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Tho program of roscarch offerod in the work proposal for F.Y. 1970

(December 1, 1969 - November 30, 1970) has been essentially fulfilled as

follows:

1)

2)

We have established a suitable Green's function model to explain
the generation of long period, large amplitude gravity modes by
thermonuclear and nuclecar tests in the atmosphere. Thus, it is
shown in a paper in press by Tolstoy and Lau(l), that the impor-
tant mechanism here must be the rising sphere of hot gas. It is
not difficult to demonstrate that - for large yields, at least =
this mechanism should be orders of magnitude more efficient in
generating long period internal gravity wave modes than the ex-
plosion phase proper. It is our belief now that this is the
source of observed long wavelength gravity waves; although we
have, in the attached report, merely illustrated the principle

of the mechanism, without extending the results to a realistic
model of the atmosphere, there appears to be little doubt that

one may in this manner account for the large amplitudes of ver-
tical motion observed for such disturbances traveling in the.
ionosphere: .

A further product of the undersigned's investigations has been
embodied in another article entitled "Damping of very long gravity
waves in the atmospherc"(z): In this work, the question of inter-
nal gravity wave damping has been examined, based upon the assump-
tion that most of the attenuation occurs in a sort of atmospheric
surface layer in which the mean free paths of the neutral gas
moiecules are comparable to the wavelengths involved. This layer

may be viewed as 2 transition between two regimes: the effective



3)

4)

vacuum above and the region below, for which the concepts of con-
tinuum mechanics apply. Simple kinetic theory arguments predict
then the reflexion of long internal waves from this layer, the

~-ayd

reflexion coefficient being about e where a is a constant of

the order of n, vy is the vertical wavenumber and d the local scale
height., This turns out to be in accord with Yanowitch's resultcs)
for the reflexion of internal gravity waves by a region of increas-
ing viscosity in an isothermal atmosphere, a result obtained from
asymptotic arguments applied to the equations of continuum mechan-
ics. Thus it appears possible to account for a certain number of
observations of long internal gravity wave cbsefvations traveling
to great distances (e.g., round the world paths) as waveguide
phenomena, and to justify the application of free surface bound-
ary conditions to the atmosphere.(4’s'6)
The problem of deducing explosion diagnostics from these distur-
bances has also been confronted; a discussion of this problem

¢

has been embodied in a previously circulated report ', where it
was concluded that the chief practical obstacle to the use of
observed disturbances in this manner is a lack.of sufficient
understanding of the detailed properties of the upper atmosphere.
A method of remedying this situation h«s i»een discussed in that
report(7), and was proposed in our F.Y. 1971 work proposal.

Of immediate relevance to the last item have been studies carried
out jointly by this i.riter with H. Montes, G. Rao and E. Willis(s)
and with H. Montescg) of Isotopes, Inc. Thesé are studies of

observed arrivals from Apollo rocket exhaustscs) (long period

acoustic) and of naturally occurring background gravity wave
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, ] .
ucllVlly{ ), hoth carvtod out on tho Isotopoes Doppler 1onousonde
system. These studies indicate that propagation and background
data at ionospheric heights can help refine our knowledge of

upper atmospheric structure (neutral gas component).
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GENLRATION OF LONG INTERNAL GRAVITY WAVES IN WAVEGUIDES

BY RISING BUOYANT AIR MASSES AND OTHER SOURCES

by
I. Tolstoy and J. Lau

Abstract

The displacement fields gener#ted in an internal gravity wave wave-
guide between plane rigid walls are compared for two types of source: an
explosive point. source and a rising buoyant sphere moving at constant speed.
It is concluded that, for large enough spheres and comparable energy expendi-
tures, the buoyant sphere is a far more efficient source of long internal
gravity waves. In particular it appears possible to conclude that, in the
case of large evenis such as nuclear or volcaric explosions in the atmos-
phere, the rising heated air mass can generate long wavelength (A > 500 km)

internal gravity waves at ionospheric heights.



I, Introduction

Various types of internal gravity wave Green's functions have been
studied in the geophysical and hydrodynamic literatures. Explosive
sources have been at a premium in fhat particular body of writing which
concerns itself with the atmospheric effects of volcanic explosions
(Pekeris, 1948; Scorer, 1950) and nuclear tests (Harkrider, 1964; Hark-
rider and Wells, 1968; Pierce, 1965 and 1968). That type of investigation
has concerned itself primarily with acoustic and internal gravity wave
modes with periods less than ten minutes or so. Several discussions of
the effects of vertically moving sources have been published during the
last decade (Mowbray and Rarity, 1967; Lighthill, 1967). Of particular
interest is a study by Warren (1960), giving the wave resistance for an
upward moving body in an infinite, incompressible half-spacei his results
can be used for estimating the wave amplitudes generated by rising hot
air masses. The possible importance of this type of mechanism in con-
nection with nuclear explosions has been suggested by Knabe and Kahalas

L (1968). |

In the analysis given below we have confined ourselves to the highly
idealized problem of a perfect internal gravity wave waveguide between rigid
walls. This problem is clearly of some interest to oceanographers for it

has long been recognized that a free surface is approximately & node for



internal yravity waves (Lamb, 1945; Lckart, 1960; Tolstoy, 1963.. The
assumption ot a rigid top surface climinates the surface gravity mode while
moditying the internal modes only slightly, whereas the en.uing analytical
simplitvications are censiderable and make this approximation worth-while.

A study of this naturc is germanc also, to some extent, to a class- of
observed atmospheric disturbances that have been plausibly ascribed to long
wavclength internal gruvity wave effects, That this is so can be seen as
follows.

The upper atmosphere graées continuously into the ''vacuum" of inter-
planetary space. Well below the height at which thc mean free path £ of the
air molecules is of the order of the wavelength A of a hydrodynamic wave,
the atmosphere is essentially a continuous fluid. Above this height, i.e.,
for A << ¢, we have for most practical purposes a vacuum. Between this
vacuum and the continuous fluid below there is a transition region in which
A = ¢, To understand the behavior of this transition region one should,
strictly speaking, use a molecular model with Boltzmann's equation. From
the macroscopic point of view this region is that in which the kinematic
viscosity becomes extremely large: it is this layer that effectively absorbs
the energy of upward traveling waves. We may assume (Tolstoy, 1967) that
the thickness d of this transition is of the order of a scale height and is
independent of A. But then, for A >> d it seems reasonable to assume that
the atmosphere is effectively topped by a free surface with a thin (compared
to A), high viscosity layer just under it, and it is possible to imagine long
wavelength waves reflected from this surface with modest amounts of atten-
uation. Long surface gravity waves may also be connected with this 'effective
free surface'" (Tolstoy, 1967; Tolstoy and Pan, 1970). Furthermore, as has
been demonstrated by Harkrider and Wells (1968), the low order long wave-

length gravity modes are often channelled at heights between 100 and 300 km.;



thus perhaps only a fraction of the upwurd travelling cnergy actually
reaches the viscous transition layer ncar the ctfective '"top" of the atmos-
phere and reflection will be close to total. Observation of occasional
round-the-world atmospheric gravity wave paths suggests that reflexions do
take place i1n the upper atmosphere: certainly, propagation to distances of
10 to 5 x 10* km. (Breitling et al., 1967; Rose et al., 1961; Hultquist et
al., 1961; Dieminger et al., 1962; Herron and Montes, 1970; Tolstoy and
Herron, 1970) suggests that waveguide effects take place for these long
wavelengths, just as they have been demonstrated to occur at lower heights
for the shorter period acoustic-gra/ity modes (Harkrider, 1964). If then we
confine our interest to the internai gravity modes, we may replace the
"effective free surface" by an effective rigid surface without incurring
serious error (see comparative group velocity calculations for a free and a
rigid top surface on a layered atmosphere by Tolstoy and Pan, 1970). The
propagation of long wavelength (A >> d) internal waves in the atmosphere as
well as in the ccean may therefore be in some ways similar to that in a
waveguide with rigid walls., To be sure, this can in no way be offered as a
model; however, a perfect waveguide of this kind does provide a simple analog
in the sense that many of the long range propagation effects must be quali-
tatively similar, |

Our somewhat academic looking problem should thus provide us with clues
concerning the propagation to great ranges of long internal gravity waves in
the atmosphere and oceans. We are going to show that, in particular, it
gives an estimate of the relative efficiency of various kinds of source,
using simple analytical approximations. Our analysis suggests a possible
explanation for the effic.ent generation by atmospheric nuclear tests of
long internal gravity w#ves in the ionosphere. Such waves have been reported

repeatedly in the geophysical literature in connection with ionosonde obser-



vations of large yicld tests and arc known to have propagated to very great
distances; whereas explosive '"pressure' or 'cnergy' sources can hardly
account for the nagnitude of these disturbunces, it appcars possible to do
so with a "buoyant risc'" mechanism involving a rapidly rising mass of hot

air.

2. Fundamental equations

In the following we shall apply the mcthod of normal coordinates to

derive the wave fields criginating from various types of source. This
method, used extensively in acoustics by Rayleigh (1945) and, later, in e.m
ficld theory (Heitler, 1954), can be applied to conservative mechanical or
electro-mechanical continua of any sort. As pointed out by Biot and Tols-
toy (1957) this mcthod has several advantages, not the least of which is to
provide automatically the correct orthonormality relations for any type of
wave problem. These relations (equation 17) occur nacturally in terms of

the displacement cigenfunctions and, as a result, the formalism using dis-

placement fields is particularly suitable. Thus we begin with the free
field equations in the form (Tolstoy, 1963): .

pd - VAe +@VL - Ioge = 0 | (1)
where ¢ is the perturbation displacement of the stratifird fluid, having r,

z components §,¢; lz is the unit vector in th2 z direction, p is the unper-

turbed equilibrium density, g the acceleration of gravity, and

cxvidmre il (2)

and X is Lame's constant

A = pc? (3)
c being the speed of sound. In these equations it is to be assumed that A,p
are functions of z only.

Assuming a constant ¢ with an exponential density p:
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p = pge va (4)

The solutions of (1) have the form:

[ = eszo(xr)h (5)
£ = eszx(xr)f (6)
with
= =) gl-\- =
f = «b - (v E%-)h (N
2 w2 2 .
b = ? - K . (8)

h obeys the Helmholtz equation:

d2h

W + Yzh =0 (9)
2 .
v2= b2 + &2”2 - v2 (10)

Here N is the Vaisala frequency, i.e.,
N2 = 2vg - &7 1)

In this case then,y? is not a function of z.
The modes of a waveguide of thickness H, with rigid walls at z = 0,

Z = H will then be:

¢ = qe’” siny 2z Jo(xr) (12)

£ = qme\’z ﬁgr[ymcostz + (v - E%Qsinymz]Jx(xr) (13)
with

ymH = my , m=20,1, 2, ... (14)

Thus (12), (13) are of the form:

dn = Yin - (18)

9 is the normal coordinate ard is « function of t only, obeying the

oscillator equation. In the absence of exciting forces:
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Eim * w;qm =0 (16)

+ The orthonormality conditions (Biot and Tolstoy, 1957) are:

jr pgm.qn S8 © 6mn.um (17)

where the integration extends over the whole of physical space and Gmn is
the Kronecker delta:

§ =1 m=n
om (18)

=0 m#n
In applying (17) to (12), (13) and infinite spaces one must use symbolic

results (Biot and Tolstoy, 1957; Tolstoy and Clay, 1966) of the type:

j Jo(xr)rdr = j Jf(xr)rdr = ;%: (19)
c o o

Thus the solutions (12), (13) give:

Q ’H 2 0 . .
™~ - 2"00 .2 K 2 2 ) 2.2
Y ® Tdx Jo{51n T * ¥ [Ymcos Y2t v g&ﬂ siny 2
(20)
+ 2y (v - E%Dcosymz siny z]}dz
or
°m
um = wdx nPoH (21)
with
2 *
Om =] + %"{Y:I + (v - E&)l] (22)

In the presence of exciting forces, the q, will be the solutions of:

¢ e w2q = dm_ _xde Qp
q, * wa By 7o H I (23)

Here Q is the component of yeneralized force, deduced from the actual

force F by the principle of virtual work (Biot and Tolstoy, 1957):

Q, * I Fea dt (24)

z s
L

h
r



If then we say that Gm(t) is the solution of
G + wlG = Q (25)
;,E will have the forms:

1
m H
0

[ = el ) siny_z ) n J (kr)rdx (26)
m o O ©

m

1 vz ) “c G
£ = ;3;ﬁ~e g [Ymcosymz + (v - E§951nsz]J 37'3$J1(“r)‘d‘(27)
[0}
Note that the solution of (25) is, in most cases of interest, available in

closed form after applying the convolution theorem:

t

G, =4 Quu)sinu(t - 1)dt (28)

Thus the ¢, £ field will be available through.(26), (27) by means of a
single integration which can usually be carried out with the help of the
metnod of stationary phase (Lighthill, 1965).

In this paper we shall compare two types of source:

1. An explosive source, corresponding to an instantaneous injection of volume

2. An upward moving force, providing a crude simulation of a rising hot air

mass of dimensions small compared to the wavelengths being studied.

| A simple representation of the explosive source is given by a force
compressing a small sphere whiéh is suddenly released at t = 0. In other
words we have a force of time dependence 1(-t) and we shall write:

Qm = Aml(-t) (29)

i.e., by (28):

21
Gm = :Fz(l - coswt)Am (30)

In the problem under discussion one is interested only in the time dependent

terms, and we may take:



9 coswt
bm = - = Am . (31)

1t can be shown (Biot and Tolstoy, 1957; Tolstoy and Clay, 1966) that the
"unit explosion" corresponding to the injection of a unit volume at t = 0
gives:

Am = -AVea (32)

where all quantities are to be evaluated at the source point r = 0, z = 2,
If then B is a measure of the source strength (B = 1 corresponds to a unit
volume) we write:

Z.

e _Ra oVZ, 1 2 2 . 2964 -
Q, Boje °rz [ymw COSszp + (vw K g)sxnymzojl( t) (33)

And by (29) - (31) we shall have in (26), (27):

ve, 1 2 2. 2 ; coswt
[) - .
%% [ymw cosy z  + (vw' K g)smszo]—Tw (34)

G, = Boye
We thus have, in integral form, an explicit expression for the £,{ field due
to an explosive point source at r = 0, z = Z,

The other type of source we are interested in is a concentrated
force switched on at t = 0, z = Z, moving upward with the steady velocity
V and switched off at t = T so that the total distance travelled is

L=Vl <H _ (35)

For a vertical force of this kind,

F = ;zccr)c[(z -z) - VtTF (2) (36)

We may envisage two somewhat different cases, corresponding to:

The case F = Fywould appear to correspond to the long wavelength limit of a
small buoyant sphere, since Warren (1960) has shown that in this case the

wave resistance upon the rising sphere should be proportional to the local



value of the density. In fact, there is rcason to doubt that Warren's
result can be extended to the violent events accompanying an atmospheric
thermonuclear explosion, and we shall show below that at this stage of the
art at least, there is little to choose between the two models (37), (38).
However, we shall use Warren's analysis to deduce an order of magnitude for
F,, F, from the phyéical parameters of a hypothetical rising sphere of hot
gas. Note that Fr is a measure of energy and the F, source corresponds to
an energy density input ii.to the wave field that falls off with height like
p%, whereas the Fl source giv;s a constant energy input with height. 1If, in
fact, the full height of rise L does not exceed A scale height, the two
kinds of source will give similar orders of magnitude insofar as the field
displacement amplitudes are concerned.

For F = F1 we have, by (12), (24), (36):

. Vip )
Qm s1n(u°mt + ¢m)e poF1 0<tgT
(39)
= 0 T<t
where
Wom = YmV (40)
¢m = szo : ) (41)

Thus we have, driving the oscillator,a harmonic force switched on at t = 0,

switched off at t = T. The convolution theorem gives us then, for t >T:

Vg 1 T
e “pgf . .
Gm = - £>s1n(w°m1 + ¢m)s1nw(t - 1)dTt (42)
i.e.,
1 V%o 3, . T T
Gm = Fl " 02 { . Slni(w + wom)cos[wt o 3(“ + wom)]
(43)
+ sinz(w - w )cos[wt + ¢+ I{w. - w)]}
Wom™Y 2 om m 2' om

On the other hand, we have for F = F,:
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-wWt . VZg
Qm ¢ 51n(u0mt + ¢m)c pon 0<tsT
(44)

=0 T <t
The harmonic force driving the oscillator in the time interval 0 <t < T
vt

is now modulated by the factor e~ The corresponding G, is easily

derived, but we shall not need to refer to it and will not write it out here.

3. Approximations and the displacement field

In the previcus section we have obtained the displacement wave fields
of the internal gravity and ;coustic modes generated by two different types
of source in an isothermal layer of.fluid between plane rigid boundaries.
These solutions (equations 26 and 27) appear as a series summation for the
displaceient field; each term of the series is the contribution of a given
waveguide mode and has the form of an integral over x. To put these results
in useful form one must evaluate the integral: this can be accomplished
approximately by the method of stationary phase. As is well known(Lighthill,
1965) this method is the mathematical embodiment of the physical fact that
the energy within a narrow band travels with the group velocity; it is
equivalent to the statewent that the principal contribution to an integral

such as (26) comes from the vicinity of that point in the w,x plane for which
a = - =
3wt - k1) = Ut - 1 =0 (45)

where U is the r component of the group velocity. In our case this principle
is best applied to the '"far field" solutions, keeping only the leading term

6f the asymprotic expansion for Jo(xr). Thus, if

I= [ P(x)cos(wt + y)J,(kr)xdx (46)
o
we shall take

I= 2-;5(1rr)-;5f P(x) [cos (xkr - jI- - wt - Y) ¢+
° (47)

cos(xr - %+ wt + W)]ac;’dac



€}

11

Since furthermore U represents the velocity of energy transport it is always
positive, i.e., away from the source; thus, correspunding to (45), we keep
only the first term in brackets in (17) and write:
I = 2-;5(nr)-;§ReJ p(e)el (KT - Wt = ¥ - w/4) By, (48)
[

The classic result of the method of stationary phase is:

-i(y + ﬂ/4)ei(K°r - wot - n/4sgnU') (49)

k 3
1 [0)
ATy

where

L
U= = | (50)

and «x,w, are given by (45) as explicit functions of r,t.

In principle, then, we are in a position to evaluate (26) and (27),
with Gm given by (34) (explosive source) or (45) (buoyant rise source); but
to utilize the result (49) we must first solve (45). For the general case
of a compressible, stratified fluid in a gravity field this leads to an
algebraic equation of the fourth degree in w? or «2 and the solution is

best carried out numerically. However we are interested mostly in

~

establishing orders of magnitude and in some of the general properties of
the internal gravity wave modes, so that we shall use an additional approxi-
mation which will allow us to obtain simple analytical results. This is

the assumption of incompressibility.

The validity of the incompressible approximation hinges upon the fact
that, in an isothermal half space one may write, for the internal gravity

wave branch and for given y,« (Tolstoy, 1963):
w; 2
w2 = w2(1 ¢ =y s L)) (51)
i W,

where wy is the value given by the incompressible formula (while keeping

the actual N,v values characteristic of the isothermal model) and Wy is the



value of w given for the acoustic branch after neglecting gravity. For

given «,

| <

i (52)
a

o |5
n
<

where Vi, Vv are the corresponding phase velocities; as is well known,
Vgt @ as k> 0, whereas vy remains finite and for long wavelengths the
incompressible approximation will be quite good even when applied to gases.

Thus we take:
2 .
2 = Kz[%z ] 1] -2 (53)
where N has the numerical value corresponding to the compressible model

(i.e., N 1is a constant given by equation 11). We are thus led to the

results:

N(Y§ + v2)
U=s U = . 54
T Ga e )k o0

where Ym has the value given by (14). Substituting (54) in (45) yields then

for each mode:
= NVl g%
k =N Vm em (55)
where Vm is the maximum (low frequency limit) of the group and phase velocities

of each mode:

Vo= NG y2) R (56)
and
%~ Y
= 3 3 3 .
b, =t"r Vm 1 (57)
likewise:
-1/ _l/_ l/ ’ 3
= 3 3 .
wy NVm t Sr O (58)
and:

3 .
wt - kT = I‘NV;IlOm/2 (59)
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Also noto that (22) becomes, by virtue of the incompressible assumption

L

_N |
m ~ Wm* (60)

We may then use (49) together with (55) - (60) to obtain explicit, analytic
approximations for (26), (27) for the two kinds of source corresponding to
(34) and (43).

Thus, for the internal gravity modes generated by an explosive

source we have the vertical displacement field:

. . KRR VAR, /
= ¢ IH713 ;ﬁN'lev(z Zo0)y ) [ng?/at /3r /3sinsz

;expl a o
(61)
2 Y, 2 : Y
TN PO Wy & : - -lg72
Vm t r (Ymcostzo + vs1nszo) -nsz coerVm 0

Whereas the rising force F; gives:

clyele=%,_1.-1.V(z+z_) “1g%..
;buoy = 1 H"43 Do rle 0 F1 g Vm 9m51nsz
. (62)
Einxg- siny%- ]
cos u - = Cos V
X y :
with
AL R/
3 3.73
X = wom + Nvm -emﬁt T (63)
RV AR A '
y = - N ARy (64)
uexFe vz - mv-le? (65)
2 mo m m
veyle vz s mnv-lol (66)
2 mo m m

In these results, each mode starts at t = rV&lz the amplitude is zero for
times t < rv_}!,
m 1
Note that for constant r, as t =+ « |C| + o like t é. In practice,

however, this need not disturb us for it is the same kind of divergence

that occurs in the analogous Cauchy-Poissun problem for surface gravity
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waves (Lamb, 1945); it is due to the concentrated 6(r) nature of the
exciting force and may be eliminated by taking a source of finite width.

We are intercsted here in the long wavelength early arrivals, for U 3 300 m.
sec™l or so, for which the wavelengths are much greater than the width of
the actual source, so that we may ignore this cffect.

The results (61) and (62) correspond to the highly idealized case in
which the attenuation of the waves is neglected. In practice, internal
gravity waves in planetary oceans and atmospheres will be attenuated by a
variety of mechanisms. If Qe wish to make our results in any sense analo-
gous to cases liable to occur in practice, we must introduce attenuation in
some form. In fact, it is generally believed that the chief mechanism of
attenuation of lorg wavelengths in the atmosphere is due to viscosity and;
in particular, to the highly viscous '""transition" layer mentioned in the
introduction; i.e., near the effective '"top" of the atmosphere the attenu-
ation increases to such large values that all short and moderate‘wavelengths
reaching these heights are completely absorbed. However, as pointed out in
the introduction, large atmospheric explosions have been known to generate
long waveleagth disturbances corresponding to displacements of several km.
at ionospheric heights and traveling out to distances of 10" to 5 x 10“ km.
(i.e., around-the-world paths). These long paths suggest that on such
occasions gravity waves are ducted and must in some manner be reflected,
either at an "effective free surface' or both there and, partially, at a
lower level; whatever the precise mechanism of the ducting, the experimental
results suggest that, on occasion, the attenuation in the horizontal
direction is small enough to allow for a number of reflections before the
wave dissipates too much of its energy. Thus we may apply the observation
(Lighthill, 1965) that small amounts of attenuation, although important in

practice, do not change the group velocity and stationary phase theorems; it
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is therefore possible to take the attecnuation into account by simply multi-
plying the undamped solutions by e'dmr, where §_ is some function of the
frequency or wuvenumber dictated by the physics of the process. Since we
are dealing here with a viscous mechanism, we may assume that 6m is propor-
tional to w? (at least for order of magnitude calculations, when the phase
velocity does not vary widely over the frequency band of interest). Thus,

for added realism in our solutions (61), (62), we may multipiy each mode by

-nw? -
e~ T e nVm

- 2/ 2

Sensible numerical values of the constant n may be secured on the assumption
that the wavetrain will give detectable amplitudes at some range: like, say,

an order of magnitude decrease for 10“ or 5 x 10“ km.

4. Results and discussion

Comparing the solutions (61) and (62) allows us to demon;trate the fact
that a buoyant rise type of source (such as F; or F,) is much more effective
in exciting internal gravity waves than an explosive source, at least in
connection with large energy sources such as volcanic explosions and thermo-
nuclear tests which create ; big enough volume of rising hot fluid.

In view of Warren's results (1960) showing that the wave resistance on
» buoyantly rising sphere is proportional to the density of the surrounding
medium, it would be logical to assume that it is the F, source that simulates
a rising sphere of radius small compared to the wavelengths of interest.

In fact though, the generalized forces (39) and (44) will give results of
the same size for moderate rise speeds and times V,T, i.e., as long as WT

is not too large. Certainly, if we were to take
F, = Fy<p'> (68)
where the average is taken over the rise height L, we may expect the F,; and

F, sources to give similar orders of magnitude for the displacement ampli-
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tudes (even though the details of the field may be different).
Adopting (068) then, we can ostimate F, by assuming that F, is cssen-
tially the total wave resistance to the upward motion of the sphere and

write:

Fp = Ry X 2vgal . (69)

where Rd has been given by Warren as a function of the radius a of the
rising sphere. For radii that are not excessive (Warren, 1960):

R a22vgn-2v-2 (70)

14

d
so that

F

114

B 4n=2v-2,2g2,6 . (71)

The effective radius a of the sphere depends upon the mechanism involved.
In the case of thermonuclear atmospheric explosions, this may be taken as
(Pierce, 1968)

a=0.4 1315"3p'1"3 (72)
where E is the total energy of the explosion and p is the atmospheric

pressure at z = z . Using this result togather with (71) gives

F, = 1.6 x 10-3v2g2p=2y-2g2 : C . (73)

N

V also depends upon the energy, but in a manner hard to ascertain. If we
use the buoyant rise velocity formula given by Scorer (1957) for less extreme

conditions, we take:

V= (g8a)* (74)

where B8 is the buoyancy defined as

-]
B = (75)

8p being the difference between the densities outside and inside the rising
sphere. It is very difficult to estimate B on theoretical grounds, but if
we assume that for the very great temperatures involved in a thermonuclear

explosion 8 = 1, then
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Iy o
V2 = ga = 0.4 g E3p 13 (76)
E.g., if 2, = 35 km., p = 102 kg.m~2 and if we assume that for 1 megaton
E = 10!3 kg.m, we have V = 102 m sec~l.

Using (76) we rewrite (73) as

F, = 4x 1072y2 x-:s"3p'f"3 (77)
where we have assumed g = 10 m.sec™2. This result suggests that F, is
actually an increasing function of Z,- However we know that, in practice,
the hot sphere slows down and reaches a ceiling and then starts spreading:
thus V -+ 0 and at this point, according to (73), F, would increase indefi-
nitely -which is clearly impossible.. In fact F2 must decrease to 0 as the
air mass comes to a halt. In view of these complicating factors it appears
reasonable to use a constant energy input source of the type F: pending
a more quantitative analysis of the problem we assume that this will at
least give us the proper orders of magnitude.

For order of magnitude calculations, then, we assume an Fy éource, with
F1 given by (€8). fhe quantity F2 in this.equation is then calculated from
(77) using, for example, the actual average atmospheric parameters of the
lower 100 km. of the atmosphere (v = 7 x 10°%) rather than those of the
waveguide model (it is the magnitude of the source we are modelling at this
point). In the analog waveguide it is probably more consistent in (68) to

use the v,p values of the waveguide, i.e.,

T
- l-e v =VZg
P Fz[\.v—f—]e %)

where V is an assumed rise rate compatible with (76), T the duration of the
rise, v is characteristic of the model (smaller than that of thc lower 100
km. of the atmosphere and larger than that of the upper atmosphere). Thus,
for V = 100 m.sec™!, T = 300 sec., v = 3 x 105 we have, for order of

magnitude purposes:



18

Fpo=E, eV k007 (79)
Insofar as the explosive source is concerned, we may rccall that, for a
unit injection of volume, B = 1 (Biot and Tolstoy, 1957). This corresponds,
approximately, to 1 kg. of conventional chemical explosive which, upon
detonating at sea level atmospheric pressure, is transformed into 1 m3 of
gas and gives an energy release of the order of 10“ kg. m. At higher
altitudes, the volume injected in this manner by a given charge size grows

2vi . .
©, On the other hznd, the effective volume

like p-!, 1.e., like e
injected in this model does not grow proportionately to the mass of the
explosive: the detonation wave travels through the explosive and the
effective injected volume is much gmaller. Indeed, the usual scaling for

amplitude - and thus for B - is the cube root law. Thus:

B = £ 1077 2V%0 (80)
Using (80), (79) with (61), (62) we may determine the relative efficiency
of the buoyant and explosive sources. We are interested in the earlier
arrivals for which U_ = rt l= Vi so that we may write, approximately, for

g = 10; N = 1.5 x 10-2:

- l :
l¢] = {r-lp-1H-13 *VQI eV (#*%)) x 2.6 x 10x EB T (81)

expl
Note that the explosive arrival stérts with a discontinuous step at t = rv;l
for each mode.

The buoyant arrival, on the other hand, is seen from (62) to rise
gradually from zero amplitude at t = rVil. However, it is easily verified
that fully developed amplitudes correspond to o, 2 10"1 (see figures

for example). Thus:

chuoyl 2 {r'ln'lH‘IS';iV;Il e (2+20), ;-e: e V% x 0.7 x F, (82)

or, for T = 3 x 102 sec:

= 7
ICIbuoy 2 (r-ln-ln1s %V;l °v(?+z°)} 7.4 x 10°17 x e/5°30£§5 (83)
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Thus, the ratio of the maximum amplitudes for the carly, long wavelength,
internal gravity wave trains excited by the buoyant rise and explosive

mechanisms is, at least

7
g £
R = |BYUYI . 3 4 10-18(29} g/ (84)
Cexpl P

where E is the equivalent energy in kgm. Thus the relative efficiency of
the buoyant rise mechanism increases rapidly with the energy (Eié) and
with the height of initiation (p-z%). The estimate (84) shows, for
instance, that for E = 1012.kgm (100 kT), and p = 10’3po (z = 50 km),

R 2 102, Thus large explosions at moderate to great heights have a ten-

dency, through the buoyant rise mechanism, to be efficient generators

of long wavelength ionospheric gravity waves: the explosive phase of
the mechanism, on the other hand, is a relatively negligible source of
such waves. This should hold equally well for volcanic explosiqps.
\Thsofar as the absolute amplitudes of excitation of the internal
gravity wave modes by the buoyant rise is concerned, it is unlikely
that the above formulae would give results pertinent to the real atmos-
phere, However, one may point out that, at least, these results suggest
that very large amplitudes can, in principle, be obtained. For instance,

figure 1 shows that for r = 10“ km, assuming H = 5 x 10° m., and for a

'l MT explosion at z, = 100 km, vertical amplitudes in excess of 10 km

are easily justified. In fact, our model underemphasizes the displace-
ment amplitudes to be obtained at great heights because it uses an average
exponential densi;y law; in addition we know that ducting effects occur
for these wavelengths above 100 km,

Figure 1 shows a succession of waveforms for r calculated for the

model:



-

H

at

r

4

and for several zZ, values and various

5x )0°m

1.5 x 1072 rad. sec™!
3x107° m-!

102 m., sec-!

3 x 102 sec.

107 m.

2.5 x 10° m.

attenuation coefficients n.

(85)
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N Figurce Caption

Figure 1

Internal gravity wave vertical displacement amplitudes (in m) at height

z = 250 km in waveguide model of equation 85, excited by huoyant hot air
mass, rising at 100 m sec™! for fiQe minutes, starting from various heights
z = z, (sum of first seven modes). Parameters have been estimated for a

1 MT explosion., Several possible attenuation factors h.ve been used for
qualitative illustration of effects of different attenuation magnitudes.
Although these calculations can in no way be construed as giving a model
of atmiyspheric behavior, the results do suggest that this mechanism can

create large amplitude disturbances at ionospheric heights.



