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Abstract Report 1 Scaiar Scattering from Turbulent Plasmas by a Modified

Method of lteraticn

The scattering of scalar waves from a turbulent plasma Is investigated
by a modification of the iteration procedure used in derivirg the so-called
first order smoothing equation. Electron density fluctuations are modeled

by locally homogeneous turbulence.

A wave number space representation is used for the random scattering
integral equation which is decomposed into ccupled integral aquations for
coherent and fluctuating scattering amplitudes. Thase equations are
solved by invoking the 'large scatterer approximation'. This density
independent approximation is used to express the coherent field in terms
of the fluctuating field. Successive iteration then yields a solution
for the fluctuating field. The incoherent radar cross section is calcu-
lated to second order for an axially symmetric wakz section illuminated
nose-on., The turbulence is modeled by an isctropic expoanential correlation
function and a turbulent intensity which is axially uniform with a Gaussian
fall-off radially. The present model predicts a cross sectican saturation

with increasing turbulent fluctuations.

Abstract Report 2 Vector Scattering from a Turbuient Plasma by a Modified

Method of Iteration

The analysis of Report 1 is generalized to the scattering of electro-
magnetic waves. For vector scattering we must solve two coupled vector
integral equations for the coherent and fluctuating fields. The "large-

scatterer approximation" (scatter dimensions large compared to correlation



-
length) leads to a vector integral equation for the coherent field in terms
of the fluctuating fleld involviny a non-symmetric tensor whose elements
depend on scatterer characteristics and the dyadic free space Green's
function. This 1s used to obtain an integral equation for the fluctuating
field which is solved by iteration to second order in the density. Using

the quasi-normal hypothesis a general expression is derived for the

incoherent bistatic scattering cross section of an axi-symmetric wake

section illuminated at non-normal incidence and arbitrary polarization.

Abstract Report 3 Application of the Modified Methed of Iteration for

Scattering to SRi Experiment

The general expression for the incoherent scattering cross section
derived in Report 2 is specialized to compute the backscatter crovss sec-
tion for direct and cross polarized directions. The SRI turbulent flame
is illuminated at normal incidence with direct polarization along the
flame axis. The turbulent intensity is modeled by a Gaussian radial
and axially uvaiform distribution with a correlation functi@n of exponential
form. These models are close approximations to the measured SRI scatterer
characteristics. Direct and cross polarized backscatter cross sections are
calculated for a wide range of RMS electron density va%ues including under-
dense and near critical density regions. Agreement between experimental
and theoretical absolute cross sections fall well within the 3 db SRI
measurement uncertainty. For the very underdense case the theoretical model
yields results In agreement with first Born theory for direct polarization
and second Born theory (Ruffive-DeWolie) for cross polarization. As critical
density is approached the model predicts cross section saturation observed

experimentally (SRI, RCA Montreal, Bell Labs).
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Abstract Report 4 Wave Scattering from a Unidimensional Layer with Strong

Random Irregularities by the Method of Smoothing

Under study is the wmultiple scattering of a plane wave normally incident
oi a layer filled with a strongly fluctuating plasma. The electron density
fluctuations are locally homogeneous, and the mean dielectric constant of
the layer may be appreciably different from the imbedding mediumn. The
formulation of the problem is based on the Dyson-Smoothing equations in the
bilocgl approximation. The approximate treatment of the meun dielectric
cogstanf as homogeneous throughcut is shown to be generally inconsistent.
Exact treatment of the problem is developed in the limit of small-scale
fluctuations; the dependence of the scattered power on a broad range of
plasma parameters is displayed and discussed for typical casses of physical

interest.

In the case of a mean dielectric constant throughout, a new mathematical
formulation is presented. The resulting integral equation is singular and
belongs to the standard form studied in the literature. This formulation
is closer to reality since it avoids the assumption of sharp boundaries

for the fluctuations.

Abstract Report 5 Scattering Coefficient of Cne~dimensional Plasmas of

Epstein-type Profiles with Random Irregularities

The problem of electromagnetic scattering by inhomogeneous one-
dimensional plasmas with electron density of Epstein-type profiles,
superimposed with random irregularities is studied by means of a pertur-
bation method. An cxacf Creen's function is derived for the problem, and

the resulting integral equation is solved approximately by.the Neumann



iterative technique. Coherent and incoherent power reflection and transmission
coefficients are obtained to a consistent second order accuracy, and an expres-
sion iz given to define thie parameter validity region of the solution. In
addition, the incoherent reflection coefficient is graphicaliy displayed for

\
an interesting parameter range.

Where meaningful, the special case of the halfspace of plasma is compared
to an exact Monte Carlo computer experiment for a plasma slab., It is shown
that for the given region of validity, the solution compares favorably with

experiment.



REPORT 1

Scalar Scattering from Turbulent Plasmas by a Modified Method of Iteration

1. Introduction

In this report we investigate the scattering of electromagnetic waves
from a turbulent plasma by a modification of the iteration procedure in the
method of smoothing. The integral equation for the scattered field is trans-
formed into an integral equation for the scattering amplitude. Coupled in-
tegral equations for the coherent and fluctuating amplitudes are formed and
solved by a method which invokes the ''large scatterer approximation' during

the iteration.

2. Analysis
We consider the scalar scattering problem defined by the integral equation,
— | -1k|T-1, |
b@ = Ty @ = Tl | oan —— n@p WE) W
= pl - 4n|T-1,| -
vV 1
where

¥(r) is the total field, ws(?) is the scattered field

2
a2 o _Rus® |
pl ——— , the normalized plasma frequency based on a reference
me_ W
v RMS electron density
- Gn(;i,t)
n(wl) = electron density fluctuation normalized on n_ ..
RMS RMS

V is the scattering volume.

In the far field Eq. (1) for the scattered field is

b, (® = it e P on(@m) u(E)) (2)

-ikr ka2 ikreT.
e [ pl
T 47
v
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We idcntify the bracket term as the scattering amplitude in the r direction,

F(kr) = F(x). We derive an integral equation for this quantity

ing (1) thru by n(r) exp(ix'r) and integrating over V.

2 e {
f Y(r) n(r)eix - dr = J e
\) Vv

\

2.2 - ikt ,—
+ k Qpl J n(r)e dr [
v v

-ik*r

dr.

1

n(r)e

iker ,

wy

ip+ (r,-1)

- -] c w " —
dp n(r,) wv(r,)
[ (2")3(k2_p2 1 1

)

w00

where we have used the spectral representation

-ikR
e
=4mR

with

I(x) -J 3
Vv

n(n)el*

n(x) = f
v

equation (3) becomes

o(® n(De*’F aF

g2 i PR g
y
amy3 2o g2

dp

_ L k2‘221 o
I(k) = n(x - k) + p3
(2n)

-00

k

2-

2

5 n(k - p) 1(p)

by multiply-

(3)

(4)

(5)

(6)

7

This is an integral equation for the scattering function 1(x) and according

to (2) the scattering amplitude is

F(c) = — 2= 1(x)

The quantity n(x) is a spectral representation for the electron density

fluctuation.

fluctuation scale (correlation length 2).

The scatterer is modeled by an

(8)

We assume that scatterer dimensions are large compared to the

electron density fluctuation super-imposed on a mean electron density back-

ground.

v

The fluctuations are described by a locally homogeneous turbulence
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whose intensity is proportional to the square of the mean density. At the
outsetb(eq. (1)) we have assumed that the mean background contribution to

the scéttering is negligible. If in Eq. (7) we measure wavelength in units

of correlation length then all quau..ties can be interpreted as non-dimensional

and we indentify

(27 % Q 1)2
glm =t ool (9)
(2m)
as the natural expansion parameter for the problem.
Next we form the equations for the coherent (IO(E)) and fluctuating
(Il(:)) scattering functions by applying the ensemble averaging operator

P to Eq. (7).

PI(k) = Io(n) = Pn(k=k) + ¢ G(p) Pn(x-p) I(p)

Io(‘) = € G(p) Pn(x-p) I,(p) (10)

where we used Pn = 0, I = I° + Il’ PIl = 0,

G(p) gg_—f , and vector arrows were suppressed.
k™=-p

-00

If Eq. (10) is subtracted from (7) we obtain
I, (k) = n(x=k) + ¢ G(p) n(x=-p) I (p) + € G(p) n(x-p) I,(p)
= ¢ G(p) P n(x-p) I,(p) (11)
We shall now solve pair (10) and (11) by iteration with € as an expansion
parameter. First use (11) to form P n(k-p) Il(p) for use in (10).

P Il(p) n(x=p) = P n(p-k)n(x-p) + € G{p) P n(p-pl)n(n-p) Io(pl)

+ € G(p) P n(p-pyIn(x-p) 1,(p) (12)
In a previous studyl it has been shown that
P17P
P n(py) nlp,) = Alp,+p,) ¢(—5—)
" p1+p2 .
P ?(pl) n*(p,) = Alp;-p,) ¢ (—5) (13)

1 Jarem,"Stugies in Electromagnetic Scattering from Turbulent Wakes" Drexel
Univ.,Proj. 349 Report,Sept. 1969, Contract DAH-CO-4-67C-0072 ARPA Order 1009.



A e

where A(p) and ¢(p) are the Fourier transfomms of the turbulent in-
ténsity and correlation functions respectively. The scale over which the
intensity changes is large compared to the correlation length. In the limit
of a large scatterer A(p) approaches a delta function. We shall use this
property in evaluating certain integrals in the iteration. When the averages

in (12) are expressed according to (13) we obtain
K+k
PIl(P)n(K-p) = A(K-k)@(-—-- P)
v<+p1
+ € G(p)I_(p))A(x- PO - p) (14)
+ € G(p))Pn(x-p)n(p-p)1, (p,)
Viewing A(K-pl) as a delta function centered about Py =« the second RHS
term is integrated zpproximately to
€ IO(K) ¢(x-p) G(p;) A(K-pl) (15)
When the above results are used in (10) we obtain

I(x) = ¢ G(p) Alk-k) O(EE = p)

o

+ ¢ 1 (x) G(p) #(x-p) G(p)) Alx-p))

2 6(p) G(p)) P n(k-pIn(p=p))1,(p;) (16)
Letting g, () = JFEU-’—(-“—‘L an

" dp) Alx- p))
gz(n) = 3 3 (18)
P, - k

-

we can solve for IO(K) to obtain

I (k) = gt { & Alk-k) G(p) ¢ (5% - p)
1-¢ gl(x)gz(t)

e2 6(p) G(p,) P n(x-pIn(p=p)) I,(p))} | (19)
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Next we use (19) to eliminate the coherent scattering function I° from (11).

A(p-k) G(p)) ¢ (BFE - p)

Il(x) = n(k=-k) + ez G(p) n(x-p) )
l-c¢ gl(P) gz(P)

G(pl) 6(p,) P'n(p-pl) n(Pl-Pz) Il(Pz)

¢ e3 G(p) n(x-p) 3
l-c¢ gl(p) 8,(p)

+ € G(p) n(x-p) Il(p) - € G(p) P n(x=p) Il(p) (20)

The first and second RHS terms can be combined after approximate integration

to
n(e-h) + ¢2 LK) S ppp) G(p)) (kep)) = nx-)——g (21)
l-¢ gl(k)gz(k) l-¢ gl(k)gz(k)
and (20) can be written
Iigx) - "(‘;k) + € G(p) n(x-p) Il(p) - ¢ G(p) P n(k-p) Il(p)
1-¢ gl(k)gz(k)
G(p,) G(p,)P n(p=-p,) n(p,-p,) I.(p,)
+ 36(p) n(x-p) —L—-2 L 12 1 ¢ (22)

1 - ¢? gl(p) gz(p)

To order € we can neglect the last term in (22) which contributes at order

es. A single iteration of the remaining terms yields

Il(t) - 5 1 [n(x=k) + e G(p)n(k-p)n(p-k)-eC(pP)Pn(rk=p)n(p-k)] (23)

1-¢ gl(k)gz(k)

The incoherent differential scattering cross section is related to the

scattering amplitude1 by

2,2
kR Opa(x)
o(x) = P Fye) Fyre) = P (=EH2 1 () I %) = Sp— (26)
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Making use of (23) and Pn = Pn3 = 0 the cross section can be wratten
ké 96

a(x) = 291 > 5 [p n(e-k)n* (x-k) (25)
(4m)7|1-c%, (k)g, (K) |

+ czc(p)G*(pl)Pn(K-P)n(P'k)ﬂ*(K-pl)n*(Pl-k)

2
. = €G(p) Pn(x-p)n(p-k)G*(p,)Pn*(x=-p,)n*(p,~k)]
For quasi-normal turbulence the fourth order moment in (25) can be expressed

as the following sum:

Pn(x-p)n(p-k) Pn*(x- pl)n*(pl-kl+Pn(n-p)n*(:- pl)Pn(p-k)n*(pl-k)

+ Pn(:-p)n*(pl-k) P n(p-k)n*(x-pl) (26)
We note that the first term in (26) when used in (25) cancels the last term

and using (13) to reduce the remaining terms leads to

K n“l
o(x) = ] ZT 5 5 [A(0) ¢(x-k)
( “) l-c¢ glgzl 2 pl.',,p ,ml
+ ¢ c(p)G*(pl)A(pl-p)°(r- -E—QA(p-pl)Oi-i—- - k)
2 :-k+p1-p u:-k+p-p1
+¢ c(p)G*(pl)A(x+k-p-pl)°(—-—-Ef—-dh(p+pl-k-x)06——7{--0l (27)

If A is again viewed as a delta function for the By integration we shall

finally obtain, with A(p) and ¢(p) even and real,

[

4
A(0) k npl

{¢(x-k)

o) = =
(4n) ‘1“5 8182' + gz G(p) ¢(p-x) ¢(p-k) c*(Pl) A(PI-P)

+ ¢ 6(p) 4(p-6) ¢(p=k) G'(p)) Ap-(etk-p))]  (28)

3. Backscattering Example

For our first example we shall compute the backscatter cross section of
an axially symmetric wake section illuminated nose-cn. The turbulence is
modeled by an isotropic exponential correlation function exp(- %) with cor-

respondinn spectrum



R
- -2 0
o(p) = !. dr e"p.R e t . g 77 Oo = 8ul3 (29)
{1+ (p2)7)

and a turbulent intensity which is uniform axially over a length 2b and

has a GCaussian fall-off radially with an e-folding radius a/v2. For such

1
a model s : ‘pp :
- - 2(5)" sin bp, 2
A(p) = Ao e -TE;;—.— ' A= CTﬂa b (30)
To carry out the integrals called for in (28) we choose the following
A
corrdinate system: A&
|
N = ¥
AN | 5 7/
~"‘\i t- & /
A
A : ./ T > \'
) r§ ”
//A
v } 7: DN
A _// i
L b T

The (x,z) plane is defined by vectors (ﬁ.;) with i = i cosa + ; sina where
a = angle of incidence and ; falls along the wake axis. (i.i.;) form a
rectangular base. For nose illumination a = 90® and k = z. For backscatter

¥ = ke = k(-k) = ~ke. From (17)

P =k‘+ ie p2-2E3§¥ic

=il

31(-);;) . j_ E’H:’.‘Eza. - dp ¢(p) (31)

In spherical corrdinates (p,8,¢) with kep = kp cosd we have for isotropic

turbulence



=ik &

f
2 0 db
‘1 - 21 p- dp (p) s;n d0
o P =2kp cos0 + ie

= 2 Pz dp ¢(p) —2-—"—‘5--——-
o P =2kpu + ic

°

\
The integration over p can be expressed as

papee __1 ["plapetm _ 1 (" pidpep)
2 2ku p-(Zku - i) 2ku p - 1e

p -2kup + ic

- -t =g

[‘ B dp8e) . 4n gt em) ¢ Pr P ¢(p) dp = 0

-

Using model (29) in the first RHS term in (31) we find by contour

integration
ke 2 1
——l-I. Bi_ﬂp o, . “i2ne,  u+ 5 ((20)° - 772)
-2ku+ 2,2 4
2 (p-2ku+ie [1+(p2) %) k3 2 - ) .- )2
B kzt

When this result is used in (30) we obtain

2 _(1 -4 2ke)

3
g,(k) = (2n)
l 1+ (2ke)2

Next we compute gz(-k;) according to (18).

8, (k) = I‘ dp A(p) . I‘ 4 A() J. 4p_A(P)

B (P2 +ic P 2RHe .
-

with model (30) for A(p) we write

1

3

- E(abo) ® sin bp3
gy(k) = r"pd"p e I do J 3 —5p Zkp, + 1c
o [o]

-0

(32)

(33)

(34)

(35)

(36)

(37)

(38)



Plemelj's formula yields

sin bp3 1

lim in
oo | 9P3 bp, Zkp, ¥1c - T 2k (39)
-l
When this result is used in (38) we obtain after integration
3
-1 (2r) C, b
8,(k) = 7% (40)

We complete the evaluation of (28) by first combining the last two terms.

For backscatter (x = -k) we have, calling this sum C2’
c, = 2% o) 2(3-B) 6*(p)) AG,P) (1)

For model (32) the above integration reduces to1

. ar Ao F2n " . .
C2 s 2n¢ P dé do $(pk+k) ¢(pk-k) (42)

(-] o

For the present turbulent model the product spectrum is written

¢ ) ¢2
T T3 5T Ty Foasp (43)
(14k°2°| prk| ) (1+k“2 7| p=k| %) [1+(2Kk0) 2] 4 [1-(S2KR°_12 o 2012
14+(2ke) 2

If this is used in (42) we will obtain

c, = 27u8:2 2r C,a 26

2 4
2 + 4 (2k2)? + (2kL)
7 .3/2 (44)

(1 + (2k0)2)3 (1 + 2¢2k0)?

1f (44), (40) and (36) are used in (25) we finally obtain

3 3 2, .4

£ 7 ;
4 (1482 32 T (1+B3)(1+282)3/2
o =
RC 2 CT(kb) 83 2 CT(kb) 82 "
|1 +¢ 3 v ALY 3 3
148 1+8
where
2 "pus
E-Q -
pl ncrit

B = 2k&, & = correlation length
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N e

» constant of proportionality relating m.s. fluctuation

CT ~
to square of mean electron density.

2b = length of wake section

i: = effective radius of wake, e folding distance in Gaussian radial
3 3
fall-off.

Y

c = Radar cross section

RC



REPORT 2

Vector Scattering from a Turbulent Plasma by a Modified Method of Iteration

1. Introduction

In Report 1 we investigated the scalar scattering of electromagnetic
waves from a tu;bulent plasma by a modification of the usual iteration pro-
cedure used to derive the integral equation for the coherent field in the
80 called method of smoothing. In this report we generalize the modifica-
tion to include vector scattering for the purpose of investigating polariza-

tion effects.

2. Analzéis

We start with the vector integral equations for the electric field1
E(D) = B + kX2, | dF, C(F-F,)-E[T,) n(T,,t) (1)
o’ pl v 1 1 1 1’

A is the ircident field; Qpl is

the plasma frequency bascd on a reference RMS electron density: E(?,?l)

where E is the total field; E; =qe

dyadic Green's function for free space: n(r,t) electron density fluctuation

normalized on n Integral Eq. (1) is transformed to an integral equation

RMS*
for the scattering function I®Lx = wr,
k2 2
- e & —— n 1 — — = — ——
I() = q n(k-k) + —23 | dp EE)T() n(e-p) (2)
(2n)
wvhere
I - ,fva? T 0@ D (3)
n(© = I dt e*°T (D) (4)
v

1 J. Jarem, "Studies in Electromagnetic Scattering from Turbulent Wakes'".
Drexel Univ. Project 349 Report, Sept. 1969, Contract DAH-CO-4-67C-0072,
ARPA Order 1009.



+ 3 (5)

Jrog . e
CR) = B +-9) +
k2 =47R K

’ E- = (6)

LY
If the integral equation can be solved for I(x) then the scattering

amplitude F(x) is given by

k22 -
F) = - =P @ - )T ("

and the radar and differeatial scattering cross sections are respective1y17

oRc(?) = 41 (k) = 4n <F(x) F*(x)> (8)
kznzl
Tc solve (2) we consider ¢ = —-—23 as an expansion parameter and we form
(2n)

the coupled integral equations for the coherent (T;(E)) and fluctuating

(Ti(;)) scattering functions in the usual way to obtain:

T (<) =¢ j‘ dp E@ P T, () n(x-p) (9
T,(0) = q n(e-) + ¢ J.dE‘EG)-ToG) n(x=p) (10)

+ ¢ | dp E@ (T, @) -P T, (M) nlx-p)

-
We have used P T(x) = <I(x)> = T;(:3. P ii(;) =0, and P n(k) = 0. If we let
(]
[ OR f dp S
-
then (9) and (10) can be written, suppressing arrows over vector arguments,

T (e) = ¢ G(p)+P T, (p) n(x-p) (11)

17 p.M. Morse & H. Feshbach, Methods of Theoretical Physics, Part 1I,
MeGraw-Hill, 1953.
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fl(x) = q n(x=k) + ¢ '5(p)°f°(p) n(x=p) + ¢ &(p) (I-P) 'fl(p) r;(x-p) (12)

We use expression (12) for Ti in Eq. (11) to evaluate P ii(p) n(x-p). Eq. (11)
becomes

T () = ¢ E(p)+q P ne=p) n(p-k)

+ czxﬁ(p)°z(pl)°'fo(p1) P n(x-p) n(p-pl)

+ > Ep)E(p)) P nix-p) (1-P) T (p,) n(p-py) (13)
The correlations can be expressed17as

P n(x-p) n(p-k) = A(x-k) 0(512'-‘5 - p)

Hvl
P n(x-p) n(p-pl) - A(x-pl) o( . il p)

vhere A(p) and ¢(p) are the Fourier transforms of the turbuleat intensity
and correlation functions respectively. For large scatterer A(p) approaches

a delta function and using this propercty (13) becomes
T,0) = ¢ Ae-k) E(p)eq (3% - p)
+ ¢ 3(9)-3(91)30(.:) A(k-py) ¢(x-p)

o -
+ ¢ 3(9)-6(91)-1’ n(x=-p) n(p=-p,) I, (p,) (14)
The symmetry of the dyadic operatot'&(p) enables us to write the second RHS

term in (14) as
e T;(x):a(pl) A(x-pl)fa(P) ¢(x~p)

and the equation for the coherent scattering function becomes
T (<)« (8-c B(p,) Ate=p))E(p) 0(p=)) = T_ () Fw)

- ¢ Ac-k) E(p)-q o(FE-p)

+ €2 €@ *E(p,) P T, (p)) nle-p) np-p,) ~ (15)



- {f-
where the .'l.'(k) tensor defined in (15) is not symmetric in general.
Introduce the tensor ?(:) such that
F) Sy =3

In terms of tf(x) we have

CTaaT337T32%23  T3aTi3TioTas TiaTes™T2oTis
\

|
T

@ 1
S(c) = 3 117337 T3 T3 TaaTisTaTes

T '1'31’1‘ T T

(16)

237721713

!
|
a2 TaT T TuTTal

=1 4

where T = det("l"(x)).

Multiply each side of (15) from the right by k-S’(x) to obtain

T () =e Alk=K) T(p)q o(ﬁlz‘E - p)S(x)

+ cz 3(p)-3(p1)-P 'fl(pl) n(k=-p) n(p-Pl) Six) - an

Use this expression to eliminate I;(p) in (12)

T,00) = q ne=k) + e%&(p)+n(e=p) Alp-k) B(p,)+q 03K =p)-S(p)
+ e}é(p)'n(K-P) E(pl)-a(pz)-l’ 'I-l(pz) n(p-p,) n(pl-pz)@(p)
+ e C@) (I-P)-T (p) n(x-p) (18)

We again make use of the delta function like property of A(p-k) to

simplify the second RHS term in (18). This term is approximately

e? n(e-k) E(p)+ACp-k) E(pp)+a 9(k-p) $()



ey

Combining this term with the first RHS term and letting
- e “«—> o “«>
Q(k) = q + €2 G (p) A(p-k)-q-G (p1)e(p1-k)+ s (k) 19)
we can write (18) as
\

'f1 (<) = Qnix-k) + ¢ 4C?(p)-(é-l’)—fl (p)n(x-p)

(20)
+ €3 G ()T (p1) G (p2) n(x=p)Pnlp=p1)a(p1-p2) T (p2) + S (p)
We now use an iteration technique to solve (20). Let
- - < 2—\ » 3A 4
Ij(x) = Jg(x) + € Jy(x) +¢ Ja(k) + €°J3(x) + B(e?) (21)

Using this perturbation expansion in (20) and comparing terms of same order

in € we obtain the following iterative secries:
S N
Jo(x) = On(x-k)

TLw) = € )+ (6-PIn(x-p) T (p)
S A (22)
T2(<) = T (p)* (5-P)n(x-p)Jq (p)

‘

T3) = )+ (5-PIn(e-p)To(p) + B (p) G (p1)+ T (p2)n(k=p)Pn (p=p1)n (p1-P2)

Top2) 5 (p)

The scattering amplitude'?l(K) to order €3 is

2
(knpl ) > aAA

File) = - — 2 (F-rr). Qo) + €3100) + €2T,(<) + €333(0)) @3)




In the direct (q) polarization direction the scattering amplitude is given
by

) LA

N )
'i.‘?"‘ (q-q-70) T (x) = 3T (x) (24)

ol (k2
F(K) = q-Fl (k') e ==

\

In the cross polarized direction (qf = q x k) the scattering amplitude

is written
. BeRe o oo _ R
Fj(c) = qlf?l(K) = - -*zél—-~(ql-ql-rr)-11(x) - cffl(r) (25)

To form the cross section in the direct polarization direction we square
and averzie (24) and use the following expressions for the second and

fourth order moments: (odd moments are assumed to vanish)
P,-P
Pn(p1)n(nz) = A(py+pa)é( _%.,3)

. . Py p
Pn®(p)n(p2) = Mpy=p2)% (157

(26)
Pn{p1)n(p2)n(p3)n(py) = Pn(py)n(pz)Pn(p3)n(py) '

+ Pn(p1)n(p3)Pn(p2)n(py)

+ Pn(p;)n(py)Pn(p2)n(p3)
3 ) S 2
o(k) = PE(c)F*(c) = P | d-T;(x) |
2 K+k

s D= -
=P | d'On(x-k) + sd-<3(p)-Q(n(K-P)n(P-k)-A(K-k)¢(~§~--p))

+ ezlf-""'(p)~‘E’(m)'72\(n(a<-'p)n(p'-m)n(m'k)'"("~"1’)"\("'k)q’(—p%]'<~ “P1))



+ €37 (p) T (p1)+ G (p2) +Wln (x=pIn (p=p1)n(P1~p2) N (p2k)
- nlc=pIn(p-p)Alpr-k)e (L™ —p) @)
- Pn(t-g)n(p-px)n(pl'Pz)n(pz-k)
+ Bn(e=-pIn(p-py)A(p k) 6 BL¥E py)) |2
After considerable reduction we finally obtain
0(x) = Age(k=k)| d-Q |2
+ €220( ~k)Real (@ 0%) (@ T (p). T (p1) D)
X0 (k=p) [AZ (py~x) + AZ/n)=-p=k+)] (28)
+ 2@ C(p) D) (@ T (*a) %)
Xé (c=p) ¢ (p-k) [A%(q-p) + £%(q-x=k+p)]

Equation (28) is the direct polarization differential cross section in the
scattering direction x = kr. The result neglects terms of order e* or higher.,
The corss polarized cross section is readily obtained by replacing E'by r

in (28).



REPORT 3

APPLICATION OF THE MODIFIED METHOD OF ITERATION

FOR_SCATTERING TO SRI EXPERIMEMNT

I. Introduction

In Report 2 the modified method of smoothing was applied to calculate
the direct and cross polarization cross sections for scattering from a
turbulent plasma. In this report we specialize those results to compute
the backscatter cross sections for both rslarizations for the SRI flame

scattering experiment at 9.4 CHz. The scattering geometry is showm below:

v =l

T/R

The transmitter-receiver is located about 50 ecm above the nozzle and the
flame is illuminated broadside with direct polarization (q) along the 2

axis. The SRI jet has a non-homogeneous electron density distribution in



(]

which the turbulent electron density fluctuations are characterized by a

locally homogeneous turbulence of the form

- - ) YT,
<6n(r1.t) 6n(r2.t)> = (n;) A(—-i—-é B(rl-rz) (1)

vhere n; is thg rms value of electron density at the reference point in the
flame (220, p=0), A is the normalized turbulence intensity function, and
B(;i-;i) is the normalized turbulence corrzlation function. The turbulence

intensity is mode%ed by a Caussian radial and axially uniform distribution

a
AR) = ¢ z(z) (2)

where E-pp-o-Zz-
av 3 toS5em

Z2(z) = 1, =b<2<b, b~ 5 to 10 cm

= 0 otherwise

For the correlation function we assume the analytically simple isotropic

axponential function

I
- - L
B(r1 - rz) = e (3)
where the correlation length £ ~ 1.75 to 2.5 cm. Measurements indicate
that the radial turbulence scale is about 1.75 cm and the longitudinal
scale is 2.5 cm. The spectrum representing B(¥) is

\ 3

(k) = — _ wherz ¢ = 8n¢
[+ (xt)2)? e

(4)



We will also need the spectrum of the turbulence intensity distribution

1 2
- - - =(p a)” sin p,b
& - = a(R)alP'R 8% k] - nal
A(p) ! dR A(R)e Ae ---——p3b s A, = ma’d (5)

=t

2. Cross Sectio.. Functions for the SRI Model

In this section we derive the explicit form of the functions necessary
to compute the scattering cross sections for the SRI model. In (R2.17) we
need the vector
A = q + ¢ 6 AG-K)-a-Tp)) 0B () 6)
where S(k) is defined in terms of the elements of tensor .’f(f). The
latter is given by (R2.15)

T(k) = § = € G(p,) A(k-p,)G(p) ¢(p-k) (7)

Introducing the tensors

a- L 2k e ma B d. b ‘
. .8(k1 = G(p) ¢(p-k) = [ dp o(p-k) (BE + ) : (8)
" . pz-kzﬂe 3k2
and
N = COFES -
£(k) = G(p) A(p-k) 9)
We can write (7) as
TE =i -2 (D ® (10)

>
We proceed to the evaluation of‘g‘ and £ for models (4) and (5). Let

dp ¢(p-k) p,p
a, = K2 r s — b | (11)
i J RIS €

-iny

.



In spherical coordinates with

;*- 1 p sin6 cos¢ + J p sind sind + z cosb

2 4
a, = k I:dp P

\

2n d = cosze cosz¢
d¢ I sing do o(|p-k|) S5—=——
0 0 p‘-k -i¢

e iy,

Taking the polar axis along'i we have for model (4)

A I’dp o8 [" do_sind co .20
= kzla ) ) (pz-kz-ic)(p2+k2+t2-2kp ccse)2

1N’o f.d 4 {7 de sind cosze
PP o 2 : 2. 2.2
o(p~-k“~ie)(p"=2kp cosd + k“+17)

I
-t

where e "2

Letting u = cost we can write (15) as

ﬂ@o Jl 2 IO dn Eﬁ

) 5
(Pz-kz-ic)(p'-2kup+k'+12 2

)

-0

“Calling the integral over p, I,, we write

f‘ A By ¢ ¢,
I, = lim | dp [ + i + + =
L p-(k+ie) = p-(-k-ic) [p-(a+18)]2 p-(a+i8)

D D
1 2 ]
+ +

[p-(a-18) 12 p=(act®)

where a = ku, 23 = JQE—; k2(1 - uz) > 0 and

3
. B x .- P
1 7 ST 2o o2 2l

)»

pl-nfis,pz-u-is.

(12)

(33)

(14)

(15)

(16)

17

(18)



s

Integral (17) can be evaluated with the contour C = [ + C, show below:

3 p1 s g+ 18
% Co
k+14
0 - S
k = i¢ A
b ¢
P,"a- i8
4
{GP—L—‘Z"IGP()*’[dp()-2u1(A1+C2) (19)
¢ (0" 4 e
We have since the contribution over C_ vanishes
11 s 21!1(A1 + CZ) and
nd ) | 3
4, " zoa I uz du 2ni [ kz 3
k}
2p) ¥, P2 ]
(pl-k )(pl-pz) Py -k 172
Calling the contribution from Al’ 111, we have
2
in oo k rl uZ du
Iy = % 7 3 (21)
21 (k=a=18) “ (k=a+iB)

-1



= § =
Carrying out this integration and letting to = k2 we obtain

2,2

. -i7 ¢ k (1+22°)
1, - g [(1+212) l.n(1+lol.§) - 20201 + —‘2’—-—)] (22)
82 s P 1+42
o °
With 112 the contribution over integral C2 we write
\
2 1
-n°¢ 21 2 2 P
Py I = of ) (2k2+p3p (23)
If ve let x = P, = + 18 = ku + 1 /k2+12-k2u2
then integral (23) is transformed to
2 k+iz
L e xdx (x2+k2+12)2 ( S : o
12 ahsla (xz_kz)(xz_kz_xz) x2_k2 xz_kz_tz
=k+it
and integration by partial fractions yields
~tn%ko_ [ g l-i2t 5 uf ] ,
1,, & ———] (1420°) on ——— + 142 _(142° + ) . (25)
| 8!6 [ 1+12£° [ o 1+4121
o o
Combining (22) and (25) we obtain
-1n%0 k ’ 5 3 (1+2m§)2
a = -———-—[(1+u ) tn(1+std) - 2021 + ——2)
11 6 (-] o 0 2
8t 1442
o o
g 1-s2t ,
+ (1+2!.°) "“(T;‘-ﬂl—o) + u.!.o(l +i+ 2)] (26)

1+4l°
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Next we calculatu a,, according to

22

e 2.2 .2
a,, = kK2 [ dp p? | ds | do sino o(|p-k|) E—8in 2 sin ¢
22 2 2
o o ° p =k"~i¢

No db 4 "de sind sinze
7.4 P 7 .2 ) (27)
2k L (p =k“=i€) (p -2kp cosd + 1 +k )

with u = cos9 equation (27) becomes

8" I dul-u )I. dp p (28)
2k l (p -k -18)(p -2kup+k +T )

The asbove integral can be broken up into the following integrals:

2

in ook 1 du
a Bmep Gr iy
22 11 4 [ 2 2
2t 1 (k=py) " (k=p,)
21n2¢ 1 3 2 p
iy xs 2_ 2 y2 D2kl PPy
ke 1 =k (py-py)” Py
Calling the middle temm 121 we have
1wzk0 1 1wzk0
1. = o du % o 2 (30)
21 I O S L A L
=1
with lo = k2 this becomes
10k o
1,, & ————vr (31)
2L

o
Calling the last term in (29) 122 and letting x = P

( + ) (32)
(x2=k2) (x2-k2-1?) x%-k?  x2-k®-1?
-k+it

=247 2 2
287" 1 fk+ir dx x3 % k2+t
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Carrying out this integration we finally obtain

2 .
-{2n Oo t£+5k2
224

4
I a2t 2

2 244k

h

nzkoo 1458
22 u: 1448

A

1 (33)

o NN

Using (31) and (33) in (29) there rasults
2
L koo 1+52

2 3.
1+4£° Zlo

1n2k0°
--a, 4+ +

a (34)

22

o NN

1+48

Combining terms in (26) &, simplified to

2 2,4 R g ki -
-1nke_ L (14425422 ) =1 (1452452 )

2 )
(1+227) in(l=i22 ) = 22 (35)
41: ° ° ° 1+ 42: J

b1

When this {s used i{in (29) there results
1wzk¢

(") 2 3
R [ (1420) n(1-122 ) - 210(10-1)$ (36)
0

Next we evaluate 234 according to
L 2n  ¢m 2 2
a. =k 2| dpp?| do| sine do o(|p-k|) B—co8® (37)
33 22
[ 0 0 p -k -ic

Comparing this integral with (27) we observe after integration over ¢ that

433" 22, (38)

Since 111(1fj) involve sin¢ or cos$ integrations over (o,27) these com-

ponents vanish, or,

a0 1 4] (39)

The next type of integral to evaluate ]; in (8) 1is

-

L, J
_— -850 =
by = =6y | P glp;kll -z f. 3 7.2 (40)
‘o PT=kT-ic ? (p =%k“-1e) (r“4+|p=k| )



This integral is evaluated in Morse and Feshbach (pp. 1083).
\

-n2ke (1 + 122)
b o (o]

& § (41)
13 L (1 + az:) 13

The last integral in (8), call it cij' is

3 4nl 2
c“-——z—f dp o(|p-k]) -—"—;f dp p° (|P]) (42)
W 3k
<« 2
4n 005 fﬂ x2 dx 'k @o
[ = = 6 (“3)
1 2% o (x*1d)? 3z3 1)

Combining (35), (41) and (43) we obtain 211

- *
g "3t T
81 t 2, 2.4 2, .4
, - —— r2eg) In(1+2L ) - 5(20[1+49.°+29,°]+1[1+59,°+59.°])]
ko 41 1460
(o] (o] (o]
1+9.2+16£g
+—— Ot
33 (1+42%)
(o] o
similarily (36), (41) and (43) yield
2 2....3
822 i ® x -1(¥22)) L (14128 ) (1-12 ) 142 #1647
3 =ay tby, +tcyt 6 - WEg 2
ke 42 28 302 (1442%)
(o] (o] (o] (o] o

(45)
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Finally (38), (41) and (43) yield

22

" .
233 = 16 [(1+'7.z§) zn(1+29.o) - °2 (20[1+4'z§+212] + i[1+52.2+52.2])]
ke 22 1441 g
o [o] a [o]
(46)
1+ 2%+ 1603
+ 0 o
3301 + 42?)
[o] [o]
Next we evaluate fijda according to (9).
* P k-z"i P78y 4
tyy = Idp AGR-R) [ T + 2 (47)
. p =k -ie 3k
For model (5) the last integral in (47) is
2 2
ii_ b
$ 8 27 - sin bp
A do A(p=-k' e 7 8 i
p A(p=k) = p. dp do | dp, Ae i
a2 | PP 2o bp,
-l ° ° . ]
3
(27) 6il
9 ) (48)

The first integral in (47) is evaluated approximately treating A(p-k) as

a quasi delta function.

= (k,k.,=- = ) M—_ (49)
pl-k2-1¢ 1y ) R e0-1e

-td



SpE

For model (5) the last integral in (49) is

== - & (p24p2)
dp A(p) _ | dpidpodp3hge 8 "71°727 sin bpy (50)
2k-p-ic 2kpicosa +2kpisina~-ie  bpj

\
Integrating over pj and recognizing that the principal value contribution

vanishes we obtain

p A(q { 2 . .
Qf.zéﬂl.. _irAo_ . " e_%_(p%+p%) sin(bpjcota) (51)
2k.p-ie 2k sina P2 Pl bp)cota

2. 52 2/3r
with dpjre 8 2 =l ESsE (52)
a

equation (531) reduccs to, x = bplcota ,y Q= -2 tane

v8b
{nV2n Ay 2tanc ax g2
S I (53)
ka sina b
=0
But it can be suown that
2.2
sinx -9%° 1 .1
J dx il 5 erf(zq) (54)

0

Using this result in (53) and recalling that Ag = rab

b
_vaenie  °ff Gt
4kZsina (35)
( Y2 b y
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We note that erf(z) — and erf(a): 1.
z+0 /o

Using (48), (49), and (55) in (47) we obtain

3 > Aa
@ - 2 4—§—+ (T-kk)£ ()}
K2

where we wrote

(Y20
£(a) = i/7 kb = a tana
o 4 :aina /7 b
(a tanu)

Expanding (56) we write

%»+ sin2af (a) 6
(2m3 .
k
) = 2 0 -:1;+ £ (a)
-y T . .
- sinacosaf (a) 0

In terms of ? and ? the tensor (7) becomes

- 2
1 -8y, 0
‘—p N
-l
Tk)s= 0 1 € f22822
£13811 ?

]

- sinacosuf (@)

% + cos?af(a) .

£13833

)
1 - e%f43843

(56)

57)

(58)

(59)



Pug
T = det(T) = T Ty,T33 = T13T59Ty

(60)
= wrl -2 - -
(1-e%f),805)  (1-€%f) 18,0 (1-€%F33845) = 884584
\
The elements of 'S (Report 2, eq. (16)) are
— —
2 2 2,
(1-€%£5895) (1-€£33845) 0 ~f13R33(1-c%f5,859)
@i 2 2 2
) 2 .2 2
£y3R11 (1€ E53855) 0 (1-c%£5,895) (1= 18y ,)

For the SII experiment the flame is illuminated broadsides so that a = 90°

and f13(n =) =y, Also, from (57)

/e
£(°) = 1'._1_’10
42
so that
1
3 0 0
3 /.
«F . (2n) 0 %_+ ivnag 0 (62)
k2 42
0 0 -13- 4+ 1719
2




o Tod
Se

14~

3
= 2" r Y. ~n -1- i_kh LX) l
£ 5;51- L+ 3G+ + 22 3) (62)
The elements of sij simplify to
\
1 il
: 21 . 0 0
bl -eth e
1
S, = 0 0
1§ 2
1 -e"£,,895
0 0 21
) 1 = efy584,
“ ~a an ~"n
8§ m —did T A + 12 (63)
l-czf l-czf l-czf
11811 22822 33833

When (62) and (63) are used in (6) we obtain for E'the following result
forq = ;:
B LT SRV . o PR B W

~ Aa -~

o LY ~n an r -~ an o>~
Qk) = q + (i1 fll + 33 f22 + 22 233)°q(11 gy * 11 gyp + 22 g33)°3

- § - 29 (64)
1 = efy585,

3. Direct Polarization Backscatter Cross Section

In this section we use the general result of Report 2 (Eq. 27) to
calculate the backscatter differential cross section for the direct
polarization case. We recall that ; = ; (direct polarization direction),
a=0 (normal illumination), i = i (direction of incident illumination),
K= k; = -k (backscattering). For backscattering and direct polarization

we have



-]
.
t

- a3 a RZS:ZJO

d.cs(p)ec(p))Q= -~ e
k202 q

do?(p)oQ\l - —”I,Jh I
3k24n

|

dp[3(2:1)2 + p2-4k2)

pZ-k2+ie

dp[3(Z-pIp#7(p2-4k7))
pl-k2+ie

dp) 13(2+P) )Py +7(pi-4k?)]

pf-k2+ie

When these results are uscd in (28) the direct nolarization hackscatter cross

gsection becomes

kY agv (k) |0f?
oK) = P
(4m)?

v Y \‘P.\‘n FACTI N )

2¢2
{1 + -=-— Real

9k“AQ

22
9k“Ag

+

2
» 2

9k“AQ

R

dn hi(p)i(r
p2-k2+ic

dp hy (0)¢ (p+k)

n by (p)2 (p+k)

dg A2(5H)

qz-k2+ie

.

P A S

da_A2(q-p-2k)

eal ’

pz-k2+1e

dp h3(p)e(pk) ¢ (p-k)

q2-k2+ie

“1(2k) [

pl-k2+ie

4G,
q2-k2-1c

(65)



Call the second, third and fourth temrms in the brackets of (65) o0;, 02, and

o3, respectively, and where the polarization dependent functions are defined

by

by (p) = [3(2'F)F+£(p2-4k?')]-{3(2.'13)E+2(k2-6k2)]

(66)
= 3k2 (4k2-p2-3(z.p)?)
o (p) = [2(Z-P)p+2(p2-4k2) ]+ [3 2. (p+2K) (p2K)+2(p+2K)2-24k2)
(67)
w' (p2-41) (p2+4k-p)+3(Z- p) 2 (5p2+10k. p-4k2)
h3(P) = (3(2+p)24p2-4k?)? (63)
Next we proceed to the evaluation of «;.
2 o 32 (o2 (2 DY+ 2 E 8
&= 28° roa | dp 3kT(-pTo3(ZpIHike) _92 A~ (a) (69)
9k“A, p2-k2+i¢ (q-k)2-k’+1e
LoTea T e s e Y > o . Sodw Sy mivwmow s
We evaluate the integral over q (call it 0;;) approximately.
2 2 - &2 g2 a2q}
—— ] : -
oy e [SIR@, [dap2@) g2 [T T (0 - 5 [ lein bay
q2-2k-q+ic ~2k.q+ie ~2kq+ic bqy
(70)
in /fn in3/n
- --il—-a—ﬂ-% (ra2b)? = - -‘-—k——'Ao



The integral over p(c};) is evaluated next. Take i as the polar axis with

k-; = pcosd, Z--S = psindgsiny, u = cosd.

2n
5 = I. “Qgngac J d8sind J d¢ 312 (-3p251n2951n2¢_92+4k2)

0
(71)
@0
¥ T+ 219¢ T+2kpcosa+a 912
0032 [ [T (3n2(1-u?) + 2(p2-4k%))
3 - IEpSe n -u 57 P
i 2 J = J dp P (1 F L2 (23 2kupti2) )2
-l -
(72)
nog3k? l : (3 k (1-u?)-6k?) dpp
o N S f du z.‘i'lh\ T rulcy; zl".:-(.‘l:?{l)l?— + P J’ Pk
-1
Using results (70) and (72) in (69) we obtain, with & =gnyl Ag = ra2b
anZ
= ka, L3 = k¢, by = kb, e = " Pl
(2m)3
/1 3 1 du (u?+1) /r
- Ok yn . - Ok U 3
0Ty w0k | TR T Ty § kM) ot

-1

The last integral is evaluated to yield

2
2 2
m(Lg) = 1+ (x=1)2 . _4ng + 425 + 1 H2e
L (1 + 202x)7 dx v (T 74 alg) “'s'o'“ In (““%) (74)



Next we evaluate 0, approximately.

5 - s o ok
ars 22 ceal | R_h2(p)e(ptk) _.iifl (q) (75)
9k"*Aq p2-k2+ie (g+p+2k) 2~k 2+1e

\

Evaluate the integral over q(g;3) first, Neglecting small ; terms in the
denominator we have approximately

dq A%(q
o922 = S 1 ..\(g) 2 (76)
bk q+p244k - p+3k2+ie

e, —.- ;;2
With 4k.q = 4kq; and pp = fj‘_"_*’-_,?i}___ we write
2 . a’q}
022 =40 | JUE D | gqe” TU | dagSiEiS2
4k | qppotie E
. (76)
2 = - 8 2
- "2arnrg {_m- 9—§5+ 5 l dye " 11 §
2k o QI¥PO

But it can be shown that the principal value intepral is expressible in

terms of the Dawson integral

' 2 2
p| due 4 7! g neGPO) [ dxe™ = 2/wD(250) (717)
® qi+po 0

2 (2 2
gpp = l’-;-l':l‘_-“-" { - 2/’1?1)(3—2—"-)3 (78)
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tthen this result is used into (75) and we introduce spherical coordinates

we have after 9 integrations

- 1
2 " .
gy = 287 peal 1| dp --P—— | dul2n(pi+hkpu) (p2-4k2)+1p2 (1-u2) (15p2+30%pu-12k?)]
9k“Ay; p-k+ie

- 00

TV Gt
(1+22(p2+2kpu+k2)]g 2 e - g 2/1?1)(920_)

Carrying out the p integration and lettins x = pi, f; = k&, ap = ka,

we obtain,

2¢2 [ nSpv/madk 4002 3
oy = 22 {L&oﬁ.ﬁe}b_ mgy (ao i) + Toiofa mzz(aﬂ,go)g #5)
9k A 2kL-
where
1 3,,,2 2 )
- +
wy) (ag,2p) = du BEETHRCS3uf) exp (- 16-(1—-‘-'1-) (81)
L (1420 (14 )2 4

1
2442 0ux+31
mz2(ag,%p) = f da B[ GEEX r,(aotx 120 ux+3 3]_)

M x-Lp 81%

(82)

x2(1-u?) (15x243089xu=-12:7)+2 (%2425 ) (x2+420 xu)
(1+x242%.gxu+t?)?
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For the SRI experiment ag = 7.8 and g = 4.4. DNumerical integration yields

m)(7.8,4.4) = -0.12, ny5(7.8,4.4) = 203, and mj(4.4) = 0.0475.

The fourth term in (65), 03, is now evaluated. Treating A(p-q) as a

quasi delta ﬁunction and writing

1 — A S—
(p2-k2+ie) (q2-k2-ie)  (q-p): (a+p)-ic g.p2-k2+ie q2-k?~ie

we obtain approximately

= [ - 2 ,— —

: 9 - R
03 - ..-.......(:.l(). ap ha(p):'(p-{-k) ‘((p_k)(---_».l.-—.. — -.—"...1...-—.-) .(_!E.‘_-_:_‘(f: '3) o
p2-k+ic p“-l:z-ie 12pe(a=-n)-ic

Carrying out the o, Intesration and recoxnizinn that the principal value

integral vanishes, A(q) = A(-q), we find the q intejration reduces to

- g == _
I dg_a(p=q) - 1T [ dq;dquz (91,92, - E.lﬂlJZEl) (84)
P3

But

1 1 in
= = - == §5(p-k)+s (p+k) (85)
p2-k2+ic  p2-k2-ic k { 3

and model (5) for A(p) in (84) yields

[ﬁﬂ)_.!ﬁﬁ_& (86)

2p.q-ic¢ ab po



-19-

tthen this result is used into (75) and we introduce spherical coordinates

we have after 7 integrations

1
2 = a .
gy = e Real + dp -~ P du[Zn(p*+4kpu)(p2-4k2)+np2(l-uz)(ISp‘+302pu-12k2)]
9k“Ay p-k+ie

-
- (0

S0 n2a/mif [ -2 '
*(Z(perokputn) ]2 2K fre T2 7 4 avmn(oy

Carrying out the p integration and letting x = pi, £p = k&, ap = ka,

ve obtain,

2 F 5 r“ ) “::' ,-2_‘
— {ﬂ_m,@b_ ma(ag.6g) + 130728 “‘22(&0.20)3 =
k“ A i S
where
1 -
+u2-2ut +4)2
my) (ag,4p) = du lQE..}L,_E.}.,exp (- af (1+u) ) -
4 (142¢3 (14u))2 4
1 - :
m22(ag,4p) = { d 8| GEX n (2 [x +:10'9.x+39. ]_)
J x=-1g 82§
(82)

%

x2(1-u?) (15x?+3089xu-12:7)+2(x2-425) (x2+429xu)
(1+x2+2loxu+tg)2
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For the SRI experiment ag = 7,8 and %p = 4.4, DNumerical integration yields

my1(7.8,4.4) = -0.12, mp,(7.8,4.4) = 203, and mj(4.4) = 0.0475.

The fourth term in (65), 03, is now evaluated. Treating A(p-q) as a

quasi delta ﬁynction and writing

1 1 1
(p2-k2+ic) (q?-k2-ic)  (q-p): (q+p)-ie {pz-kz-*-ie q2-k?-1¢e

we obtain approximately

=) [ — —_—
2. n — o R — - - '2 o
o3 = e dp h3(p) v (p+k)“(p-k) (- =S : ) g{{.—i':;(-}*”-)-- (83)
9k" Ay p?-k2+ie  p2-i?-ic j2p.(a-n)-ic
Carrying out the o, intesration and recoznizinn that the nrincipal value
integral vanishes, A(a) = A(-H), ve find the a'integrntion reduces to
q A2 (p-q in = ‘
dbfpal I [ da1dazA?(q),qz, - =252 (8)
2p-(g-p)-ic  2p3 P3
But
i
L LI f s (pr§ (85)
p2=k2+ic  p?-k2-ie k
and model (5) for A(p) in (84) yields
dqa2(q)  in?/nad (86)
2p:q-ic  ab p,
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When (85) and (80) are used '~ (83) we obtain with model (5) for ¢(p) and

k202, 21
AO - Trazb, Q’J a 8TTQ,3, £ = ..._._l_’ ag = ka’ 2‘0 = kg,’ g = (._.,___)2 (87)
(2m)° 14223
) \
o Ok - .
01 = o', et IBMA (i @)
m(H2e5)"
where
n/2 m/2
J(8) = [ d0 sin®e [ d:(1-3sin6cos?¢)™? (89)
0 0

laking use of the substitution x = 1-3sin?Bcos?d we can carry out the
double integration in terms of complete elliptic integrals:

m

Toemn ((202-3344)E(3) + (8-4) (1-3)K(8)} (90)
123%(1-7)

J(3) =

- .

Recognizing that

sk B L1 13202 L,y >
E(8) 5 (1 7~ § (2.4) 8 )
() = X 1,2 13020, ., y==> T
K(B) = 5 (1 + ()0 + (G78 + )

lim 16.1/2
? 6__’1

lim

5oy E(8) = 1
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we obtain the following limiting values:

2
30) = 3w T8 . T

8+1  4(1-B)

\

A curve of J(B) is shown in Fig. 1. We note that

lim 16J(8) (1+428)? _ 4(1+42f)
Bl ae2ed) (1+223)2

lext we use results (73), (30) and (83) in equation (65) for the direct

polarization cross section, With the definitions in (87) and writing the

first Born radar cross section

b AT T Smedin o3
. 4mk*Q p]AO‘b(Zk) 4mi) p‘laoboza
B [ OO T =

(4m)?2 2k2 (1+422)2

We obtain

L
2 2 y Y 3 m21 ma2
o (-k) OBIQI (1 + 2 P, B aglp(-my+ B+

According to (64), (62) and (46)

1 1

Q

P T L

+ 163(8) (1+423)?

9n3/2¢3  m(+203)"

= = j P—— T A G D - A A S ‘e
1 - e2f33833 1 - 2 L&) (l + ET"—-“‘—0--) m2kogg (2g)

&7

)

(91)

(92)

(93)



where
g = -ig £(l+22§)1n(1+12£0) - 359——(20[1+azg+223]+1[1+5z§+523])§
205 1444
\
(94)
1+22+i6¢]
e
305 (1+427)
or separating into real and imaginary components
3 1 (16884162543 14003
Log(ig) = = v 2"’ - —="“tan=!(20g)
03 3(1+412) 24
(95)
2 972 .
+ = {-l + WOETE (L2t 1) 10g13(l+"¢?,5§
Lo e§
When definitions (87) are used in (93) we obtain o 5 O e =
Qs — L = (96)
1 - o4, (%-+ 1 1120y 935(2)
! 42
For ag = 7.83, by = 15.7, % = 4.4, zgg(zo) = 1.05 + i 0.282,
1 1
lq|2 = E 97)

- Y o 2 ] 2 8
|1 -0 p, (= 0:36 + i 2.66)|2 (1 + 0.340 p) 2+ 7.10%,



-

w  41(7.85)2 15.7 (4.4)% X 1074 _ R g
3" Tp, 7(1.96)2 (1 + 78.5)2 2.14% 1077 2% m

(98)

22§ 38.8 |°

= 0.95, J(0.95) = 15.5
1423 39.8

£ =

Applying the numerical values to (92) we obtain for the direct

polarization radar cross section

“3g4
2.14 x 10734 0.12

{}+Q“p10.222(7.85)(4.4)3(-0.0475 -

ag =
(RC) b \2 8
(1+0.3490 pl) + 7.19 P,

203 . 16(15.5)(79.5)2, |
T 3(4.£$E-+ 7 (39.8)% g

2,14 x 1073¢% . (1 + 19,60
Oqgy e P D R G D) (99)

1 2 8
R N ] Yo L (l+0-34€- px) +7.1Q°p1

4, Cross polarization backscatter cross section

Next we specialize the pgencral cross section formula (Teport 2, eq. 28)

to determine the cross polarization backscatter cross section. Setting

k2q?
—-— -— - -_— P [ ~
x = -k, letting d + ¢ = ~ —————1-j and recalling that'a = 7Q we observe
4n
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that the first two terms in (P2,28) vanish and we have for the cross

polarization cross section (01)

0, (-R) = 2c2(2 G (p) Q) (C- T #(q) Q%) & (p+k )3 (p=k)A2 (q-p)
\

(100)

b A g sy
. da A2 (q-p)

e 26221 g|2 | dp bE ()4 (p-R) b (pHR) (q2-k
(4m)?2 g (p?-k?+ie) (q%-k?-ic)

S LS
where h) (p) = (J:p)(z+p)

For model (5) the integral terms in (100) reduce to
- -\ 173 rn—.‘\g A" “ = - -
dp( ) | dq( ) = ==~ J do dé hy(pk) s (pk=k) e (pk+k) (101)

With p expressed in spherical coordinates

hi(pk) = k" sin2dcos?dsin”¢ (102

when turbulence model (4) and (102) are used in (101) and the result is

used in (100) there results

D . 2 gv 2, 43 5)?
0*( k) GB IQI Q F’l ﬁ 302’0 J_L(S) %I_;{;%_g_“_ (103)
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where

n/2 /2 .
J,(8) = J dd sin0cos?® I sin-s

a (1-8 sin?Bcos2¢)?

0 0
)

(104)

mar [@0E®) - 20-0k)

Limiting values of J,(8) are

72 n
J_L(O) . '6-4' and J‘L(l) = —l'-z-

J . (B) is shown in Fig., 1 for 0.7 < R < 1. For the numerical values used
in the previous section the cross polarized radar eross section is, with

J (0.95) = 0.235,

2.14 x 107 3q4

2
%ncy - Pl ate 2 (7.85) (4.4)3(0.235)78:5)"
(1+o.3z.n“p1)2+7.198pl 1 Jr 39.3)"
(105)
0.935 x 10‘398pl ’
[0} BB e e e - S —————— - - m
4(RC) b2 8
(1+0. 340 Pl) + 7.1¢ Py

Plots of equations (99) and (105) are shown in.Fig. 2, These results
compare favorably with SRI experimental cross sections when the measure-

ment's uncertainty is approximately 3 db.
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PREFACE

In recent years, an increasing amount of interest
has been focused upon the problem of wave propagation and
sqattering in random media, both from the viewpoint of
tﬂeory and measurement. The underlying reasons for this
interest are the numerous instances of wase propagation
through turbulent regions such: as: light or short wave
communication in the atmospheré, under water scattering, and
scattering from_reentry'objects.

To investigate these problems analytically, one has to
utilize a mathematical model. Unfortunately, the model
which presents the best physical description is mathematically
intractable. This is due to the complicated dependence
of the medium upoﬁ its physical parameteré,;i.e. temperature,
pressure, humidity, electron density, velocity, etc..

In Chapter I, the choice of a simpler model which may
describe the prominent characteristics of the wave medium

interaction is adopted. 'In Section B., the medium is

mathematically defined; the mean, rms, and correlation



functions are presented as adequate measureS of the
randomness in the medium. 1In Section C., the problem
explored in this thesis is mathematically formulated for a
layer qf infinite extent in the yz direction and of thickness
%, in the x direction. This layer is illuminated by a plane
ﬁ;ve propagating normally to the fluctuations in the index
of refraction. This layer is also characterized by a
collision frequency, a homogeneous mean and a strong
small-scale fluctuation in the electron density. The
resulting random differential equation of the field is
formalized and its difficulties are explained. Since a
straight Neumann series solutién fails under the present
circumstances, selective summation techniques are used.

Chapter II. develops these techniques (diagram and
smoothing) Qith the appropriate approximation to account
for large fluctuations and multiple scattering. Though
both techniques lead to the same integro-differential
equation, the derivations are completely different;
consequently, these derivations shed light on different
aspects of the problem and on the interpretation.of the
results.

The preceding technigues have been used in the study
of wave propagation in infinite medﬁa. In 1962, Bourret

- (§), (6), derived the first order Dyson equation (i5)

through the hypothesis of local independence; he applied



the resulting equation to wave propagation in an infinite
homogeneous random medium. In a series of papers, Ke11e¥ re-
derived (26), (28), the same results %nd avoided the above
assumption. In 1963 Tatarski and Gercenstein (47) derived
Bourret's results using a variant of the smoothing method.
The resulting integro-differential equation was applied
to scalar wave propagation in an infinite homogeneous medium
with strong small-scale fluctuations. In 1964 Tatarski (45)
studied the electromagnetic wave propagation in an infinite
medium with strong dielectric- constant fluctuation.
Macrakis (32).(1965) gave a more straightforward derivation
of some of Tatarski's results.. Brown (8 ) (1967) applied
Tatarski's formulation to the propagation problem; he
interpreted the results in terms of coherent and incoherent
scattering, and the theory of dielectric. Frisch (is) and.
later Bassinini (2 ) (1967) obtained the known sélution of
the classical random oscillator through the sméothing
method. |

The application of the DYson or smoothing formulations
to a bounded or inhomogeneous random medium has received
little attention. Bassinini et al. (! ) (1967) used the
infinite medium effective wave number parameter given by
Tafarski to study scattering from bounded media. Recentu

- papers (Rosenbaum, 1969; Kupiec et al., 1969; Collin, 1970)



studied = some aspects of interface effect on coherent
wave motion. Rosenbaum (4!) oﬁtained approximately the
coherent wave scattered by a random half space whose
mean diclectric constant is different from the uniform'
nénrané;m medium in the conjugate half space. For a
homogeneous background throughout, Kupiec et al. (30)
solved the scalar.Dyson equation for a normally incident wave
on a random medium occupying a half space and slab geometries,
Collin considered an obliquely incident wave on a random
half space superimposed on a uniform medium throughout.
It is difficult to assess the results obtained since the
randomness was assumed to be homogeneous near the boundary

A complete investiéation of the bounded random or
inhomogeneous raﬁdom problems is difficult.. In this thesis
some aspects of these problems are considered and applied
to a randomly fluctuating plasma layer whose uniform
background is genermlly different from.the outside medium.
In Chapter III, tﬁe conjecture made by Bassinini et al.
about the effective wave number is tested through ap-
plication to the layer problem. The reflected coherent
and incohefent powers are derivéd. The comparison with
the successive approximation method is also made. In
Chapter IV, the exacg dependence of the scatter power on

. large electron density fluctuations is investigated in the



“limit of small-scale fluctuations. A locally homogeneous
:randomness, which appropriately describes the medium |
near the boundary, is uséd, Typical cases are studied for
‘a wide range of plasma parameters. In Chapter V, a new
formulgéion of the scattering problem is presented for a
wtniform : background throughout with a locally homo-
geneous randomness, whose mean characteristics change
smoothly. This p?operty is advantageous in the Féurier
transform space, and a singular integral equation of
standard form results. This description appears to be
closer to reality since it avoids the presence of a

sharp boundary between the stochastic and nonstochastic

medium.



I. FORMULATION OF THE PROBLEM e

A. Introduction

In this chapter, the medium and its interaction with
an incident wave is mathematically described. This
description leads to linear differential equations whose
coefficients are dependent upon the ﬁécroscopic inﬁomogenei-

ties of the medium.

B. Description of the Medium

Two types of inhomogeneities exist, deterministic and
random. It is deterministic if an identical measurement
is performed many times and the results obtained are always
alike. If, however, all conditions under the control of
the experimentef remained the same, the results continually
differ from each ofher, the medium is said to be random.
For a "temperate" and isotropic plasma with electron

density fluctuations, the complex dielectric constant is{(q):

‘ .
K(.v.‘r) 40 -"_‘:.LH_J;.I_L_‘_)_V{(:,,‘) . (1)
(1+ 1)
.wﬁere J% , JdY, are respectively the normalized plasma

and collision frequencies; the quantity *t. is the electron



Edensity distribution norma;ized on the peak or mean value.
lHere, the mean value of' 1 is unity and the fluctuationql
is random. |

In the applications of interest to the present in-
vestig;tion, the fluctuations in electron density are
agsumed] to be related to turbulent mixing (48), (50).
The mean and second moments of the fluctuations usually
suffice for most scattering calculations. The mean in-
dicates a steady value of the electron density over the
period of observation. The second moment measures the
correlation between electron density fluctuations at
neighboring points. Ensemble averaging over a set of
realizations is assumed throughout:

For homogeneous turbulence the second moments are given

by

<’(¢‘."‘("J) = q;l(z') B (x,-2) (2)

.

For locally homogeneous turbulence, we have

ix) ie) = of(x ;:,) B (x,-x,) (3)



The exponential and Gaussian correlative functions for

isotropic turbulence,

‘ Ble- ) € B (4)
-3
LALN (5)

Blx,-%) = € 7

are useful in many applications.

C. Derivaticn of the Wave Eguation

oflwt~h
Consider a plane wave of the form ¢ e

normally incident on’'a plasma layer-(fié. 1). The slab
is characterized by a complex dielectric constant which
is a function of space. The medium is assumed to be
linear and isotropic. The electron density possesses a
homogeneous mean and a strong small-scale fluctuation.

Maxwell's equations for all space can be written as

wrz-junb (6)

vrfl = jwe Ko E . (7)



;\

3!

Fig. 1

Random fluctuations of electron density.
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where K(x) is the "effective dielectric constant", equal
to one outside the scatterer and varying with = inside the
scatterer.

The wave equation for E is found by vector manipulation

of (6) and (7). Let Mz wh& |, them,
@+ WKR=)E = - ¢(E. gkta)
Y - Kix) _ (8)

In cases where the electric field vector is normal to the
variation in the refractive index the cross-coupling term
in (8) vanishes ; let ¢ be a component of the electric

field vector, then

(et s k0Ki))$ =0 (9)

Complete matﬁematical solution of this differential
equation with random coefficients is still lacking. Here,
the study is confined to the investigation of the statistical
properties of the solution, $(=) , of the random equation.
To facilitate the aﬁalysis, equation (9) may be put in

operational form:



Y

(10)

(11)

N =£‘20(' + j-ﬂ.)
(l+.n.“)

together with the- continuity conditions at the boundaries,
and radiation conditions at x=24e .

Equation 10 is the reduced wave equation which
occurs in classical and quantum fields (ge6)., (17).

The solution of the' reduced wave eguation must be

found approximately because calculation of L involves a

-nonuniform eomponent in L and the random component L, .

11



Fortunately, physical interest is focused not on the
functional dependence of | &(.) , .but on the statistical
moments of the wave solution. The moments axe in fact the
observable features of the physical phenomena; it will be
.
our purpose to investigate the coherent field <¢(§)) and
the fluctuating field, $¢ . Specifically, this thesis is
concerned with the dependence of the scgttered field on the
large fluctuations of the refractive index.

The procedure employed consists in the calculation of
the inverse operator, L'. This formulation will be the
subject of the next chapter, and reduces to finding the
effective characteristics of the density fluctuations, and

subsequent determination of the coherent and incoherent

scattered power.
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IX. THE METHODS OF PARTIAL SUMMATION

A. Introduction

The validity of the wideiy used successive approximation
method is restricted to bounded media and small strength "
random' perturbations (Appendix I). The problem under
investigation does not satisfy these conditions; and in
;ddition the summation of all terms up to second or third
order does not work because the series ¢ onverges too
slowly to be practical. In these cases, two approximation
methods (smoothing and diagram methods) are available;
they will be described in this chapter. The diagram
method (12 ) involves a summation over a selected class of
repeated diagrams. The method of smoothing (29) involves
the decoupling of the mean and fluctuating field through
the solution of the latter field by formal iteration; an
equation for the mean field is then obtained. Though
both methods yield the same results (i15) when applied
to linear random equations, their methods of derivation sheé
light on different aspects of the problem. In Seétien ‘B, -

the development léading to the Dyson egquation (\5) is

‘carried out. In Section C, the smoothihg equation ‘is

derived .

B. The Diagram Method
Let the field ¢i») in a random medium with index of

refraction, LJgr); be related to its source J through



& (=) :/G(:,x') J'(tf) O | (1)

\

The Green's function, G6t(%x') , satisfies the random

equation in integral form :
Glx,x) = Gw(t.'-" = l (".’(‘a x') L,(x:.‘u')G(i,;‘) dx, (2)

when . G“('t.t') is the free space Green's function (%7),

epin. w
6,‘“‘0)=|'CJ ‘!‘

aly (3)
The solution of (2 ) by iteration gives

Glx,x') = G‘.(’s,{)- I(,‘?.,.)L.m Gmtz, ¥ldie .o # (4)

4 JE L)l LOE U, b

An obvious physical interpretation of the nth term is:

a wave propagates unhindered from =«' to 1, where it is

gcattered by the random inhomogeneity, the resultant

propagates unhindered from 1 to 2, is scattered at 2. etc..
" If the index of refraction is nom.ally distributed,

" the average of the products of the random functions in

14
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the nth term is (8 )

LWL Liwy = Sl L. §¢¢,m<t,t,.->l.,c-.)> (5)

or
R0 .0 Clnatym) ,
<L.(.)L.(;) .e L.(“)> & 2 .( ! néven (6)
e . w odd (7)
and
ReL2) =<ttt (), 8)

ﬁ'h.z),the correlation of two pdints, tends to zero

for separations large compared to the correlation length.

The sum in (5) is constructed from h!/@"z possible
permutation of the indices (8 ). This summation is
cver-all the combinations.éf the points 1, 2, ...n into

groups of two

':(l.l’. ce sy r(ﬂ‘l,n’

To facilitate the writing of the. functions
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<G—<:3 ’_;‘, } , and I <G(‘,$') G'(*‘l')>

\

equivalent diagrams of each term in the mathematiéal series

i{s drawn. A dictionary of the fundamental symbols

may be constructed as follows: We represe.l each G:’

by a horizontal line segment; if we have two G:’

we join the two lines and put a dot at the junction. The

dot indicates the céefficient of the term times the

integration over the random inhomogeneity: A two point

correlation is identified by a dashed line connecting the

two random inhomogeneities. The multiplication of two

diagrams is indicated by placing one on top of the other.
The Neumann series of the Green's function G(x, x’)

may -be diagrammed as follows:

¢ _ &8
Clrp)zte» 4 o ¢ .o, . »

Its product with itself will be
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are:
— z + T NFD S NP L. N
(11)
RRRAL T e,
’ Jv_.o 3. ;: »>- + d. 4 . (N
*.—.— +
f ———— .
- L 3 . (12).“
f —————] .
where
<6(’~.‘l‘) ) £ =mEeEms=—r
- ]
G »xG'y =
E———————

I't is proven (Appendix X) that the Green's function series
is convergent for a sufficiently small perturbation;

the terms in the expansion are then successiirely smaller
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with increasing order. 1In this case we can estimate the
accuracy of the approximation from the highest order
term. For large parturbations, the above process fails.
In this case, the terms tpat appear to give the largest’
contr%?ution are chosea and summed to an equivalent
deterministic integral equation. Physical arguments at
times enable us to identify the terms to be chosen.
Though the diagram technique is lacking, rigorous
mathematical justification, it is useful since it yields
results which compare favorably in some cases, with
exact methods (). '

To perform the summation, each term in the diagram
equation of{ll}is dismantled into noncorrelated parts.

For instance

s
°? LIS

’ % = . : iy )
—‘: . - ———————— — ———

(13)

Factorization of noncorrelated parts in the diagrams lead
to the Dyson {{2) and Bethe-Salpeter (43) equations of

field theorétic methods:

gemm—xx=2

- v —<}== (24)

In operational form, we have

18
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<G>y = Gw +‘ GMMG

- con D R | ..o
where

(15)
4 -~ ~ e

Si= + :
J :

The "#ffective wave number operator",@, and "intensity
Operator"”, Z

, are the sum of the diagrams that cannot
be further dismantled without breaking dotted lines.

To construct the first approximation to the Dyson
equation, the property '

1': Ql-al). ‘2 0 weal > ¢ (16)

revedls that the correlation between neighboring points
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gives the greatest contribution when ]1-2'(2 ; the
diagrams with overlaping dotted lines are then neglected.
This amounts to the retention of the first term in the

mass operator

;’ . . (17)

which is the summation of

. PRl 27"
7 * ('Y + :‘ Ne. & \

(18)

‘e o

It is to be noted that the solution of this equation
should not be performed by iteration as this process
leads back to a divergent series. This is expected as
the Dyson equation is a selective restructuring of the

Neumann series.

C. The Method of Smoothing

The smoothing method (15) to be discussed below is
an alternative development to the diagram method. For
random equations, the two methods lead to the same results.
SOme'ad'hoc procedures are also diécussed in Appendix B-:.
fo.facilitate the an¢ ysis, the operational form of

the wave equation is adopted:
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6=G 1.6 ¢ | (19)
wll'xefe |
G = L:"
o= Pé + 8b
. (20)
P<x<¢?

$0=(1-P) &

By applying successively the projection, P , and

fluctuation, 8¢ , operators to equation (19) we obtain

o)

(0) - G::J-G"f Pﬁ-\ 8¢

(21)
(o)
§¢=- G (1-PIL (cop +10)
Solution of (20) by formal iteration yields
b (%) "
Se=2 (-G (T-PIL )¢ &> | ' (22)

i
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If we replace §<P in(20) by its value in(22) ,the coherent

£ield becomes:

({}] ) 0 .
<¢, = Gﬁ J ’ G.' M‘¢> N ‘(23)
with the mass operator

M = ;pgo(.cz::(t-l’)\..)“?
‘: e o (24)
.6 P

5« 1l P, G% L)

“ii

Equation (23) represents the Dyson equation. for the
coherent field. Above order one,the Dyson equation is
usually intractaﬁle because of the.increasiqg complexity

qf the mass operator. In what follows, the ‘analysis and
discussion are ‘concerned only with that first approximation;

for n=l, equations (21) and (23) reduce to

L¢ce) @ <L, B L ycer=o (25)

§¢ siL ¢ . (26)
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The solution of Equation (25) has been shown (41) to be

i asymptotic to the exact solution of the classical random

oscillator for the condition of strong small-scale flucta-~

ations.

\
D. Some Observations on the Partial Summation Method

The methods of partial summations transformed the
stochastic integral equation (12) into a nonstochastic
integro-differential equation, (25), which possesses the

mathematical form

L , , ’
é_¢¢> + k"K.(Q) — jK(:,n') Cttnr Yy dn = o (27)

ds*

where K(%*) js the kernel and ¢<é; , the unknown
coherent field.

A general solution of Equation (27) :I.s'not knowr., If

T nstraightforward iterét-:i.on“procedure is used, this leads

to Equation (18), which is known to diverge in the case

of large fluctuations. When the kernel is of the convolu-

tion typel44)

Kin,s') v K(z- »’)

the application c" Fouri.er transfom leads to.a solution

of the wave equation. Also if the i.ntegral is of the
° Wiener-Hopf type(44)

23
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.d__"“, + k'K, <o) - I“"-")cmu'Hda' : ©
dz® ®

(27)

a technique is known for its solution. Both solutions have
been discussed in the literature. Physically, both

cases required, among other things, the assumption of
random homogeneity: this seems hardly jus'tifiable near
the boundaries of bounded scatterers. In addition, the'.
appropriate Green's function that satisfies the radiation
condition at =-»:e and the boundary conditions of the
scatterer, is not of the convolution type. These physical
modifications add to the complexity of the scattering

problem considered in this thesis.

E.  Conclusion ob 15 TTTE -
Further work on the mathematical foundations of the
Dyson and smoothing equations are needed (33). At
present, the capacity and limitations of the first order
Dyson or smoothing equations are best gauged by the
examination of the results of their application to
prototype problems. The resulting integro-differential
equation is difficult to investigate in the case of randon,

inhomogeneous or bounded media.

24
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III. WAVE SCATTERING FROM A RANDOM UNIDIMENSIONAL LAYER - ~
WITH AN APPROXIMATE EFFECTIVE INDEX OF REFRACTION

A. ;Qtroduction

Recent papers (5 ), (32), (27), considered the
propadgtion in an infinite random medium with strong
small-scale fluctuations. For this case, the resulting
'integro-differential equation of the first smoothing
equation is of the convolution type; its solution is
readily obtained through Fourier transformation.
Hawever, examination of a bounded or an inhomogeneous
medium requires extreme simplification of the stochastic
problem. 1In a recent paper, Bassanini et al. (1)
asserted that the interface effects on the coherent
effective wave number parameter are negligible in the
limit of small-scale fluctuations; they concluded that
the development made by Tatarski (41) in the evaluation
’.‘éé*aﬁ effective parametér>for'in‘ihfinite random medium
with uniform background is applicable to bounded media.

. 8ince the mathematical foundation of this procedure is not
well set, its results are subject to doubt. This chapter
may be viewed as a numerical testing experiment to see
if the above assertion has not produced a violation of the
principle of conservation of electromagnetic energy. The
-reflected coherent and incoherent powers are anélytieally'

obtained as a function of the strength of the fluctuation.

Comparison to the successive iteration method is also made.
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B. Infinite Medium Effective Index Parameter

In tﬁis section we reduce the original stochastic
problem in its coherent part to an equivalent deterministic
boundary value problem through an estimate of the effective
characteristics of an infinite medium.,

L Y
The Green's function is taken as

e‘.i'm"'”")

6‘!!--“" 3.;3'm (1)

The randomness is assumed to be homogeneous and the
correlation is exponential. The field within the plasma

is govefned by an integro-differential equation of the
convolution type; its solution has been carried out through
the application of Foufier transformation (41) or through

the assumption of a wave solution (2S) of the form

» N et B e e e ST G P G 1 W L T L Z Y

C¥n) > ‘.j ‘.‘.

Following the second alternative, one obtains, after some

manipulations

k =k .: 8)
. CJ&. (2)



where
f“ v‘
Q‘s[h. (e )2 ]

v
p. =t state )OI 1t

ac &, ¢(ph ¢ g ) et sat )t pra.)

bea, e Cpor-gp)ficat ey 4qhald

p=k -ﬂ', c'a, U1- LRV .n:)"‘

(3)
9= 2k n’rc‘a,n‘ fove 230

Y,
o =[ta,+a)¢0 Y /1"

= - - Pt b et re e o8 cm g o SEp ~

h:[bg+(¢+ﬁyulh
*o"' '“‘r/(u -ﬂ-“ )
Q= “" .ﬂ-. /CN -ﬂ:)

For @ =0° o Equation (2 ) reduces to the deterministic
plasma wave number; for ¢ ¢to0o , the turbulence attenu~
ates the wave; it transforms the coherent energy of the

incident wave into incoherent energy: this effect is more

prominent a,s the normalized plasma frequency -, nears

the over-dense regime.

27
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C. The Coherent and Incoherent Reflected Powers for a Slab

1. Coherent R2flected Field

The analysis is confined to the simple bounded slab
filled with a randomly fluctuating plasma and described
in Chapter I (fig.l ). Assuming that Bassanini's work is

correct, the coherent field egquation, within the slab,

.

may be written as

£‘¢’ < k:< ¢> = o : .
dr* ' (4)

The general solution of the coherent field equation is

4é = AC.Y“-Ob CY.'. (5)

Ne k(p+ju) (6)

The boundary conditions are

1+4<@ 2> =<¢la)

(7)

' ‘4", ik dx=
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<q,> e"“‘: < $(x,) )
(8)

-oi " .
<q>e 2-L dcetxd)
. Jh dx

Solution of the preceding algebraic equations will deter-

mine the four unknowns, A, B, > ¢+ < %) :

(9)

where

(10)
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2. Incoherent Reflected Field

The incoherent field equation may be written as

é_"SQ 0'5:‘8’ < L.(‘) (11)

b odet

The solution of Equation (11) by the "variation of paramet-

ers" (l]) is
$¢='A So(n)+ BIL) (12)
+ SQ(-; L<d) b dx o 54: lt.cé; 6#..:!:.
w(ds,80) wi(se,54 )
e b4 = O , 9% = G.u are the

homogeneous solutionsoZ (11) , W is the Wronskian.
Applying coatinuily cenditions to {12), the in~-——--- ave

coherent field, 8¢ , within the plasma becomes
Sot0) = h‘.n-‘,cus.nn{:,,’ G B2 N
. ”.
-3 ® - e
RS Y +-Lc':..r.y,) I e
*

Ake BT % aat Nr‘"-u-f L~ (= Y,-v) e’
. -

‘]7 %



.L.": t ‘”(:.'Yc.r)c.tv"o 1 (‘..Y—n) .‘7'.J°',‘
”

: *"’: C.ty+7‘)‘.\' ('0070)")‘?7"'4' 2,09,,:“1’(:..7-&)

i 4

\

R S T Y o v 1)

(13)

"'ocr, g""" (:,7.7 ) ¢ fr L. 7 ("OY*Y" ¢-7¢‘.;r‘ x, }

where

»
(x,q) = ] tz,) 21‘.d&
R« Jyeo e

3. Reflection COeffic:.ents
The reflected power 'is now found as a coherent and
an incoherent contribution. The coherent reflected power

is easily calculated

Ay, -
l<g)l‘=l¢.'«<;’-e“" )| (14)

The incoherent reflected power may be written as

&4 =’h'.n} Cej R0 5 I‘U““ AR

3l
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Lol uey) ™% | L bimlx, yoy) e=tT%
“ Y . + ' “? 'Y‘ 3

A satlyeydu, :
K ‘l.,( cavey,) € 11, (15)

For the exponential correlation function, statistical

averaging reduces (15 ) to

A8l =[aby 25 Cei 8 o410 Crer, 5 v?)
Yo e )

NPT

ﬁ"b'?.' -2y’ "°h(Y Y, -Y-v)-

hrtev?y . vi] + B et Ry Sy )

Voalyawfe, o,
-

a- o(a‘) 2% %] (‘ y'-r‘ ) it
hig.v, v’.v*)] +|0,.2r,l‘=‘ z(v.;r‘Jl ”'H\;-v, Y’-v)
Akt e ““"fc’* ) "Hv‘f Y- t)

-4 e i’..')‘.e."""r “hl-y -\;’, -y )+ [[.2.‘ &‘l'e"‘":ﬂ):-

hO= vegle 10" O ey )



-L.Qr‘(ﬁ-:)"e-"“"-o e+ %o | (r*% N PR

L: A A

hilrd-v® re %)
Y ) 2.
L:L‘!‘Q’:‘.Q.CY +y+r )= l\(r.'\':,"f"’fg)

&

v ‘
IQJ’ e.a(r f‘r‘+Y’+ Y‘ )x. L(Y"" v* , Y*Y‘ )} (16)

-——

where

e(ﬂ.*‘g)’. [ (

“\(ﬁ. ('.)':-.....__l b ..l_.. +
' cl"c‘ [I-C. 2"; C,+ C'. 2".

(17)
(G,-!)za C x,

PRI, e T
L4 ¢, (R-¢) (24 ¢,) (R4¢,)(8- ¢,)

For a nonstochastic medium, 0 = o , the incoherent
reflected power zeroes and the coherent reflected power
reduces to the well known deterministic result.

If YaY, the reflected coherent and incoherent
powers in Equation (14) and (16) reduce 1;.o.those obtained
by Jarem (%) using the ‘successive approximation method;
this condition is approached in practice for very small

I random variations. When the difference between the mean

33
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values of the slab and the surrounding medium is not
too small, the conjecture made by Bassinini et al.
becomes unreliable since it is inconsistent with the
continuity conditions at the boundaries. In fact, the
principle of conservation of electromagnetic energy is

violated (fig. 2).

D. gConclusion

The basic conclusion drawn from the analysis of the
obtained results points out that the neglect of the
intexface effect on the coherent field is not generally
close to reality: 1. Some observed phenomena, such as
the saturation of the scattered power before the criticals:
density is reached , are not displayed. .2. The conserva-
tion of electromagnetic energy, near the transition

regine, is violated.
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Fig 2 Violation of conservation of cnérgy principle

.

in approximate smoothing usage.



IV. WAVE SCATTERING FROM A RANDOM UNIDIMENSIONAL LAYER

WITH AN APPROPRIATE EFFECTIVE INDEX OF REFRACTION

A. Introduction

In the previous chapter, use of the infinite medium
Green'; function was shown to be improper for a slab,
where the difference between the mean value of its di-
electric constant and imbedding medium is not small. 1In
this chapter, exact solution of the problem is obtained
in the limit of small-scale fluctuations. We consider a
uniform plasma slab with superimposed turbulence whose
intensity and short scale behavior follow a Gauésian form.

Numerical evaluations of typical cases are displayed

as a function of the mean square fluctuations.

B. Exact Effective Index of Refraction

The coherent field, within the slab, is governed by

. 7
id b’

dicotery + kM1 NIC Oy - k'N‘/GC-. n') Bu,n')¢oln)) clu’
' (1)

The Green's function, G(x,»’) is that of the background

medium wave equation

i‘ﬂs) + htQi-nN) Wi = o
én*

¥, ¢(n<o

and

>4 = Il Tl Lt sl P g N e L X
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\ -
d¥ta) + kP00 = o , %0
dt o ' (2)
<%,
4
The general solution of Equation (2 ) can be written in

terms of known functions; we let ¥ and ¢  Dbe

the solutions of Equation (2 ) which satisfy the rad-

iation conditions at % t @ and the boundary conditions

at R0, %, « The Green's function may then be

constructed (14):(35), (4y):

Glx») ¥(x) % (x,)

3)
WY, %) ‘

W is the Wronskian; 2, is the greater of the two

_numbers x and x', and x_is the lesser of x and x'. Let

us determine the functions ¥ and ¢, for the
turbulence free uniform slab (fig.2 ). The determination
follows from the standard solution of the slab problem ,
together with the boundary conditions and the properties
of the Green's function; this leads to .

p

0-‘.‘.“‘ +* R...g'ih o %50
VNS UL Wk xexco  (4)
LT"J“ - -
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-.h’
1, &im"

.‘b i .
"‘(") i A' et +5| c’hf*

R 3
e', x + R.. e,
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