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Abstract Report 1 Scalar Scattering from Turbulent Plasmai by a Modified 

Method of Iceraticn 

The scattering of scalar waves from a turbulent plasma is investigated 

by a modification of the iteration procedure used in derivirg the so-called 

first order smoothing equation. Electron density fluctuations are modeled 

by locally homogeneous turbulence. 

A wave number space representation is used for the random scattering 

integral equation which is decomposed into ccupled integral equations for 

coherent and fluctuating scattering amplitudes. Th^se equations are 

solved by invoking the "large scatterer approximation". This density 

Independent approximation is used to express the coherent field in terms 

sf the fluctuating field.  Successive iteration then yields a solution 

for the fluctuating field. The incoherent radar cross section is calcu- 

lated to second order for an axially symmetric vakz  section illuminated 

nose-on. The turbulence is modeled by an Isotropie exponential correlation 

function and a turbulent intensity which is axially uniform with a Gaussian 

fall-off radially. The present model predicts a cross section saturation 

with Increasing turbulent fluctuations. 

Abstract Report 2 Vector Scattering from a Turbulent Plasma by a Modified 

Method of Iteration 

The analysis of Report 1 is generalized to the scattering of electro- 

magnetic waves. For vector scattering we must solve two coupled vector 

integral equations for the coherent and fluctuating fields. The "large- 

•catterer approximation" (scatter dimensions large compared to correlation 



length) leads to a vector Integral equation for the coherent field In terms 

of the fluctuating field involving a non-symmetric tensor whose elements 

depend on scatterer characteristics and the dyadic free space Green's 

function. This is used to obtain an integral equation for the fluctuating 

field which is solved by iteration to second order in the density. Using 

the quasi-normal hypothesis a general expression is derived for the 

incoherent bistatic scattering cross section of an axl-symmetrlc wake 

section illuminated at non-normal incidence and arbitrary polarization. 

Abstract Report 3 Application of the Modified Method of Iteration for 

Scattering to SRI Experimant 

The general expression for the incoherent scattering cross section 

derived in Report 2 is specialized to compute the backseatter cross sec- 

tion for direct and cross polarized directions. The SRI turbulent flame 

is Illuminated at normal incidence with direct polarization along the 

flame axis. The turbulent intensity is modeled by a Gaussian radial 

and axially uniform distribution with a correlation function of exponential 

form. These models are close approximations to the measured SRI scatterer 

characteristics. Direct and cross polarized backscatter cross sections are 

calculated for a wide range of RMS electron density values including under- 

dense and near critical density regions. Agreement between experimental 

and theoretical absolute cross sections fall well within the 3 db SRI 

measurement uncertainty. For the very underdense case the theoretical model 

yields results In agreement with first Born theory for direct polarization 

and second Born theory (Ruffive-DeWoUe) for cross polarization. As critical 

densli 7 is approached the model predicts cross section saturation observed 

experimentally (SRI, RCA Montreal, Bell Lab»). 
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Abstract Report 4 Wave Scattering from a Unldimensionai Layer with Strong 

Kandor. Irregularities by the Method of Smoothing 

Under study is the multiple scattering of a plane wave normally Incident 

oa a layer filled with a scrongly fluctuating plasma. The electron density 

fluctuations are locally homogeneous, and the mean dielectric constant of 

the layer may be appreciably different from the imbedding medium. The 

formulation of the problem is based on the Dyson-Smoothing equations in the 

bilocal approximation. The approximate treatment of the mean dielectric 

constant as homogeneous throughout is shown to be generally inconsistent. 

Exact treatment of the problem is developed in the limit of small-scale 

fluctuations; the dependence of the scattered power on a broad range of 

plasma parameters is displayed and discussed for typical casses of physical 

Interest. 

In the case of a mean dielectric constant throughout,, a new mathematical 

formulation is presented. The resulting Integral equation is singular and 

belongs to the standard form studied in the literature. This formulation 

is closer to reality since it avoids the assumption of sharp boundaries 

for the fluctuations. 

Abstract Report 5 Scattering Coefficient of Cne-dimensional Plasmas of 

Epstein-type Profiles with Random Irregularities 

The problem of electromagnetic scattering by inhomogeneous one- 

dimensional plasmas with electron density of Epstein-type profiles, 

superimposed with random Irregularities is studied by means of a pertur- 

bation method. An exact Green's function is derived for the problem, and 

the resulting Integral equation is solved approximately by the Neumann 



Iterative technique. Coherent and incoherent power reflection and transmission 

coefficients are obtained to a consistent second order accuracy, and an expres- 

sion is given to define the parameter validity region of the solution. In 

addition, the incoherent reflection coefficient is graphically displayed for 

an interesting parameter range. 

Where meaningful, the special case of the halfspace of plasma is compared 

to an exact Monte Carlo computer experiment for a plasma slab. It Is shown 

that for the given region of validity, the solution compares favorably with 

experiment. 



REPORT 1 

Scalar Scattering from Turbulent Plasmas by a Modified Method of Iteration 

1. Introduction 

In this rep'ort we investigate the scattering of electromagnetic waves 

from a turbulent plasma by a modification of the iteration procedure in the 

method of smoothing. The integral equation for the scattered field is trans- 

formed into an integral equation for the scattering amplitude. Coupled in- 

tegral equations for the coherent and fluctuating amplitudes are formed and 

solved by a method which invokes the "large scatterer approximation" during 

the iteration. 

2. Analysis 

Me consider the scalar scattering problem defined by the integral equation, 

.Kr) - e'ik'r + U;s(r) - e_ik*r + k2^ 

where 

-iklr-rj 

d7 ^  n(F ) ^t.)   (l) 1 - 4.IF-FJ   1   1 

i|/(r) is the total field, 4» (r) is the scattered field 

_   2 
2     RMS 

fl . ■ --■•■ "2 , the normalized plasma frequency based on a reference 
"   mew 

RMS electron density 

dnUj^t) 
n(r,) ■  electron density fluctuation normalized on n_w_. 

1    nRMS RMS 

V is the scattering volume. 

In the far field Eq. (1) tor the scattered field is 

2 2 -ikr  k JT. IkrT- 
d^ e   1 n^) ^(F^] (2) 



We identify the bracket term as the scattering amplitude in the r direction, 

F(kr) ■ F(K). We derive an integral equation for this quantity by multiply- 

ing (1) thru by n(r) exp(iKT) and integrating over V. 

, ,—v ,—.   iK*r —  f -ikT .—v iK'r ,— 
ij;(r) n(r)e    dr -  e     n(r)e    ^.c 

h 

2 2 
n(r)e    dr 

f    _ 
dr. 

ip'd^-r) 

' .3.2 17 dP ^  *<*1> 
(2Tr) (k -p ) 

where we have used the spectral representation 

(3) 

with 

-ikR 
e 

-ATTR 
1        f    e^^dp 

3                  2          2             ' 
(21T)J    J       k^ - pZ 

—00 

R-rl" - R 

i 

■                                                           ^»    — 

4/(7)  n(7)ei<,r d7 
u 

I(IC) •   n(r)e K r di 
iv 

equation (3) becomes 

2 2 kV 
I {<)  - ni«  - k> + —4 

(2ir) 

d£. 

k - p 
n(< - p) Kp) 

(A) 

(5) 

(6) 

(7) 

This is an integral equation for the scattering function I(K) and according 

to (2) the scattering amplitude is 

k2n2 

F(K) . _£l I(l0 (8) 

The quantity n(ic)  is a spectral representation for the electron density 

fluctuation.    We assume that scatterer dimensions are large compared to the 

fluctuation scale  (correlation length I).    The scatterer Is modeled by an 

electron density fluctuation super-imposed on a mean electron density back- 

ground.    The fluctuations are described by a locally homogeneous turbulence 
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whose intensity is proportional to the square of the mean density. At the 

outset (eq. (1)) we have assumed that the mean background contribution to 

the scattering is negligible.  If in Eq. (7) we measure wavelength in units 

of correlation length then all quau^Cies can be interpreted as non-dimensional 

and we indentify 

x 12 
(2,T I "nl' c X-J±- (9) 

(2Tr)J 

as the natural expansion parameter for the problem. 

Next we form the equations for the coherent (I (<)) and fluctuating 

(I.(ie)) scattering functions by applying the ensemble averaging operator 

P to Eq.   (7). 

PI(K) - IO(K) - Pn(K-k) + c G(p) Pn(K-p) Kp) 

IO(K) - c G(p) Pn(K-p) ^(p) (10) 

where we used Pn ■ 0, I ■ I + I. , PI. ■ 0, 
Oil 

G(p) = —?—=■ , and vector arrows were suppressed. 
k -p^ 

If Eq. (10) is subtracted from (7) we obtain 

^(•0 - n(K-k) + c G(p) II(K-P) I0(p) + c G(p) n(<-p) ^(p) 

- E G(p) P n(K-p) ^(p)      (11) 

We shall now solve pair (10) and (11) by iteration with c as an expansion 

parameter. First use (11) to form P n(ic-p) I1(p) for use in (10). 

P l^p) n(ic-p) - P n(p-k)n(K-p) + e G(p) P n(p-P1)n(<-p) ^(Pj^) 

+ e G(p) P n(p-p1)n(ic-p) ^(p)       (12> 

In a previous study it has been shown that 

prp2 
P n(p1) n(p2) ■ A(p1+p2) *(—^—) 

Pi+P, 
P n(p1) n*(p2) - A(p1-p2) ♦ ("V1) (13) 

1   J.Jarem,"Studies in Electromagnetic Scattering from Turbulent Wakes" Drexel 
Univ.,ProJ.  349 Report,Sept.  1969, Contract DAH-CO-4-67C-0072fARPA Order 1009, 
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where A(p) and Hp)  are the Fourier transforms     of the turbulent in- 

tensity and correlation functions respectively. The scale over which the 

Intensity changes is large compared to the correlation length. In the limit 

of a large scatterer A(p) approaches a delta function. We shall use this 

property in evaluating certain integrals in the iteration. When the average? 

in (12) are expressed according to (13) we obtain 

ic+k 
PI1(p)n(K-p) - A(K-k)*(~- - p) 

K+P 

+ c G(p1)Io(p1)A(K-p1)*(-2~- - p) 

+ e G(p1)Pn(K:-p)n(p-P1)I1(p1) 

Viewing A(i<:-p.)  as a delta  function centered about p. 

term  is  integrated approximately  to 

c  IO(K)   *(K-p)  G(p1)  A(K-p1) 

When  the above results are used  in  (10)  we obtain 

I0(<) - e G(p) A(<-k) *(^~ - p) 

+ c'  IO(K:) G(p) *(K-p) G(p1) A^-pj^) 

2 

(1A) 

» K  the second RliS 

+ e' G(p) G(p1) P n(K-p)n(p-P1)I1(p1) 

Letting g1(K) 

r - 
dp »(K-P) 

p - k 

(15) 

(16) 

(17) 

g2(<) 

dpl  A((c- pj^) 
__ 

p1 - k 

we can solve for I (K) to obtain 
o 

(18) 

I 00 
1-C g1(K)g2(<) 

{ e A(lc-k) G(p) * (^ - P) 

+ E G(p) G(p1) P n(i«-p)n(p-P1) 
I
1(P1)> (19) 
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Next we use (19) to eliminate the coherent scattering function I from (11). o 

,           A(p-k) G(p1) * (B~- p,) 
l1(<) - n(ic-k) + e

z G(p) n(K-p) ^ 
I - t g1(p) g2(p) 

,        G(p ) G(p,) P n(p-p1) n(p1-p,) !,(?,) 
& cJ G(p) n(<-p)  ~ ^~—r-i L'-1 L-L- 

1 - E  g1(p) g2(p) 

+ e G(p) n(K-p) I^p) - c G(p) P n(<-p) ^(p) (20) 

The first and second RHS terms can be combined after approximate integration 

to 

nOc-h) + c2 n(K:k) G(P) A(p-k) G(p1) «(k-p.) - n(K-k) r-i   (21) 
l-czg1(k)g2(k)        

i     1       1 - e^g1(k)g2(k) 

and (20) can be written 

I/JO - I^~^ + e G(p) n(K-p) ^(p) - • G(p) P n(K-p) Mp) 
1    l-£^1(k)g2(k) 

i i 

3,w x  x  > G(P1) G(p2)P n(P"pi) n<PrP2) Ii(P2) 

2 
1 - e «!(?) g2<P) 

+ eJG(p) n(K-p)  i ^ i ±-* ■x~^- (22) 

To order e we can neglect the last term in (22) which contributes at order 

3 
e . A single Iteration of the remaining terms yields 

I.dc) =-^  (n(<-k) + e G(p)n(K-p)n(p-k)-€G(p)Pn(if:-p)n(p-k)]  (23) 
1 l-e^g1(k)g2(k) 

The Incoherent differential scattering cross section is related to the 

scattering amplitude by 

k2nBl 2            0RC(,C) 
0(0 - P F1<0 F1*(K) - P (r^/V V*) l^M  - -^  (24) 
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3 
Making use of (23) and Pn ■ Pn - 0 Che cross section can be written 

A 4 

o(«) ««-Tj ^ (p n(K-k)n*(K-k) (25) 
(41r)

z|lVg1(k)g2(k)r 
+ c2C(p)G*(p1)Pn(K-p)ri(p-k)^*(<-p1)n*(p1-k) 

- £2G(p) Pn(K-p)n(p-k)G*(p1)Pn*(K-p1)n*(p1-k)] 

For quasi-normal turbulence the fourth order moment in (25) can be expressed 

as the following sum: 

Pn(ic-p)n(p-k) Pn*(<- P1)n*(p1-k)+pn(K-p)n*(K- p1)Pn(p-k)n*(p1-k) 

+ Pn(c-p)n*(p1-k) P n(p-k)n*(K-p1) (26) 

We note that the first term in (26) when used in (25) cancels the last term 

and using (13)  to reduce the remaining terms leffds to 

k4n4 

O(K) -  5^ = =• IA(0) *(.c-k) 
m'it - *\H\2 

+ t' G(p)C*(p1)A(p1-p)*(<- -~--)A(p-p1)*(-y-i - k) 

ic-k+p -p                             f-k+p-p, 
•»• S G(p)G*(p1)A(K+k-p-p1)*( 2      )A(P+Pl"k',e)*( 2  )] (27) 

If A is again viewed as a delta function for the p. integration we shall 

finally obtain, with A(p) and *(p) even and real, 

4 4 
A(0) k JT. 

0(K) -  T f 2 W*** 
(4n) }!-£ g^^  + g| c(p) H?_K)  #(p_k) G1t(pj  A(p^p) 

+ c2 G(p) HP-K)  «(p-k) C*(p1) A(p1-(ie+k-p))l   (28) 

3.  Backscattering Example 

For our first example we shall compute the backscatter cross section of 

an axially symmetric wake section illuminated nose-on. The turbulence is 

R modeled by an Isotropie exponential correlation function exp(- —) with eor- 

resp^ndlr;-: ipeetrai 
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♦ (p) f dR t«rl c- * ! 
(PO2]2     0 

(29) 

and a turbulent intensity which is uniform axially over a length 2b and 

has a Gaussian fall-off radially with an e-foldlng radius a//J. For such 

a model 

A(p) ■ Ao e 

*  1 aPD 2 
- f(—$—)  sin bp« , 

-i  , A ■ C_iTa b 
bp-     o   T 

2' 2 
(30) 

To carry out the integrals called for in (28) we choose the following 

corrdinate system: Z 

i    • 

\ ! 

4      \ 
»•v 

t r 

y 
A 

% 

The (x,z) plane is defined by vectors (k,z) with k - i coso + z sina where 

A A   A   A 

a ■ angle of incidence and z falls along the wake axis. (i,J,z) form a 

A        A 

rectangular base.     For nose illumination a ■ 90* and k > z.    For backscatter 
«-r * Ä * 

K ■ kr • k(-k) ■ -k«.    From (17) 

8x(-kz) - dp »<-kz-^)    „ p   dp »(p) 
2    2 2  

p^-k + ic J      p -2k»p+iE 
(31) 

In spherical corrdinatcs (p,6,$) with k*p ■ kp cose we have for Isotropie 

turbulence 
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g! - 2Tt P dp *(p) 
slnü dO 

p '-2kp cosO + ie 

2it p dp *(p) 
du 

p -2kpu + ic 
o 

(32) 

The integration over p can be expressed as 

r P dp »(p) m  I 
2 „  ^ . ^ 2ku 

p -2kup + ie 

r« 2 
dp »(p)   _1_ 

p-(2ku - ic)'  2ku 

r»    2 
P dp »(p) 

p - ic 
(33) 

llm 
€■»0 V^U^1 ' in p2 *(p)1p-o + P I  P *(P> dP " (3A) 

Using model (29) in the first RHS tern in (31) we find by contour 

integration 

1 r £i dS. 
cu (p-2ki 

I *****    "♦ fe«^)2 -pjy? 
Zku!     (P.2ku*,     ^„If        k3^ ((;u)2   |       t    )2 

"" k2i2 

When this result is used in (30) we obtain 

(35) 

(k). (2n)3,2 u-im 
1 1 + (2kiy 

(36) 

Next we compute R-(-kz) accordin? to (18). 

((k) . f JP A(^. a  f  di^A! 
!    J  p.(i+2k)+ic   j   p«2k- 

A(P) 

2k+ic 

dp A(p) 
2kp3+ic 

With model (30) for A(p) we write 

82(k) 
r» - g(aD )     flit 

p dp    A e 0 
f2ir r» ain bp. . 

*• dp3        bp3        2kp3 + ic 
o ^ 

(37) 

(38) 



_  o  « 

Plemelj's formula yields 

11« r .  8ln bp3    i r *. 81n bp3 _j      * 
J ap3  bp3   2kp3 + ie ' ■2k 

When this result is used in (38) we obtain after integration 

-iv (2n)
3 (L. b 

82(k) -  ^ L— (40) 

We complete the evaluation of (28)  by first combining the last  two terns. 

For backscatter (K ■ -k) we have,  calling this sun C-, 

C2 - 2e2G(F) «(F+k) «(p-k) G*^) Mp^p) (41) 

For model  (32)  the above integration reduces to 

3 2 ^ A
a C, - 21r3e2 0 

'2      •" ■        ab di> d9 *(pk+k)  «(pk-k) (42) 
o o 

For the present turbulent model the product spectrum is written 

♦ ♦ ft2 

0 0 0 

where 

r r. r: r 

6 ■ 2k£,  I • correlation length 

(A3) 
(l+k2£Vk|2)2       (l+k2£Vk|2)2 [1+(2k02J4u_(Uia)_2       2 cog26)2 

l+(2kt)Z 

If this is used in (42) we will obtain 

r    - 97,M y^T   r    « .6 —Lt-4  (2kt)2 -► (2kt)4 .... C9 ■ 2 ir c    /2w    Q. a t h \ 3—T/T (••) 
1 T (1 + (2k£)fcJJ (1 + 2(2kO     r^ 

If (44)»  (40)  and (36) are used in (25) we finally obtain 

C    ♦ C a (kb)  5-5— il+C    —^r C Ua) -= ,  3/2 ' 
*    T (1+8 ) 3 (1+8 )(1+28 )' 

0RC ■        : cT(kb)   73       , cT(kb)   T~"; 

ii + c2-V- &♦*< -^—Vi 8       1+8Z 8       1+8Z 
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r    ^ 2  '  constant of proportionality relating m.s.  fluctuation 

Co square of mean electron density. 

2b    ■ length of wake section 

—    ■ effective radius of wake, e folding distance in Gaussian radial 
/2 

fall-off. 
i 

o_c ■ Radar cross section 



REPOBT 2 

Vector Scattering from a Turbulent Plasma by • Modified Method of Iteration 

1. Introduction 

In Report 1 M Investigated the scalar scattering of electromagnetic 

waves from a turbulent plasma by a modification of the usual iteration pro- 

cedure used to derive the Integral equation for the coherent field in the 

so called method of smoothing.  In this report we generalize the modifica- 

tion to include vector scattering for the purpose of investigating polariza- 

tion effects. 

2. Analysis 

We start with the vector integral equations for the electric field 

E(r) - t (") + kV. o       pi «tjtCw^EC*^ nU^t) (1) 

_ _        •    -IV«r 
where E is the toial  field;  i,    ■ q e is the ir^ident field; ?. ,   is o pi 

♦> — — 
the plasma frequency based on a reference R>!S electron density: C(r,r.) 

dyadic Green's function for free space: n(r,t) electron density fluctuation 

normalized on nnuc. Integral Eq. (1) is transformed to an integral equation 
 I — 

for the scattering function I(K:) ;K ■ kr. 
2 2 

--   *  --   kfinl 
KO - q nOc-k) +  ^ 

(270 ^ 
dpfrP)-I(F) n(ie-p) (2) 

where 

I(p) - f dr eip*r n(r) E(r) (3) 

- fd-re1^ n(K) -  i»«*f ¥ n(7) (4) 

1 J. Jarem, "Studies in Electronapnetic Scatterini» from Turbulon»: Wakes". 
Drexel Univ. Project 349 Report, Sept. 1969, Contract DAH-CO-4-67C-0072, 
ARPA Order 1009. 



I. 

-^ - 

*&  - [ £.**%&    ~täL   ♦ J^ (5) 

^   
If the Intep.ral equation can be solved for I(ic) then the scattering 

amplitude F(<) Is given by 

2 2 k n 
F(<) - - -^ (1 - rr)-I(0 (7) 

and the radar and differential scattering .cross sections are respectively* 

o    (7)  - ATT o(7) - 4IT <F(7)«F*(7)> (8) 

k2«2. 
Tc solve (2) we consider c ■  ■» as an expansion parameter and we form 

(2it)-J   
the coupled Integral equations for the coherent (!(<))  and fluctuating 

(I. (ie))  scattering functions In the usual way to obtain: 

(9) 

(10) 

I0(ie) - e J    d?^(p).P l^p) n(7-p) 

^(7) - i n(7-k) + c J dF^(p).To(p) n(7-F) 

+ c r&ptfo'Ü^v)-? T^F)) n(7-p) 

We have used P T(7) ■ <I(7)> - T (7) , P T, (ic) - 0, and P n(7) ■ 0. If we let o x 

t{p) - f    dptip) 

then (9) and (10) can be written, suppressing arrows over vector arguments, 

T0(<) - c<G(p)-P ^(p) n(*-p) (11) 

17 P.M. Morse & H. Feshbach, Methods of Theoretical Physics, Part II, 
McGraw-Hill,  1953. 
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Ijdc) - q n(ic-k) + c (G(p)«ro(p) n(ic-p) + cfypHI-D-T^p) n(<-p)        (2) 

We use expression (12)  for T.  in Eq.  (11)  to evaluate P T,(p) n(ic-p).    Eq.  (11) 

becomes 

To(»r) - e G(p)'q P n(ie-p) n(p-k) 

+ e2^(p)-t(p1).To(p1) P nOc-p) n(p-p1) 

+ c2^(p)^(p1)-P nOc-p) (I-P) T^p^ n(p-P1) (13) 

The correlations can be expressed as 

P nOc-p) n(p-k) - A(ie-k) »(—^ - p) 

K+P1 
P n(ie-p) n(p-p1) ■ A(<-p1) »(-^ p) 

where A(p) and ♦(p) are the Fourier transforms of the turbulent Intensity 

and correlation functions respectively. For large scatterer A(p) approaches 

a delta function and using this property (13) becomes 

I0(ic) - e A(ic-k) t(p)-q  «(~ - p) 

+ c2 2(p)^(p1)«To(K) A(K-p1) «(«-p) 

+ c2 2(p).(C(p1)'P n(<-p) n(p-p1) ^<rl) (14) 

The symmetry of the dyadic operator G(p) enables us to write the second RHS 

term in (14) as 

e2 T0(K)-(5(P1) A(1c-p1)^(p) «Oc-p) 

and the equation for the coherent scattering function becomes 

T0(ic)-(«-c2^(p1)  Adc-p^-^(p)  *(P-K)) - Io(<).t(K) 

- e A(K-k) ^(p)'q «(—--p) 

+ e2 ?(p)-t(p1)'P f^Cfj) n(ic-p) n(p-P1) (15) 



where Che T(ic)   tensor defined in (15)  is not symmetric in general. 

Introduce the tensor 5(tc)  such that 

In terms of T(ic) we have 

T22T33'T32T23 T32T13"T12T33 T12T23'T22T13 

UK)  - Y        T31T23_T21T33 T11T33"T31T13 T21T13'T11T23  , (16) 

i I 
, T21T32"T22T31 T31T12"T11T32 T11T22"T21T12   | 

where T - det(T(tc)). 

Multiply each side of (15) fron the right by'SU) to obtain 

To(ic) - c A(<-k) sG(p)-q *(^ - p)'S(<) 

+ c2 G(p)-G(p1)'P T^P^ n(K-p) n(p-p1)'S(<) (17) 

Use this expression to eliminate I (p) in (12) 

T^K)  - q n(ic-k) + e2G(p)-n(>c-p) A(p-k) ^(p^-q $(2— -p1)^(p) 

+ E3G(p)-n(>c-p) S(p1).^(p2)-P ri(p2) n(p-P1) n(P1-P2)^(p) 

+ E (G(p) (I-P)-T1(p) n(K-p) (18) 

We again make use of the delta function like property of A(p-k) to 

simplify the second RHS term in (18). This term is approximately 

€2 n(ic-k) G(p)'A(p-k) ^(p^-q «(k-pj^k) 



' \ 

Combining this term with the first RHS term and letting 

Q(k) - q + e2 FCp)  A(p-k).q.G>(p1)«(p1-k).V(k) (19) 

we can write  (18)  as 

IlOO - Qn(K-k) + e G^p). (d-Dlj (p)n(K-p) 

(20) 

+ E3  G(p)«G (pi)'G (P2)•n(K-p)P^(p-Pl)^(Pl-P2)Il(P2)• s (p) 

We now use an iteration technique to solve  (2o). Let 

IlOO - Jo(<) + e Jl(<) + e2ta(*) + e3J3(K) + 0(e14) (21) 

Using this perturbation expansion in (20) and comparing terms of same order 

in c we obtain the followlnj» iterative series; 

Jo(<) - Qn(<-k) 

JlOO =» G*'(p)'(6-P)n(K-p)Jp(p) 

J2(<) - G (p)-(6-P)n(K-p)Ji(p) 

JaOO ■ ^(p)'('S-P)n(K-p)J2(p) + "G*"(p)'G>(pi)-"G'(P2)n(K-p)Pn(p-Pi)n(pi-P2) 

-»> . . +->•. , 
•Jovpa)* s (p) 

The scattering amplitude Fi(ic)  to order e3 is 

(kn   )2      «« 
FlOO JT1- (V'-rr).(Jo(K) + EJ^K) + tl%{ys.) + E3J3(K)) (23) 



In  the direcc  (q)  polarization direction  the scattering amplitude is given 

by 

tun     \2 

F(K)  -  q-F^K.)  - - ---I—  (q-q-rrMiCO  = t*Xl(«) (2^) 
v 

In the cross polarized direction (q^ » q x k) the scattering amplitude 

is written 

Fl(<) - qj.-M'O " - —j-1— C%-qff»)»Ii4jO =  C-II(K) (25) 

To form the cross section in the direct polarization direction we square 

and averse (24) and  use the followinc expressions for the second and 

fourth order moments;  (odd moments are assumed to vanish) 

Pn(pi)n(n2) = A(p1+P2)^( --"-) 

Pn*(pl)n(P2) = .\i?i-?2)A?","'2) 

(26) 
Pn{pi)n(p2)n(P3)r(pit) - Pn(n1)T1(P2)Pn(p3)n(pi4) 

+ Pn(pi)n(P3)Pri(P2)n(pit) 

+ Pn(Pi)n(P4)Pn(p2)n(P3) 

CT(<) - FF(ic)F*(<) - P I d.f^tc) |2 

- P I d-On(K-k) + ed-ir(p)-Q(n(K-p)n(p-k)-A(<-k)*(^~—p)) 

+ e2d.<'>(p)«-G>(p1)«Q(n(<-p)n(p-Pi)n(Pi-k)-n(K-p)A(p-k)$(^y- -p^) 



+ E3d« (p)« G KPi)' G vP2),Q(n(<-p)n(p-Pi)n(pi-p2)n(P2-k) 

- n('c-p)n(p-Pi)A(pl-k)<?(^--p2) (27) 

- Pn(K:-p)n(p-pi)n(pi-P2)n(p2-k) 
i 

+ Pn(<-p)n(p-pl)A(p1-k)n
p^i -P2)) I2 

After considerable reduction we finally obtain 

O(K) - Ao*(K-k)| d'Q |2 

+ c22«( -k)Real(d*-0*)(d.T(p).T(pi)-Q) 

X«(tc-p)[A2(p1-K) + A^i-p-k-K)] (28) 

X*(<-p)«'(p-k)(A2(q-p) + A2(o-k-k+p)] 

Equation (28) is the direct polarization differential cross section in the 

scattering direction K • kr. The result neglects terms of order c1* or higher. 

The corss polarized cross section is readily obtained by replacing d by c 

in (28). 



REPORT 3 

APPLICATION OF THE MODIFIED METHOD OF ITERATION 

FOR SCATTERING TO SRI EXPERIMENT 

I. Introduction  c- 

In Report 2 the modified method of smoothing was applied to calculate 

the direct and cross polarization cross sections for scattering from a 

turbulent plasma. In this report we specialize those results to compute 

the backscatter cross sections for both fslarlzatlons for the SRI flame 

scattering experiment at 9.4 GHz. The scattering geometry Is shown below: 

q K 
k 

k 
I    tt- 

T/R 

z 

f 

flame 

/    \ 

2b 

! 

/ 

Nozzle 

The transmitter-receiver is located about SO cm above the nozzle and the 

flame is illuminated broadside with direct polarization (q) along the z 

axis. The SRI jet has a non-homogeneous electron density distribution in 



— ^ - mm       ^       mm 

which the turbulent electron density fluctuations are characterized by a 

locally homogeneous turbulence of the form 

<«n(r1,t) Mr2.t)> - (n^r Kir^-) Ht^-r^ (1) 

where n* is thq rms value of electron density at the reference point In the 

flame (za0( P"0), A is the normalized turbulence Intensity function, and 

B(r.-r2) Is the normalized turbulence correlation function. The turbulence 

intensity la modeled by a Gaussian radial and axlally uniform distribution 

"TT 
_   • 

A(R) - •     Z(t) (2) 

where  R-pp + Zz» —=— 

a ^ 3 to S cm 

Z(z) - 1, -b<Z<b, b ^ 5 to 10 cm 

• 0  otherwise 

For the correlation function we assume the analytically simple Isotropie 

exponential function 

B('l - '2> " *    t (3) 

where the correlation length I ^ 1.75 to 2.5 cm.    Measurements Indicate 

that the radial turbulence scale Is about 1.75 cm and the longitudinal 

•cale is 2.5 cm.   The spectrum representing B(r) is 

n + OCDV 
♦(IC) • =—5-5   whers ♦   ■ 8nt (4) 
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We will also need the spectrum of the turbulence intensity distribution 

1/  x2 

'o p.b  * "o A(p) -  dR A(R)eip  - AÄe 
ö D    <-x      » AÄ " 'a 

b <5) 

2. Cross Sectlc. Functions for the SRI Model 

In this section we derive the explicit form of the functions necessary 

to compute the scattering cross sections for the SRI model. In (R2.17) we 

need the vector 

Q(k) - i + c2 G(p) A^-lO-i'G^) ♦(F1-k)«S(k) (6) 

where S(k) is defined in terms of the elements of tensor T(k). The 

latter is given by (R2.15) 

T(k) - 6 - e2 G^) A^-F^'GCF) «(p-k) (7) 

Introducing the tensors 

■ 

.g(k    - C(F)  ♦(P-k)  •      dp *(7-k)   (Pf : 5    + -V (8) 
^ pz-k^+ic      3k* 

and 

1(10 - C(F) A(?-k) (9) 

We can write (7) as 

^r(k) - f - c2 7(k)'g(k) (10) 

We proceed to the evaluation of g and f for models (4) and (S).    Let 

,  Tdp ♦(p-k) p p 
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In spherical coordinates with 

^- i p sine cos* + j P sinO sin* + z cose 

f2w  fit 2.   2. 
, f-   L   f^     r .  ./ -T ^ CQS'Q co 

a,, - k2  dp p4  d*  sine de Hif-CI) 2 i 
11    J0    ^o  Jo p -k -le 

Taking the polar axis along k we have for model (4) 

«♦0 f  4 f de sine co re  
lll-??lodPP     lo   (p2-k2.ic)(pV+T2. 2kp ccs9) 

•%  rJ  • f*  d9 ain ■ —TTT     ^P P  —5—5  
2kV i.    Jo(p -k -lc 

2   -2 
where T - I 

Letting u - cose we can write (15) as 

4 
,  . „ o   u2 du -Tl ^  
11  2k2l4 '.    J (p2-kZ-ie)(p--2kup 

I  2 2 
2kup+k-+T ) 

'Calling the integral over p, Ij, WP write 

r     r   Ai H      .    *L ._■ c2 
h - Mi J dp [ p^ny ♦ ^iH^iO +[p.(0+lß) j2  P-(a+18) 

where a - ku, 2 /T
2
 ♦ k2(l - u2) > o and 

(12) 

co3 t (13) 

p - a + iß, Pj " a " iß* 

(14) 

i^f^ r-T^ (15) 
)(P -2kp cose + k^+T^)^ 

(16) 

k4        .   "2pi     (JL__ + -fL-j   (18) 
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Integral (17) can be evaluated with the contour C » F + C show below: 

a + 10 

k - 1c 

k + ie 
K 

A-/  

p- - a - Iß 

i dp _E  - f dp ( ) + [ dp ( ) - 2iri(A1 + C2) (19) 

We have since the contribution over C.    vanishes 

I-   • 2irl(A1 + C2)  and 

all" 
——-. f u

2 du 2iH   i 
2k2l4 ij I 2(k-p1)

,s(k-p2)* 

2p; 

(P^XP^)2 xp2-k2' h**' J 
k2    P2 (20) 

Calling Che contribution from A., I.., we have 

o  I   u du  
,2 

liT « k rl   2 . 
-     o  /   u du  

11     2l4   ', (k-a-16)2(k-i a+iß) 
(21) 
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Carrying out this integration and letting I    - ki we obtain 

■*f ♦o11 F     3        ?      3     (l+2t')' l 
I,, -  7— (l+20£n(l+Ai;) - 2t*(l + f—) 
11    8 I6  L    0      0    0     l+4t2  J 

(22) 

With I.« the contribution over integral C» we write 

I,, - 
-i»V 2i  f1  2 .  3 u du pi • =:   —s—g fi  /—^— + —t—\ 

12   ,2,4    / 2 . 2W    ,2 ^2.2  p.-p,' (23) 

If we let x - p,  - a + iB - ku + i /lt+T2-k2u2 

then integral (23) is transformed to 

o 
12      4h5l4 

.  ,  2^. 2^ 2,2                .2 . 2^ 2 
xdx(x -t-k -t-T  ) (    k k -t-T      . 
,  2 .2W 2 .2 ,2, ^ 2 . 2 2.2    2} 

(x -k )(x -k -T ) x -k x -k -t 
-k+ix 

and integration by partial fractions yields 

(24) 

-iir2k«     r , l-i2l o 2  .     £o    J + i4£   (1+Z    + 
1+4 £ 2'J (25) 

Combining (22) and (25) we obtain 

all" 

•in2* k o 

8l6 
[(1+212)  ln(l+4l2) - 

3 (H-212)2 

UUl + f—) 
0 l+4t2 

3 1'l2l
0 3        *«     1 

o        i-^m o o     1+4,2J (26) 
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Next we calculau   a22 according to 

a22-k -2 
2w     ftf r   2 r^ f dp p        d« d9 sinO *(|p-k|) 

2        2 2 
«.wh P    «in 6 sin » 

o      'o 2 ,2 4 p -k -ic 

*o    r*    4 f dO sine 8ln2e 
~TJ     ^ p        —2—2 2 2 2 2 2 

(p -2kp cos6 + T^+k'')^ 

with u - cosö equation (27) becomes 

(27) 

•22" -^ dua-u2)f  2
d;p   , 2 2 2 

2kup+k^+T )^ 
(28) 

The above Integral can be broken up Into the following integrals: 

lit'« k rl 
o      du 

)2(k-p2)
2 

21T*"*     fl 
o 

k2^  .(  (p2-k2)(prp2)2 l^P   iW 
(29) 

Calling the middle tern I., we have 

fl in2k« 
l21 21 

du iii2k» 

(2k2+T2-2k2u)2 

-1 
2tA T2(T2+4k2) 

(30) 

with i    ■ kl this becomes 
o 

in2 k ♦ 

41 • 1-fU 
(31) 

Calling the last term in (29) !_ and letting x ■ p. 

2 2    ^ k*    .   k^+r -2iff2*        ,   rk-fit       .      3  __£   _1 dx X .     .•. * -r. . 
22 ■ kV  2kJ   (XWHX2.;2'-;2) xW x2.k2.T2) 

-k+iT 

(32) 
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Carrying out this Integration we finally obtain 

-12w2* .      2^.. 2 -  o_     1    T_+5k_ 
l22 .2,4        AT    "2^.2 h t T +4k 

2 2 ir k«        l+5t 
I22 § f- (33) 
" 2£J      1+4£Z 

o o i 

Using (31) and (33) In (29) there results 

lir2k*       ir2k» l+5i2 

CO o 

Combining terms In (26) a., simplified to 

-ln2k»     - , I (l+4l2+2l4)-l(l+5£2+5)l4)T 

a.. g^,    (l+2)l2)  ln(l-12l )  - 21   -* e__o    2 *J  (35) 
11 4l6     L 0 00 1 + 4i2 J 

o o 

When this Is used In (29) there results 

^o    r 2 1 
•22 ■ -jr- [ (1+2to) ■<*^*#> - 2io^o-i>] ^ 

o 

Next we evaluate a-, according to 

if*       5 f**    f _       2       2fl i„ - k"4      dp pM  d^        sine dO ♦(|F-k|)  P. C;S (37) 
" Jo Jo     Jo p -k-lc 

r2ir    rw 2       2, 

Comparing this Integral with (27) we observe after Integration over 9 that 

•33 ' 2 *11 (38) 

Since a..(l#J) Involve sin* or cos* Integrations over (0,2?) these com- 

ponents vanish, or, 

«^ ■ o, 1 ^ J (39) 

The next type of Integral to evaluate g In (6) Is 

m 

bii--6xi r^-T1^-1^2- r —dF 2—7^1     (4o> M    u j    p2.k
2-ir   j4   J (pfc-i>-i?UT2+ip-kr)2 
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Thls Integral is evaluated in Morse and Feshbach (pp. 1083) 

-•^k*o(l + i2lQ) 

***'   ia + u2)0    6ij 
0      o 

(Al) 

The last Integral in (8), call it c^, is 

6 

^ " 3k2 3k^ 
dp p    «( p ) (A2) 

■ij 

4 IT  *  5 ir2k * r x^ dx   , i! v. 6 
I   (x2

+T
2)2 il! lj (A3) 

Combining  (35),   (Al)   and  (A3) we obtain p^ 

*ii ■ «fi+ b!i+ ch 

511 

it2k« 

-f-fd^i2)  MMStJ  -^-f(Ä0[l+Al2+2^1+i[l+5a
2
+5^])] 

2 3 
o o__ 

3i3(i+Aa2) 
o o 

(AA) 

similarily  (36),   (Al)  and (A3) yield 

522 
w2k4 

* L* 
a22 + b22 

+ c 22 

-i(l+2^)  i  (1+12* ) on o 

H6 

(1-14 )     l+Ä2+i6i3 

o _o o 

21" 342(l-«-A42) 
o o 

(45) 
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Flnally  (38).   (41) and (43) yield 

33  , JL r (1+'.*')  *n(l+2* ) o o 

1 + I2 + i6i3 

 o o 

uhi + 4^) 
O 0 

21 -i 
 ^- (An[1+4^+2^] + i[ 1+5)^+5^]) 

1+H2      0 0      o o      o   J 

(46) 

Next we evaluate f..(k)  according to  (9). 

13 > L   p -k^-ie 3^ J 
(47) 

For model  (5)   the last Integral in (47)  is 

fdp A(i"-k) - -4 J   p    dp 
J 3k2Jn

P      PJ 

flu        f" 
dp3 Aoe 

2 2 
Po a 
-*|  sin bp- 

bp, 

(2ir)3 6 
Ü 

3k4 
(48) 

The first integral in (47) is evaluated approximately treating A(p-k) as 

a quasi delta function. 

-2 ' dp A(F-k) [p^ k'^6^] 

2 ,2 , 
p -k -ic 

(kikj" dij) 

p-   -- 
dP A(p-k) 

2^' (F-k)-ie 
(49) 
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For model   (5)  the last  integral in  (49)  is 

2k-p-te 

dp1dp2dp3Aüe 3 VH1 H2. sin bpa 

Zkpicosa +2kp3sina-ie  bp3 
(50) 

Inte^ratiiij«, over P3 and recognizing that the principal value contribution 

vanishes us obtain 

dp. A ("^)  m     IwAp 

2lc.p-ie      2k sina dp2 dPle  8   (Pl+P2) -— ~  
bpicotot 

(51) 

with dp2e 1      2 2/27 
(52) 

equation   (31)   reduces  to,  x  =  bp  cotn   ,  q ■     tana 
1 ^fb 

it/in  Au   2tanci     f .     si^ix    -q2x2 

ka sini        b        J 
(53) 

But  it  can be  siiown that 

.     slnx    -q2x2 

dx e 
x 

71 e/    1\ (54) 

Using  this  result   in  (53)   and   recalling that AQ 

m i^ff(2ff)3kb ert  ^a tana; 

4k^sina /y , (.ax.) 
a tana 

TTa2b 

(55) 
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We note that ~-(—^ ^H^ ~- and erf (Z)^I=> 1. 

Using (48),   (49),  and   (55)  in (47) we obtain 

k2      3 
(56) 

where we wrote 

f(a) - 

f, /2 b > 
i*^ kb      erua tana; 

4 sina (-4-L-) 
a tana 

(57) 

Expanding  (56) we write 

7(t) - &£ 
k2 

V + sin2af(a) 

- sinacosaf(a) 

5+ f(a) 

- sinacosaf(a) 

0 

•= + co32af (a) 

(58) 

In terms of   g   and   f   the tensor  (7) becomes 

TOO 

1 - e2f 11811 

1 - E
2f 22g22 

f138ll 

f13R33 

(59) 

1 - e2f 33g33 
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T-det(T)-TuT22T33-T13T22T31 

(60) 

-  (l-e2f99g„) (l-e2f11g11)(l-c2fllR^^)  - SnR^f, '22^22' irir    Riih334i3 

The clcncnts of S (Report 2, eq. (16)) are 

1 
S   T 

(l-e2f22R22)(l-e
2f33R33) 0      -f13g33(l-€ ^22*22^ 

o     1*~t*ii*ilH
x'********4yil**     « 

■f13*ll(1-C:,f33S22) (l-€2f22822)(l-c
2f11811) 

(61) 

For the S?l  experinont the  [lane  is illuninatcd broadsides so that a " 90* 

and f|«(a " lJ) "  Ü. Also, from (57) 

Uo) l/ti ao 

4/2 

so that 

1 
3 

0 0 

(2ir)3 

k2 
0 1  .  iAao 

3        4/2" 
0 

0 0 1 + l/ifao 3        4/I   J 

(62) 
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f^ - Mp- (ii + jj)(± + ^) ♦ « \) 

The elements of S.. simplify to 

(62) 

5  ■ 

I   I - • in*u 

1 -c f22^22 

1 - tf 33833 

11 

1-c f-.g 

JJ. zz 

nni l-c f,,g 22B22 133833 

(63) 

When (62) and (63) are ujsed in (6) we obtain for Q the following result 

for q ■ z: 
..■,-..r., ■•..,..■.        - - • » 

Q(k)  - q + e2(li fu + jj   f22 + M  fjj)«^!! g11 + JJ  g22 + M 833)^ 

1 " e f33g33 

Z Q (64) 

3. Direct Polarization Backscatter Cross Section 

In this section we use the general result of Report 2 (Eq. 27) to 

calculate the backscatter differential cross section for the direct 

polarization case. We recall that q ■ z (direct polarization direction), 

a-0 (normal illumination), k ■ i (direction of incident illumination), 
A 

K - kr ■ -k (backscattering). For backscattering and direct polarization 

we have 
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d • 

k2n2 

• 

Q ■ Z ' " l.e-2 
1 

f33R33 

d Ö .           Pl 
An QV 

d G (p)'G (Pi) •Q "   - p2-k2+iE pf-k2+ic 

3k24ir      « 

d ij 3 (2: «F) 2_ ♦ p.2ri»k_2J. 

p2-k2+ie 

When these results  arc used  in  (23)   the direct  ool.nrizatlon hackscatcer cross 

section becomes 

2c2 

0(-k) « L1      {1 + -AS— Real 
(4Tt)2 gkV: 

dn hi(p);('n>k) 

p2-k2+lc 

da_A2_(5+k) 

q2-k2+iE 

i mn.-Tv  .   ■•■■-•.    * ■» --— ^ 

2E2 

+ -^— Real 
gk^Ao 

dp hjjBliijS 
p2-k2+l€ 

dq rA
2(q'-p-2k) 

q2-k2+i€ 
(65) 

2e2      -, 

9k^AQ 

'd^h3(p)<'(p»k)'?(p-k) 

p2-k2+tc q2-k2-ic 
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Call the second, third and fourth terms in the brackets of (65) oi, 02, and 

03, respectively, and where the polarization dependent functions are defined 

by 

hi(p) - [3(Z.V)p+Z(p2-Ak?)]-[3(Z.k)k+Z(k2-4k2)] 

3k2(4k2-p2-3(Z.;)2) 

h2(p) - [3(Z.p)p+Z(p2-4k2)]'[3 Z-(i+2k)(i+2k)+Z(l>+2k)2-Z4k2] 

• (p2-41 >)(p2+4k-p)+3(Z.p)2(5p2+10k.p-4k2) 

(66) 

(67) 

h3(p) - (3(Z.p)2+p2-4k2)2 (63) 

Next we proceed to the evaluation of r,^. 

2£Z      n     , Ol ■  Real 
«k^Ao 

dp 3k2(-p2-3(Z;pH^:2) 

p2-k2+ic 

dn A' (n) 

(q-k)2-k2+ie 
(69) 

We evaluate the integral over q   (call it o^)  approximately. 

012 
dq A2(q)    „ 

-2k.q+it 

a2
0

2 

' Ml«    4    ql 
-2kq1+ie 

r         a2«'! 
dqae     4 

<                                     1 

dqa sin bqs 

q2-2k.q+ie 
i 

bqa 

(70) 

in  /Krt ir   .    2u\2 tt^yf 
IkT-b (lTab) T- AQ 
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Thc  Integral over p(öii)   tM evaluated next.     Take I as  the polar axis with 

k-p ■  pcos\  Z-p *  psiiräsin^),  u ■ cos9. 

on ■ p2-k2+ie 

ft 

il-isinO 
2it 

d<. 3U2   (-3p2sin26sin2^-p2+4k2) 

oil 2 ' 
du up p fr+ ^(p^vzkuV+kW" 

'   ^1 J-OJ 

(71) 

(72) 

t»fl3k2 .1 

du ;   . ,   (}k2(litg)«6k2> 
£-xitK [I ♦ 2£Zk2(l+u>] + P dpi ? 

p-k J 

Using results   (70)   and   (72)   in   (69) ve obtain, with *o "8TT?   , AQ ■ ira2b, 
*   ii 

k 
ag  - ka,   ij ■  kt,  bo  ■ kb,  c  ■   ' " rl   : 

(2Tr)3 

Oj  ■ - 5 
Pi     8 

— aolc 
' 1      du   (u2+l) _ 

[1 + 2^|Tl+u)]2, - ^pi /- aoi-falC-o) 

-I 

(73) 

The last  integral  is evaluated to yield 

mi(2.o) - 

J 

1  +   (x-1)2    . 4&S  + Mg   +   1       Hill  ..   /u/fl2x 
(74) 
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Next we evaluate 02 approximately. 

02 
2e' 

9k,*Ao 
Real 

dp h2(pK(p-HO 

p2-k2+ie 

dg A2(q) 

(q+P+2k)2-k2+ie 
(75) 

Evaluate the integral over q(022)  first.      He^lrctin^ small q terms in the 

denominator we have approximately 

022 
f dq A2(q)  
J  4k'q-fp2+4k.pf3k2+ic 

(76) 

With 4k«q ■ 4kqi and po ■   'T&'~—**" we write 

022 ä 
4k 

t2  .2 
dq.ie" I"  qi 

q1+p0+i£ 

2 2 f 

dq2e   4 | 003 
J 

w'a »^TAO 

2k 
J -iTre   4 + P 

sinhq 3 

.£ 2 
dqie  4 q 

qi+po 
! 

(76) 

But it can be shown that the principal value integral is expressible in 

terms of the Dawson Integral 

J -  qi+Po J0 
dxeX - 2/?D(^) (77) 

2k 
-(^): 

c22 - _^i™:.H ^ _i7Te ^ 2 ' + 2/7tD(^) <apj), 
2 3 (78) 
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Uhen this result is used into (75) and we introduce spherical coordinates 

we have after ) integrations 

9kuAo      ' j        p-k+le  ( 

.1 
du[2TT(p>4kpu)(p2-Ak2)+iii2(l-u?)(15p2+30'.pu-12k2)] 

-I 

. ♦fl.. 
U+l2(p2+2kpu+k2)]2 -2k"-   ri7Te      2      ♦ 2^D(^) \ 

Carrying, out  the p integration and  letting x ■ p£,  ^Q ■ kil,  HQ ■ ka, 

we obtain. 

n2  1 —J      m2i(ao,'o) + —* tn??(ac,?o)V 
9ku C        * 2W5 J 

(P'j) 

where 

%iC*itM) 
i 

.    10u3+u2-2u+l , du — eXp   (- 
J.j tl-»-2^2(l+u)l2 4 

ag(H-u)2, 
(81) 

m22(a0.p-o)  ■   I     du   P 
J4 

dx x .l,ao[x2+A!.oux+3Ä.S]v 

X-IQ Bit 

(82) 

x2(l-u2)(13x?+30^üxu-I2.'g) +2(x2-4?;;)(x244toxu) 

(l+x2+2t,oxu+t§)2 
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For the SRI experiment aj ■ 7.8 and IQ  ■ 4.4. Numerical integration yields 

«21(7.8,4.4) - -Ü.12, n22(7.8,4.4) - 203, and mi(4.4) - 0.0475. 

The fourth term in (65), 03, is now evaluated. Treating A(p-q) as a 

quasi delta function and writing 

(p2-k2+ie)(q2-k2-ie)  ^-p)• (^+n)-ic ( p2-k?+ic  n2-k?-ir. _y 

we obtain approxiinacely 

.    . 2c2v     (2k 
03 . .  

9^   Aj 

f -    2 .- - 

dp Mi) •' (W ("-'■"> (—; — > -.--Vv"1"-   <^) 
o2-k2-He      p^-l^-ic   i2n.(n-T5)-ic 

Carryln,'; out  the c •_   LntcgtttiOD tttd  reco^nisin«  that liie nrinc-'pnl  vnlut-' 

integral vanishes, A(q)  ■ A(-n), v;e  find  the q  integration reduces   to 

dq A<!(p-q)       m it 

2?'(q-p)-ie 2p3    , 
dqidq2A2(q1.q2,  - fl\\fint} 

P3 
(84) 

But 

p2-k2+ie      p2-k2-ic 
- IS.   ^(P-k)+5(p+k)] (85) 

and model  (5)  for A(p) in (84) yie^s 

dqA2(q)   m  iTT2/^A§ 

2p'q-ie        ab pÄ 

(86) 
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Vfhen this result is used into (75) and we introduce spherical coordinates 

we have after ) integrations 

a2 .Ist 
9k\\ 

real 
v  2 

dp -iJ-~ 

J   P-^+ie J 

.1 
du[2TT(p:+Akpu)(p2-Ak2)+T^2(l-u2)(15p2+30,.pu-12k2)] 

-1 

[i+V2Tp'2t-2k7u^r)T2    &     riw   ^   + 2^ü(-a^)^ 

Carrying, out  the p integration and letting, x ■ pi,   IQ " ^t  »0 " ^at 

we obtain. 

It2  ^n&;J.Va3kl, ,       .   N ^ tSa^i /       i  \? 
-"-  ) —       m:i(ao,f-)+ —* n22Uo»&0'> 
Ik*  C " 2ki5 J 

(80) 

where 

^iCao.^ü) " 
,     lüu3+u2-2u+l             .    ag(H-u)2, du exp  ( ** —) 

[H-2e2(l+u)]2 4 
(81) 

m22(a0t;o)   "   I     du   P ** d*. * p/gfl bfiflPJHStia)) 
x-J-c 81) 

(82) 

x2(l-u2)(13x--h3'Koxu-L:.')4-2(x;i-4?.g)(x2-<-4toxu) 

(l+x2+2f,0xu+^)2 
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For the SRI experiment ao ■ 7.8 and IQ  ■ 4.4. Numerical integration yields 

m2i(7.8,4.4) » -Ü.12, n22(7.S,4.4) - 203, and m1(4.4) « 0.0475. 

The fourth term in (65), 03, is now evaluated. Treating A(p-q) as a 

quasi delta function and writing 

(p2-k2+ie)(q2-k2-iE)  (q-p p)' (q+p)~ic ( p2-!^ ̂ie   q2-k?-iG 

we obtain approximately 

03 
o  -1 f 

2c2i     (2k) 

9^ Ao 
dp hj(p): (n+k) ;(n-k)( -1-.- l ) 

p2-k2+ie      p2-U2-ie 2p. (0-T))-iE 
(33) 

Carrying out  the 03   Integration and  recognizing that tiie nrincipal value 

integral vanishes, A(q)  = A(-n), v/e  find  the q integration reduces  to 

dq Az(p-q) ijr 

2p'(q-p)-ic        2p3    i 

dqidq2A2(q1,q2.   - SlSllSlSl) 

P3 
(8-0 

But 

p2-k2+ic      p2-k2-ie 
42-   [6(p-k)+6(p+k)] (85) 

and model   (5)  for A(p) in  (84)  yields 

dqA2('q')   m  lTr2/ffA§ 

2p.q-ie        ab p 
(86) 
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Wh«n (35) and (80) are used t *,   (S3) we obtain with model (5) for ^(p) and 

^Pi  2ll     ,2 Ao  -  Tia2b,   ^  =■  8Tie3,   £  = ^   ao  . ka>   i.  3 k?., ß   -   (.£M_) 
(27T)3 1+2J12 

(87) 

03 
8 vom^ 

(88) 

where 

J(0) 
Tr/2 

dO  sin'40 

i, 

TT/2 

d^(l-;;
Jsin2öcos2^) -2 

^0 

(89) 

Making use of the substitution x = l-68ln*9cos $ we can carry out the 

double  Integration   in  terms  of  complete elliptic  integrals: 

j(s)  . .__. ^     ((2ß2-38+A)E(ß) +  (?-4)(l-3)K(G)j 
12;s:(l-. ) 

(90) 

Recognixlns that 

E(S) - 2 (1 -r- 3 <ITT)Z0* - • * •) 35 2 6*0    2 

«9, . '  (1 + (l)23 + (^)2a2 + ...)*    f 

litn _/0v       ,     lim ,,,..       .     , 16.1'2 

|*1 E(ß) ' 1' |*1 K(3) ' ln (r5") 
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we obtain the following limiting values; 

T/_v       3ir2 . J(ß) TT 
J(0) " 12    ai'a    3-1 = 4-(T-'3) 

A curve of J(ß) is shown in Fig. 1. We note that 

11m 16J(6)(H-W)2 m  4(l-f4Zo) 

^   1(1*2$)*   " " "(1+2^2)2 

Next ve  use results (73), (^0) and   (8?) in equation (65) for the direct 

polarization cross section. With the definitions in (37) and v.Titing the 

first Born radar cross section 

a    . 1 1 a  LI  (9i) 
(4TT)

2 2k2(l+4Jl2)2 

We obtain 

a(-k) - aB|QRl + ^.   4 ao^-^H- ^ + ~-f^- + Wm^)2 j        (92) 
Pl    ö 6        97r3/2Z0

5 ^(l+2£g)'t 

According to  (64),   (62) and  (46) 

" " 1 - ^f33833   " I - .T^TiTlSSM  AWoT (93) 
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where 

or separatinf» inr.o real and imaginary comjionents 

if.,  0.573(1+2??)   . .,,^2^ + -..    A-l  +    logi3(l+4..0)^ 

When definitions   (87)  are used in  (93) we obtain 

1 1     -> 4/2 

For ao • 7.83, bo - 15.7,  IQ - 4.4,  ^08^«) " 1-05 + i 0-282, 8^«   , 0 

(94) 

(95) 

(96) 

iQl2 - 1 *  (97) 
|l - ^p  (- 0.34 + i 2.66) |2      (1 + 0.34n1*p )2 + 7.in8p 
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ß. WAS)* 15 7  (4.4^ XIQ^ . 2>1Ax 10-3 ^ m2 
'B    ?!  "~  2'(1.96)2 (1 + 78.5)2" Pl 

1+2A; 
IM 
39.8 

0.95, J(0.95) = 15.5 

(98) 

Applying the numerical values to (92) we obtain for the direct 

polarization radar cross section 

2.14 x 10-3^ 

(RC) (1+0 
___ IX  il+i:uD 0.222(7. 
.34^Pi)

2 + 7.1^pi l_       Pl 
85) (A.4)3(-0.0475 - ~ 0.12 

. _  2p_3    . 16(15.5) (79.5)2 i 

(RC) 
2.14 x lO"3^ (1 + 19.6.^0 ) 

M   2 —* m „pi. (99) 

(l+G.3Ai:L>
D )2+7.ir:3, 

4. Cross polarization backscatter cross section 

Next we specialise the general cross section formula (Report 2, eq. 28) 

to determine the cross polarization backscatter cross section. Setting 

k2n2 

K - -k, letting d > c L j and recalling that Q ■ ZQ we observe 
4ir 
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that  the  first  two terms  in  (P2.23) vanish and we have for the cross 

polarization  cross section   (o.) 

Ox(-k)  -   2c2(c.G>(p).Q)(c-VMq)M^)>Hp+k)^(p-k)A2(q-p) 

(100) 
n 

Pi 2cVA^-  iQl2 
dp hjif)■(P-ft *(P+^) 

-i     -   -^ -\ 
da Az(q-p) 

(p2-k2+l«nq2-k2-l8) 

_i     *   -V 
where h^(p)  a   (j,p)(z,p) 

For nodol   (i?)   the   integral  tcm;>  in  (100)  rfduce  to 

dp( ) dq(   ) 
> r-.2      I VirAJ 
'ab'"" dO 

2^ 

d; hJ^fk)*(pk-K)$(fik4C) (101) 

o       ■ 0 

With p expressed in spherical coordinates 

o _  J -i 
h?(pk) ■ k sin-Ocos'Osin-f) (102 

When turbulence raodel  (4)  and  (102)  are used in (101) and the result is 

used in  (100)  there results 

o^-k) - o   |Q1
2
 n% -i a0a3 a+4io)i 

(i+agy1 (103) 
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where 

J.(e) 

n/2 

d9 sin20cos?6 

Tr/2 

 tlMli  
(1-ß sin26cos2^)2 

121^   [^-^ECR)  - 2(l-f)K(3)j 

Limiting values of Jx(3)  are 

(104) 

Jx#) -frand Ja(l) -rf 12 

Jj^Cö) is sho'.vTi in Fij^. 1 for 0.7 < fi < 1. For the nunerical values used 

in the previous section the cross polarized radar cross section is, wich 

J   (0.95) = Ü.235, 

Knc) 

•KRC) 

2.U >«   lO'3^, . r7- -.2 
 li &        -^ (7 .35) (4.4) 3 (0. 233)^-■'^- 
(1+0.34r.1*-  )2+7.in8

n        Hl     ^T (39.3)u 

0.935 x  10"3ii3p 

(l+0.34i!u
p  )2 + 7.in8

p 

m' 

(105) 

Plots of equations (99) and (105) are shown in Fig. 2. These results 

compare favorably with SRI experimental cross sections when the measure- 

ment's uncertainty is approximately 3 db. 
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PREFACE 

In recent years, an increasing amount of interest 

has been focused upon the problem of wave propagation and 

scattering in random media, both from the viewpoint of 

theory and measurement.  The underlying reasons for this 

interest are the nunerous instances of wa-ve propagation 

through turbulent regions such: as: light or short wave 

communication in the atmosphere, under water scattering, and 

scattering from reentry objects. 

To investigate these problems analytically, one has to 

utilize a mathematical model. Unfortunately, the model 

which presents the best physical description is mathematically 

intractable. This is due to the complicated dependence 

of the medium upon its physical parameters, ..i.e. temperature, 

pressure, humidity, electron density, velocity, etc.. 

In Chapter I, the choice of a simpler model which may 

describe the prominent characteristics of the wave medium 

interaction is adopted. "In Section B., the medium is 

mathematically defined;  the mean, rms, and correlation 



functions are presented as adequate measures of the 

randomness in the medium.  In Section C., the problem 

explored in this thesis is mathematically formulated for a 

layer of infinite extent in the yz direction and of thickness 

x^in the x direction. This layer is illuminated by a plane 

wave propagating normally to the fluctuations in the index 

of refraction.  This layer is also characterized by a 

collision frequency, a homogeneous mean and a strong 

small-scale fluctuation in the electron density. The 

resulting random differential equation of the field is 

formalized and its difficulties are explained. Since a 

straight Neumann series solution fails under the present 

circumstances, selective summation techniques are used. 

Chapter II. develops these techniques (diagram and 

smoothing) with the appropriate approximation to account 

for large fluctuations and multiple scattering. Though 

both techniques lead to the same integro-differential 

equation, the derivations are completely different; 

consequently, these derivations shed light on different 

aspects of the problem and on the interpretation of the 

results. 

The preceding techniques have been used in the study 

of wave propagation in infinite media. In 1962, Bourret 

(5), (6), derived the first order Dyson equation (15) 

through the hypothesis of local independence; he applied 



the resulting equation to wave propagation in an infinite 

homogeneous random medium.  In a series of papers, Keller re- 

derived {%&),   (2,8) , the same results and avoided the above 

assumption.  In 1953 Tatarski and Gercenstein Hi) derived 

Bourret's results using a variant of the smoothing method, 

Äe resulting integro-differential equation was applied 

to scalar wave propagation in an infinite homogeneous medium 

with strong small-scale fluctuations.  In 1964 Tatarski (4$) 

studied the electromagnetic wave propagation in an infinite 

medium with strong dielectric- constant fluctuation. 

Macrakis (32.) . (1965) gave a more straightforward derivation 

of some of Tatarski's results.  Brown (8) (1967) applied 

Tatarski's formulation to the propagation problem;  he 

interpreted the results in terms of coherent and incoherent 

scattering, and the theory of dielectric.  Frisch (16) and 

later Bassinini (t ) (1967) obtained the known solution of 

the classical random oscillator through the smoothing 

method. 

The application of the Dyson or smoothing formulations 

to a bounded or inhomogeneous random medium has received 

little attention. Bassinini et al. ( I ) (1967) used the 

infinite medium effective wave number parameter given by 

Tatarski to study scattering from bounded media. Recent 

papers (Rosenbaum, 1969;  Kupiec et al., 1969;  Collin, 1970) 



studied      some aspects of interface effect on coherent 

wave motion.     Rosenbaum  {Art)   obtained approximately the 

coherent wave scattered by a random half space whose 

mean dialectric constant  is different from the uniform 

nonrandom medium in the conjugate half space.     For a 

homogeneous background throughout,  Kupiec et al.   (30) 

solved the scalar Dyson equation for a normally incident wave 

on a random medium occupying a half space and slab geometries. 

Collin considered an obliquely  incident wave on a  random 

half space  superimposed on a  uniform medium throughout. 

It  is  difficult  to assess  the  results  obtained since  the 

randomness was  assumed  to be homogeneous near  the boundary 

A complete  investigation of   the bounded  random or 

inhomogeneous   random problems   is  difficult.     In  this  thesis 

some aspects  of these problems  are considered and applied 

to a randomly fluctuating plasma  layer whose uniform 

background  is generf^lly different from the outside medium. 

In Chapter  III,   the conjecture made by Bassinin1". et al. 

about  the effective wave number  is tested through ap- 

plication to the  layer problem.     The reflected coherent 

and incoherent powers are derived.    The comparison with 

the successive approximation method is also made.     In 

Chapter  IV,   the exact dependence of the scatter power on 

.large electron density fluctuations  is investigated in the 



limit of small-scale fluctuations.    A locally homogeneous 

randomness, which appropriately describes  the medium 

near the boundary,     is used.    Typical cases are studied for 

a wide range of plasma parameters.     In Chapter V,   a new 

formulation of the scattering problem is presented for a 

lÄiiform      :   background throughout with a  locally homo- 

geneous randomness,  whose mean characteristics change 

smoothly.    This property is advantageous  in the Fourier 

transform space,   and a  singular   integral equation of 

standard form results.     This   description appears  to be 

closer  to reality since  it avoids   the presence of a 

sharp boundary between  the stochastic and nonstochastic 

medium. 



I.     FORMULATION OF THE  PROBLEM .,-- 

A. Introduction 

In this chapter, the medium and its interaction with 

an incident wave is mathematically described.  This 

description leads to linear differential equations whose 

coefficients are dependent upon the macroscopic inhomogenei- 

ties of the medium. 

B. Description of  the  Medium 

Two types  of  inhomogeneities  exist,   deterministic and 

random.     It is   deterministic if an identical measurement 

is performed many  times  and  the  results  obtained are always 

alike.     If,  however,   all conditions  under  the  control of 

the experimenter  remained the same,   the results  continually 

differ  from each other,   the medium is said  to be random. 

For a "temperate"  and  isotropic plasma with electron 

density fluctuations,   the complex dielectric constant is(l9) 

where     -ft-      ,     Jlt     are respectively the normalized plasma 

and collision frequencies;     the quantity   *|    is  the electron 



density distribution normalized on the peak or mean value. 

Here,   the mean value of    M      is unity and the fluctuation« 

is random. 

In the applications of interest to the present in- 

vestigation,   the  fluctuations  in electron density are 

aösum^  to be related to turbulent mixing   (48) ,   (50) . 

The mean and second moments of the  fluctuations usually 

suffice for most scattering calculations.    The mean in- 

dicates a steady value of the  electron density over  the 

period of observation.     The second moment measures   the 

correlation between electron density fluctuations  at 

neighboring points.     Ensemble averaging over a set of 

realizations   is  assumed throughout.- 

For homogeneous  turbulence  the second moments are given 

by 

< \W yO > = a£ U, J B (,,- «J (2) 

For locally homogeneous turbulence,  we have 

3t 
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The exponential and Gaussian correlative functions for 

Isotropie turbulence, 

-I*.-*.!1 (5) 
B(x,-«.) «1*7 

ate  useful  in many applications. 

C.     Derivation  of  the Wave Equation 

Consider  a  plane wave of  the  form        %c 

normally incident on a plasma  layer   (fig.   1).    The slab 

is  characterized by a  complex dielectric constant which 

is  a   function of space.     The medium  is  assumed to be 

linear and  isotropic.     The electron density possesses a 

homogeneous mean and a strong small-scale1 fluctuation. 

Maxwell's  equations   for all space can be written as 

y,H * jw€#KU)E (7) 



♦ e-Jkx 

Fig.  1        Random, fluctuations of electron density. 
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where K(x) is the "effective dielectric constant", equal 

to one outside the scatterer and varying with x inside the 

scatterer. 

The wave equation for E is found by vector manipulation 

of (6) and (7).  Let  tl = w>,'.   , then, 

In cases where the electric field vector is normal to the 

variation in the refractive index the cross-coupling term 

in (8) vanishes ;  let ^ be a component of the electric 

field vector, then 

U* + k*KC«)U -o (9) 

Complete mathematical solution of this differential 

equation with random coefficients is still lacking. Here, 

the study is confined to the investigation of the statistical 

properties of the solution,   $(*}      ,  of the random equation. 

To facilitate the analysis, equation (9)  may be put in 

operational form: 
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L ^ - o 

where 
* 

L * L. * L. 

Ut  . Ii' W^(«(r) 

V* s •«'K. = k» Ci- Nl 

(10) 

(11) 

together with the continuity conditions at the boundaries, 

and radiation conditions at x s i «» 

Equation 10 is the reduced wave equation which 

occurs in classical and quantum fields (£6), (17). 

The solution of the" reduced wave equation must be 

found approximately because calculation of L involves a 

nonuniform component in L# and the random component L, . 
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Fortunately, physical interest is focused not on the 

functional dependence of ^(t,) • but on the statistical 

moments of the wave solution. The moments are in fact the 

observaole features of the physical phenomena; it will be 

our purpose to investigate the coherent field <^f«)> and 

the fluctuating field, &$ . Specifically, this thesis is 

concerned with the dependence of the scattered field on the 

large fluctuations of the refractive index. 

The procedure employed consists in the calculation of 

the inverse operator, IT1. This formulation will be the 

subject of the next chapter, and reduces to finding the 

effective characteristics of the density fluctuations, and 

•ubsequent determination of the coherent and incoherent 

scattered power. 
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II.     THE METHODS   OF  PARTIAL SUMMATION 

A. Introduction 

The validity of the widely used successive approximation 

method is restricted to bounded ^nedia and small strength " 

random' perturbations (Appendix I) . The problem under 

investigation does not satisfy these conditions; and in 

addition the summation of all terms up to second or third 

order does not work because the series c onverges too 

slowly to be practical.  In these cases, two approximation 

methods (smoothing and diagram methods) are available; 

they will be described in this chapter. The diagram 

method (IJ ) involves a summation over a selected class of 

repeated diagrams. The method of smoothing (i9) involves 

the decoupling of the mean and fluctuating field through 

the solution of the latter field by formal iteration;  an 

•guation for the mean field is then obtained. Though 

both methods yield the same results (1$) when applied 

to linear random equations« their methods of derivation shed 

light on different aspects of the problem.  In Section Bj 

the development leading to the Dyson equation (l5 ) is 

carried out. In Section c, the smoothing equation is 

derived 

B. The Diagram Method 

Let the field ^CtO in a random medium with index of 

refraction, !•,(«,(*),  be related to its source J through 
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4>(x) =/Gu,xV J(*') d*' (l) 

V 

The Green's function, 6c«,x'; ,  satisfies the random 

equation in integral form s 

GU,X'; = GW(*(K'; - / fr*Wj L. t^-) öcx.*') d«,    (2) 

when  G(x,«') is the free space Green's function (S*?), 

The solution of (5 ) by iteration gives 

CU.OSGCSJO-/G'VV'M
0ß^i,«•;«*• ♦... *    (4) 

An obvious physical interpretation of the n ^ term is: 

a wave propagates unhindered from »' to 1, where it is 

«cattered by the random inhomogeneity, the resultant 

propagates unhindered from 1 to 2, is scattered at t? <»tc. 

If the index of refraction is normally distributed, 

the average of the products of the random functions in 

« 
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the nth term is   (8 ) 

<t.,(0L#U}-. L|C>%)> s f <L,COL^i)>... *iitimnlth*int**) )        (5) 

or 

C. noJd (7) 

and 

^O.a) s<ul(oL,(i) > 
(8) 

^<»ii),the correlation of two points,   tends to zero 

for separations large compared to the correlation length. 

The sum in  ( 5 )   is constructed from     >,Jx(ji)lVVt        possible 

permutation of the indices   (8 ) •    Thi s summation is 

ovcr-.äH the combinations of the points 1,  2,   ...n into 

groups of two 

Cci.i),... , r^.i.vO 

To facilitate the writing of ^h^'..functions 



<GC«4*')>  and   <öC»y>ö (»«,*')> 

equivalent diagrams of each term in the mathematical series 

£s drawn. A dictionary of the fundamental symbols 

may be constructed as follows: We represent each G,, 

by a horizontal line segment; if we have two G* 

we join the two lines and put a dot at the junction. The 

dot indicates the coefficient of the term times the 

Integration over the random inhomogeneity; A two point 

correlation is identified by a dashed line connecting the 

two random inhomogeneities. The multiplication of two 

diagrams is indicated by placing one on top of the other. 

The Neumann series of the Green's function &«,*') 

may be diagrammed as follows: 

(9) 

♦1 ■ 1^ 1—? t s—■ . •—•—•• 

Its product with itself will be 



* 
t 

X7 

<;,&*.    *       ♦     ♦    tl0)- 

Since only L, indicates randomness, the means of(9)and (10) 

are: 

-i «Jfet + T i——4 4- Vi    - 

(ID 
•• • •   «.»••• 

•        .•• 
» .   I   rf 4 & » i + ^ » » k- 

(12). 

where 

<6C*I»') >  -   « 

<G » G" >   s 

It is proven (Appendix A.) that the Green's function series 

is convergent for a sufficiently small perturbation; 

the terms in the expansion are then successively smaller 
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with increasing order,  in this case we can estimate the 

accuracy of the approximation from the highest order 

term. For large perturbations, the above process fails. 

In this case, the terms that appear to give the largest 

contribution are choseu and summed to an equivalent 

deterministic integral equation. Physical arguments at 

times enable us to identify the terms to be chosen. 

Though the diagram technique is lacking, rigorous 

mathematical justification, it is useful since it yields 

results which compare favorably in some cases, with 

exact methods ( 2. ) . 

To perform the summation, each term in the diagram 

equation of(ll)is dismantled into noncorrelated parts. 

For instance 

..••... .••-•.. 
i   '» 

(13) 

Factorization of noncorrelated parts in the diagrams lead 

to the Dyson   (11)   and Bethe-Salpeter  (4)}   equations of 

field theoretic methods: 

<?> (14) 

In operational form, we have 

-» 



<G > - G<#   + 6("nG 

where 
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^03^—^ *4 
J» + - 

where 

.2 
(15) 

T 
i 

The'affective wave number operator", 

operator". 

,  and "intensity 

,  are the sum of the diagrams that cannot 

be further dismantled without breaking dotted lines. 

To construct the first approximation to the Dyson 

equation,  the property 

17 ^l-^l)   ' o n-*i >i (16) 

reveals that the correlation between neighboring points 

• 
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gives the greatest contribution when    Il-1l<,ii ;     the 

diagrams with overlaping dotted lines are then neglected. 

This amounts  to the retention of the first term in the 

mass operator 

(17) 

which is the summation of 

i i   <3m 6    . » 

(18) 

It is to be noted that the solution of this equation 

should not be performed by iteration as this process 

leads back to a divergent series. This is expected as 

the Dyson equation is a selective restructuring of the 

Neumann series. 

C. The Method of Smoothing 

The smoothing method (l5) to be discussed below is 

an alternative development to the diagram method. For 

random equations, the two methods lead to the same results, 

Some ad hoc procedures are also discussed in Appendix B'* 

To facilitate the ane ysis, the operational form of 

the wave equation is adopted: 
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4> c G^ J - G^ vjt (19) 

where 

<£.C 

(20) 
P ^  <   > 

By applying successively the projection,   P   ,  and 

fluctuation, 5^  ,  operators to    equation   (19)  we obtain 

(21) 

j* 5 - 6^(1- r)it{<*> * i*) 

Solution of(20) by formal iteration yields 

»»1       ^ 



>' 
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If we replace S (j> in (20) by its value in (22) ,the coherent 

field becomes: 

(23) 

(•) 
M « I PU4C. Gf (i-PJu.) P 

«. (24) 
.«•> .*> 

,.1^<-VL'' ' 

Equation (23) represents the Dyson equation for the 

coherent field. Above order one,the Dyson equation is 

usually intractable because of the increasing complexity 

of the mass operator. In what follows, the analysis and 

discussion are concerned only with that first approximation; 

for n«!, equations (21) and (23) reduce to 

••' L.< ♦>  «   < t, ••.«■,><♦ >  *   © ^25j 

|f   t^L,««! (26) 

With the mass operator 
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The solution of Equation (25) has been shown (41) to be 

'i asymptotic to the exact solution of the classical random 

oscillator for the condition of strong small-scale fluctu- 

ations . 

i 
D. gome Observations on the Partial Summation Method 

,   The methods of partial summations transformed the 

stochastic integral equation (12) into a nonstochastic 

integro-differential equation, (25), which possesses the 

mathematical form 

£<♦> ♦ W,,K.<*> - JKf,«') < #•*• > d»' so      (27) 

where Kt*»*'}  is the kernel and   <♦>  , the unknown 

coherent field. 

A general solution of Equation (27) is not known. If 

a straightforward iteration procedure is used, this leads 

to Equation (18), which is known to diverge in the case 

of large fluctuations. When the kernel is of the convolu- 

tion type (4 4) 

the application of Fourier transform leads to .a solution 

of the wave equation. Also if the integral is of the 

Wiener-Hopf type{4^} 

0 
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£<*>   ♦ K'K. < ♦ >   -   /*<- ^1 < #^l / -U' « 
a«' (27) 

mm <*<*> 

a technique  is known for its solution.    Both solutions have 
• 

been discussed in the literature.  Physically, both 

cases required, among other things, the assumption of 

random homogeneity;  this seems hardly justifiable near 

the boundaries of bounded scatterers.  In addition, the. 

appropriate Green's function that satisfies the radiation 

condition at «-♦•:«» and the boundary conditions of the 

■catterer, is not of the convolution type. These physical 

modifications add to the complexity of the scattering 

problem considered in this thesis. 

G. Conclusion 

Further work on the mathematical foundations of the 

Dyson and smoothing equations are needed (>B). At 

present, the capacity and limitations of the first order 

Dyson or smoothing equations are best gauged by the 

•xamination of the results of their application to 

prototype problems. The resulting integro-differential 

aquation is difficult to investigate in the case of random, 

inhomogeneous or bounded, media. 
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III.  WAVE SCATTERING FROM A RANDOM UNIDIMENSIONAL LAYER ' 

WITH AN APPROXIMATE EFFECTIVE INDEX OF REFRACTION 
i 

-■ 

A. Introduction 

Resent papers (S ), iil),   (11)» considered the 

propagation in an infinite random medium with strong 

small-scale fluctuations.  For this case, the resulting 

integro-differential equation of the first smouthing 

equation is of the convolution type;  its solution is 

readily obtained through Fourier transformation. 

However» examination of a bounded or an inhomogeneous 

medium requires extreme simplification of the stochastic 

problem,  in a recent paper, Bassanini et al. ( I ) 

asserted that the interface effects on the coherent 

effective wave number parameter are negligible in the 

limit of small-scale fluctuations;  they concluded that 

the development made by Tatarski (41) in the evaluation 

of an effective parameter for an infinite random medium 

with uniform background is applicable to bounded media. 

. Since the mathematical foundation of this procedure la not 

well set« its results are subject to doubt. This chapter 

may be viewed as a numerical testing experiment to see 

if the above assertion has not produced a violation of the 

principle of conservation of electromagnetic energy. The 

- reflected coherent and incoherent powers are analytically 

obtained as a function of the strength of the fluctuation. 

Comparison to the successive iteration method is also made. 
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B. Infinite Medium Effective Index Parameter ^ 

In this section we reduce the original stochastic 

problem in its coherent part to an equivalent deterministic 

boundary value problem through an estimate of the effective 

characteristics of an infinite medium. 
i 

The Green's function is taken as 

The randomness is assumed to be homogeneous and the 

correlation is exponential. The field within the plasma 

is governed by an integro-differential equation of the 

convolution type;  its solution has been carried out through 

the application of Fourier transformation (41) or through 

the assumption of a wave solution (1$) of the form 

' S • •.'"••• w     •■-••••■•.■ .,~ • -  . „ 

Following the second alternative, one obtains, after some 

manipulations 

(2) 



where 

vi. t. A C^ a[ta ♦CaSf) JA J t 

^eSU-«- ♦(*'*^)v,')/t 3^ 

.. a. ♦(pA. M«',)/c(*N<>y*-r««aJ 

^ • •% ♦ <f *.-1 ^)/C<ftt ♦ a») -e«^ <*-1 

r8 fc J^ffV.U-^^/o*^./ 

^ s 1 k AJ * a.^c /c « ♦ ^ ) 

»A 
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(3) 

For  <rse  # Equation (2 ) reduces to the deterministic 

plasma wave number;  for   o* * o  * the turbulence attenu- 

ates the wave; it transforms the coherent energy of the 

incident wave into incoherent energy; this effect is more 

prominent a^s the normalized plasma frequency  -^  nears 

the over-dense regime. 



C-    The Coherent and Incoherent Reflected Powers for a^ Slab 

1.    Coherent iteflected Field 

The analysis is confined to the: simple bounded slab 

filled^with a randomly fluctuating plasma and described 

in Chapter I   (fig.I ).    Assuming that Bassanini's work is 

correct,  the coherent field equation, within the slab, 

may be written as 

The general solution of the coherent field equation is 

4^ >s   A«-n,C  -B   <>"• (5) 

-'     ■    .•.■.;.•,;;:-:.•:■•■•   8   .•■■■■:■     uPy*i&Mi*a9MlHra**m im  — 

where 

^ * k < ft ♦ j -. ) (6) 

The boundary conditions are 

i♦<♦. > - < ♦<•!> 

(7) 

.^^...i.^^ 



<%> c-^'z <4>(0 > 

jk dy. 

(8) 

Solution of the preceding algebraic equations will deter- 

mine the four unknowns. A,  Bf   <^ >    f       <  4 > 

■ , ■ ■        - 

Where 

1^1 itv^w 

i.-- 1-^/jW 

^•f.lft"^^ 

(9) 

(10) 
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2. Incoherent Reflected Field 

The incoherent field equation may be written as 

% 

The solution of Equation   (n)  by the  "variation of paramet- 

ers"   (U)  is 

where ^4> r   e ,    & 4»fc s   e are the 

homogeneous solutions of  (H)     ,    W is the Wronskian. 

Ap^l^in^ jwnLir.ulLy co.;clitiono  be  (12) #  the in- — 

coherent field,   ip    , within the plasma becomes 

*♦(•) = \fji)u *}*<')&* ^ t..#r.-iO e r» 

. I i: el^^ ^M ^H^t\ $*K* > * v* 
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^       * 

•r 

(13) 

i,^e^C,(.y.rt).Xi^ e  *m*^\€* Y.- y^ 

*,'ftit*Y\(u«Y.>i> * ^V\C«#t*%»^fV%%,|i   } 

where 

3.    Reflection Coefficients 

The reflected power is now found as a coherent and 

en incoherent contribution.    The coherent reflected power 

is easily calculated 

The Incoherent reflected power may be written as 

<K^z|K^C.+jA)a.*ik}|<[[.^>1(x.,.x f,-r) 
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(15) 

For the exponential correlation function,   statistical 

averaging reduces!   (15 )   to 

1   YJt; c.* ^)      ' I    ' *       ' 

i    .... 

.If t."Cd-1"''' K(V-r;-r.-r;-twv.*' Jr 

ut^n.wi - Vci«i*f^#^^iY:%>^ 

*. V^V^-tvCw^r/.r-; ♦PK^1^*^ •- 

f 
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(16) 

where 

.■ , ■ -• .    . . 

*t*ct  
LM    i,eJ MH ^e. 

fJ ]+   ^ +L 

(17) 

4*ct («.«.^C-ß+cj («+e,)(*- cj 

Eor a nonstochastic medium,  0" = o , the. incoherent 

reflected power zeroes and the coherent reflected power 

reduces to the well known deterministic result. 

If Y«rc the reflected coherent and incoherent 

powers in Equation (14) and (16) reduce to those obtained 

by Jarem (ll) using the successive approximation method; 

this condition is approached in practice for very small 

random variations. When the difference between the mean 
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values of the slab and the surrounding medium is not 

too small, the conjecture made by Bassinini et al. 

becomes unreliable since it is inconsistent with the 

continuity conditions at the boundaries.  In fact, the 

principle of conservation of electromagnetic energy is 

violated (fig. 2) . 
t 

D. Conclusion 

The basic conclusion drawn from the analysis of the 

obtained results points out that the neglect of the 

interface effect on the coherent field is not generally 

close to reality:  1. Some observed phenomena, such as 

the saturation of the scattered power before the critical'-: 

density is reached , are not displayed. 2. The conserva- 

tion of electromagnetic energy, near the transition 

regime, is violated. 
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1.0   , 

-.J.-'_ .^      'x...,;y. ^. '-•    •     •.»»«»» 

0.5     0.6     0.7     0.8     0.9 

Fifr 2        Violation of conservation of energy principle 
In approximate smoothing usage. 



IV.    WAVE SCATTERING FROM A RANDOM UNIDIMENSIONAL LAYER 

WITH AN APPROPRIATE EFFECTIVE   INDEX OF  REFRACTION 

A. Introduction 

In the previous chapter, use of the infinite medium 
i 

Green's function was shown to be improper for a slab, 

where the difference between the mean value of its di- 

electric constant and imbedding medium is not small. In 

this chapter, exact solution of the problem is obtained 

in the limit of small-scale fluctuations. We consider a 

uniform plasma slab with superimposed turbulence whose 

intensity and short scale behavior follow a Gaussian form. 

Numerical evaluations of typical cases are displayed 

as a function of the mean square fluctuations. 

B. Exact Effective Index of Refraction 

The coherent field, within the slab, is governed by 

, .  ,       -».''.-.',     1'-.  ■»,.'-- ■ - *  - »ic«    * ■   ■■»      «w— tm»m^ ~^-~z* »!-■•• 

The Green's function, (SC«,«') is that of the background 

medium wave equation 

i^*U) ♦ VHI-N) fW « o 
i» .k 

. ». <*<• 

• . 

and 
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(2) 

The general solution of Equation (2 ) can be written in 

terms of known functions; we let  ^  and  «^  be 

the solutions of Equation (2 ) which satisfy the rad- 

iation conditions at  x-* t eo   and the boundary conditions 

at  ««0* «•   • The Green's function may then be 

constructed (l4i:(i$), (^4): 

6(1*) •■»**> *fa*> (3) 

W is the Wronskian; is the greater of the two 

numbers x and x', and x^ is the lesser of x and x*. Let 

us determine the functions  «ff  and ^ for the 

turbulence free uniform slab (fig.2 ). The determination 

follows from the standard solution of the slab problem , 

together with the boundary conditions and the properties 

of the Green's function; this leads to ■ 

*.<«<) s 

b« 
♦ R^e"4 -{•» * 

A^** ^ö.e-^* 

r^ 
jli* 

«>o 
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-1W Ve"^* *>o 

twi. ^•♦•^ 1^" ».<^<:o     (5) 

>x 
+ R., e1 ;w« 

»<«. 

where 

^tAjdl!lt^!±iJLkMü 

Aik. B^z-^U-.fcrA) t
xi*r* 

\     • *'.     *.y ~ 

T gjbfciL« t;' r '   * 

A.-. =^!lkij^i 

► .- » > ■>> .> 4      .   J    '» 

(» 

ft 

To pursue the analysis of Equation ( 1) we consider the 

mean value of the field that has a scale of inhoraogeneity 
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much larger than the correlation scale of the perturbation. 

The correlation function manifests itself then as a 

local effect (U), (Al) 

eUit')= SU- -O JBU^aw (7) 

This means that we are interested in the variation of the 

coherent field on a scale that is large compared to the 

correlation length. In this case, the first order 

smoothing equation becomes for a:locally homogeneous 

fluctuation whose intensity or strength follow a 

Gaussian form: 

£<*>     + fc* MC*) <*> = o W 

.,,..      -».-I»  -   »,» 

where 

MC»)« Ci-iv) - W^o^cx; ^Cx,*) 

This equation reduces to that obtained elsewhere (So) for 

the case of an infinite uniform background and homogeneous 

fluctuations for which an analytical solution can be 

obtained in terms of known functions. However, the 

solution of Equation (8 )' for a finite slab thickness is 

not known analytically and must be integrated numerically 

for typical cases. No difficulty is encountered as any 
* 
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singularity of the "effective wave number" is shifted off 

the real axis by the presence of the randomness. This 

shift, which appears as a collisional effect, describes the 

transformation of the energy in the propagating wave into 

fluctuation energy. The transmitted coherent field at the 
• 

boundary is chosen to be of unit magnitude and zero 

phase.    The Runge-Kutta method  (21)   is used to carry the 

integration to the input boundary, and the reflection 

and transmission coefficient are then automatically 

evaluated. 

C.    Scattered Power 

1.    Coherent Scattered Power 

Consider the following scattering geometry  (fig.  2) . 

The change in the positive reference direction is made for 

compnt^t-jon?»''. rrrvonrerce.    ■ -.. • •    • •„■s •>;►■-"   /_   .■..;V "- 

The boundary conditions are: 

<*(«.) >   s   <* > e* *• 

(9a) 



•^ 

Flg.  3       Geometry of the plasma slab. 
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♦.* 
Hue 

<«»>e -Jkx 

• • 

<«(x)> <K>eikX 

 > 

■ -   ■ 
■% ■ 

I 



x^ 

4>0H <%> = <4>U)> 
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(9b) 

Let the complex coherent field be represented in terms of 

real and imaginary parts as 

■   .•■,•-. 

Let 

MC*)   =   M^U) ♦ j M4.Cx) (11) 

Equation (8 ) may be decomposed into a coupled set of 

second order differential equations with variable coefficients 
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d*<t^U)^  + tLCry«)<^U)> . H.U)«LJ*)>]s0 
tin. 

X   # <*/«)>   ^C*VC|,|<^W> + M.f*)<^tx)J = 0 

(12) 

Let 

^l<4ifcU)>   z ^ and 
ax 

Equation   {12)   takes the form   (U): 

a' 

* 

^> 

<*:>\ 

o        AMK       Hit 

o       .1^       4PH, 

^ 

Pc 

<*.> 

<<*>,> 

(14) 

Initial values nay be obtained if we take the wave in 

the slab at x=x# as the reference; for convenience let 

<+<^)>= I« there results from the boundary conditions. 

Equation (9 ) 

f 
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- <^(«.)>r I 

<fy«*) >r O 

(15) 

?(».) s O 

' FJ(»#) r k 

We solve for the incident reflected and transmitted 

coherent field as a function of the field within the 

plasma at x=0; we obtain 

4,   *   tC<^o)> - j<.*^>) 
._.,,.-.* ■,. ^, - *•■>-■*.'   *\- t »,i \- 

SO-,**.  (< &o)>    f j C^(o)>) 

-<^> = <4>C«,)> e*J ** 

(16) 

The coherent reflection and transmission coefficients are 

(<<j/(eH -It^CojO1'* Ck<*aCo)> +<d>j^) ;
l 

'•/ 
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* M * (17) 

The respective phase shifts are 

(18) 

The incoherent reflected , Rj %   <15«^l*> f and 

transmitted, "^ « 4114^ I > # powers are given formally 

by (11,26). m the one-dimensional case this leads to 

(19) 

/d*' ip/W<4»(«VcrcCx£06(»-0 
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(20) 

Manipulation of   (7  ),   (19)   and  (20)   give 

o l 

(21) 

».»1 k.»' 

(22) 

D.    Discussion of the  Results 

The first Born approximation is widely used in the 

literature   (f6);     this approximation assumes that the 

incident wave propagates to and from its scattering center 

unhindered by the rest of the slab.    Subject to this 

assumption the analytical results show a linear relationship 

between the scattered incoherent powers and the mean 

square fluctuations,      ^      •    On the other hand,  experimen- 

tal observations display a saturating effect as g^ 

increases;    this relays a breakdown of single scattering 
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theory due to the stronger interaction between the 

incident wave and the electron fluctuations.    The 

present analysis brings  in the effects of multiple 

scattering of the incident wave and weighs their effects. 

The results  show a linear relationship between the scattered 

incoherent powers  for small mean square fluctuations, 0"   ; 

aß the value of   0*    increases,   the scatterec' power 

begins to saturate   (fig.4  ,5 ).     This saturation is 

accentuated as the normalized plasma  frequency.   Si    , 

nears the transition regime   (fig.  6,7 ).    This is expected 

since the mean index of refraction appears in the de- 

nominator of the coherent equation's effective  index of 

refraction.    The    saturation eventually levels out, 

tending generally to some  limiting value;     this qual- 

itative behavior    is supported by experimental observations 

(40). 

If a slight damping is  introduce^ weak and subdued 

incoherent scattering results   (  fig.8 ,  9,10),   since its 

source,  the coherent field,   suffers attenuation as  it 

illuminates the layer.    In addition,  no appreciable 

departure from the power scattering law   <I8R|>— C1 

with increasing       c*1      is noticed.    However,   it should not 

be surmised that the single scattering theory gives a 

physical description of the interaction. 

A comparison of the hcnogeneous fluctuational 

effect with the inhomogeneous one show a relatively higher 

incoherent scattering in the former case throughout the 
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variation of the mean square fluctuations .( fig. U) ; a 

less definite dependence appears in the coherent scattering 

case (fig.12,13). For a locally homogeneous randomness, 

the Gaussian correlation shows a larger scattering power 

than t^ie exponential one for the cases considered ( fig. 14 ), 

Typical examples for the dependence of the coherent 

reflected and transmitted powers on the mean square 

fluctuations are shown in Figurel5#16. The results show a 

definite dependence on large c*  . This correlates with 

the theoretical formulations since  Q-  appears as an 

attenuation effect on the coherent field;  this attenuation 

describes analytically the energy transfer from the 

coherent to the incoherent field. For slight damping the 

variation? in the coherent scattered power as a function 

of O*  are subdued in comparison to zero collision;  for 

Jls.l  the coherent power is comparatively insensitive to 

*.v^    ,,_ i., -     . -r    n. .    ......     .   ,     ....     -■» ..     •   ,     <-•.,,. s     »    if,',,    ^7 ^ 

The results seem to indicate that a nonrandom approach should 

be sufficient to describe the coherent return with an 

accuracy of at least 3 db . 

It is to be noted that the present formulation, contrary 

to the preceding one in Chapter III,  obeys the principle 

of conservation of energy as is shown in the varied cases 

considered. 

NOT REPRODUCIBLE 
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Fig. 4        Incoherent reflected pov/er as a function of the mean 

square fluctuations with normalized plasma frequency 

as a parameter. 
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Fig. 5    Incoherent transnittcd power as a function of the 

mean square fluctuations with normalized plasma 

frequency as a parameter. 
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Fig.  7        Effect of plasna frequency on the incoherent transmitted 

power. 
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Fig.  9        Tlie incoherent reflected power in the underdense-overdense 

regime. 
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Fig.  10        The  incohtrcnt reflected pov;cr in underdensc-overdensc 

regime. 
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Fig.  11        Conparativc effect of turbulent  intensity on the 

Incoherent power. 
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Fig. 12        Comparative effect of  turbulent intensity on the 

coherent power. 
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Fig.  13        Comparative effect of turbulent intensity on the 

incoherent power. 
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Fig. lb        Comparative effect of correlation function on the 

reflected power. 
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Fig. IS   Coherent: reflected power as  a function of the mean square 

fluctuations with normalized plasma frequency -as a parameter. 
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Pig. 16   Coherent transmitted power as a function of the mean 

square fluctuations with normalized plasma frequency 

as a parameter. 



62 

1.0 

Q9 , 

0.8 

a? 

0.5, 

a "' o.i 
c 

S - 0 

fl   - 1.3 
D 

0.4 

0.3 

0.2., 

0.1. 

n  » 0.9 
p   . 

n   = 0.8 

0.2 0.4 
—r 
0.6 

"r ■ 0-7     i 
0.8 1.0 

Fig.  17        Damping effect on the coherent reflected power. 
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V.  TRANSFORM METHODS AND THE SMOOTHING EQUATION 

A. Introduction 

In the preceding chapter we examined the scattering 

problem in the limit of small scale fluctuations.  In this 

chapter the problem will be formulated as a transform- 

smoothing equation in order to achieve a more general 

description of the fluctuational's scale. A singular 

integral equation of the standard form is obtained. 

Formal solutions of this equation are produced and 

discussed.  Direct numerical simulation is also investi- 

gated. 

B. Analysis 

For a plane  incident wave,   the integral  formulation 

of Equation   (11,1)   takes  the  form: 

4>U) = e^k' +   e /6<0)cx. «•'; >^x'; fWU*.' 
(1) 

This equation may be transformed into wave number-space 

upon multiplying it by   *tht) tJ and integrating 

over the whole space: 

</>C*0 s ^-^ + * jdp&C^ y\(i<.r) fC?) (2) 
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where 

2 IT C I + ^ ) 

GC.) .. L 

(3) 

Equation (2 ) may be put in operational form 

The Fourier transform of the correlation function (1/2 ) 

may be written as( £ 3 ) 

C^CpJ^Cpj^ = A(pit/,t) «ECf.,),^ 
(5) 
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NOT REPRODUCIBLE 

where   AC^+K)     and        £*(.£-=£»)   are respectively the 

Fourier transform of the intensity and the small scale 

behavic  of the  plasma.     The  first order smoothing equatj.ön 

( 4 )   for the coherent field gives then 

P (6) 

where 

(7) 

aciuaciOu   v"1   /   "l«^   ^e  Vvutten   exfiXCltxy   as 

H/f^fJI (8) 

Replacing tC      by +k in equation (8 ), we obtain the 

forward scattering amplitude: 

*lf'**)* 1       (9) 
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The bacV. scattering  amplitude  is 

(10) 

The sum and difference of ( 9) and do) are respectively 

*(*; = 40*$* t<^(-K)> z  f (tr, t) 

Alt J p-k 4j A 

where 

C.     Singular Integral  Equations 

The application of Plemmelj  formulae 

~* f*% ja) W-k 

(ii) 

.     ^ilf.U    r     f|irtfc)   t ff-^fe; (12) 

(13) 
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to equation   (11)   leads to: 

(14) 

+ £lW^ Like! y^ 

where 

f   (It,») ^ [Acp-u; 4(^ü) i ACp+O^M) J 

(15) 

Equation (14) may be set in normal forra;  for example, 

the kernel PCk,») may be expanded in a Taylor's series; 

then we have 

where 

manipulation of Equation (14) and (17) leads to 

(17) 

■ ? 
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(18) 

or symbolically 

K'V*   t.K*f 

where 

it       « 

A tk) r   fen; ^ck.o/ii^ 

The expression 

(19) 

(20) 

is said to be the regular part of the equation. 

D, Solution 

A general method of solution of the singular integral 
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equation has been advanced by Carleman and developed by 

Vekua (3ft). The method (/g) consists in the separation 

of the characteristic part from the equation and in its 

solution.  This reduces the singular integral equation 

to a weakly singular one. V,Te shall now consider the 
• 
characteristic equation.     Its  solution  is well known,   (J8) ; 

We have 

where 

(22) 

+   irCk)   EU)   ^Clc) 

(f-t; 
(23) 

.   ksi 

Inj 
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If the coefficients of Equation (18)   do not satisfy the 

condition 

1 aHb) - %H k)  r I (24) 

we must divide both sides of (18) by 

0*C M - VCic)]^ I 

Applying Equation   (22)   to   (19), we obtain,  after some 

manipulation, 

rfu ♦ lic9*(f,tk) pCtfdp mf^.k.}      (25) 

where the Fredholm kernel is defined by 

(26) 

and where the free term has the form 

Tfj   «f)^i; (27) 
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The Carleman-Velcua method forms a basis of the theory of 

singular integral equations. In the case the kernel of 

Equation (10) is degenerate /<*(!«, p) = Z.  *fti) ß; Cf) 
hi ' 

the solution of Equation (18) is given in closed form. 

iKlOr ^"f • X^V^/A^ f(?)dP (28) 

j 

This is a Fredholm equation with degenerate kernel. It 

may be reduced to an algebraic system of equations (p^). 

In fact, a singular integral equation of general type 

may be reduced to an equation v/ith^ degenerate kernel. 

By virtue of Weiertrass' theoron, K (le,b) can be 

approximated by a degenerate kernel 

-».^•.. -r... 

(29) 

Where the norm  l| V f l«» p) )l   in the space i-, may be made 

as small as we please. 

In the case where the random intensity varies.-slowly 

in real space with respect to the coherent cfleld, a 

simplification of equation (6 ) results;  the coherent 

field under the integral sign is considered to be 

sampled at the wave number f< ; equation (6 ) reduces to 
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The incoherent field is then 

^4)   -z   vjCfc-Jt}   |,   t ^^K^) >Wir.fJ 
(31) 

We have concentrated so far on the analytical 

methods of solutions. Direct numerical simulation of 

Equation (n) should not be discarded;  the apparent 

difficulty is due to the singularity in the kernel; it 

may be avoided through the introduction of an appropriate 

averacre valnft for the inteqral in the vicinity of o=k 

or the rewriting of the integral equation so that the 

singular contributibn cancels out. 

E. Conclusion 

The present development appears to have some definite 

potentials. A survey of the methods for the approximate 

solution of the resulting equation is given. For slowly 

changing characteristics of the random intensity, the scat- 

tered field is easily deduced.  In addition, the 

formulation is close to reality since it includes the 

effect of inhomogeneous turbulent intensity. 
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NOT ^PRODUCIBLE 

VI.     CONCLUSIONS AND  RECOMMENDATIONS 

A. Conclusions 

This thesis treats the case of a random slab whose 

mean refractive index is different from the deterministic 

refractive index in the exterior. Previous studies 

neglected the effect of the boundaries in the computation 

of the mean wave;  this procedure is shown to be ener- 

getically inconsistent.  The present treatment is 

consistent and evaluates the coherent and incoherent 

scattered powers. The principal conclusions of the 

analysis—that the incoherent scattered pov/ers experience 

saturation with a further increase in the mean square 

fluctuations/ and that the coherent scattered power may 

be adequately predicted by a nonrandom approach for 

graphically for some typical cases. 

B. Recommendations 

1. The present work has concentrated on the limit of 

small scale fluctuations;  a measure of the sensitivity of 

the power scattered as a function of the correlation scale 

is desirable. A proper formulation has been set in chapter 

V. of this thesis and can be used to investigate this 

point. 

2. A comparable analysis to the present work is 



needed for three dimensional fluctuations. One would 

still assume that the correlation function varies much 

more rapidly than the Green's function, and it may be 

viewed.as an impulse function except in the case where 

divergent integrals are obtained if the unsmeared function 

is used. 

3. The present method of solution is not restricted 

to a homogeneous background layer with sharp boundaries. 

It may be used in the case of layers— Epstein, linear, 

parabolic profiles— which have inhomogeneous backgrounds 

and diffuse boundaries.  It would be interesting to 

study the transitional effect on the scattered power. 
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APPENDIX A 

ON THE VALIDITY OF THE BORN APPROXIMATION IN RANDOM 
WAVE SCATTERING 

A. Introduction 

The scattering of a plane wave incident upon an 

appropriate random medium has been widely treated in the 

first order Born approximation^c). Evidently, there are two 

points of important consideration:  1. For a given 

scattering problem, does the Born-Neumann series converge? 

2.  If this series converges, how large and error . 

is incurred by truncating it after the first term? In 

this chapter, a simple quantitative criterion is derived 

that insures convergence and gives an upper bound for the 

truncation error.  This bound is expressed in terms of 

relevant parameters which characterize the convergence 

condition, the scattering volume, and the structure of the 

medium. This result is established using the method cf 

successive approximation, and the inequalities appropriate 

to the condition of quadratic sununability of the kernel 

in the basic mean square. 

B. statement of the Problem and Solution 

A scattering problem may be represented by the follow- 

ing integral equation (57)* 

• - 
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ffo) = t't) * £ fc(% W %W *^^ (i) 

A straight forward approach to solving the integral 

equation is successive approximations. We begin with the 

zero order approximation 

tu) ^ <!>(*.) (2) 

Let us substitute the zero order approximation into the 

original equation under the integral sign to obtain a 

first order approximation, and the process is then repeated. 

The resulting series for the scattered field is 

'..'•. sr^J-*   1    -»-• -^   ,> _•_ 

(3) 

where 

(4) 
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and  ^S»^4|^/  is called the n  iterated kernel in 

telation to the given kernel.  The first term in the series 

solution may be regarded as contribution due to the incident 

wave; the second term, the contribution due to a single 

scattering of the wave from each inhomogeneity in the 

scatterer; the third term, the contribution caused by 

the double scattering of the wave, etc. The formal 

integration of each term in the series, though random, 

should amount to the integration of functions when a 

particular sample function of the ensemble is consideredCt.4). 

To each sample function corresponds1, a solution ^£^^-0 

solution is generally different for each sample function, and 

the solution thus takes a whole set of values. The ensemble 

averages of these values are of interest in the applications. 

The method consists of the following steps: The explicit 

solutionCi)of (1)  is first determined formally for each 

.member of the ensemble. Then, the mean and the correlation 

function of £f%»*Jat:e obtained. As the integration 

becomes exceedingly complicated, calculations have been 

limited to the first term. A bound on the truncation error 

of the series and the condition of convergence or that series 
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are investigated. 

C. Convergence and Error Bounds 

The general term in the series solution for the 

mean square value of the scattered field may be written as 

<ltH> = <\ /*VKAv)t«Jt*S)- l^'' > 

(7) 

The Bunyakovski inequality states that 

!(♦,*) I «H{IMH»" (8) 

Using the above ielation, we get for the second order 

«       k •    '« '  « 

lffu0, KUI^^^*       <u^* <-vv> (9) 

We assume that the random variable *] follows a Gaussian 

process with mean zero and rms. Applying the relations in 

(8 ) and (9 )^g|the mean square value of (7 ) # we obtain: 

H/> < W ^"Iv-.^i^'/i^wiV 
(10) 



Let 

C^ =   H |HCK«»"*# 
(ID 

and 

iW^.j^avw«.. «>*«*, (12) 

Then 

^ o* <13) 

where 

»%. JH^iNM*' (i4) 

Using the recurrence relation in  (13),  there results 
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(15) 

Since the scatterer has a finite volume, V# a 

relation exists between B and c, where 

B*   « C, V 

and  (15)  becomes 

c^cTv-' 

p«^)1 Rp-!r.r.     (\J\     |i-i   VI.O) .    ^Vi-iv-n    r-ne-vlf. 

<*S> < (TJM.I1^ 

Where 

(16) 

(17) 

(18) 

(19) 

The series is uniquely convergent for D less than one. 
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Now we establish an error bound on the truncation of 

the series after the first term, thus estimating the 

importance of multiple scattering,  in view of the elementary 

inequality 

(2p) 

the scattered power is: 

<i^»i*>  .< £*i^Cr)v 
(21) 

A comparison of the first Born approximation with (2ty 

gives a measure of the relevance of multiple scattering. 

AArtlttftd!'.v. thip pr>r>rviT> 3 e ern-io'.'V»•♦- 'ii««r-o". «»^ ths ether 

hand, a very stringent bound would not satisfy many 

practical Cctses. 
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APPENDIX B 

AD IIOC DERIVATIONS OF FIRST ORDER SMOOTHING EQUATION 

A. Formulation 

•   For wave propagation in random media, the first order 

smoothing equation has been derived in different ways ( 5 ) 

(If), (*6), The scattering equation in operational form is 

(L# + L,) ((> r • 
(1) 

The mean is 

!••<*> +<L, i*) ' o 

The difference between 1 and 2 

L.St - l'.<4'> + S* 

where 

J^  « L. J+- < L, I*, 

(2) 

(3) 

^ 
/ 
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Equations 2 and 3  form a set of coupled equations that 

describs the problem. 

B.    Local Independence 

With the hypothesis of local independence,  the wave, ^>, 

^nd the perturbation,L,#   are considered statistically 

independent,   i.e. 

<l-, L»*L. ^ >     « ^i L,' L, >   < 4> > (4) 

Let us multiply (1)' byL, and average. The resulting 

equation may bo further simplified by applying the local 

independence hypothesis;  there results 

l._4 <*>> - < L, Cl, > < <b > r O 
-,'-._!_. .... .. ' « *a "5^.. __ 

The above technique leads to the same formulation as 

the first smoothing equation. A physical measure to the 

ansumption of local independence may be given. It is 

known that sharp changes in the refractive index makes 

a wave dependent upon the medium; then, a necessary 

condition for the hypothesl3 to hold requires that the 

dependence or correlation between the medium's index of 

refraction and the wave be zero. In this case, there are 

'reasons to believe that the functions are statistically 
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independent, or at least the stochastic dependence 

between them is so weak as to be negligible. 

C. "Distorted" Wave Born Approximation 

In the so called "distorted" wave Born approximation, 

the first smoothing equations are derived by neglecting 

the S$  term in(2) , with no apparent justification. 

Manipulation of ' '   and »•'  result in 

L# < 4> >-<»-, L- L, >< 4> > = o (6) 

^ 4> r . C L, ^ > (7) 

which are exactly the same as the first smoothing equation. 

generally differ. This is expected since the neglected 

term §4 generates terms comparable in size to the remain- 

ing ones in(2) 

D. Modified Neumann Method 

The first smoothing equations are here derived 

directly from the Neumann series.     let the field  ^ be 

replaced in (1)    by the incident field S and scattered field 

4i : 

L# «l>     - -  Li C*# +  4>) (8) 
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Solving  for  S   ,  we get 

.   t= ML-.'L,*, 
(9) 

Where 

(io) ■ 

To first order approximation v/e get for the mean field 

L.^. > _ ^I.I-'.'L) <t>. - 0 ai) 

A 
iteration of   ^ 

in  front of  the onorptor,   is thojfirst^order ..„.   . ...^ ,,.', 

(12) 

^    ^     ^ 

The fluctuation field is easily solved for ,as : 

* * (13) 
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1.     INTRODUCTION 

In contemporary communication processes  (e.g., 

ionospheric and troposphcric scatter links;  stellar 

observations;  re-entry wake analysis),  electromagnetic 

scatterinjj plays an  important role and has  received interest 

since the very earliest formulation of  electromagnetic 

radiation theory.     The  influence of matter upon propagating 

electromagnetic signals can be classified i:ito separate 

topics,  such as,  scattering,  absorption,  depolarization, 

dispersion   [e.g., Jones,  1964].     In this work, we investigate 

the scattering of electromagnetic waves by a non-uniform 

plasma with random  irregularities.     Consideration will be 

restricted to monochromatic waves, which will be allowed to 

interact with a plasma medium characterized by the Lorentz 

model   [Heald and Wharton,  1965].     Such a model has been 

shown to be valid  for  radio and radar propagation in plasmas 

associated with rocket  exhausts,  re-entry wakes,  and the 

ionosphere,   in the  absence of a magnetic field  [Jarem,  1969]. 

The Lorentz plasma model  leads to an effective dielectric 

constant  for the plasma which will be  taken to be a random 

continun,   i.e.,   the particle character of the media 
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(electrons, ions, neutral molecules) will be ignored and the 

random deviation of the dielectric constant from the mean 

(due to turbulence) will be continuous, varying smoothly in 

time and linear extent. Complete information about the media 

will never be available and thus a complete description of 

the interaction with the electromagnetic waves must be made 

in terms of a statistical interpretation [e.g., dnWolf,   1968]. 

Such media are mathematical models of real-life situations, 

namely, turbulent atmospheric layers, rocket exhausts, and 

re-entry wakes. A good deal of interest in these media comes 

from the irregular disturbances of radio and radar communi- 

cation signals when propagating through such physical media. 

Such disturbed signals may also be used as remote sensors 

for basic information on turbulent flows, and as a 

diagnostic tool for re-entry wake analysis. 

Solutions to the problem defined above are 

already known in certain limiting cases (e.g., low mean 

electron density, and small turbulent fluctuation levels; 

particularly simple geometries).  It is the aim of this 

paper to study the formulated problem for the one-dimensional 

Epstein profiles [Epstein,  1930] for an arbitrary peak level 

of electron density. Electron density fluctuation levels 

will not be arbitrary but will be restricted by the 

perturbation method here employed.  Where applicable, the 



results will bu compared to the statistical computer 

experiments of MoohttU»  and Xavtena   [1969; 1970] , who have 

examined the case of a randomly fluctuating plasma slab. 



2.  BACKGROUND 

2.1   BORN APPROXIMATION 

Scattering from turbulent media has drawn in- 

creasing interest since the publication of work on 

tropospheric scattering by Booker and Gordon  [1950].  Booker 

and Gordon made use of the perturbational Born approximation 

[e.g., Dicke and  Wittke,  I960], and since that time, a 

number of papers have been written to extend the accuracy 

of that approximation, many of them attempting to treat 

the full three-dimensional electromagnetic problem [e.g., 

TatarakU,   1961; Salpeter and Treiman,   1964; Menkee,   1964; 

Ruffine and deWolf,   1965].  Because of the perturbational 

nature of the Born method, solution above the lowest order 

yields only slight additional information with a great 

increase in complexity.* 

*An exception to this statement might be made for the second 
Born approximation, which yields cross polarized information 
predicted to be zero by the first Born approxi;nation 
[Ruffine  and deUolf,   1965; Jaron,   1969b].  This information 
still comes with great complexity. 



To apply the Born approximation we start with a 

wave equation for the propagation in a turbulent medium 

(This equation will be derived for a special geometry in 

Section 5.2.)' 

{■■/':S   *   |l [KQ * K.OO * M»)1>*00 = 0 (1) 

where the wave number has been separated into a constant 

part K0, an inhonioj>cneous sure part K    and a random in- 

homogencous part OK.  We then write (1) with the homogeneous 

term on the left 

{i*td»1   * kl*9U  ■ -»JU, • ««1« (2) 

Both inhomo^encous terms are thus considered as source 

terms.  A free opaoe  Green's function [Friadman,  1956] can 

thus be utilized in the integral equation corresponding 

to (2) 

■ 



where /(a1) represents the right side of (2) and <J.(z), the 

solution of (2) with / » 0.  An approximate solution to the 

integral equation (3) can then be obtained by iteration of 

(3) one or more times.* The accuracy of such a solution 

depends on the size of the entire perturbation < +0«. 

Thus, even for small  random deviations, one is 

restricted by the variation of K1  from zero. For a plasma 

medium, this restriction limits solution to the underdense 

regime (See Section 4.).  Even when <1    is constant, one is 

restricted to a finite size plasma: , because the formulation 

of the Born approximation docs not allow for attenuation of 

the incident waves. 

2.2   THE DISTORTED   WAVE BORN APPROXIMATION 

Various formulations categorized as distorted 

wave Born approximations have been devised to circumvent 

some limitations of the Born approximation [Kreca,   196S]. 

The easiest to apply involves a local  solution of the wave 

•The method becomes very unwieldy for more than two 
iterations. 

+A propagation problem is thus excluded. 

iThus there are an infinite number of scattering events of 
equal importance, with a corresponding blow-up in the 
scattering coefficients. 



equation v/ritten as  follows 

{tf2/c;'r.?   ♦   kjC«!   *  <1(-)]'U   -   -»JlM. (4) 

The Green's function is taken to be of the free space form, 

but the nonranJou portion of the wave number is allowed to 

vary in accordance with its actual distribution.  This 

fommlation fails when the plasma wave number has rapid 

variation within the distance of a wavelength, for a local 

solution docs not include the effects of the rate of 

variation of the inhomogeneity. 

An exact formulation of the problem is obtained 

through the use of the correct Green's function for (4). 

Such a Green's function is available for only simple plasma 

profiles such as a slab or halfspace (or as we later show, 

the tiistcin profiles). The resulting integral equation is 

the same as (3) except that the Green's function, G  is 

correct for the particular profile at hand, and f  is now 

the right side of (4). Thus the random inhomogeneity 
• 

represents a perturbation about the mean profile.  Since 

this perturbation is often small, a meaningful solution to 

(4) can be obtained oven when the plasma varies greatly 

fron free space conditions (The Green's function represents 



an exact solution when there is no random term.)«  The 

difficulty introduced by the formulation, is that the 

Green's function is no longer of the convolution form as 

was the case of the free space Green's function.  Thus, 

Fourier transformation (which is sometimei useful in formu- 

lations using a free space Gr ion's function*) docs not offer 

any apparent benefits (for a non-convolution form Green's 

function problem). 

2.3   SELECTIVE SUMMATION TECHNIQUES 

A number of techniques have been devised to 

overcome the limitations of the successive type approxi- 

mations, including smoothing [Tatarskii and GtrtaenehteiK, 

1963], renormalization [Karat and Keller,  1964] and diagram 

methods [Bourret,  1962]. To the lowest solvable order, all 

these techniques are equivalent [Jarem,  1970].  We shall 

outline the smoothing method, and we refer the reader to 

the discussion given in a summary paper [e.g., Friao'n,  1968; 

Kreea,  1968] for further details of these solutions. 

In the method of smoothing, we iterate in a 

manner to obtain the fluctuating field in terms of the 

*A number of applications of Fourier transformation have 
been given by Jarem   [1968, 1969b]. 
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mean field, and an equation for the mean field. We may 

write the scattering integral equation (3) in operator 

format as 

$ « *■ ♦ Jo«, (5) 

where a represents -^fik-. By sepaiately applying the 

averaging operator P and the fluctuation operator J-P (I 

being the identity operator) to (S), we obtain a pair of 

coupled integral equations for the coherent (4.) and the 

fluctuating C^) fields 

(6) 

Formal iteration of (6B) yields 

>, ■ I     [•(/•P)«)%i. (7) 
«•I 
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Using this expression in (6A), we obtain a master equation 

for the coherent field 

U* U*     I  lPa[GiI-P)o]ntc. (8) 
«•I 

By retaining only the first term of the summation in (8), we 

obtain the first order smoothing equation 

♦0 - ^ + JPC-OA  , (p) 

which by iteration is equivalent to 

*0   '   *t   *     ^   [GlaJa]*.^. (10) 
«■1 

Therefore the first order smoothing solution represents a 

summation of terms which are indicative of multiple 

scattering and are thus included in QQ  obtained by solving 

the integral equation (9).  The fluctuating field A can 

now be obtained to first smoothing order by using (7), with 

« ■ 1.  The first order smoothing equation has been 

determined by Friaah   [1968] to be valid for (.'<0cn )  << 1, 
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where ■ is the correlation length (defined in Section 5.2), 

and n  is the normalized plasma frequency (defined in 

Section 4).  The integro-differential equation obtained by 

applying a second order differential operator to (9) has 

been solved only approximately, even for facile geometries 

[e.g., Kupiec et at.,   1969].  The most simplifying 

approximation to apply is the assumption of a delta function 

correlation.  This assumption immediately casts the equation 

for the coherent field into an ordinary differential 

equation. 

2.4   Of UM  SOLUTlOit METHODS 

In addition to the two categories of solution 
i 

techniques described above some work has been carried out 

by energy transport theory and also by information theory 

concepts [Kreaa,  1968].  The energy transport method 

[Vateon,   196SJ considers scattering by individual scatterers, 

and results in a set of coupled multiple scattering equations. 

In the inforruition theory formulation [Kreca, 

1968], an attempt is rade to obtain closure of the 

stochasticajly nonlinear wave propagation equation without 

use of a perturb:ition expansion or invoking any closure 

assunption:-.  This nethoi has been useful in statistical 
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mechanics, but has not yet been significantly explored for 

scattering problems. 
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3.  STATEMENT OF PROBLEM 

In recent years, research work in random scattering 

has been carried out for one-dimensional plasmas, not 

necessarily because there is a correspondence to a physical 

problem, but because insight is sought for the more 

realistic three-dimensional geometry.  It is in this  spirit 

that we shall confine our investigation to a one-dimensional 

problem, even though there is a direct correspondence to the 

physical situation of reflection of vertically directed 

radio waves from a turbulent ionosphere.  The analysis may 

in fact, bo easily extended to oblique incidence, but will 

not be considered here, as it would only introduce one 

additional variable into a result whose analysis is already 

burdened by a large number of parameters.  Propagation will 

thus take place in a layered-inhomogeneous medium whose 

properties only vary along one axis of a rectangular 

coordinate system 

We will consider both wave reflection and 

transmission by the random inhomogeneous layers, and to 

obtain a rigcrous solution of this problem, we solve the 

one-dimcnsion.il scalar Hclnholtz equation, subject to the 
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appropriate boundary conditions.  For a wave of unit 

magnitude incident from the left these are [Stratton,   1941, 

Chap.. 9] 

•fens - i. *' * r>. 
z  -> -»,   |(«) ■» e"^0'' ♦ ffe"^0" (11) 

I ♦ »,    »(JO - f/*»*, (12) 

where J? and 2* are the reflection and transmission 

coefficients, respectively, which are to be determined. 

Because of the difficulties involved in using the 

smoothing equation, we have chosen to initially investigate 

the problem of a very inhomogeneous and random plasma by 

the perturbation method with an exact Green's function.  In 

addition to providing results for a restricted parameter 

range, such a technique should yield insight into solving 

one of the wider range formulations.  We will determine the 

scattering coefficients for a particular distribution of mean 

layer properties (discussed in Section 5), and for particular 

values of the relevant stochastic parameters. 

As a means of providing confidence in our result, 

we will compare our work to the computer experiments of 

Hoohstim and Martens   [1969, 1970] for an appropriate 

selection of parameters. 
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Although ve have chosen to examine the case of a 

plasiia medium, the analysis may be easily applied to the 

propagation of acoustic waves in layered turbulent media, 

or the propagation of electromagnetic waves in a randomly 

fluctuating real dielectric, such as might represent the 

troposphere. 
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4.  ELECTROMAGNETIC UMTS PROPAGATION IN PLASMAS 

The governing equations for elcctrouagnetic wave 

propagation are the Maxv.cll equations, [e.g., Stratton,   1941, 

Chap. 1; Ramo  et al. ,  1965] 

f « r • -ar/at   (A)   f • F • I  (C) 

(15) 

v « f • 7 ♦ a7/ii (10   v • I = o. (D) 

By simple manipulation, the Maxwell equUions eta be reduced 

to a vector Ilelmholtz equation for the electric field. 

First, by assuming a time dependence of the form e"la,c, and 

taking the curl of (13A), we obtain 

7 x v x r « iup0(o - imt*)S 
(14) 

■ u)2y0(e0 ♦ ia/u)L'. 

An effective  dielectric constant [Papa3,   1965] can now be 

defined by 

c't0*ic/u. (15) 
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Equation (14) no*.. becoMi 

7 x V x i-   m   u) ^ u . e i1-'. (if-) 

Fro::i the staiu!ai\l vector identity [C.JJ., Brand,   1957] 

v x v x ;r = v(v • A)  - g»4 (17) 

liquation   (Hi)   becomes 

vC-   • :)  - v?/; U)2Vi    c.^. (IS) 

The field wctors D ami I are related by the constitutive 

relation [r.ratijK,   1941, Chap. 1] 

0 - ct. U9) 

Equation  (15C)   now becomes,  for a charge free region* 

v  •  K :; = n, (20) 

*A11 effects of plsfaa free chargtf are contained in the 
Conductivity andi subsequently, in the effective dielectric 
constant. 
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Thus wc obtain 

Equation (IS) is now written 

The clectroraagnctic wave number k  is defined by, 

so that (23) now becomes 

21 

fC • f ♦ ct • JT • 0. (21) 

I • S '   -Ve • r/c. (22) 

v^; ♦ u2u0c;: '  »fpt • 'i'/t]. (23) 

k2  '  W?M0C, (24) 

(V? • k?)E   • -V[V^ • L/K]. (23) 



I.quation   {23)   is  the   inlio:..oj;cnccns  vector Ilclr.iliolt:  equation. 

For plant  v.ave  propagation perpendicular  to  tlie  refractive 

index  gradient 

fk 0, (26) 

anJ  any  ciMiponcnt  of E may be  represented  by  tl>c aaalav 

Htlaholtl  etpKition 

(v2 ♦ kS)|  «  o. (27) 

The  horentz  Model  of  the plasiaa  conductivity :.iay be  derived 

by considering   tlic notion of a  charged particle  in  an 

electric   field"   \U$a%d tmd  '..'havlor.,   1965).    A onc-diMcnsional 

•quation for  the forces on such a particle can be written 

•1 

mi •#l    ■   v^.r, (28) 

*A i.ioio  exact   derivation ot   the  plasi.'.a  conductivity  lias  been 
givon b)  Jatan   [1969] i  ind   Includol a ciiscMssion of  X.\\c 
validity of the Lorenti ;.;oi!ci for radar tpplicationo« 
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The second tenu on the ri^jht haiul side corresponds to 

viscous darapinj by the electron-neutral particle collisions. 

The steady state solution to (28) for oscillatory fields 

is given by [e.g., nainville,   1964, Chap. 8] 

x  *  e'/r.v (V + : v). (29) 

The current density, J, is defined by [Stratton,   1941, 

Chap. 1] 

J  ■ or. ■ -ne (30) 

The conductivity, a, is then 

o « ne2/n(v - £u) ■ (?2e2/w)[(v + tu)/(v? ♦ o)?)].      (31) 

The effective dielectric constant,  defined by   (13),  becomos 

£   E    E, 

K/u)? 

1   -  —*    • 
1   •    (v/w)2 1   •    (v/a,)? 

(32) 
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wlicrc   tlic  angular ptttmM  frcm-icncy,  u   ,   is defined  by 

[Kcloü,   1964] 

u2 - '. ic2/; t.. (33) 

A nor  lizcd plasma frctiucnc) Q , and collision frequency 

P   ire dcfincJ as follows 
I 

'1P   ' »pf*   i   "c B v/u. (34) 

where M is the angular wave frequency.  Plasmas for which 

n  <1 arc usually referred to as being uuderdence,  while 

those for which Ö  >1 are called overdence. 
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S.     THE  EPSTEIN PKOFILE 

5.1       THL DE'TERt-IINISTIC LAYER 

In this  section, Wt shall  basically follow the 

analysis outlined  by   Brekhovskikh   [1960].     The aim of  this 

derivation is  to  transform the wave equation  (27),   into an 

equation whose solution  is already known.     As will be seen, 

when the inhomogeneous distribution is  that which was 

studied by Epstein   [1930],   this  transformed  equation is 

the  hypergcoiuctric  equation   [Whitiaker and  Watson,   1965], 

The  logic of our derivation,  however,  will  be deductive, 

since we will  start with the hypergeomctric  equation,  and 

show how this  transforms  into the wave equation. 

The hypcrgeonetric equation is  given by 

d}7 '    cd-cj'      Ji ' ai-o      s c' U5J 

Let  trar.sformations  of  the  independent,   lad  dcpeiulcnt 

variables be given by 

(3 6; 
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The Jcrivativts  uf f OCCIirriag  in  (35)   arc  tlicn 

dr     dr 

.12: 

TV 
d?i' 

"   H    dr. ~ *   r d*Z \^]2 ♦ ,**   <L2*, 
a^j da     dt? 

(37) 

Substituting these into (35), wc obtain 

(38) 

In order that (35) be equivalent to the vavc equation, the 

coefficient of dfid%  must vanish, ov 

2 ^J. 52 ♦ i»S. £ 
' dK dl        d?.- (l-O  i;  UTIl S (59) 

Equation (59) is I separable differential equation of the 

variables p, and i,,  nad is readily integrated to obtain the 

transfornttion 

>• - :•,(>/ h]  ( fl - (v- i-B-t)/j --Y/2 (40) 



27 

The function P(a) has not yet been specified, and is, in 

fact, arbitrary.  The wave equation is then written 

d^Zldz1  *  *2(a)Z - 0, (41) 

and now the function k2is)   is given by 

kHr.) 

where 

/i J2 (   j/'i   ir if, nwn 

Ui   -  yiy-Z) 

4;:2  « l-(u-2)2 + Y(Y-^ 

4;:,  ■   (o+.vy)2  -   1 • 

(42) 

(•15) 

In order to make the analysis tractable, Epstein 

[1930] chose for the transformation of the independent 

variable, the simple function 

K«) nz 
'6        . (4-1) 



The dtaloctric distribution in i-\2)  tlicn boconta 

- (■•) - ■•11 tlV5] (l*«««)»J' (45) 

where   the   three  neu   constants  kQ, .'!,  ff  .lave  been defined  in 

tcri;s  of  .'.j ,   f-,   :'3   as 

ikl/rt*   *   1/4),   * -•U:0/'O
2-V.      (46) 

In  oiJcr   tu  further  WXBniUt the dielectric distribution,   a 

layer  thuluiess parareter 5 will   be defined  as 

5 ■   2kQ/ri. (47) 

To deteiiiine tlje paranetcrs a, e, y,   the equations 

(43) are first solved for these in terms of the constants 

(l, A'2, Jt}«  TI.e paraneters ■, 3, Y arc then related to the 

inhono^ciuous distribution through (46) and (47) to obtain 

! ' 

■■1*[1 

i * ••.■. 

\s 

J ■ 

tsu - (i-r)*i)/: 

(48) 
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The distributiün of (45) is most usefu] when either S  or N 

is taken to be zero.  In the former case, the distribution 

is called a symmetric distribution since it represents a 

space filled with dielectric symmetvically distributed about 

z  *  0,  with free space condition as Is|->-». 

The case M ■ 0, represents I transition layer noins 

from free space comlitions at minus infinity to an arbitrary 

value of dielectric constant at plus infinity.  The parameter 

S [defined by (47)] is representative of the rapidity of 

this variation, or in the case of the symmetric layer, the 

width of the layer.  Both symmetric and transition layers 

are displayed in Fig. (1). 

The transformation (36) maps the entire real axis 

a (-<»,«) into the negative real axis C(0,-«), witii 3*0 

corresponding to 5 - -1. 

The hypergeometric equation has 24 solutions. 

In the region |c|<l (2<0), a linearly independent pair of 

solutions is given by* [Erdölyi  et  at., 1953] 

*That fj is a solution of (35) may be verified by direct 
substitution.  By virtue of the fact that the solutions 
(49) are two po-.er series tehich begin at different powers 
of ^, they cannot Ic proportion^] to one another.  :•' tnd 
^2 •?• thus linearly inJcpcndent. 



^n 

. 1 
F(a-Y*lf e-Y*l; :-Y; OI 

whcrL- -•'( i, ti   fi   i)   is the hypcvj;,couc trie function defined 

by . 

V     YCV*1) 1** 

a(a»n(a»:)2(S»n(3421  . 
Y(Y*I)(Y

+
:) i-T-.i  * + ••• • 

(50) 

In order to obtain the cerresponding solution in 

the region \:.\>l   (**()), the hypergeoiuetric function must 

be considered as the representation in the region l^^l of 

an entire function.  In order to find these solutions of 

(55) corresponding to those in U|<1, it is necessary to 

determine the representation of this entire function in the 

region |:;1>1.  This procedure is illustrated in Appendix A 

and it results in the following analytic continuation 

foraula for the hypergeometric function in the region 

Ul>i (->o) 
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-a.. 
Fia,l;c;r.)  = ^(-a) "f(a,l-^a;l-fc*a; I/«) 

♦ fft(-«)-*f(l>,l-a4i jl-a*J ; I/»} , 
(51) 

where 

r(a)r(t'a) 
Cl = rß)r( 

r(cjr(a-i) 
^ " r(a)r(tf-i) 

(32) 

The solution to the reduced wave equation with an Epstein 

profile can thus be written down as 

^ < n 

0 1 

2 >0 

x r(o-Y+i,p-Y+i:2-Y;0 

-a' 
• ,(-«)  "(a,l-Y + a;l-3-ta;l/0 

+ B -ß-. 
^(•CJ :•(;?.i-Y^;1-«*;;.!/;)} (35) 

,-<,   -:'.-(Y-I)/2M r%(l*a*5-Y)/2/ ^0?+(O = w  C       (l-c.)      w  { 

8,(-C)y"a"lr(«-Y*l,a;a'0*l;l/c3 

+ B|>(-«)
Y"ß"li,(8-Y*l,ß,ß-tt*l;l/OJ , 



S2 

whore 

Pi 
r(Y)r( - o 
r(e)r(Y- o 

r(:-Y)r_(.-u) 
rc.-YMji(i-a') ' ''♦ 

r(a)r(Y-ß) 

r(«-v*l)r(i-ß3 

(54) 

Tlic ci^y:;;i)totic fonas of tlic solutions as |s|->'" 

can be easily evaluated to be 

201.(«)*«"
V(-l)i5/V*0' 

**,.(*)**'* ('D 
miS/9      milt       - 

02 

:M+(::)-- 'M) 
ir/2 

(A i * 
t;^:; 

c r+(")->•.   (-1)       I*,«   1 

+ i* 

+ c, f 

n 
i fi 1 

} . 

(55) 

Note that as g-»-« eacli solutio:i is in the form of a 

traveling; wave, one traveling to the ri£,ht, the other 

traveling to the left.  As z-**,   the  solutions are made 

up of linear coubiuations oT travciins waves.* 

*Tlie pair of solutions (4P) picked as independent were done 
so for conveniencei as they are not tlic only independent 
pair.  The Imposition of boundary conditions would force 
the equivalence of all the arbitrary pairs of independent 
solu t Ions. 
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A comparison of (24), (52) ami (45) will show 

that ior the distribution profiles of electron density 

the paraneters N and V are given by 

M  *   N  *   B* |(WO#)/(l«Ot)]. (56) 

where B.  is the Mixinun value of plasRM ficuuoi\cy for tlic 

distribution.  For both types of distribution profiles, the 

collision fvequency will be considered to be constant, and 

for convenience in considering both distributions, our 

equations will only contain ;,', knouin«; that N ■ V« 

Also, the 2-variation in mean prüpertics will be 

written 

c /(1+c )  = tf(aj (57) 

where 6=1 for the transition layer, and 6 « 2 for the 

symmetric case. 

5.2   fBE  TURBULF.UT  LAYER 

In considering tli.e propngation through ■ turbulent 

plasma layer, we assume that the distribucion of electron 

density can be rogardod as a continuous fluid and thr.t 
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i it   arc wooth tnd slov. (though raiuloinj fuBctioaa of 

space and tiae [o.g.i tttVclf,   1968],  By this, ivc ncan that 

the tine scale of turlmlcnce [BiHB0,   1959] is significantly 

longer than the tine necessary for propagation across a 

diaonsion Characteristic of the layer thickness.  Wc may then 

Mri*< ' •' the  ( [uation for a particular realisation of the 

ti' '•...;•:>:, 1967] so fnn.ie.I.  V.'e also assin.ie 

that ♦''  '""•••  ''• is stationary, i.e., the statistical 

proi>'^ • ; ■ ?r *' ■ nodiun are not functions of time [BßckßMnn, 

1067]   \ socoml, spatial, er.su.ible is formed by the electron 

rfonsity SS a function Oi    location at ■ particular time. 

1 changes of electron density are governed 

I>; l»|di dynaii)i< . tuiuuiencei v.e assume that the time and 

»pari  iisembl«     ?'Oth stationary and equivalent [deWolf, 

M  1. 

The distribution of electron density n,  will he 

r,ts as follows 

n  = «0(s) ♦ n^a,*) (58) 

vliPTi^ 

«0; <«,> = o. (59) 
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The brackets < >, represent an ensemMc avcra^in^ process 

[Beokr:a>:n,   1067].  In Jescri bins t'10 turluilcnt i'.eJ iui:i, v.e 

shall have use for the follewiRf parnmcters:  the turlmlent 

intensity c, where 

c ■ <ttf>/nA, i ' '-o (60) 

and   the  normalized  electron density  fluctuation  n,   where 

(61) 

The fluctuating component of electron density is then 

written 

H|(«) ■ ft0(«)cn(jO (02) 

We shall restrict tliis analysis to homogeneous 

turbulence [BinMt,   1958] by taking 5 to be constant 

throughout the plasma region. 

For notational convenience in this s^.tlon, we 

will write the squared wave number k2,  as being composed of 

a mean non-fluctuating component and a random component, so 
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tli.'it we writ« 

K       ■    X £ IK    ♦    S K ] (05) 

The  exact   ten.i  corrosjicnJcnce of  tiiis  expression may  be 

obtained by a cMparison of  (SS)|   (31),   (15),   (56)  anJ  (58) 

The nave  equation   (41)  .;iay  tlius  be  written in the  foru 

id*/dz*   ♦   ^[<   *   Ö.]};   =   o. (64) 

V/e  take   the  ttfiK^   ton:i  to  be  a  source  terra,   so  that  the 

technique  of  Llrcen's   function may  be  applied,   i.e.,   after 

writ in^ 

idi/da1 * kl*)4 -kU**t (65) 

the left side of the equation is just that of an Epstein 

profile. 

Let us now construct a Green's function (7(3,3') 

for (65) which is continuous and corresponds to an impulsive 

force at a a a*<  U'e subject the Green's function to the 

condition of out'.oin: waves as |a|*«t  Tims 0 satisfies 
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[di/d'S  • kl«(«))(?(»,»•] = K»-«*), (66) 

with 

u/ j 

By integrating (CO) is'ith respect to ,'J , wc );iay detcrriine that 

0(at«*)| _ , is discontinuous l^y the value I.  The properties 

of the Green's function can then he tunmarized as 

1. G  is continuous at i  ■ :;': 5 i 
■♦ 

2.  C is discontinuous at i „' . < t 
(68) 

We are seeking the solution to the prolleiu 

{i*fd*1  ♦ lit|ie(«)}4 ■ /(a), (69) 

v/ith an incident and reflected wave as »♦••, and a trans- 

mitted wave as s-^«.  These boundary conditions are 

expressed as 



S8 

(7CJ 

where .:: j nay cither be equal to k%   (syi.iiictric layer) or 

different, a.s In the transition layer.  Let "i and "2   ,L>C a 

pair ol Independent tolutionj of the bonogoneout cquatioii 

(:;);.: (71) 

with   the   follov.inj  BsynptOtiC   foriüs* 

Zl(—) 

:•,(•) AiBf 

{*)   r   BiBn 

Z,(—)   =   *«"**•' 

•1"   + -■.« 
■i-t 

• I'1 

♦   *%« 1    }. 

(72) 

The fon;'. of the Green's function can then be immediately 

written down as 

(.,;,•) = fcjZjC»] * :2:2(n). 

(73) 

*Theso are the atyaptotic forr.'S of the solutions to the 
reduced wave equation as given in (S5)t 
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By  applying  the  outgoing v.avc property of  0, 

I ;•. ■ »x r 
i I-   :: 

(74) 

and  then 

c, = C;     ip2 = -Ar2: Ji:^. (73) 

The continuity properties of G,   (6S) , lead to the following 

set of equations 

(7C) 

These yield 

», = -zt(*')/ft': (22 = [-z^^') ♦ W*t/Wi,)z2^,^/V«  (77) 
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where  V ii. the hfronsklan dvtersiMtit  [. tinpitlet  1964, 

Chap.   7] 

IZJ^SJC«) iC«)^,^)!.,,!' (78) 

Since the b'ronskian of the vave equation is constant*, it 

may   be  evaluated  at   any  convenient  pointt     The Green's 

function  i>> then given by 

M^.-'J ' (^V)    iZtWAiUA - 2.(«,)^,(«)M«J 

(7?) 

To  Mike  use  of   the  Green's   function,  we Multiply   (69)   by G, 

•nd   (00)   by   T
v   to  obtain 

»(T  *  kjK(aK<     - ♦«(«•a«) 
(80) 

Subtracting  the  tv.o  equations  and  integrating  over z  from 

•• to ^  the left hand siJe nay be rewritten as 

M'hLs   is   a   special   case   of  Abel's   identity   L-r>;L,c,   1936] 
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(SI) 

while  tlic  integral  containing   the  delta  function may  be 

immediately  evaluated.    Therefore 

f S'] fin)a(»ta') ^s'). (82} 

By evaluating the bracketed term, using the asymptotic forms 

of 0 and (j, and intcrchnngin;j tho variables r.  and 3', tlicn 

♦ («) ■ t.U)/A 

where 

\ttw*B% *  1 rvwt*)d**t 

z<z' 

«>a' 

G(z' tz)   '  9t(M\a)   ■ (2i^0B)-
1 

-1 

(S5) 

(84) 

C(2',2) - ^(3',3) - (2ife0B) 

x {z1(^):2(2
,)/^ - Z2(3)Z2(2

,)F2/BBlt}. 

Comparison of (41) and (64), allows us to write 

down the constants A  and B,  and the exact formal solution 

for tho case of the turbulent media.*  Note that the 

*For our situation, (83) does not represent a solution, but 
represents an integral equation in the desired quantity« 
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proper representation of the homogeneous solutions Z1 and 

Z2 depcmls upon whether their argument is greater or less 

than 0. The formal "solution" is thus an integral equation 

for the field |, To evaluate the reflection or transmission 

coefficient of the layer, the field is evaluated at •• or 

» respectively. 

To solve (83J we shall use the Neumann iteration 

technique [Green,  1969] which generates a series for the 

solution of the reduced wave equation at -« of the form 

♦ (-») = eik0z  + [*, + /?! + i?2 + ...]e'iküZ. (85) 

The terms within the parenthesis represent the successive 

contributions to the field reflection coefficients given 

by succeeding iterations of tho integral equation C83) 

(These are physically equivalent to multiple reflections.). 

If the series representation of the reflection coefficient 

is convergent, we may attacli to each term a measure of 

turbulent strength z,   so that wc may write the field 

reflection coefficient as 

■v  '   L 9*3 ♦ t*Bl   *   t2l2  ♦ •••  . (86) 
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The most convenient measurable parameter of 

interest is the average power reflection coefficient 

defined by 

R  = <RvP.i>, (87) 

Using (86) and retaining terms to order e2 in smallness, we 

have 

ft   -   <jPo|2>+<^JPi> + .cn.-,o> + <lJ?i|2, + <n^2> + <r:^.>i (8S) 

Each higher order of the reflection coefficient R    is 

proportional to an integral over a higher power of the 

random quantity n, i.e., 

RQ   ' oomtant 

«1 '  (.riU'Ms'Mn1 (89) 

The medium properties were split into mean and fluctuating 

components by (58) so that <ri>c0.  Thus <.?0> ■ ff. and 

<ff1> 
x 0. The reflection coefliicicnt to second order is 

then 
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By convention, the reflection coefficient is broken up 

into coherent and incoherent components, where the coherent 

reflection coefficient is defined as 

V    ■ «A > », (91) 

while the  incoherent  coefficient  is given by 

WT   *   <\H      .   <'7   > j2> 

-   <l^l2> «Ätf>|«. 
(92) 

To second order in e, 

W   = l^!2 + 2Re(Äj<Ät>) 

If. « <I^1I
2>. 

(95) 

We shall also make use of the special reflection 

coefficient <I\'> used by Hookstim and Martens [1969; 1970] 

defined as 

</?'> = R 
0 ' 

(94) 
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To second order then, 

<Ä,> « <|ä1|
2
> + 2Re[R*<Ii >}. (95) 

Two iterations of the integral equation (83) 

(which corresponds to .^ + Rx   + R2   in the Xcumann series) 

then yield 

♦ (■) - m^(-l)'i5/2 
i5 

{[Z01(3)-(-l)  Z02(O/ßJ 

+ 2klNt        0(2,)r!(2
,)[Zol(2

,)-(-l)i5S2ZO2(3')/Slt]G(a
,,2)^ 

(96) 

+ ViluO2     | ^(^,)rl(^,)C(2^2)d3, 

x  J g(z')r]iS")[Z0li2")-i-l)iSB2Z02(,z")/B^]Giz",Z')dz"} 
- OB 

where G^z',z)   is given by (84). 

The incoherent power reflection coefficient is 

then given by 

Wj '   imkQ/Z)*\n\H2{ 

m as 

l giznzl2iiz')dz'   j   <n(.^,)n(2")>öC2'•)^c?(?.M)i2,, 



<ttl 

2    f 

•|ti/t%|    J r(«*)flfi(a*)SfaU*)tft< 

I 
^(••)lC»M)»f(«,,)it|(tM)lil(»H)rft« 

f 2 

is ♦   2Re[-2 (-1)^(^2/5 J 

<n(3
,)n(3

M)>^(3")z0
2
2(2-)(fs. 

(97) 

fC'^SiiC«*)^* 

<nC3
,)nU")>^C2,,)z01(2")z02(2")£f2. 

(-l)i25(B2^)2  [f(,»)ijJ(.. Mt« 

< nU,)n(sM)>^(a")z02(s")d3' 

»(•D^IVM^V**) (r(«,)«ciC«,)i.;(»*)rf«' 

<n(^,)nC^,,)><7C2,,)Zo^Cs")^•■]} 
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Thu  Ifj ""•  • fji ;• 1 ••; "j  <n>  'nave vanished.     Similarly,   the 

averas**  inrnl; •■■•nt  transmission coefficient  is given by 

9,0.       , .     I*    t. 

' ••.. 'V^^^Z^f^)^' 

/. 

*   2R. 

j <n(2,)n(2
,,)>&(2',)201(2

,,)Z02(2
,1)ds- 

1      ■" | ^••Klc1)^' (98) 

)   <n(^•)n(2,,)>^(2M)Z02(^")cf3,, 

**?..  ;■■ H-
!
 j giz^zltiznt^dindz' 

j   <n(x;')n(2,,)>a(2")Z0^(2
,,)d2"]} 
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A typical   ten,: of   (98)   or   (99)   has   the  forui 

(99) 

I <-r\iz')r\{x)>giz)ZQiix)Zo2ix)dx. 

txprcssiüiis iMTOlving siuilar tctius arc obtained for the 

coherent fields through the use of (9"^) and (96). 

The correlation <ri(Ä)n(^')> will be assuwed to be 

of the exponential form* 

<ri(-')n(-)> = • 
-blx-i 

(ICO) 

Because of the varying format of the functions 

ZQI and Z02, the integration of a term like (99) must be 

broken into six steps as follows 

*Such a correlation function is inlytically convenient and 
yields a turbulence spectrum which is consistent with 
experimental results [Guthart «t at.,  1966], 
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t(«')fft-(**)tta-(«')«      4«' 
i 

4 

hx 
*    gix)ZQl.(.z)ZQ2-iz)dx 

•'    f(«)it|.(«)lil.(»)Ai 

^(x^Z^.Cx^Z^.Cx^c  ^ cte' 

-ix 
e       ^(x)Z01+C«)Z02+(x^a: 

^(x'Dz^Cx'DzJ^Cx^r^'ix' 
(101) 
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ix' 
gix')ZQi+(x')ZQ2+(x,)e        dx' 

bx 
e     ^(a;)Zoi+(x^Z02+fx)dx 

I 1 fU'^i^CA^^iiU*)«  dx' 

•bx 
x  1 *       g(.x)ZQl+ix)ZQ2+ix)dx. 

V/c carry out the integration of sucli ?. typical term in 

Appcndis' B.    As a result of the algebraic complexity and 

length of that integration, we defer the final expressions 

to Appendix C,  where the results are given in terms of 

certain functions defined in Appendix B.     These functions 

are in general, sets of infinite scries which must be 

computer evaluated. 

The relative simplicity found in the reflection 

and transmission coefficients of the undisturbed plasma 

(;; = 0) does not carry over to the turbulent case, even for 

the restrictive situation of small perturbations from the 

smooth distribution.  To compute the turbulence free 
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reflection coefficient it is necessary to know the field 

only at ••, where the asymptotic forms are simple exponen- 

tials.  In the disturbed case however, the zcroth order 

field must actually be known at every point in space in 

order to sum up the scattering introduced by the random 

inhomogeneities throughout this space.  The exception to 

this complication is the ca.^c for 5-»-0 in the transition 

layer. This distribution then bccüines that of freo space 

on the left of zero and a half space of plasma of constant 

mean electron density on the right of zero. The results 

of this case are of sufficient interest to promote a 

separate discussion in Section 6.1.  The actual results 

of the computer evaluation of the final expressions nrc 

discussed in Section 6.2. 
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6.  DISCUSSION OF RESULTS 

6.1  THE TURBULENT HALF-CP,\CE 

As discussed in Section 5.2, if wc examine the 

case of the transition layer when we allow S+0,  wc arrive 

at the problem of a half-space distribution. The 

half-space distribution lias already been studied separately 

by several workers [Rosenbaum,   1969; Kupiea  et al.,   1969], 

who have made use of smoothins equation techniques.  It is 

not, however, our goal to compare approximate methods of 

solution, but to compare our solution method with the 

exact experimental treatment of the slab geometry [Hochstim 

and Martens,   1969; 1970] (where applicable), and to show 

that, in fact, the solution restrictions which we derive 

in this section, convey proper information about the 

validity of our method of solution. 

6.1.1  Comparison with the Hochstim and Martens Computer 

ExperiiMcnt 

Since the only experimental solutions available 

arc for a slab geometry, comparison with a half-space may 
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be made only for a restricted number of experiments. 

These are, those cases in which the attenuation of a wave 

across the width of the slab is so great, that there is 

effectively no contribution to the reflection coefficient 

made by the second jump in medium properties (i.e., the 

rear of the slab). We have arbitrarily chosen the criteria 

that an experimental slab can be compared to the half-space 

distribution (all other medium properties being the same) , 

if a wave suffers 10 dB of attenuation in traveling across 

the width of the slab. This restricts the comparison to 

the experimental cases which have 1.5> ß > 0.8, Q > 0.01. 
p    ' c 

As S+0,  the constants occurring in the Epstein 

profile solution B\-B^  may be evaluated by using the 

following expansion for the gamma function when s is small 

[Abromowitz and Stegun,   1964] 

r(2) ■ 1/2. (102) 

These constants then become 

(105) 
B2 '  r3 ■>  CY-I)/:*, 
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where X  = +[1-.V]'.  The hono^cueous solution for the 

Epstein transition profile can then be easily evaluated to 

be 

«•i.^C-D^V*»- 

02< 

"0 1 

b     -"'5/7       •?"!•-■ 

02- 

♦m"*(-l)i#/,l(X*l)#ai- ♦ (.Y-l)e-
i?'13]/2x 

■HPI'*(-1)'<#/
2
CCX-1)#

<
*
1-
 + iX-l)e'ikli'-]/2X, 

(104) 

Tlie  exact   integral   equation  is  then 

«<0 • 

♦ (a) - |ft*Ia*(Wfi#)/(l«ft*)]  j «f»*)#(«,)«.f«*9c)« 

♦ ei;Coa  ♦   [(l-^)/(l+^)]c'ifco* 
(105) 

a>0 • 

♦ (2) - ckg[n2(l-?nö)/(l+n2)l j II(«'HC«,)M*,»*H* 

♦ [Z/d^)]^^^, 
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with the Green's function given by 

a'<a 

a   >2 

G   (z' ,2) (2tfc0) '[•' 0     + 
1-^ 
i*jr 

-iknz]   -i kz' 0 

-ik0z 

III   c.(«■''' 

a.<0      ö+Ca   ,a) 

;>• v*'.*) 

(2ife0)' 
-i^os 

(106) 

0 (2tfeo)      [[j^Ji       0    je 

kQXZ' 

"lü     •AU,.«J -  (2i^J-irf^ll]e^o.Y2' + riftfX«n#iktXa 
» >o   • 0 l[x*i) J 

The expression is just that obtained by considering only 

the half-space geometry [c.f., Rosenbaum,  1969],  By 

applying the asymptotic forms as \z\-><»  to the expressions 

for the scattering coefficients, ve may straight-forwardly 

obtain the results for the half-space which are displayed 

in Appendix C. 

6.1.2  Validity of the Solution Method 

Following the method of analysis given by Frinah 

[196S] for the validity of the Eorn series, v.c inoy derive 
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a sir.iihir validity lor the half-space yeowotry w.'.th exact 

Green's function.  Denotin" the successive terms of the 

Neumann series by $ , it follows from the integral form of n 

the Minkowski inequality that 

n2(l-tn ) . 

v 
(107) 

" ^      (1402)    l*J2J !«(••.•)|«A», 

Expression (107) may also be obtained from a 

convergence criteria for the Xeumann scries derived by 

Javeti   [1969] . The expression (107) implies a finite volume 

of plasma, whereas a half-space of plasma extends to 

infinity.  If we, however, allow collisional damping, any 

propagating wave is continuously attenuated and an effective 

volume is created. The final form of the convergence 

criteria will show that when there arc no collisions, our 

method of solution does not yield even an approximate 

solution. 

From (100), 

<?(*'.*) - ••^••V*«I*/aici*i)l dos) 
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and 

!<?(*•.öl - i^imrVM1«, (109) 

The integral in (107) is then given by 

i - (»Ji'li^jrl)*1, 

so that 

(HO) 

l^l|25C7I^?^|1+;f|'lu«12- (111) 

With a complete function space, the convergence of t  |_ 

follows from the convergence of Z ^n
2.  Therefore, if 

n«l 

^/[(l^P^B'il^l] < 1, (112) 
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Lhc rapidly convergent Neumann scries may be used as an 

approxirnate solution to the reduced wave equation. 

Expressing the bound as a limit upon the allowable turbu- 

lence level, we have the restriction 

I < ß'Ci+n^UUa'^ + (e,)2]%/n2.      (ii3) c p 

The limiting cases of inequality (113) arc 

displayed in Fig. (2).  It can be seen there, that the 

restriction (113) is consistent with the physical 

interpretation of the scattering integral equations.  Since 

our Iteration PethoU considers only a finite number of 

scattering events (one event for the incoherent coefficient; 

two events for the coherent coefficients), our solution 

will not be valid when the medium is such as to be very 

multiple scattering.  Such a medium would be one which is 

not very absorbing and of large physical extent, so that a 

wave would not diminish greatly in magnitude following a 

scattering event, and, in fact, could be scattered again 

wit out appreciable attenuation. Obviously, a theory which 

allows for at ^ost two scattering events cannot be expected 

to faitluully predict the scattering coefficients for such 
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a media.  In a plasma, the attenuation coefficient goes to 

zero when Q <1 and Q -*0. As can be seen in Fig. (2), for p        O to  v ; . 

this situation, the turbulence level must satisfy 

c < (nc/^
V. (114) 

Or for a non-attenuating medium, 

| « f, (115) 

i.e., the Neumann series cannot give a solution for any 

level of turbulence, no matter how small. 

In Figs. (3)-(7) we have plotted the results of 

the reflection coefficients for incoherent reflection, and 

the special reflection coefficient <RX>  for the experimental 

conditions of the Hochstim-Martcns experiment.* Superimposed 

are their experimental results for parameter values where 

the slab and half space may be compared according to the 

attenuation criteria previously discussed (Section 6.1.1). 

It can be seen that for the largest value of collision 

*The only parameter not given explicitly in these figures 
is the correlation length.  In the computer experiment this 
was taken to be variable according to the form ka"«/2C . 
This same form has been used in our calculationt« 
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frequency (n «l.O), ti\c tv.o solutions arc in exact agreement 

even for large values of turbulence level, c.  As the plasma 

beco'nes less attenuating for ft <1 (by decreasing the 

collision frequency), our result begins to differ from ^he 

computer experiment at the higher levels of turbulence*, 

and in fact for ::c=0.01 physically unrealizable incoherent 

reflection coefficient arc obtained (i.e., greater than one). 

Such a divergence can be allowable only if the plasma 

parameters are such, rs to render the inequality (113) not 

valid. 

As an example, we have examined the convergence 

situation for ft =1.0, the value of plasma frequency for 

which there is the greatest disparity between solution and 

experiment.  In Fig. (S), we have plotted the ratio of the 

perturbation solution incoherent reflection coefficients to 

those of the computer experiment, as a function of turbu- 

lence level, ; and collision frequency, ftc.  In addition, 

we have pJottcJ the bound given by (113).  It can be seen 

that, i..' we do, in fact, restrict the region of validity to 

that given by (113), then the reflection coefficient will 

Mhis varience is because of our solution method, not because 
the hall space and slab cannot be compared.  The 10 dB 
attenuation criteria is still met. 
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differ by no more than 1.5 dB from the exact solution. 

Speculation has arisen over the reason why the 

reflection coefficient <i?,> takes on negative values. 

Hoohstim and Martens   [1969] report that this is due to 

negative fluctuations which near Q =1 decrease the mean 

reflection coefficient more than positive fluctuations are 

able to increase it.  Adtlitional speculation lias attributed 

these negative values to the integral wavelength slab 

thickness chosen by Hochstim and Martens.  U'e do however 

sec in Figs. (6) and (7), that the same phenomenon is 

observed for the half-space, negating this last presumption. 

It is ou^ opinion that this negative value is due 

to the average additional path length traveled by a wave 

which has undergone two random events, compared to the wave 

which has been scattered by the mean distribution.  By 

examining (90), we see that since <.l?l>"0, a double-scattering 

term 2 Re{R\<R2>)   is the lowest order term which can yield 

a negative value.  Since this term is of the same order as 

the incoherent term, <|ä11
2
>, it is not surprising that 

their sum, <K'> takes on negative values for some region of 

parameter space. 

The following piMMMVf condition for the validity 

of a perturbation technique for the slab geometry l.os also 
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c2 << l(l-n2)2 * n2]/p>. 
P    <?  P 

(116) 

Such a );..".,.';; ;r'j condition is of limited use, however, since 

expression (116) can only tell us that the technique night 

be £1  )d. As an example of the confusion such an expression 

raises, let us examine (116) for LI <<1 and P.n<<'l. 

Inequality (116) can bt seen not to restrict the volume size 

in any manner as the plasma becomes nouattenuating, a case 

for which the perturbation solution obviously breaks down 

with a larae enoueh voliuio. 

6.1.3  Calculations 

In Pigs. (9)-(ll), ve have mapped the incoherent 

reflection coefficient as a function of plasma frequency, 

with collision frequency and correlation length as 

parameters. The plots are all similar in form, although 

there is a shift in the value of plasma frequency for 

maximum reflection (This value decreases to Q =1 as Q -»-0.). 
P      a 

The shift may be related to the onset of surface 
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scattei-iug* with the increasing opacity of the plasma, 

as the plasiaa frequency increases. A psueJo-surface is 

formed which transmits a decreasing amount of illumination 

as the plasma frequency is increased, because of absorption 

and the Shielding of the inner plasma froiii illumination 

(and subsequent scattering). 

For values of plasma frequency greater than that 

of maximum incoherent reflection, the incoherent reflection 

coefficient is relatively insensitive to changes in 

correlation length. Where this docs occur, the skin depthv 

of the plasma is shorter than the correlation length, and 

the fluctuations in electron density are relatively 

uncorrelated (because of the large absorption over the 

distance of a correlation length).  Vv'e thus expect a 

saturation with increasing correlation lengths. As can be 

seen from Figs. (O)-(ll), at a given value of plasma 

frequency, departure from the saturation values of 

incoherent reflection coefficient first occurs for the 

*Surface scattering is scattering primarily from a thin 
layer of plasma, with very little transmission through 
the layer. 

tSkin depth is the distance to which a wave will travel 
before its amplitude decreases to 1/e of its original 
magnitude [Corton and Lovvain,   1962]. 
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lowest Value of correlation length, which is consistent with 

the above explanation. 

6.2   The  Turbulent   Transition and Symmetric  Layers 

In Fi^s. (12) and (13), we give the incoherent 

transition layer reflection coefficient for two values of 

collision frequency (0tf = 1.0, 0.1) with the layer thickness 

S as a parameter. The correlation length is taken to be 

ka  ■ 1.0  Proa Fig. (13) for nc " 0.1, it can be seen that 

the effect of increasing the transition layer thickness is 

to decrease the reflection coefficient in the underdense 

regime, while shifting the plasma frequency of maximum 

reflection to higher values. Fig. (12) also displays the 

decrease in underdense reflection with increasing layer 

thickness, and from a comparison with Fig. (10), it can be 

assumed that at higher values of plasma frequency, the 

reflection coefficient also peaks and drops off for a 

collision frequency of B ■ 1.0. The decrease in incoherent 

reflection with increasing layer thickness can be attributed 

to a decrease in the overall electron density distribution 

as the   layer thickness is increased [c.f.. Fig. (1)]. The 

shift of peak reflection may be due to the incident wave 

propagating farther into the plasma (because of the reduced 

level of electron density at a given point), and effectively 
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seeing a larger volume of plasma before encounterirg surface 

scattering. 

In examining the symmetric layer in Figs. (14) 

and (15), we see that the incoherent reflection coefficient 

increases with increasing layer thickness, both for the 

underdonsc and overdense plasma.  This variation is 

consistent with the observation that the reflection 

coefficient should approach zero as S+O, for then the plasma 

distribution occurs at only one spatial point. 

Although we have presented results only for one 

value of correlation length, we feel that Figs. (9)-(11) for 

the halfspace, may be used in conjunction with Figs. (12)- 

(15) to obtain a feel  for the results in the more general 

case. 

6.2.1  Validity of the Solution Method 

In Section 6.1.2, we presented a validity 

condition for the plasma half-space.  Since that case 

represents the largest inhomogencity in electron density 

(the finite step), it seems reasonable that the restriction 

(113) should insure a valid transition layer solution when 

S>0, although it nay then reproscnt I conycrvativo estinnte. 

For the synnetric layer, lllS) represents an even more 
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conservative bouivl,   for   in  the  syni'.etric  case,  wc arc 

dealing with  I  VOIUMC  whicli  is clr.oot  finite. 
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7.  CONCLUSIONS ANÜ UOONNBMMTIOM 

In this research paper, we have attempted to 

advance the field of turbulent scattering into the area of 

generalized plasi.ia distributions.  The price paid \.as the 

necessity of dealing with a Green's function which was not 

of the convolution forr.i, and because of the complexity of 

this function, we restricted our analysis to the most 

obvious perturbation solution method.  Iv'e have shown that 

even such a simple method applied to the problem of a 

randomly inhomojiencous medium yields results which must be 

computer evaluated for examination.  Over the parauetcr 

ranges which we considered, we obtained no results which 

could not be plausibly explained on a physical basis, and 

where comparison with experiment was possible, it was much 

better than one might casually anticipate in applying a 

perturbation technique. 

Because of the complexity of the lowest order 

perturbation solution, we do not recommend further investi- 

gation using such a procedure.  Although additional computer 

calculations mi^l.t bo made, we believe that the section of 

parameter space for which we have presented calculations 
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includes those regions where unusur.l effects Might be 

observed, und  for \.iiich our solution is valid. 

We do however, believe that the Epstein profile 

offers sufficient advantages in studying inhouogencous and 

random media to denand further research effort. The 

relatively small paranutef range allowed by our bounding 

inequality docs not permit a valid solution for the useful 

case of a high altitude re-entry wake (in which Q »0).  The 

smoothing equation discussed in Section 2.3 has been 

successfully applied to a number of collisicnlcss plasmas, 

while a modification of the smoothing technique has shown 

exceptional promise in comparison with experimental data 

[Jarcm,  1970].  Although these techniques are rather 

involved for even simple Green's functions (e.g., the plasr.a 

slab), we feel that a firm understanding of randomly 

inhomogeneous scattering processes dictates that one of 

these methods be applied to the I-pstein profiles.  As a 

possible start, investigation could he made into determining 

a transformation for the Epstein profile equations which 

would have benefits equivalent to those of the convolution 

forms in Fourier transfornaticn. 

Numerical techniques which have been developed to 

solve the lOVOtt order MOOtKing equation [iM$9ttbt   1971], 
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could be applied for special cases to the Epstein profile. 

Such a technique would d.rrectly make use of the Green's 

function obtained in Section S.2. 

An additional topic which could be usefully studied 

with the assistance of the Epstein profiles is surface 

scattering and its associated effects.  Sucli an investigation 

would be valuable even without   including the effects of 

turbulence.  The choice of a proper effective  surface for 

scattering formu]ar?ons based on surface scattering [e.g., 

Jarem,   1964; Wasnooki,   19C8] has been carried out rather 

arbitrarily (One method employs a skin depth criteria 

[Pergament et al. ,  1967].), and we thus recomnend that a 

more comprehensive investigation of nonturbulent surface 

scattering be carried out using the Epstein profiles.  A 

subsequent study might investigate turbulent effects. 

Finally, we conclude that the primary value of 

this research paper lies in its action as a prchcticn  to 

determine the difficulty of the considered problem.  We are 

hopeful that these results may give one an insight into 

the next appropriate approximation to apply (e.g., by 

considering the asymptotic functional dependencies), which 

might eventually produce l more goncrnl and efficient 

solution. 
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HOT 
RtPROOüC\BU 

APPFNDIX A 

RP.PRF.SFXTATIOM op TM iiYPii:u;!:o:ini     noü 

Let us  cxanjnc  tlic   Integra]   [." :'czhbaoht 

1953] 

i  - (2„i) Y~~T(c~t) r'-1 (Al) 

where tlic path of integration is C!IO;:CI. > .c leg of 

the integration patli extendf over tVu tti -►'■■, £«-) ar.J 

the poles of tlic functions r(c + t) aiu' I' to tl'.e left 

of the path of inte-iratioii and the polo. unction 

r(-t;) lie to the right of the path.  To r tlic 

remainder of the integration path let U1        the 

integrand for |t|-»-<». 

F-om Abronoüiiz  and $$*gUH   [!-        atyaptOtiC 

form of the |tHM function is given -y 

r(t+1) FT« r^e'*'1^ (A2) 



RO 

Usinv;  tlic  relation   [Dtight,   1961] 

then 

ami 

Let 

then 

r(a*l)   - aTia), (A3) 

r(a*t)   -   (a+t)     r(a*t+l) (A4) 

r(a*t)  j-J  (2ir)  e t (AS) 

t • Ä«ie;  ■ - r/* , (A6) 

r(a»t)r (/>♦j^) 
r(c+t)r(r+t) 

l+e-5-6 a+i-c-i   i(a+t-c-   )e ,.,N e R • i (A/) 
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and 

(A8) 
(-«)    ■ exp{/?[cos Sin r-U-w)  sin e] 

♦ iÄ[sin ein r ♦   U'Ocos  9l>. 

(sin nt)      •  sin -t   I sin it I 
(A9) 

nR sin e  tu/? cos  e         -*/? sin 9  -ivP cos  0 
.   (Zi)'1  1- i ^-1 J  

sin2(irÄ cos  e)  ♦  sinh2(Trff sin e) 

By letting /?-►", then 

(sin irt)   -* 

-2i  r11 sin Vtf cos  e       »>0>0 

,2i ei,R sin 1^1«« cos  0      .t<e<o. 

(A10) 

Thus, denoting the integrand of (Al) by I 

|I | - 2(i?AOa+b'0" Vln r cos e (All) 

0i2ii-4)R  sin 9 .1,<e<o. 
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Tlicrcfore,   for   In f  <   C   (Uj   <\),  and  -i/Z <   0   <   Tt/2, 

closure of  tlM   integral   in  (.Al)   in the ri<iht half plane 

dees  not contribute  to  the value of  the  integral.     Thus 

i- 

(2 Mi)'1 <}  Ig  -   (2nt)*1     ) 'f (Al 2) 
•i« 

and evaluating th integral of (Al) by summing the residues 

at the poles encloscvl by the integration path of (Al), we 

obtain 

1   r(c+«)r(l*n) l *' * •' • 
n"6 

(A13) 

By writini; out several tcrins of the scries in (A13), wc can 

recognize that t'ne teri.i within the brackets is just the 

hyper^coiittric function, 

I - LL«lr_M (!♦ ^P-z  *  ilillUXlliU« • •••},    (A14) 
rfc)      c-1    e(c+l) 2.1 
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or wo thon have the rcprebeutation 

I  - lr(ö)r(h)/r(e)]f(a,b;c;a). (A15) 

Similarly, closure takes place in the left hand 

plane when l3l>l.  In this case evaluating the integral h/ 

residues gives the following esult 

I - I^Ü-r-(-5l (-,)-cf(a,c-«-l;b-a-l;l/«) 

(A16) 

The two scries, (Al5) and (A16) are then representations in 

different regions of the integral function in (Al), 

Equivalently, v.c nay consider the two series of (Al5) and 

(A16) to be the analytic continuations of one another, and 

we may write the forinula for this analytic continuation as 

F(a,fc;e;a)  • ffl}ffil|fl   ("a)'aF(a'c'a-1 ■•2,-a-1 ;1/^ 
(A17) 

^  r(c)r(a-fc)   ,     \-hr:it,       ,   -       ,   1.1/   ^ 



R6 

j ftHT1   l•tCc•)•••Cf•>iC, 

■ 

r 

The lomojcnnous solutions 20l, Z02 arc given in (53). 

Because of the products of these solutions occur in the 

integrals of (1^) , the nur.her of individual terms is in- 

creased considerably above the six of (53).  Hence, only a 

generic term will be evaluated for each of the six terms 

in (133), and will serve as an example of the integration 

technique.  These six terms are given by 

- J (c,)'b/m(l-c•)i**F•(o,ß;Y;c,)^*(a-Yn•,e.Y♦l;2.Y;c,)dc, 
0 

y 

f, - J (c,)b/'^(l-c,)/1*f*(a,8;Y;c,)f*(«-Y♦l,ß-Y♦l;2-Y;c,)<fc, 

■ | r6/m(i-oMo.ß;Y;0.l,(a-Y*i.ß-Y*i;2-Y;Odc 
I' 
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APPENDIX B 

EVALUATION OF TM SCArTERING INTI-iGRALS 

In tnis appendix, wc shall evaluate a t/pical teru 

whicli occurs in tlic cxpicssiüiis Tor tNc reflection anJ 

transmission coefficients, nar.iely 

• m 

Lx^Z^Cx^Z^C')^'  L-blÄ-x,l^(x)Z0l(x)Z02tx)dx.  (Bl) 

-• mm 

This term must be broken dewu into the six terns given in 

(102).  In that equation, we make the substitution 

C • -•wx. (B2) 

so that (Bl" becomes 

-» 

.2 f f tt*\'btm 

m { I (i-O^ ZotCg^ZoSCOdc' 

t   -b/m 1.b/m 

(B3) 



87 

f. -       (c,)b/'^(l-c,)^*^*(al8;Y;c,)f*(«-Y♦l.ß-Y+l:2-Y;e,)^, 

0 

(B4) 

-1 
x   F(o,a-Y*l;a-ß*l;l/0^ 

ff     -      f   (c'D^'^^^^^d-O^VCa.a-Y^l.a-ö+l^/C) 
I 
0 

x   P*(a,a-Y*l;a-6+l;l/5,)rf^ 

-I 

■    ( ^/w(i-0^(a,p;Y;OF(a-Y*i.3-Y*i;2-Y;c)dc 

j    - (5.)^■:?•»-l-b/w)*(l-c,)i4*f*(o,a-Y♦l;a-ß♦l;l/C,) 
0 

?• 
cY-2a.l^/m(1.o>lf(o)0.YM.a.p+1;I/o 

x f(o,a-Y+i;o-ß+i;i/c)dc 

-      [   (O^-^-^^^d.C'/Vco.a-Y^l^-B-l;!/^') 
0 

x  F*(a,a-Y♦l;«-ß♦l;l/5,)^, 

.      (   r,Y':a"1"fc/'r(l-C)4F(a,a-Y*l;a-ß*l;l/0 

r 
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The first integration (over 4) can be categorized 

into two types: 

Type I   0  0  ci 

V     •!  -I 

I  -l  c' 

Type II (B5) 

f ; j ; j cB(i-c)4f(a,8;Y;l/Of(a.fc;e;Vüic 

-- I« 

B.l   THE TYPE I  IUTEGUAL 

From Erdilyi   [1953], 

F(ath\ö\»)  - (l-«)*fcf(fc,ö'a;ö;[-a/(l-«)]).       (B6) 

The integral representation for the hypergeonetric function 

discussed in Appendix A  will be used to represent the two 

hypergeojnetric functions occurring in (B5), i.e., 

(B7) 

x 

-i- 
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where the contour of inte^rution is taken so  that one leg 

of the integration path extends over the interval (-i«, i") 

and the poles of the functions r(a+t) and r (£>♦£) lie to the 

left of the path of integration and the poles of the 

function r(-t) lie to the right of the path.  Employing a 

liberal exchange of integration order, we may write (BS) as 

•       •• I ^c^+t,)^fö-a♦t,') 
ft{M)     J u r(0^') } n-t')dt' 

-I» 

i- 

r(Y+t)    n-t)dt 
■t" 

f B*t*t\ A-fi-b-t-t' 
J c    (i-O      di. 

The integration over ( is tlien given by the integral 

(B8) 

i- \^t*t\i-aA'&-b't't,d,. (B9) 

From Gradahtitoi and Rjzhik   [1965], 

il'x)'^dx  ■   -ullvi"1Frv,M;l + p ;u) , (BiO) 
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and by using (BO), this becomes 

0 

w (Bll) 

x F(y,l+y-v,l+w,[-D/(l-w)]). 

The integral over the definite limits / is just a special 

case of (BIO), vhile the Integra] over the limits  /' can 
-l 

be broken into two parts as follows 

g  0  0 

-i ■! (B12) 

All three integrals of Type  I  can thus be treated in the 

same manner.  Our Type  I  integral thus reduces to the 

following double integral 

If - -*(2irtr2U7(l-5')]S+1 

x 
f rfb+t'lrfc-a+t') t1 
J '  rUt') )  rC-t')[57(i-5')]* *' 

X J   r(Y^)   r(-t)CcV(l-c*)l 

(B13) 

x (B+l+t + t^'^CB+l+t + f ,/l♦??+2-b-ß;5+2+t + t, ; [-£ V (l-C ') ] )^t 
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Evaluation of   thota   integrations  can be  carried out   in 

the  manner  of ApptndUs A.     Following  the  first   integration, 

we have 

1° - •f(it<riu,/(i-c,)ifM 

Ukut^^n n-wni-nf 
•♦• 

(B14) 

*   iB*l*t'*l)'  FiP*l*t,*l ,A*B*2-b-&iB*Z*t'*l;[-t/ il-t)))*** • 

By integrating again after freely interchanging operation 

orders, ve have the result 

,0. IU7(1-C,)1 
R+l 

i   r(e+n)r(l*n)  l C/U 5JJ (BIS) 

• <:   .•..';£. TIFt   J. I   luTSOKAL 

Using the formula of (n6), we nay write 

.1 
Fia,b;c\i/o ' [•c/(i-c)U(»>a-<;a;(i-0   l« (B16) 
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Again using the integral representation of the liypergcometric 

function, and following a change in integration order, the 

Type II  integral becomes 

*.(•»»•••(«•«)■ * I r^O^.p1) re-t'H-D'V 
t» 

i- 

•»• 

EillfJÜXjÄll rC-oC-ll^ 
(B17) 

| KB^\\-0A'h''-t't,dK. 

To integrate over C, it is necessary to tranüform the 

integral of (BIO). 

Let 

« • -1/t, (B18) 

and v.e obtain 

-i/u 

( tv'l,'1(l-t)"vdt - (-l),"v'wuww"lf(v,w;l*w;-u).   (B19) 
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S - -1/". 
(B20) 

to obtain 

fV^d-O'^ - c-i)l#VVlF(^ii*»»i/«« (B21) 

Aßa !„ Ml« (M). •• *«•*■ «*« r"Ult 

t. - (»..)-4. ■ (-l)'^V'-- -■" v-p* I (1-5) 

K P[w,i*w-v;i*u;(l-5) 1 

(B22) 

The rcnainJcr of the intesration proceeds as in the Type  I 

evaluation with the result 

+B+1 . (OtCt^i ri.tM.i d-o 

(B23) 

l 

.♦».i.».«-'»!»»«^.»».-»-»-»»«*«-'-»«»-« •• 



The   integral    /       can be  broken up   into  tlie  two 
- so 

parts 

-i -i C 
f    -     f     -     j . (B24) 

The integration which renains (over I*} can now be ovalnatctl 

exactly as has been done for the 4 integration. The results 

are as follows 

■: M.ttJ.     l   BTTir 

j"0 J       J mmQ "I 

x J  (z+n^-^-ß-imr2    ,:     (Y*).(I).   2        (B26) 

*    {•') (i)    2' ^ Tw+i*«-^♦«-^* -/. ~f*~i 
JB0 J       J m"o 

[.iB**b**B*)]m 

m 
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In on'.cr to Mki t}io expression for the sc:ttcrinü co- 

efficients M COapftCt as pussiMe, the results of these 

integrations have Veen Ucfined in terns of certain functions 

as follows 

(B),(Y-a)l   , 

-  (fc)_(e-a) (f*>l*2-h-B) 
(B27) 

r    n __n j-n    y « k  2-k 

i«(«titv•«•>•••#) • (-i)*B2 

- (fc) (••«! 

pa*^2 r Cß)i(>-a)j ,-1 

^-o  ^'l^I 
2 

(B28) 

r    *t    n 9 - n  y <   - - K 

«■o n   n kiO 

ffifa.ß.Ytai^ .^.a .R»Y »«.t»0^»0) " C'1) 
-(3*B),-(P*B*2) 

r   (Oi(T-«)t ..|   r   (i>M*-<0 
,|    CY)Z(1); 

■_ Lt 2"t  y n 

n"0 
ie)Ai) 

n 2*,1 

nv 'n 

in (P*l*l*n*k)(l). k'Q 

t.o ^ (Y*).(l)/ "   '    '■*"• '^ iM   (.*).(1)J 

(B29) 

(>l**ß**2-t*-ß*) 
I    - 

mi9  {9*»**fl*n*M*jl*)il)m 

2-m 



ff2Ia,e,Y,a,fc,ö,a.B,7.a,fc,c,ß,ß]   -   (.i)'(***)2A*A*B+B*2 

I  2'" 

" [•iB*h*t)]k mk 

klo   il*n+k'A-B-l)il)~ 2 (B30) 

•HI 
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Qia,b,c,d,e ,f ,a ,t,c,d,c,f,U i ,U2,UjtU^] 

» Hl[a,b tc,d,e,f,ia,h,c,d,e fj)* ,d-a*y'l*l/m,{d-a*y-l-h/m)*] 

♦ G ^a ,b ,c td ,c ,f ,d- a*y -1]G ^ [ä ,h tc td ,e tf ,d-a*y -l*b/m] 

-   Hl[a,b,c,d,e ,ftia,b,o,d,e,f)* ,id-a*y-l'b/m)*,d-a*y'l*b/m] 

♦ 2Rc [y^jC-D^^Cjd,4,S,1,4,5,53) 

♦ ^^(-l)'6'^!,4,5,2,6,7,54) 

♦ i/^jC-D'^^^Z,6,7,1,4,5,54) 

'  • ^M-l)0"rf'2ßM2,6,7,2,6,7,B5)] 
2 •♦ 

C1*(a,fc,e,ci,c,/,d-a*Y-l+b/m)) 

♦ (i/ji/jC-D'^^Cjd^^.l^^^ö) 

♦ üly4,(-l)'
rf'ßC2(l,4,5,2,6,7,57) 

♦ i/2t/3(-l)"
<i"3C2(2,6,7,l,4,5,fl7) 

♦ U2Uki-l)'d-am7ZG2i2,(>,7t2,b,7tB*)} 

(B31) 

x (91ft(*l) 
0--C2(l,4,5,l,4,5,B3) 

♦ i/^C-D'^Vl,4,5,2,6.7,54) 

♦ i/2r/3(-l)"
0'^2(2,6,7,l,4,S,54) 

♦ i/2i/lt(-l)"
a'cf-2Bö2(2,6,7,2,6,7fB5)}* 

t|yiI2l^3l2(-l)'2RC(£f+a) 

♦ It/J^j^/C-iJ 

♦ ulu2*\u2\H-i)'d'd"a'^ 

*  52[1.4,S,1,4,5,(1,4,5,1,4,5)*,B6,B3*] 

■d'd*'a-e* 

K 52[1,4,5,1,4,5,(1,4,5,2,6,7)*,56,54*] 

x 52[1,4,5,1,4,5,(2.6,7,2,6,7)*,56,54*] 

♦ ^VWt-1)'23*"21*0^5 

x 52[1,4,5,1,4,5,(2,6,7,2,6,7)*,56,55*] 
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x  Ä2[1,4,5,2,6,7,(1,4,5,1,4,5)*,B7,B3*1 

♦ Ki2i0j2(-ir2ReCß+<f) 

x   H2[l,*,S,2.f>,7,(1*4,S,2,6,7)* .B7,B**] 

♦  y1^[/2*I/3*(-l)"2Re(ß*cf) 

♦  ViVi^VjH-l) 

x   H2[l,*,S,2,(>,7,i2,t,7,l,A,5)*,B7,B**] 

x   /?2 [1,4, 5,2,6,7, (2,6,7,2,6,7)*,57,55*] 

x  ff2[2,6,7,1,4,5,(1,4,5,1,4,5)*,57,53*1 

♦  f/2t/3yl*i/,*(-l)"2Re(<f+ß) 

x   ff2[2,6,7,1,4,5,(1,4,5,2,6,7)*,57,54*] 

♦ |i/J2IM2(-i)'2Rerd+e) 
2 '    '3 

x   52[2,6,7,1,4,5,(2,6,7,1,4,5)*,57,34*1 

♦ l^l^aVt-l)'^**0*"8'2'5* 
x  Ä2[2,6,7,1,4,5,(2.6,7,2,6,7)*,57,55*] 

♦ i/2(/lti/l*I/3*(-l)0"a*'d"d*'2$ 

♦ ^VKi*^-1) 

x  52[2,6,7,2,6,7,(1,4,5,1,4,5)*,58,53*] 

a-d-tf*^^-^* 

■  52[2,6,7,2,6,7,(1,4.5,2,6,7)*,58,54*1 

♦   |y2|
2^^  *(-l)a•cf■<f*■20■ß, 

x  52[2,6,7,2,6,7,(2,6,7,1,4,5)*,58,54*] 

♦ |i/2|
2IM2(-i)2ReCa"<f"e) 

"   52[2,6,7,2,6,7,(2,6,7,2,6,7)*,58,55*]} 



Bt  «-- Bl 

B7   ♦-■'• 54 

B8 •-• B5 ; 

and vith the follovini! abbrcviatcJ notation 

1 -  a 

2 -   | 

3 «   Y 

4 -   1+a-Y 

5 ■   1+a-ß 

6 ■   1+g-Y 

7 «•   1 + ß-o 

8 «=   2-Y. 

W  ■   b/m 

FlO   -   -l/r. 

511   «   l-Y♦^/^ 

Bl2 « l-Y-b/m 

Til« synlol I«-») represents an interchange in the immediately 

preceding braces. 

51 ■ yl [*l/n 

P2 ■ Y- I - ■ /■ 

53 B Y- [•2u-b/n 

54 r Y- l-a-P-b/r: 

55 - Y- l-2?.'l/r: 

56 ■ Y- \-2a*l/ri 

57 ■ Y- l-a-p + .'/n 

58 = Y- l-2?*l/r 
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AFFENDIX C 

SCATTFRINn cniiPPTCIFrTS OF TIT TURBULENT ri'STi IN LAYER 

c.i    rut fVKWLsnf MIFSPACB 

Freu  t],v  theory  In  Section  6.1..",   the   incoherent 

and  coherent  reflection  coefficients  cire  given by 

i p        o 

*  KV)'"  * 8(o,2-ß,2)/(fc0a)2 •  leca^ + e'2)] 

(Cl) 
x   [[il/2fi'k0a)-l]/ikQa) 

*  4(a,2♦ß,2)   ♦   2(a,2-3,2)/S,/c0a} 

y0 - |(l-Ar)/(i+/)|2 

♦ 2Re|c2[U*-l)/(>rA.l)][nt
2(l-tRe)/(i+n2)l2 

■   [2/(l^)]2(4/)-l[(2.Y)2+(;:oa)*2]-1 

x   {[iX-l)/iX*l)][i/2kQaX-l] (C2) 

-i2k0aX-l  *  i(2x)'1 {4X2k0a •   2/kQa  *  fU)|) 



m: 

where 

X   -   ♦[l-.7]V 

a'   -   Red-/.} 

ß*   -   Im{l-"} 

(C3) 

V'    •     «^ .... .     .       . »,   .      .       . 4      *   .   . .       ....*    ^ /I  ,.   W *    i.f-   *■   U J    I    J   <' f U/\   I »'. .iks 

I ro".  tht  theory   in  Section  $.2,   nm!  usin^  tl.c 

not'iti','>   IntredtlCcJ   in   appendix  V,   tic   inco'-orcrt  reflection 

coefficient  is   liven by 

r,   -   (J:o/»2|.V|2r.2{ 

C[l,2.3,l,2,3,(l,2,3,lf2,3)*,51,ß2,S1,i?2l 

«  C[ l, 2, 3,4,6,8, (1,2,5,4,6,8)*,5^^2,53,Bj 

♦ IV\'* (C4) 

«   C(4.6.8,4,6,8,(4,6,8,4,6,8)*,P3,Pw.£3.flJ 
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x  C[l,2,5,4,6,8,(l,2,3,l,2,3)*,S1,ß2,ß3,ßJ 

♦   (-l)i25(ß2/ß1|)
2 

"   C [4, 6,8,4,6,8, (1,2, 3,1,2,3)*,f a,^,^,i?J 

-   2(-l)i5|ß2/ßJ2(Z?2/ßu) 

x   C[4,6,S,4,6,8,(l,2,3,4,6,S)*,E3,ßl4,ß3,/?J }j 

Lilcvisc,  tl'c Incoherent trAnsmiftion coefficient  is 

Vj - ((a{/2)tt#Ait%l,C1| 

C[l,2,3,4,6,8,(l,2,3,4,6.8)*,£1,B2,ß3,ßJ 

x  <3[4,6,8,4,6,8,(4,6,8,4,6,8)*,ß3,BJ|,ß3,ß1+] 

♦  2Re{(-l)i5(ß2/Blt) 

■   <3[4,6>8,4,6,8,(l,2,3,4,6,8)*,ß3,5l4,ß3,ßJ}| 
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