
'VroSR  'u ■:'.■. ;iBTK 

Khl'ÜKT  t-ÜR l'LRIOü DliCUMüliK  1,   1969  - NOVEMBER 30,   1970 

I.  TOLSTOY 

ARPA ORDER NO.   1320 

PROJECT CODE NO.   9F20 

NAME OF CONTRACTOR - FLORIDA STATE UNIVERSITY 

DATE OF CONTRACT -  1 DECEMBER 1969 

AMOUNT OF CONTRACT - $48,000 

CONTRACT NO.  AF - F44620-69-C-0043 AMEND.  P003 

CONTRACT TERMINATION DATE - 30 NOVEMBER 1970 

PRINCIPAL INVESTIGATOR - I.  TOLSTOY 

SHORT TITLE OF WORK - A STUDY OF EXTREMELY LOW FREQUENCY WAVES AND PROPA- 
GATING IONOSPHERIC DISTURBANCES IN DETECTING 
ATMOSPHERIC NUCLEAR EXPLOSIONS 

> D P C 

.j        | 

.1 

Reproduced by 

NATIONAL TECHNICAL 
INFORMATION SERVICE 

Sprlngflafd, Va.    23151 



BEST 
AVAILABLE COPY 



The program of rcicurch ol'fcrod in tho work proposal for F.Y. 1970 

(December 1, 1969 - November 30, 1970) has been essentially fulfilled as 

follows: 

1) Wo have established a suitable Green's function model to explain 

the generation of long period, large amplitude gravity modes by 

thermonuclear and nuclear tests in the atmosphere. Thus, it is 

shown in a paper in press by Tolstoy and Lau^ ', that the impor- 

tant mechanism here must be the rising sphere of hot gas. It is 

not difficult to demonstrate that - for large yields, at least - 

this mechanism should be orders of magnitude more efficient in 

generating long period internal gravity wave modes than the ex- 

plosion phase proper. It is our belief now that this is the 

source of observed long wavelength gravity waves; although we 

have, in the attached report, merely illustrated the principle 

of the mechanism, without extending the results to a realistic 

model of the atmosphere, there appears to be little doubt that 

one may in this manner account for the large amplitudes of ver- 

tical motion observed for such disturbances traveling in the 

ionosphere. 

2) A further product of the undersigned's investigations has been 

embodied in another article entitled "Damping of very long gravity 

(2) 
waves in tho «tmosphere"^ ':    In this work, tho question of intcr- 

'>   nal gravity wave damping has been examined, based upon the assump- 

tion that most of the attenuation occurs in a sort of atmospheric 

surface layer in which the mean free paths of the neutral gas 

molecules are comparable to the wavelengths involved. This layer 

may be viewed as i transition between two regimes: the effective 



vacuum above and  tho region below, for which the concepts of con- 

tinuum mechanics apply. Simple kinetic theory arguments predict 

then the reflexion of long internal waves from this layer, the 

reflexion coefficient being about e"aY where a is a constant of 

the order of TT, Y i^ the vertical wavenumber and d the local scale 

height. This turns out to be in accord with Yanowitch's result ' 

for the reflexion of internal gravity waves by a region of increas- 

ing viscosity in an isothermal atmosphere, a result obtained from 

asymptotic arguments applied to the equations of continuum mechan- 

ics. Thus it appears possible to account for a certain number of 

observations of long internal gravity wave observations traveling 

to great distances (e.g., round the world paths) as waveguide 

phenomena, and to justify the application of free surface bound- 

ary conditions to the atmosphere. ' * J 

3) The problem of deducing explosion diagnostics from these distur- 

bances has also been confronted; a discussion of this problem 

C7) has been embodied in a previously circulated report^ , where it 

was concluded that the chief practical obstacle to the use of 

observed disturbances in this manner is a lack of sufficient 

understanding of the detailed properties of the upper atmosphere. 

A method of remedying this situation h&s neen discussed in that 

(7)    • report  , and was proposed in our F.Y. 1971 work proposal. 

4) Of immediate relevance to the last item have been studies carried 

out jointly by this i.riter with H. Montes, G. Rao and E. Willis 

fg) 
and with H. Montesv J  of Isotopes, Inc. These are studies of 

observed arrivals from Apollo rocket exhaustsv J  (long period 

acoustic) and of naturally occurring background gravity wave 



iU'liVlly ,    luUll   CUl'l'lUll   Ulli    ÜU    ll|0    IbllldpUb   |l()|)|)hw'    I OlUJ.liJlliJu 

system. These studies indicate that propagation and background 

data at ionospheric heights can help refine our knowledge of 

upper atmospheric structure (neutral gas component). 
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GHNIiRATION OF LONG INTERNAL GRAVITY WAVES IN WAVEGUIDES 

BY RISING BUOYANT AIR MASSES AND OTHER SOURCES 

by 

I. Tolstoy and J. Lau 

Abstract 

The displacement fields generated in an internal gravity wave wave- 

guide between plane rigid walls are compared for two types of source: an 

explosive point, source and a rising buoyant sphere moving at constant speed. 

It is concluded that, for large enough spheres and comparable energy expendi- 

tures, the buoyant sphere is a far more efficient, source of long internal 

gravity waves. In particular it appears possible to conclude that, in the 

case of large events such as nuclear or volcanic explosions in the atmos- 

phere, the rising heated air mass can generate long wavelength (\ > 500 km) 

internal gravity waves at ionospheric heights. 



I. Introduction 

Various types of internal gravity wave Green's functions have been 

studied in the geophysical and hydrodynamic literatures. Explosive 

sources have been at a premium in that particular body of writing which 

concerns itself with the atmospheric effects of volcanic explosions 

(Pekeris, 1948; Scorer, 1950) and nuclear tests (Harkrider, 1964; Hark- 

rider and Wells, 1968; Pierce, 1965 and 1968). That type of investigation 

has concerned itself primarily with acoustic and internal gravity wave 

modes with periods less than ten minutes or so. Several discussions of 

the effects of vertically moving sources have been published during the 

last decade (Mowbray and Rarity, 1967; Lighthill, 1967). Of particular 

interest is a study by Warren (1960), giving the wave resistance for an 

upward moving body in an infinite, incompressible half-space; his results 

can be used for estimating the wave amplitudes generated by rising hot 

air masses. The possible importance of this type of mechanism in con- 

nection with nuclear explosions has been suggested by Knabe and Kahalas 

(1968), 

In the analysis given below we have confined ourselves to the highly 

idealized problem of a perfect internal gravity wave waveguide between rigid 

walls. This problem is clearly of some interest to oceanographers for it 

has long been recognized that a free surface is approximately a  node for 



iiitonuil gravity waves (.Lamb, 11)45; lickart, lOOO; Tolstoy, 1963).  The 

assumption of a ri^.i^ top surface eliminates the surface gravity mode while 

modifying the internal modes only slightly, whereas the en:.uing analytical 

simplifications are considerable and make this approximation worth-while. 

A study of this nature is germane also, to some extent, to a class-of 

observed atmospheric disturbances that have been plausibly ascribed to long 

wavelength internal gravity wave effects. That this is so can be seen as 

follows. 

The upper atmosphere grades continuously into the "vacuum" of inter- 

planetary space. Well below the height at which the mean free path £ of the 

air molecules is of the order of the wavelength A of a hydrod/namic wave, 

the atmosphere is essentially a continuous fluid. Above this height, i.e., 

for A << H, we have for most practical purposes a vacuum. Between this 

vacuum and the continuous fluid below there is a transition region in which 

\ - I,    To understand the behavior of this transition region one should, 

strictly speaking, use a molecular model with Boltzmann's equation. From 

the macroscopic point of view this region is that in which the kinematic 

viscosity becomes extremely large: it is this layer that effectively absorbs 

the energy of upward traveling waves. We may assume (Tolstoy, 1967) that 

the thickness d of this transition is of the order of a scale height and is 

independent of A. But then, for A >> d it seems reasonable to assume that 

the atmosphere is effectively topped by a free surface with a thin (compared 

lo A), high viscosity layer just under it, and it is possible to imagine long 

wavelength waves reflected from this surface with modest amounts of atten- 

uation. Long surface gravity waves may also be connected with this Effective 

free surface" (Tolstoy, 1967; Tolstoy and Pan, 1970). Furthermore, as has 

been demonstrated by Harkrider and Wells (1968), the low order long wave- 

length gravity modes are often channelled at heights between 100 and 300 km.; 



tints perhaps only u fraction of the upward travel ling energy actually 

reaches the viscous transition layer near the effective "top" of the atmos- 

phere and reflection -..ill be close to total. Observation of occasional 

round-the-world atmospheric gravity wave paths suggests that reflexions do 

take place in the upper atmosphere: certainly, propagation to distances of 

lO14 to 5 x lO*4 km. (Breitling et al., 1967; Rose ct al., 1961; Hultquist et 

al., 1961; Dieminger et al., 1962; Herron and Montes, 1970; Tolstoy and 

Herron, 1970) suggests that waveguide effects take place for these long 

wavelengths, just as they have been demonstrated to occur at lower heights 

for the shorter period acoustic-gn /ity modes (Harkrider, 1964). If then we 

confine our interest to the internal gravity modes, we may replace the 

"effective free surface" by an effective rigid surface without incurring 

serious error (see comparative group velocity calculations for a free and a 

rigid top surface on a layered atmosphere by Tolstoy and Pan, 1970). The 

propagation of long wavelength (X >> d) internal waves in the atmosphere as 

well as in the ocean may therefore be in some ways similar to that in a 

waveguide with rigid walls. To be sure, this can in no way be offered as a 

model; however, a perfect waveguide of this kind does provide a simple analog 

in the sense that many of the long range propagation effects must be quali- 

tatively similar. 

Our somewhat academic looking problem should thus provide us with clues 

concerning the propagation to great ranges of long internal gravity waves in 

the atmosphere and oceans. We are going to show that, in particular, it 

gives an estimate of the relative efficiency of various kinds of source, 

using simple analytical approximations. Our analysis suggests a possible 

explanation for the efficient generation by atmospheric nuclear tests of 

long internal gravity waves in the ionosphere. Such waves have been reported 

repeatedly in the geophysical literature in connection with ionosonde obser- 



vat ions of largü yield tests und arc known to have propagated to very great 

distances; whereas explosive "pressure" or "energy" sources can hardly 

account tor the magnitude of those disturbances, it appears possible to do 

so with a "buoyant rise" mechanism involving a rapidly rising mass of hot 

air. 

2.  Fundamental equations 

In the following we shall apply the method of normal coordinates to 

derive the wave fields originating from various types of source. This 

method, used extensively in acoustics by Rayleigh (1945) and, later, in e.m 

field theory (Meitler, 1954), can be applied to conservative mechanical or 

electro-mechanical continua of any sort. As pointed out by Biot and Tols- 

toy (1957) this method has several advantages, not the least of which is to 

provide automatically the correct orthonormality relations for any type of 

wave problem. These relations (equation 17) occur naturally in terms of 

the displacement eigenfunctions and, as a result, the formalism using dis- 

placement fields is particularly suitable. Thus we begin with the free 

field equations in the form (Tolstoy, 1963): 

pg - VAc ♦cgV; - izpgE - 0 (1) 

where ^ is the perturbation displacement of the stratifiH fluid, having r, 

z components £,c; J is the unit vector in ths z direction, p is the unper- 

turbed equilibrium density, g the acceleration of gravity, and 

e . 7.d - i* + |i ♦ |i (2) 

and A is Lame's constant 

A » pc2 (3) 

c being the speed of sound. In these equations it is to be assumed that X,p 

are functions of z only. 

Assuming a constant c with an exponential density p: 



P  ■ P0e 
•2vz 

The solutions of (1) have the form: 

; ■ evzJ  (tcr)h 

C - evzJ1(<r;f 

with 

f - Kb"2 dh 
dz *  (v - T^Oh 

b2 ■ —T - ic2 

h obeys the Helmholtz equation: 

d2h 
dz' ♦ Y2h = 0 

Y2. b2 + ^2 . v2 

Here N is the Väisälä frequency, i.e., 

N2 » 2vg - 1^. 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(ID 

In this case then, y2 is not a function of z. 

The modes of a waveguide of thickness H, with rigid walls at z ■ 0, 

z ■ H will then be: 

vz 
C - qme  sinYmz J0(<r) (12) 

5 " VV ^ IYmC0SYmZ + (v ■ ■£)*i*ymi]JiM 
with 

Y H ■ mir , m ■ 0, 1, 2, . . . 

Thus (12), (13) are of the form: 

d « q_a 
Tn"m :m 

(13) 

(14) 

(15) 

a is the normal coordinate ard is. ü function of t only, obeying the 

oscillator equation. In the absence of exciting forces: 



ci    ♦  ur'q    = 0 (16) 

The orthonormality conditions  (Biot and Tolstoy,  1957) are: 

Pa   «a     di  =  6     -u (17) vm »n mn    m v    ^ 
T 

where the integration extends over the whole of physical space and 6  is 

the Kronecker delta: 

6  = 1  m = n * 
om (18) 

»0  m ^ n 

In applying (17) to (12), (13) and infinite spaces one must use symbolic 

results (Biot and Tolstoy, 1957; Tolstoy and Clay, 1966) of the type: 

,00 »oo 

J0(<r)rdr »   j2(Kr)rdr - ^ (19) 
'C '0 

Thus the solutions  (12),   (13) give: 

o        'H 2 
v   ■ —T0-     {sin2Y z * rir FY COS2Y Z ♦ (V —%-)2sin2Y z m       Kd< J 'm       bH L m        'm        v       cz' 'm Jo 

* 2VV * #)c0SYmz sinym
zl}dz 

(20) 

or 

with 

um " ^ ^oH (21) 

am s 1 * iH>m + (v " *2] (22) 

In the presence of exciting forces, the a will be the solutions of: 

%       niSn  Pm  irp0H am ^*J 

Here 0 is the component of generalized force, deduced from the actual 

force F by the principle of virtual work (Biot and Tolstoy, 1957): 

F'a dt (24) 
|T « -m 



If then we say that G (t) is the solution of m 

G + u2G ^ (^ (25) 

C,C will have the fonns: 

#00   p 

o m JQ     m 

 1     .vz 
TTP 

^evZl [YmcosYmz *   (v .^)sinYmz] A.^J.(Kr)<d(c(27) 
ü  m 

o 

Note that the solution of (25) is, in most cases of interest, available in 

closed form after applying the convolution theorem: 

Q(T)sinü)(t - T)dT (28) 

Thus the ;, C field will be available through (26), (27) by means of a 

single integration which can usually be carried out with the help of the 

method of stationary phase (Lighthill, 1965). 

In this paper we shall compare two types of source: 

1. An explosive source, corresponding to an instantaneous injection of volume 

2. An upward moving force, providing a crude simulation of a rising hot air 

mass of dimensions small compared to the wavelengths being studied. 

A simple representation of the explosive source is given by a force 

.compressing a small sphere which is suddenly released at t ■ 0.  In other 

words we have a force of time dependence l(-t) and we shall write: 

Qm s V^ ™ 
i.e., by (28) : 

Gm = ^(1 " C0Sü,t)Am (^ 

In the problem under discussion one is interested only in the time dependent 

terms, and we may take: 



G = . ££^1 A (31) 
m     o)^  m ^    ' 

It can be shown (Biot and Tolstoy, 1957; Tolstoy and Clay, 1966) that the 

"unit explosion" corresponding to the injection of a unit volume at t ■ 0 

gives: 

A = -XV.am (32) 

where all quantities are to be evaluated at the source point r = 0, z ■ z . 

If then B is a measure of the source strength (B = 1 corresponds to a unit 

volume) we write: 

Qm " -BPo®VZ#^- IV^Vo + ^ - <2«)sinYmzo]l(-t)  (33) 

And by (29) - (31) we shall have in (26), (27): 

Gm " B^e"VVtV2cosVo + K " <28)"%^]££^: W 

We thus have, in integral form, an explicit expression for the C«C field due 

to an explosive point source at r = 0, z « z . 

The other type of source we are interested in is a concentrated 

force switched on at t ■ 0, z ■ z , moving upward with the steady velocity 

V and switched off at t ■ T so that the total distance travelled is 

L » VT < H (35) 

For a vertical force of this kind, 

I  - lz6(r)6[(z - zo) - Vt]F(z) (56) 

We may envisage two somewhat different cases, corresponding to: 

F • Fj = F^1* 

F = F2 = F2p 

The case F - F2would appear to correspond to the long wavelength limit of a 

small buoyant sphere, since Warren (1960) has shown that in this case the 

wave resistance upon the rising sphere should be proportional to the local 
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value of the density. In fact, there is reason to doubt that Warren's 

result can be extended to the violent events accompanying an atmospheric 

thermonuclear explosion, and we shall show below that at this stage of the 

art at least, there is little to choose between the two models (37), (38). 

However, we shall use Warren's analysis to deduce an order of magnitude for 

F^t P,   from the physical parameters of a hypothetical rising sphere of hot 

gas. Note that Fc is a measure of energy and the F2 source corresponds to 

an energy density input ii.to the wave field that falls off with height like 

P , whereas the F. source gives a constant energy input with height. If, in 

fact, the full height of rise L does not exceed a scale height, the two 

kinds of source will give similar orders of magnitude insofar as the field 

displacement amplitudes are concerned. 

For F « F1 we have, by (12), (24), (36): 

N 
v2o k • » sin(w t + (j»)e   p F, 0 < t i T om   m     o 1 

T < t 
(39) 

where 

w  » Y V (40) om  'm v ' 

K '  Ym
2
n (41) m  mo 

Thus we have, driving the oscillator,» harmonic force switched on at t » 0, 

switched off at t = T. The convolution theorem gives us then, for t >T: 

G- "  7. ~   sinC<*> * + «t» )sina>(t - T)dT (42) m    u om m 
Jo 

i.e., 

1 V 2/* i     1       T T 
G    * F, -e       A* {-- sinT-(u) + u Kosfut - $    -  •S-(ü) + U )! m   1 u   o w+w    2''   om' *- Ym  2V   om'-1 

vz, 
Ko  w+c om 

(43) 
IT T 
 sins-(u) - u )cosrut * $   + ?(Iü  - u)!} -d)   2V   om  *• Tm  2V om   'J >m 

On the other hand, we have for F » F2: 

+ 
u om 
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-\jVt vzn 0    = c        sin(u)    t ♦  4. )o      p Fn 0 < t i T in om        ym 02 
(44) 

= Ü T < t 

The harmonic force driving the oscillator in the time interval 0 < t < T 

is now modulated by the factor e' ■ . The corresponding (^ is easily 

derived, but we shall not need to refer to it and will not write it out here. 

3. Approximations and the displacement field 

In the previous section we have obtained the displacement wave fields 

of the internal gravity and acoustic modes generated by two different types 

of source in an isothermal layer of fluid between plane rigid boundaries. 

These solutions (equations 26 and 27) appear as a series summation for the 

displacenent field; each term of the series is the contribution of a given 

waveguide mode and has the form of an integral over K. To put these results 

in useful form one must evaluate the integral: this can be accomplished 

approximately by the method of stationary phase. As is well known(Lighthill, 

1965) this method is the mathematical embodiment of the physical fact that 

the energy within a narrow band travels with the group velocity; it is 

equivalent to the statement that the principal contribution to an integral 

such as (26) comes from the vicinity of that point in the u,< plane for which 

•^-(ut - .cr) = Ut - r = 0 (45) 
OK 

where U is the r component of the group velocity. In our case this principle 

is best applied to the "far field" solutions, keeping only the leading term 

of the asymptotic expansion for J (tcr). Thus, if 

I « 

we shall take 

r" 

0 

P(ic)cos(ut + ^)J0(»cr)icdK (46) 

•OD 

I = 2"1'ö(irr)'M P(K)[cos((cr - J - ut - *) ♦ 

(47) 

cos(icr - j ♦ ut ♦ 1^)1 ic die 
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Since furthermore U represents the velocity of energy transport it is always 

positive, i.e., away from the source; thus, corresponding to (45), we keep 

only the first term in brackets in (17) and write: 

I = 2"Js(Trr)"J2Re 
,00 

J 

p(K)ei(<r - ut - ^ - */4)Khd< (48) 

The classic result of the method of stationary phase is: 

! „ p(K ) r^     ^e"1^ + v/V^or - »o* " Tr/4sgnU')       (49) 
0 A^iu'P 

where 

U' = |^ (50) 

and K0$U0  are given by (45) as explicit functions of r,t. 

In principle, then, we are in a position to evaluate (26) and (27), 

with G_ given by (34) (explosive source) or (45)(buoyant rise source); but 

to utilize the result (49) we must first solve (45). For the general case 

of a compressible, stratified fluid in a gravity field this leads to an 

algebraic equation of the fourth degree in u2 or <2 and the solution is 

best carried out numerically. However we are interested mostly jn 

establishing orders of magnitude and in some of the general properties of 

the internal gravity wave modes, so that we shall use an additional approxi- 

mation which will allow us to obtain simple analytical results. This is 

the assumption of incompressibility. 

The validity of the incompressible approximation hinges upon the fact 

that, in an isothermal half space one may write, for the internal gravity 

wave branch and for given ytK  (Tolstoy, 1963): 

u)2 = ü)?(1 * -V* •••) (51) 
a 

where ui-  is the value given by the incompressible formula (while keeping 

the actual N,v values characteristic of the isothermal model) and u   is the a 



I ■■ 

value of üü given for tho acoustic branch after neglecting gravity. For 

given <, 

a   a 

wliere v., v are the corresponding phase velocities; as is well known, 
i  a 

v -*■ oo as K -> 0, whereas v. remains finite and for long wavelengths the 

incompressible approximation will be quite good even when applied to gases. 

Thus we take: 

fN2 A   =*2 
^ 

1 v^ (53) 

where N has the numerical value corresponding to the compressible model 

(i.e., N is a constant given by equation 11). We are thus led to the 

results: 

U.U.      N(Y^v2) 
ra   (Y2 + V2 ♦ K2) /2 v'm ' 

where y   has the value given by (14).    Substituting (54) in (45) yields then 

for each mode: 

& < a N V^1  K (55) mm ' 

where V    is the maximum (low frequency limit) of the group and phase velocities 

of each mode: 

V    » N(v2 + Y2)"^ m       v 'nr 

and 

(56) 

6    * th T- k yh     _   i (57) 
m m 

likewise: 

V3 t-\ T
lh ft (58) 

and: 

ü)    » NV . .       . mm m 

u t - ic r ■ rNV^^2 

mm mm (59) 



M 

Also noto that  (22) bocomos, by virtuo of tho incompressible assumption 

(60) am = wmr- 

We may then use (49) together with (55) - (60) to obtain explicit, analytic 

approximations for (26), (27) for the two kinds of source corresponding to 

(34) and (43). 

Thus, for the internal gravity modes generated by an explosive 

source we have the vertical displacement field: 

(61) 

•expl m 

2/      1/      2/ 3/ 
V 3t    3r    3(Y COSY z    + vsinY z )'   .nY z cosrNV"^'2 

m m       m o 

Whereas the rising force F^ gives 

m o' m m   m 

'buoy o i   ^    m    m        m 
m 

(62) 

.     T sinxj 
cos u - 

.    T smyj 
cos v 

with 

om mm "i     m 

y ■ u      - NV '        om mm 

u = xj + Y z    - rUV-lQ/2 

2       mo mm 

v = yj + Y zn * rNV-^J
2 

2       mo    mm 

(63) 

(64) 

(65) 

(66) 

/-I. In these results, each mode starts at t = rV-1: the amplitude is zero for 

times t < rV-1. 
m 

Note that for constant r, ast-*-<xU|->C0 like t 3. In practice, 

however, this need not disturb us for it is the same kind of divergence 

that occurs in the analogous Cauchy-Poissun problem for surface gravity 



waves (Lamb, 1945); it is duo to the concentrated (5(r) nature of the 

exciting force and may be eliminated by taking a source of finite width. 

We are interested here in the long wavelength early arrivals, for U i 300 m. 

sec"1 or so, for which the wavelengths are much greater than the width of 

the actual source, so that we may ignore this effect. 

The results (61) and (62) correspond to the highly idealized case in 

which the attenuation of the waves is neglected. In practice, internal 

gravity waves in planetary oceans and atmospheres will be attenuated by a 

variety of mechanisms. If we wish to make our results in any sense analo- 

gous to cases liable to occur in practice, we must introduce attenuation in 

some form. In fact, it is generally believed that the chief mechanism of 

attenuation of loi.g wavelengths in the atmosphere is due to viscosity and, 

in particular, to the highly viscous "transition" layer mentioned in the 

introduction; i.e., near the effective "top" of the atmosphere the attenu- 

ation increases to such large values that all short and moderate wavelengths 

reaching these heights are completely absorbed. However, as pointed out in 

the introduction, large atmospheric explosions have been known to generate 

long wavelength disturbances corresponding to displacements of several km. 

at ionospheric heights and traveling out to distances of ID14 to 5 x lO*4 km. 

(i.e.» around-the-world paths). These long paths suggest that on such 

occasions gravity waves are ducted and must in some manner be reflected, 

either at an "effective free surface" or both there and, partially, at a 

lower level; whatever the precise mechanism of the ducting, the experimental 

results suggest that, on occasion, the attenuation in the horizontal 

direction is small enough to allow for a number of reflections before the 

wave dissipates too much of its energy. Thus we may apply the observation 

(Lighthill, 1965) that small amounts of attenuation, although important in 

practice, do not change the group velocity and stationary phase theorems; it 
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is therefore possible to take the attenuation into account by simply multi- 

-ömr 
plying the undamped solutions by e m ,  where 6 is some function of the 

frequency or wuvenumber dictated by the physics of the process. Since we 

are dealing here with a viscous mechanism, we may assume that Ö is propor- 

tional to ai2 (at least for order of magnitude calculations, when the phase 

velocity does not vary widely over the frequency band of interest). Thus, 

for added realism in our solutions (61), (62), we may multiply each mode by 

.2, •nVüW/3en e-nu)'r a e-nvm-t -r-öro (67) 

Sensible numerical values of the constant n may be secured on the assumption 

that the wavetrain will give detectable amplitudes at some range: like, say, 

an order of magnitude decrease for 10k  or 5 x 10** km. 

4. Results and discussion 

Comparing the -solutions (61) and (62) allows us to demonstrate the fact 

that a buoyant rise type of source (such as Fj or F2) is much more effective 

in exciting internal gravity waves than an explosive source, at least in 

connection with large energy sources such as volcanic explosions and thermo- 

nuclear tests which create a big enough volume of rising hot fluid. 

In view of Warren's results (1960) showing that the wave resistance on 

» buoyantly rising sphere is proportional to the density of the surrounding 

medium, it would be logical to assume that it is the F2 source that simulates 

a rising sphere of radius small compared to the wavelengths of interest. 

In fact though, the generalized forces (39) and (44) will give results of 

the same size for moderate rise speeds and times V,T, i.e., as long as vVT 

is not too large. Certainly, if we were to take 

Fl  - F2<pl6> (68) 

where the average is taken over the rise height L, we may expect the Fj and 

F2 sources to give similar orders of magnitude for the displacement ampli- 

\ 
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tudcs (ovon thougli the details of the field may bo different). 

Adopting (68) then, we can estimate i-^ by assuming that F» is essen- 

tially the total wave resistance to the upward motion of the sphere and 

write: 

F2 = Rd x 2vßa
l* . (69) 

where R. has been given '-»y Warren as a function of the radius a of the 

rising sphere. For radii that are not excessive (Warren, 1960): 

so that 

Rd « a22vg1i-
2V-2 (70) 

F2  = 4TT-2V-2v2g2a6 (71) 

The effective radius a of the sphere depends upon the mechanism involved. 

In the case of thermonuclear atmospheric explosions, this may be taken as 

(Pierce, 1968) 

a = 0.4 E\' ,l (72) 

where E is the total energy of the explosion and p is the atmospheric 

pressure at z ■ z . Using this result tognher with (71) gives 

F1 *  1.6 x 10-3v2g2p-2V-2E2 • .  (73) 

V also depends upon the energy, but in a manner hard to ascertain. If we 

use the buoyant rise velocity formula given by Scorer (1957) for less extreme 

conditions, we take: 

V = (gSa)5* (74) 

where g is the buoyancy defined as 

8 - f- (75) 

Ap being the difference between the densities outside and inside the rising 

sphere. It is very difficult to estimate 0 on theoretical grounds, but if 

we assume that for the very great temperatures involved in a thermonuclear 

explosion ß » 1, then 
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V2 * ga = 0.4 g E/3p"^ (763 

E.g., if z =35 km., p e 102 kg.m"2 and if we assume that for 1 megaton 

E » 1013 kg.m, we have V « 102 m sec"1-. 

Using (76) we rewrite (73) as 

F2 * 4 *  10-2v2 E/3p'/3 (77) 

where we have assumed g = 10 m.sec'2. This result suggests that F is 

actually an increasing function of z . However we know that, in practice, 

the hot sphere slows down and reaches a ceiling and then starts spreading: 

thus V ->• 0 and at this point, according to (73), F2  would increase indefi- 

nitely which is clearly impossible.. In fact F must decrease to 0 as the 

air mass comes to a halt. In view of these complicating factors it appears 

reasonable to use a constant energy input source of the type F,: pending 

a more quantitative analysis of the problem we assume that this will at 

least give us the proper orders of magnitude. 

For order of magnitude calculations, then, we assume an F1 source, with 

F.  given by (68). The quantity F.  in this equation is then calculated from 

(77) using, for example, the actual average atmospheric parameters of the 

lower 100 km. of the atmosphere (v « 7 x 10"5) rather than those of the 

waveguide model (it is the magnitude of the source we are modelling at this 

point). In the analog waveguide it is probably more consistent in (68) to 

use the v,p values of the waveguide, i.e., 

vVfl vz 
wrd6 (78) 

where V Is an assumed rise rate compatible with (76), T the duration of the 

rise, v is characteristic of the model (smaller than that of the lower 100 

km. of the atmosphere and larger than that of the upper atmosphere). Thus, 

for V ■ 100 m.sec-1, T ■ 300 sec, v « 3 x 10"5 we have, for order of 

magnitude purposes: 

F     a   F 
1-e 
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F.   - F.,  e"vZo x Ü.7 (79) 1 

Insofar as the  explosive source is concerned, we may recall that, for a • 

unit injection of volume, B ■ 1 (Uiot and Tolstoy, 1957). This corresponds, 

approximately, to 1 kg. of conventional chemical explosive which, upon 

detonating at sea level atmospheric pressure, is transformed into 1 m3 of 

gas and gives an energy release of the order of 10** kg. m. At higher 

altitudes, the volume injected in this manner by a given charge size grows 

like p"1, i.e., like e  0. On the other band, the effective volume 

injected in this model does not grow proportionately to the mass of the 

explosive: the detonation wave travels through the explosive and the 

effective injected volume is much smaller.  Indeed, the usual scaling for 

amplitude - and thus for B - is the cube root law. Thus: 

B * E1^ lO-^ e2vZo ' (80) 

Using (80), (79) with (61), (62) we may determine the relative efficiency 

of the buoyant and explosive sources. We are interested in the earlier 

arrivals for which U » rt'^V ; so that we may write, approximately, for 

g ■ lOi N = 1.5 x lO"2: 

Ulexpl = {r-VlH-l3_Vl ev(z+zo)} x 2.6 x 10 x E^ ' (81) 

.1 
Note that the explosive arrival starts with a discontinuous step at t > rV 

for each mode. 

The buoyant arrival, on the other hand, is seen from (62) to rise 

gradually from zero amplitude at t = rV1. However, it is easily verified 

that fully developed amplitudes correspond to 6 2 10"1 (see figures 

for example). Thus: 

W *  tr-l.-lH-irVl ev^o)} T ^ ^ x ^ x ^ (82) 

or, for T » 3 x 102 sec: 

k|buoy *  {r-l7r-lH-l3"Vl evCz+Zo)} 7.4 x lO"!7 x e^Ofi^  (83) 
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Thus,  the ratio of the maximum amplitudos for the early,  long wavelength, 

internal gravity wave trains excited by the buoyant rise and explosive 

mechanisms is,  at least 

R - ''buoy 

'expl 
3 x 10-18 -fl-l       E /3 (84) 

P 

where E is the equivalent energy in kgm. Thus the relative efficiency of 

the buoyant rise mechanism increases rapidly with the energy (E /3) and 
.7/ 

with the height of initiation (p /6). The estimate (84) shows, for 

instance, that for E = 1012 kgm (100 kT), and p = 10_3p  (z0 = 50 km), 

R 2  102. Thus large explosions at moderate to great heights have a ten- 

dency, through the buoyant rise mechanism, to be efficient generators 

of long wavelength ionospheric gravity waves: the explosive phase of 

the mechanism, on the other hand, is a relatively negligible source of 

such waves. This should hold equally well for volcanic explosions. 

thsofar as the absolute amplitudes of excitation of the internal 

gravity wave modes by the buoyant rise is concerned, it is unlikely 

that the above formulae would give results pertinent to the real atmos- 

phere. However, one may point out that, at least, these results suggest 

that very large amplitudes can, in principle, be obtained. For instance, 

figure 1 shows that for r a lO1* km, assuming H » 5 x 105 m., and for a 

1 MT explosion at z » 100 km, vertical amplitudes in excess of 10 km 

are easily justified. In fact, our model underemphasizes the displace- 

ment amplitudes to be obtained at great heights because it uses an average 

exponential density law; in addition we know that ducting effects occur 

for these wavelengths above 100 km. 

Figure 1 shows a succession of waveforms for c calculated for the 

model: 
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11 = 5 x J.0J m 

N = 1.5 x lü-2 rad. sec"1 

v = 3 x 10"5 m"1 (85) 

V = 102 m. sec-1 

T = 3 x 102 sec. 

r = 107 m. 

z = 2.5 x 105 m. 

and for several z0 values and various attenuation coefficients n. 

at 

\ 
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x Figure Caption 

Figure 1 

Internal gravity wave vertical displacement amplitudes  (in m) at height 

z - 250 km in waveguide model of equation 85, excited by buoyant hot air 

mass,  rising at 100 m sec'1  for five minutes, starting from various heights 

z - z0 (sum of first seven modes).    Parameters have been estimated for a 

1 NIT explosion.    Several possible attenuation factors hove been used for 

qualitative illustration of effects of different attenuation magnitudes. 

Although these calculations can in no way be construed as giving a model 

of atmospheric behavior, the results do suggest that this mechanism can 

create large amplitude disturbances at ionospheric heights. 


