as its rank. 

(For the nonnull  C   's  or  G   's , the resulting matrices are 

A , ... , A  .)  This proves Theorem 1 for the finite-dimensional case. 
~1       ~K 

3.  Large-Sample Theory for Stationary Residuals. 

We now turn to the problem involving stationary time series.  The 

elements of the covariance matrix of  y are 

(39) G  = 0(s - t) =  f  e1(s_t)Af(A) dA , st / J -IT 

where  f(A.)  is the spectral density, which is assumed to exist.  Also 

we assume that the spectral density satisfies the inequalities 

(40) 0 <|-< f(X) <|r, 

when m and M are some positive constants.  In developing the 

asymptotic theory I shall not attempt to state all of the conditions. 

(They are given in Section 10.2.3 of [3]o)  We write 

00 

(41) f(A) = ^ JZ      eiAhQ(h) • 
h=-°° 

Let the diagonal matrix D  by defined by 

(42) diag (Z'Z) = diag füj 

where we take the positive square roots.  Since we are interested in 

I-*00 5 we shall use the index T  when convenient to emphasize that we 

12 



have a sequence of estimates.  The suitable normalization of the estimates 

is multiplication by this matrix D  .  We consider the limits of the 

covariance matrices of D b and of D b* .  The question is what are 

necessary and sufficient conditions on the independent variables and 

the spectral density such that 

(43) lim C(D b) = lim C(D b*) 

Let 

(44) Z' = (z±,   . .. , zT) 

Consider the sum on  t  of  z and multiply on each side by D, 
-1 

-t+h~t " r" ' '  ~T 

to obtain the matrix of lagged correlations of order h .  Let the limit 

of this matrix as T-x» be 

(45) R(h) = lim D,,1 

J-X» ~T 
T 't+h^Si1 

We assume that these limits exist for t = 0, + 1, + 2, ., 

this sequence of matrices has the spectral representation 

Then 

-IT 
(46) R(h) = e±Ah dM(A) , 

where M(A)  has complex-valued elements, is Hermitian, and has incre- 

ments that are positive semidefinite. 

We shall now consider the limits of the covariance matrices of the 

normalized estimates.  Those covariance matrices involve the limits of 

In fact, the matrices  DJ'Z'ZD* , DJ'Z'EZD,,,
1
 , and D 1ZE """ZDJ" 

MI MI v rri ryi / rti • j • 

13 



(47) lim C(D b) = lim (D'VI 1ZD 1)"1 , 
T-x»   ~      T-x» ~  ~ ~ 

(48) lim t(DJ*) = R-1(0) lim D"1Z'ZZD"V1(0) . 
T-x»     ~     ~      T-x» ~  ~    •*• ~ 

The second matrix is 

T-l      oo 

(49) lim D"1  Yl      ]EI ^+hK  a(h)D"1 = 21  R(h)a(h) 
T-^oo -1   h=-(T-l)  t   ~c•~t    -1    h=,_oo ~ 

XTT   °° 
y~   c(h)elAhdM(A) 

•IT h=-°° 

= f  2irf(X) dM(A) . 

Of course, these operations need to be justified to give a rigorous 

proof, but that requires considerable detail.  The full proof is given 

in section 10.2.3 of my book [3] and is along the lines indicated by 

Grenander and Rosenblatt [5].  The three matrices we are interested in 

can be written 

-l      -l      H 
(50) lim D X Z'ZD_" =     dM(A) , 

T-K»     ~ ~~i     J—TT  ~ 

-l       -l        r7* (51) lim D  Z'IZD1 = 2TT    f (A) dM(A) , 

dM(A) . (52)       J;im 5T1 rr1^1 = f 2¥? (A) 

The derivation for the third matrix is an involved demonstration also 

given in [3].  These three expressions are the analogues of (12), (13), 

and (14) in the finite-dimensional case.  Carrying the analogy to the 

finite-dimensional case further, we shall write these integrals in 

another manner to resemble (19), (20), and (21).  Let 

14 



(53) S(u) = U|2TTf(A) < u} m < u < M , 

(54) T(u) =   J        dM(A) 
S(u)  ~ 

The component functions of T(u)  are real.  Then our three matrices can 

be written as 

(55) 

(56) 

(57) 

-M -l     -l    r 
lim DXZ'ZDT =    dT(u) , 

lim D^Z'EZD 1 

lim D^ZE XZDJ" 
T-x» 

M 
udT(u) , 

m 

•M 

m 
u- d!(u) 

Similar to the finite-dimensional case we let P be a nonsingular 

matrix such that 

(58) P'   dT(u) P = I 

(59) P' f udT(u (u) P **  D , 

where D  is diagonal and  d_., > d„„ > .. . > d  >0.  The same trans- 
11 — 22 —    — pp — 

formation is applied to the third matrix, M -1 u dM(u) , which is the 
m 

inverse of lim,  ^(DJs) „  The other limiting covariance matrix is 
J-H»   ~T~.      .. ".' ' 

lim^ '^(pTb*) = p . 

If we let 

(60) L(u) = P'T(u)P , 

then the three matrices of interest are 

15 



(61) 

(62) 

(63). 

I = 

D = 

lim P'DJ-  Z'ZD X P 
T-*oo ~ ~  ~ ~~i  ~ 

lim P'DJ" Z'EZD"1 P 
T-x» 

dL(u) , 

r n 
=     u dL(u) , 

J m 

lim P'D J" Z'Z 1ZD J" P 
T-K» ~ ~   ~ ~    l 

m 

•M 

-> m 
dL(u) 

A diagonal element of L(u) , say £.„(u) , has the properties of a 

cumulative distribution function.  The corresponding diagonal elements 

/•M rM 
of (62) and (63) are       ud£ .(u)  and 

!       ii 
-> m J  m 

the expected values of the random variable with this distribution and 

u di     (u) , which are 
ii 

its reciprocal.  Thus, if the two limiting covariance matrices are equal, 

the matrix (63) is the inverse of (62) and 

(64) 
•M 

m 
ud£..(u) = 

rM ] 
-d£.£(u) 

J 
this implies that Z..(u) has one point of increase and the increase is 

1 at this point.Let the points of increase be  u > u 

and let L,  be the increase of L(u)  at  u., j = 1, ., 

> uK > 0 , 

, K Then 

the three matrices can be written 

(65) 

(66) 

(67) 

T-K» 

I'V) 

.T S1 
K 

L 
i  -i 

K 
D =  lim P'D^1  Z'ZZD"

1
 P       = XI    U-,L,   » 

lim P'D"1 Z'E~1ZD~1 P 

X-K» 

X^oo 

j-1   ^ 
K 

11    —L. 

We are now back to the same forms that we had for the finite-dimensional 

case, (25), (26), (27) ,  The only difference is that in the earlier 

16 



case we had not culled out the vacuous matrices C   .  From this 

point on the reasoning is the same.  The matrices L , L , ... , L 

have the form of (33); that is, the diagonal blocks are I's and O's 

and off-diagonal blocks are O's . 

The converse is similar to the finite-dimensional case.  If  L(u) 

has K points of increase and the sum of the ranks of the increases 

is  p  (and the increases are positive semidefinite with sum of  I 

and weighted sum of D ), then by the previous reasoning, they are of 

the form (33) and (67) is  D   .We put these properties in terms of 

M(X)  and summarize them in a theorem. 

Theorem 3.  The limiting covariances of Dmb and D_b* are        U    ^^        _J~        

identical if and only if f(X)  takes on no more than p values on 

the set of A.  for which M(X)  increases and the sum of the ranks of 

M(X)  over the sets of X  for which f(X)  takes on these values 

is p . 

The set of X  for which M(X)  increases is called the spectrum of 

M(X) •  The sets of X  for which f(X)  assumes its values are called 

the elements of the spectrum.  The properties of  L1, ... , L   (idem- 

potent and orthogonal) determine these sets; Grenander and Rosenblatt 

used them, though indirectly. 

When the residuals are uncorrelated,  f(X) = a(0)/(2fr)  and the 

conditions of Theorem 3 are satisfied.  However, we may be interested 

in conditions on the independent variables also which insure that least 

squares be asymptotically efficient regardless of  f(X) . 

17 



Theorem 4.  The limiting covariances of  D b  and D b*  are iden- 

tical for all stationary processes with spectral densities which are 

bounded and bounded away from 0  if and only if M(X)  increases at 

not more than p values of X, 0 < X < TT , and the sum of the ranks 

of the increase in M(X) ±s_    p . 

If the number of points at which M(X)  increases is at most  p 

'(0 < X < TT) , then the spectrum of M(X)  consists of these p points 

and their corresponding negative values.  The spectral density (which 

is symmetric) can then take on at most  p values, namely, its values 

at these p points  (0 < X < IT) .  On the other hand if M(X)  increases 

at more than p points  (0 <_ X < TT)  then an f (X)  can be constructed 

so that it takes on more than p points. 

An example of independent variables  {z . }  such that M(X)  has 

one point of increase is z.  = t   , j=l, ... , p, t = 1, 2, ...; 

the jump is at 0 and the increase in M(X)  at X = 0 is a positive 

definite matrix 

(68) MQ 
•?JFl  /2k-l 

\ 
j + k - 1 

In this case R(h) = M  , h = 0, + 1 , ... .  If 

H 
(69)        z = a„ + 5~ (a. cos v.t+3. sin v.t) , 

~t  ~0   -f—j-  ~j     j   2 3 

then M(X)  has an increase of rank 1 at X = 0 and an increase of 

rank 2 as X = V.  (with 0<V.<TT),J = 1 H.  In these 

examples the spectral distribution function of each independent variable 

18 



is a pure jump function, which can be considered as the opposite of a 

density.  Trigonometric functions act like characteristic vectors of a 

covariance matrix in the sense that they are involved in spectral repre- 

sentation.  Comparison of  2 = VAV'  and (39) suggests that columns of 

iXs 
V correspond to functions e   , the diagonal components of A correspond 

to the values of 2TTf(A) , and summation with respect to the index of 

diagonal components of A corresponds to integration with respect to 

A./(2TT) .  The analogue of V'ZV = A is (41), which involves a limiting 

procedure. 

19 



REFERENCES 

[ 1]   T. W. ANDERSON, "On the theory of testing serial correlation," 

Skandinavisk Aktuarietidskrift, Vol. 31 (1948), pp. 88-116. 

[2]   T. W. ANDERSON, An Introduction to Multivariate Statistical 

Analysis, New York, Wiley, 1958, 

[3]   T. W. ANDERSON, The Statistical Analysis of Time Series, New York. 

Wiley, 1971. 

[ 4] ULF GRENANDER, "On the estimation of regression coefficients in 

the case of an autocorrelated disturbance,'' Annals of Mathe- 

matical Statistics, Vol. 25 (1954), pp. 252-272. 

[ 5]   ULF GRENANDER and MURRAY ROSENBLATT, Statistical Analysis of 

Stationary Time Series, New York, Wiley, 1957. 

[ 6]   T. A. MAGNESS and J. B. llcGUIRE, "Comparison of least squares and 

minimum variance estimates of regression parameters," Annals 

of Mathematical Statistics, Vol. 33 (1962), pp. 462-470. 

[ 7]  MURRAY ROSENBLATT, "Some regression problems in time series 

analysis," Proceedings of the Third Berkeley Symposium on 

Mathematical Statistics and Probability, Vol. 1, Berkeley 

and Los Angeles, University of California Press, 1956. 

[ 8]   GEORGE P. H. STYAN, "Notes on the distribution of quadratic forms 

in singular normal variables," Biometrika, Vol. 57 (1970), 

[ 9]   G. S. WATSON, "Serial correlation in regression," Mimeo Ser. No. 49, 

Institute of Statistics, University of North Carolina. 

[10]   G. S. WATSON, "Serial correlation in regression analysis.  I," 

Biometrika, Vol. 42 (1955), pp. 326-341. 

[11]   G. S. WATSON, "Linear least squares regression," Annals of Mathe- 

matical Statistics, Vol. 38 (1967), pp. 1679-1699. 

[12]   G. S. WATSON and E. J. HANNAN, "Serial correlation in regression 

analysis.  II," Biometrika, Vol. 43 (1956), pp. 436-448. 

[ 13]  GEORGE ZYSKIND, "On canonical forms, non-negative covariance matrices 

and best and simple least squares linear estimation in linear 

models," Annals of Mathematical Statistics, Vol. 38 (1967), pp. 1092-1109. 

20 



UNCLASSIFIED 
Security Classification 

2a.  REPORT SECURITY   CLASSIFICATION 

DOCUMENT CONTROL DATA • R&D 
(Sacurify'cJaacMicaMon ol MM», body ol abaltaet and Indexing ennotatloit ^** ^ ^****£jg*^J** "'?.'?" ,?*"* i8 clfa8W,a<^ 

I. ORIGIN A TIM G ACTIVITY (Corporate authot) 

DEPARTMENT OF STATISTICS 
STANFORD UNIVERSITY 
STANFORD, CALIF. 

8 ft- CROUP 

J. REPORT TITLE 

EFFICIENT ESTIMATION OF REGRESSION COEFFICIENTS IN TIME SERIES 

4. DESCRIPTIVE NOTES (Typ» at report and Inehiaivo dataa) 
TECHNICAL REPORT 

$. AUTHOR(S> (Laal name. Ural Rama. Initial) 

ANDERSON,   T.  W. 

fi. REPORT DATE 

OCTOBER 1, 1970 

7a-   TOTAL, NO. OP  FACES 

20 
7b. NO. of nmp» 

13 
8a.   CONTRACT OR GRANT NO. 

N00014-67-A-0112-0030 
O.   PROJECT NO. 

NR-042-034 

d. 

9a.  ORIGINATOR'S REPORT NUMBER® 

Technical REport No.   2 

9b. OTHER REPORT HO(S) (Any ether ruonbess «S»«« may fe« ««#rf£ära*d 
this eapott) 

10. AVAILABILITY/LIMITATION NOTICES 

Unlimited.  Reproduction in whole or in part is permitted for any purpose of the 
United States Governmen : 

11. SUPPLEMENTARY NOTES S3. SPONSORING MILITARY ACTIVITY 

OFFICE OF NAVAL RESEARCH 
Washington, D.C. 

13- ABSTRACT,   

Problems of efficient estimation are considered in the model in 
which the T-component observable random vector y has expected value 
Z3 , where Z is a T x p matrix of known numbers of rank p(<T) 
and 3 is a p-component vector of regression coefficients, and 
(nonsingular) covariance matrix Z  .  The least squares estimate of 
3  is identical to the Markov or~Best Linear Unbiased Estimate if and 
only if the p  columns of  Z  are linearly independent linear combina- 
tions of  p  linearly independent characteristic vectors of Z 
The proof uses the covariance matrices of the estimates.  When the 
components constitute time series such that  Z  corresponds to a 
stochastic process stationary in the wide sense, the limits of the 
appropriately normalized covariance matrices of the two estimates are 
considered as T-*» .  They are functions of the matrix-valued spectral 
distribution function M(A)  of the limiting serial correlation sequence 
of the rows of  Z .  0n~the basis of a similar approach it is shown that 
these two limiting covariance matrices are identical if and only if the 
spectral density of the process whose covariances are elements of Z 
takes on at most p values on the set of A for which M(A)  increases 
and the sum of the ranks of  JdM(A)  over the sets of A~ for which 
the density takes on the value is p .  The result holds for all such 
spectral densities if and only if M(A)  increases at not more than p 
values of A, 0 < A < TT , and the sum of the ranks of the increases is  t 

FORM 
I JAN «4 1473 UNCLASSIFIED 

Security Classification 



Unclassified 
Security Classification 

14- 
KEY WORDS 

1. Efficient estimation 

2. Least  squares estimates 

3. Best linear unbiased estimates 

4. Time series 

5. Spectral distribution 

6. Asymptotic efficiency 

LINK A LINK a 
HOLS *T 

LINK C 
HOLE 

INSTRUCTIONS 
1.   ORIGINATING ACTIVITY:   Enter the name and address 
of the contractor, subcontractor, grantee. Department of De- 
fense activity or other organization (corporate author) issuing 
the report, 
2a.   REPORT SECUI3TY CLASSIFICATION:   Enter the over- 
all security classification of the report.   Indicate whether 
"Restricted Data" is included.   Marking is to be in accord- 
ance with appropriate security regulations. 
26.   GROUP:   Automatic downgrading is specified in DoD Di- 
rective 5200.10 and Armed Forces Industrial Manual.  Enter 
the croup number.   Also, when npplicable, show that optional 
markings have been used for Group 3 and Group 4 as author- 
ized. 
3.   REPORT TITLE:   Enter the complete report title In all 
capital letters.   Titles in all cases (should be unclassified. 
If a meoninr^ul tills curmot be selected without classifica- 
tion, show title classification in all capitals in parenthesis 
immediately following the title. 

. 4.   DESCRIPTIVE NOTES   If appropriate, enter the type of 
report, e.g., interim, progress, summary, annual, or final. 
Give the inclusive dates when a specific reporting period Is 
covered. 
5. AUTIIOR(S):   Enter the nomc(s) of authors) as shown on 
or in the report.   Enter last name, first name, middle initial. 
If xilltary, show rank and branch of service.   The name of 
the principal author is on absolute minimum requirement. 
6. REPORT DATE:   Enter the dote of the report as day, 
month, year; or month, year.   If more than one date appears 
on the report, use date of publication.- 
7*.   TOTAL NUMBER OF PAGES:   The total page count 
should follow norme] pagination procedures, Le., enter the 
number of pages containing information. 
76.   NUMBER OF REFERENCES:   Enter the total number of 
references cited in the report. 
8a.   CONTRACT OR GRANT NUMBER:   If appropriate, enter 
the applicable number of the contract or grant under which 
the report was written, 
86, 8c, & 8d. PROJECT NUMBER: Enter the appropriate 
military department identification, such as project number, 
subproject number, system numbers, task number, etc. 
9a.   ORIGINATOR'S REPORT NUMBER(S):   Enter the offi- 
cial report number by which the document will be Identified 
and controlled by the originating activity.   This number must 
be unique to this report. 
96. OTHER REPORT NUMBER(S): If the report has been 
assigned any other report numbers (either by the originator 
or by the sponsor), el BO enter this numbers). 
10.   AVAILABILITY/LIMITATION NOTICES:   Enter any lim- 
itations on further dissemination of the report, other than those 

imposed by security classification, using standard statements 
such as: 

. (I)    "Qualified requesters may obtain copies of this 
report from DDC," 

(2) "Foreign announcement and dissemination of this 
report by DDC is not authorized." 

(3) "U. S. Government agencies may obtain copies of 
this report directly from DDC.   Other qualified DDC 
users shall request through 

(4)    "U. S. military agencies may obtain copies of this 
report directly from DDC   Other qualified users 
shall request through 

(5)    "All distribution of this report is controlled.   Qual- 
ified DDC users shall request through 

If the report has been furnished to the Office of Technical 
Services, Department of Commerce, for sale to the public, indi- 
cate this fact and enter the price, if known. 
IL SUPPLEMENTARY NOTES: Use for additional explana- 
tory notes. 
1Z SPONSORING MILITARY ACTIVITY: Enter the name of 
tho departmental project office or laboratory sponsoring (pay- 
ing tor) the research and development.   Include oddreaa. 
13. ABSTRACT:   Enter an abstract giving a brief end factual 
summary of the document indicative of the report, even though 
it may also appear elsewhere in the body of the technical re- 
port.   If additional space is required, a continuation sheet shall 
be attached. 

It is highly desirable that the abstract of classified reports 
be unclassified.   Each paragraph of the abstract shall end with 
an indication of the military security classification of the in- 
formation in the paragraph, represented as (TS). (S). (C), or (V). 

There is no limitation on the length of the abstract.   How- 
ever, the suggested length is from 150 to 225 words. 

14. KEY WORDS:   Key words are technically meaningful terms 
or short phrases that characterize a report and may be used as 
index entries for cataloging the report.   Key words must be 
selected so that no security classification is required.   Identi- 
fiers, such as equipment model designation, trade name, military 
project code name, geographic location, may be used as key 
words but will be followed by an indication of technical con- 
text.   The assignment of links, rales, and weights Is optional. 

DD FORM 
1 JAN «4 1473 (BACK) Unclassified 

Security Classification 


