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‘4. a 

In the book ia examined a vide oirole of 
problema on calculation of ehelle of revolution 
and elemente of thin-walled constructions for 
strength, rigidity and stability under various 
forms of force action. Many of these problems 
appeared in recent years in connection with the 
development of new technology. Such problems 
include, for example, calculations of all sorts 
of doughnut-shaped shells, loaded by internal 
pressure, spherical shells, loaded by local 
loads, and so forth. 

Problems of stability of shells are given 
in the book in a new formulation, the basis of 
which is formed by the fact that on the contour 
of pits and bulges, forming as a result of lose 
of stability, there take place inherent boundary 
conditions. These conditions on the contour of 
half-waves are determined by loading conditions 
and the proposed form of loss of stability. 

The new approach to these problems refines 
and expands the concept of stability of shells 
and gives the possibility of solving practically 
important problems. 

The book is designed for scientific workers 
and engineers of aviation and other branches of 
industry and can be useful to college students. 

Tables 14. Illustrations 23Z. Bibliography 
30 names. 
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PREFACE 

At present at the disposal of the engineer-designer there is a 

number of fundamental works on the theory of plates, thin elastic 

shells and thin-walled three-dimensional systems, the authors of 

which are known Soviet Scientists (V. Z. Vlasov, V. V. Novozhilov, 

I. F. Obraztsov, S. N. Kan, V. I. Feodos'yev, A. S. Vol’mir and 

others ). 

In these works are given not only general principles and 

methods of calculation of plates, shells and thin-walled construc¬ 

tions, but there are also provided solutions of many practically 

important problems, which the engineer encounters in the process of 

designing and calculation of a flight vehicle. 

This book contains solutions of numerous new problems, having 

appeared in recent years in connection with the development of 

constructions of flight vehicles. For some of them, basically 

problems on the strength and stability of shells of revolution, it 

is very difficult to find rational solutions within the framework 

of existing theory of shells. To get an effective engineering 

solution some additional simplifications must be used, ensuing from 

analysis of actual work of the construction. Of course, the intro¬ 

duction of such simplifications makes the solution of a complex 

problem less strict, but it gives the possibility of using it 

directly in the process of designing. This namely is the basic 

goal that the author pursued. Solutions given in the book of 

certain more complex problems are obtained without estimation of 

FTD-MT-2H-182-70 X 



the accuracy of quantities of coruponents of stressed and deformed 

state of constructions. 
din 

i 

of I 
Questions of theory in the book are touched upon only in the \ 

limited volume in which they are necessary for explanation of 

solutions of some problems. 

and 
To get numerical results in the book the energy method is 

widely used, the effectiveness of which has been shown on numerous 

examples. 

The book consists of three sections. In the small section 

Strength and stability of rods and plates" the reader becomes 

acquainted with the most widespread applied methods of solution 

of typical problems of structural mechanics, which are illustrated 

by amples of calculation of rods and plates. Subsequently these 

me^iods are used in the remaining sections of the book with solu- , 

tion of problems of strength and stability of shells. Furthermore, 

this section contains some new results on the calculation of round 1 

and square membranes. 

The section "Strength of shells" is dedicated to stress and 

rigidity analysis of smooth and reinforced shells of revolution ^ 

with various forms of force effects. This section contains solu- | 

tions of some problems of strength calculation of thin-walled 

three-dimensional systems. 

i 

The last section is dedicated to questions of stability of 

shells. During examination of these questions the author used his 

treatment of the problem of stability of shells as a basis. To i 

some readers, who were accustomed to traditional methods of in- j 
vestigation of problems of stability, this treatment can seem 

questionable. However, numerous experimental results, obtained i 

recently during tests of models of cylindrical shells by Russian 

and foreign researchers, satisfactorily agree with results of 

calculations obtained on the basis of theoretical reasons of the 

author. 
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The author accepts with gratitude all remarks of the readers, 

directed toward improvement of the book. Direct them to the address 

of the publishing house (Moscow, K-51, Petrovka, 24). 

The author expresses gratitude to A. N. Yelpat'yevskiy and 

A. I. Sverdlov for the valuable remarks made by them while examining 

and editing the manuscript. 
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PART I 

STRENGTH AND STABILITY OP RODS AND PLATES 
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CHAPTER I 

STRENGTH OF RECTANGULAR PLATES AND MEMBRANES 

S 1. Basic Information from the Theory of 
Rectangular Plates ot Small Deflection 

By plates of small deflection we mean such plates, deflections 

of which, computed from the middle plane,1 are small In comparison 

with the thickness of plate. In such plates membrane stresses in 

the middle surface2 can be disregarded In comparison with bending 

stresses. 

The basis of Investigation of these plates within limits of 

elastic deformations is formed by the following differential equa¬ 

tion: 

d(£+s^+v)-* < 

where w - the sought deflection at any point of the plate; q - 

intensity of external load; D -- — cylindrical rigidity of 

plate; 6 — thickness of plate; u - Poisson's ratio. 

‘The plane, dividing the thickness of the plate in half, is 
called the middle. 

2The middle plane after bending of plate is called the middle 

surface. 
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Bending and twisting moments are determined by formulas * 

.\L=.-./)(*» +u?HL\ 

M„~-0-riD 
iflw 

djfldp* ' 

The greatest magnitudes of normal stresses take place at the 

surface of the plate and are equal to 

fi.M, 
■■ ■■ ^ ^ — ■ 

iJ ’ ' m,x ■ 11 ’ '.rfnm— -JT 
__ I bMxy 

ï* 

With solution of equation (1.1) it is necessary to know four 

boundary conditions in the direction of each axis of coordinates. 

These conditions can be the following. 

1. Edge is freely supported (Pig. 1) 

—Flg- 1' 

In this instance on the edge of the plate deflection u and 

bending moment M (or M ) 
* 2/ 

w=0, Mx=0 (or Af„=0). 

2. Edge is rigidly fixed (Pig. 2). 

Fig. 2. 

In this instance deflection and the angle of rotation should 

be equal to zero: 

«=0. for 
dx \ dy / 

‘in these formulas deflection is considered positive if it is 
directed toward concavity of the middle surface of the plate. 

FTD-MT-2A-182-70 
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3. Edge is free (Fig. 3). 

I- Fig. 3. 

In this instance on the edge of the bending moment and shearing 
forces should become zero: 

= 0 (or .M,,—0), 

Vr,=-0 ( or Vy—0). 

Shearing forces through deflection are expressed by the following 
formulas : 

4. Edge is elastically supported on a beam with flexural 

rigidity EJ and torsional rigidity C. In this instance the 

boundary conditions on edge a: = a will be (Fig. 4): 

EJ 

The second condition will consist of equality of bending moment 
of the plate and twisting moment of the beam: 

&W \ 

àx òy )gm0 
(five tflw \ 

,0* T,i àyl ),më ' 

Analogously, if edge a: = 0 is elastically supported. 
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S 2. Methods of Solution of Eauatlrns of 
Sending of Plates 

Method of Double Trigonometric Series 

This method Is especially convenient for plates freely supported 
along the contour. The desired deflection of plate Is sought in the 
standard of double trigonometric series, each term of wh<^ satisfies 
boundary conditions of the problem and is provided with an indeterminate 
coefficient. 

In an analogous series there is laid out the load affecting the 
plate, where in practically encountered cases no limitations on the 
character of load are imposed, i.e., it can be both distributed, and 
in the form of concentrated forces. 

After substitution of the accepted expression for deflection u 

and load affecting the plate represented by double series in equation 
(1.1), we can determine all the coefficients in u. 

Por example, for a plate freely supported along the entire 
contour with sides a and bt being under the action uniform load q 
(Pig. 5), we take 

V 
m m 

J]-»«..taiSirtiSt. 
•-i «3 * * 

X 

Pig. 5. 

Let us formulate the necessary derivatives from this expression 
and substitute them in equation (1.1). Then 

0 S S [(’f)’+(-,-)7 =7- ^ T1 - «• 

« 

1 « 

(1.?) 
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i w 
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.Now let us expand the right side of this equation into series 

in terms of sines 

m—i *-i 

For determination of coefficients let us multiply the right 

and left sides of the last expression by sin-dxdy and 
a • 

integrate with respect to the entire area of the plate. Considering 

in this case the orthogonality of trigonometric functions on the 

interval of integration 

a 
2 when m—m' 

0 when m£m' 

2 vten a—«' 

0 when « £ 

we obtain 

B Wf 

si on 

.?) 

Then 

,_!5i.V f'J-.lnSSi-.lnaL.- 
^ iJ mn a * 
*-i «-i 

If the load was applied on a limited section of the plate 

surface, then integration in the left side of expansion q would be 

necessary only within this section, since everywhere outside it 

? = 0. 

From equation (1.2) we obtain the expression for coefficients 

Amn 
Iftf 

Then the expression for deflection takes the form 

6 



® : «II 
n •• 1 

. «.Ur , nnu 
sin -——sin 

ww 
By substituting the corresponding derivatives from deflection 

in expressions for moments, we can determine stresses a and a at 
•i- y 

any point of the plate. In this case the obtained series will converge 

slower than the original series. For example, the series for 

stresses at the point of application of concentrated force will even 

be divergent. 

The double series are summed up for assigned value of y = i>i 

in the following manner: 

miWi . nnb 
sin-*• sin —— 

a b II -K-HtIT II“- mm\ <1-1 

Bubnov-Galerkin Method. 

For solution of equation (1.1) by Bubnov-Galerkin method we 

assigned the suitable expression for deflection in the form of a 

series of functions with indeterminate coefficients 

u>*=Ai?i(x, y)+AtMx’ •* (1.3) 

where<pi(x. y). <pa(*. if)»-"— linear-independent functions, which satisfy 

all boundary conditions of the problem and more or less correctly 

reflect the shape of the deformed surface of the plate. 

Indeterminate coefficients Au At,... are determined from equation 

a-4) 

/=1, 2,.., 



n 

t 

nverge 

ven 

= bt 

Integration in equation (1.^) is performed with respect to the 

entire area of plate. In this case there is obtained as many equations 

as indeterminate coefficients A-. The result of the solution of the i 
problem will be more accurate, the more terms that are in expression 

(1.3). 

Example. Let us examine bending of a rigidly fixed rectangular 

plate with constant load q (Pig. 6). 

Fig. 6. 

X 

J 
^ Boundary conditions of the problem can be satisfied if for 

deflection u we take expression 

tr — j4|fi + .4jf} + • • •. 

where 

f i =■(•** — «*)* (f* — **)*. 

=-» (jr* — a*)* (** — i*)S 

.3) 

fy 

y 

tion 

.¾) 

Being limited by the first approach, we take 

• r, y», (JT* - a*)* (*5-*•)». 

From this expression let us formulate the corresponding deriva¬ 

tives and substitute them in Bubnov-Galerkin equation (1.4): 

0 

Í 
—« 

X (Jt* - a*): (** - A*)» ix dy 0. 

» 

After integration we obtain the following expression for -4^: 

-r y aW + 

8 
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Then for deflection w we will have 

a 7y (jfl — a»)» (t> — »1)1 

1280 f y a*W + 

In the examined problem function w must be satisfied only by 

geometric boundary conditions. Therefore, it was easily selected. 

In case of mixed conditions at the boundary it is difficult to 

select such a function, therefore it is expedient to use generalized 

equation of the Bubnov-Galerkin method in the following form: 

jj dxdy+^MJt(^yy + 
J ¿w) dy+^ (^*) dx—o, 

where unary Integrals are taken along the boundary of the region. 

With use of this equation it is necessary to satisfy all geometric 

and optionally all power boundary conditions of the problem, since 

the given equation expresses its equality to zero of the first 

variation of total energy, and on the basis of origin of possible 

displacements this is entirely sufficient for equilibrium of any 

mechanical system. There is more on this in § 3. 

Kantorovich-Vlasov Method. 

This method is more accurate than the Bubnov-Galerkin method, 

and it involves the following. In order to avoid integration of 

equations in partial derivatives, the solution is sought in the form 

of the product of two functions 

w-X(x)y(y), 

when one of them is selected earlier so that boundary conditions of 

the problem would be satisfied. In this case for determination of 

the second function we substitute the accepted expression for u 

in equation (1.1). We multiply it by selected function and ntegrate 

within the limits of change' of the given function. For example, 

with selected function Y(y) the shown equation takes the following 

form, analogous in form to equations of the Bubnov-Galerkin method: 



J \D [A’lv(jc)K(//)-}-2A',,(^)Kl,(y)-|-A'(x)K,v (^)] -q\Y (y)dy—0. (1.5) 

Hence after Integration we obtain the usual differential 

equation for function X(x). 

The accepted expression for sought function w can be substituted 

even in the functional of total potential energy of the given problem. 

After integration of this functional with respect to variable 

selected function and application of known rules of calculus of 

variations to it after this, the equation can be obtained for 

determination of unknown function X(x). 

Example. Let us assume there is a plate loaded by uniformly 

distributed pressure with two rigidly fixed opposite sides, and two 

other sides fixed in any manner. 

For the solution of this problem let us take the first 

approximation, used by us during illustration of the Bubnov-Galerkin 

method. In the Kantorovich-Vlasov method the expression for 

deflection can be taken in two forms: 

or 

(X) (j,5 - 4*)* 

« ,» (*» -<!»)« IP (*). 

Let us take the first of these experssions, which satisfies 

the condition of rigid framing on the ends y-±*. 

Let us formulate the necessary derivatives of this expression 

and substitute them in equation (1.5): 

• 
J {O [y» - **)5 tF1 V) + 8 (W - ÍJ) JT11 (or) + 24tP (jr)J —f} (y*—♦*) rfy *0. 
—è 

After integration of this equation within the shown limits 

we obtain 

TT W V> - Vt,v" w+w W " so • 

This equation is already solved accurately. 



In theory of differential equations it is proven that the 

general integral of a heterogeneous equation consists of a particular 

solution, corresponding to the right side Vq, and general integral 

F of homogeneous equation. In our case this will be 

16*4 IV 32W „ 
"eT W {x)-IT * (jr) + 8r (jr) " 

i.e. * 

IT q * const, then 

Then 

IT = IT«, + S?. 

A and 

,_L 
A 240' 

IT - + V’'+ ^j«x,jr+ Atß1**, 

where Xi—roots of characteristic equation 

16*4 32*1 

Arbitrary constants of integrations will be determined from 

boundary conditions at ends x-±a. 

Thus, we find the final expression for deflection w: 

9 “ +A\tX'*+ lyt — lfip. 

Method of Finite Differences. 

The method of finite differences is based on replacement of 

the original differential equation by an equation in finite 

differences. For this purpose it is necessary to change from 

differential operations in the original equation to operations in 

finite differences. For derivation of these relationships we will 

basically proceed from the possibility of expansion of the sought 

function into Taylor series. 

If the quantity of some function at point x is known, then the 

quantity of this function at point (x + h) will be 



/ (jr + A) - /<*) + yj/' <*) + ... 

Let us assume we know the quantity of function f at point fe 

(Fig. 7) on straight line Ox. 

X "•J * 
Fig. 7. 

The quantity of the function at point l will be 

/i“/*+ ij/* + 2//»+37^+--- 

From this expansion the expression can be obtained for the 

first derivative at point fe: 

/■/!-/» /, j / , j./iv ■ ) 
,k hi \2I/4+31 4r* +"7’ (1.6) 

The first term in the right side of this expression is the 

tangent of angle of slope of chord AB to axis x (Fig. 8). 

Fig. 8. 

Analogously the quantity of function f at point i can be 

obtained, for which Taylor series it is necessary to put (-¾^). 

In this instance for derivative of function f at point fe we obtain 

expression 

(1.7) 

In this expansion the first term of the right side is the tangent 

of angle of slope of chord CA to axis x. 
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Thus, for the derivative at point fe we obtain two expressions - 

(1.6) and (1.7). 

By dropping in these expressions the terms contained in 

parentheses, we obtain approximate expressions for the derivative 

of function f at point fe on the right and on the left: 

/»-^ + 0(4), 

/,+^=^ + 0 (A). 

The accuracy of these formulas will be evaluated by the first 

large dropped term. 

The more accurate expression for the first derivative at point 

fe will be equal to the arithmetic mean of expressions (1.6) and (1.7): 

(1.8) 

By dropping in this expression the terms in the second parentheses 

on the right, we obtain the approximate expression of averaged 

first derivative at point fe: 

/¡r±(Ú^+ú=4) + 0W. (1.9) 

The accuracy of this formula will be of order h. If we assume 

that * fcp * *»3 “ * k* then for the first derivative we obtain 

expression 

+ 0^)- 

The accuracy of this formula will be higher. The largest of 
2 

the dropped terms here has order h . 

To get the expression of the second derivative at point fe 
» * 

let us exclude from expansions (1.6) and (1.7): 



By dropping the terms contained in brackets here, we obtain the 

approximate expression for the second derivative at point fe with 

precision of order h: 

/;« 
2 

Ajf hi\ 
[h-h + 0(*). 

If ® = we obtain a more accurate expression 

for the second derivative 

Thus, we obtained expressions for the first and second 

derivatives of f at point fe through values of this function at 

adjacent points on the right and left. 

Let us use these formulas to get higher order derivatives at 

point fe: 

2 
dx ' ' </Jf A| At / 

f+I- 

(ÍÍ.) _ 
\dx 1) kjtf \dx /, 

2 [ .- . *3 
I 31 (A, + A,) 4I(A, + A2) 

(Aj -p A,) A, \dx ft 

[__**-*» ^ *3+*3 .IV, 1 

dx l 31(Aj + A,) 4!(A,+ Aj) ^ J 

(A* + Aj) A, 

A* + A* 

By applying the difference operation to the first derivatives 

at points l, i and fe according to formula (1.9), we obtain to h 

accuracy the expression for the third derivative 



Analogously we can obtain expressions for derivatives with 

respect to variable y, having substituted in the obtained formulas 

£ by n, £ by mt e by u, t by v and distances h with appropriate 

interlinear number by distance b (Fig. 9): 

Fig. 9. 

The 

on 

sub 

(1.10) 

Let us show how mixed derivatives can be obtained at point fe. 

For example 

By applying the difference operation to derivatives at points 

l, i and fe according to formula (1.10), we obtain 
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f-ZL.) ,-A/_L__L)(±_±.).A(±. __L\ 
\àxàyjk A \hj hJKbj *1 / 4A,\ A, aJ 

_A-fJ_L\ A/_L__LU-A_/# f, 
4*3 \*i *3/ 4*2\A2 Aj/ 4/k¿í2 4A j +4A 4A2*3 4A3 A3 4AjA2 

The accuracy of this formula can be of order 0(h) or 0(b) depending 

on what order the derivatives were taken. 

Analogously any other derivative can be obtained, 

subsequently derivatives are written out bel w. 

All 

(a-T(-£+£K/.(i-i). 

( 'ÜL) djfl Ji, A2-h Aj V A3 A3 /’ 

(m_i_f4=Â_4=ù\ 
\d¡/i )k *2+ A3 \ ¢3 *a / 

/4-/ 
*2+ A3V *3 

(ë- 
_/J__L\,±(aM_1 (fp _f'\ 

' *2 *3 / \ *2 *3 / *2 V *2 *3 / A3 \ *3 A3 /’ 

t ), ^ [ VH,-; ( - *¿2 ) - ('¡¡'“■ã;)]/»-4- 

+ [a3(*2 + A3) (*3 A«) *3) (^r~ *2) + 
+ _L_/j£_ 

*2*3 I A2 + A3\A|A2 A3A3/ 

+ [*l(*2-t*3) ( *3 *«) *2*3] + [ *2(*2 + *3) ( *1 ”* *2 ^ 

_L/'A__A.\ 
*2*3 J *" *2+ *3 \*1 *2 *3*4/ 

fcv 1= [_ *71 "ãt)1a + [ *2 <*, + *,) (^ “ 

[ *3 (*2 ^3) + f [*27,¿+"*¡i] A + 

+ Ía2*:¿j]^ U* [a2*3 (*2 + *3>l^~ 1*2*3 (*2 +77)]^°' 
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r 

»• 

(A I [mi ( i “ ■¿■J]7*+[ (t “ i)]7'+ 
+ + *j) ( *2 »l)]7* + [m»(AI+ *»)]7# + 

+ [äA(*i+äJ7' + [♦¡»^'•“[¡¡¿¡J7*- 

“ [miWj+aJ7' ~ [ms(*»+ A*)]7*' 

-r(Aj + Ai)(*í + wí^#r^ T ^+w (*■+W (t5v). - ( i+i) (i+i)/.- 

■i(i+i)/,+ vr+MT+^+w 
• ^ r * / « . i \ i /1 i . 

by 

obti 

whei 

shot 

Assuming in these expressions a,«Ai.Ai-a«-*, -»4»»( 

we obtain 

[éx )t - 2A 

(if)»* 2*" 

A* (/i+/i-v»h 

X* /, ' ãü (/' “A f 2/< “ V,). 

("v),' 2** í/.-V. + V«-*/•). 

(~f r’ “ (r7* - Vi - Vi A + /«). 

(1.11) 
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t .4 

». 

(1.11) 

(¾ ~ *T(fi/* -4/" - V* + + 

{dxdy )» 1*7 Vo + f' 

(^)r i¿r(2/"~v" +/f-/o+A-/#)* 

(d^r)r -¿r % +/,-/0+/,-/,). 

(¿^1 ^ ¿r <4/*- v'-2/'- 2/«-2/-+/o+/,+/,-/,). 

(i.ii) 

By substituting the differential operations in equation (1.1) 

by the operations in finite differences for formula (1.11), we 

obtain 

er, + 

+ r, + r, + s*<r. + r,> + 2i(r0+ r,-<- r, + w,)-*£. (1.12) 

-j- « + ~4(i + i)<r, + r, + ir, + ir„) r 

where 

The possible types of boundary conditions enumerated above 

should also be represented through finite differences. 

1. Edge is freely supported: 

r,-o. 

2. Edge is rigidly fixed: 

r n (dV \ ft 
r.-0' w),-—'— 

3. Edge is free: 

+ (2r, - 2ir, - r0 + ir,+ irf - r,)] - 0. 



With solution of the problems by the method of finite differences 

on the surface of plates we apply a grid with sides parallel to axes 

of coordinates. Points of intersection of the lines of this grid 

are numbered. For each of these nodal points we then formulate 

equation (1.12). There will be as many equations as numbers on the 

grid. In order to reduce the amount of these numbers, where this is 

possible we use conditions of symmetry of the problem. Having 

solved the obtained system of equations, we find the amount of 

deflection at each nodal point of the applied grid. By using the 

found magnitude of deflections , we can determine the bending moments 

at these points. The accuracy of solution of problems by this 

method will be higher, the more closely-spaced the grid that is 

applied. 

Simultaneously with this, of course, the difficulty of solution 

of a large number of simultaneous equations increases. It is possible 

to considerably reduce this laboriousness if we use extrapolation 

formulas, making it possible by the first two-three approximations 

to obtain a refined following approximation, while not solving 

the problem itself. The simplest in a practical respect are 

Richardson formulas extrapolation, which are based on the following 

reasonings. With calculation of derivatives through averaged 

differences in expansion of Taylor series we were limited by the 
p 

first two terms and they allowed the largest error of order h . 

Dropped terms had the form 

* =/l (x) A* + /2 (x) h* +... 

Consequently, if we solved some problem with the aid of 

approximate finite-difference equations and found the result equal 

to A, this result could have been refined by having added dropped 

error e to it. In view of the act that this error with such 

formulation of the problem remains unknown, it is possible to proceed 

in the following manner. Let us suppose we solved the given 

problem at two different gçid spacings and and obtained the 

magnitudes of the sought function at the given value of x, equal to 

and A2 respectively. Then more accurate quantity of the sought 

function at point x will be 

t 4 
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•’ ' äI l| t /, (-V) A* -I-/,(x)*fM 

.4 .- j. ,, ^ .4j 4- /, (x) hi 4 /,(^)h\ 

Being limited in the right side of these expressions by the 

largest components, it is possible to write 

A * .4, +/,(•»)*?. .»«.A,+/i(*>*!• 

By excluding hence fit*). we obtain the refined quantity of 

sought function, which we designate through .-Ucp (extrapolated): 

*1 A* 

Refined quantity of the sought function according to the first 

three approximations can be obtained analogously: 

*5*3 , A«A* 
7T' ^»KCTJI 1 W -*S) (‘Î-*i) ' “ w-*S) (*i-*i)^+ 

w-*>)(»■_**)A" 

By assuming in these formulas 

a1 = -2izl£l a1~al 
"l 1*1 

where ai, a2 - limits of change of variable of integration x; «2, 

«3 - numbers of divisions of length (a2 - a^), we obtain the following 

Richardson formulas: 

»* 
"A* — Al ’ 

A _ 4 "» . "J 
. ‘ R-"î) w^) " + 

‘("»-«i) («»“"*)' 

PO 
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With solution of problems by the method of finite differences 

we have the possibility of determining the quantities of the sought 

function at earlier marked points of the applied grid. For determin¬ 

ation of the quantity of this function at intermediate points let us 

use Lagrange formulas, which are derived in the following manner. 

Let us assume we found quantities of the sought function in three 

consecutively arranged points fe, lt i (Fig. 10). 

With sufficient accuracy the equation of the curve passing 

through three points can te substituted by a parabola of the second 

power 

/(*)-«o + «|jr + Cfjr*. 

Let us find the coefficients of this parabola from conditions 

jr-0 /(0)«/». 4C-* /(A)-/|. 

jr~—A /(-A)-//. 

Hence we find 

» * 2A* ' 

Then we obtain the following Lagrange interpolation formula 

with respect to three points: 

/(*) - A+ f 

Analogous formulas can be obtained even for a large number of 

points. According to thesa formulas one can determine the quantités 

of sought function at any Intermediate point x according to quantities 

of this function at adjacent points. 

'¿I 



Let us show the utilization of the method of finite differences 

for a problem about bending of a rectangular plate by uniform load 

at various, but symmetrically arranged boundary conditions (Fig. 11). 

ton 
•H t 
CCU 

’l-w, 
Hinged support 

bO 

•O-rt+W; 
<H F 
bOc 

Hinged support 

1-W, iïî 
i-'ig. ii. 

First approximation: 

Let us formulate equation (1.12) for point 1: 

6ir, ^i + yi + pJ-4(i + î)(0>o + o+0) + r, + \r,+ 

+ 5*(— W\ — W\) + 25 (0 + 0 + 0 + 0)** “2) • 

Hence we obtain the magnitude of deflection at point 1: 

64 (2 + 2( + {*) D ' 

If the plate is square, Ç = 1, then 

IT,. 0.0341-g-. 

The second approximation (Fig. 12): 



In this instance because of the symmetry of deflection relative 

to the middle of the plate all nodal points are marked by the same 

figure 1. Let us formulate equat/ >n (1.12) for any of these points: 

er (l -r 4 (I -r;)(0 r IT,+0 + 5^,) + 07,+ 0+ 

qh\ 
-52(-07,+0)+2-(0 + 07, ,-0+0) = 

D 

Hence we obtain 
_£«4_ 

r'"" 81 (3 + 2; 5*) D 

When Ç » 1 we will have 

"'.-«•“«fir ■ 
By using the Lagrange Interpolation formula, we find the 

magnitude of deflection at point m: 

p— r, + 

In order to determine the magnitude of deflection in the center 

of the plate at point 0, it is necessary once again to use inter¬ 

polation with respect to points m. With very high requirements for 

the accuracy of solution of the problem such double interpolation 

can lead to errors. In this case we are not aiming at obtaining 

an accurate solution, but illustrate the method, therefore let us 

allow double interpolation: 

'!• — 0) 0.5A («7„-0-2irm)0.2ñA2 



Let us determine the refined magnitude of deflection in the 

center of the plate by the first two obtained approximations, using 

extrapolation : 

ir.Kcp: (-0.8.0,0341 + 1,8.0,028«) 1^-= 

The accurate solution of this problem gives coefficient 0.0209 

for deflection in the center of the plate. Thus, the error of 

approximate solution is equal to 14¾. 

§ 3. Application of the Origin of Virtual Displacements 
for Investigation of Bending of Plates. 

Ritz Method 

The origin of virtual displacements is one of the basic 

principles of mechanics, which asserts that if the body is in a state 

of equilibrium, then the sum of work of all forces applied to this 

body at any permitted connections of very small (virtual) displacements 

is equal to zero. 

During examination of deformable bodies we apply this origin to 

the total expression of potential energy of the system. By potential 

energy of the system we mean the work that forces of the system both 

internal and external accomplish during transition of the system from 

deformed state to nondeformed. 

By internal forces of the system we mean those forces which 

appear between particles of the body with respect to its deformation. 

These are forces of elasticity. 

The sum of these works is numerically equal to potential energy 

of the system: 

3=V+T, 

where V - energy of deformation or work of internal forces; T - work 

or potential of external forces. 
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Inasmuch as the considered system is in equilibrium, accordingly 

to the origin of virtual displacements 

l3m*lV + lT-:0, 

where 6 indicates the possible change in coordinates of points of 

the body from the position of equilibrium. 

This equation is used during solution of many practically 

important problems during strength calculation of various construc¬ 

tions . 

Total potential energy for plates, expressed through bending w, 

has the form 

djc* dy* 

where — flexural rigidity of the plate. 

For solution of a particular problem a suitable expression for 

w must be selected, which satisfies the assigned boundary conditions, 

with indeterminate parameters. 

w=<*!<?. (*, y)+. 

and it must be substituted in 3. Indeterminate parameters a• are 

determined from condition 

which is the total differential of the function of many variables. 

In this case, proceeding from the beginning of virtual displacements, 

this differential must be equal to zero. 

Since variations 6a^, iSa^, ... are arbitrary and nonzero, for 

fulfillment of condition 63 * 0 it is necessary to assume 



Each of these equations is nothing else but equality of the sum 

of works with variation of some parameter to zero. 

These equations give the possiblity of determining all unknown 

parameters entering the expression of deflection. 

Example. Bending of hinge-supported rectangular plate by a 

uniform load (Pig. 13). A suitable expression for deflection, 

which satisfies assigned boundary conditions, in this case can be 

taken in the form of double series in cosines: 

nny 
2ft * 

Pig. 13. 

By substituting the accepted expression for w in the expression 

for 3 and integrating within (-«, +«) and (-ft, +ft), we obtain 

Dab 

■’••[(vHfÏÏ + r. 

Work of load q will be 

a § 

■-'.Ü 
—a —à 

. Kvjftff A„h mx ntt 
vilxdy - —-3- -== »in — sin —. 

n* mn 2 2 

Then 

3 Dab .. \fmx\i . /wi \*1* ifiabq .4*, . mn . mt 
—J" [(£-) +l» j J —W'’T*"T- 

m n Unknown parameters A are found from equations 



whence 

J3_ 

ÓAm» 

nn \* I* Itía/v 
n* 

mn , nn 
sin —»In — 

2 2 
mn 

0, 

Then 

If the plate was affected by concentrated force P at point ¡/-»i 

(Fig. 1*0, then work of external forces would be 

T /»(«Ox-.,* 
*-*< 

m « 

E i 
in •• I ,.1,5... n -1,3,5 « 

, COS 

then 

plac 

comm 

equi 

ther 

surf 

add! 

equl 

Fig. 14. 

axes 

Then for u we obtain expression 

The obtained series converge rather r&rldly and two-three terms 

in the expansion give a good result. 

wil 
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§ ^• Basic Information from the Theory of 
Rectangular Plates of Large Deflection 

If deflection of a plate is conmensúrate with its thickness, 

then we cannot disregard stresses in its middle surface, as took 

place with derivation of equation (1.1). These stresses will be 

conmensúrate with bending stresses. Differential equation of 

equilibrium of such a plate has the form 

d-*» 

âxldyl (1.13) 

In the right side of this equation along with lateral load q 

there appeared vertical components of forces affecting the middle 

surface. For determination of these forces it is necessary to have 

additional equations, which can be obtained from condition of 

equlibrium of the element of the plate in tangential plane. 

From condition of equilibrium of forces in the direction of 

axes X and y (Fig. 15) we obtain 

From the condition of equality of the moments of all forces 

relative to axis a to zero we find that 

Affy = V yx- 

Then the equations of equilibrium of forces in tangential plane 

will finally take the form 



I 

d.V, ó,W, 

dx dy 
>0. ~?.t. -L ÈÜÙL^Q 

à* ày (1.1^) 

Thus for determination of four unknown fu^tions (tt1, A\. A„, V,j 

we have three simultaneous equations. The fourth, lacking equation 

can be obtained on the basis of the following considerations. 

Por biaxial stressed state Hooke law is written in the form 

.„-ÜLíJÜa^ (1.15) 

On the other hand, for components of deformation e„ c,t 

expressions can be obtained through components of displacement u, v 

and u of points of the middle surface of the plate. Prom Pig. 16 it 

is evident that points At B and C after deformation transferred to 

position ¿j, B1 and Cy The sides of element dx, dy changed their 

length and became equal (|+rx)</x and (I +t,)dy. With axes of coordinates 

X, y, a they formed angles, cosines of which are equal to /i|and 

/*. mi, «t respectively. 

Let us project closed three-dimensional polygons Oaa'.\xB¡b'bÍ} and 

Oaa'A\C\C'iC to axes x, y, a. Inasmuch as these polygons are closed, 

the projections of their sides to these axes will be equal to zero. 

Let us furnish the sides of these polygons with pointers in the 

direction of revolution. Projections of sides of polygon Oaa' 

to axes x, y, a will be 
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■äx ¡-« !-(l 'r'-x)l\dx-u-~-dx^at 
dx 

tif (1-rtJ mxdx-v-£;dx=0. 
dx 

ñw 
( 1 -{- îjr) « ¡dx w-—-dx=0. ni 

dx 

Hence we obtain 

(l + *,)/,-l '(! + «>.=£■■. 0 + 0«.“ 
dw 

dx 

Let us square the right and left sides of these equalities and 

sura up. Then when /, + m, + /»? = 1 we obtain 

s'.+^2s-KS-)’+®’+(^- 

By disregarding quantity in comparison with e*.we will have 

•.-s-+t[©,+©’+Æ)Ï 

Usually to get approximate expressions for components of 

deformation the squares of derivatives of functions u and v are 

—j . Then 

du , 1 / d» (1.16) 

Analogously we can obtain 

_ A; , I dm \* 

'’-Ty ' 2 [dyj- 
(1.17) 

To get deformation e,y. characterizing the change of right angle 

between segments dx and dy, we use the following formula, known 

from analytical geometrv for cosine of the angle between two straight 

lines : 

cos?—/|/j + mimi+^,^1. 

Let us substitute here 

1 + 
ÔU ÕV 

àx dx 

tttt’ Wl=rr.i:* 

t)w 
ÚX 

'.+ ** 



and analogous expressions for /2,m»,/i2: calif 

du 

âM 
1 +•»’ 

ntj 7 * 
i + »ÿ 

/i. 

dw 

> +«#■ 

Then we will have 

COS ç =: COS (90 — îxlr) - sin txy £x» 
du i do . dw dw 

fiy ' dx dx dy 
(1.1S) 

By excluding the derivatives of functions u and v from the 

obtained expressions for e.t, e» ana c»v , we obtain 

cf2tt i iïty fri,v ( frw \» ¿»tg 
dyi ' djfl dxdy [âxàyj dx* dy* 

Here instead of components of deformation let us substitute 

their expressions according to Hooke law.- Then 

i r/aw, 
El [\ dyi 

Ia 
¿fiX, 
dyi 

/diXy 
A dA 

\* 

^)-2(1+rt^] 
dx» 

d»» d»» 
[dxdy J dx» dy* 

Thus, we obtain the fourth lacking equation, which is called 

the equation of compatibility of deformations. 

For solution of the obtained system of equations with four 

unknown functions it is possible to proceed in the following manner. 

Let us introduce a new as yet unknown function ¢, so that it would 

satisfy equations (1.14). For this it is sufficient to assume 

vr \T -25- 
dx*' 

.V X» — 
d»» 

dxdy 

By substitution of these expressions in equations (1.14) we 

can be certain that they are identically satisfied. Thus, from the 

system of four equations only the two following simultaneous equations 

relative to functions ¢1 and w will remain: 

/d*w t 0 <Hjp (Xtr \_ , d5? ¡ _9 d»w_ 
\dx^ ' ¿ djfldtj* ‘ dy*} ^ 1 dy* dx* dx* dy* dxdy dxdy ’ 

d*? , 0 d*f , d<y _ [ / d*w \» d*w d»w 1 

dx« “ di»di/- ' dy* [idxdi// dx* dy*\ 
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If the flexural rigidity of the plate is small, such a plate is 

called a membrane. In this instance equations take the form 0=0) 

„ Ò»? #«> . ¿ft<t &V . Q 
dyl dx* ~ Oxdy dxdy dx* ây* * 

ÜL4-2= V~ ——1. 
dx* ' dx-ày- dy* / dx* àyi J (1.19) 

Despite the fact that the written equations have been known 

more than 50 years, accurate methods of their solution have barely 

been developed. Therefore, in practical cases for solution of 

problems we more frequently use the origin of virtual displacements, 

applying it to the total expression of potential energy of the plate 

or membrane. Sometimes for integration of these equations it is 

possible to successfully use the Bubnov-Galerkin method or method 

of finite differences. 

§ 5. Application of Origin of Virtual Displacements 
for Investigation of Rectangular Membranes' 

Let us assume the membrane Is under the action of distributed 

load q. Then the total potential energy 

* 

where through T there is designated the potential of load q and 

integration is performed with respect to the entire area of membrane. 

The coefficient 1/2 considers the circumstance that forces in the 

membrane increase from zero to their finite quantity according to 

linear law (Hooke law) and the work of these forces on corresponding 

displacements will be equal to the area of a triangle. 

In the expression under the integral sign by replacing forces 

Ny, /V.,. A',,, by their expressions through components of deformation 

according to formulas of Hooke law (1.15), and components of 

deformation according to formulas (1.16)-(1.18) through components 

of displacement, we obtain 



Witt 

3 = - ■±_ fC l/du ^ / dvr \Z ¡^ \- Ov I dw 2 

2(1 — ?■) J J i\d.r / \ dx ) ' (dij ! äy [ dy ) ' 

[(ZNtÏÏ-%(£)'+ 
£-(^)1+^((^+^0+(^+ 

2 
4 

1 du 

Let us apply this expression for the problem of a square 

membrane (Pig. 17) with side 2a loaded with constant pressure q. 

y 

w 

« 
* 

a « 

Pig. 17. 

Proceeding from the fact that deflection w should be an even 

function relative to the center of the membrane, let us take the 

following expression for it, which becomes zero on the contour: 

«*Cco»-îi-coi2£-. 
2* ?« ^ 

Por selection of suitable expressions for displacements u and v 

we will follow the following considerations. If the accepted 

expression for u is substituted in the right side of equation (I.19), 

we obtain an equation for function $ with a known right side. The 

particular solution of such an equation can be sought in the form 

corresponding to its right side. Having determined the structure of 

function in this way by formulas of Hook law we can determine the 

structure of functions u and v. The Just described method of 

determining the structure of function u and v is extremely bulky, 

and it can be bypassed in the following manner. In the expression 

for 3 there are the following products of functions u and u: 
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òu 
dx 

/ '>'J> ^ , u I \2 àu dw dw 
\ ox ) ' dx \ dç ) ' dy dx dy 

dv \2 dn dw dw 

It turns out that the structure of function u will coincide 

with this result if we determine it from conditions 

which are obtained from products of (1.20). Constants of integration 

are dropped here. By summing up the values of u^, obtained 

after integration, and having furnished each term with an as yet 

interterminate coefficient, we obtain the general structure for 

function u. Thus we will have 

« —iA|Sln —cos’^- ; iAjsin —. 
a a a 

Analogously 

e 

en Boundary conditions for these displacements are the following. 

x-±o, y~±a there should be «“O, t—0.' Prom these conditions we 

obtain 

AiaA, Bx=bB2=*B. 

and v 
Then finally 

1.19), 
v=*B -j- cos —jsin^ . The 

rm 

re of 

he 

Now the total potential energy of the membrane will have the 

form 

y, 

ion 



Here is designated 

<7o = 
.¾ (1-^) qa 

n*El 

For determination of parameters A, B and C for the obtained 

expression of total energy let us apply the origin of virtual 

displacements. This will give us the following equations: 

I 
A9 
dA 
= 0. *JL 

dC 
0. 

From the solution of these equations we find 

A çî, 
64« 

Ifa * / (1 — a») qa 
Wiy 110 — (2 —1»)*| £4 

Having expressions for A, 3 and C, by formulas (1.15)-(1.17) 

we can obtain expressions for stresses: 

_Nt_8_ s/ Wo* y 
& n« ^ (1 —(i2) [10-(2- (.jspw 

X [(2 -f V-) (cos* cosî ^ cos2 îtC0SÎ ’ 

y«__ 8 SÜ X 
h ~(i-^)iio-(2-»* 

X [(2+rt (co!> + f cos’ ^) - 2M1 +1*) cos’ C0S> ^]. 

For displacements we will have 

„ 8(2- (2 —ría 1 / 0-WgW cos2 5iLsin —, 
ni y (10—(2 —2« a 

_ 8(2-n)« »/_ EgggZcos* — sin 
»® J' 110-(2-(.)*!* ß*»* 2« « 

16« ¡/ZnESHcos^COS^. 
n* |/ l!0-(2-|i)*l* £» 2« 2« 

The greatest stresses and greatest deflection will be in the 

center of the membrane. When y * 0.3 
« 

w — 0,82fl 
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CHAPTER II 

STRENGTH OP ROUND PLATES AND MEMBRANES 

§ 6. Basic Information from the Theory of Round 
Plates of Small Deflection 

We obtai the differential equation of equilibrium of round 

plates from equation (1.1) by its conversion into polar coordinates. 

Let us assume on the plate we have point M (Fig. 18). Rectangu¬ 

lar coordinates x, y of this point is connected with polar coordinates 

a, r by the following equalities: 

JC*=rcosa='f (a, r), 0=r slna=<5>(a, r). 

Fig. 18. 

Having connection of old coordinates with new, by known 

formulas of differential calculus it is possible to change from 

differentiation with respect to variable x, y to differentiation 

with respect to variable a, r by formulas 
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But 

dw dw df 
• s= — ■ — 
dw 
da 

dw 
dr 

dw df . dw d4> 

Ox da dy da % 

dx dr dy dr ’ 

— r slna, 
da ' da 

it, 
dr 

• cosa, 
dr 

>r cosa. 

>slna. 

Then 

99 — r sin a-5-+reos a-íi, 
or dy da 

dm 
dr •cosai^+sina-—. dx dy 

Prom these expressions we find 

dw _dw \ . dm 

“5--» sin a-^5.+-L cos a 
dy dr ' r da 

The second and mixed derivatives can be found in the following 

manner : 

ddw d f dw\ d / dw 1, dw \ 
d5T (C0*a "dr r8"0«?)' 

f ccai!. 
dr dx rúa dx 

-= coi a (cosa-^5--— »In a 
dr V dr r da ) 

—î-slna^fcosa-—-— sJna4rV r da V dr r da^ 

.C0,ia^+^iln2a^_J.,lnaB^ 

Analogously 
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dy- 
-- sin1« — 
öj/ \ ày ) dr"* 

sin 2a 
r* 

frw 
da dr 

I 
T 

-L-L C05> a ^---L sin ¡S, ÍH-+4 C0!> a 2=., 
r dr r* da r* da* 

JPw 
dxdy )y àx \ dy I dy \ dx I 2 dr* 

1 
—-J-cos* a ”-f—cos* a ■ 

r* da r da dr 
■sima¬ 

da dr 
1 

--f-Sin2a-^-- — sin2a —-I- —siníai». 
2r dr 2r* uu- 1 r* da 

Subsequently we will be limited by examination of symmetric 

bending of round plates. In this instance all the derivatives 

according to angle a must become zero. In this case we obtain 

0*1 

dx* “ 

dim ■■ ■ ras 
dy> 

cos* a ~ 4--L sin* a —, 
dr* r dr 

s,n*a TT + ~ cos?a “ • dr* 1 r dr 

d*w 
dxdy 

^4-s|n2u^_4- sin2a 
2 dr* 2r dr J 

(2.1) 

Since angle a is selected arbitrarily, if we change the desig¬ 

nation of old axes, i.e., designate axis x through y, and axis y 

through x, the right sides of expressions (2.1) should not be 

changed. The structure of the right sides of these expressions will 

not be changed only when we assume a » 0. Then finally we obtain 

dim_d*i d*ar I dm d*w q 
d.tfl dr* ’ dyi r dr ' dxdy 

Now equation (1.1) for the round plate can be written so: 

/ dim , J_ _rf \ / ,/?q> J_ ^ y 

\ <lri ^ r dr ) \ dr* ' r dr /™ D ' 

or after fulfillment of the shown operations of differentiation 

>i*m j _2_ illy_1_ diy , _1_ dm 

dr* ' r dri r* dri ' r* dr ^ D ' 
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This equation for convenience of integration is sometimes 

written in the form: 

— — (r — f-L —/r 
r dr \ dr y r dr \ dr ]\) D 

(2.2) 

Expressions for bending moments will have the form 

-D ( ,1'2w i >* 
\dr* ^ r dr)' 

_Z)(±!ÍE + I1JÍ!!LV 
\ r dr dr* / 

The expression for shearing force can be found from equation 

(2.2): 

q^D^-±\r±\±.±(r(^\\\. 
r dr \ dr [ r dr \ dr J¡f 

Shearing force Q per unit of length 

U r 

2nr 

—A2-'1 2nr J I rfr J, r d/- \ dr , 

rd rda ■■ 

=T{'^m)hD¿{Tmb 
_ q I diy _1_ ri-w_I dart 

\ dr* 1 r dr* /* dr / 

or i 

Equation (2.2) can be integrated in such a sequence. 

Let us preliminarily introduce new dimensionless quantity Q by 

formula 

0“ R ' 

where R - external radius of the plate. 
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Consequently, O^o'^I and dr^RdQ. 

Then let us rewrite equation (2.2) in the form 

dLit,_!LL -iUiÆlUÂL. 
j\! I </(• I e </(? \ «/»i /¡I o 

By integrating, we obtain 

or finally 

T¿(cf)=?-í(7Í,e‘',!)‘',,+c;",l!+c;’ 
s- (e ?) ” o- c Í ("r Í,erf<!) ^+Cic ln 8+c;i!i 

0 ^ = o' Í [c Í Í +c¡ JeIn erfe +.T +c;* 
if-o tÍHCtÍHH*'*' 

+ Ci-^- Jclnci/c+ “■ CjQ-f* -^r, 

””-7Í (rlM 
JJClno</o)c/C + 4- Caß* 

•“7ÍÍ7ÍH (71^)^1^)^+ 
+ ^itf* In 0 -(- CjO5 -)- Cj In ß -)- C4. 

Constants of integration in this expression are determined in 

each concrete case of calculation from boundary conditions; two 

boundary conditions will be on the external contour and two - on the 

inside, if the plate has opening, or from conditions at the center 

of the plate, ensuing from the physical essence of the problem, if 

the plate has no opening in the center. 



i 

As an example let us examine bending of a hinged-supported 

plate by uniform load q - const. In this instance the expression 

for w takes the form 

*~^+Ci0*,n«+C*,+C»lnG+C4. 

For determination of constants of integration we have the 

following boundary conditions at ¢-1: 

»-0, Aff-0, 

■^■“•5î^+c'<2ln«+3>+sc*-^- 

M,-D (S±jiiiîe+Û.|(3+|l)+2(i +,)1,,)+ 

+î!!±f!.C,-ü^lû-}. 
/P ÄV / 

When ¢-1 we will have (on the contour) 

j£j-+c,+c4—o. 
640 

J3+j.)fÄ* i 3 + 1»,, , 2(1+H)^ (1_^) ^ n 

ião + ** c,+-*r--c*— 

V 

To these two equations, ensuing from conditions of the problem 

when q—1, one should Join two more from conditions in the center of 

the plate (¢-0). In the center of the plate deflection and moment 

must have finite quantities. For this it is necessary to assume 

Cj - 0, C3 = 0. Then finally 

C, = - Q+ !»>*** c _ (5+ !»)«*« 
32(1 t^O’ 4 64(1+|»)0 ’ 

Expressions for deflection and moment take the form 
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For stresses a we obtain 
r 

3 r 
!ÍiÍ£=n 1^(3 +g) y ff» ,, .. 

M - 16ÏÎ l(r 7 

The greatest stresses and deflection will be in the center of 

the plate (0=-0): 

or (3 + ,u) yff* 

64¿> t max ' 
3(3 ft) gff» 

8t> 

s 7. Application of the Origin of Virtual 
Displacements for Symmetrically Loaded 

ftouind Plates and Membranes 

The expression for potential energy of a symmetrically loaded 

round plate can be obtained from the corresponding expression for a 

rectangular plate (§ 3), if in the latter we change from variables 

y to new variable r according to formulas of the previous para¬ 

graph. In this case we obtain 

V 

blem 

r of 

nt 

e 

After integration with respect to a 

£)’+* áw d*w 

dr dr* 
rdr+T, 

where Rgt Rh - internal and external radii of the plate; T - work 

of external forces. 

As an example let us consider bending of a rigidly fixed round 

plate, loaded by concentrated force in the center. In this 

instance R = 0. 
6 

As usual, for solution of the problem by this method it is 

necessary to assign a suitable expression for w, satisfying prescribed 

boundary conditions: 
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(2.3) 

Being limited by the first term of this series, we take 

w 

By substituting the necessary derivatives from this expression 

in 3 and having integrated within limits of 0-R , we find 
H 

3 /M0. 

The origin of virtual displacements gives the following equation 

for determination of parameter 

(13 

cíAq 
— 0. 

Prom this condition we find 

3/>Ä» 

64.tO 

Then 

Deflection in the center 

w • 0,015 

Accurate solution of the given problem for deflection in the 

center gives the following quantity: 



For improvement of the approximate result the number of terms 

in the expression for u must be increased. 

During investigation of symmetrically loaded round membranes 

it is also suitable to use the origin of virtual displacements. 

The expression for potential energy of a symmetrically loaded 

round membrane can be obtained from corresponding expression of § 5. 

By virtue of symmetry of loading the component of shearing 

strain in this case will be equal to zero, and the expression for 

total energy will obtain the form 

5 ^ T ÍÍ ^,5'+ Nti^rd rd a^r' 
f 

Fo£ connection of stresses with components of deformation we 

have formulas of Hooke law: 

Expressions for components of deformation can be obtained from 

Fig. 19 (see Fig. l6). 

Fig. 19. 

Let us project closed polygon AA^B^CB to axes r, a and let us 

equate the sums of projections to zero. From the equations obtained 

in this case we find 
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(1+«,)//“, 

If the left and right sides of these equalities are squared and 

summed up, then, by omitting the reasonings analogous to those made 

in i 4 with deviation of ex, in rectangular axes, we obtain the 

following expression for e : 
r 

The component of deformation in circumferential direction is 

determined by expression 

2xr r ‘ 

Then, considering formulas of Hooke law and the just obtained 

relationships for and e0 from displacements u and u, we obtain 

the following expression for total energy of a symmetrically loaded 

round membrane at constant pressure q: 

The last term in this expression represents work of normal 

pressure q. Having the expression for total energy, it is possible 

to change to selection of suitable expressions for u and w. 

For deflection w let us take expression (2.3), which we used 

during investigation of bending of a round plate 

The structure of function u is determined as was stipulated in 

5 5, proceeding from the expression of potential energy: 
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By substituting here the derivatives of w, we obtain 

In order that the given expression would satisfy conditions on 

the contour u ■ 0 when r = a, it is necessary to assume 

Then finally 

u> 

After selection of functions w and u it is possible to calculate 

the potential energy of membrane 9 and, by making use of the origin 

of virtual displacements, to determine constants AJt A2, A^ from 

equations 

— sO —acO 
i.4o ' dAj ' d.4j 

0. 

By solving the equations obtained in this case, we find 

.=0)/ 

¿I. 

21 (1 — y») gg 

2(23+ —Vj £» 

At 

A* 

2(8-1») Ag 

3a* 

a-riAj 
6a* 

Stri-^^es in the membrane and are determined by formulas 

of Hooke law: 
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In expanded form these stresses will be 

4(23+]4|t —[ 

x2- £L—£L1 
3 «4 6a« r 

2U(1 5 + 2» — 3yJ /4 

6(1-h») 0* 

a« 6a* J 

4(23+ 14(i- V)!£HJ [ 6(1-(11) 0» 

■ 10H 7f* 1 

'3a« 6a« I ‘ 

2H(1—u»)«atgl f 5-» 3r* 
VjîfWï 

By assuming u * 0.3, we find stresses and deflection u in the 

center r * 0 and on contour r = a of the membrane1: 

‘Numerical coefficients in the obtained formulas for stresses 
are somewhat different from coefficients in analogous formulas given 
in the book of S. P. Timoshenko "Plates and shells." This difference 
is apparently a consequence, in the first place, of different methods 
of solution of the given problem,and, secondly, a different approach 
to selection of approximating functions for displacements in the 
tangential plane for the deformed membrane. 

The second observation pertains to formulas obtained for a 
square membrane in § 5. 



CHAPTER III 

STABILITY OF PLATES 

Phenomenon of loss of stability has been connected with the 

possibility of appearance of elastic systems that are different from 

original forms of equilibrium. If, for example, the plate is loaded 

with compressive forces, acting in its middle plane, then for a 

certain magnitude of these forces the original rectilinear surface 

of the plate can cease being uniquely possible. Along with this 

form there can exist other forms of equilibrium, connected with 

warpage of the surface of the plate. The load at which this phenom¬ 

enon occurs is called critical. 

Subsequently we will examine only such cases when the load does 

not change its direction after loss of stability of the plate. Such 

loads are called conservative. 

Below are examined only two methods of solution of problems of 

stability, which are widely applied in calculation practice: static 

method and energy method. The first method is based on the use of 

equation (1.1), the second - expressions of total energy (§ 3). 

Let us begin with examination of the first method. 

§ 8. Static Method of Investigation of Stability 
of Rectangular Plates 

In this case the differential equation of equilibrium has the 

¿J3 

» 

form 



\dx* dxidki~ dp) ¥' 

By lateral load q here we should mean that fictitious distrib¬ 

uted load, which distributed forces give In the middle surface with 

their projection to a nondeformed plane of the plate. Thus, we can 
obtain (see § 4) ’ 

dir 

rdjr* Mg 

Then the equation for investigation of stability of plates 
takes the form 

n /gg-J-g **• ■ d«r\_„ a*r v dN» , ox. d>r 

Here signs for and ^ are changed to opposite - compression. 

Expressions for moments and shearing forces, and also formulation of 

boundary conditions in this case remain the same as during investi¬ 

gation of the strength of plates. 

Forces ltx, Nyt , connected with effective contour forces, 

in the most general case can be quantities variable at each point 

of the plate. In this instance at first it is necessary to solve 

the two-dimensional problem of theory of elasticity about the distri¬ 

bution of these forces along the plane of the plate, and then it is 

even possible to solve the problem of stability of this plate, being 

under the action of a specified system of external forces. 

But in the most important cases and in the calculations most 

frequently encountered in practice these forces can be considered 

uniformly distributed along the plane of the plate and coinciding 

with their distribution along the contour. 

The given equation of stability cannot be accurately solved, 

and therefore it is necessary to use approximate methods, which was 

indicated above (S 2). 
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Let us give some examples. In the beginning let us examine 

stability of an evenly compressed plate, hinge-supported along the 

contour (Fig. 20). 

m 

Fig. 20. 

In this instance Nx ** const along the entire plane of the 

plate; • 0t Nxy • 0. Then 

Ü 
\dx* 

+ 2 
d*w 

âx* dy* 

»W 
djfl' 

With hinge-support there should be: 

(div a*v \ 

■«.——0 --....,.0. ,-.. 

We will satisfy these boundary conditions if for deflection we take 

« » /t sin (3.1) 

Of course, it would have been possible to take another expres¬ 

sion for deflection, which satisfies the same boundary conditions. 

The expression for deflection (3*1) shows that after the Iocs 

of stability the surface of the plate in the direction of axis x 

was bent along m half-waves, and along axis y - along n half-waves. 

By substituting the accepted expression for w in the- equation 

of equilibrium, we obtain when A ft 0 

to 



"((tMtA-Mt/- 

Hence we find 

For purposes of calculation the smallest magnitude of com¬ 

pressive force N must be found. From the structure of the last 

expression it is evident that minimum N will be at n * 1, i.e., 

when in the direction of axis y of the plate there will be only one 

half-wave. Then 

As can be seen from this expression, at specified sizes of the 

plate the magnitude of compressive force N depends on the number 

of half-waves m. In each concrete case it would be necessary to 

assume m * 1, 2, 3 ••• and to take the smallest of all values of IV 
X 

obtained in this case for calculation. However, to get a visible 

finite formula we will consider that the plate is rather long and 

the quantity of all types of values of numbers m is also rather 

large. Under such an assumption it can be considered that force 

is a continuous function of parameter m. On the basis of such 

assumption the given expression can be differentiated. Then for 

finding the minimum load we have equation 

Hence we find 
« 

Since numbers m must be whole natural numbers, the least 

quantities for force Nx will be when 

* 



£ 
* -2; m *- 

£ 
» 

-3... 

and all these least quantities will be equal to each other. There¬ 

fore , 

.V X nln 
4«»D 
*1 • 

Let us construct curves of the relationship of force N to ratio 

a/b at equal quantities of m (Pig. 21). 

Pig. 21. 

Let us find the points of intersection of curves during the 

transition from m to m + 1 half-waves. Prom the condition of 

equality of critical forces at points of intersection we find 

«i -f 1 + 
_I_ 
« + 1 

From this equation we obtain 

— « /m(m+ 1). 

Having given different values to parameter m, let us find the 

points of intersection of the curves in Fig. 21. When m-i /2, 

when m=2 |^6 , etc. At very large m we obtain a/b * m, i.e., 

rather long plates after loss of stability are approximately divided 

into square half-waves. In this case for critical magnitude of 

force N we obtain 
f 
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If for a specified plate ratio a/b is not very great, the, having 

substituted it into the expression for instead of m, we can 

determine critical magnitude of compressive force for the given 

plate. We examined this case of hinge-support of plate along the 

contour. With other boundary conditions it would be necessary to 

take another expression for deflection, which satisfies these 

boundary conditions, and to use other approximate methods, described 

in i 2. 

Let us show how it is possible to rather simply obtain the 

solution of the problem of stability, using the method of finite 

differences for a plate hinge-supported on three sides and with the 

fourth side free with uniform compression (Pig. 22). 
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Pig. 22. 

Equation of stability in finite differences in this case 

assumes the form 

D —|2or*- 8<r, + r, + wm + wm)+2(^,+^,+^ + ^ + 

+ r, + r, + r. + «\| — -^(^1 + 
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We will satisfy boundary conditions if we assume 

., «/d*» \ » 
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and on the contour deflection Is equal to tero everywhere, except 
side y m o. 

In finite differences these boundary conditions have the form 

ai. -~ of+ . .. ?L±r,-2\r, \ . ' [ „ rM 

IV - 
12»* + 

+ rJ —- - 2tr<| + - y, w, -jr. 
2Mt 

—o(EL±»p2&+, 1r.-tr.-2r. 
V ÊA 

]“0, 

)^0- 

Prom these equations for the accepted numeration of grid nodes 
on Pig. 22 we obtain 

irt = o 
IP,—IT, I Ion,- ilde J short tide on th* lift 

Por the short side on the right when y * 0.3 we obtain the 

following two equations, which connect outer contour points 1 and 2 

with internal contour points 3, 5: 

r— _ n/JP|-r*+2yi—2g? 21T,— 21P3+ 0— Of 0—o\ , 
V 2»» +'*7—^ 2»ÂÏ-J“0* 

(3 2 ) 

Prom the given equations we obtain the connection of outer 

contour points with internal. For internal contour points we obtain 

the following four equations of equilibrium. 

Point 3: 

M l-W*-8 (0 HO h IP, h IP,) y> (0 -0 0 f-0) -ITj- r, .(. ir, + irsJ, 

V, . 
;o..:r3). 



Point 4: 

— l-W« -8 (0-; 0+ lTj+ ITs) + 2 (0 0 +0+ 0) ç\ • r4-r4 MTj + vt\- 

(0+o-2ir4). 

Point 5: 

D 
— (20\Tj - 8 (0+0+ r4 + JT*) + 2 (0 +0 f 0+0) - 1T, _ (T, + «r, + oj „ 

« 

— <°i -7*ù- 

Point 6: 

D 
— (20JT, - 8 (0+0+ ** + 0) +2 (0^ 0 +0 f 0) - 1T« - r, + »T4 - Wt) « 

—-^-tO+O-îlT,). 

By excluding and from these equations with the aid of 

equations (3*2), we obtain the following homogeneous system of four 

equations : 

-8^, + (17-24)^, = 0. 

r, - sy« + ( is - 2») or, - str, =o. 
-5.4r, + (i7-2*)ir4-8rj+r,=o, (3.3) 
(11.24 - 4) IT, - 10.8r4 + 21F, = 0. 

where 

In this system of equations there is a total of five unknown 

quantities: at points 3, 4, 5 and 6 deflections W.t Wc, and 
ó 4 b 0 

load parameter fe. 

Of all these unknowns*only parameter fe interests us. For its 

determination from the second equation it is possible to determine, 

for example, W^ and to substitute its value in the remaining three. 

Then from one of these equations we determine W4 and substitute its 
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value in the remaining two, which will already contain only W and, 

Vg- By excluding from these equations, for example, W we obtain 

one equation 

W, (8*4 - 297,9*3 + 3641** - 1662* + 23 320) ~ 0. 

Since Wß fi 0t there should be 

8*4-297,9*3 + 3641*3 _ 1662* + 23320 =-0. (3.4) 

We will arrive at exactly the same result if we equate the 

determinant of equations (3.3) to zero. 

Inasmuch as the smallest magnitude of load N interests us, we 

must determine the smallest root of equation (3.4). Then by trial 

and error we can be certain that kmin = 2.55. Then 

or 

^ = 40,8-^-. 

Accurate solution of the problem in this formula leads to 

coefficient 43.4. 

From the provided examples of problems on the stability of 

rectangular plates it is evident that the formula for critical load 

can always be represented in the form 

or when y ■ 0.3 

AT., 

(3.5) 

Numerical value of coefficient fe in this formula will depend 

both on the character of load affecting the plate and on boundary 

conditions of the problem. In reference books on structural 

56 

$ 



mechanics there is a sufficient quantity of these coefficients for 

different cases of loading and fixing of the plate contour. 

As can be seen from the structure of formula (3.5) itself, it 

is valid only within limits of elasticity o < o . If onlv o > , KP P 17 Hp 
> Op (and practically oMp > og), then the given formula is impossible 

to use. In these cases we use Tetmayer-Yasinskiy formula, which 

is well recommended in practice. This formula is illustrated by 

Pig. 23, whence 

•tp — -wRff » + mn 
or 

qu 

bai 

Toi 

Of' 

W01 

ben 

Here we obtain Tetmayer-Yasinskiy formula 

where 

•kP ™ *•— f*» — •*) 

If • then we should use formula (3.5), 

then we should use Tetmayer-Yasinskiy formula. 

if however 
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§ 9. Application of Origin of Virtual Displacements 
for Investigation of Stability of Plates 

In more complex cases of loading of plates for solution of 

questions of stability the energy method can be successfully used, 

based on the origin of virtual displacements. 

Let us examine a plate in deformed state after loss of stability. 

Total energy of the plate in this state will be equal to the work 

of internal forces of elasticity and to work of external forces. 

Work of forces of elasticity is numerically equal to energy of 

bending and twisting of a plate and is expressed by formula 

*~-fp&)’+(v)’+2>£v+ 

[war ■ bending] 

where the integral is extended along the entire area of the plate. 

Elastic energy, accumulated in the plate before buckling, does 

not play a role in questions of investigation of stability, and we 

do not consider it. Work of external forces, acti ig in the middle 

plane of the plate: 

Total energy of a buckled plate after loss of stability 
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Inasmuch as the plate in the considered state is in equilibrium 

under the action of specified external loads, by applying; the origin 

of virtual displacements to this state it can be said that the sum 

of work of all forces on virtual displacements will be equal to 

zero, i.e., 

0.9=0. 

For all practical purposes with use of this condition it is 

necessary to preliminarily assign a suitable expression for deflec¬ 

tion u, certainly satisfying all the geometric boundary conditions 

of the problem and optionally (out desirably) force conditions: 

^ (•*• (*» ÿ)*i“ • . ., 

where ... - known functions, which satisfy boundary condi¬ 

tions; a2 — unknown coefficients (parameters). 

Having substituted this function of deflection in the expression 

of energy and integrated it with respect to the area of the entire 

plate, we obtain that total energy will be expressed in the function 

of unknown parameters a^, ...: 

3=3(0,, Oi,...). 

The origin of virtual displacements leads to equations (§ 3) 

da, 0. (3.6) 

There will be as many such equations as unknown parameters a.. 

Equations obtained in this case will be homogeneous. The 

solution of such a system of equations will be the equality of 

determinant to zero. By equating the determinant to zero, we obtain 

one equation, from which the critical value of external force will 

be determined. 
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As an example let us take the problem about stability of a 

rectangular hinge-supported plate, being under the action of com¬ 

pressive load Nx, evenly distributed along sides x = 0 and x = a 

( see Fig. 20). 

As the expression for deflection y we take 

w=a‘x*(' ~f)(' -7)+^(1 -f )’. 

For simplicity of computations we will ! e limited by the first 

term 

('-fX'-f)- 
The given expression satisfies only one condition y = 0 along 

the contour and does not satisfy force boundary conditions, never¬ 

theless \his expression can be used for approximate solution of the 

problem. The total expression for potential energy will have the 

form 

Conditions (3.6) in this case lead to equation 

dS _ 2Dato, / S , *l 
dût 

abai /8 . b* \ 2Nxab*a, „ 
15 1 3 ^ a* J 180 

Hence we obtain 

This formula can be written in such form 

.V tinW 

where 

(t+7)' 
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Exact solution of the given problem leads to the following 
value of this coefficient: ' ' 

[tohh ■ exact] 

Table 1 for comparison contains values of these coefficients 

for some ratios a/b. 

Table 1. 

m 
t 0,2 1 1,41 

h 33,7 4,46 3,87 

*«Ma 27 4 4,49 

Prom this table it is evident that the greatest error of 

approximate solution is obtained for small values of a/b. it is 

sufficient to Increase the number of terms in the expression for 

deflection, as the error of approximate solution is reduced. How¬ 

ever, a somewhat better result can be obtained if for deflection we 

take an expression, which will satisfy force boundary conditions as 

much as possible. Por example, let us take 

w-a.xjl-yjslnîe.. 

By omitting all intermediate computations, let us give the 

finished result for coefficient fe1 (Table 2). 

Table 2. 

• 
» 0.2 

e 
1.0 1.4 

32,44 4.2 4,56 

27 4 4.49 

61 



I < 

I 

ts 

In all cases a reliable result can be obtained if a suitable 

expression satisfies all boundary conditions of the problem. For 

example, expression 

w~ A(x*—2ajr*-}- a**) sin 

satisfies all conditions of hinged support. In this instance for 

coefficient k1 we obtain the following values (Table 3). 

Table 3. 

« 
» 0,¾ 1.0 1.4 

*1 27,2 3,98 4.43 

*roi« 27 4 4.49 

s 

>r 

low- 

>n we 
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CHAPTER IV 

STABILITY OP RODS 

§ 10. Euler Form of Loss of Stability of Rods 

Critical loads for rods. Just as for plates, can be determined 

both from solution of differential equation of the problem and by 

the energy method. 

Differential equation of equilibrium of a bent rod, as it is 

known, has the form 

f/iT-Af. 

In the case of loading of rod in Fig. 24 the expression for 

bending moment in an arbitrary section of the rod will be 

y 

Fig. 24. 

Then 

Elyr~P{b-y) 
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y 

or 

where 

EJ 

The solution of this differential equation will consist of the 

solution of homogeneous equation (without the right side) and solu¬ 

tion of equation with the right side (particular solution): 

¿/=j4 cos tor+ß sin tor+ft. 

For determination of constants of integration we have the 
following boundary conditions: 

when Xa 0 y — 0 y' — Q 
when ***/ 

From these boundary conditions we find 

fl-0. 
A-—*. 

Then y « ó(1 - cos fex). 

This expression for deflection should be valid on the entire 

length of the rod. In order to obtain the magnitude of deflection 

on the free end x • l, equal to y - 6, it is necessary to assume 
(cos kx)x M i s 0, i.e., should be 

or 
2 

/7 
a ye/’ 

whence 

4- 1)« 
41» 

6Ü 

N 
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The smallest magnitude for force P will be n =* 0 

a>ej 
4/* • 

This is Euler critical force for the rod. 

With other boundary conditions the numerical coefficient in the 

given formula will be different. Generally it is possible to write 

(¢.1) 

where C - numerical coefficient depending on boundary condition» 
(Table H). 

whe 

cri 

Tet 

Table 4. 

Chsr»et»r cf 
boundary 
condition* 

Cn* rigidly 
fixed, th* 
other free 

Both end* 
hinge 
•upoorted 

One rigidly 
fixed, th* 
other hinged 

Both end* 
rigidly 
fixed 

c 1 

4 
1 1 

2 4 

Let us set the limits of applicability of formula (4.1). 

Having divided PKp by the area of cross section of the rod, we 

obtain critical stress 

or 

where 

Formula (4.2) is applicable if 

Wnf ^ Op. 

(4.2) 
the 

of p 

besli 

pres 
diet 
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In limiting case 

Cn*£ ' 
-- a, 

whence 

If then formula Í1**2) becomes inapplicable, since 

critical stress is obtained higher than o . In this instance 

Tetmayer-Yasinskiy formula should be usediFig. 25). 

Pig. 25. 

From similarity of triangles bod and act we find 

--Í-. 

w A. 

After multiplication of oMp by the area of cross section of 

the rod we obtain the expression for critical force beyond the limit 

of proportionality. 

* H• Local Stability of Compressed Rods1 

If the rod consists of separate plate elements (Fig. 26), then 

besides the forms of loss of stability examined in 5 10, accompanied 

‘Here, Just as in S 10 
pression is not twisted, 
diet experimental results 

, it is assumed that the rod under 
Such a calculation scheme does not 
for rolled aircraft profiles. 

com- 
cont-a- 
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by general bending of the axis, there can still be a local loss of 

stability of the web or the wall as plates. The magnitude of criti¬ 

cal stresses for the web and the wall of the profile can be deter¬ 

mined by formula (3.5). This formula was obtained for a long 

rectangular plate, compressed in the direction of the long side and 

losing stability with the formation of square half-waves, moreover 

along the width of such a plate only one half-wave is generated. 

The magnitude of coefficient fe in (3.5) should be taken depending 

on the boundary conditions on the contour of half-wave. For example, 

there is examined a profile of constant thickness, shown in Fig. 27 

(the upper web is shown after loss of stability; broken lines show 

boundaries of half-waves). Let us consider each half-wave of the 

upper web as a square plate with side equal to the width of web. 

Boundary conditions for it will be the following: side ab - hinge 

supported, sides ad and bo — hinge supported, side do — free. 

botii 

crii 

conr 

cier 

In this instance coefficient k * 1.44. 

When determining the critical stresses for the wall coefficient 

fe * 4 as for a hinge-supported square plate with side equal to the 

width of the wall. 

the 

in t 

the 

forrr 

Fig. 27. 

have 

wher 

t 
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In order that the considered profile would be of equal strength 

both in terns of overall and local stability, it is necessary that 

critical stresses in both cases be equal to each other: 

for a plate 

Prom condition of equality of critical stresses we obtain the 

connection of all geometric parameters of the profile with coeffi¬ 

cients fe and C: 

» _ » i /0.®* 

/ nV C (4.4) 

The profile, which satisfies condition (4.4), will be the most 

advantageous. 

Formulas (4.3) and (4.4) will be valid if critical stresses in 

the profile do not exceed the elastic limit. If critical stresses 

in the profile, calculated by formulas (4.3), (4.4), are higher than 

the limit of elasticity, then corresponding Tetmayer-Yasinskiy 

formulas should be used. 

For determination of critical stresses in the wall and web we 

have Tetmayer-Yasinskiy formula 

8kP = 3.-K“®,) 
» 

It), 
where 
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From condition of uniform strength of the profile in terms of 

local and overall stability we obtain 

Thus, conditions of uniform strength of the profile both in 

elastic, and nonelastic ranges coincide, i.e., the profile, most 

advantageous in the elastic zone, remains the most advantageous also 

in the nonelastic zone of work of the material. 

5 12. Effective Width of Covering. Working Together 
with Roà Bracing 6 

If a plate, fastened along the perimeter to the profile, lost 

stability from compression, then it is excluded from further work 

and only small narrow strips, adjacent to the profiles, Continue to 

absorb the additional load. 

Such phenomenon will be observed when critical stress of the 

plate is less than the critical stress of the profile. Figure 28 

shows a plate fastened on the contour after loss of stability. The 

central part of the plate after loss of stability is conditionally 

surrounded by a wavy line. The strips of the plate, adjacent to 

profiles, with width o on each side, which continue to absorb the 

load, can be approximately determined from the following reasonings. 



kmi i iilaU 

Pig. 28. 

Let us consider a plate with width 2o as freely supported and 

for determination of its critical stress let us apply formula (3.5) 

when fe ■ 4 : 

Having substituted here the dimension of 2o instead of 2>, we 

obtain 

whence we find 

(4.5) 

This is the so-named Karman formula. A strip of plate with 

dimension e, adjacent to the profile, is called the effective width. 

Prom the condition of compatibility of deformations of adjacent 

strip and profile 

3,6 

E 

we obtain 



where 0HptCTp - critical stress of stringer. 

Dimension a is usually read from the place of attachment of 

the profile to the plate on the side of the plate (Fig. 29). 

Fig. 29. 

The effective width c, calculated by formula (^.6), is then 

considered during determination of the cross-sectional area of the 

profile during its calculation for compression. Formula (4.6) is 

used even during calculation of warped panels. 



PART II 

STRENGTH OF SHELLS 
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MOMENTLESS SHELLS OP REVOLUTION 

In this part we examined some questions of calculation of shells, 

widely applied in various constructions. In Chapter V let us pause 

on calculation of momentless shells of revolution. By momentless 

shells it has been accepted to mean a shell, the stressed state of 

which is determined basically by membrane ("chain") stresses. 

Bending stresses in such shells are usually small in comparison with 

membrane. Formulas ensuing from the momentless theory play a basic 

role in strength calculations of thin-walled vessels and capacities 

with internal pressure. Momentless stressed state in such construc¬ 

tions is usually disturbed either at places of attachment of edges 

of shells, or at places of uneven change in the thickness, at places 

of Joining of shells of various geometric shape, and also at places 

of uneven change of load. This type of problems is examined in 

Chapter VI. 

5 13. Some Information from the Geometry of Shells 

Subsequently we will consider only shells of revolution. By 

shell of revolution we mean a body formed by the revolution of two 

flat curves around an axis, lying in their plane and not intersecting 

these curves. The distance between these curves forms the thickness 

of the shell. 

• ' 

The surface, dividing the thickness of the shell in half, is 

called the middle. 



By prescribing the shape of middle surface and shell thickness 

we comprehensively determine the shell in a geometric relationship. 

Subsequently we will consider only covers of constant thickness. 

The track of intersection of shell with the plane passing 

through the axis of revolution, is called the meridian (Fig. 30). 

Meridians coincide with generatrices of the shell. The track of 

intersection of the shell with the plane perpendicular to the axis 

of shell is called the parallel or parallel circle. 

The radius of the meridian is called the first principal radius 

of curvature and is designated /?1. 

Radius of curvature of the curve, obtained from intersection 

>of the meridian by a plane perpendicular to this meridian, is called 

the second principal radius and is designated ¿?2. 

Both radii lie on one straight line, being the normal to the 

meridian. The point of intersection of this normal with axis of 

shell fe2 and point of the end of the normal are centers of curvat 

of the surface at the given point. The angle between the normal to 

meridian and axis of shell <f> is called the angle of latitude of the 

considered point. 

§ l1». Equilibrium Equations of the Shell with 
Axlsymmetrical Load. Laplace Equation 

Let us examine the equilibrium conditions of a shell, leaded 

symmetrically relative to its axis. 



Figure 31 shows a shell, from which element Sjflj has been mentally 

cut off by two meridion sections at angle dQ to each other and by two 

tapered sections at angle d<J>, to which for equilibrium there are 

applied as yet unknown internal forces ^ and iV0 and also external 

load with Intensity q. Let us formulate the equation of equilibrium 

of the separated element in the direction of radius of curvature of 
the meridian (Fig. 32); 

N iRx d? db sin 9 + (A^f -f dN¿ (r4-dr)dbdf'r V# / db d<f 0. 

By disregarding infinitely small quantities dr and dN. in this 
equation and cancelling by dQd$t we obtain 

JV»/?, sin *-f JVTr+•• 0. 

According to Fig. 31 vîe have 

r-Assin^. 



tally 

two 

Then 

W?i 'rAV?, !-«//?,/?,-0. 

Let us divide this equality by • Then 

«f+sr--*- (5-1) 

This is the Laplace equation. 

In equation (5.1) the two unknowns are and Nq. To get the 

second equation let us examine the equilibrium parts of the shell, 

located over the parallel circle, determined by angle <J> (Pig. 33): 

2wjV, sin*-f 0=^0. 

whence 

N,- aftrtla* ' (5.2) 

where Q - resultant of the entire load, located above the considered 
section. 

Ls 

Prom equations (5.1) and (5.2) we can determine both membrane 

forces with axlsymmetrical loading of the shell of revolution. Let 

us examine particular cases of application of these equations. 



Figure 3^a shows a spherical shell, loaded by internal uniform 
pressure q 

Fig. 31». 

In this Instance 

JV—îfL, 
2 * 

where 6 - thickness of shell. 

The spherical shell under load, changing according to law 

q • qQ cos2 ¢, Is shown in Pig. 3J»b. 

In this case for the resultant of force Q we have expression 

Then 

qR d<tr di co« ¢. 

* 

it 

pr 

cy 

q ( 

lirfr 

Nf, 
2n/?sln>f 

Jcof^iln^Ÿ“ -f^(l + cos*T). 

From Laplace equation we obtain 

(3co«*f-l). 

From these expressions it is evident that force is compressive 

everywhere, and force NQ changes its sign. At angle <(» - 550 it becomes 
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orm 

n 

it becomes zero, and ¢, > 550 it will be tensile. 

In the case of a cylindrical shell, loaded by internal uniform 

pressure (Pig. 35), We have ^ ^ . where fí _ radius of 

cylinder. Then 

at, 

r frz m 
- Æ - 

Mg. 35. 

Meridion stresses are determined from equation (5.2): 

ftiÄ 2 ’ ^ 2» 

In the case of a tapered shell under internal uniform pressure 
q (Fig. 36) 

R\ — oo, #3»JCtga, 

N%=.qRi=qx\ga% o, = fi^LîL 

Fig. 36. 

N 

essive 

becomes 
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Let us determine meridion stres ses from equation (5.2): 

or 
N,- 

2nr cos « 

Figure 37 shows an ellipsoidal doughnut-shaped shell, loaded by 
internal uniform pressure. In this case from the condition of 

equilibrium of section of shell AB in the direction of axis y we 
obtain 

2nrNysln<p=ji (r*—rj) çt 

whence for meridion force 

The expression for circumferential section ¡V is obtained from 

Laplace equation, having substituted the found value of N in it• 

(5.4) 
\ 2 Air sin f / 

In formulas (5.3) and (5.4) it is most convenient to exp ess 
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principal radii of curvature R1 and i?2, and also sin <)> as a function) 
of r. 

For we have the following expression from analytical geometry: 

H£)f 
*>■ 

According to Fig. 37 

rfV 

4v* 

«in f 

According to this figure we find 

or 

Let us assume we have assigned the equation of ellipse in axes 

í+T-'-O- 

This equation in axes r, y will have the form 

<^+£-1-0. 

whence 

From this expression let us find the first and second derivatives 

— = <»/ a» - (r - 
»(r-r,) 

</»/• __gi 

</** (/■ - r0)i ’ 
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Thus, we expressed the first and second derivatives in the 

function of radius r. Now for principal radii of curvature ^ and 

#2» and also for sin $ we obtain the following expressions: 

q. - [(** — û*)(r — rnfl 4- **|T 

0 rif*»-«»)(r-ra)» + <4lT 

Hr-r¿ ‘ 

•«nf--- 
((«•—ct)(r-/t)> + |4)T 

If we substitute expressions (5.5) in (5.3) and (5.^1), we 
obtain the formulas for stresses: 

V 

•• (5.6) 

Prom these formulas it is evident that stress will always 
be positive, if the shell is affected by internal pressure. Regarding 
stresses Og, at a certain value of r it passes through zero and 
changes its sign. 

Por example, if internal pressure acts, then when r < rQ the 

annular stress Oq will be tensile, when r > i*q — compressive. 

Therefore, this part of the doughnut-shaped shell at some magnitude 
cf such stresses can lose stability. 

For a round torus (Pig. 38), loaded by constant internal pressure 
q, when a « fc the expressions (5.6) for stresses take the form 

2rl (5.7) 

From (5»7) for a round torus the corresponding formulas can be 

obtained for cylindrical and spherical shells. The second of the 



and 
Fig. 38. 

ie 

- 

I 

5) 

.6) 

given formulas is not connected to the characteristic parameter of 

torus with radius rQ and therefore can be immediately used if 

computing the axial stresses in a cylindrical shell (Pig. 39). 

Fig. 39. 

fays 

Regarding 

id 

the 

r 
nitude 

pressure 

» 

• 7) 

pan be 

the 

Let us rewrite ihe formula for stresses 0. in the following 
form: 9 

-£('+?)■ 
With increase in radius the current radius r increases 

simultaneously with it. Then in the limit 

Therefore, it is possible to write 

‘-tb"1’(tL.K- 

By this formula we determine circumferential stresses in a 

cylindrical shell with constant internal pressure q. 

In the case of a sphere In formulas (5.7) it is necessary 

\ 
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to place rQ ■ 0. 

In the case of an ellipsoidal shell, loaded by uniform internal 

pressure, in formulas (5.6) it is necessary to place rQ * 0. Then 

the expressions for stresses in this shell (Pig. Ho) wlll have the 
form 

_q 2r1 (H - gl) + g4 

/rT(7i - a*f+5 ’ (5.8) 

Prom these formulas it is also evident that stress o will be 

of one sign everywhere at any value of rj stress o0 at some value 

of r passes through zero and changes its sign at a point which can 
be found from equation 

2r*(6*-a*)+a4-0, 

whence 

'-/--jsrbr “>»• 

^ • Stresses in Shells from Hydrostatic Pressure 

All liquid bodies in contrast to solid take the form of the 

container in which they are located. 

Pressure inside the liquid is composed of pressure of the free 

surface (qj and pressure of the liquid column with height from the 

considered point to the free surface. In Pig. the force of 

pressure on area F in side the liquid 



P=*yhF+qtF, 

where y - specific weight of liquid. 

ÜJÜÜ 

Fig. 41. 

9n 

Having divided this expression by F, we obtain the total 
specific pressure at the given point: 

y 
q=£- = yh + qm. 

Pressure of liquid on area F is called hydrostatic pressure. 

Hydrostatic pressure of liquid at the given point coincides with 

normal stress inside the liquid. Normal stress of liquid at the 

given point is identical in all directions (Pascal law). 

Hy^ static pressure is always directed normal to the surface 

on which it acts. The magnitude of hydrostatic pressure at the 

given point is measured by the height of liquid column above this 

point and depends on the shape of the container in which this liquid 
is located. 

Figure 42 shows examples of pressure diagrams for certain 
containers. 

For determination of membrane stresses in shells of revolution 

from hydrostatic pressure equations (5.1) and (5.2) are used. In 

these equations the magnitude of hydrostatic pressure, expressed 



depending on the height of the liquid 
column must be substituted. 

In the case of cylindricll shell (Pig. 43) 

/?,«<», /?,= /?, ¢--(A/ —jc)y. 

Pig. 43. 

Prom Laplace equation it follows that 

S’ 

or 

1 » 

In this case N . - 0. 
♦ 

In the case of tapered shell (Pig. 44a) we have p, - - /? 
■ X tg a: 1 * 

■f= - Y k cot a-(/-//)), 

/Vi— [xcosa-(/— //)) tgo. 

For determination of forces let us examine Pig. 44b. 



a) b) 

From the condition of equilibrium of this part of the cone in 
the direction of its axis we obtain 

ts Jr 

f,L' 
ÿ sin ar ¿0=2nr, Wvcos a. 

CM« 

Having substituted here 

f-Ylîçosa-(/-//)1, 
r={slna, r|=jcsina, 

after integration we obtain 

cot<a 
■2jc3 cosa 

In the given formulas the magnitudes of * lie within 

— > X > l-^~. 
cot a cot a 

The greatest magnitudes of force Na and AT are obtained when 
• e <P 

cot«* 

AT, 
•y t mai — _ • cot a 

_ Y//i(3/-A/)l(!fl 
/V 'r mu-r,_ 6/ cot a 

If the cone is completely filled with liquid, then H - l. 

Then the expressions for forces will have the following form: 
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Let us examine loading cases of a tapered shell, shown in Fig. 45 

^1= 00, #*—*tga, 

9— — Yl^—Jfcosa), 

— <?/?j=y(//—jccosa)jttgu. 

For detennination of meridlon forces . let us examine the 

equilibrium of the lower part of the cone, determined by distance 

X from its vertex (Fig. 45b). From condition of equilibrium of all 

forces, acting on this part of the shell in the direction to its 
axis, we obtain 

2nrN,co%a—Vyt 

where V - volume of the balanced part of liquid; Vy - weight of this 
liquid. 

Volume of liquid 

. V •= -j- nr cos a -f nr* (//—jc cos 0). 
3 

Taking into account that r • x sin a, and using the given 

quantities for V, we finally obtain the formula for force If : 
♦ 

N,~yx(±H—i-jrcoso Jtgo. 



45: 

This force reaches the greatest magnitude when 
4 cot a * 

w. .11^.««?, 
16 cot a 

As is easily checked, 

will be when : 
0 2coia 

the greatest magnitude of annular force 

w, ^ YWtfq 
4 cot a 

If a tapered shell in the shape of the bottom of a tank will be 

loaded according to Pig. 46, for forces and we have the following 
expressions: 

Ni = — Y* {h+/—-|- Jf cos aj tga, 

“ Y* (A-W—JC cos a) tg a. 

✓ 
Pig. 46. 

Let us examine the lower bottom, made in the shape of doughnut¬ 

shaped shell of ellipsoidal section, loaded by hydrostatic pressure. 
Weight of the shaded part of Iqiuid (Pig. 4?) will be 

C » yJW* - *rl)dy+- nr^H + y) = 
» 

“ "Y j (/•* -rl)dy + nv (r* - rj) (// -f y). 
» 

By substituting the quantity in the expression under the 

Integral sign by formula r-r#+a^and integrating within 

the shown limits, we obtain 
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^ 1 -■¿-r,a»arcsln-J- + 

+-|-a*í-«>»+i- 2ÿ+(r>-rP(H+j). 

Let us replace ^ here by its expression through r according to 
formula 

Finally 

C-nY{Y«V»+ya*H//(r«~rp-roflôarcslnX ^ 

X ]/l -Í^jp2_-Lé ]/, -(-~2L*[2(a*-r»)+r0(r0+r))|. 

Now let us formulate the condition of equilibrium of the weight 
of liquid in the shaded volume and meridion forces U . on the axes 
of shell. We have 

2jirJVvslnr»G, 

whence 

N, 
0 

2nr sin y 
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After replacement of sin <J> in the last expression by its quantity 

according to formula (5.5) we obtain 

—arcsin 1/+1 — 

“T‘ j/1 -^2[2(a'-^+r,(r,+r)||x 

XV'i*2-a3) (^-(5.9) 

The expression for forces #e is found from Laplace equation 

N>—(,+^)<» 
where 

By substituting the quantities of and R^ according to formula 

(5-5) and the quantities of N. found above in the formula for Nn% 

we obtain 

M[2^ (** — a*) (r /¾) + a<| , 
2i y — r0fl + «4 ' 

'2— 

+ÿ«M2(a*-é»)+r,(r0-{-r))}- 

_ Va* 
7-X 2 (r - /-o)» (*J - a*) (r - /-„pT^ 

X[t nr0 + y a-roarc,in j/" i-liClHj. 

The given expressions for N^ and when r = r0 gives 

indeterminacy of type 0/0. By applying the L’Hôptial rule tc them, 

when r * Tq we obtain 



Let us examine the lower bottom, made in the form of an ellipsoid 

of revolution, loaded by hydrostatic pressure. By substituting 

the quantity of r = 0, in the formula we obtain (Fig. 48) 

+Y 

*V ' ~ i 
x;— V*/[2(W-a8)r« + q4i , 

rt + a* ^ 

+ jj/ i_ii_±a, 

r* •/ (W — aJ) r* + a* 

(5.11) 

By fulfilling limiting passage when in these formulas r » 0, 
we find 

From iormula (5.11) when a B b the formula for a hemisphere 
can be obtained (Fig. 49) 

^£[^+-7^-7-(--^ l/Hr]' 



Fig. 49. 

When r * 0 we obtain 

N. = -Yfl-(a + H) y.— + 
f 2 ' 2 * 

When r ■ a we obtain 

-fa). 

From the last expression it is evident that when H=—a the 
3 

annular forces will be equal to zero. When H<i—a this force 
3 

becomes compressive, and when ■ 0 it reaches its maximum 

-yY«*. 

If the lower bottom is made in the form of a circular torus, 

then, by assuming a • b (Fig. 50) in formulas (5.9) and (5.10), we 

obtain 

—/oa*arc sin 

--1 « [2(a< - r>)+,,(,,+,)| j/1 -fciL’j, 

“'"T+{t “’<4r’-+ 
+2-+,ï)/1-^-^(-1.,,+ 

+Tcsl" /1 

(5.12) 
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Formulas (5.12) for forces when r - r0 give indetermining 0/0. 

By means of limiting passage there was obtained: 

Nf-yHat 

5 16gf Uppef End Plates of Tanks from 
the action of Internal Hydrostatic Pressure- 

Above we considered the problems of calculation of the lower 

bottom of containers, loaded by internal hydrostatic pressure. 

In this case let us examine the calculation of the upper end 

plates, when they are subjected to the action of internal hydrostatic 

pressure. Just as earlier, solution of the posed problem is started 

with examination of an ellipsoidal doughnut-shaped end plate 

(Pig. 51). 

Pig. 51. 

Equation of equilibrium in the direction of axis y for the 

upper part of torus n-n will have the form 
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(5.13) 

*« «-if 2« 

J J cos ft dO ds=j* r„yvf sin ft dO, 

where 9i=Y(^,—(y+01"-hydrostatic pressure in section (y + Ç), read 

from point 0^; H - height of liquid level, read from base of torus; 

Y - specific weight of liquid. 

The remaining designations are clear from Fig. 51. 

For running radii r- and r there are equations: 
t y 

(r,-r0y* , , ('i-'o)' , + W _ , 
a, —• jt '• 

and also the following obvious relationships: 

rfi=sTM;* 

tgft=-jLt ctg?, 

ctg% 

ÍÜL 

By using the given relationships during calculation of integrals 

in equation (5.13), we obtain the following expression for force 

N*: 

N,> b*r (r — rtf 
V« — a?) (r — r0)»+ a* | aH* ■r0b*X 

X 

X 
T"-T‘ 

1-f-y 

(5.1^) 

Force is determined from Laplace equation 



where RR^ are given by formulas (5.5). 

In expanded form for NQ we obtain formula 

i V<J® f 1 f u 
Í3 (r - /-o)5/Tîâ“ a?) (/• - /-0)3 + a« ¡T r®6* |arC sin "7 ~ 

—arcsin j/(5.15) 

+“41 [tw-t‘ 1/ 

From formulas (5.11!) and (5.15) various particular formulas can 

be obtained for other shapes of shells, which are under hydrostatic 

pressure. For example, when rQ * 0 we obtain formulas for ellipsoid 
of revolution 

"-t ‘ -$)] X 

XVT^-aa)/-3+^. (5.Í6) 

1 “)v (^-^+^+ 

1 
1 / (W - a»)r* + a* 

xHt"-T * lA^i' (5.17) 

By assuming r * a in these formulas, we obtain expressions for 
forces at the equator of ellipsoid of revolution 

YaM* 
6»* ’ 6*4 )’ 

When H =~ 1/2 
« this force obtains the greatest magnitude 

In the case of a spherical shell in formulas (5.16) and (5.17) 



one should assume a * b R. Then 

I 
) 

When r-R 

N,= y m 
6R ’ 

can 

tic 

sold 

) 

) 

for 

If the level of liquid will be equal to the radius of sphere 

H = R, then for forces at the equator we obtain the following 
quantities : 

^ H. = ±-yW. N,=±w. 

In the case of a round torus In formulas (5.14) and (5.15) one 

should assume a = b. Then when r * r0 + a we obtain magnitudes of 

forces at the equator 

“Yro«*(arc*lny-Ji)j, 

=yH(r0 -|- a) J-ÿ Tja* ^arc sin 

7) 

When r . r0 - a we obtain formulas for forces on the inside of 

the torus 

'v‘-^[-t"-'.‘4+t/iT?)+ 

+T/’°aî(arcs,n7’-n)]* 

A',=-- -eH-X[-l. W+r,e«(l 
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1 L 

+Y W* («re sin -íí. _ n J j. 

S 17• g-tresses In a Spherical Shell, Simnn^H 
Some uross Section and Loaded bv - 

Hydrostatic fressure 
on 

From Fig. 52 it is evident that the intensity of hydrostatic 
pressure 

f** —yR (cot cij—coso). 

Pig. 52. 

From condition of equilibrium of the part of the sphere, 

determined by angle a in the direction to the axis of the shell, we 
obtain 

t* • 

9/?*slnacosa</cu/6 -|- 2nRN, sin*a=0. 

Let us substitute here the expression for q and Integrate. Then 

Nf “ 6 «itf a *C0S 0 - cos “o) l2 CO*’a - (cos ®o+cos a) cos a,,]. (5.18) 

The expression for force /r0 we obtain from Laplace equation 

-qR-N, 

or 

N% ^ (cos q, - cos q) [ 1 - -2-C.P.*’ a ~fcos "oJ co»a)t0» ao 1 
l 6(1 — cos* a) ]• (5.19) 
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Expressions (5.18), (5.19) are valid when uo^a^ai. Now we obtain 

the expressions for forces when a > (Pig. 53). The expression 

for pressure remains as before. 

From condition of equilibrium of part of the sphere at angle 

o we find 

1« « 

qR1 sin o cos cu/a dö -f 2nRN, sin*a»0. 

After substitution of quantity q in the expression under the 

integral sign and after Integration we obtain 

„ ^-1-^(300,0.+2+^). (5.20) 

The expression for force NQ is determined from Laplace equation 

Nt=-qR-Nf 

or 

6 cos a 2 cos» a \ 

1 — co* a/ ’ (5.21) 

When a0 = 0 formulas (5.20), (5.21) are somewnat simplified 

and they take the form convenient for investigation: 

? cos» a \ 

t + cos a) ' 

5-6 cos a _2cos»a \ 

1 -t cos a/ ’ 

I c 0<a<a, 



2 ros* a \ 
1 — eos a) ’ 

ai <<* <.t (5.23) 

Ar,=-i-ïW5+-ï"!!i\ 
® V 1 — co* o/ 

Af» = — 6cosa — 

If in (5.22) and (5.23) we assume a=ai-i-*we obtain the 

following expressions for forces: 

over the support (top) 

N;=±yV, W-j-vV, 

under the support (bottom) 

f-Y**. at;—Iv^. 

Prom comparison of the obtained expressions for forces JV. over 

the support and under the support it is evident that at the place of 

support the shells are changed unevenly by the magnitude of vertical 

reaction along the support section. Prom comparison of expressions 

for Nq it is evident that they are also changed unevenly. Thus, the 

membrane theory does not satisfy requirements of continuity of forces 

on the support section, and bending of the shell should appear 

in this zone. 

Let us examine further the case when oo-j. We will have the 

following expressions for forces: 

JV.-i-vWl + ríSÍH 
3 V 1—cota/ 

W=-4YWl + 3cosa+-2£M. 
3 Y ' 1 -> cos a/ 

Prom these expressions it is evident that force ff will be 

tensile everywhere, force IVe - compressive. Its value will be 

greatest when a- -2- : 

o 

-yY/?*. 
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S 18. Stresses In a Hemispherical Shell Located 
Under Axlsymmetrical Aerodynamic Load 

3) 

over 

ce of 

tlcal 

ions 

, the 

forces 

;he 

Figure 5k shows a diagram of loading on a hemispherical shell 

by aerodynamic load, changing according to law 

7 = 
(CO* f — CO» To)* 

(l-CO»To)* 

Fig. 5k. 

In order toobtain expressions for internal forces , let us 

examine the equßibrium of part of the sphere, determined by angle 

¢. Let us formulate the equilibrium conditions of all forces on the 

axis of shell: 

where r ■ Ä sin ¢. 

qRr cos ydydi 

u 
N/ sin<p¿0 

+ 

0. 

After substitution of the expression for q and integration we 

obtain 

A\’ --[—-f — COS*?—COS4 f- 
(1 — co*fo))iiii>f l 4 4 

—^-(1 — cos*?) cos ?o4- y cos* ?, sin*?|. (5.24) 

The expression for annular force NQ is determined from Laplace 

equation 
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A\=-2fii—/_ 
(1 — cot Ÿo)î 

cos4 ? _ (i _ cosi ?) cos ?o _j. _L cosi ?# s,nî j ( 5.2 5 ) 

Formulas (5.24), (5.25) are valid if 0<ç<«po. To get formulas that 

are valid when ♦ > ♦q, equilibrium of the unloaded part of the shell 
must be examined. In this case we found 

AT,- 
.V* tla* 

tin*f 

Here AT, is given by formula (5.24). 

5 19. Displacements In a Symmetrically 
Loaded Cylindrical Shell 

The problem about determination of displacements in momentless 

shells of revolution is expediently started with examination of a 

circular cylindrical shell. Figure 55 shows an element of this shell 

with dimensions d*, dy in the position before and after application 

of axisymmetrical load to the cylinder. Here u and w are components 

of total displacement in the direction of axes x and a respectively; 

ll* l2 ~ Quantities of cosines of angles of element after 

deformation with axes x and a ; eic - relative elongation of element 

AB after deformation; e - the same of element AD. 

poly* 

this 

or wl 

we ot 
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> that 

ell 

For determination of e it is possible to project a closed 

polygon AaA^B-^bB and x and z. Pointers on the ends of the sides of 

this polygon indicate the sequence of revolution: 

u+dx(\-{-«J/,—«—rfa— 

w+¿*(1-¿«»o. 
Hence we have 

(!+•,)/, = 1+^-, (1+1.)/,-2. 

By squaring these expressions and summing up, we obtain 

rf* \* , /dw\* 

or when /?+/?=! 

ss 

hell 

on 

nts 

iy; 

!t 

1+2.,+.-1+22+(2)-+(2)-. 

By disregarding here small quantity e (in comparison with 2), X 
we obtain 

We are limited in this expression by the first linear term 

</■ 
dx 

Component of deformation in circumferential direction 

+ w) — 2nR 
9 2nR R 

Furthermore, components of deformations can be expressed through 

stresses according to Hooke law for biaxial stressed state: 

Then 

du \ 
dx~T K *- i*v). (¾ - 
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For example, in the case of loading a tank by boost pressure, 

hydrostatic pressure and axial force of compression (Fig. 56), for 

stresses we will have the following expressions: 

0 -rVaR P 

* 2» 2nJW ’ 
„ q'R I 'HH~x)R 
* I ' » 

Fig. 56. 

For determination of displacement u we will have equation 

After integration of this equation we obtain 

« (\ 2 2nR ) -1» ---5-^)+ *«#]) T C. (5.26) 

Constant of integration C is determined from condition u ■ 0 

when X ■ 0 and must be equal to zero. 

Expression for w obtains the form 

(?.« “)]• ( 5.27 ) 

Let us apply expressions (5.26), (5.27) for determination of 

lowering of the level of liquid as a result of deformation of the 

tank from the effect of loads shown in Fig. 56. 

103 



The expression for increase in the tank volume can be obtained 

from Pig. 57. Increase of volume dV of the considered element will 

be equal to the difference of its volume before and after deformation. 

Thus, with accuracy to small terms of the first order we obtain 

dV=y (1 + (1 +«,)<** —x-dtjRdx= 

=(w+\Rd£)Rdxd*. 

Fig. 57- 

s 

Total increase in the volume for the filled part of the tank 

After substitution here of expressions u and w and integration 

we obtain 

^—IT iRH- 1 —2|t P 
4n R 

Lowering of the level of liquid 

ay _îh 
«Ä* Et 

(5.28) 

If the thickness of the shell will be variable, it is possible 

to proceed in the following manner. Divide the length of the shell 

into sections with identical thickness and use formula (5.28) for 

each of these sections. For the height of liquid column for each 

section we should take the distance from the considered section to 

the mirror of liquid. Total lowering of the level of liquid will 
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be equal to the sum of AW, obtained for the shown sections. 

§ 20. Displacements In a Symmetrically 
Loaded Tapered Shell 

Expressions for components of deformation of a tapered shell 

can be obtained from Fig. 58, where l2 - direction cosines of 
element dx in deformed state with axes x and a. 

Fig. 58. 

By proceeding Just as in the case of a cylindrical shell, we 
obtain 

—du—dx—O, 

w+(\-\-tf)dxlt—w—dw=-0. 

From these equations let us find quantity e. with accuracy 

to linear terms : 

dx 

The deformation component in circumferential direction 

2nr r r 

But since r m x sin a 

«i—— ctga4--¿-. 
x r 

Let us exclude displacement u from the obtained expressions. 
Then 

dx 
dw f <f(*»|) 1 
—1-~- dx 
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By integrating this expression, we find that 

q>^tg a j* I dx+C. (5-29) 

According to Hooke law the deformation components can be 

expressed through force in the form 

(W,—M 

Having expressions in each concrete case for forces and N^, 

we can determine displacements u and w. 

Let us apply the given theory for determination of increase in 

the volume of tapered bottom of the tank (Pig. 59). Expressions for 

forces N. and in this case have the form 
<P Ü 

+ ~“■ Jtcoso|'tga, 

tg a+YJt l(Ä+/) - Jr cos a] tg a. 

In this case for deformation components we obtained expressions 

«f = ^ {(0.5 - n) gn -f y [(0.5-Mh-'-n + lf—j-)* cos a] j. 

((1 - -1)“ ^-(1 - T)-''0’“]) - 

After substitution of these expressions in (5*29) and 
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integration for u we ob ^in 

^ =, ¢, + Y [-^- (A 4 0 x cos a] j+C. 

Let us find displacement u from equation 

ii=xi| —wctga= 

= j ^ + y [1^ {h+l)_ LrJe x cos a]) _ c c(g a 

For determination of constant of integration C we have condition 

K = 0 when —, from which 
cos a 

Then 

c«!£v_L_yrLz*itf 
£» V cosa/ [ 4 Vl 

1-3!*. 
Y ^ac*cosa — 

cos* a, ))• (5.30) 

For displacement u we obtain 

-¾ id Iv.+(*+0v.- 

-,^00.. +Lz4/(-J-)*j|. (5.31) 

From expression (5.30) it is evident that when x « 0 and y * 0 

the lowest point of the tapered shell with loading only by internal 

pressure tries to raise upward. Formulas (5.30), (5.31) do not 

correspond to all boundary conditions of the problem, connected with 

restraining of cone, which is a consequence of the momentless theory, 

which we used in obtaining these formulas. Therefore, it is necessary 

.to look on them as approximate. 

Let us apply these formulas for determination of lowering of 

the level of liquid in tapered shell. 



dition 

0) 

;i) 

= 0 

mal 
not 

i with 

heory, 

cessary 

of 

First of all expressions must be obtained for increase in the 

elementary volume. In Fig. 60 element dxdy is represented in the 

position before and after deformation. For calculation of the volume 

of prism 0 ABC DO let us apply the formula for a truncated cone 

Fig. 60. 

s 
y 

After division of the right side of this formula by 2ir and 

multiplication by dd it can be used for determination of the volume 
of a wedge-shaped tapered prism. 

Volume before deformation (Fig. 6l) 

r^jcslna, /?==(*-)-</.*) sin a, h=dxcosa, 

V0 — ° [(jc+dxÿ sin* a sin1 a+x (jc+</jc)sin*aI. 

r » jr sin o-f w cos a« sin a. 
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/?=(x+rf*) sin a+(w+dw) cos a -¡- (a+¿«) sin o, 

A = (Jje-r</«)cosa, 

? [[(x-\-dx) slna f {w }-</»)cosa-|- |1(jc -j- dx) sin a f (w f- dw) cos a -}- 

+(a-J-</«)sina)i-}-(jfslna-fi»cosof«slna)*-|- 
+l(-«f+</Jf) *■" a+(w -f dw) cos a -(- (« -f- du) sin a] x 

X (Jf sin a-j-tecos a 4-0 sin a)). 

The difference of volumes with accuracy to quantities of the 
second order of smallness 

xcota 
2 

d\' — V-Vt (w sin 2a4-2o a\n7a)dxdl. 

Total increase in the volume of cone 

less >■ f/cot « 

A^ = -¿-coso (te sin 2a 4-2u sln8a)jcrfjcrf6. 

After substitution here of expressions (5.30), (5.31) and 
integration we obtain 

leve 

V Let us use the obtained value of hv for determination of 
K 

lowering of the level of liquid, being in the cone. 

Since the volume of the cone was increased by LV the level of H 
liquid will drop by quantity U-l') (Pig. 62). In order to preserve 

the previous level in the cone, a quantity of liquid equal to LV 
K 

should be added in it. Then according to the formula for truncated 
cone 

y 4-)=ai',. 

where 
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Fig. 62. 

le 

V. 

L of 

serve 
r/ 
K 
ited 

h=i-r, 
A tß a. 

Then 

^ [^;+/?«(^-Alga)f 
3 

+ (/?„-A tg = 

Since the amount of lowering of level h is always substantially 

less than R it is possible to write 
H 

aV\. 
3 

Hence we obtain the following expression for lowering the 

level of liquid in tapered shell: 

§ 21. Displacements In Shells of Arbitrary 
V Shape with Axlsymmetrlcl Load 

In the shell of revolution is described by an arbitrary surface 

of revolution (Fig. 63), then expressions for components of deformation 

can be obtained exactly as was done earlier (see § 20). 

Fig. 63. 
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By projecting a closed polygon to axes * and 2, we obtain 

Hence 

“ -r 0 + *t) äxi, — u — du — (ie+dvi) ~ — dx=Q, 

w+(l + «f) ¿Jf/j(u-\-du) ~~~xt) — dw — 0 
«i 

(,+.,,w+i.).(1+^+^V(i=-i)- 

Taking into account that ^2 = ati(^ disregarding small 
quantity e<)> in comparison with 2, we obtain 

Subsequently we will be limited only by the linear part of this 
expression 

rfJf #1 (5.32) 

The expression for deformation component in circumferential 
direction we obtain from relationship 

2n(r -P ■> »iny -f aco»y) — _ v_ s, +_fLC0S?. 
' 2.V r r ' r T 

Taking into account that r = r2 sin <p, we finally find 

'•“£-+£(5-33) 

By having expressions for deformation components (5.32), (5.33), 
we can determine displacements u and w. 

From (5.32 ) 

• tr=/?|tf 

Then for e0 we find 



1 

this 

2) 

1 

3) 

5.33), 

Since dx = 1 <p 

or 

— — a ctg ? =» /?i*» — #**». 
¿1 

or 

sin <p A. ( —W A?,*,- 
rff \*iif / 

By Integrating the last expression, we obtain 

a—sln<p| j* C]. (5.3^) 

Here deformation components and ee must be expressed through 

stresses and oQ according to Hooke law for a case of biaxial 
stressed state: 

*?=“(«* “I”«). 

As an example let us determine displacements u and w for an 

ellipsoid of revolution, being under internal uniform pressure. 

In this instance for stresses we obtained formulas 

*' R, h 
Pi da , o , 

L*-—— Ridf Rt 

*f-£V(à'-a')r'+a*, 

± 
2M y (¿i — a*) rt+ a« 

Furthermore, expressions forP1, ä2 and sin ¢) are given by 

formula (5.5). 
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These formula for an ellipsoid are expressed through variable 

r. Therefore, in expression (5-3^) it is necessary to change from 

integration with respect to * to integration with respect to r. Prom 
Pig. 64 we have 

(#.*?)’ - W+W. /?.*? » j/1 + dr, 

Furthermore, earlier we obtained 

rfy m__tr 
rfr a yai—rf ' 

By considering all the cited formulas and substituting them in 

expression (5.3^), we will have 

u If<*»—») ff(1 -2»)r 

1 JL 

After integration of this expression with the aid of substitution 
of r ■ a sin Ç we obtain 

?«**(*»-«*)/•_ffi 1-2|i/*\t| 
2£íM l/ lW-ai)rÍT a* U 2 1 « / J X 

x4/'r? 

-i(>-^)/q^ /■-('-i)(-r/)+ 

j__irC_ 
^ Vi»-a1»)ri-ta* ’ 

\ 

Fig. 64. 
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Let us find the constant of integration from condition u = 
when r * a 

c-.-eiEzifSr,,1-2,,/»>■,, , 2«« 1' -r(r)]lnr- 

Then 

« =-ga^(W -. gi) r /r i-2^/♦ m , , 

2£í* I (W— a2) ,-j + ai ([1 J \ 4 / J ^ 

where 

Let us find expressions for w from relationship (5.33) 

®' = #7*t —«Ctg?, 

?£»*• 
te=(2-|») (é*-a*)r»+(l--|»)«4- 

aHH-gi) /a»—/4 ÍT, 1 —fr / * \«1. 
/(M~4*)r»+4« |[ 2 la/JX 

x('" [/Rt? /R4/+/'i'-if/Kf/]- 

-7)-^/514//.-(.-(4^)- 
Displacements at the pole and at the equator of the ellipsoid 

will be accordingly: 

at the pole when r » 0, u 0, 

QElHw 
~=0 -ria*-a*(6>-a’) ([l - X* 

X('"[/R4/+. )--4)-^ 
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at the equator when r = <2 
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«.-O. 
When -=2, we obtain 

i.e., ellipsoid is elongated in the direction of the axis of rotation 

and is contracted at the equator. 

In the case of a sphere when a * b for the equator and for the 

pole we obtain the same value of equal to 

*=-íLz£liíL. 
2 fil 

§ 22. Determination of Reduction of the Level of 
Liquid in Spherical Tanks from Internal Pressure 

The problem of determination of lowering of the level of liquid 

in spherical tanks in accurate formation (from positions of momentless 

theory) leads to very complex formulas, inconvenient for practical 

utilization. The approximate solution of this problem is given here. 

Let us assume there is a spherical tank, liquid level in which 

is defined by angle cxq. The tank is supported along the circumference, 

defined by angle (Fig. 65). For determination of the increase 

in volume the tank is divided into zones. For each zone stresses 

Oj. and oQ (on the upper and lower sections of each zone) are 

calculated by the appropriate formulas of § 17. 

circ 

dete 

Here 
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wher 
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Then deformation components are determined in meridion and 
circumferential directions: 

*» **-r* («t ” I49*)»-? i • 

«•= 
c »-»• 

After this the increase in volume of truncated cone can be 
determined by expression 

= .H<h + **L((/-,+ ^,)1+(^1+A'i)’ + (ri + Ar,)(r, f Ar,))- 
3 

--*r (r*+r*+riri)"T lriA(2Ari+Arî)+ 3 * 

+ r,A (2Ar, + Ar,) + AA (r*+r| + r,r,)]. 

* 
Here the following designations are introduced: 

r| = /?sln?„ r, = /?sln<?2, 

Arj =» Tj »,=• sin fj, 

h=lco*(to0- y' 

R - radius of sphere; l - length of chord, determined by angle 

- hei8ht of zone. 

The remaining designations are clear from Pig. 65. 

By having the expression for increase in volume of each zone, 
we can determine the total increase in volume of the entire tank: 

where n - number of zones. 

The amount cf lowering of the liquid level can be determined 



f è 

rom the condition where the volume of deformed tank is supplemented 
by the volume of liquid, equal to and the level of liquid is 
raised to initial. Prom this condition by analogy with S 21 we 
approximately obtain the amount of lowering of the level 

H- 
HA* 11^00 

1 23,|.iTT1-Culfi;1?nLi0f ?^ells Arbitrary Load. 
Differential Equations o? Equilibrium- 

In this paragraph are examined some practically important problems 
connected with calculation of shells of revolution for arbitrary 
nonaxisymmetric load. Generally such shells should be examined with 
allowance for their work on bending. In this case these shells will 
be examined only from positions of momentless theory. Therefore, 
the subsequently obtained results should be viewed as approximate. 

Pig. 66. 

1 

T 

P: 
order i 

Let us turn to Pig. 66, which shows an element of a shell with 
sides rde and and components of external load f.y.Z, positive 
directions of which coincide with the direction of local axes of 
coordinates x, y, *. On the sides of the chosen element are applied 
internal forces #0, and ^0, expressing the effect of the 
discarded part of the shell. Let us formulate the sums of projections 
of all forces affecting the chosen element of shell to axes x, y, z 
of moving coordinate systeip. 

To axis x 

He re 

Fi 

followi 
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-Nfr¿8+ M-N*Rxd’i+ 

+(^+-1.^8) Rxd'~ 

“ W*1* COS f+^rrfe/?,rff—0. 

-A^rrfe+ÎA^+iïôrf?) (r+^rff)rfí-W,rfT+ 

+í^»f+"^p^8) Mv**co# t+^8^t“,0* 

To axis s 

^,+^- rff) ^ + ^ rfí rf*+ 

4. dej </6 sin t+ Zrd0/?,rff—0. 

From these equations with accuracy to quantities of the first 

order of smallness we obtain 

» fliV 
+- (/?^Vf sin ?) + /?, —^ — /?,#, cos 9+*/?,/?, sin = 0, 
®T •• 

±- (/?,yvf, sin ^)+^, cos » + /?, ^i + K^.sinŸ^O, 

A+A+z. 
P, T Äi T 

»0. 
(5.35) 

Here 

Furthermore, from the law of pairing of tangential stresses it 

follows that tf6(j) - 



Equations (5.35) pertain to the type of linear differential 

first order equations in partial derivatives with variable coefficients. 

Having excluded force NQ from these equations, we obtain 

íí^.+W.Ar.cWf+jÍL. iít+Z/Í.R.clíí+Ar/Í.R.-O, 

Of ilnf iinf M (5.36) 

For further simplification of these equations let us introduce 

new unknown functions by formulas 

RrV*f=V. 

Then equations (5*36) will take the following form: 

j;+('+k)vat 9' tin f dt tin f dê 

^-+2^ ctg T- 
of 

dV 
Pi tin f dê 

SL -)- ctg X 0. (5.37) 

One of the general methods of solution of these equations is 

the method based on expansion of the sought functions into Fourier 

series. For this it is necessary in the beginning to expand external 

loads into Fourier series along coordinate 0. Let us assume these 

expansions have the form 

X »= 2 coi «9, K — 2 Ya sin «9, Z — 2 

According to this we have the solution of obtained equations in 

the form 

After substitution of*the shown expansions in equations they 

take a simpler form 
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jients. 

r 

mal 

ln 

7?+(' + *t) v.'*’+~v-+=^ W-«. 
ctg ?+ 1/,+ZtRxRictg9+XjixRi—0. ( 5 38) 

Despite the apparent simplicity of the structure of these 

equations, they do not always allow a simple solution. Therefore, 

let us examine the simplest shapes of shells with the simplest types 

of loading. 

Loading of hemispherical shell by wind load. In this case 

1 ' '‘2 
/?, * /?0 * R. Then equations (5.38) will take the form 

+ 21/, ctg 9- 
Siltf 

n 

■U. 
nRt 

ctg 9+ rff 1 • BT r iinf 

Rlay 

^+2,/^94^-0, 

After addition and subtraction of these equations and introduction 

of new unknown functions 

P'=V.-U„ 0,= ^.+4/, (5.39) 

we obtain the two following independent equations: 

-^+(2cte»+ ,+-^-)+(Ar,+K.) V-O. ( 5.40 ) 

These equations pertain to first order differential equations 

with separating variables of the following type: 

y'+^jOv+ZO*)—0- 

The solution of this equation, as is known from the theory of 

differential equations, will be expression 

12Ü 



In our case for the first 
equation (5.40) 

/(*)- 
9(jf)«2ctg?-" 

•lay 

Furthermore, 

«la* y 1 
(«UM« f (l rtf «--i-.) la JSÜ 
r —r1' »«Hj._ ala*« 

“ »ro.Sy • 

expremonlr" i5‘39) f°r ^ Pn we obtain the following 

Analogously 

<..t.™r„.#rete™Ínatl0n 0r P" ““ «» the iou*« iorc are eaaily 

;.r “ « -- - ». 
Z«Z,ilnyco«», «-I, Z.-Z.slny, 

AT-0, y—0. 

expJsTonT*8 ^ -e foUoelng 

N,= -E2lL [C7-C¡, Cj + c, , , 
•iiH«[ 1R + z^^^ + Z^^coiiy-i-co««?)], 

Ar„-Ji£irÇL+& . C^-C, . , 
»fn»«l 2/? + cos ? r ZoA'^cos ? - -i- cos* 9JJ. 
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Constants and must be determined from boundary conditions. 

We will consider that the hemisphere is fastened to a fixed base 

(Pig. 67). Then the boundary conditions will be the following: 

1) projection of tangential forces ltQ^ when 4> = v/2 in direction 

0 - 0 are equal to the projection of wind loading in the same direc¬ 

tion: 

ï hT j (^)?_ # *ln (W9 -(-J ^ sin <? cos 9 </<p >= 0; 

2) sum of moments of forces when * - n/2 relative to the 

diameter of hemisphere 6 - tt/2 are equal to the moment of wind load 

relative to the same diameter: 

J ('V »)f_ 

Moment of wind load is equal to zero, since pressure Z has 

radial direction. 

Pig. 67. 

From the first condition we obtain 

Çl±£l« 
2 

The second condition gives 

C,-C2=0. 

Then for forces ifIfJf^^ vie obtain the following expressions 

V _ ^,y?Crw ¡f cos ii ... ,, 
' ' - r—r-(- — 3 cos V , cusJ i), 

..ismo 

A — (I1 cos» —3sin7;- 2cos'.) 
•i mi. . 1 

~ /0_ ,, 

3 s in" ■, 
(- - O COS » - (OS3 - I. 

? 



If we determine constants and C2 from the condition that 

when ♦ . 0 forces ^ and should become tero, then we would reveal 

that they receive the same magnitudes that were given above. 

Loading of tapered shell by wind 
(Fig. 68) 

type load. In this instance 

Then equations (5.35) will take the form 

dm 
dx 

*(**.-) 
dx 

1 àX.. 

— AV' ' Nlf-\ yx=o, 
sinu dt 

— Zjetga. 

After exclusion of force * from these equations and performing 

analogous conversions with them, as for the case of a sphere, we 
obtain 

where 

dU, 
dx 

dV 

¿Un i n ,..- 

dx ' V, r ZH ] y^x — 0, 
cos a * ’ X 

X—X „tos n't, 

xNf=U¿cosnb. 
K—K^sin/tO, ZäZ^cos/iö, 

=1/^ sin «0. 

(5.42) 

Let us apply equationss(5.42) for the case of wind load, changing 
according to law 
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changing 

/ ■ cos °» 

A’ r=o, y=o, /i”i. 

In this instance equations (5*^2) take the form 

aUi 
dx 

rfVi 
dx 

X »Ina 

_l± 1/ .(. _&L V11= 0. 
' x cosa \ / / 

(5.43) 

The second equation is integrated with respect to formula (5.41) 

1/,=-1((7,- 
* l 1 5/* cos a / 

After substitution of ^ in the first equation (5.43) and 

integration we find 

(/,=—( —^-tg +Cj. 
1 4/Ï ( ó »in 2a I -t*lna 

In this case for forces we obtain the following expressions: 

(— -tgc^jc»-}-——+ÖL1 cos 0, 
f 1.4/* \ 5*in2u / jr* tin a xj 

^x* 5/*CO»a / 

Constants ¢7 and C2 in this case must be taken equal to zero 

in order to avoid indeterminacy in the magnitudes of forces when 

X ■ 0. Then finally we obtain 

AT. 

KT _ Ä9-(--- 
9 4/* V ó »In 2a 

.iaiüjt’coso, 
p 

■ lg x*cosO, 

¿o*3 
f)p cos a 

sinO. 

Loading of tapered shell be bending moment and lateral force. 

First let us examine loading of a tapered shell by bending moment 

(,Fig. 69). 

124 

\ 

! 



f 

Fig. 69. 

In this instance equations (5.35) when X«0,y-0, Z-0 take 

the form 

, 1 , 1 
-0. 

^,-0. (5.¾¾) 

Let us integrate the second equation (5.¾¾). After separation 

of variables we obtain 

* jfl * (5^5) 

where C(0) - arbitrary function of angle 0. 

Before integrating the first equation, let us determine force 

11 Por this purpose at distance * from the tip of the cone let us 

draw a section, along the perimeter of which we apply internal 

forces Nç, distributed according to cosine law. 

From condition of equality of the sum of moments of all forces 

to zero, applied to the cutoff part of the cone relative to the 

axis, passing through point 0, perpendicular to the drawing, we 

obtain 

k 
J jV J coi a co* 0 r</9 r CO« 8 =« Af. 
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Hence 

-d!-, 
jm? sin* a coi a 

where JV? 
V 

méridien force in the most remote line. 

Meridian force at arbitrary angle 6 will be 

Nr=: Nicosia—d!“i!—. 
im* »In* a cot a 

Having substituted the obtained expression Jf^ in the first 
equation (5.44), we obtain 

m| Afeo«» 
dt jut*«Inacota * 

After integration of this equation we find that 

(5.46) 

where ^(x) - arbitrary function of x. 

^ Thus, for force ¿1^ we obtain expressions (5.45) and (5.46). 

ilrora the condition of their equality 

C(e)í=ã£'al"õ»o+JC>C|(JC)- 

Since function C^ix) does not depend Ön angle 0, from the last 

expression it follows that C^x) * 0. Then for function C(8) we 
obtain. 

C(0)=_ 
n »in a cot a * 

Tangential force is determined from formula (5.46) 

U lg a »Iw * 

Ji.r*»in*a 
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Distribution of forces N is shown in Pig. 70. 

As can be seen from this figure, tangential forces NQ(^ give 

resultant lateral force 

Since 

then 

Ntfdb sin 0 Mtga 
jrsina 

Af « AX* sin* cos a, 

Qx*mtiN\x sin*a. 

This force is equalized in the section of resultant of tangential 

forces /V (Pig. 7D » equal to 
X8 

Qj-J jVtslnarrfícosí=nA^*sin*a. 

Fig. 71. 

Prom comparison of the right sides of expressions for and ¢2 

it is evident that they are equal. Consequently, ^ ■ Q2' As 

follows from Figs. 70 and 71, forces ^ and are directed along 

the vertical diameter to directly opposite sides and they lie in 

the plane of action of the bending moment. 



Let us examine further loading of the tapered shell by lateral 
force Q (Pig. 72). 

Pig. 72. 

Differential equations of the problem in this case remain in 

the form of (5.44). Function C(0) in expression (5.45) for tangential 
force Nwe find from condition 

or 

where 

Then 

(A^Jx.-r,^ Ai, sin# 

- iuq sia a 

N . gW ,. 
* ** jr* 

fu*tina 

Having substituted the found value of ä0. in the first equation 
(5.44), we obtain 

I <?jr8co« I 
dx X ju*slna * 

As a result of integration of this equation we determine force 

QxaCO* I I 0(8) 
nor* »in* a x ' 

where 0(0) - arbitrary function of angle 0. 



For determination of this functi on we have condition 

expressing the absence of normal stresses in the section 
Q is applied. where force 

By using this condition, we find 

/>(•) Oco»l 
xxlaia 

Then for finally we obtain expression 

yy „ cm » 
^ xjr*ain*a 

It is easy to check that the moment of foroes ». m the fixed 
seotion of the cone relative to its horlsontal diameter is equal to 
the moment of force Q. Actually, 

la 
1’ TOa-i^CMacoiWI—Q(/-j^)C0l0. 

Total stresses in the tapered shell with its simultaneous loading 
by bending moment and lateral force will be 

Ay=—¿í£2i!_i g(*-*o)coH 
njdiinlacosa luiai^a ' 

.V» —AHaastiil 
7 njfl sia a jut? tin* a 

Prom the last expression It Is evident that at certain relation 
ships of quantities entering It we can notain ».. . o. Actually 
we have 0<p ' * 

9*0»In » Aftgtt>l"*J^A 
“x*»)««“- iu*slnia ^0, 

Hence we obtain 



I 

force 

ed 

to 

oading 

ation- 

1 * 

From this condition the conclusion can be made that if in some 

section of the tapered shell there are applied lateral force and 

bending moment, where the moment of force Q relative to the tip of the 

cone is equal to applied moment then tangential stresses in the 

shell will be equal to zero everywhere. 

If we change the direction of bending moment, normal stresses 

from M and Q will be subtracted, and tangential - added. 

Loading of oylindrioal shell by wind load. In this instance 

Ri-oo, R»-R, , Ridy-dx.- Then the original equations (5.35) take 

the form 

dJHl 
dx 

dN. 

AM 
+*«0, , dN* 

dx 'AM 
fK-0, 

N%—ZR. 

Having substituted here *»0,y«0, Z» ZqCos 6, from the 

third equation we obtain 

— Zo^coil. 

From the two remaining equations we find 

Here ^(6) and ^(e) - arbitrary functions of angle 0, structure 

of which should be established from the following boundary conditions. 

1. The sum of projections of all forces when x ■ 0 to 
0<P 

direction 0 ■ 0 must be equivalent to resultant of force of wind in 

the same direction (Fig. 73): 

j (^»^.o/íí/fisin 0 —J j ZRd6dxcosO—0. 
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Fig. 73. 

From this condition we find 

/, (6)=2,/sin 9. 

2. Moment of forces N. when x a 0 relative to diameter 0 * v/2 

must be equal to the moment of forces of wind relative to the same 

diameter: 

u I 
j (NfURdW cosfl^j j ZRM dx cos 9x, 

whence 

Then for forces we obtain the following expressions: 

(jc—/)*cos9, — Zq/îcosS, . 

Bending of oy lindrioal shell by moment on the end. In this 

instance differential equations (5-35) will have the form 

ÏOi.A-o tf,=o. (5.^7) 

From the second equation (5.^7) 

djr 
=0, N.,=c,(0). 
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le 

ons : 

where C^(0) - unknown function of angle 0. Having substituted the 

found value fo in the first equation, we obtain 

dNf ; <>Ci (6)^, 

dx ^ Rdi 
0. (5.48) 

Expression for force can be obtained from the formula known 

from the course of strength of materials 

where 6 — thickness of shell; J — moment of inertia of the cross 

section of shell; y — distance from horizontal diameter to the 

considered line. 

For moment of inertia J we have expression 

Then 

dFy* cos^de-ntf*. 

y—R cos ®, 

dF=lds=lRd*. 

KT MIR « Af cos • 
/V» = ——- COS 0= —— 

f «Äs» «p*t (5.49) 

From this expression it is evident that normal stresses in 

the cross section of the shell are distributed according to cosine 

law. 

In case of loading of the shell by moment (Fig. 74), the normal 

stresses do not depend on longitudinal coordinate x. Therefore, 

in (5.48) one should assume 

Then 

whence 
RM ’ 

C,(8)=Cj=»const 
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Fig. 7^. 

Is 

Constant of integrations C 

not applied to the shell. 
2 must be equal to zero, since torque 

Consequently, with loading of the shell by pure bending only 

normal forces K* appear In It, determined by formula (5.Hg). 

Loading of oylindriaal shall by laissai foros. In this case 

we obtain the expressions for Internal forces from equations (5.47). 

From the second equation of this system 

Furthermore, for raeridion forces formula (5.49) remains valid 
in which the expression of bending moment through force « should be 
substituted (Pig. 75) 

Then 
M-Q(l-x). 

9 **• 

Qcoit 
n* f^-o. 



whence we obtain the expression for C^(0) 

C,(8)=-^ + 0,. 

Consequently 

Constant in this case should be assumed equal to zero, since 

external torsional moment is not applied to the considered shell. 

Therefore, for tangential forces in a cylindrical shell, loaded by 

lateral force on the end, we have formula 

cross 

Distribution of normal and tangential forces JV 

section of the shell is shown in Pig. 76. 
60 along the 

Fig. 76. 

Stressed state of a cylindrical shell supported on the ends from 

the weight of liquid poured in it. The scheme of loading is shown 

in Pig. 77* Original equations (5*35) in this instance will have 

the form 

A* ^ 
-0. 

dx rÄd* 
0. Nt=-ZR% (5.50} 

Z— — yA= — Y/?(C0S6 —COsBo). 

13^ 

where 
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Fig. 77. 

From the last equation follows 

Nt =* yR2 (cos 8—cos So). 

Then the second equation is reduced to the form 

or 

As a result of integration of this equation we have 

Ntf—yRx *ln •+(•)• 

Let us substitute the found value of in the first equation 
(5.50): 

After integration with respect to x we obtain 

ATf- -yY-**co.8-x^i+C,(8). 

Unknown functions £^(0) and C2(0) are found from the following 
boundary conditions: 

x—0, 
Aff=0when 

Then 

c, (8)-0. —y Y/COI 8 

By, 

Th 

Coi 
forces j 

" i 
Th| 

i 

In 
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displací 
is equal 
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dt 
—— yW cos •. 

2 

By Integrating, we obtain 

0,(8)«—i-YWrtni+C. 

Then for tangential force we will have expression 

jV^v/fasine—^-Y^slnõ+C. 

Constant C should be assumed euqal to zero, since tangential 

forces are not applied to ends of the shell. 

y 
Then finally we obtain the following formulas: 

Y¿*(l—f)co,#. 
=Y#* (cos 8—CM ^), 

J-)*««». 

§ 24. Application of Castlgllano Theorem for Problems 
of Determination of Displacements In Shells 

In certain cases for determination of displacements in shells 

the Castlgllano theorem can be useful. According to this theorem 

displacement, corresponding to the given generalized force factor, 

is equal to the partial derivative of potential energy in terms of 

given generalized force: 

In this case 

must be expressed 

the potential energy of the given elastic system 

as a function of external forces. 
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In the case of momentless shell the potential strain energy 

(Nftf -j- jV,ifiif) dF. 

By substituting here the deformation components through forces 
according to Hooke law, we obtain 

lJV;+ Wi-SKJV^r.+S (1 +rt <] ( 5 51) 

Let us examine some problems, which have practical interest. 

Ditplaotmtnt of tht point of application of radial eonoentrafd 

foro*, acting on the spherical segment. Let us assume the shell in 

the form of a spherical segment is affected by concentrated force 

P, applied through a rigid washer. Then from the condition of 

equilibrium of the upper part of the segment (Pig. 78), determined 

by angle ♦ ♦ $0, we obtain 

N »_ P 

The expression for force #0 we obtain from Laplace equation 

iV,= -£-. 
»in* <*# + ♦) 

In view of the symmetry of loading the tangential forces in 

shell iVg^ ■ 0. 

For strain energy we obtain expression 
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AiflEl J J *¡n3(TO + +) * 

After integration we find 

3 0 + *)P* 
4n£> 

clK TO c«« (TO + °) 

«info + 

By using the Castigliano theorem, we obtain displacement of the 

point of application of force P: 

_ ¿3 - (1 t- n) P 
r dp 'MEl 

In 
,RSA±£ 
_J?_ j_ c»RVo _ c«R(?n-f a) 

Vn. ‘ *¡nv'o *•» (To-I-o) 
K 2 

Determination of angle of rotation of a rigid washer, faetened 

to the spherical segment and loaded by bending moment. For determina¬ 

tion of Internal elastic forces Ny N^, we have the following 

differential equations: 

[A'cSln(o0 -f ’»It—1—A\cos(^-1-^)=0, 

\Nt- sin (io+^)|-1- ~~ ■ AY, cos (fü H- ’» = 0, 

Ar»Y A'v=0, 

obtained from equations (5.35) by replacement of $ by <£q + i|>. 

After exclusion of force NQ from these equations we will have 

ÙX ÙN 
-=o, 

, OM. ,.+ ' 1 ■' 1 t^+2ay ctgu 
a >i 

d\’ 

i»(?0'i') i>0 
-^0. 

Solution of these equations can be sought in the Torn. 

h\-= Sicos'j, A'i. —S^sin'i. 
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Then 

If 
+ 25,ctR (?o -f- 0) -:- 

1 
siniro + '» 

5if = 0, 

2S(i¡, ctg (¾ , y) 
1 

sin (to + +) 
s?=o. 

First let us sum up both these equations, and then subtract the 

second from the first. In this case we obtain 

rfl/i 
</<j» 

rft/a 

+ [2 ctg (yo t -f 

+[2 ctg (¾ -M) - 

sin(-f0 + <}>) 

sin(ï0 + ^) 

Ui—0, 

ut=o, 

where there is designated 

Ut—Sf—Sif. 

The obtained equations allow separation of variables and therefore 

are Integrated simply: 

After Integration of these equations we obtain 

_Çi_ 

*ln*(¥ff+il/) Iß 

U* 
Cjlg ?o t? 

s!i)í(vo -i- •;> 

Now it is possible to, write the expressions for internal 

forces 



; the 
(5.52) 

AW- 

N 

_c£.5i_ / _Çi_i r fa vo_H;\ 
2 sin! (vo+ y) ( ,g Vn.H; ^ 2 ^ 2 J' 

) 
sin i 

2 si 1.2 (yo + ^/) 

For determination of constants C1 and C2 let us use conditions: 

1) moment of forces when i|i = a (Fib- 79) relative to the 

axis perpendicular to the drawing and passing through point A, is 
equal to assigned moment: 

X 
;W= f [Afy/ssin(¡Po-fiO^sin(«Po-r^cosfl];.,; 

ÿ 

herefore 

2) the sum of projections of forces and when i|> » a to 

the line of intersection of the plane of action of the moment with 

the plane of base of the segment must be equal to zero: 

tr. 
j (N,)»-.* cos (¾ a) cos 0- j* (N%1)^%ds sin 0=0. 

From these conditions it follows that 

£»—Cj 
M 

*10 

Then forces N, Nare determined according to expressions 
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AT, «-4ÍÍ2ÍÍ-/—!—. 
2nfia»in»(TQ+ 4.) I ^?o + 4>~ * 2 J’ 

V^«=-ÎÎÜîJ-f-1_ts Í2±Í\ a./P.Inî^ + l) 2 1' 

Now it is possible to câlculste the potenti&l strain energy 
of the considered segment with its loading by bending moment: 

,9"lH"|J^+;v*-2^*;v*+2(1+rtAry X 

Having substituted here the expressions (5.53) for forces N. 
A 9 

Äe» inte6**ated within the shown limits, we obtain 

MS» * 

Hence according to the Castigliano theorem we find the angle 
of rotation of the washer: 

rfj „ 0 +i«)^Af 
4M "" nJt*£t 

Here there is designated 

f-.cJS1q i ogre- 
»in* to 2ilnfo 

2. 
2 

In ,ctg(To + a) 
tin* (To + a) 

c«g(yp-»-a) 
2«ln(to+o)’ 

If inside the spherical segment there acts internal pressure 
with intensity q, for determination of forces It. and lt0 there are <p 6 
obtained expressions: 

TV =s i* i Mcm% 
f 2 ‘ ?jiÄ*sinJ(T0 t- 4) 

jy _Afeo»I 
* 2 ?jiÄ»*ini(To + 4<) <g 

; 

)■ 



t 

By substituting these values for forces and the value for N e<i> 
(5-53) in expression (5-51)> we can be certain that internal pressure 

in the segment does not affect the angle of rotation, appearing from 

the effect of moment M. Such a result is obtained due to the fact 

that the momentless state of the shell is considered. 

Determination of the angle of rotation of a rigid washer, 

fastened to spherical segment and loaded by twisting moment. Prom 

the condition of equilibrium of the part of the segment lying above 

the parallel circle, determined by angle ^ + ^ (pi8‘ 80)» we find 

2»** .!«»(„ + # 

% 

In this case the remaining forces of momentless state in the 

shell are equal to zero. 

The expression for potential strain energy will have the form 

1 +» 
: ■ ■ il 

Eh 

• ts 

0 « 

After substitution here of values of and dF *=/?2sin*(<po+tf)<fi|Jo 

and integration within the indicated limits we obtain 

(»-no F 
In- [ sinVo 

ctg(To + q) 
*in(fo + o) 

Angle of rotation of the washer around axle Ox wi':I be 

lh2 



ft_ rf3 (1 + )*) MKp 
dMK, 2nWEl 

_1_ . ctgfo ctg(yo + a) 
To r sin to i*in(To + ■) 

*• n 

Diaplacement of point of application of tangential concentrated 

force, applied to rigid washer, which is fastened to a spherical 

segment at its polar part. This problem can be solved by using the 

results obtained with loading of the spherical segment by a bending 

moment. 

JV,=5, cos 8, Nt9=Stf sin 8. 

Consequently, for forces N^, Nq, it is possible to use formulas 

(5.52). 

For determination of constants of integration in this case we 

have the following conditions : 

1) moment of forces when *» a with respect to axes passing 

through the point of intersection of vertical diameter of the segment 

with plane of its base will be equal to the moment of force P relative 

to the same axis: 

PR [cos ?0—cos (¾+a)) I sin (¾ -f n) r cos 0;* 

2) resultant of projections of elastic forces H and N¿. when 
$ 0$ 

■ a to the direction of force P is equivalent to this force: 

By substi' •J'.ing here r/s=Psin(\|-o+a) and r = 7?sin(<pu+u). after simple 

calculations for constants of integration we obtain the following 

values : 

By substituting the found values of constants of integration 



in formulas (5*5¿)» we obtain the following formulas for internal 

forces in the spherical segment with its loading by force acting in 
the plane of the washer: 

Nt=-N,. 

Now it is possible to calculate the potential energy of deforma¬ 
tion: 

After substitution here of values for and and calculations 

of integrals we obtain the following expression for energy: 

a_0 
' nEi 

Displacement in the direction of force P will be 

2 (1 +1*) KP 
nEt 

Here is designated 

Ctg (?()-!- fl) __ fig (?Q Cl) 

To sin3(Vo + u) 2sin(ç0-|-o) 
•S-ÍT 2 

cos -Sq. 

The remaining designations are clear from Fig. 8l. 



» 

Pig. 81. 

3 [ 

Linear and angular dieplaoemant» of the rigid waehert fue tened 

to epherioal segment and loaded by bending moment and tangential 

foroe. In this Instance the expressions for internal forces can 

be obtained by superposition of solutions, obtained during loading 

of the segment by force P and moment M (Pig. 82): 

AV 
Af coil 

3M>sin*(fo + «Laii' ' » 

-¿ig> / JUL.«». 

AT,,. ._( 1 _ to!a±i\ _ 

+ ^|glL±i 48 2 ) 

+ 2 * 2 r 

AT,--*, 

(5.54) 

the 

res 

Pig. 82. 

1^5 
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For potential strain energy we have expression 

3 = --l:r^j «"(Vo+VW*- 

After substitution of magnitudes of forces in the expression for 
3 [see (5.51»)] and computation of integrals we obtain 

+(.M+2P*co,*fJ(Ft+Ft)]. 

For determination of displacement in the corresponding direction 

the partial derivatives of potential energy must be taken with 
respect to force p or M. 

Displacement in the direction of force P 

+2/>/?[-l- ^,(1 +COS* 9o)+/=-,00. ^,]}. 

Angle of rotation in the direction of moment M will be 

ft_à3_1 + p 
dM ^n&Ei lMF,+P/i(Ftcot*+FJl 

In the given fomulas there is designated: 

f „SÜÎ2..L Jlt?0 1 
iin3f0 J sin fg 2 

In- 
lg- 

F, 

cig(To-a) c»g(yo-f-a) 
*iB* (To + °) îilnifo+a)’ 

I I 
**n4 (fo + o) »I"4 Vo ' 
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CHAPTER VI 

SHELLS, LOADED BY LOCAL AXISYMMETRICAL LINEAR LOAD 

Formulas given in the previous chapter, obtained according to 

momentless theory, accurately determine the stressed and deformed 

state of thin-walled shells in zones where the load changes smoothly. 

If the load undergoes discontinuity, i.e., it changes unevenly, 

then in these sections bending of the shell will occur. Bending 

of the shell also appears when vhe cross section is changed unevenly, 

and also at places of Joining of shells of different geometrical shape. 

In the shown cases bending will carry a local character, and the 

area of its distribution will be comparatively small. For these 

sections the formulas of momentless theory listed in Chapter V seem 

inadequate. It is necessary to examine bending of a shell and sum 

up stresses from bending with stresses of momentless state. However, 

here we should specify that the supporting power of shell in many 

instances will be determined by the moment less stress condition, and 

local bending will not play a substantial role. Therefore, in 

practical calculations the bending stresses are frequently not 

determined and the entire calculation is performed according to 

moment less theory. 

However, without knowledge of the fundamentals of moment theory 

in certain cases it is impossible to correctly understand the work 

of the construction and tc? solve problems of designing. Therefore, 

in the following paragraphs we will give basic prerequisites for 

calculation of shells at local bending. 
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§ 25. Differential Equations of the Edge Effect 
with Axlsymmetrlcal Deformation of the Shill 

o 

h ly . 

nly , 

shape. 

the 

em 

ver, 

and 

ory 

k 

e, 

Let us examine a shell of revolution, loaded, as shown In Pig. 

831 by force and moment 

From t\is shell let us cut out an infinitely small element /WqvdO. 

let us apply to its edges as yet unknown to us internal elastic forces 

and let us formulate equations of its equilibrium. 

For equilibrium of a body in space it is necessary to have six 

equations of statics. In this case from these six equations only 

three will remain. The remaining three equations will be identically 

satisfied. 

Having formulated the sum of moments of all forces, acting on the 

element around axis y, we obtain 
% 

sin <p)—QfRiRt «In 9 - Af,/?, cos 9=0. ( 6.1) 

From condition of equilibrium of forces, acting on the element, 

in the direction of axis a we will have 

sin ?) f AW, sin <f -j- iVfRt sin ?=0. ( 6.2 ) 

To get the third equation let us examine the equilibrium of the 

cutoff part of the shell at angle * (Fig. 84). Let us project linear 
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forces ff, and J. to the vertical: <t> 

*■ *« 

Qrfdd COS (p=*0. 

Pig. 8¾. 

Hence for ff^ we obtain expression 

Art--OfCtgf. (6.3) 

Thus, we have three equations, which include five unknown internal 

forces tft, JV,, Q„ At, M%. 

Having excluded force ff^ from equation (6.2) with the aid of 

expression (6.3) we obtain 

—■ (tfjQt sin f) 4- AT,/?, »ln ?—Q./?2 coi ?=0. (6. i|) 

V 

Let us designate the product of RaQf in the form of V-RaQf. Then 

equation (6.4) can be written in the form 

~ (V sin ?)+.Vi/?, sin 9—K cos 9—O. 

After differentiation from this equation we obtain 

In this case equations (6.1) and (6.3) will have the form 



3) 

ternal 

4) 

V 

Then 

By having expressions for Nq and and using Hooke law, we 

obtain 

Furthermore, for deformation components we obtained formulas 

(5.32) and (5.33): 

éë , w 

Having substituted these expressions for and e0 in formulas 

of Hooke law, we obtain 

(6.6) 

By subtracting the second equation from the first, we find 

#» /xr. — hi \ (6.7) Í1 _a ctg (^,-^,)-a 

Let us differentiate the second expression (6.6) 

—+— clg?--i-jr 
df (If *in*f £6 df 

By excluding derivative — from this expression with the aid of 

relationship (6.7)» we obtain 

(Nf-fN.) - R, (AT| - ifN,)) dj ?. 
C « 

(6. fc) 

Let us designate 

(6 
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where U - new unknown function, expressing the angle of rotation of 
the section of shell. 

Then equation (6.8) after substitution of N. and Na in it 
(p 0 

finally obtains the form 

t (£) ^ clH (11 - £cI8,?) v=*r'u- 
(6.10) 

Thus, instead of equations (6.2) and (6.3) we obtain one 

equation (6.10) with two unknown functions V and U. To get one more 

equation, which connects these iunctions, one could use equation 

(6.5). Let us preliminarily write down the expressions for moments 

through changes of curvature 

Af,= 

Let us express the components of change of curvature through 

components of displacements u and w.1 

In our case the contiguity angle between tangents, drawn through 

points 1 and 2 (Fig. 85), in the position after deformation will be 

equal to the difference of angles of rotation of the sections passing 

through these points : 

Fig. 85. 

1 By curvature of the curve we mean the relationship of contiguity 
angle to the length of arc, when the latter approaches zero. 



Considering designation (6.9), we find that the contiguity 

angle will be equal to dU. Therefore, for change of curvature of 

meridian we obtain formula 

Zf 
dU 

Rtdf * 
(6.11) 

The expression for curvature will be 

1_ 

From Fig. 85 we have 

R* 
•inf ’ J **n(f + **) 

Consequently , 

i>ln(fH-f/) _»inf ^ !»ln(f-j-t/) »Iny 

■'“/■ +Ar r r ~r 

n»lnT + t/co»y co%¡* - U c\rm 

r r r Ri ' 

Then the expressions for moments will take the form 

Having substituted these expressions for moments in (6.5), we 

obtain 

*L VRi 
D * (6.12) 

The two obtained simultaneous equations (6.10) and (6.12) 

completely solve the problem of calculation of shell of revolution, 

loaded by edge forces and However, in practical calculations 

in their complete form these equations are very rarely applied in 

view of the complexity of their solution. Most often it is necessary 

to use approximate equations of edge effect. These approximate 

equations are obtained from equations (6.10) and (6.12), if we 

discard the underlined terms in their left sides. 
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The basis of this simplification is formed by St. Venant 

principle, according to which the action of self-balanced edge radial 

or moment load carries a rapidly attenuating character. This is 

confirmed by theoretical Investigations of some particular problem, 

in which it was revealed that the shown process in shells carries, 

furthermore, an oscillating character. Functions which describe 

such processes have form c-»*/(x), where/(x) — a limited periodic 

function. Factor r** determines the rapidity of damping; for shells 

the index of damping fe is a large quantity. From properties of such 

functions it follows that their first derivative is always greater 

than the function itself, the second derivative is greater than the 

first derivative and so forth. Therefore, in the shown equations we 

drop the components containing the first a rivative and the function 

itself in comparison with the second derivative. 

Thus simplified edge effect equations will have the form 

R, 
dft a 

EW, 
Äfft* D' 

(6.13) 

Let us apply these equations to the solution of some particular 

problems. 

§ 26. Semi-Infinite Cylindrical Shell. Loaded by 
Distributed Lateral Force and Moment on the End 

In this instance /?i=“oo, <p—90°, R\dy=*dx. Then equations (6.13) 

will take the form 

^ =xEl u _Y_ 
djfl R ' d#** DR' 

By excluding, for example, function V from these equations, we 
obtain 

where 

d*U 

dx* 
+4*vy=o, 

(6. lit) 
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Furthermore, in this case 

— DRd—t Ur=-^, Q,=1L=-D—, iV,-0, 
rfx* * dx’ ** R djfl ' * 

dHI dU M,=DRu-^~, Mf= — D —, Mt=-pM 
dx* dx 

tm— “ 
UDI? d*U 

Eh dx3 ' 

_DR dW _w_ _du_ 

*' Eh dxi' *' R ’ *f dx 
dU n 

x-=J7. 

These formula completely describe the stressed and deformed 

state of a cylindrical shell with its loading by edge distributed 

axisymmetrical load. 

Solution of equation (6.1*0 has the form 

U =- <?*' (C, cos kx+C, sin kx)+er"* (C, cos *jc -f C4 sin *jc). ( 6.15 ) 

Let us apply this expression to calculation of a shell, loaded 

according to Fig. 86. 

«s 

*• 

•# 

In the physical sense of the given problem function £/ should 

decrease in proportion to the distance from the place of application 

of forces. Therefore, in expression (6.15) we should assume 

C, = (7,-0. 

Then 

L/=e->Jt (C3 cos kx+C4 sin *jc). 

Constants and £7^ must be found from boundary conditions. 

When X = 0 there must be 

(Qi)j-o =Q0, (AffJjf.o = Ai0. 

—H 
Fig. 86. 

These conditions give us 



whence 

Then 

2Dk,Cl—Q0t 

Dk{-Ca + CA)=M0, 

Mo i Qo 
Dk T 20*2 ’ 

U = [l5¡r(COS ** + s,n + COS *jej, 

Q» = e~kJC IQo (cos Ax-sin kx) — 2AtAf0 sin *x], 

N,=2Rke~kx (Q0 cos kx+kM0 (cos Ajc-sln JLc)], 

Mf*=e-kJ |/M0(cos kx -f sin kx) -f- -5. sin *jc] , 

2Rk 
gj- c-*' 1*^0 (cos Ajc—sin kx)+Q0 cos Ax], 

OJMA 
w=-jf e~k* l*A/0 (cos Ax—sin Ax) -f Q0 cos Ax], 

N»<cos ^ +»4 

(6.16) 

Deflection and angle of rotation when x = 0 will be 

~<^o+Qo>, = 
20*2 

(2AAf0+Q0). 

Functions, through which components of stressed and deformed 

state are expressed, are tabulated, and they can be found in 

mathematics handbooks. Table 5 contains some combinations of 

these functions, encountered in formulas (6.16). 

From this table it is evident that functions, through which 

components of stressed and deformed state of the shell are expressed 

in boundary value problems, carry a rapidly damping character. This 

property, as was stated abçve, and forms the basis of simplification 

of original equations (6.10) and (6.12). Rapidly damping functions 

of edge effect possess the property that their lower derivatives are 

small in comparison with higher derivatives, and the function itself 

is smaller than its first derivative. 
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Table 5. 

kx *-'x 
(co**x+sin*x) 

g—kx 
(cos kx—sinkx) 

^—kx 
sin kx 

t-kx 
cos kx 

kx 

0 
0.1 
0,2 
0,3 
0,4 
0,5 
0.6 
0.7 
0,8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 
3>d 
3'i> 
3.7 
3.6 
3.9 
4.0 

1,0000 
0,9907 
0.9651 
0,9267 
0,8784 
0,8231 
0,7628 
0,(.997 
0.6354 
0,5712 
0,5083 
0.4476 
0,3899 
0,3355 
0,2849 
0,2384 
0,1959 
0,1576 
0,1234 
0,0932 
0.0,:67 
0,0439 
0,0244 
0,0080 

-0,6056 
—0,0166 
—0,0254 
-0,0320 
—0,0369 
—0,0103 
-0,0423 
—0,0431 
—0,0431 
-0,0422 
-0,0408 
-0,0389 
—0,0366 
-0.0341 
-0.0314 
—0,0.86 
-0,0258 

1,0000 
0,8100 
0,6398 
0,4888 
0,1564 
0,2415 
0,1431 
0,0599 

—0,0093 
-0,0(57 
-0,1108 
—0,1457 
-0,1716 
—0,1897 
-0,2011 
-0,20(8 
-0,2077 
—0,2047 
-0,1985 
-0,1899 
-0,1794 
—0,1675 
-0,1548 
—0,1116 
-0,1282 
-0,1149 
—0,1019 
-0,0895 
-0,0777 
—0,0666 
—0,0563 
—0,04(9 
-0,0383 
-0,0306 
-0,0237 
-0.0177 
-0,0124 
—0,0079 
-0,0040 
—0,0008 
+0,0019 

0,0000 
0,0903 
0,1627 
0,2189 
0,2610 
0,2908 
0,3099 
0.3199 
0,3223 
0,3185 
0,3096 
0,2967 
0,2807 
0,2626 
0,2430 
0,2226 
0,2018 
0,1812 
0,1610 
0,1415 
0,1230 
0,1057 
0,0295 
0,0748 
0,0613 
0,0492 
0.0383 
0,0..87 
0,0204 
0,0132 
0.0071 
0,0019 

—0,0024 
—0,0058 
-0,0085 
—0.01C6 
-0,0121 
-0.0131 
—0.0137 
—0,0140 
—0,0139 

1,0000 
0,9003 
0,8024 
0,7077 
0,6174 
0,5323 
0,4530 
0,375 8 
0,3131 
0,2527 
0,1988 
0,1510 
0,1091 
0,0729 
0,0419 
0,0158 

—0,0059 
—0,0235 
—0,0376 
-0,0484 
-0,0563 
—0,0618 
-0,0(52 
-0,0((68 
—0,06(9 
—0,0(k8 
—0,0636 
-0,0(,08 
—0,05,73 
—0,0534 
—0,0493 
—0,0450 
—0,0-107 
—0,03(,4 

. -0,03:3 
—0,0283 
-0,0245 
—0,0210 
-0,0177 
-0,0147 
—0,0120 

0 
0,1 
0,2 
0,3 
0,4 
0,5 
0,6 
0,7 
0,8 
0,9 
1,0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3,0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4.0 

The underlined terms in the shown equations are dropped on this 

basis . 

Let us apply the theory given above to solution of certain 

particular problems. 

Infinitely long cylindrical shell, loaded by distributed radial 

annular load. 



4 

For determination of unknown edge forces and we have 

conditions (Fig. 8?) 

=0, 

whence 

0.-Y. £+«,-0. 

ï "• 
Then for this we obtain formulas 

Q,-y »“‘'cotí«, 

AT, -^e-^(cos*Jt+«ln *x), 

AfT— — r~*x (co* Jbc—iln *x), 

w=—* «-»' (cos *x+sin kx). 

Infinitely long cylindrical shell, loaded by distributed annular 

moment. In this case for determination of edge forces QQ and MQ we 

have conditions (Fig. 88) 

(Af,)x_,=-5., (»),_,=»(), 

whence 

y Q=—j-*m. 
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Fig. 88. 

Then 

Qv= — -ÿ- kme-**cos kx, 

N%—Rk*me-** tin kx, 

Ait=Y me-** cos kx, 

Af.=|iAf„ 

e-^slnikx. 
£1 

Infinitely long cylindrical shell, one of the sections of which 

is rotated to angle 0Q. In this case for determination of unknown 

internal elastic forces Q0 and MQ we have conditions (Fig. 89) 

whence 

Qo-2D*»0o, M0=-2DM0. 

Fig. 89. 

Then 

Qf=2Dk\e-kI (cos Ax 4- sin Ax), 
A’• — 4DA,/?fl0e-*' sin Ax, 

Af,= — 2Dk%e-*M cos Ax, 

AWAÍ» 

£1 
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§ 27. Determination of Force of Interaction 
Between Frame and Wall of* a Dank 

at Internal Pressure 

The theory of edge effect of a cylindrical shell, given In the 

previous paragraph can be used for determination of force of 

interaction between the frame and wall of a tank, when the latter, 

for example, is under the action of internal pressure. 

Let us examine two cross sections of frame - rectangular and 

z-shaped. 

Frame with rectangular cross section. Under the action of 

internal pressure the radius of the tank is increased by (see § 19) 

As a result of this displacement at the Junction between the 

frame and wall of the tank there appears force of interaction P 

(Fig. 90). Decrease in the radius of the tank from the action of 

forces P will be 

Fig. 90. 

Increase in the radius of the frame under the action of force 

P will be 

where F - area of cross section of frame. 

Let us formulate the dondition of equality of radial displacement 

of the tank and frame: 

Ai + A*31 A». 



Prom this equation we find 

p (i — rtqHF 

(1^)1 

(6.17) 

Frame with, z-shaped arose section. Increase in the radius of 

the tank from internal pressure 

. _<2-h)*hÄ» 

4'—«Ã— 

Decrease in the radius of the tank from forces of interaction P 

PR* kt 

Now let us turn to examination of forces of the frame. 

Under the action of 

increased by 

forces P the radius of the frame will be 

A,= PR* 
EtF' 

where F - area of cross section of frame. 

Due to the fact that forces P are applied to the frame 

eccentrically, the cross section of the frame will be rotated to 

angle (Fig. 91) 

£,/, ’ 

where Mt = Pa\ Jv— moment of inertia of the frame relative to axis 

y-y- 

Pig. 91. 

From this rotation the point of application of force P receives 

linear displacement, equal to 



A« = cra PaW* 
W 

Furthermore, force P will cause bending of the frame web. In 

this case deflection under force can be determined as for a beam - 
strip of unit width: 

3(1 * 

|l 
where moment of inertia of beam-strip. 

In this case the cross section of the beam-strip under force is 
rotated to angle 

O-jShvT* 

In actuality there should be no rotation. Considering the beam- 

strip as a cantilever with nonrotating end, for liquidation of the 

shown rotation to it ander force there must be applied moment 

«-'t- 
» 

This moment will cause a decrease of deflection of beam-strip 
under force by 

» _ aw 
d -»»*)£»»J \ 

Furthermore, moment M will cause decrease in the angle of 
rotation of the frame a 

Ei'l 1B,Jg 

and accordingly deflection of the point of application of force P 

will be decreased to quantity 

A7 = — aAa= PaiR* 
2£,;, ' 

Now there are all the*necessary data for composition of the 

condition of continuity of the shell-frame system. This condition 

will have the form 



Ai-f Aj — Aj-f A« 4* Aj-f A»Aj. 

In expanded form this condition will be 

(2-1»)^ PRtkx_Pm I I Pa» 
2£,l, 2£|t| EiF^ Eilt ^ 

_ 3Pa* Pa*R* 
(1 — |i2) £jij 2EtJ, • 

Hence we obtain 

V' 

1 + ^liL 
^*1 (,+t[0’8+- 

aim 

]l 
(6.18) 

By comparing formulas (6.17) and (6.18), it is possible to see 

that in the latter case the force of interaction P will be less than 

in the first case, since the z-shaped frame is less rigid than 

rectangular with the same cross-sectional area. This phenomenon is 

favorably indicated on the work of welded points, with which the 

frame is welded to the tank wall. 

If in addition to boost pressure we add pressure from hydrostati 

liquid column, then we obtain a formula making it possible to 

determine the force of interaction from total internal pressure in 

the tank 

7-1(2-|*)íh + 2Y//1 

gig 

where y - specific weight of liquid; H - height of liquid column 

above the considered frame. 

By using this expression, it is possible to compute linear 

force of interaction between the shell and frame. 

If the frame is welded to the shell by spot welding, then force 

on one point will be 



Q~Pot, 

where t - spacing of spot welds. 

By knowing force Q and the force at which the weld point fails, 

we can determine the safety ^'ctor of the weld 

»1 
On» 

Q 

For weld points in this case it is possible to take Qpa3= (0,3-f 0,4)QoTp, 

where Qorp— breakaway force for the weld point, obtained on samples 

loaded according to the diagram of Fig. 92. 

§ 28. Calculation of Spherical Shells with an 
Opening at the Pole 

In this instance Then the original equations of edge 

effect (6.13) take the form1 

dW 
d* 

=EIRU, <fl(J 

di» 
VP 
D ' 

By excluding function V from these equations, we obtain 

d*U 

df* 
f4ß«t/=-0, (6.19) 

where 

‘These equations are applicable to the considred problem in the 
case when angle 4>0 (Fig. Q3) is not less than 15°. Otherwise it is 

necessary to use equations (6.10) and (6.12). 

163 



‘ails, 

I 

3-f 0,4) Qorpi 

aples 

edge 

(6.19) 

n the 
it Is 

The solution of this equation is also known and has the form 

U=ef*(Cx cos ß<p -fCjsln p<p) -(- e~ ^ (C3 cos ?? -|- Ct sin pip). 

Let us apply this solution to a spherical shell, loaded as 

shown in Fig. 93. Subsequently for convenience it is expedient to 

introduce a new variable according to formula 

<P“<Po+$. 

Then the solution for U will have the form 

¿7 == <».+*> [C, cos ? (%+'!»)+C, slri ¡» (?0+^)1+ 
a. ¢- i (9.++) [Cj cos ? (%+Ÿ)+sin ? 

By dropping the first component, as not satisfying the meaning 

of the given problem, after some conversions we obtain 

U—er *+ (D, cos ft+0, sin ft). ' 

In this expression variable iji is read from the edge of the 

opening. 

For forces and displacements we will have expressions 

., Ü (PU . 
Nt = — X * Rl * 

, dm 
1 ^. • it* 

n D <PU 
V»— —Tqr* 

M == —— — 
f R di 

,Wi = |i.Vff, «i = JL 
4?« rff3 ' 

a_rfar 
R Rdf 

u. 

16^ 

N 

I: 



W,-^hr°Ugh the ne“ Varlable these expressions win have the fon„ 

D_ £U_ 

# <tp ’ of 

‘1 

__o JW_ 
R* d+i ’ 

J_ rfV « 
4?« rf|»’ /? 

iii 
Ä * 

u. 

Mt=zpMn 

Let us 
find constants of Integration D. and D 

from conditions 

M»-,“-*•«»*. m-.-Af,. 
whence 

Then 

D,-!(«.+-5«^îa.), 

20P 

». 2J#“W Ip// i 
f= "“JT"[ a (s,n^“cos- ^«Inftjctgfo+t). 

.. 9^,1—>♦ 
-— IP‘Af«(cos ^-*ln ?•»-!-//o'? «In^cosW, 

Aff-r-»*[Af0(sin + cos + -p-//°*ln^ s|n p^J t 

^ - s'" ÍW f^^costy], 

R Rdty 

_//o^sinfo , , . . 1 
“ÖTL-ã~^ (sin ¡»Heos ft)-fAf0cosityJ. 

The given theory permit 

important cases of loading a 

examples . 

s examining a number of practically 

spherical shell. Let us consider some 



1. Through the axis of a cylindrical tank, which has spherical 

bottoms, proceeds a cylindrical tunnel pipe (Fig. 9¿0. The tank is 

under the action of internal pressure. Inspect the stressed and 

deformed state at the place of attachment of the bottom with the 

tunnel pipe. 

Fig. 9** 

In this case there is posed the problem of calculation of shells 

of various geometric shape during their combined work, loaded by 

distributed pressure q. Inasmuch as in these shells at the place of 

their attachment the deformations will be different, at this place 

additional internal forces should appear. The problem of calculation 

consists of determining these forces and the deformations caused by 
them. 

During examination of similar problems on utilization of the theory 

of edge effect at first the appropriate statically determinant moment¬ 

less problem of shells must be solved, having determined the linear 

and angular displacements at the juncture position. Then at this 

Junction we apply unknown internal elastic forces HQ and MQ and find 

from them the linear and angular displacements. After this it is 

possible to formulate conditions of continuity of linear and angular 

displacements and from these equations to determine and MQ. 

First let us examine momentless problem for the bottom (Fig. 9?). 

From the condition of equilibrium of forces on the axis of the 

bottom we obtain 



Fig. 95. 

The expression for annular force are determined from Laplace 

equation 

Nl — aR Nl— + +s1"8?»! 
' V * ' 2*inî(9o + *) ’ 

where Rc - radius of sphere. 

By having expressions for forces N\ and N\, we can determine 

the components of deformation: 

Increase in the radius of opening 

A«=(®f)*-o *in )*-o cos ?0- 

Displacement of the point of the edge of opening of the bottom 

toward the tank axis from pressure q will be 

A« = (Wf )*-«co» % - (“«)+-« *ln To- 

Let us find the displacements u and w from equations (5-32) and 

(5.33). When 

or 

whe 

--HCtg<p=/?,(lf-«|), 

tr—«ctgf. (6.21) 

The right side of the first equation in tb4s case will have 

the form 

0 +i»)g/frln»To 
/?,(*»-*•)- £îi$|nî(.0 + +) 

Then when we obtain 

- a ctg (?0 4-^)-= 
ay 

(1 +».)?/?» »ln» fo 

J un 

int 

of 

Str 

pip 

Fro 
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This equation can be written in the following form: 

r a 1*_(1 4-1») qR\ »In« fp 

[ sin (fo + i|>) J £»c sin*(fo + f) . sin (To + i)/). 

Integral of this equation will be 

[ E\ J sin* (to+ +)3 

or 

«= C 
(i+i*) gif] *^f0 f,ntg!®±i-£!Si!£±ii|)sln(1b++). 

[ 6 2 sin (t0 + +) JJ 

For determination of constant C there is condition u 

when 'I' * ’I'q (see Fig. 9^). Then finally 

fo++o 

«*=■ 
(l + |i)t/?*sinito 

2£»c 
In 

IK 

IK 

2_i clK (to + +) 
to+ift *,n(to + +) 

C<g!f9-î-!1>tn^+^ sin (to + +o)J 

The expression for deflection w we find from equation (6.21) 

a,=^ci,-«ctg(?0++). 

After substitution of values of e0 and u here we obtain 

« _ ^ ! 
* 2£». I 

»/?* Í n-ulsin!i(tn4-+) + (1 +I»)»ln»t0. _ 

sin*(to + +) 

-0+1») 
, vj+ijs 

ln_f_2_|_ dg (to+ +) tig (?n + +o) 

IK 
tor+ *i" (To+ +) *i"(To + +o) 

«In» <p0 cos (to++) 

As a result of loading the tank with internal pressure at the 

Juncture position of the pipe with the bottom there appear forces of 

interaction, directed along the axis of the pipe. Under the action 

of these forces the pipe will be elongated, and the bottom collapsed. 

Stresses and displacements from forces of interaction between the 

pipe and bottom can be determined in the following manner (Fig. 96). 

From condition of equilibrium of forces on the axis of tank we obtain 
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(6.22) 
yyil p »In To 

f •'"‘(fo + t)'. 

Plg. 96. 

Por annular forces N" from Laplace equation we find 

-P- Rla SSL 
»•"*(»• 1-t) (6.23) 

By expressions (6.22) and (6.23) we can determine the components 
of deformation: 

, — P + i»)P»i«* 

, _<L+üLñíil!LSL 

For determination of displacement u we have equation 

^ -« 0^(90+^)= 

_2(1 + |t) »ln fp 

£»c*lnî(fo + 9) 

The integral of this equation 

Let us find constant B from condition u = 0 when = i^q . Then 

finally we will have 



« 

(1 + (i) PRt 
Iggoilo 

2 i t«g(To + 4>) 
|gTo+i sin (Ç0+ +) 

c»g (¢0 + +0)] 
»in (To + +o)J S^ïoS1" (% + +). 

For deflection u in this case we obtain expression 

(1 +|t)Pffc»lnTo 
£f‘e 

In ■ 
IK to 

ctg(?o + +) 

•K 
To+ + *i" (To+ +) 

X 008(^ + +)- 
1 

»•"* (TO+ +)1 

CtR (To + +o) I x 
»i" (To + +o) I 

Increased in the radius of the opening from forces P 

Ap,,=(w*)*.os,n *b + Mo-oco,%- 

be 

Displacement of edge of opening along the axis of the tank will 

ApV = (Wp)*-o cos *> - (“p)t-o «ln V* 

Now let us examine displacements of the pipe and cylindrical part 

'of the tank. 

Under the action of internal pressure q the radius of the pipe 

is reduced to 

__ gffJsinSfo 

£»7 £»t 

Under action of forces P the radius of the pipe will be increased 

¿VI— pPPt »in To 

P £*, ‘ 

Under the action of these forces the length of the pipe will be 

shortened to 

A VII _ 
p — £8t 
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where /T— is length of the pipe. 

Under action of pressure q the length of the pipe will be 

increased to 

* V111 Ç2^£Íl1Í!L?1 
** £ît 

Annular forces at the tank wall Is determined from Laplace 

equation 

v," = qRa — qRtsln (ro+'Sn)' 

Now ve can determine elongation of the tank in axial direction 

from internal pressure q and forces P: 

_£_r p , Psinfo 1 

_ + ' *'"(»0+-1-0)] 

Here L - length of cylindrical part of the tank. 

_gHç siift(90-t-<|<o) + *inî?o i Polnyp ^ 

^ ~ 2 fin (ÿo+ 4-0) ^5111(90 + 4-0)1 

Let us determine displacements u and w for the bottom from the 

action of edge forces Hq and MQ. 

In this case the differential equation for u will have the form 

£ - « dg<* + fl = (l +Ï’/'- (N,~ N,). 
df C»C 

Having substituted here the expressions for forces N^ and NQ 

by function U, we obtain 

Such an equation can be simplified, having dropped the lower 

derivatives in it in comparison with higher and the sought function 

in comparison with its first derivative. This is admissible here on 
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the same basis as when obtaining simplified equations of boundary 
value problem. 

Thus 
du_ (l+|i)h d*U 

After substitution here of function U we will have 

du (1 + (0/?cr 2.Mn?i ,,.. , ,.. —--J-jL_ e~n (sin ^ - cos W+ 

4-2//03sintp0e-?*cosi><jiJ. (6.24) 

As a result of integration of equation (6.24) we obtain 

S uh.,m. = — e-U sin 'ft+//0 sin ?<,<?->* (sin ??—cos p<j»)J. 

X 

Constant of integration in this case will be equal to zero, 

since there must be « = 0 when 4» •+■ =°. 

For displacement w vie have equation 

VH..M, -/?,«!-« et g (To -f 4.) = (sln{»-ÿ-cosW*)+ 

+- g->*s|n^ctg (?o+ ^ + e-»*co«W+ 

+ ct8 (ÿo+'I') (s«n ft - co. ft) j sin 

Component of obtained displacements u and w in the direction of 
the tank axis 

= (»«...'O+.O C°S®0-(«//.,.M,)v.0sin ?0. 

Accordingly perpendicutlar to the axis of tank 

A«!. .»i, = («’«..*.)*_os,n 'fo + (««,. cos 70- 

Displacement u of the end of the pipe under the action of edge 

forces Hq and MQ can be determined by formula (6.16), if in it we 

substitute Q0 = -Hq and for MQ we change the sign to opposite: 
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2P\k 

El, 
Wo + H,). 

Nov/ let us determine angles of rotation of the edge of opening 

and end of the pipe. The edge of the opening of the bottom will 

receive angular displacements from the action of internal pressure 

<7, edge forces MQ and force of interaction of the pipe with the 

bottom P. 

Angles of rotation from the indicated forces will be determined 

by formula 

dm 

Ä. *«*♦ ’ 
by applying which we obtain 

\»< /♦-• I /♦•• 

For the pipe the rotation of the end section will proceed only 

from edge forces and MQ: 

Now let us formulate conditions of continuity of deformations 

of the bottom and pipe at their Junction point. 

With formulation of conditions of continuity attention must be 

turned to signs of the corresponding displacements. 

For positive direction of normal displacement w there is 

accepted the direction along the external normal to the shell. For 

angular displacements the following considerations should be followed. 

With derivation of the expression for change in curvature (6.11) 

displacement w was increased with growth of angular coordinate ¢. 

In this case the element of meridian R\dy was rotated clockwise. This 
angular displacement is taken as positive. 
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During the transition to reading the angular coordinate fron1, 

the side of the equator to the side of the pole the indicated 

.erection of rotation of the element of meridian is not changed, i.e., 

it will be directed clockwise. 

All the above relative to the direction of displacements does 

not depend at all on the direction of forces applied to the shell. 

Conditions of compatibility of linear and angular displacements 

will have the form 

a;1aj.,+a¡u=t aí"+y . 

T B/* -r B«.. Al, = 8//,, M,. 

These equations cannot be solved in general form, and it is 

best of all to solve them numerically. Prom this solution we will 

determine unknown forces P, ffQ and MQ. Then we can determine the 

stressed and deformed state of the pipe and bottom by the correspon¬ 

ding formulas, given above. Resulting stresses will be equal to the 

sum of corresponding stresses from internal pressure q and edge 

forces P, Hq and WQ. 

2. As the second example of calculation of a spherical shell 

having an opening at the pole, let us examine Pig. 97. 

As can be seen from this figure, the spherical shell is loaded 

by internal pressure q and force P, applied to the shell through a 

rigid plate. Let us determine the stressed and deformed state of this 

cover. 

»Numerical coefficient 1/2 in this equation considers the 
circumstance that total elongations of the pipe and cylindrical part 
are equally distributed relative to the middle of the tank. 
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Fig. 97, 

From condition of equilibrium of part of the sphere, determined 

by angle <|>0 + we find 

2nÂ sinî(f0 + «J») 

Let us find the expression for circumferential force from 

Laplace equation 

N,= -Nf- 
2n/? »in* (to 4») 

By having the expression for internal forces, it is possible to 

switch to determination of displacements. For displacement u we 

have equation 

I Q + V)P ir-adg (* + ♦)= 
n£t sin*(f0 ti) 

integral of which is known to us and equal to 

Constant of integration C is determined from condition u 

when 4» ■ ij;0. Then finally 

,&Ü9 

= 0 

Um 
mtr±jA_P 

2n£t 

lg‘ 
In 2 I <«*<*> + »> c<g (to-^^o) 

fg+J; »in (vo-t-4») sin(vo+4'o) 
* 2 

sfn (%+<!<). 

Let us find the expression for w from equation (6.21) 

« <1±J0£ 
2n£& »in* (fa 

[lg!o±ii 
In -2-4- £lii?2±tL _<«!i!o±io)|cos( , ,)}, 

lg + ^ s,n (Vo + 4») *in (VO + 4¾)] ' I 
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Let us determine the angle of rotation from force P. We have 

6=JL_^. 
R Rdty 

After substitution of u and — here we obtain 
rfi|i 

6 = IL+üL^ [ çüi!o+iL -i- ctg (!Po 4- +ctg* (o» +^)1- 
p 2n£»/? lsin2(To + l) . •» 

Projection of displacements u and u when ip = 0 to the direction 

perpendicular to force P 

Ap=(»p)*-osln fo+(«A-o cos «ft, = » 

Let us determine the components of displacement from internal 

pressure q when ^=0. In this case only the following normal 

displacement will be nonzero 

... O-fOi** w —__■ " • 

Displacement u aiid angle of rotation 0 will be equal to zero. 

This follows from the fact that the right side of the equation for u 

when loading by constant pressure q becomes zero. Consequently, 

the solution of this equation will be m = 0. 

Horizontal projection of displacement w 

—2ïr~ 

As a result of linear and angular displacements of the shell 

along its juncture postition with the plate, which is taken absolutely 

rigid, a break of continuity is obtained. Because of this, at their 

Junction point there should appear internal forces tfg and Mq, which 

compensate this break of continuity (Fig. 98). 

Fig. 98. 
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1 

Displacement from these forces in direction HQ will be = 0) 

A«..Af.=(te«,tl*,.)*_o/?sín(p0=^-^Af0+ sln®0j sin7,. 

Analogously for the angel of rotation when ij; = 0 

For determintation of unknown edge forces HQ and MQ we have the 

following two equations of continuity of deformations: 

+9//,.^,=0. 

with 

After solution of this system of equations and determination of 

B0> Mo we can determine all internal forces and deformations in the 

shell by formulas (6.20). 

S 29. Boundary Value Problem for a Cylindrical Tank. 
Calculation of a ¿Spherical Shell Without an 

Opening at the Pole 

Let us examine the order of solution of boundary value problem 

for a cylindrical tank, which has spherical bottoms. Before changing 

to such a problem, let us derive formulas for components of stresses 

and deformations of a spherical shell, loaded along the edge by 

distributed foreces HQ and MQ (see Fig. 100). In obtaining these 

formulas it is expedient to read the angle in equations (6.13) not 

from the pole, but as shown in Fig. 99: 

<P“<Po—1>- 

func 

(Fig 
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Furthermore, we have 

R i —Rt~R- 

Then the solution of the original equation (6.19) in accordance 

with the meaning of the problem will be function 

öjcosfty). 

For forces and deformations we obtain expressions 

N'= _D dVJ_ 
Ri dif* ctRÍH,-'!'), 

7V, = - D_ dW_ 

R* ap * 
dU 

dty ’ «1 = 

dm 
rfl* • 
_i 

4?« 

dK/ 

d^i * 

After substitution here of corresponding derivatives of 
function U we obtain 

(D, sin 3-}-D, cos 3-}) ctg (¾-•}), 

- ((Dl _Di) sin?-}+(O,+D,)cos ft], 

Q»*= -^^(DjSln^-D.cosW, 

Mf= Í -(°i + Dt) *,n (0| - Dt) cos p}], 

" “ “ ITI(Dl “ Dî) sin +(D>+cos ^1- 

For determination of constants of integration we have conditions 
(Fig. 100) 

(ATf)t.o — Hqcos 9o> (Af5).|_o — Af0. 

Then 

=e-» [//„sin ?0 (cos ft - sin 3ÿ) - sfn ^jclg (9,, - 9), 

^1=* —2?e->*[-^(slnft~ cos ■!•})—//„sin f0cos?ÿJ, 

Q#=e-H I//0sin90(cos ft - sin (i}) - ^ sin ?•>], 

(6.25) 
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( 6. ?5 
cent'd) 

Subsequently these formulas will be used during solution of 

the problem posed in this paragraph. 

Let us make several remarks about so-called thrust forces in 

the shells. Let us examine a vessel, consisting of two shells 

(Fig. 101), which is under the action of internal boost pressure. If 

we mentally cut this vessel along the junction line of the shells 

(Fig. 102) and balance the load affecting them with the forces and 

S2, directed along the tangent to the middle surface, from condition 

of equilibrium of these forces on the axis of the vessel we obtain 

Si cos ¢1 = 5¾ cos <pj, 

i.e., vertical projections of these forces mutually balance each 

other. Projections of these forces to the plane of junction of 

shells will be Sisinqpi and Sasinç*. 

Fig. 102. Fig. 101. 

From Fig. 102 it is evident that these projections are directed 

to the same side and therefore they do not balance each other. Each 

of the thrust forces, applied to one of the shells, can exist only 

when on the side of the other shell there will take place reactive 

force of the opposite direction. Since thin shells weakly resist 

bending from thrust forces, for perception of the latter in construc¬ 

tions of tanks we usually place rings (frames). 
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Thrust forces in the vessels will be absent only when ¢^=0, 

¢,, = 0. An example of such a vessel is a cylindrical tank with 

hemispherical or ellipsoidal bottom. 

Now let us turn to solution the posed problem First let us 

examine the solution of momentless problem for a tank (Fig. 103). 

For the bottom: 

- displacement of point A of the bottom in direction from 

internal pressure 

- displacement of the same point A in direction from edge 

forces and will be 

Ai1 » = Rx s'" %“ + i s,n*»): 

- angle of rotation of edge section of the bottom from forces 

and M^ 

Oji) 
2D,ii 
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- angle of rotation of the same section from the action of 

internal pressure is equal to zero. 

For a cylinder: 

- displacement of point B of the cylinder in direction from 

the action of internal pressure and compressive force B 

4|«=,.¾ _ i(A>,- f A-,)-[«*,_ - Ai)] ; 

- displacement of point B from the action of edge forces H2 and 

M2 

- angle of rotation of edge section from forces acting in this 

section: 

ei*», 
20*** 
i-(24^,+/¾ 

- angle of rotation of the considered section from internal 

pressure and compressive force B will be equal to zero. 

For the frame: 

- rotation of the cross section of frame from twisting moment 

M will be expressed by formula 

el*». mr\ 
Bi, * 

where 

B - linear axial compressive force; 

- displacement of center of gravity of the cross section of 

frame under the action of resultant force P 

where 

P=5,co« <p*+A/j + 



F - area of cross section of frame; 

- displacement of point A of frame in the direction of force 

from rotation of the section 

- analogously for point B 

^ = a[3)b. 

For determination of unknown edge forces//,,M,, Af2 as a result 

we obtain the following equations of compatibility of deformations 

of the system bottom-frame, frame-cylinder: 

AÍ'* -(- ij*1 = a13> -(- e|"-Kl», 

¿1"+ il"- il”-!- iS", e|”=el". 

It is necessary to solve this system of equations numerically, 

since in general form the solution is obtained extremely bulky. 

After determination of unknown forces it is possible to calculate 

stresses in the bottom, frame and in the cylindrical part of the 

tank by corresponding formulas of this paragraph. 

When determining the stresses in the frame the position of its 

principal axes of Inertia must be determined. We have (see Fig. 103) 

jc0=—^sino-f xcoso, i/o = y cos a-fx sino. 

Principal moments of inertia with respect to axes x0, y» will be 

equal to 

/„,= —/jjSWo-f y,cos*a —sin2a, 

Jj)+J,u cos 2a. 

In principal axes the centrifugal moment of inertia must be 

equal to zero: 



From this condition we obtain the expression for angle a 

tg2a=7^IL. 

Then stresses in the frame 

a=s j- p. MunJr° _ 
~ >J ~ p ' , y» 

where 

Mx=MRi cos a, 

Aiy,=M/?3sin a. 

5 30. Hemispherical Shell. Loaded Along the Edge by 
Distributed Lateral Load and Moment 

We obtain expressions for internal forces and deformations from 

formulas (6.25), if in them we substitute <po= y (Fig. 104): 

.. 9/591,— 
Nf=-(D, slnpij»—Dl cos ty) tg t|», 

N*= ^ K^i-£>,)sinH-DJcosptl, 

(Oj sin - O, cos fu»), 

— (~(D,4- D2) sin -f (D,—Oa) cos ft], 

*•= 1(0, - D,) sin ^+(D, + D,)cos ft], 

£/=*-*♦(0, sinfty-f Djcosfy). 

Fig. 104. 

For determination of constants D1 and D2 we have conditions 

(Qç)ji-0==Qo. (^ipH-O—^Ot 
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Then 

Let us apply these expressions for some particular cases of 

loading of a spherical shell. 

Loading of spherical shell by annular load distributed along 

the equator. In this instance for determination of unknown forces 

<2q and Mq there are conditions (Fig. 105) 

Ü Pig. 105. 

Then for internal forces and deformations we obtain the following 

expressions : 

_ -Zi i-M-COStytgfc 
T 2 

(sin ify f cos ?t), 

Q.cos PŸ, 
2 

Aff = — ^ e~*+ (sin »—cos {*■}»), 

t| = _ (sin W cos W). 



Loading of spherical shell 

for determination of forces C0 
by linear moment. In this instance 

and A/0 we have conditions (Fig. 106) 

Then 

(Af («iV-o==0, 

• Q» -(*'n ft+co> ft), 

me~*tcM ft. 

Spherical shell, one section of which is turned to angle 0Q. 

For determination of unknown <J0 and we have the following conditions 
(see Fig. 106): 

(¿/)4,-0 = — 8g, (*i)f-o—0. 

Then 

Nf= _?^?Se-H(sin ty-f cosftjtg*. 

N% = -AJ2he-»*W, 

A%=¿-M- cos'p’i, 

“=-^T^s,n^ 



§ 3i. Calculation of Ellipsoidal Doughnut-Shaped 
Shells for Axlsymmetrlcal Linear Load 

In the case of doughnut-shaped shells, loaded by linear axlsym¬ 

metrlcal load (Pig. 107), it Is also possible to use simplified 

equations of edge effect to get approximate solutions. We have 

^-+4S«i/=0, 
■f’ 

where 

p—¿Sr-1- 

Pig. 107. 

In this equation it Is convenient to read the angle from the 

equator y —if>. By omitting all intermediate computations, let 

us write out basic formulas for internal forces and deformations : 

ons 

—*y--(D, sin D, cos M tg ■!>, 

AT, = _ (( _ + £,,) sln + (Dl + Dj) cos ^]f 

Qf=- (Oi sin _ Dj cos M, 

l( ~ D‘+Di) cos ^ - (D‘Di) s,n 

«•=- |( - o, 4- Dj) Sin » + (0, + 0a) Sin ft), 

U — Q — e-M (D, cos -f Di sin 
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where we will consider that In the zone of application of loads the 

radii of curvature and /?2 are constant and equal to their values 

at the equator. Such an assumption is entirely acceptable for the' 

narrow zone of edge effect. Let us apply the written formulas for 

solution of some problems. 

Loading of ellipsoidal doughnut-shaped shell by linear annular 

load. In this instance the constants of integration are determined 

from conditions (see Fig. 107) 

(Qfk.0=-£. (efc-o-0. 

Then for forces and deformations we obtain formulas 

- Y «-'♦cos tytst, ^ 

(sinft+cos ft), 

Qr=^.co.ft, 

¿/se=i^-îî. »tnft. 
iup 

Loading of ellipsoidal doughnut-shaped shell by distributed 

moment. For determination of constants of integration in this instance 

we have conditions (see Fig. 107) 

(Mf)+-o=y m, ((1)4,.0=0. 

Then 

yV, = — — e'** (sin ft+cos ft) tg t. 
• 2/?i 

N, = -^^8lnft. 

Q, =, — « - (sin ft+cos ft). 
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Ellipsoidal doughnut-shaped shell, equatorial section of which 

is turned to angle 9q. In this instance the constants of integration 

are found from conditions (Fig. 108) 

(£/^.0==-¾. ((1)4..0=0. 

Fig. 108. 

Then 

nstance 

Nf = — (sin ;y, -f cos S^) tg 

sin 

Mr==2£?Hs.e-»cos 

4OP»»Sí0a _i q. ..= —5^« «.I«». 
£/=e » (s,n W» *■C08 W)« 

In conclusion let us note that after solution of the 

corresponding boundary value problem an estimation of the strength 

of the given construction of the shell shouüd be obtained. Usually 

this process is reduced to summing up the corresponding stresses and 

comparison of this total stress with breaking stress, i.e., 
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The experience from operation of constructions, made from 

plastic materials, shows that components of stress from moments M. 
T 

and Nq should be disregarded in this estimation and the safety 

factor derived only with respect to membrane stresses. Thus, the 

safety factor will be equal to the ratio of nrfT|t to the greatest 

membrane stress. 

Above we examined boundary value problems for a cylinder, sphere 

and torus. In calculation practice shells and other geometric 

shapes can be encountered. In these cases with accuracy sufficient 

for practice it is possible to use formulas obtained for a sphere, 

if the considered shell is divided into several small sections and 

use these formulas for each of them. 

Within each such section the radius of curvature can be 

considered constant, equal to the average radius of the section. In 

this case the stresses on the boundary of each section will be 

initial conditions for the subsequent, i.e., calculation of such a 

shell will be accomplished by successive passages from one section 

to another until the stresses of edge effect become small. For 

practical purposes it is sufficient to break down the shell into not 

more than 3-^ sections. 
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GENERAL CASE OF CALCULATION OF SHELLS 

In this chapter are considered questions of calculation of shells 

without any simplifying assumptions relative to the stressed states 

and the character of the effective load. The differential equations 

obtained here are applicable to the solution of a wide circle of 

problems, which are encountered in practical calculations. 

For derivation of equations of equilibrium the apparatus of 

calculus of variations is used. 

5 32* grief Information from Calculus of Variations 

Calculus of variations is a mathematical discipline, occupied 

with finding the maximum or minimum values of functionals, which 

correspond to prescribed boundary conditions of the given physical 
problems . 

In this sense the problems of calculus of variations are formally 

analogous to problems of finding maximums and minimums of functions 

in differential calculus. 

If the problem about extremunof a given function is solved, then 

everything is reduced to determination of those values of Independent 

variables, at which this function obtains maximum or minimum. In 

the case of the function of one variable for this it is necessary to 
solve equation 



roots of which determine the extremum. 

In this case function y(x) is known to us and it is required 

to determine only its extremal values. Calculus of variations deals 

with so-called functionals. 

By functional we mean definite integral from a complex function, 

the form of which is known to us. The problem of calculus of 

variations consists of determining the differential equation which 

this function must satisfy. The obtained equation will possess the 

property that the function, which satisfies it, turns the assigned 

functional to maximum or minimum, i.e., in this case extremal values 

of functional are determined not by coordinates of separate points, 

as for the assigned function in differential calculus, but the entire 

differential equation. 

As the simplest example let us find the differential equation 

for deflection of a beam, loaded by uniform load. Total potential 

energy for a straight beam has the form 

5-j(-r(2tf-wh C7a) 

where the first component expresses the work of bending deformation, 

and the second - work of external forces. 

In this case we deal with a functional in the form of integral 

of total potential energy. It is required to determine the 

differential equation which is satisfied by function y(x), turning 

the given integral into extremum. 

Let us apply to this expression the total energy of origin of 

virtual displacements (Lagrange principle). 

By applying the origih of virtual displacements, we suppose that 

deflections of the beam received infinitely small increases. Then 

the change of energy of deformation of the beam should be equal to 

the work of external forces at the same increases of deflection. 
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This condition can be written in the following manner: 

where index 6 designates infinitely small increase of curve of 

deflection from its equilibrium state and is called variation. The 

idea of variation is identical to the idea of differential in 

analysis. Therefore, the following are valid 

Thus we have 

•/[-f (ä-)’- «h- .[[*' £»(£■) -H*-0- 
Let us integrate with respect to parts expression 

Then for variation 63 

'3=[ej & >*]>{ (£J Z 
where the first two components refer to end sections of the beam 

and determine boundary conditions, and the third component determines 

the type of differential equation solution of which turns the 

integral of total potential energy of the beam into extremum. 



Inasmuch as all three components In the obtained expression do 

not depend on each other In view of the arbitrariness of variations 

t>y and , each of them must be equal to zero. Thus, we obtain 

lydx~0. 

(7.2) 

With arbitrariness of variation from the last expression we 

obtain the known equation of bending of beams with straight axis 

and the first two expressions determine the boundary conditions at 
its ends. 

Thus, methods of calculus of variations as applied to problems 

of structural mechanics, by passing the usual method of formation 

of differential equations from the condition of equilibrium of an 

infinitely small element, permit obtaining them by purely formal 
means. 

In a more general form the given computations could have been 

presented in the following manner. 

We have functional 

i 
F{x, y, y*)dx. 

(7.3) 

variation of which will be equal to zero in the case of extremum: 

H 

oí 

dt 
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Here F - integrand of expression (7.3); 

function F in terms of y and y". 

— , --derivatives of 
dy dy" 

Let us integrate by parts component: 

Then 

-0. 

Hence, let us obtain expressions equivalent to (7.2) 

rf* »F , dF n 

of which the first two refer to end sections of the beam and 

determine boundary conditions, and the latter is a Euler equation 

of the given variation problem. 

The given reasonings can be extended even to cases when the 

functional depends on several functions of many variables. All 

problems of the theory of elasticity, theory of plates, and theory 

of shells, for example, lead to such functionals. 

§ 33. Expression of Total Potential Energy for Shells 

By total potential energy of an elastic system we mean the 

work that forces of the system accomplish during its transition 

from deformed state to nondeformed. In this case internal elastic 
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forces accomplish work on the elastic displacements, which were 

caused by these forces. 

In the case of thin shells the elementary value for total energy 

d3=\ Ntdytxdx -f y Nydxiydy -f —INj^dy^dx-f 

+ Y Niu‘ixa‘iy+-~- Mxdyy.xdx 4- ÿ Mydx^dy-^ 

+ Ÿ ^xydirAx¥dx-\-j My^xy^y - qjx dyu - 

- qy dx dyv -~qtdxdyto. 

The first four components represent the work of membrane forces, 

evenly distriubted along the wall thickness of the shells. The 

second group of four components gives work of bending and twisting 

moments. The last three components express the work of external load 

on corresponding displacements. 

The work of all internal forces is taken with coefficient 1/2, 

since by definition of potential energy the internal forces increase 

from zero to their infinite value gradually according to linear 

law. Therefore, the work of each internal force will be expressed 

by the area of a triangle. Figure 109 shows internal and external 

forces, applied to the element of shell with area dxdy, and 

displacements corresponding to them. Since for an infinitely small 

element all the curved lines can be replaced by straight segments, 

curvature of the shell is not shown in Fig. 109. 

Further it is convenient to express all internal force factors 

through corresponding deformations according to Hooke lav/. For 

a biaxial stressed state Hooke law has the form 

Analogously 
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EH 

12(1-^2) /^=(1-11) 
£»3 

12(1-1**) 

Fig. 109. 

The correctness of the last equality ensues from equality of 

angles of rotation according to Fig. 109f, g. 

Let us express deformation components and changes of curvature 

through displacements us v, and w, directed along axes xt y, z of 

mobile trihedron (Figs. 110, 111). 

For this purpose from the shell let us isolate element dxdy, 

sides of which are directed along line of principal curvatures, and 

represent the positions of the sides of this element in deformed 

state. Expressions for deformation components can be obtained if we 

project closed three-dimensional polygon 1-2-3-^-5-6-7-8-1 to axis 

X, and polygon 4-9-10-11-12-1-2-3-^- to axis y. 

Then, we obtain 
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u+(l+tjl)dx-u~^-dx-dx—(w-\"%a-dxY—azO, 
àx \ ' dx J Rt ' 

v + O+'Jdy — v — ^dy—dy —(w f ~ dyj ^-=0. 

With formulation of these equations we assumed 

cos d<f ä 1, cos [dx, (1 -j- tt) dje]s= 1, 

cos » 1, cos \dy, (1 + «*) rfÿ) ^ 1. 

For change of the angle between directions dx and dy in deformed 

state we have expression 

*,# = 

ov 
j-ax 
dx 

da 

näy 
(1 "i" *jt) dx (1 +*if) dy 

Here we should assume l+e**»l, l+ev**l, since for metals deformation 

tx, e»*» 0,003-5-0,005. 

Thus, with accuracy to smalls of the first order we obtain 

du , w dv , m da , d»i 
^=17 +IT- ‘»“TT+T-* dx ‘ R, dy ' Rt •jf 

oa i op. 
dy ^dx * 

Let us obtain formulas for change of curvature of the shell. 

In the plane of meridian 

r a» , d , 
Lax "' dx ' (£H I- — 1 a* , , f 1 1 ' (I +«,)rfx 1 ' f w R\ t 

where the first component gives the relationship of contiguity angle 

between the tangents to element dx in its deformed state to the 

length of this elementj* the second component gives change of curvature 

of the element as a result of normal displacement w. Having expanded 

fraction --, into series in terms of Newton binomial formula, with 

accuracy to small quantities of the first order we obtain 

*The minus sign before this fraction indicates that rotation of 
element dx during transition from nondeformed state to deformed is 
accomplished in the direction opposite the positive direction of 
reading angle d<t> (see Fig. ill). 
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Then for change of curvature x we obtain expression 3C 

_ __ w 
/ jr ~ùxi ' fí* ' 

Analogously in the plane perpendicular to the meridian: 

_ <Pw w 
dyi R\ • 

As a result of twisting there are changed the angles of slope 

of tangents, drawn to opposite sides of element dxdy. For change 

of curvature of twisting we obtain expresÄons 

_d I dw \ 

dy \ dx) ' 

dx\dy) 

d*» 
dxdy 

d*w 
dxdy 

Expressions for forces and moments is expressed through components 

of displacement: 

(fiw 
dxdy 

Here D= E» 
>2(1-1.*) 

- cylindrical rigidity of the shell. 
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By having these expressions for internal forces, the potential 

energy of shell can be written as a function of components of 

displacements. Let us preliminarily rewrite the expression for 3 in 

the following form: 

3 = -1 fj (/V,*, + Nyty NjytJ dx dy + 
» 

*2~ (^jr/jr 1' My/ji r ^Mj'y'fj'y) dx dy — 
» 

— J Í tor« + W + dx dy. 
* 

Here the first two double integrals are extended to the entire 

surface of the shell; the last integral is extended only to the 

sections of the shell, which are affected by components of external 

load. 

omponents 

Let us express potential energy througl: 

and change of curvature: 

deformation components 

3 = Ÿ Ä JJ (*i+Spv, -I- «„) dxdy+ 
f 

+ T°if W+XÏ + 2^^dxdy - 
# 

- f I fa*« + QyV T ?,«) dx dy, 
9 

where B=—-tensile rigidity. 

(7.4) 

If here we substitute the expressions for e , ...» x_> 
X X 

obtain 

- ÍÍ fa*« -I- W f dx dy. 
i 

we 
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S 3^. Variation Equations of Equilibrium 
of Shells and Boundary Conditions 

Expression obtained in the previous paragraph for total potential 

energy of a shell is the functional of functions ut v and w and 

their derivatives. By using this functional and applying methods of 

calculus of variations to it, the differential equations and 

boundary conditions necessary for solution of the problems can be 

obtained. For convenience of computations let us rewrite the 

expression for energy in the following form: 

.9 = !]>(«, X* v, v,, v„ w, w„)dxdy, 

where 

dxdy * 

Inasmuch as the expression of total energy is written for a 

shell, being in equilibrium deformed state, the sum of works of all 
forces on problems will be equal to zero: 

_1 d? 1-. I ^ r dF 8w, dF 
dw, tu 

IWy, 4- 
dF 

dw. 'Ml 
^wMijdx dy=sQ. 

Let us integrate each component of the last expression by parts 

and sum up the results. Let us show the fulfillment of such 

operations for some components entering this expression. Let us 

assume a-bt a-d are boundaries of the integration range. Then 

=* —f f a ¢£. X« 



* ÛC 

dF 
dt».. 

hwdxdy. 

After analogous conversion of each component of variation of 

total energy we obtain 

* * f 

mam 

-/[(¿£r+^)H>- 
€ 

-mz+i i 

-fffjL *L-.*L\ivdxdy+ ' 
JJVdy dv, ^dx dva do) 
i 

xftVJL JL.-l.JL JL-lJL. J!L+*LhWdXdy=o. 
' JJ Ujt* dw„ T dyi dwn T dxdy dwt, ^ dw I * 

The first nine components of this equation refer to boundaries 

of integration range and characterize boundary conditions of the 

given problem. The remaining three components, standing under signs 

of double integrals, must be spread throughout the entire integration 

range. 

This variation of total energy according to the origin of 

virtual displacements will be equal to zero with any combination 

of components entering it. However, it is possible to impose the 

following requirements: 1) all contour integrals, which enter the 



I 

expression of variation of total energy at any arbitrary point of 

the boundary range, must be equal to zero; this requirement must 

subsequently be fulfilled with solution of particular problems, 

proceeding from boundary conditions; 2) in view of the arbitrariness 

of variation ôn, 6y, 6w the sum of the last three components can 

be equal to zero when each function, standing under the sign of 

double integral in parentheses, at an arbitrary point of the range 

will be equal to zero. In view of the aforesaid we obtain the follow¬ 

ing three groups of equations : 

dx Aum dy dug da ¿ ' 

± àF J à dF df 
dx dvM ' dy dvr dv = ’ 

— -*F Ia* dF i ÒF _ 
dx* dVjt dy* dwyy dx dy dxtXf dw ' 

/à dF , à dF \9 . 
V dy dvyy dx dvtgy ) 

L 

in the 

The first group gives equilibrium equations of the shell. The 

two other groups of equations determine boundary conditions, which 
must be fulfilled during solution of concrete problem. 

Each equation of the last two groups is a product of force 

factor and displacement corresponding to it. Therefore, on the 

contour the force factor of displacement corresponding to it should 
be equal to zero. 
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Values of partial derivatives of function F have the form 

dF . 

OU 

df 
du 

dF 
du y 

dF 

dv 

L—-f—-f— 

2(1 -rH) ‘ àÿ ^ di y 

^ = + . 
«h», 2(1 +J») \dy ' dx ) *" 

ÍL = _«-| f-iL= 
dv, l-^U r/?, ' *\»x T R,l\ " 

-î!—[ — - 4+1*/—+ 5-\l=* ^ 

d«« 12(1-,.*) [d,*^/?îTPbx*X/îîj] 

2(1-1+ df 
dv,, 

£1 

£»> -2M 
12(1 —h*) 

[S+»*+'(^+^)l+Tiai»r^+»T+ 

+Ks+-r)]+Â![^+í+,,(^+^]+ 

ÕF __ 
àw (1 — ^*) R\ 

Let us represent boundary conditions and equations of equilibrium 

in the following form: 

when 
x—a, x—b 

Njbv-0, 
NJu-O, 

(f+^)‘~o. 

?04 

Ntlu~Ot 
NJv=0, 

^(^)- 
(dMx . » d,M„\ 
^ d* T dy ) 

0, 

¢9 = 0, 

when 
y=r, y—d 



I 

<flu [1—1» (Pu , 1 + p iß» 

dx1 ^ 2 dy* ‘ 2 dx dy 

;_íL=jâi& 
¿(*t)+ 

£1 
iß» . 1—n iß» I I+H dW . à 

ty*’1’ 2 djfi ' 2 òxdy^ «*U)+ 

“(S' r2^¡+S+5(^+l*¡I)+5$F+l“í)+ 

j-ilS+#+i‘(S • t)]+i[S+t+ 
+11 (S+^)]+a {¿•(s-+J+,‘ (5+^-)1+ 

^\ï+ïhï+ï))\-'' 

we 

wi 

th< 

am 

(7.5) 

obt 

u 

Prom these equations we can easily obtain equations of both the 

two-dimensional problem of the theory of elasticity (w ■ 0), and 

equations of bending plates when ^ P2 " *» M “ °» y " 0» and 
also bending of beams. 

If components of surface load q. and q are absent and radii of 
* y 

curvature of the shell do not depend on x and y, the given three 

equations allow considerable simplifications. Let us introduce the 

function of stresses for this case according to formulas 

AV 

(7.6) 

If we substitute these expressions in (7.5), the first two of 

them will be satisfied, and the third takes the form 

— ÍS-4--1 4.2_ÍS-.|.Íi + 
£| 0y- Rt dxi I dx« dx*dyi ‘ 

(7.7) 
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V The solution of many concrete problems shows that the specific 

weight of underlined components, standing in brackets, in comparison 

with the remaining components is comparatively small. Therefore, for 

the sake of simplicity (7*7) it is possible to drop these components 

and replace the equation by approximate: 

d*w i d*w \ 
V/ 

(7.8) 

The second equation, connecting functions $ and u, can be 

obtained from expressions (of 7.6) by exclusion of displacements 

u and V from them: 

**f , o _I 019 n£tf 1 t 1 
àx* djfldjp 1 df \RX dj,!'1'/?, Ù#)' (7.9) 

Let us write equations (7.8) and (7.9) in symbolic form: 

where 

vi<p + Z>v*v*tp => q„ 

\*V*t=Elv\v, 

V* 

V* 

» . » 
djr*i'd^ * 

1 » . 1 d» 
àjfl * 

(7.10) 

To the first of the obtained equations let us apply operation 

V V , and to the second - 7^, and then let us subtract the second 

equation from the first. Then we obtain one resolvent of the 

eighth order 

Elv\v\w -}- OvW’V*» -= 7*7*7,. 

With introduction of the function of stresses the blundary 

conditions for membrane forces and tangential displacements will 

take the form 

'This equation was obtained for the first time by V. Z. Vlasov. 
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O, 

ff? 
dxdy 

ít) —O, 

dxi 
Sv —O, 

-^Í-Sa = 0. 
dx9y 

when 
x=a 

x = b 

when 
y = C 

y—* 

Equations (7-7) and (7-9) together with the corresponding 

boundary conditions permit solving an extensive circle of practically 

important problems on the strength and stability of shells. However, 

one should note that these equations allow accurate solution within 

limits of hypotheses of applied theory of shells only in certain 

particular cases. In most cases they can oe solved either by known 

approximate methods or with utilization of computers. 

Let us examine some particular problems, in which utilization 

of equations (7.10) is shown. 

S 35. Calculation of a Cylindrical Shell from the 
Action of Concentrated Forces and Moments 

Let us examine the calculation of a cylindrical shell, closed 

on both ends with bottoms, to which through a rigid boss, inserted 

into the wall of the shell, concentrated moment M is applied (Fig. 112). 

It is also asssumed that the ends of shell have hinged support. Let 

us determine the stressed and deformed state of the shell for the 

shown case. 

When ^ » », /?2 * Ä differential equations (7.8) and (7*9) 

will have the form 

. n d«T , Ei qtw 
dx* * " âr-dyî ‘ dy* R dXt ' 

— ' Di0*9 I 2 — I d4* ) j 
R dx* \ óx* dxtdyi dy* J (7.11) 

We will seek the solution of these equations in the form of 



Fig. 112. 
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double trigonometric series, having placed the origin of coordinates 

(Fig. 112) at the left end of the shell: 

^s\n ni, 
«i m 

These functions satisfy the following boundary conditions: 

n 

?d 

;d 

5- 112). 

bet 

2 

J 

w—0, 

M^O, 

when 

X»/ 

«=0, 

— *** 
m* 

=0, 

when 
x — Q 

X*»/ 

Furthermore, when 0=0 deflection and the function of stresses, 

as follows from the character of loading, become zero and are odd 

functions of angle 0. 

For determination of coefficients and it is necessary 

to substitute expressions and <j>^ in equations (7* 11)« Before this 

is done, let us also expand the external effective load into double 

trigonometric series in terms of the sought functions. In our case 

the external load is represented in the form of concentrated moment, 

which is statically equivalent to force couple with arm d=l(2n—ß2)+ßil/? 

(Fig. 113). Therefore, it is possible to write 

p - p ^ 0.5*U _ 
* *?, ’ * (2n — jl.) R * 
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Thus, in the considered case the external load is represented 

in the form of two concentrated forces 1^1 • |p2I* In order to 

bring this load to the dimension of distributed pressure qM it is 
necessary to represent it in the form 

where LF ■ - small area on which force is applied; Aa1,Ax1 

dimensions of this area in circumferential and axial directions. 

Then 

¢,--C" sfn gin ;i0. 
Ás¡Ax¡ I 

* m 

Let us multiply the right and left sides of this expression by 

sin mix/l sin nQdQdx and integrate the right side with respect to 

X from 0 to £ and with respect to 6 from 0 to 2tt, and the left 

side with respect to x from value x1 to + Ax^^ and with respect to 

0 from value to + A0^. By solving the equation obtained after 

this integration relative to C we find mn 

Üéü i-fco, .1-Vi) _ cosily 
x/U nml I I J 
X [cos n (?, a?i) - cos «?,]. 

Converting to the lirait when As, -*■ 0, Ax, ■* 0 (where Aß, * 
Af i * i \ * ^ 

= we obtain 
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n’jRfl ijr^Q 

Co,-g«<¿L±Í£ií _COiJ!^l 

Ajt, 

X Hm 

/i(»i+4i,y nt 

ZZ sl" ^ »In «>, »In S' .ta »I. 
Mm I 

Here *1 and ß1 - coordinates of the point of application of 
force P^. 

Having substituted the corresponding derivatives of functions 

and u1 and the- value of external load q in equations (7.11), 
we obtain * 

slnrtp,. 

By solving these equations relative to parameters A and 
BV we find lmn mn 

by 
Having substituted the values of force P1 in these expressions 

formula P, , we obtain [Trans. Note: 06 « shell]. 
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Mm*' 

\(mnfí 1* , mxxj xinn^i 

aß«/1- 
D l /wn/? \» 

fa* 

B hua 

1< /mnfi \<| * 
eiff1 U < I ' J + l i /1 

For force P2 we obtain analogous expressions, but with opposite 

signs and replacements of by ß2, and ^ by n(2n-ß2), i.e., 

'¡ma 
*u| ir-f: /-] ? . mnx, l“" — »in n32 

2n-l* 

nE*l lÆ-[ r-f /-1 H 1 
B UlM* 

MotR C nnR j * ^ majr, sin 
1 %n~T^ 2a—flj 

«/| 
[ EtR¡ 1 [r-f/-i I 

By converting in the obtained expressions for 4, B 
lam* lmnJ 2mn 

B 2mn 0» 62 2tt, we have 

,. f/maft \¡ .1* , majti 
j f«*l *ln—j-«- 

-í•'l-5F[(ïf)’-r+(ïf),} ’ 

'¡ma' 

B\ma— 

r-f/-i 1* 1 mnx¡ 

n£</j i (^) H r+mi 
Atut/tn 

imxR \* majri 

B ¡ma’ 

,(D f /ma/? \î .1« imnR * 

Total solution of the problem is found by super impositions of 

obtained solutions 
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10 ■= W| -}- tt>2 — 

2Afn« 
nEl¡ 

\tmnRV- Il mn.ri mnx 
«H i )+n'|sn—sn~î— 

D f/mn/? y- 14 /mnff \* 
EW [I / / j ^ ( / ) 

9=-91 + 91-= 

By having expressions for deflection and functions of stresses, 

all the internal force factors, which appear in the shell from 

mcment M * can be obtained: 
o6 

N Kdt* ’ 
_íí_ 
Rdidx' 

In the case of action of two diametrically opposite bending 

moments (Pig. 114) the expressions for w and <t> take the form 

These expressions are also obtained by superposition of solutions 
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found separately for two cases of loading (Pig. 115). 

Sometimes at attachment points of longerons to the body of the 

aircraft the latter can have support of various type In the form 

of rod frames or frames. 

As Illustration of the calculation of constructions of similar 

type let us suppose that the shell examined above Is reinforced by 

a square or annular frame (frame) or straight rod, passed through 

the shell along the diameter of Its cross section. 

Let us determine. In the first place, what part of the bending 

moment the shell takes and what part the support, and, secondly, 

let us determine the force of Interaction between the shown supports 

and the shell. If the latter Is under the action of internal pressure. 

Distribution of moment M between the shell and support Is 

found from equations 

(I»)..* + ( 7.12) 
•-« 

where (¢)^^ — angle of rotation of reinforcement point; _ angle 

of rotation of the tangent to the shell at the place of application 

of moment W; wnofl _ moment perceived by support; Mq6 - moment 

perceived by shell. 

Rotation of tangent ' 



1ÎU 
nEt/W 

Now the angle of rotation (ÿ)nofl must be determined. First 

let us cut the frame (Fig. 116) mentally along the vertical diameter; 

at the place of cut let us apply force N and moment m0, and restrain 

the lower section. Let us find unknown internal forces N and mQ by 

using Castigliano theorem. Thus, we have the following equations: 

(♦)»«* 
(7.13) 

where 3 - internal potential energy of semiring. For its computation 

we have expression 

•ji- 

where the moment for sections 1 and 2 of the frame 

Af,=AW (1 - cos ¡>)—«o; 
Af,=AW ( 1 — cos ß)—m,,—Af 

J - intrinsic moment of inertia of the frame relative to axis, 

parallel to generatrix of the shell. 

After taking the quadrature in the expression for 3 and use of 

equation (7.13) we obtain 

KÑ 

(j-C0,149 
MmR 
El ' 

2\k 



Now as the supporting element let us examine a square frame 

(Pig. 117). For this instance the equations for determination of 

angle of rotation (i|0^ofl have the form 

da 
<?«o 

0. 
,.o> _ da 
(v)no,-dÃ^p, (7.1^) 

where 

Afj= — m0—Afp-f M* —Pjc; 

J - moment of inertia of cross section of rod relative to its 

own axis. 

Having completed the shown integration and using conditions 

(7.14) we obtain 

N=P— 3 Mb 
Í7í ä ; OrOno* 

ZiRMp 

Let us examine the effect of rod support (Pig. 118). In this 

instance the angle of rotation will be determined by formula 

By comparing the obtained expressions for angles of rotation 

at various supports, it is possible to see that the most "rigid" 

support is the frame. 



N Fig. 118. 
-jMf 
2R ' z 

By using conditions (7.12), the distribution of applied moment 

M between the shell and support can be obtained. For example, in 

the case of support by a frame 

Analogously we can obtain expressions for Wq6 and wnQfl f°r tiie 

remaining cases of support. 

Let us examine the problem of determination of forces of 

interaction between the support and shell, when the latter is under 

the action of internal pressure. We will consider that in this 

case the shell is loaded by four concentrated forces according to 

Fig. 119. Subsequently for convenience let us designate the 

effective forces by indices 1, 2, 3, 4. 

For solution of this problem let us again use equations (7.11). 

In this case the expressions for function of deflection and function 

of stresses must be odd relative to angle 0, i.e., w( + 'i) = 9), 

<j>( + 0) =<p(—0). Proceeding from this we take 
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•,-££^,<n~fLco"t, 

?|=J]2] BXmm sin cos »I. 

Let us begin solution of problem with examination of the case of 

action of one force P1< Let us represent external load q in the 
form * 

9m 

and expand it into double series in terms of the sought functions: 

9, Cm «hi cos «1. 

Let us multiply the right and left sides of this expression 

by sin mvx/l cos nBdxdQ and integrate - the right side within limits 
with respect to x from 0 to lt with respect to 0 - from 0 to 2ir, 

and the left side with respect to x within limits from x1> to x1 + 
+ Ax;,^ and with respect to 6 within limits from ß1 to ß + Aß Then 

when Ax^ + 0, Aß^ -*■ 0 we obtain 

With allowance for the value of coefficient c for q we have 

expression * 

2P) 

nRI 
sin P-Jl- cos /1?, sin COs ni. 

By substituting the expressions for functions and u1, and 

also q* in equations (7.11), we obtain two equations for determining 
parameters Almn and Blmn 

R* COS/I?,. 

I 

for 

B, 

to wri 

remain 
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From these equations we find 

2P,Ä [C-r r+'i 
Kin - 

MHJt 

1 
lcok (¢, 

ji£l/{ :^)1 

Having substituted these values of and Blmn in expressions 

for and we obtain 

By analogy with the obtained solution for force it is possible 

to write expressions for deflection and function of stresses for the 

remaining forces by replacement of angle by ß2> ^3» 
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Final expressions for deflection of the function of stresses 

are found by superposition of obtained solutions. Assuming that 

the shell works within limits of elasticity, and taking 

P1 -¿Wj-P.-P, p,-0. ßj=Jt, p4-y. we find 

tw=»,-f-+w, •{-«4— 

8PP 
nEU 

• » f/mnP\* ,1* 
V v- K~r) H 

T 7 r / __ 

. m/ur. . mnx 
sin - ^ 1 dn —— coa ni 

4-Z- *Pl (-0.44,1t 

?=?i+9t+T| + T«= 
» /mnP \t , mnxi miur 

I—!—I (In—r^dn —:—cosm 
_välV V m ~r ~co 

fil / / D r/mnP\* 14 ¡mnR\* 
4-4-+"![ +rr) 
m-l (-0,44.1* 

By using the obtained expressions for functions (j> and u, we can 

determine all internal forces in the cylindrical shell, which are 

under the action of one, two, three and four concentrated radial 

forces, by using the method of superposition. 

Now let us derive expressions for displacements of frame and 

rod, loaded by concentrated forces, in the direction of radius 

of the shell. When considering the frame (Fig. 120) as an annular 

frame it was established that radial displacement under fore 

•.“0.006-^1. 
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In the case of a square frame (Fig. 121) we obtained 

0.707-^. 

In the case of tension of rod 

_ PR 
"•"IP 

\ 
Fig. 121. 

Increase in the radius of cylinder under the action of internal 

pressure 

ILzSîMlfiL. 
11 £1 

Condition of compatibility of deformations of the system 

cylindrical shell-support will have the form 

• •0 

Thus, for instance, in the case of reinforcement of shell by 

a frame for force of interaction P we obtain expression 
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m-1 «-0.44,13 

0.5|i) qRt 

1 ic-f) 
—1 £»*2 1 r-r) H 1« /ainff \< 

+(t) 

The expression for force of interaction at the other types of 

supports, examined above, can be obtained analogously. 

5 36. Loading of a Cylindrical Shell bv Local 
Circumferential and Axial Sending Momenti— 

Let us examine loading of a cylindrical shell by local 

circumferential or axial bending moments. Problems of such type must 

be encountered, for example, during calculation of suspended cylinders 

or tanks, resting on a number of brackets, or steel pipeline framework 

(flanges, branch pipes and so forth) fastened by some means. 

As can be seen from provided diagrams of loading (Pigs. 122 and 

123) the problem is reduced to calcu ition of a shell for distributed 

pressure 9j|, equal to the specific pressure on the surface of the 

shell on the part of applied moment M. 

Fig. 122. 

f/9 

Fig. 123. 

For calculation it is possible to accept that pressure q is 

changed according to linear law, as shown in Figs. 122, 123. 

Having expanded this load into double Fourier series in terms of the 

sought functions 4. and u and having substituted all these expressions 

in (7.II), we obtain the desired solution of the problem. 



In this case we are limited to listing the finished results of 

such calculation.1 

With loading of the shell by circumferential moment M of the 

magnitudes of internal elastic moments M and Mt and also magnitudes 

of internal membrane forces N* and NQ are listed in Pigs. 124 and 125. 

These magnitudes are calculated for point (see Fig. 122) with 

square support areas * c2 = c. The charts are valid when l/R > 1. 

Á 
rml rr r n 

~ r*vn~mm 

OM 
0.01 

002- 

124. 

B 
l* 

2.0 

1.6 

/.2 

0.0 

OM 

0 
o " 405 0./0 a >3 400 

Pig. 125. 

005 4» 4/5 460 4*5 

From the loading diagram of Pig. 122 it is evident that at 

point the stresses from bending moments will be compressive in 

the external fiber; the membrane forces also cause compressive 

stresses. 

‘Collection. "Questions of strength of cylindrical shells", 
translated from English, Oborongiz, I960. 



Figure 126 shows charts of angles of rotation 0. This angle 

is equal to the ratio of deflection at point Q1 (see Fig. 122) to 

dimension C^. Curves A, B, C, D are constructed for l/B = 4. At 

other quantities of l/R angle 6 can be determined by using a 

correcting curve, placed in the right lower corner of Fig. 126. 

For this purpose first we determine the angle of rotation according 

to curves A, B, C, D when l/R = 4. Then this angle is refined, 

using correcting curve in percentage in comparison with l/R = 4. 

If the support area of application of circumferential moment 

will be rectangular, then angle of rotation 0, and also bending 

moments Ma and N at point ¢, can be determined in the following 
o X J- 

manner. 

for the given rectangu- 

coefficient k and , c 

First we find quantity ^ 

lar area. Then this quantity is multiplied by 

quantity 0 is obtained equal to 
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I 

tangU' 

d 

where coefficient fe is taken from Table a 
and Ä/6. By the obtained value of 

bending moments or angle of rotation are 

6 for the given ratio 

ß in Pigs. 124 or 126 the 

found. 

Table 6. 

C\, Cf Ä/» for 8 for Af, for Mx 
C' 

for AT, 
Ct 

for NM 

1/4 

1/4 

1/4 

1/4 

1/2 

1/2 

1/2 
1/2 

2 

2 

2 

4 

4 

4 

IS 

50 

100 

300 

15 

50 

100 

300 

15* 

100 

300 

15 

100 

300 

1,09 

1,04 

0,97 

0,92 

1,00 

0,98 

0,94 

0,95 

1,00 

1.1« 

1.00 

1,49 

1,31 

1.24 

1,16 

1,02 

1,09 

1,08 

1,04 

0,99 

1,20 

MO 

1,00 

1.47 

1,38 

1.27 

1,84 

1,62 

1,45 

1.17 

1,36 

1,31 

1,26 

1,13 

0,97 

0,95 

0,90 

1,08 

1.06 

0,98 

0,31 

0,21 

0,15 

0,09 

0,64 

0,57 

0,51 

0,39 

1,70 

1.43 

1,30 

1,75 

1,49 

1,35 

0,49 

0,46 

0,44 

0,46 

0,75 

0,75 

0,76 

0,77 

1.30 

M2 

1.00 

1.31 

0,84 

0,74 

During determination of membrane forces and N first we 1 

calculate 

According to the obtained value of ß in Fig. 125 for specified 

value y = Ä/6 we find quantities JV0 and Nx, which we then multiply 

by coefficient C , shown in Table 6. o 

With loading of the shell by axial moment (see Pig. 123) the 

internal forces and moments, and also angle of rotation are determined { 

according to curves of Figs. 127» 128, 129. These curves can be used, 

if l/R > 1. I 

During computation of angles of rotation (ratio of deflection ^ 

at point to dimension C^) and bending moments Ai0 and Mx for 

rectangular regions at first we determine quantity 
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0.» 

4« 
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0 4M 4« vs 4M 1-jf 4 4M 4* vs 4M fy 
Pig. 127. 

4« 4» vs voua 
ri 

4M VO ills 4M 4M 

ri 
Pig. 128. 

4 

79 
Ml 
M 

0 4M 4» 4M 4»4Í 

Pig. 129. 
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which we then multiply by coefficient fel and obtain 

By the obtained quantity of ß according to Pigs. 12? and 129 
we determine the angle of rotation and bending moments M0 and . 
Coefficient fej in this case is taken from Table 7. When determining 

membrane forces IYq, Nx first we determine 

and by the obtained quantity 6 according to Pig. 128 for specified 

value y - Ä/« we find forces NQ and Then these forces are 

multiplied by coefficient taken from Table 7. 

Table 7. 

c,/c, 
*1 

for • 
*1 

for Afg 
*1 

for .W* 
C| 

for AT, 
Ci 

for Nt 

1/4 
1/4 
1/4 

1/4 
1/2 

1/2 

1/2 
2 

2 

2 

4 

4 

4 

15 

50 

100 

300 

15 

100 

300 

15 

100 

300 

15 

100 

300 

1.14 

1,13 

1.18 

1.31 

1.00 

1.00 

1.00 

1,09 

1,39 
1,18 

1,80 

1,65 

1,59 

1,56 

1,08 

1,06 

1,05 

0,94 

0,89 

0,79 

0,90 

0,54 

0,f4 

1.24 

1,16 

1.11 

1.11 
1.04 

1,02 

1.02 

1.12 

1.07 

0.90 

1.24 

1.12 

0,83 

0,75 

0,77 

0,80 

0,90 

0,90 

0,97 

1.10 

0,87 

0,81 

0,80 

0,68 

0,51 

0,50 

0.43 

0,33 

0,24 

0,07 

0,76 

0,68 
o,eo 

1.3 

1,15 

1.50 

1.20 

1.03 

1,33 

§ 37. Calculation of a Cylindrical 
Shell for Axisymmetric Load 

Let us examine a cylindrical shell, loaded by axisymmetrical 

lateral load. 
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Differential equations for the solution of this problem can be 

obtained from equations (7.11), having assumed in them all the 

derivatives with respect to y are equal to zero. Then, converting 

from partial derivatives to usual, we will have 

d*f Eh d*w 

dx*^ R dJfl ' 

LÍÍ3.-LD — 
Rdx* dxi 

?.. 
(7.15) 

Let us write the first of these equations in the form 

After double integration we obtain 

(7.16) 

Let us show that C^x + C in this case is equal to zero. The 

expression for circumferential deformation with axisymmetric 

loading of a cylindrical shell has the form 

‘i» ~ ^ i"» “ •‘’J»)' 

Since the considered shell is loaded only by lateral pressure, 

axial stresses ■ 0. Then 
X 

R 

Therefore, 

After multiplication of this equation by shell thickness 6 

and introduction of the function of stress we obtain 



djfl 

By comparing this equation with equation (7.16), we see that 

C^x + C = 0. By excluding the function of stresses from the second 

equation (7.15), we have 

d—+4k*w 
dx* D (7.17') 

where 

When » 0 we obtain homogeneous equation of boundary effect 

for a cylindrical shell (6.14), already known to us, where it is 

written relative to function U, equal to angle of rotation dw/dx. 

The solution of equation (7.17) will be made up of the solution 

of homogeneous equation and some particular solution, i.e., 

w=w-\-e** (Ci cos kx+Ci sin kx) 4- e~>x (C* cos kx-\-CA sin kx). 

Constants of integrations in each particular case must be 

detemined from boundary conditions. Expressions for internal 

forces in this case will have the form 

.,-0, Af.-D-g-, 

Let us apply the obtained solution for the case of loading of 

a shell by a load consisting of boosting and hydrostatic column of 

liquid of specific weight y: 

where H - height of liquid column; * - flowing coordinate, read 

from the lower end of the shell. 
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Por the given load the particular solution of equation (7.17) 

should be sought in the form 

w-v4o+i4|Jr. 

After substitution of expressions q* and w in equation (7.17) 
we obtain 

4*«(^+A,x)—l.[çB+Y(//-Jt)]. 

By equating the coefficients with identical powers x in this 
equation, we find 

Then 

A9 l 
40* 

Y 
40* * 

- + —*) 

40* 

Consequently, general solution of equation (7.1?) in this 

case will have the form 

w =- Xií+ItíípÜl*-+^ (C, cos fcc+CjSln Jbc)+ 

4- e~kJ (C, cos -f C4 «In kx). 

Let us assume that the shell is rather long and boundary 

conditions on its end do not affect each other. In this instance 

there must be ^ * 0, C2 - 0. Then 

w ^ tf. + V (// - ■»)] +g-?,(c3 C08 kx+c4 gin kx). 

Let us suppose that the lower end of the shell is rigidly 

restrained in an absolutely rigid frame. Then the boundary 

conditions on this end 

These conditions lead to equations 
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Hence we find 

c,+!fc±Ä2=0. 

c,= 
Bb ’ 

(1-//»)YP» iJ* 
KBb Bb 

Then the expression for w takes the form 

lg' + VH)R*-.hr\ 

Bb I 

For circumferential force and bending moment Ny and bending 

moment M we obtain formulas 
X 

-(q. + yWRcotkx), 

M d R%r'* -^ic°«*jf+ 

+(^+Y//)sln*^). 

By using these formulas, we can determine stresses at an 

arbitrary point of shell. For example, in framing x - 0 

Ar,=o, 

Rb_f 
(^jr)jr-0 — 2 >^3(1 “ 1*^) L * •* 

Stresses from this moment will be found from expression 

. 6 (M,)«-0 ) * - [ (1 ~ Hk)±- - g-1. 
0xŒ±-JT */3(1-^) I * 1 
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§ 38. Application of Origin of Virtual Displacements 
For Problems of Calculation of Shells 

In many cases the energy method can be useful for the approximate 

solution of problems of strength and rigidity of shells. General 

fundamentals of this method were presented in Section I in examining 

rods and plates. During calculation of shells by this method only 

the selection of approximating functions is complicated. But with 

some experience this difficulty can be easily overcome. In this 

case the expression of total energy is a function of three components 

of displacement u, v and w, and with solution of particular problem 

it is necessary to select expressions for these functions, which 

would satisfy the prescribed boundary conditions and be in accordance 

with the physical sense of the problem. The more fully these 

requirements are satisfied, the more accurate the result of solution 

of the posed problem will be. Having provided the selected functions 

of displacements with indeterminate coefficients, which do not depend 

on current coordinates, it is possible to calculate the total potential 

energy of the shell, which will be expressed in the function of these 

coefficients. For determination of the latter we should formulate 

partial derivatives of each of them and equate these derivatives to 

zero. In this case we obtain a number of equations, corresponding 

to the number of unknown coefficients. After determination of 

coefficients we can determine all internal force factors by formulas 

of Hooke law. Let us illustrate the application of this method on 

a concrete example. 

Let us assume there is a very long weightless cylindrical shell, 

one end of which is rigidly restrained, and the second is free. 

In some arbitrary section of this shell let us place supporting ring 

a (Fig. 130) with rectangular cross section. In this case the 

center of gravity of the ring section is arranged on the middle 

surface of the shell. 

Let us apply concentrated force P to this ring. 

is sh 

court 

cuts 

force 

of th 

where 

ut v • 

the d 

w/R i 

Rj 6 

l - 1 

is ne 

indet 

funct 

take 
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;nate 

Fig. 130. 

ng 

For solution of the problem let us mentally cut the shell, as 

is shown in Fig. I30. Here there is shown the selected system of 
n 13 

coordinates both for shells I, II, and for ring a. At places of 
m 

cuts there are applied unknown normal forces ^ and tangential 

forces 1, and t?. The shell is consiuered moment less. 
nee ¿ 

on 

ons 

end 

ntial 

líese 

Let us begin with examination of shell I. The potential energy 

of the shell can be wetten in the following manner: 

£f/? 

2(1 — H*) 

1 —K .» ih'jdxdv-T, 

where 

du 
dx * 

dv 

,f _ Äd» ’ 
da , du 

u, y — components of displacement of points of the middle surface in 

the direction of axes x and <J>. Let us disregard for now component 

w/F in e^j Et V - modulus of elasticity and Poisson bracket; 

/?, 6 — radius and thickness of shell; T — work of forces q-^ and t^; 

l — length of shell. It is considered that l >> R. 

Further in accordance with the accepted method of solution it 

is necessary to assign suitable expressions of u and y with 

indeterminate coefficients and to express potential energy as a 

function of these coefficients. As such suitable functions let us 

take 

ft* 

«=v+2(x..+^)* W(:otn^ * 
_ *1 

BjgX) t sin /if. 
. * 
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The first term in the expression for u does not depend on angle 

4» and is proportional to distance x from the origin of coordinates; 

the second origin of this expression rapidly attenuates with 

withdrawal from the origin of coordinates and is introduced for 

account of the local effect from concentrated force. 

In the expression for v there is taken only the rapidly damping 

term, since this displacement should be diminished with withdrawal from 

the place of application of force. 

Furthermore, displacement u must be an even function relative 

to coordinate and displacement v - odd. 

Before writing out the expression of total energy, let us 

calculate the work of forces and t,. For convenience of deter¬ 

mination of these forces let us subsequently represent them in the 

form of Fourier series: 

(7.18) 
• a 

Forces q1 should be an even function relative to ¢, therefore 

expansion is taken with respect to cosines; forces t1 should be an 

odd function, therefore expansion is taken in terms of sines. In the 

first expansion we take an absolute term, which is easily determined 

from conditions of statics 

H 

j qtRdf=P, 

whence 

P 
2x* * (7.19) 

Absolute term in the second expansion is equal to zero. 

Now let us calculate the work of forces and 



£le 

Ing 

1 from 

i 

the 

led 

T "jf J q' ^ dX Rd* ~ Î T' (v)Jm'>Pd'f, 

The minus sign before the second component is placed because 

force x1 and displacement y are directed to opposite sides. 

After calculation of the shown integrals we obtain 

i 
T = 2nRAtft j dx—ntyAu ~ ta¬ 

llow it is possible to write out the expression for total 

potential energy of shell I: 

t auL? t a’-+ 

+î=ï 4 flî.+s-=ï -S-Ät-iii i±í BUB^+ 
4 Ä 

+1 ^ + Aia^U — 

— 2nRA0Çfj dx+nRç'Ai'+nRr'Bi,. 

With calculation of integrals in view of the very great 

length of shell we assumed 

! 
I AX 

e . 
n 

Thus, potential energy of shell I is expressed as a function 

of coefficients A0, A\n, Ain, B\n, B2n. For their determination let us formu¬ 

late the partial derivatives of total energy — , — 09 
à4> àA,„. dB¡n 

and equate them to zero. In this case the number of equations will 

correspond to the number of unknown parameters, which are determined 

from the solution of this system of equations. 

Thus , we have 
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(<ar*)f i/X=aO, ' 
(1-J.Î) 

3 — 1» h t 1 + !* i l+l*o i 
— --- -4-0¾ I 

£» 
^:=0, 

(1+^^-(3-^-^-(1+1*) Ä,.=0, 
/1 

Îfî f*..+4-^.,+ 

+ ^(1^0,-=,0. 

(1+1^)^1.+ (3-j*)— ^1.-(1+^)^1^=0. . 
n 

(7.20) 

Prom the first equation (7-20) follows 

(l— 
El 

After substitution here of values of qQ from (7.19) we obtain 

(1-^) P 
0 QnRiE ’ 

Prom solution of the remaining equations of system (7.20) 

follows : 

2 - t 

possl 

ships 

I 

we oti 

I 

iAj. 

_2_^+(i_rtüL 
£»« W £»« ’ 

£*/i ' W Bin ’ 

o o+rtifi-«;) 
ßj-=-Bb- * 

By substituting the found values of constants ¿o. ¿i«» ßm. fl2" 

in expressions for u and v, we find 

(l-^)Prr . R V Û ( [o , (l+l*)HjL]+ 

1 2n/?»,£, +£j»iT " i r+ ß 

+ Í [l - ^ +-ii±p£-]} r?cos«T, 
(7.21) 
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H- 
> (7.21 cont'd) 

(1 -H») «Jf 

R 

Index 1 designated quantities pertaining to shell I, and index 

2 — to shell II. 

By having expressions for displacements and y^, it is 

possible to write the expressions for stresses, using known relation¬ 

ships ensuing from Hooke law: 

9,, =-Ë.- 
2<1+M) 

By substituting here the appropriate derivatives of u-^ and y^ 

we obtain 

(7.22) 

Having obtained the expressions for displacements and stresses 

of shell I, by analogy, not repeating intermediate computations, it 

is possible to write the appropriate expressions even for shell II, 

bearing in mind in this case that the absolute term in the expansion 
ft 

for normal force q2n is equal to zero (qQ = 0) and that coordinate 
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X is read from zero to negative values. Furthermore, tangential 

force is directed to the side opposite x^. 

Having made these remarks, for shell II it is possible to write 

whe< 

mome 

of t 

£>*> U 
ã 

*" iS- (' +¾ t] •*«>.*, 

“’•""i?+^)+(1+i) tJ^ 

vS ’•["T-ii1 + *»• 

(7.23) 

In these expressions the values of x should be tal|en with minus. 

Now let us turn to examination of the stressed state of supporting 

ring. In this case we will proceed from the usual theory of bending 

of beams. This can be considered entirely permissible in this 

problem if only because the zone of effect of concentrated force in 

circumferential direction has a sharply expressed local character 

and concentration of forces $*, Ç,, occurs on a comparatively 

small part of the ring. Taking this remark into account, let us 

write the expression for total energy of the ring. 

S=^f (¾2 df+*j +fc) v**r ~ 
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where y, R central inertia moment and radius of the ring. Inertia 

moment is calculated with respect to the axis, lying in the plane 
of the ring. 

The first term here represents elastic energy of bending 

deformation of the ring. The remaining components represent the 

work of external forces: normal forces <7^ q2 tangential forces 
t2 and external force p. 

Normal forces <7^ q2 permit work of rings yH at deflections from 

its plane; tangential forces t2 - elongation of extreme fibers 

of the ring, equal to where h - half the height of the ring; 

force P works on displacement of ring at point <£ * 0. The plus 

sign in the second component is taken because forces <7^ q2 is 

directed to the side opposite positive displacement v^. The last 

two components are taken with minus sign, inasmuch as the direction 

of forces and x2 and P coincide with corresponding displacement. 

Now it is necessary to select a suitable expression for v with 

indeterminate coefficients and then determine them just as when 

examining a shell. This displacement can be represented by Fourier 
series 

V'SC'Cosn,. 
ñ 

The absolute term here is omitted, since it reflects displacement 

of the ring as a solid body. 

Having substituted the expression for i>h and also expressions 

for q± and ^ and expressions for q2 and t2 analogous to them, 

which can be represented in the form 

^cos/kp, T2=2T>,n«? (7.24) 
« ft 

(and which were already used when determining displacements 

u2* v2^ ’ in the expression for energy of the ring, after taking the 
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quadratures we obtain 

a_nJE&n* 
Cf~ 2Ri 

Let us find parameters Cn from condition ¿3 
dC* 

[P-«/?(^+/n] +n* K-m;)»]/?» 
nJEn* 

Having substituted Cn in expression we obtain 

v ** y [p- nft (?, + Q -j- ah (t; -f- <;) /»] CO* Hf ( 7.25 ) 
* «;£ ¿j . /1« 

M 

Thus, having obtained all the necessary data for unknown forces 

9(,t and for their determination it is possible to formulate 

the following four conditions of conjugation of shells I and II with 

the ring: 

—(ul)jr-0~ (•ft)«-#***«* 

(••*)*-# ** *«• (*f«)jr-0 ^ *«• 

where e — relative elongation of the most elongated fibers of the 

ring, which adjoin shells I and II. 

The first two conditions express the equality of linear 

displacements of shells I and II with displacements of the ring at 

their Junction point, the second two - equality of relative deforma¬ 

tions of shells and ring. 

Expressions for (‘fi)*-* (•».ïx-o and eK have the form 

7Í7? t-(*-»<■+“'«*• 
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where V - moment of resistance of the ring to bending. 

The last expression is obtained from the following relationship^ 

known in theories of bending of beams, 

M = -EJ 

The minus sign is taken here because the load distributed along 

the ring is directed to the side opposite the accepted positive 

direction of coordinate y for the ring (see Fig. 130). 

Conditions of conjugation of the shell and ring in expanded 

for can be written in the following manner: 

where 

AM ^(-2,:,-0-^=-^ 

£,», t ^ „sor** ’ 
£¡4 [-(1 — I1)2t«l“ xfgVnS • 

A=P-*K(q:+9;)+«*(T;+T-a)n. 

In these equations index 0 pertains to the ring, the remaining 

indices were explained earlier. 

By solving the obtained equations relative to q'm, 9* and1 

we obtain 

where 

?40 



in expressions By substituting the found values of Í«» ?«•T* and t*f 

(7-18)-(7.25), we will have 

to»i»y a P i P y-i___ 
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***> / .1 ■ ■ j¿gg«i /, *g- * 
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1 Kd (- Í)t] 
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(-¾ 
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1 Ä* \ W 
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(7.26) 
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(7.27) 

The presence of the first term in the expression for o is 
T 

connected with the assumption about the absence of deflection of shell 

(u * 0) during its loading by axial concentrated force. It is 

assumed that the shell is as if under the action not only of force P, 

but also constant internal pressure with intensity q from 

which the constant component of stress was obtained. In actuality 

internal pressure is absent. Therefore, it is necessary to the 

obtained expression for to add annular stresses from external 

uniform pressure with Intensity q=--with allowance for the 
2nRi 

fact that one end of the considered shell is rigidly restrained in 

the ring. 
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In this instance for calculation of the shell we will proceed 

from differential equation (7.17) 

where 

dx* v D 

U4_ g|»i _ 12(1-1^) 
DXR 

Solution of the given equation in the considered case will be 

w = 4- e-* (C, cos kx C4 sin kx). 
4*40, 1 v a * 

Let us place the origin of coordinates in the section coinciding 

with framing of the shell. By determining constants ¢7^ and from 

conditions w=0, —*=0 when x » 0, we obtain 
dx * 

w — 11—e~** (cos *x+sln *■*)!• 

Annular stresses in this case will be 

0* ^ T = 4¾¾ l1 “ iC0S kx+s,n *x)l- 

nP 
By substituting here we obtain 

[1 — e~*x (cos kx -f- sin **)]. (7.28) 

By assuming these stresses up with stress we will have 

+ nRb, 

m 

■L 
#1-1 

,_£f_ 
2nftt| 

d~tx (cos *jc -j- sin kx) + 

1 K-i (- •t) 1¾ 
i — 
« * COI /If 

2JE0n* , 
£,í, Ril¡E, 1 (- 

1— 
2* J '-£| l gl»1/ 

(7.29) 

Formulas (7.26)-(7.29) represent all components of stressed and 

deformed state of the shell, and also internal forces in the juncture 

position of shell and ring and the bending moment, acting in the 

ring. 



As numerical calculations show, the obtained series converge 

rather rapidly, with the exception of the series entering the 

expression for bending moment of the ring. 

Let us obtain another expression for bending moment of the ring, 

more convenient for practical calculation. For ohls let us use known 

differential relationship, establishing the connection between 

derivative of moment and shearing force. 

In our case this will be 

where 

Q— 
riM 
Rdf ’ 

Q=$gRdf+D !• 

Here by q we must mean the load distributed along the ring, 

i.e., 

where 

0—ft» 

ft+ft=ft+2 (ft+ft) c°* «ft 

and - projection of tangential forces and t2 to direction 

of axis y. This component 

Xl Rdf 9 Rdf R 

t »• 
Here we whould substitute absolute values of and t^, since 

their signs have already been taken into account during formulation 

of the expression for q^» and in expression Cn they should be taken 

according to formula (7*26). 

we will have 
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Q=fi í [*;+!«. +9») cos n<t — 

C*!1 (T* — t¡) sin3 nr rf?+o,. 

After integration of this expeession we obtain 

^+J] ~ (¢- +1») »In at— 

The constant of integrations D1 Is determined from the condition 
that when $ « 0 there must be A _£ Then 

2 ‘ 

[w+ +Í*) »In/if— 

Now it is possible to calculate the bending moment: 

JOrff-f-0,. 

Having substituted here the value of Q and integrating, we 
obtain expression 



For determination of the constant of integration let us use 

the condition that when ¢=0 there should be M = where — 

moment in the root section of the ring. From this condition we obtain 

II—I 

K-s) 

Consequently, 

m 

Ai LqoKV_ -L+ 2/?* -1 (q. + q.) 3«n» + 

(sin* «ÿ- /i*f*) Af0. 
i-l * 

Moment Wq as yet remains unknown. In order to determine it, we 

will proceed from the condition that the root section of the ring 

is not turned as a result of symmetry of loading. For determination 

of this moment let us formulate the expression of energy of deforma¬ 

tion of a semiring 

or 

3 [i «Í¡ ^ M. +¿> 
% 

+4- * Ë (T" ~is,n*^ - *v)+ a»o] df- 
«-i j 

Let us differentiate the expression under the sign of Integral 

with respect to WQ and equate the derivative to zero: 

j [y viw - 4 +2^J¡ -i (,;+,,1) s,„. a.+ 

^ ~ (t<i —T«)(sin* «f—«*9*)-f-Ai0| =0. 
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From this expression after integration we obtain 

Mo 
, nfíP 

---1-—— 

«-1 

/? nW \ 
3 J' 

Then, considering the expressions given above for ¢),, Çà *1,. Tñ. 

finally 

t-i 
C0« Iff 

EqÜo 2JE0n* 
1+£Íí", + ^34,5, 

t 
(-¾ '1 jcos 2n<f + 2/iJ j r"1)] Í 

,"’*1 2JEon* / l—it\ 
m,E, 1 2* ; i-£i (-¾)] 

As calculations show, in the fast expression for moment M the 

series converge faster than in formula (7-27). 

The structure of all the given formula was obtained rather 

complex and therefore it is not possible to make any general 

conclusions about the stressed and deformed state of the considered 

system. Therefore, calculations of certain constructions were 

performed. Figures 131-135 for illustration show curves for stresses 

and obtained during calculation of the shell, reinforced by 

a ring, under various assumptions relative to material of the ring 

and shell, and also with and without allowance for tangential 

forces, acting at the Juncture point of the ring with shell. If 

tangential forces are not considered, then in all formulas the terms 

containing quantity k should be omitted. 

Curves of stresses are constructed for the case of action of 

four forces simultaneously, located at 90° angle to each other. 
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Fig. 133. 

Fig. 13^. 
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If shell II is absent a °» ¿2 * ^ and tangential forces at 
the place of shell and ring are not considered, then formulas for 

shell I and for bending moment of the ring (7.26) and (7.2?) convert 

into formulas for a beam on an elastic base. Moreover in these 

formulas we should substitute R * l/tt, 4> * ny/l, ^ * 1, where l - 

half of the width of the plate. 

Prom the given curves of stresses o^, 0^ some practical 

conclusions can be made. 

1. The presence of shell II sharply lowers the concentration 

of membrane stresses. Therefore, with the presence of this shell 

in the construction it must be checked for rigidity against the 

action of concentrated force P. 

2. The account of tangential forces at the juncture point of 

ring with the shell is substantially indicated by the amount and 

character of stress distribution in the shell. 

3. At a distance of the radius from the point of application 

of force P there occurs almost total equalizing of stresses along 

the cross section of the shell. Hence follows the conclusion that 

the obtained formulas are applicable to shells if their length 

satisfies condition l > R. 



CALCULATION OP REINFORCED CYLINDRICAL SHELLS 
UNDER AXIAL AND LATERAL LOADS 

In this chapter the sequence of calculating a cylindrical shell, 

reinforced by stringers and by frames and loaded with bending moments, 

by axial and lateral forces, are examined. We will consider that 

the sheathing of the examined is sufficiently shell thin, able to 

lose regidity long before the failure of the entire construction on 

the whole (of the elements of the superstructure). After the loss 

of rigidity the sheathing hardly functions at all and does not respond 

to normal stresses from bending moments and axial forces. Only 

narrow strips of the sheathing, which are adjacent to the stringers, 

will respond to normal stresses. However, the sheathing will become 

operational under lateral loads, by exerting a shearing force on the 

reinforced structure. 

From the aforementioned it follows that the thin sheathing 

is in effectively used as a supporting element of the construction. 

In spite of this, shells with a thin sheathing find application 

in technology in view of the fact that comparative calculations 

indicate that reinforced shells by weight ratio are more suitable 

than nonreinforced ones with a thick sheathing. 

§ 39• Effective Width of the Sheathing of a Reinforced 
Cylindrical Shell, Responding Under the Action 
of Axial Compression and Inside Pressure 

In § 12 a formula was obtained for the effective width of a 



! 

plate based on the assumption that it was free of a lateral load. 

In tills paragraph an analogous formula Is derived for a 

cylindrical panel with the allowance for the action of a lateral 

distributed load on it. We will consider the effect of this load 

for a given width through meridional and circumferential stresses, 

which appear in a cylindrical shell due to booster pressure and the 

hydrostatic column of liquid. For the solution of the problem posed 

here let us use the equations (7.-10) 

d-tg 

■S+ Dv’v’w dx* 
-\-N^ 
. dx* 

4- Nl —a 
* dy* 

=0, 

where 

A/J— —<//?, </ = <7,+yA. 

q — booster pressure; h — height of the liquid column above 

the investigated section; N- critical value of axial compressive 

force . 

We will propose that the sheathing is rigidly attached to 

the stringers in its plane, but can freely rotate together with 

the stringer around its axis. The following expressions for the 

deflection and function of stresses will satisfy these conditions, 

along the contour of the panel: 

. , mnx , n6 sin-sin —, 
l »0 

o . max . «•) o -= B sin--sin—, 
/ e0 

where 6n - central angle, which limits the sought width of the 
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s ne at.■'ling, adjoining two adjacent stringers. 
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net us substitute the accepted expressions for a and 4>, and 
0 0 

likewise u ana /V in the original equations. From the condition 
¿ d 

of equality the zero of the determinant of these equations is derived 

qnR 
2 ’ 

where parameter of wave formation. 

The right side of the derived expression consists of a component, 

characteristic of the energy of tension and bending of the shell 

and of the work of the lateral load (pressure). During the examination 

the narrow strip of panel adjoining the stringer, its potential 

energy will basically consist of the energy of bending. Therefore, 

for the approximate solution of the problem one can discard the 

first term in the right part of this expression. Then 

where 

JC = i*. 

Minimum of force along parameter x will be 

o _ vkp — 20 / * Y* i. JL ! /Pm2 ’ qR{ i 
^ ä /?2ò \ 90 j ' rr-t, iiq y {e0J ‘'o’1 2» * 

For determination of angle 0q we will have the condition 

expressing the equality of relative deformations of the stringer 

and the sheathing adjacent to it. In the developed form this 

condition is 

20 n_ 
' "o I'YW D 

! j i - - — — i. 
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By solving the derived 

when y = 0.3, the following 

sneathing: 

equation relative to we will find 

value for the effective width of the 

R% = 2C=s 1,98 

By inserting <? - 0, ^ = 0 in this formula, we will obtain the 

known formula of the effective width of a flat plate. 

§ HO 5 Stresses in a Reinforced 
"^llndricai Shell under a Load bv its Bpnr^np 

Moment, and by Axial and Lateral Forces""5 

The calculation of a cylindrical reinforced shell due to the 

action of bending momenta and axial forces (Pig. 136) is based on 
the unkno./n formula 

,-j. M*!>i _j_. M»*l N 
nl' ¿1) np F„p * 

where My - bending moments in the section relative to the main 

axis Ox, Oy, N - resultant axial force in the section 

J*nP, Jynp’ Fnp ~ 6iven inertia moments and the area 

of the lateral section; x¿, - coordinates of the 

centers of gravity of the elements of the section 

relative to the main axis Ox, Oy. 
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(8.1) 

where Ä — area of the section of the ith stringer: b. - distance crpt ’ i 
between the stringers; 6. - thickness of the sheathing; I* 

i — ordinal number of the stringer. 

Coefficient1 0.8 in the second of the given formulas is 

considered under the circumstance that the sheathing, having acquired 

initial irregularities during the manufacture of the shell, does 

not completely respond to action loads. 

In the compressed zone of the section for the given area and 

for the moments of inertia, we have the following expressions: 

M 

^«P ^""P/“^"ctP 1 4" (2C)nPl®oC 1» (8.2) 

» « 

nP~2 tiP “ 2 ^nPl*/< 
<-l n 

where {2C)^. — effective width of the sheathing, which is determined 

according to the latter formula of the previous paragraph. If the 

sheatning in the investigated zone loses rigidity due to shear, 

then the effective width is usually reduced by half. 

In order to complete the above given calculation, the position 

of main central axis of inertia of the x, y sections must be known. 

During the calculation as a first approximation one first determines 

the compressive stresses in the investigated shell due to action of 
loading, equal to 

‘The value of this coefficient was established experimental:;.. 

I 



(8. j) 

wh 

where f - accepted for the calculation of the safety factor; D - 

diameter of the shell. 

Then, the stress of compression is 

Tf f -- 

where F — complete area of the section of the shell. 

Quadrupled actions of the bending moments, allotted to the 

diameter of the shell, in the right part of the expression (8.3), 

for the effect in the compressed zone of the shell are equivalent 

to the uniform compressive forces. 

Following the calculation of the stress it is compared with 

the critical stress of compression for the cylindrical panel, which 

is determined by the formula 

(8.M 

where 6, R - thickness and radius of the shell; b - distance between 

the stringers. 

This formula, apparently, is semi-empirical. It has found 

wide application in calculations of aviation constructions. 

If the investigated cover is subjected to the action of internal 

pressure, then for the determination of the critical stress of 

compression one can obtain the formula 
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where o° is determined according to the expression (8.^). The 
HP 

remaining part of this formula is constructed on the basis of the 

theorem of convex surfaces of rigidity (see Chapter XVII). 

If tangential stresses also act on the investigated part of 

the shell, then in this instance it is possible to construct a 

hyperplane in three-dimensional space. 

From the comparison of and a the possibility of a loss 
3 K U H p 

in rigidity of the sheathing in the compressed zone of the shell 

is established, whereupon one can determine the coordinates of the 

center of gravity of the entire section according to formula 

S tx i 
jc —tz!_ 

^«p » 
i 

where x . u - distance from the geometrical center of the section 
U . T ö U . T 

of the shell in the direction axes x, y up to the center of gravity 

of the section after the loss in rigidity of the sheathing; Fnp - 

area of section of the shell, calculated by the formulas (8.1)-(8.2). 

After the determination x y it is possible to approach 

the determination of stresses in a reinforced shell during the 

action of bending moments and axial forces on it. 

The determination of tangential and additional normal e tresses 

in the elements of a reinforced cylindrical shell under its loading 

by a lateral force. If the sheathing of a reinforced shell loses 

rigidity due to the action of a lateral force, then additional 

loading of the superstructure is carried out with normal stresses. 

For the determination of tangential stresses in the sheathing 

of a reinforced shell one can make use of the differential equations 

ÿu-i 

^»p m 
~i 



of the nonentless theory of the shells: 

I ^fj_o 
d* — ds 

Mr I . dVl 

d* T ÄI 
=o. (8.5) 

which in this case is expressed by coordinates a (Pig. 137). 

By inserting q • const here, we will obtain; 

/(f). 

where /(s) - a certain unknown function of arc s. 

From the first equation (8.5) it follows that 

A’„- - J d,+ K. 
(8.6) 

where II 
0 
3S 

- constant of the integration. 

Under the sign of the integral in the equation (8.6) is 

derived from the normal force, which appeared in the shell due to 

action of the lateral force. For the determination of N let us 
2 

use the formula, known from the course of the strength materia 
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Then, 

(8.7) 

This expression is an equation of the equilibrium of the 

element abod in the direction of axis z (Fig. 137). 

The indefinite Integral in (8.7) is area moment ratio ab& with 

respect to axis x. Thus, it is possible to write 

N„=-Si&.+ Ni. 
»P 

For the determination of constant ¿V0 let us form the equation 

of moments of all the forces in the section relative to a certain 

point 

Q/i-j) Ntfids 

or 

5,0 ris-N'u$Qds=0, 

whence 

A'î, ---, 
2F 

where 2F=^ Qds— the doubled area, limited by the average line of 

the transverse section of the shell. 

Since during the composition of the equation of moments point 

j is selected randomly, then, substituting for convenience this 

point on the line of the effective force Q , we will obtain 4* a = 0. 
y y 

Then 

Vo _Oy (f S^ds. 

8 



Ultimately, for current value of the tangential force we will 

have the formula 

'V*‘ “ lrf~~ nP «T f M BP 

An analogical relationship can be written even for the case of 

the action of the lateral force Q 
"X 

2FJ y np nP 

The tangential stresses in tue shell 

where f - accepted safety factor. 

During the calculation of the total stress t the directions of 

action of forces <3 and Q must be considered. X 

After the calculation of the tangential stress tp it is 

necessary to compare it with the critical shear stress for the 

given shell. This stress can be determined according to the 

semi-empirical formula 

T..-0,1£ 

If the normal stresses of compression from the longitudinal 

force and the bending moment as well as from the internal pressure 

act in the investigated part of the shell, then they should be 

taken into account during the determination of having made use 

of the theorem of convex surfaces of rigidity for this purpose 

(Chapter XVII), on the basis of which a hyperplane is built in 

three-dimensional space. Figure 138 is given as an example. 

• 

0Mr - axia1 critical stress of compression; annular tens! 

stress from the internal pressure. 



Pig. 138. 

i.e 

On those sections of the shell, these losses in rigidity of the 

strengthening occur due to shear (which is evident from a comparison 

of tp and T ), the superstructure is additionally loaded b cause H p 
of the difference in tangential stresses (tP-t ). The sheathing 

HP 

"strethces” along the stringers and frames and additionally loads 

them. In this case the shell in the shear zone will operate as 

a beam with a thin wall (Fig. 139 • 

Fig. 139. 

From the condition of equilibrium of element 1 in the direction 

of axis z one can obtain 

(t1' — Tip) si = asi sin a cos a, 

whence for the tensile stress in the sheathing 

a — - Í!£_ 

tinacos a 

The stress, calculated according to this formula, is used 

in the check of the sheathing. In contrast to this, stresses of 

compresión will appear in the stringers. The sheathing, compressing 
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will appear in the stringers. The force, compressing the stringer, 

wilx be 

Z=fltlP cos a • la cos a=a„pi ctg a. 

Then, the additional stress of compression in the stringer can 

be determined according to the expression 

9* * nflCTf »(^-T,r)ciga 

tTp 

Furthermore, from the stresses o the stringers are also loaded 

by the lateral bend. The linear load due to action of these stresses 

can be determined from the condition of equilibrium of element 1 

in the direction tangent to the lateral section of the shell: 

3^51=5 sin ala sino. 

whence 

«»“(t'-Otgo. 

Analogically, from the condition of equilibrium of element 

2 one can obtain 

°/ = (^-T,p)ctga. 

The stress in the frame 

amW _ OB,» (*P — Tup) eg a 

Loading and stringers cause stresses o . The radial component 
y 

from these stresses will be 

»-•V 

Figure 140 represents a diagram of the loading of stringers 

oy a distributed load q. For a more precise definition of the 
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gi ven problem one should examine the combined work of stringers ana 

frames due to the action of load q. However, this refinement is 

associated with serious difficulties in calculation. In the 

practice of engineering calculations, simplifying this problem, 

the plastic supports of the stringers are replaced with hinged ones 

and the diagram of the calculation of a stringer for a lateral load 

q is reduced to an elementary problem of calculating a beam on two 

supports (Fig. l4l). bometimes, the theorem of three moments 

is applied to the calculation of a stringer. 

Fig. 140. Pig. iHi. 

The total stresses in the stringers are 

0ctp = aMM + + °jv + *#*+ «ff. 

v^ere ^Mx* aMy* aN ~ s^resses from the bending moments and axial 

Q Q 
forces; o^, a y - additional stresses from 

a q 

the lateral force Q . 
y 

If a lateral force will act on the shell, then it is 

likewise necessary to determine from it the additional stresses 

in stringers. 

The greatest obtained compressive stresses can be compared with 

the critical stresses for stringers, which are usually calculated 

by the formula for a flat plate: 

0.9kE 
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If the critical stresses are obtained higher than the limit 

of proportionality according to this formula, then their calculation 
can be made in the expression 

where 

b width regiments to stringer; k - coefficients, depending 
on the boundary conditions of the plate. 

The obtained values of the critical stresses according to the 

given formula during the determination of the safety factor are 

somewhat reduced, considering that this is an unfavourable effect 

on the work of the stringer of the sheathing, which has lost 

rigidity. This decrease in the critical stresses on the basis of 

the experiment can be taken within the following limits: 

by 10¾ with a thickness of the sheathing <5 * 0.5-1.0 mm by 

15¾ with a thickness of the sheathing 6 ■ 1.0-1.5 mm by 15-20¾ 
with a thickness of the sheating 6 - 1.5-2.0 mm. 

Stresses in the frames, which appear in connection with the 

loss of the rigidity of the sheathing, are usually not calculated 

and do not affect the value of the safety factor. 

Safety factor for stringers is 

1 his safety factor should be obtained with an allowance for 

the temperatures of the sheathing and superstructure. The calculation 

-he temperature is conducted by means of the corresponding 

change in the mechanical characteristics of the materials based on 
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the data of the experiments. 

All the results of the calculations are entered in a table 

(Table 8) for the convenience of calculations and checking. 

Table 8. 
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To complete the calculation from the above given dependences 

it is necessary to know angle of inclination of wave a after the 

loss of rigidity of the sheathing due to shear. For the determination 

of this angle let us employ the energy method. 

The potential energy of deformation of a separately taken 

panel with the superstructure attached to it can be written in 

the form 

3 + - 2pv«+2 (1 +1») t*J </* rf*-t- 

V“rf*_ 4- f Wd* 
} 2EJtlp 

on 



where the energy of deformation of the sheathing is determined by 

the first double integral, and the energy of deformation of the 

sections of the stringer and frame - by the second and third. The 

last integral determines the energy of bending of the stringer 

by the distributed load q in the section between the frames. 

In the given expression for the energy of deformation one 

should substitute the values of stresses and force: 

•*—(*' —To)tg0, = T,^) Ctg O, T«T»-T,p, 

N*tp “(9*+*.v) ^ttp -ffl.TP* (T^—r.p) ctgo, 

AT.-a.l^-T^tga, 

M (T>—t«p) (am*—«*) tg o. 

After simple calculations we obtain 

£- 
2£ 

+ 

•«TP-!** 

(aM + °Af) ^„P -f 
‘f« J 

tg a is the variable in this expression. Let us select it so 

that the potential energy would become minimum. Using the condition 

*0««> 

we obtain the following equation for the determination of angle o: 

tg4«- ÍÍÂ + V)*** 

\ Fm 120;tTp*J/ 
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where 

axis , 

J - moment of 
erp 

parallel tangent 

inertia of the stringer relative to 

to the circumference of the shell. 
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CHAPTER IX 

CALCULATION OF CERTAIN JOINTS AND PARTS 
OF SHELLS OF ROTATION 

§ ^1• Calculation of the Elements , Which Relnforce 
Openings Apertures In Spherical Shells- 

Nonreinforced openings. Let us examine spherical shell, 

loaded with an internal excess pressure q. Let us suppose that 

this cover has been weakened by a circular opening, determined by 

angle <(>0 (by Fig. 142). 

The balance of equations for a momentless spherical shell under 

an axisymmetrical load has the form 

+ 2AT, ctg ? = f/? ctg f, 

N%-\-N,=qR. (9.1) 

By integrating the first equation of this group, we obtain 

(9.2) 
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Let us find the constant integration C from the condition that 

Then 

N, ííüi*2.\ 
sin* ? / " 

From the solution of the second equation (9.1) we obtain 

I 
*r » 

from which it is clear that this force attains its greatest value 

on the contour of the opening: 

nui — 

One should note that the expression for /Vfl does not depend 
o max 

on the diameter of the opening. 

Openings, reinforced with a flange (Fig. 143). If a spherical 

shell has a reinforced opening, then at the joining of this support 

(flange) with the shell a force appears, whose value is designated 

by (Fig. 143b). It is considered that the force at the Joint 

is directed along a tangent to the shell. 

Distribution of forces in the shell in this case can be determined 



from the expression (9.2), if in it one assumes <7 = 0. Then 

When <|> 

slnif 

4>0 there should be • Nq. Therefore 

C—AfosWg'o. 

Then 

.V «ÍÜÍjf 
•iO*f 

The expression for NQ has the form 

-Hilóla. 
*in>f 

For the determination of an unknown force NQ let us set up the 

condition of continuity of displacements in a shell-flange system. 

The radius of the opening due to Internal pressure when $ ■ 

will Increase by 

£1 

The decrease in the radius of the opening due to boundary regional 

condition of NQt will be 

__ (1 +M)A^o£»lnfB 
£» 

The increase in the radius of the flange due to force can 

be found from the expression 

ft,— ‘Vp*1 *ln» foto» fa 
* ££ 

where F - area of the section of the flange. 

Since 



Ar,-|-Ar,—Ar,, (9.3) 

when, considering that the shell and the flange are made from identical 

material, we obtain the expression, which determines the force N„: 

\r __1»* _. 
0 f. LLtïLiLl i l 25 + i J 

Now, the stresses in the shell and flange can be calculated. 

The stresses in the shell will amount to the stresses from the 

internal pressure and the stresses from the boundary condition N^: 

2 * »in* TO 

he 

The stress in the flange 

/r.sm2io (1+k)* 
25 + 4 r 

gional 

An opening, reinforced with an annular plate (Fig. lM). In 

this case in order to determine the stresses in a reinforced annular 

plate one can make use of Lamp’s formula 

». 

where h - thickness of the plate. 

The expressions for stresses in the cover from the internal 

pressure q and force will be 
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^ = AV=.S£.(1+!Í!ÜJti\ 
2 \ sin2 f / 2 \ sin* y / ' 

_y __^o<in^ Ti 
slnS^p ’ jtiii2y 

For the composition of the equation of compatibility of 

displacements we will have the following expressions, obtained on 
the basis of Hooke's law: 

Ar,= 

A/V 

AV 
Eh (¿3 ̂

[u-rt+o+rt^-]. 

Then, from the condition (9.3) we obtain 

JV0 

After the determination of force Nq one can calculate the stresses 

in the reinforced plate based on Lame's formula, and stresses in 

the shell - according to the expressions 

2¾ \ sin*f / ' ' 

* 2¾ \ Tsin*y ) t sinîf 

chang 

I 

accor 

then 

of t> 

?7l 



An opening, reinforced with an annular plate and a flange (Fig. 

1^5). In this case in order to determine stresses in a reinforced 

annular plate the following formulas of Lame are used: 

0 A’,) Ayî-M,at 

f h (bî — a") ri h (W — <|J) ’ 

.t_ aW(A',- ,V,) , 

h(b"‘~a!)rl ^ A(AJ-aî) * 

By applying Hooke's law, let us find the expressions for the 

change of the internal and external radius of the plate: 

The change in radius of the opening of the shell will be 

Aft (l -h «in y i , ffriln», 

£» 1 £» * 

The change in the radius of the flange can be determined 

according to the formula 

ses Since 

Aaé=2l*Il‘*ai 
• Er 

~ Aß,,,, iA06 “ 

then, considering that the material of the shell, of the plates and 

of the flange are the same, let us determine forces iV^ and iV0: 

?7? 



where 

A, (At 

*2' 

+ ^2)(^4 + -Hi) — 

» 

M, 

Mi + ^*)(^+i<i)' 

^w.±ríL±Já-*+íLuiü] 
* I **-«* r **-+ J* 

At~!L±Jù±!!îiLt 

After the determination of forces N± and »2 one can calculate 

the stresses in the shell, plate and flange. 

The stresses in the flange 

9 f 

The stresses in the shell 

8 112• Calculation of the Bottom Sides of the Frames 
for Concentrated Radial Forces 

Let us examine the frame of a cylindrical vessel, loaded with 

two diametrical opposed compressive forces (Pig. 146). Inasmuch 

as the cylindrical shell adjacent to the frame weakly resists the 

radial loads, then in the calculation only the bottom, which we will 

consider to be rather gently sloping should be considered. 



Pig. 1^6. 

i 

Let us conduct the calculation of the frame based on the limiting 
state, based on the diagram of an ideally plastic material. 

An investigated calculated diagram, confirmed by an experiment, 

is presented in Pig. 147. The frame has a rectangular section. 

Failure of the frame by loading it with forces P will proceed 

in the following manner. With the shortening of the vertical 

diameter, the horizontal diameter of the frame will lengthen 

simultaneously. At this point the bottom will be loaded with 

compressive stresses at a critical value of which the bottom 

will lose rigidity. As a result of this a distributed load will 
act on the frame from the bottom side 

<7cos a) «In 

where 6 - thickness of the bottom; o - critical stress of wp 
compression for a spherical shell. 

Ith 

.will 

This load has been directed perpendicular to that diameter 
whereby a shortening is obtained. 

Prior to the moment of failure of the frame one can distinguish 



two stages of its work. The first stage will be characterized by 

the appearance of the first plastic hinge under forces P. After 

this, the frame still does not rotate as a mechanism and will be in 

a state to accept an additional load up to the moment of the 

appearance of the second plastic hinge at points, which lie on the 

horizontal diameter. After this, the frame rotates as a mechanism, 

and its bearing capacity will be depleted. 

The limiting moment under force p will be 

where 

Forces Q are applied at the center of gravity of the non-shaded 

areas (Fig. 148). 

Besides M , force N,, distributed over the shaded area, will 
np * i ' 

be applied in the investigated section the limiting value of this 

force 

AT.-a»,*,. (9.4) 

On the other hand, one can determine this force from the 

condition of equilibrium of a quarter of the ring. For this purpose 



ed 

let us set up the sum of projections of all forces in the direction 

of N1i 

« 
T 

« 
T 

Ni=[ sin (adíeos a) sin 

« 
T 

= «ip#8 cos a j sin* <?d<? = -7-0 4” 9«p COSO. (9.5) 

By equating the expressions (9.4) and (^.5), we obtain 

ft/fttup«»« 
a i -. 

1 8*«. 

Then 

At the end of this stage of loading in the section at an angle 

♦ ■ n/2 (on a horizontal diameter) the plastic hinge is not completely 
developed and a part of the section continues to remain in the 

elastic stage. The stresses of fluidity begin to appear first in 

the fibers, furthest from the neutral axis. Therefore, a further 

increase in the force P is possible only because of the distribution 

of the plastic zone for the section located on the horizontal diameter. 

In this case the moment in the section, located on the vertical 

diameter, will reach the limiting value and with a further Increase 

in the force P it does not increase. 

Let us examine the equilibrium of a quarter of the ring in the 

limiting state in the presence of plastic hinges in sections along 

the horizontal and vertical diameters (Pig. 149). 

Sum of the moments relative to the I-J axis will be 

ÍÍ ç d; sin t (/? co* l—/? col *) 

1 

>0. 
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Pig. 149. 

Hence, we will obtain 

Limiting value for m" will be 
np 

(9.6) 

Expression for a2 can be determined in the following manner. 

From the condition of equilibrium of a quarter of the ring in the 

direction of the vertical diameter, we will obtain 

On the other hand 

Prom these expressions we will find 

Then 

wh 

we 

i 

foi 

spl 

thi 

whf 
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Now, the equation (9.6) can be expressed in the following form 

where 

-f-^-/?%a,cosa — Z?*?«:,, p COia=:0 

F»+%Rb<¡,P - UWo] -(-—/^»3» 01*0 - 
4 

— le/^^ps, -y-josa=0. 

By solving this equation relative to P, we will obtain 

[^TH(T)’-(f)’(-)’(-r)’“-«+ 

Making use of formula VT+x«*!where * << 1, finally 

we will have 

This formula determines the limiting value of the compressive 

force, acting on the frame, reinforced with a gently sloping 

spherical bottom. 

Following from the experiments, in this formula one can assume 

that 

«bP=*0,2£-^-, 

where F and 6 - radius and thickness of the bottom. 
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® ^3• Twisting of a Ring, Weakened by Openings 

Let us examine a circular enclosed ring, weakened by openings 

and loaded with a distributed twisting moment. 

Let us consider the sizes of the cross section of such a ring 

to be small in comparison with its radius. Among the number of such 

parts there are flanges of all sizes, superstructures of vessels, 

which have openings for the joining of coupling units or assemblies. 

In certain cases for the purpose of economy of weight, the flanges 

are made with pattern cuts. 

Let us examine the effect of openings on the strength of a 

ring loaded by a twisting moment. 

The full potential energy of such a ring is 

0 - angle of rotation of a section of the ring; M - linear 

twisting moment. 

Then 

3 
_ tuM ttK 

“tM*’-"’ UtJ 
r o ' « 

=T $ '(t)’'"- \ 
• 0 

1 S. P. Timoshenko, Strength of materials, part II, 1934. 
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Let us assume that the moment of Inertia of a section of the 

ring c/ is a quantitative variable1: 

/=/(6)=/, ± A/«. 

Then, the expression for 3 takes the form 

After the integration we obtain 

p_«g;0»» , ga» 
R — 2Ri 

Here, under the sign of the summation is the work, consisting 

of the magnitj^e, characteristic of the change in the mom'- t of 

inertia of a section of the frame on that length of the : al line, 

which changes the moment of inertia. The summation is made based 

on all the weakened (reinforced) sites of the frame. 

To the last expression let us apply the origin of vertical 

displacements 63—0. 

By solving the obtained equation relative to 0 from the last 

condition, we will find that 

By making use of this expression, it is possible to evaluate 

the effect of the weakenings (reinforcements) of separate sections 

of the ring on its bearing capacity. 

*A. N. Dinnik, Longitudinal bending. State Joint Scientific 
and Technical Publishing House [GONTI] (TOHTH), 1939. 
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5 Calculations of Circular Rlnp¡s 

Let us examine the calculation of a circular ring, attached to 

a thin cylindrical shell and loaded with forces P, T, m (Pig. 150). 

The Joining shown in this figure is typical for a number of sheathings. 

Pig. 150. 

When loading the ring with concentrated forces P, f, m along 

the line of its Joining with the shell, there appears a flow of 

tangential forces, the law of distribution of which will depend 

upon the character of the applied load. In this case let us 

consider the shell momentless. 

When loading the ring with a concentrated moment this flow will 

be constant along the perimeter of the ring, and during the action of 

force P its greatest value will be at a diameter, perpendicular 

to the line of action of force P. When loading the ring w¿th force 

f, the balancing flow of tangential forces can be obtained by means 

of the application of flows shown above. 

Por the solution of the problem we will consider form of load 

separately. Loading of the ring with concentrated force P is 

presented in Pig. 151. In this instance the law of change of 

tangential forces is determined by the expression 

T»T,«tafc 

where 



to 

l). 
hlngs 

Pig. 151. 

ill 

n of 

ce 

,ns 

d 

In this instance for the bending moment in an arbitrary section 

of the ring, with a determined angle ¢, one can obtain the expression 

where Afg, Nq — unknown internal forces in the transverse section. 

For the determination of the unknown internal power factors, 

let us employ the principle of least work. 

The potential energy of deformation of a semi-ring 

For the determination of forces MQ and NQ we will have the 

conditions 

0. 

From these equations we will find 

-J-V?*, AroŒ_J_T#tf. 

Then 

For the normal and shear forces in section ¢. we will obtain the 

following expressions: 
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P / $ 
(—cos^-çslntj, 

Qp=cos ? + y sin . 

The function, which determined the change in the sags of the 

ring, will be found from the solution of the differential equation 

of the form 

Here, the positive direction of the deflection is taken at the 

center of the ring. By applying the method of the variation of 

constant integrations to this equation, we will obtain 

• w=i4slntp-f Äcosf— 

where A and B - constants, determined from the boundary conditions. 

In this case the boundary conditions will have the form 

= 0 when ¢ = 0, ® = Jt: Ráf T . T . 

w= w^#r T5®3**» ■ 

where 6p - sag of the axis of the ring at the point of application 

of force P. 

For the determination of this deflection let us employ the 

Castigliano theorem. By setting up the derivative based on force 

1/2P from the above given expression of potential energy, we obtain1 

or 

lThe expression for the energy should be integrated within 
the limits of O-ir. 



The values of constants A and B will be equal to 

¿=0, 5=,-0,152-^-. 
EJ 

Thus, for the deflection w we will obtain the expression 

Wp — (0,16 -f 0,04 <p* cos 9—0,192 cos 9—0,08 9 sin 9). 
c s 

Now, let us examine the loading of the ring with a concentaated 

moment (Pig. 152). In this instance the tangential stresses are 

determined by the formula 

The current values of the moment, of the normal and shear 

forces can be determined according to the expressions 

Ai.=“-^-(s,n9—Í.9J, Nu^~t\n^, 

Just in the preceding case of loading, for the determination of 

deflections in the ring a differential equation is used 

The complete integral of this equation has the form 

=Ct «ln 9-!-Ct cos 9 + -—y if -f 9 cos 9—^-8lri9 j. 

For the determination of constants and C2, we will assume 

the following boundary conditions: 
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where angle of rotation of the section of the ring at the site 

of application of the concentrated moment M. 

For the determination of angle y, let us apply Castigliano-s 

theorem 

where 

and 

Then for C1 and c2 we will obtain the values 

C _ 0,385 MR* 
*EJ ’ C,-0. 

In this case the function of the deflection has the form 

9m=‘^bT ^0,5 7+0'5? COi 0,645 sin <f). 

Let us examine, finally, the loading of the ring tangent to 
force T (Pig. 153). 

In order to get the expression of tangential forces in 

case one can proceed in the following manner. Let us place 
this 

two 



equal and oppositely opposed forces of T in the center ring, parallel 

to the assigned force. Then, the ring will be loaded with force T, 

passing through the horizontal diameter, and by a moment. For the 

equilibrium of such a ring it is necessary to apply tangential 

forces, examined in the first two cases, one upon the other, whereupon 

The flow of these forces is shown in Fig. 153. 

For the bending moment, the normal and shear forces in this 

case we have the following expressions : 

Mr* 

Let us obtain the expression for the deflection from the equation 

J- T,. _ TR* / 3 ' . 
EJ ( 2 S ,,?~*C08 

the integral of which is equal to 

wr = j4 sln?-f 5cos 9- sin? —<?cos?—1- ?*slnf—<pj. 

For the determination of the constants of integration A and B 

let us insert the following boundary conditions: 

if wher. Ÿ“!*. 

Yf when ? = 

where - the radial deflection from force T at the point of its 

application; — angle of rotation of the section at the site of 

the application of force T. 
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For the determination of 6T and yr anew let us apply Castigliano’ 

theorem: 

where 
■ 

= 5(Afr + Af,)*rf?, 
—« 

One unves the values Mpt by the above given expressions. 

From these conditions we will find that 

A — —0,279 B=0. 

wr=—- (0,16 9+0. Î 6 ? cos ?-f 0,04 ç* sin f—0,36 sin <p). 

Then 
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CHAPTER X 

CALCULATION OF CONTAINERS MADE FROH FIBERGLASS 

Lons . 
' In this chapter the problems of calculating the strength of 

containers made from fiberglass and which operate on internal pressure 

is examined. Such balloons are manufactured by means of winding the 

fiberglass, impregnated with a special resin, to a mandrel or to 

an extracted model.1 

After completion of the winding, the obtained vessel is subjected 

to thermal treatment at a defined temperature. In this case the 

resin hardens and the wound fiberglass is glued together, throughout 

the thickness of the wall. 

The supporting element of the obtained construction in a glass 

filament. The resin plays the role of the binder and in view of 

its low mechanical characteristics, the binder is not taken in the 

calculation. 

§ 45. Determination of the Optimum Winging Angles 
o~f the Glass Filaments and of Required 

Thickness of the Wall of Balloons 

* 

First let us examine the cylindrical part of the vessel, made 

from longitudinally aligned and spirally wound glass filaments 

(Fig. 154). Let’s put this container under the action of internal 

‘For the bibliography on this problem, see [31]* 
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pressure. In tuis case the fibers of threads will operate only 

under tension. The tangential forces in a crosswise direction to 

the fibers will be absorbed by the resin. It is possible to show 

that at the sites determined by a certain value of the angle of 

inclination of glass filaments a to the axis of the containers, the 

shearing forces are absent. Prom Pig. 155a one can obtain the 

following relationships between the forces in rectangular and oblique 

systems of coordinates: 

Af, sin ?—S, cos Ar( coso—JVj, cos >*0, 

A^cosP+S, sin slna —A^,xsln?=0, 

AT* «ta a+S, cos a+A^t cos ?—AT * cos e=0, 
Nf cos a—Sjslna—AfT( sin 5—.Vf<r sin a n 0. . 
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In this problem the bounds of dx and dy as a symmetry of loading 

will be free of tangential stresses (tf ■ „ * 0). xy yx 

Furthermore, from the condition of equality to zero of the 

moments of forces, applied to the separate element, relative to the 

axis, perpendicular to the sketch and passing through the origin 

of coordinates, one can obtain * Sg * 5. Then, when & ■ ir - a 

from the given equations we will find 

__ N*»in*»4 V,co»*a . 
, >in2a ’ 

^_Ny ton» a — S’a «lut a 
linSa 

For the case of a cylindrical shell we will have 

AT,-»«. 

Then 

' 2nin2a 

c ^(2 con»«--»111* a) 
“ 2 sin 2a 

In view of the fact that the binder (resin) possesses very low 

destructive stresses under shear, it is expedient to select such 

an angle of winding of glass filaments a so that the shear in the 

resin will be minimum. In an extreme case, when 5*0, let us 

take a * 540^. In this case for the tensile forces in the 

threads we will find values, equal to 

^ = ^, = 1,42^-=0,71 qR, 

which will be considerably lower, than at other angle of inclination 

of the glass filaments (i.e., the found angle a is the most suitable). 

Therefore, subsequently we will consider that the compressive 

construction of a cylindrical container is made with the angle of 

inclination of the threads, close to the optimum. It is easy to 

prove that this angle is a * 45° for a spherical container. 



Now, let us turn to Fig. 155b. Let us set up the condition 

of equilibrium of element 2 in a circumferential direction. In 

this case we obtain 

= S/t] sin a -}~ 5/>2 sin a =: 2Snt sin a, (10.1) 

where 5 - strength of the elements of the glass filament in kgf; 

n2 - number of elemental threads at a length F2, lying in one 

direction; 6o^ - linear calculated force, acting in a circumferential 

direction; F2 — pitch of the winding; a - angle of inclination of 

the threads to the axis of the cylinder. 

From Fig. 156 we will have 

Fx^Ft tga=*2!i/?. 

Furthermore, 

Then, from the equation (10.1) we will find 

nfiVcttB 
5 sin a 

(10.2) 

Now, 

direction 

let us examine the equilibrium of element 1 in an axial 

(see Fig. 155b): 

/^Bo^S/ijCOsa-j-S/ijCOsa-f S/!1 = 2SflJcosa4-'S«i- ( 10.3) 
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Here n-^ - number of elemental threads, longitudinal aligned at a 

length F,; 60^ - linear calculated force in an axial direction 

from the internal pressure; F-^ - size of the separate element 1 in 

a circumferential direction. 

The relationship between sizes F1 and F2 can be obtained from 

Pig. 157: 

Fig. 157. 

Furthermore, we will have 

Then, from the equation (10.3), using expression (10.2), we 

obtain 

(10.4) 

Let us set up the ratio of the number of threads, aligned 

per unit length in a circumferential direction t0 the number 

of threads, aligned per unit length at an angle 22?, that is 

— 2clg*ci)slno, 

whence 

^- = (1 ~2ctg*a)slna. 
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From equation (10.5) one can obtain the angle of inclination 

of the winding depending on the ratio of the number of threads 

nl to n2' When ni * °» we obtain a construction of the cylindrical 

part of the container, made only from the spirally aligned threads. 

In this case the angle of winding will be 

l*-2ctg*a«0. 

whence a ■ 54^01. 

As shown above, at such an angle of winding of the threads 

to the axis of the cylinder, the inclined sites of elements 1 and 

2 (see Fig. 155b) will be free of tangential stresses. This is 

a very important factor for prolonging the service life of 

containers, reinforced with fiberglass. 

According to expressions (10.2) and (10.4) one can determine 

the required thickness of wall of the cylindrical part of a 

container. 

The overall thickness of layers of the longitudinal threads 

(Fig. 158) 

—» , 

where d - diameter of the elemental fiber. 

whence 



The overall thickness of layers of spirally aligned threads 

can be obtained from Fig. 159: 

nd* - . lew 
~ÄJ=^*s*na~, 

whence 

Pig. 159. 

The complete thickness of the wall of the cylindrical part 

of the container 

Following the substitution here of expressions for and 

(10.2) and (10.4) we obtain 

í=JS**!£!. (10.6) 
is 

From this formula it is evident that the wall thickness of 

the container under the combined packing of the longitudinal and 

spiral threads depends on the angle of inclination of the letter. 

However, from this it still does not follow that it is possible 

to make the cylindrical part of the vessel only from some 

longitudinally aligned threads. The angle of winding of the threads 

can be select randomly, but with the adherence to the relationship 

(10.5). 



If in the formula (10.6) one substitutes 

5= 
4 «r 

where o^T — ultimate strength of the glass filament under tension, 

then we obtain 

After the substitution of values and n2 in the expressions 

f*01, ^nr\ and and after the replacement of 5 with oCT we will np cnp r b 

have 

4 - yP/? 
t,p ^.i»« • 

If in these formulas one assumes a * 90°, then 

ft - 1r* » _ 19R 
"p 2«el ’ I«» * 

■ •» 

At a ■ 5i^o40, we will find that 

4«P=°. 1.5 
*• 

Prom these examples it is evident that the sum total thickness 

of the wall remains the same. 

Let us calculate the weight per unit length of cylindrical 

part of the container: 

whence 
G = 2nRhiy„, 

\ i L •*/ • (10.7) 

If the cylindrical part were made of metal, then for the 



determination of the weight per unit length we obtain the formula 

OX 2jtP*\uqr 

i /.“ •:?«. (10.8) 

where i|icb - coefficient of a welded seam.1 

From a comparison of expressions (lO.'?) and (10.8), we will 
find that 

„ 2 V. 
Ï1 =-= — —^ 

Ott 3 Yr» #ÏTc» 

By this ratio it is possible to make use of the weight estimation 
of containers, made from metal and fiberglass. 

Now, let us examine the case of a spherical vessel, made from 

glass filaments (Fig. 160). From the condition of equilibrium of 
elements 1 and 2, we obtain 

/7j(oj=2/1,5 cos a. (10.9) 

‘This coefficient is equal to the ratio of the ultimate strength 
under tension of the welded sample to the ultimate strength of the 
sample made from the original material. 
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Furthermore, let us assume that * f2. Consequently, 

n1 should be equal to «2. Then 

sin a «cos a, 

From this relationship it is evident that for a spherical 

container, the angle of winding is a - 45°, i.e., threads should 

intersect at an angle of 90°. 

The required thickness of the wall is 

This formula can be derived on the basis of any of the equations 

(10.9) when a ■ 45°. 

Since the cross-sectional area of the bounds of the separate 

element 1 or 2 is 

F slna8„«-5iL 

when following the exception of the last two expressions of size 

F we obtain the formula for 6 
CT 

For estimation of the weight of the spherical container we will 

have the formula 

The ratio of weights of spherical containers made from metal 

and from fiberglass, will be 

V« ' 

In the above given calculation the work of the internal hermética 



sealed layer was not considered, without which it is hardly expedient 

to employ containers which operate under internal pressure. 

As a hermetically sealing layer, one can use either special 

resins or thin metallic shells. One can consider that the above 

given calculation of a hermetically sealing layer of resin is 

meaningless, because the bearing capacity of this material will be 

insignificant compared to that of glass filaments. The effect of 

the metallic layer can be taken into account in the following manner. 

Let us first examine this problem using the cylindrical part of 

the container as an example. One can write the expression for the 

relative deformation of this layer in a circumferential direction 

at the moment of failure of the tank. 

■-=- K, - P* J = . 

In this instant the equaïity eM * e - should be satisfied 
n CT * 

where ecT - relative deformation of the fiberglass upon failure.. 

Furthermore, at the moment of failure of the container the 

metallic hermetically sealing layer will be in the state of fluidity. 

Consequently, \¡ » 0.5. Then, the metallic shell will unuergo the 

following internal pressure: 

ç.-ilítía. 
3* 

The supporting part of the construction,oof the container, 

consisting of fiberglass, will undergo a pressure, equal to (q-qM), 

which should be worked into the calculation of the container. The 

value of the tangential modulus E (at the point, where e * e ) 
* M CT 

must be taken from the chart in Fig. 162. The thickness of the 

wall of the hermetically sealing shell should be selected from 

condition of rigidity under loading by the external pressure from 

the side of the taut glass filaments. 

In the case of a spherical vessel, the hermetically sealing 



Shell will be loaded by internal pressure, which can be determined 

by the expression 

A further calculation of the supporting part of the container 

is made Just as for the case of a cylindrical shell. 

S 46. Calculation of a Combined Cylindrical 
Container. Reinforced with Glass Filaments 

Only In a Circumferential Direction 

As It is known, the thickness of the wall of a cylindrical tank 

can be determined according to the magnitude of the circumferential 

stresses At the same time in an axial direction of the tank 

stresses will act, by one-half as much: 

(10.10) 

Thus, the material of the tank in an axial direction becomes 

underloaded and the construction in an axial and circumferential 

direction seems to be of unequal strength. 

In order to make the construction of the container of uniform 

strength, it is necessary to determine the thickness of the wall 

based on the strength of stresses o^, and to determine the deficient 

thickness of the wall in the circumferential direction to compensate 

for the winding of the glass filaments, which have a higher specific 

strength in comparison to metal. Such a construction is more 

advantageous by weight ratio. 

The calculation of a container of this design should be done 

in this sequence. 

From the formula (10.10) when * °0^cb we the expression 

for the thickness of the wall 



where ò - coefficient of the welded seam. tcb 

For the determination of the required number of glass filaments 

n2 in the circumferential direction let us turn to Fig. l6l. From 

the condition of equilibrium of all the forces in the direction S 

we obtain 

,2>7f‘J+2Sni=*2Hlq', 

whence the required number of fibers will be 

» R¡<* -1»«* 

According to the graph in Fig. 162 it is evident that the 

stresses o- at the time of failure will be equal to o . Therefore 
¿ M 

/i,. 
s 

3Û0 



where S - destructive force for an elemental glass filament. 

The last formula can be conveniently rewritten in the form 

*?s._ *«*»« 
1 5 (10.11) 

where «g/Z - number of glass filaments, found per unit length of the 

tank. 

After excluding the quantities n2 and S from (10.11) which can 

be obtained from the relationships 

we obtain the expression for the required thickness of winding 

of the glass filaments 

•u 
(10.12) 

The weight of the cylindrical part of the combined tank will 

be 

CM*«—2nRl(lm\u -f- l„vtt). 

After the substitution here of values 6 and 6 according 
M C T 

to the formulas (10.11) and (10.12), we obtain 

a_\ 

•:fv- 
Vet«» \ 

(10.13) 

During the manufacture of the cylindrical part of the tank 

made from metal for the determination of the weight per unit 

length, the formula (10.8) is derived. 



By setting up the ratio of weights from the formulas (10.8) and 

(10.13)» we obtain 

n ~ -9m. __?.._ 
^*0*6 •ZlnYtr Yci*ii * 

+ •S’Y. ~ Y.«'/ 

By making use of this ratio, one can determine how many times 

heavier the metallic container is compared to the combined one. 

S ^7. Determination of the Tensile 
Force of Glass Filaments 

In order for the glass filaments to operate evenly along the 

thickness of the wall of the container under a load of the latter 

by internal pressure, it is necessary to insure their required 

tensile force in the manufacturing process of the vessel. For the 

determination of this tension let us examine the construction 

of the cylindrical part of a vessel, having n layers of glass 

filaments (Fig. 163) in the thickness of the wall; moreover, extreme 

internal layer is considered to be hermetically sealing and made 

of metal (H). Let us first examine a two-ply construction (Fig. 164). 

Fig. 164. 

From the condition of equilibrium of forces, acting in the 

external and Internal layers, in the direction of a vertical 

diameter of the cylinder, we obtain 

OxÔm—(ToiÂoi^O, . (10. l4) 

where 6 , 6n, - thickness of the metallic layer and the layer of 
M U ! 

winding; Oq^ - tensile stress in the layer of winding; - compression 
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in the hermetically sealed layer. 

Prom equation (10.14) we will find that 

(10.15) 
•oi 

where o^on - allowable compression stress in the metallic layer. 

After the winding of the second layer of fiberglass we will 
have (Pig. 165) 

(•■+5ii—fa»+®oA*=0 

-S'* ~ goisQ>+—Arjío, - =0. (10.16) 

The first two underlined terms in the equation (10.16) on 

the basis of the equation (10.14), is equal to zero. 

Then, from (10.16) for an unknown quantity AT1, we obtain the 

expression 

oM On 

where - additional compression stress in the layer of the metal 

from the winding of the second layer of fiberglass; ^ - additional 



stress in the first layer of the winding following the winding of 

the second layer. 

Then, the sum total of stresses in the metallic layer will be 

«2=».+*1=’..k+x;!íL 
0|l u if 

Hence, we obtain 

— — «0J (10.17) 

The sum total of stresses in layer 1 of the winding 

Let us assume that the container has only two layers of windings 

of the fiberglass. Let us impose the requirement that in both 

layers the stresses should be identical: 

From this condition we obtain the magnitude of tension in the 

second layer of the winding 

la 
-Ü2L 

l+£ 
(10.18) 

By comparing the formulas (10.15) and (10.18), it is possible 

to see that the tension in the second layer has diminished in 

comparison with the tension in the first layer. 

Now let us assume that the construction has three layers of 

winding (1, 2, 3 in Fig. 166): 

(3¼ + ^ . + ^a) — (¾. + + ^|) ^0. — (a02 + ^j) *02 — °oA* = 0 

or 

304 



« c 

0«^M a01^ni ~t~ — X!>([! — -}- 

-{-^Tj#m—xjíj, — Af jíjj — ¢¢,^1,, «» 0. 
(10.19) 

Sum of the underlined terms on the basis equation (10.16) is 

equal to zero. Prom the remaining part of the equation (10.19) 

we obtain 

Sum of stresses in layers will be equal to: 

in the layer of the metal 

r." "M 

in the first layer of winding 

•i - %+*;+—r è - %■ l*+* ;• 
*01 *0» 

in the second layer of winding 

Let us assume a condition of uniform strength in the layers: 

3o\*9o\. 9*j=<W ®J=C- 
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In the developed form these conditions will have the form 

By solving this system of equations, we obtain 

Jf¡-ínr¿-^-*-^-«-(>+^+y- (10.20) 

Prom the comparison of expressions (10.17) and (10.20) we will 

find 

IfiL 

1+^ + 
•oi 

La 
*01 

(10.21) 

Prom the comparison of structure of formulas (10.15), (10.18) 

and (10.21), it is possible to see that for any nth layer of 

winding, the stress is 

«o, (10.22) 

Thus, if the stresses in the layers following the winding were 

determined by the formula (10.22), then in each of the layers the 

tension would be identical. In this case all the layers under the 

loading of a container by internal pressure will simultaneously 

engage in work which is especially important for the maximum 

utilization of the material. 

From formulas (10.18)-(10.22) it is evident that the tension 

306 



in each subsequent layer should be less, than in the previous one. 

If the thickness of all the layers is identical, then it is possible 
to write 

«oi=■ 7' 8m=sT' «0J—3-, . 
A_ 
n 

where 

“ '01 (10.23) 

Thus, in order that all the layers should be found under 

identical tension following the winding, it is necessary to diminish 

the tension in each subsequent layer by n times in comparison with 

the first. The aforementioned are graphically presented in Pig. 167, 

Fig. 167. 

The tension of each layer of winding causes compression of the 

internal hermetically sealed layer. The compression stress in this 
layer will be 

*!L+i±!+. , 
' •* ’ ta • + 

T«#* 

^(,+T+T+- • +7-)- 

where n - ordinal number of the layer of winding. 

The permissible stress in the metallic herrm tically sealed 

layer can be calculated in the following manner. 
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Annular stresses In this layer are e. 

ible 

3) 

nish 

th 

167. > 

where the critical pressure is determined by Papkovich's formula 

(11.17) 

Then 

..,-0,8½ i. JL. 

From the condition 

. gion _ 
“ / * 

the 

his 

where f - safety factor, let us find the expression for qQ: 

whence 

fo- 
0,82 £ 

By having the expression for qQ, it is possible to calculate 

the tension in the layers during the winding using formula (10.23), 

in which 

'01 

0,92 e _iL 
»01// 

Then, the stresses should be: in the first layer 

in the second layer 

0.92g *1 /j, 

, . J_ »0.// V R ’ 

2 
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in the third layer 

1 0,92 £ »1 

in the nth layer 

H 
1 + "j- + "j" + ...+ 

0.92 £ 

1 

Now, let us examine the problem about the tension of glass 

filaments with an ablique winding. 

In this Instance on the Inside of a hermetically sealed layer 

a biaxial strained state of compression appears. The magnitude 

of the compressing stresses in axial and circumferential directions 

can be determined according to Pig. 168. Let us set up the equations 

of equilibrium selected in this figure of elements following the 

winding of the first layer: 

•7**-SAiCO»*e-0, 
«ta*«—0. 

Pig. 168. 

From these equations one can determine the tensile stress of 

tension of the threads in the first layer of the winding 

Here o¡^p — the intensity of longitudinal compressive stresses in 

the hermetically sealed layer in the direction of the axis of the 
O K 

cylinder; om - the same in a circumferential direction. 



Following the winding of the second layer with a slope on the 

opposite side relative to the axis of the shell of the equation of 

equilibrium will take form 

(°2P + *1) £.. - (301 + ) *01 cos2 a -f- OqjÍo, cos2 a=0, 

(^ + ^0 + ^)00, sin2 a — 3q2%q] sln2Q=0. 

» t 
Here, y^i — additional stresses in the layer of 

metal as well as in the first layer of glass filaments following 

the winding of the second layer. 

From these equations during the utilization of expressions for 
oQ1 we will find 

;fi“fëAr’+ï' 

K.-^-Ki+Sa^.W«. 

The sum total of stresses in the metal following the winding 

of the second layer 

30. + ^;+^-0f)cos»a, 

-0.,=-0.+^1 ^^. + ^-^+^--0,) sin2a. 

From these equalities we obtain 

Then, the resulting stresses in the first layer of the winding 

can be examined in the form 

-0.1 = 00, + ^ = is- 
¿o. cos* a 

«oi tin*a 

310 



By equating the stresses in the first and second layers 

we will find that 

«b»' 
*01 cos* a 

+ ’ 
*01 

^023 

l + £ 

Similarly, one can obtain the expressions for the stresses 

in the subsequent layers of the winding: 

an 

se 

th 

th 

we 

^»s 
>oi coi* a 

>01 *01 

>i» «Si 
,-*01 »In* a 

i+Í£ + *a 
•oi 

and so forth. 

Thus, we have derived the formulas, associating the stresses 

in the metallic layer with the stresses in layers, obtained by 

the winding of threads. For the determination of the permissible 

tension in the fibers during the winding let us employ the formula 

(17.7) 

•*» 
,«p 
■p 
+-5r<l. 

«P 

where 

0^=0,26^^: „OK _ . 
“P ». ’ ikP -= 0,92 £ 
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R - radius of the cylinder, and l — length. 

If we substitute in this formula the values of the longitudinal 

and circumferential stresses o^p and o°K, appearing in the hermetically 

sealed layer following the winding of each layer, then one can obtain 

the expressions for the determination of the permissible tension in 

the layers. For example, following the winding of the first layer 

we will have 

^=7^01 cos’o. sin*o. 
“ •* 

Then 

Hence, we will find that 

*.<-lM 

For the second layer we obtain 

in 
Í2L 

For the nth layer 

». 

If the thickness of the layers were identical, then 
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< -SL 
cok»« tin»g * 

•2 .2 

ÎSL 
2/corta *ln*a 

I *5 + 
n»g \ 

•3/ 

ia. 
iSL 

9/torta ¡Irta^x 

I *3 S J 

and so forth. 

If we substitute in place of 05, in place of o°K in 

these formulas, where f - the safety factors, then instead of 
inequalities, we will obtain equalities 

where 

and so forth. 

In the case of a sphere when o » iJ5° (Pig, 169). 

— 3oi*oi*=“0, 

whence 
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Fig. 169. 

ÖM 00l (jn 

Similarly, for the second layer 

__!pi_ 

For the n-th layer 

o*.1 

1 + 
•oi 

»01_ 

in 
1+^+^+...+-0 

*01 *01 *01 

For a sphere, using (o ) one should assume that M flon 

/ ’ 

where f — safety factor. 
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PART III 

THE RIGIDITY OF SHELLS 
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CHAPTER XI 

RIGIDITY OF CYLINDRICAL AND CONICAL SHELLS 

In the previous chapters problems were examined, which dealt 

with the calculation of shells for strength. The formulas obtained 

in these chapters make it possible with sufficient practical 

accuracy to evaluate the magnitude and character of stress distri¬ 

bution in shells of various geometrical forms from assigned external 

loadings . 

Following the determination of stresses one should compare 

them with the destructive stresses: in the case of tension - with 

the yield point or ultimate strength of the material of the shell, 

in the case of compression - with the critical stresses. 

During the action of tensile stresses, the failure of the 

construction is associated with the distruction of the continuity 

of the material - with the formation of cracks. 

If the normal stresses should be compressive or if in the con¬ 

struction the tangential stresses of defined magnitude act, then 

the critical stresses may be, basically, the destructive stresses. 

In this case the failure of the construction is associated with a 

change in its form, and its surface becomes undulating. In this 

instance, one refers to the construction as "operating on rigidity." 

If the strength characteristics of the material of the 

construction - ultimate strength and yield point - are obtained 

from tests of samples for tension, then the critical stresses can 
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be derived only by theoretical means with a subsequent experimental 

check on them. 

In this chapter the various cases of loading the shell are 

examined and the formulas for the critical stresses are derived. 

5 48. The Formulation of Problems of 
the Rigidity of Shells 

Thin-walled shells following the loss of rigidity are usually 

covered with pits and bulges. The stress, at which this phenomenon 

occurs, is called the critical stress. 

The method, which will subsequently be used to solve separate 

partial problems of the rigidity of shells, can be explained by the 

example of the loss of rigidity of a thin cylindrical shell1 

compressed in an axial direction. 

Let us take a specified shell with a certain value of compressive 

force which loses its rigidity, and its surface is covered with a 

regular pattern of pits and bulges. Let us explain what the 

boundary conditions can be like on the contour of pits and bulges. 

In order to do this let us write the expression of the complete 

potential energy for some given pits or bulges 

• » 

(11.1) 

The expression (11.1) agrees completely with the expression 

(7.4), if we assume that in it qx m = 0. 

In this chapter the author states his presentation on the 
mechanism of the loss in rigidity of a thin elastic cover. The 
method of determining the critical stresses, which the author makf 
use of, was developed by him for the first time and is not descried 
in known monographs on the rigidity of elastic systems (Note by the 
author). 



il In the above given integral of energy, the integration applies 

only to the surface of pit or bulges. Furthermore, for simplicity 

of the linings, the external load q in this case is considered 

constant, because the form of this load does not affect tne character 

of the boundary conditions. 

Furthermore, in the given expression of energy, the components, 

by which the work of the internal reactive force, distributed along 

. the contour of pits and bulges is expressed, is reduced. It is 

n possible to show the work of these forces is equal to zero. Actually 

let us assume in (11.1) that there should be the components 

expressing the work of these forces. Then, instead of (11.1) it is 

possible to write 

6 V-U+A, (11.2) 

where A - work of the reactive forces, and U can be determined by 
the expression (11.1). 

sive 

On the other hand, it is known that if we consider the entire 

shell on the whole, covered with pits and bulges identical in area, 

then the total energy for it will be equal to the sum of expressions 

(11.1) 

3=U+U+ ... **2mnU, ( 11.3) 

where 2mn - overall number of pits and bulges; m - number of pits 

and bulges in an axial direction; 2n - even number of pits and 

^ bulges in the circumferential direction. 

Since following the loss of rigidity, the shell is found in 

the state of equilibrium, then any pit or bulge will also be found 

in the state of equilibrium. On this base we can apply the 

principle of virtual displacements to the expressions (11,2) and 

(11.3), according to which, if any mechanical system, including an 

elastic system, is found in the state of equilibrium, then the surr, 

of the work of all forces, applied to the given system, based or. 

the virtual randomly small displacements, in arreement with the 

continuities, is equal to zero: 
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— 2nm W ~ 0. (IIJI) 

Here, by the symbol 6, one can connote the virtual displacement 
(variation). 

With the application of the first virtual displacements to 

the expressions of the complete potential energy (11.2) and (11.3), 

as usually is the case, all the assigned external forces change 

neither in initial value nor in direction. 

From the second equation c. the system (11.4) it follows that 

6i/ = 0, and from the first -0/1*0, i.e., the work of the reactive 

forces in expression (11.2) can be reduced to a certain constant A, 

which subsequently is unessential and can be assumed equal to zero. 

Then, the expression for the complete energy in the form (11.2) 

agrees with the expression (11.1). With this one itself it is 

indicated that in (11.1) the full potential energy for an isolated pi' 

or bulge is represented, and therefore, from this expression using 

the methods of variational calculus one can derive both the differen¬ 

tial balance equations as well as the boundary conditions along the 

contour of pits and bulges. 

We will not present here all the linings special to a cylin¬ 

drical shell, but will immediately specify that the above expressed 

reasonings will be valid for any enclosed shell of rotation, which 

following the loss of rigidity is covered with identical pits and 

bulges. Therefore, it is possible to immediately make use of the 

equations in § 34. Only in this case they will pertain to a 

separately taken pit or bulge: 

Ar,in«o, 

M£)“0- 

V*? + DV*V%=ft, 

. .,y (|).o. 

(11.5) 

II 
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In column I the boundary conditions are presented on the side 

of the pits or bulges, perpendicular to the meridional sections 

of the shell; in column II the boundary conditions are presented 

on the side, perpendicular to the parallels. 

V/ith the utilization of these boundary conditions in problems 

of local rigidity of shells the following considerations should be 

followed. On the contour of pits and bulges, u = 0, since at the 

boundary of pits and bulges, the deflection of the shell is equal 

to zero. Therefore, the last condition in columns I and II is 

automatically met. 

When selecting the boundary conditions, which are listed in 

the second line below, one should base them on the nhysically feasible 

character of wave formations following the loss of rigidity. Let 

us explain this by examples. If surface of the shell follov.lng loss 

it of rigidity is covered only by pits, inverted inside the shell, 

then^at the boundary of these pits angles of rotation should be 

_ absent. The boundary conditions in this case will be as follows: 

d» 
dx 

-0. 

Such a form of wave formation is possible, for example, with 

an axisymmetrical loss of rigidity of the cylindrical shell under 

its axial compression. 

If the shell can lose rigidity with the simultaneous formation 

of pits and bulges, then at the boundary of their division, the angles 

of rotation will differ from zero. In this instance the boundary 

conditions are expressed in the form 

Ai,=0, Afv=*0. 

Such a form of wave formation can take place under axial com¬ 

pression of a thin cylindrical shell. 
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Prom these two examples it is evident that the selection of 

some given boundary conditions along moments and at angles of rota¬ 

tion should agree with the expected character of wave formation 

following the loss of rigidity. 

Of the remaining two lines in each column, one can obtain the 

boundary conditions for the membrane forces and tangential movements. 

In this case by contrast to the previous one, the expected form 

of the deformed surface of the shell does not furnish us with any 

information on the character of the distribution of these forces 

and displacements along the contour of pits and bulges. Therefore, 

the selection of boundary conditions based on the membrane forces 

and the tangential displacements should be subordinate singularly 

to the possible requirement of obtaining the minimum critical stress. 

Schematically, the selection of these boundary conditions can be 

expressed in the following form: 

By specifying the various combinations of boundary conditions 

according to the given schemes under the selected boundary conditions 

for the moments and angles of rotation, it is possible to detect 

which one among all these combinations which leads to the least value 

of the critical force. As a result of such trials it turned out 

that the boundary conditions III-III gives the lowest value for the 

critical force. 

By solving several problems this assertion will be shown using 

concrete examples. * 

In equations (11.5)» utilized for the solution of problems cf 

the rigidity cf the shell, the lateral load should be replaced by 
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a certain fictitious load, equal to the projection of the interna] 

compressive forces based on a standard for the averape surface of 

the shell, 

V, = - 

where x_j X j X - corresponding changes in curvature; A'0, N®, 
Q * y xy % y 

N” - intensity of the internal forces in the shell, the critical xy * 
value of which should be determined. 

Then, the first equation of the system (11.5) assumes the form 

VÎ<? + Dx^w + N°xyx+A/°x* + 2 =0. 

In this case the equation of the compatibility of the deforma¬ 

tion remains unchanged. 

The given fictitious lateral load can be derived in the 

following manner. 

Let us examine the element of the shell dx dy in a position 

after deformation, and let us set up the projection of the meridional 

force iP on axis s. The projection of the line of effect of this 

force on plane xOz of a moving coordinate system xyz is shown in 

Fig. 170. Sum of projections on axis z will be equal to 

Fig. 170. 

X 
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By removing the parentheses and discarding the small values , 

we obtain 

;V ° d¡tdx dy dx dy' 

where a, a + c/x - angles of inclination tangent to the element dx 

Q 
Similarly also for the force we obtain 

d 

ft d,V° 

Nv ■fydx(iy + -JJL ¿djcdy' 

3 ß 
where ß, S> + dy - angles of inclination tangent to the element dy 

We obtain the projection of the tangential forces to axis z 

from Pig. 171: 

Fig. 171. 

Similarly also for the second pair of tangential forces 

- ? '+ (n+^ +£ ^ ) - 
t. 



After the addition of all projections we will have 

dx. +(^^+(£+^H»- 

dy . 

s z 

From 

plane xOy 

the condition of equilibrium of the element dx dy in the 

one can derive these equations: 

ííi+^.o a-í2+!í5i=o. 
ir + «» 'if * »X 

From the differential geometry it is known that the ratio of 

the angle of contiguity, to the differential of the arc is 

numerically equal to the curvature at a given point. Therefore 

dy 

Furthermore, we will have (see i 3*0 

da  <Pw dß   <flv 
dy dxdy ^Jr*r’ dx dxdy 

Then, the sum of projections of the membrane forces on axis a, 

with reference to unity of the surface, after a change in sign, will 

be 

In the next paragraphs we will turn to the solution of concrete 

problems 

§ ^9. Rigidity of a Cylindrical Shell 
Under Axial Compression 

In this instance F, = ®, F-, * F, * 0, = 0, and the 1 * 2 * y * xy ’ 

differential equations of problem assume the form 
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A «x i 0. 

¿■-£.+í*t%+*;£_o. U1.6) 

Let us show by an example, this problem of selecting the boundary 

conditions along the contour of pits and bulges. 

Let the shell lose rigidity along an axisymmetrical form with 

the formation of corrugated folds in a circumferential direction. 

Then, the functions of stresses and deflections will depend only on 

the variable x. Because of this, the original equations are con¬ 

siderably simplified and they assume the form 

»y á*w 
4x*~ * «* 

0, 

A rfjr* 
+0 AT* ÎÏS 

éx*^ * é* 
0. (11.7) 

The boundary conditions along the contour of the half-waves 

are reduced due to the absence of the bending moment 0, since 

the angle of rotation at the points of inflection differ from zero 

(í*í¿ ¿o). It is possible to satisfy this condition, if one takes 

the expression for the deflection 

where A - unknown amplitude of the corrugation; a - size of the 

half-wave of the corrugation. 

The boundary conditions for the function of stresses $ as a 

result of the axisymmetrical loss of rigidity can only occur in the 

form N * 0. A function, similar to deflection u can satisfy this 
X 

condition: 

f = Ä sin — . 
« 

After the substitution of the accepted expressions for ¢1 and 

w in the equation (11.7) we obtain 



I 

hii+Mfi’ÇK-o. 
[-t(t)’+w (f 

After the reduction by (■7j*s,n~ we will find that 

-5-+^ [° 

Since A and B in these equations are not equal to zero, then 

from the condition of equality to zero of the determinant of this 

system, we obtain 

By considering in this expression the length of a half-wave 

as a parameter, one can determine the minimum of the critical force 

Let us designate Then, 

ÿ+ûl. (11.8) 

For the determination of the minimum we will have the condition 

i+o-o. 

whence 

Then 

TV® ala 
£«2 

£/3(1 '0,6f T ■ (11.9) 
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Consequently, the critical stress of compression with an 

axisymmetrical form of loss in rigidity is 

•kp®0,6£-i.. 

Now, let us solve this problem, based on the strength of the 

assumption that the shell after the loss in rigidity was covered 

with identical pits and bulges. Such a form of a deformed surface 

of a shell can be approximately expressed in the following expression 

for a deflection: 

w —¿4 sin—sin 2*.. (11.10) • è 

Prom (11.10) it follows that along the contour of pits and 

bulges, the deflection and bending moment are equal to zero. Here 

a and b - the sizes of pits and bulges in an axial and circumferential 

direction, respectively. Let us take the function of stresses in 

the form 

¡¿.in?-. 

One can be certain that the accepted expression for 4> satisfies 

the following boundary conditions. 

When * ■ 0, X ■ a 

(^’.loiS.loa-O. 

(tHt)'“*'“?*“- 

Since N + 0, then v should be equal to 0. In this way it is 

easy to prove, if one determines the displacement v according 

to Hooke's law. 
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When y * 01 y * £> 

e 

ice 

'ssion 

dxày -«(iXfKí-V»- 

Since It t 0, then u should be equal to 0, i.e., the accepted 
xy 

expression for the function of stresses satisfies the boundary 

conditions I-I (page 321)* 

.10) 

? re 

rential 

In 

jfies 

t is 

Let us substitute the necessary derivatives from the expressions 

41 and w in the equations (11.6). Then, from the condition of equality 

to zero of the determinant of these equations, we obtain 

*.__£(iL_+0MiíÜL ' * [(iMfrr ar ' 
Let us introduce the meaning 

Then 

# Ä* T I 

From the comparison of this expression for with the expression 

(11.8) it is evident that they completely coincide in structure. 

Consequently, for the critical stress in this case we obtain the 

formula (11.9). 

Let us examine the boundary conditions for the func ion of 

stresses III-III (page 321). In this case the expression for the 

deflection will be retained in the form (11.10). The boundary 
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conditions III-III will satisfy the following expression1 for ¢: 

y tin* +Bt iln» ÏL iin* 4. 

~«ln,^-|-Ä4sln*^«lll* ÎM.. 

First, let us examine first approximation when B2 - 0, ■ 0, 

Fj, ■ 0. Let ua set up the necessary derivatives from the expressions 

+ and w and let us substitute them in the equations (11.6). Since 

these functions do not satisfy the equations (11.6), then the 

solution is expediently found, by using the Bubnov-Oalerkin method. 

According to this method, we will multiply the first equation by 

sin*—shFârfjcrfy, and the second one by stay-sinand let us 

integrate within the limits of O-o, <M> and let us equate the results 

to zero. In this case we obtain the following two equations: 

1MM| (i) f 
[O.TS + O.SI It) 1*+0,75( m 

"'-Sr- 
By excluding the parameters A and Bl from these equations, we 

will find 

(11.11) 

*In this way it is easy to prove, if we set up the expressions. 



Connoted here 

12(1 — jii) A* 5 

/ - length of the shell. 

The results of the calculation according to this formula for 

shell, which has » 1, ^ ■ 0.005, is listed in Table 9. 

Table 9. 

11-2 <i—3 «»4 

M-1S 
a,*- 0,00134 

«»15 
•«»0,00131 

«»14 
•«»0,00136 

m—16 
««*0,00127 

«»1« 
««»0,00130 

«»15 
•«-0,00132 

■—17 
•«»0.00127 

«»17 
•«»0,00120 

«»16 
•«.0,00131 

«—II 
•«»0,0012» 

«>»11 
•«»0,00131 

«»17 
•«»0,00132 

From this table it is evident that the least value for a 

critical stress 

(-^-0,00127. 

Let us present the formula for the critical stress of com¬ 

pression in the form 

•M» ' ■*£t- 

where fe - numerical coefficient, which was found to be equal to 

0.6 during our first solutions. 



In this case this coefficient is 

T“0'00127' 

whence 

»-0.00127-1-0,254. (n.u, 

Thus, with the realization of the boundary conditions III-III 

along the contour of pits and bulges (page 321) one obtains a lower 

stress. Inasmuch as the boundary conditions along the 

contour of pits and bulges are shaped by the shell itself in the 

process of losing rigidity, then these boundary conditions will be 

those whereby the critical load for the specified shell will be the 

least. The lowering of critical stress under boundary conditions 

Indicates that these boundary conditions, apparently, will 

be realized even in an experiment. The boundary conditions along 

the contour of pits and bulges should be natural. Any arbitrary 

change in these boundary conditions during the solution of the 

problem implies an increase in the critical stress. 

By increasing the number of terms in the expression for the 

function of stresses in the last solution, one can obtain a more 

accurate value for the critical stress.1 With the retention of 

three components (B^ • 0) in this expression the fourth acquires the 
same value of critical stress: 

•w-0.26£y. (11.13) 

During the solution of this problem by a finite difference 

method under boundary conditions of the III-III form for the 

function of stresses and with a hinged support along the contour of 

the pits and bulges based on the function of deflection in the last 

The increase in the number of terms in the function of stresses 
in the first two solutions does not change the magnitude of the 
critical stress. 
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formula, a coefficient 0.3 Is obtained (both for rectangular, and 

for diamond-shaped pits and bulges). The critical stress for a case 

of a long shell Is determined by the formula (11.13). By long shells 

Is meant that length at which one half-wave can freely fall. If 

one half-wave does not fall freely along the length of the shell, 

then the coefficient In the formula will increase and it will depend 

on both the length and on the thickness of the shell. In order to 

come up with a formula for short shells, let us turn to Table 9. 

Prom it, it is evident that the minimum of the critical stress is 

obtained at comparatively small values in numbers of n in comparison 

with m. Therefore, it becomes possible to discard the components 

containing n in the original expression (11.11). Then, approximately 

when u * 0.3, we obtain 

If we designate in this formula and determine the 

minimum of stress, then we will find that 

The numerical coefficient obtained here is distinguished by its 

more accurate value (11.12) only in the third sign. 

Figure 172 presents curves of the critical stress depending on 

the length of the shell for a different value of numbers of half¬ 

waves in an axial direction. 

The numerous experimental results of the investigations on the 

axial compression of a thin cylindrical shell are very close to that 

yielded by the formula (11.13). The scattering of experimental data 

is found within the limits of 0.15-0.3. The more accurate the shell 

is made, the higher the coefficient fe is for it. Therefore, in 

practical calculations one should consider the corresponding change 

in fe in (11.13). 
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( 

Fig. 172, 

Let us look into the solution of this problem, based on the 

examination of the entire shell as a whole. Let us retain the 

boundary conditions along the contour of the pits and bulges in 

the form III-III (page 321). In this Instance one can assume that 

f-/?i *ln»52£. sin*« + n’t sln»52£-*ln»|-f R',sin7221 sin»•+... 

These functions at the ends of the shell as well as along the 

contour of pits and bulges satisfy the following boundary conditions: 

•«0, Af,-0, «,-0, •*=»<). 

Let us examine the first approximation: 

«»M sin 221 sis el, 

,-Äj sin*221 sin (3 ,in25£._ltasin/ll. 

As a result of the integration of the equations (11.6) according 

to the Bubnov-Galerkin method we will have 
e 
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where 

_ U 

The calculations, conducted in (11.14), show that the least 

critical stress is obtained at small values of numbers of n, and 

the specific weight of components, containing this parameter, is 

small and they can be discarded without sacrificing accuracy. Then 

The minimum of this expression according to parameter m determines 

a in the form Kp 

•,P 0(192£y. 

With the second approximation 

«■■Asln =2=-staat, 

f—£ i sta* £££-sin nt+£t ito**ta «I. 

^ In this instance 

As a result of a subsequent increase in the number of com¬ 

ponents in the function of stresses (up to »in'* sin n I ) with the 

same expression for the deflection one obtained 

^-0,243^. 

A further increase in the components of function ¢1 did not 

change the numerical coefficient in this formula. 

If we use the energy method for the solution of the giver, 

problem one can be certain of these results. 



I 

The full potential energy of the shell will be 

+^ V+2(1-^(^)1^+ 

For the connection of the function of stresses <t> with the 

function of deflection v, we will have an equation of compatibility 

'’'’’-TV- (u-15) 

The expressions for $ and w can be derived from the previous 

solution. For the first approximation 

«at A sin sin «I, 

f-tf ¡sin*staff«. 

After the integration of the equation (11.15) according to 

the Bubnov-Galerkin method and after obtaining the relationship 

between the parameters A and for the full energy we obtain the 

expression 
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where 

_ m 
a— 12(l-|i2)ÂÎ ' 

From the condition ¿».9 = 0 we obtain the expression for the 

critical stress, with an accuracy coinciding with the first anproxi- 

mation according to the Bubnov-Galerkin method. 

One can be certain that all the subsequent approximations in 

the energy method will coincide with the corresponding approxima¬ 

tions of the previous solution. 

Thus, the idea of a separate examination of the pits and 

bulges - this is merely a convenient means for drawing up the 

approximate solution, and it is by no means, obligatory. One can 

alffb consider the entire shell as a whole, but with the use of 

natural boundary conditions along the contour of half-waves in the 

approximate solution. 

This idea can be considered as a further more precise definition 

of the methods of calculating the shells for local rigidity. 

Critical load depends not only on the selected form of the deformed 

surface of the shell after the loss of rigidity and physical boundary 

conditions, but in addition, how the boundary conditions are actually 

realized along the contour of pits and bulges, i.e., one imposes 

definite requirements on the selection of the approximating functions. 

Remarks on the determination of critical stresses for a 

cylindrical shell under pure bending. If the cylindrical shell is 

loaded along the edges with pairs of forces, then the distribution 

of the axial stresses through the section will change according to 

the law of the sine or law of cosine (depending upon the origin of 

coordinates of the angle, see S 23). Because of this one should 

expect that the critical stress for the compressed zone in contrast 

with the action of uniform compression should be somewhat higher: 

within the confines of one pit or bulge stress of compression does 
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not remain constant, and as a consequence of this, the form of the 

deformed surface will differ from that of pure compression. With 

bending the boundary conditions on the sides y - 0, y • b of pits 

and bulges, expressed by function u and its derivatives, apparently, 

will be closer to that of an elastic seal, than that of a hinged 

support. A reliable theoretical solution of this problem, apparently, 

is lacking. An experimental check on the bending of a cylindrical 

shell indicates the fact that coefficient k in this Instance in 

comparison with pure compression is higher by 15-18Ï. 

I 50. Rigidity of a Cylindrical Shell Under 
Uniform External Pressure 

The method of the division of variables can be used for the 

solution of this problem. Let us use the expressions for the 

function of bending u and for the function of stresses ¢, in the 

form 

• a I? (x) COtftl, fmm/?(jc) COS/»I, 

which satisfy the periodicity condition in the circumferential 

direction. Let us consider the ends of the shell as hinged supports. 

Having substituted these expressions in the original equations 

ln I 49, we obtain two combined equations as a function of 

coordinate x: 

riv g» I ** e _ n 

A* A ’ 

/^+Afyp+iwvSur-o. 

Let us express these equations in terms of finite differences: 

ar,)-0, (11.16) 
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-[4+2(*')!]<r,+r‘,+"'' + *'>)_ 

- (nhy q\X\ + /?A’5 21^,) =. 0. 

Designated here is N*w,qR. 

As was stipulated above, the ends of the shell are considered 

as hinged supports. Using the boundary conditions, for the contour 

and postcontour points we obtain the following values1 of the 

functions W and F : 

0, 

Further, let us consider that only one half-wave is generated 

along the length of the shell, while in the circumferential direction, 

as this follows from expression u, a 2n half-wave is generated. 

The first approximation (Fig. 173): h » l/2t where h - pitch 

of the grid. 

S-i 
Fig. 173. 

Let us set up the equations (11.16) for point 1: 

/^+^+(^)+(4+2(^))(0+0)+ 
+ ^.+^.-5-(0+0-2^,)-0, 

0+0-2^+^(^, [6+4(5)*+(5)4]- 
-(4+2(5)1(040)-^.-^.)-(^^-°. 

w-f 
F-# 

Additional stresses 
shell. 

ax and ag^ are absent on the ends of the 
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After certain conversions these equations can be rewritten in 

the form 

^ + 2)+-^,=0, 

1 2*» («AJW«. 

Designated here is 

By excluding function from these equations and assuming that 

ft 0, we obtain the expression for q 
HP 

(¾1 

(A»>* 

12(1 + 
(8+4ni^- + n4Íi) 

In order to get the least critical pressure, the obtained 

expression must be investigated to a minimum through parameter n. 

The analytical solution of this problem leads to very cumbersome 

computations. For the approximate determination of q let us 

assume that many half-waves are generated along the circumference 

of the shell after the loss of rigidity and parameter n will be a 

large number. Then, one can approximately write 

» 
12(1 

This expression acquires a minimum during 

when y » 0.3 we obtain 
Then, 

fi,=0,845£ — 
PI 



that 

*. 

ersome 

ce 

a 

k. Then, 

This value of can be somewhat refined by means of substi- 
■ Hp 

tution of values of n2 in the original equation, somewhat greater 

and somewhat less, than what the formula gives for n . In this 

case one ought to remember that n - integers of natural series. 

If one were to take a grid with two points (Fig. 17*0, then 

for q11 we obtain the expression HHp 

/.»y (»‘l’O+*"£+«■£) 

12(1 / . Al A« \ 
n3(3+2„i_+n4-) 

•f-I 1 7, 
vr-0 
r*o 

Fig. 171». 

An investigation of this expression under the same assumptions 

as that in the first case, results in the following least value of 

o11 ; 
^ Hp 

«-»•«»«£ j/t when ..=aj/5ÿr=p. 

By applying the extrapolation (S 2) to the obtained values of 

ilpand ?iip>we °btain 

when ± yTZyfEp. (11.17) 

The obtained formula by accuracy coincides with the known 

formula of P. F. Papkovich. 

In the case of three-dimensional compression of a cylindrical 

shell by an external pressure under the same boundary conditions 

3^0 



as that above, we obtain the following formula. 

The first approximation: h « 1/2: 

-MSriKHM*)!' 
The second approximation: h • 1/3: 

»+J (f! 

'hÜïlHïrhm' 
By making the determination of and q** according to these 

formula we will find a more accurate value of these Quantities by 

means of extrapolation: 

Now let us examine the solution with smaller pitch: ä - Z/5 

(Fig. 175). In this Instance we obtain 



ggggt 
12(1 —|»í) /4* 

“<--'+(5)'’ 

fl«“3a4-f (a*— 1)«,, 

a*-7+6(£)’+s(£)'- 

Cil.18) 

Pig. 175. 

A more accurate expression for should be used in those 

Instances when it is necessary to obtain a refined value for the 

critical pressure. If this is not necessary, then one can make 

use of PapkoVlch's formula, which provides entirely reliable results 

for a shell of average length. 

Let us apply the obtained expression for o111 to the determina- Kp 
tion of the critical pressures of the sheathing in the cells of the 

reinforced cylindrical shell during the action of a uniform external 

pressure on it. 

We will consider that the subcritical strained state for such 

a shell can be determined according to the momentless theory of 

a corresponding smooth shell. Let the panel lean upon two adjacent 

stringers. In this case the ends of the panel lean on the frames. 



In order to convert from an enclosed shell to a panel in the 

expression <7* , it is necessary to substitute n with ir/ot,,. This 
^ 7TC1 

follows from the condition cos na * cos —, where an - central anrle 
a0 u 

of the panel (Fig. 176). Then, for the coefficients (11.18) we will 

have analogous expressions, if we substitute in the latter 

SL 
5* with 

5c 

Fig. 176. 

Let us examine two cases of a combination of sizes of a cell. 

A oell alose to a square: a/l ^ 1. 

In this instance for q we will have 
Kp 

SR t e y i I f 505RM 
£» "A«*/ I 2 I (l-t*»)c« 

± O-Wa» 
ito/m* 

0 -1^) S* 

By substituting here the subradical expression with the approxi¬ 

mate quantity 

222/?n» 
O-M*)«4 

we obtain 

f/f Tz / a Y f 1 r SQSRm 
£* [mrJ l 4 I (1 -|»3) «4 

+ 0,844] ± [. 222RM 

(¡-Si)e* 



By retaining the minus sign in this expression, we obtain 
■ie 

r-S 

nnrle 

will 

11. 

pproxi- 

ir 3,m 
El (1-(!*)«» 

+ 0.°. .7(-1)1. 

By considering the size of panel a in this formula as a 

parameter, we will find the minimum of critical pressure (y « 0.3): 

^p=0,4£ when 0=4,12/^. 

A cell strongly elongated in an axial direction: 

a«/, (y)*»*• 

In this instance the original equation can be approximately 

written in the form 

i* un» . in* 
£»*12(1-^)«*^ 2W«Ä*H 

By considering the size a as a parameter in this expression, 

we will find the minimum <7u_(w * 0.3): 
KP 

srl/T when a-0,68 Vnfà 

As one would expect, the obtained value in this instance 

coincides with the critical pressure for an enclosed shell, which 

after the loss of rigidity, is divided into a circumferential direc¬ 

tion by a number of gently sloping cylindrical panels. 

Without a derivation let us present formulas for the external 

critical pressure of cylindrical panels, obtained under other 

boundary conditions along the contour. 

1. A panel rigidly sealed along its entire contour and with 

additional stresses lacking (o^ • 0, ■ 0, ■ 0). 



In this instance for the functions of * and w these expressions 
are assumed 

where _ s 
%”si 

F - width and radius of the panel. 

As a result of the first (h ■ 1/2) and second (A ■ 1/3) approxi¬ 
mations, one obtains 

In thë aas« of a aquaro panol (l * s) it woo found that 

when “5,7|^W. 

when 5"-5,83KW. 

when ¿.m*—5,MKW. 

If tho panol io atrongly olongatod in an axial dirootion 
(l >> 8), thon 



l/T when 

íj;=i,s3e— ^/Z when 

Vo.»«»» *1 |/^" when 

^=1,8/7W. 

^-1,5/773^, 

^,-1,254/77^. 

2. A panel rigidly sealed at the ends and hinged supported 

along the longitudinal edges. Additional stresses are lacking 

(ax - 0. . 0, 0^ ■ 0). 

In this instance for functions of ♦ and to these expressions 

were used 

•-^WcosÄ, t-5(jr)eos21, 
* H 

where - _ J. 
* *' 

For first and second approximations the following expressions 

were obtained: 

(si)'— .Häumm 

[t'j HzHm® '«-»m 
>Hsmm 

«•-O’ 
(£)"■ 

For a panel, oloee to a square, one obtains 

C-owft)' 

*.,.**„- 0.65 (±.J 

when 

when s"-/-4,15 vm, 
5,m,»—4,5 y AH, when 



In the case of a strongly elongated panel 

¢1,-0,835^^- j/ï when S'= 1,2//(/¾, 

¢11-0,88/^ l/ï when S"=l,2/7FS5, when 

i»-...-0,92£^ j/x When y, yjf. when 

5 51. Rigidity of a Lon/ Cylindrical Shell from the Effect 
of External Uniform Pressure. Limits of the 

Applicability of Papkovlch's Formula 

In this case a balance equation, obtained in § 3*1, with the 

retention of all components in it, which depend upon variable ¡/, must 

be used for the solution of the problem. All the derivatives based 

on X will disappear since the wave formation for a long shell after 

the loss of rigidity will not depend upon coordinate x, if we do not 

take into consideration the small sections at the ends of the shell. 

Thus, the solving equations of the problem have the form 

(11.19) 

In order to get the critical value of external pressure one 

must solve the second equation, for which one can assume 

« » ¿ cot nS « A cos 2jL 
R 

Then, when ^ 0 we obtain 

x/O __ —1) 
-M 

Since Ny ■ qRt then 
9 

*-*r- 

3*47 



The least value of this pressure will be when n = 2: 

, must 

ised 

’ter 

) not 

iell. 

R* * 

Here let us substitute D-= EM 
Then 

(11.20) 

Thus, for the calculation of the external critical pressure of 

a cylindrical shell we will have Papkovich's formulas and (11.20), 

since the latter, as evident from its derivation, is valid only for 

a very long shell. Therefore, it is necessary to set the limit of 

applicability of this formula. 

From the condition of equality of the critical pressures 

according to investigated formula when y » 0.3 we obtain 

/<3,3« j/Z. (11,21) 

The boundary of applicability of Papkovich's formula sets this 
expression, if 

/>3,35# /?• 

then, one should make use of the formula (11.20). 

The condition (11.21) establishes one of the boundaries of 

the applicability of Papkovlch's formula. Let us determine the 

second boundary of Its applicability from the condition that the 

critical stress In the shell does not exceed the proportional limit 

of the material, from which It Is made, l.e., o < o . Hence, we 

obtain the second condition ^ 

o,wt\ 

•VT ' 

3^8 



1 

Thus, Papkovich's formula is applicable to all shells, if their 

length satisfies the condition 

During the derivation of the formula (11.17) it was proposed 

that the ends of the shell be hinged supported. If additional con¬ 

nections are added to the ends of the shell which is frequently 

found in practical constructions, then according to Papkovich's 

formula for a short shell one obtains an understated value of the 

critical pressure, since with the more "rigid" sealing of the ends 

of the shell, the critical pressure must be increased. 

Rtmarkt on tho calculation of oonioal »hallt. When evaluating 

the rigidity of conical shells, loaded with external uniform 

pressure, as shown by certain authors, it is possible to make use 

of Papkovich's formula, if we substitute R with ff/cos a (Pig. 177) 
in it, and so forth 

9up **0,926 u Co» a 
Ri 

if a á 2S°. 

of i 

sin< 

Dur: 

insj 

dir« 

rigi 

whic 

corr 

this 

Pig. 177. 
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zero 
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i 52. Rigidity of a Cylindrical Shell Under Uniform 
External Pressure, If the Half-Waves are Directed 

Inward After the Loss of Rigidity 

This type of loss of rigidity can be expected in constructions, 

of cylindrical shells designed without a clearance for one another, 

since there is a grid of small openings on the external shell. 

During the action of external pressure on such a construction the 

inside shell can lose rigidity due to the formation of half-waves, 

directed towards the inside of the shell. Such a type of loss of 

rigidity can be described by the following system of functions: 

Ailn ~ 

f~£sin 

which furnish even values of deflection and annular stresses that 

correspond to the character of the wave formation. 

The differential equations for the solution of the problem in 

this case have the form 

V*V*? « 
* djfl 

After the substitution of values of functions 9 and u in these 

and after their integration by the Bubnov-Galerkin method we obtain 

By equating the determinant of this system of equations to 

zero, we obtain 
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I 

JVj/i» 
'2# 

+ ß 

9£» 

UK! 

that 

In order to get the approximate value of ilr^ we will consider 

Then 

After the determination of the minimum of force N® based on 
, 2 ^ 
the parameter of wave formation n we obtain the formula for the 

critical external pressure 

7 when •‘-’“lyF* tV'T' (u'22) 

Based on structure the given formula agrees with P. F. Papkovich's 

formula but numerical coefficient, as expected, increases. 

S 53. Rigidity of the Length of a Cylindrical Shell 
Under an External Uniform Pressure, if the 

Half-Waves After Loss of Rigidity Are 
fclrected Inward. Limits of the 

Applicability of the ~ 
Formula (il.¿¿) 

In this case the approximate solution can be obtained, if we 

assume that the following expression, in agreement with the character 

of the wave formation, for the deflection is: 

«1=Ailn*«*. 

the i 

expr* 

in tt 

accoi 

long 

(11.Í 

lengt 
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11.22) 

pkovich's 

we 

aracter 

After the substitution of this expression in (11.19) and after 

the integration of it by the Bubnov-Galerkin method we obtain 

P(S«4-4»i?+ l.S) 
9 (2«’ - 1,5) R* ’ 

As can easily be proven, the least critical pressure from this 

expression is derived when n ■ 2: 

9kp 
17,40 

After the substitution of the value of hardness D when p * 0.3 

in this expression 

> (11.23) 

From the condition of equality of the critical pressures 

according to formulas (11.22) and (11.23) 

If />RVW, then one should make use of the formula for a 

long shell. 

We will obtain the lower limit of applicability of the formula 

(11.22) from the condition o 
Kp 

/> 

Op, i.e., 

et 
ir- 

Thus, the formula (11.2-) is applicable to such shells, whose 

length satisfies the condition 
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By using the formula (11.22)) Just as Papkovlch's formula is 

used, one should keep in mind that for a comparatively short shell 

this formula will give an underrated value of critical pressure, 

since hinged support assumed in the solution will not always be 

realized in actuality. 

S 5*1. Rigidity of a Hinged Support of a Cylindrical Panel 
Due to Action of an Axial Load. Applied on the Curved"" 

Edges and Distributed According to the 
Law of the Cosfñe 

The problem of the rigidity of a cylindrical panel under the 

action of compressive loadings, different from a uniform distribu¬ 

tion, frequently appears during the calculation of a reinforced 

shell, because the distribution of the compressive stresses is not 

always uniform. 

Let us examine the problem dealing with the rigidity of a 

cylindrical panel, loaded In a circumferential direction according 

to the law of the cosine (Pig. 178). In order to solve the given 

problem, it is necessary at first to find the distribution of 

stresses in the plate up to the moment of the loss of rigidity. 

Pig. 178. 

vai 

mus 

ger 

pla 

app 

• exp 

and 

aft< 

dif 1 

For this 

acting on the 

purpose let us use the balance equations of forces, 

average surface of the panel 

dN, dNMl 
iM ^ àp 

*Jt r àp ’ 

0, 
add] 

o, = 0 
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Since N, 0, then 
dx 

■O, Ngy-Hy), where f(y) - function of only 

variable y. However, since at the ends, N 
dNx 

xy 
0 everywhere, then it 

must be that f(y) * 0. Consequently, ^-0, const along the 
OX 

generatrix, i.e., the distribution of forces in the plane of the 

plate coincides with their distribution at its ends. This derivation, 

apparently, will be valid only for short plates. 

For the solution of an imposed problem let us take the following 

expressions for the functions of <j> and w: 

w-W'ÍjOcosSL, F(jc)co*5jL. 

Then, the original equations of rigidity (11.5) when ^ - •, 

F2 * ff will assume the form 

(ff* ^+(7-)4 ^]) co* 

+WÎflrco«*«—0. (11.24) 

After the multiplication of the second equation by cos dy 

and after the integration within the limits -o/2, +0/2, and also 

after the substitution of the differential operations by the finite 

differences we obtain 

^ [6+4 (t)*+(t)1 “ [4+2 (t)*] (Ft + Fl)+ 
+ + + 2H/,) - 0, 

^,+^1-2^+[6 + 4(^ + (^)- 
“[4+2(5r)’] (^1+^)+ ^1+^)+ 

BOM I 

+ --(^, + ^,-2^,)=°. 

Let us consider that the panel is hinged supported and the 

additional stresses along the contour are equal to zero: o,=0. 

“O, o,»-0. 



í-f + 
/ 7 

-V, 

^7 
cire 

wo 
r-o 

Fig. 179. 

The first approximation: h * ^ a (Fig. 179). In this instance, 

one obtains 

8»ff 
3n£* 

•M lûHâï L - 
12(1 — 

•1 
[3+2| Or) £)1 

where 

2 
The minimum of this expression based on fe will be 

£-0,715 
A 1 »’(¿Mir ' 

Table 10 presents the values of oR/E6 depending on n, 

Table 10. 

« 1 2 3 8 IS CO 

•_R 
£1 

0,592 0,478 0,444 0,418 0,414 0,413 

From this table it is evident that the least critical stress 

is obtained for a strongly elongated panel in a circumferential 

direction. . 

Therefore, the problem about the size of the panel in a 

was 

one 

in i 

diff 

case 

acco 
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circumferential direction remains open, and the parameter fe will be 

3 

In examining the second approximation (ft 

was established that 
- ^ a, Fig. 180) it 

-=0,37 when *=3. 

< 

r-o 
Fig. 180. 

By means of extrapolation from the first two approximations 

one obtains 

(11.25) 

Under uniform compression of the cylindrical shell, as shown 

in S 49, with the solution of the problem by the method of finite 

differences, the coefficient in (11.25) was obtained equal to 0.3. 

Let us compare the limiting values of critical forces for the 

case of uniform stress distribution at the ends and the stress 

according to the law of the cosine. 

In the first case 
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In the second case 

QÜ» *0,346£ f co$5¢.rfy■■0,22ff— 
JJa * Ä 

Prom the comparison of these forces it is evident that the 

loading of the panel according to the law of the cosine is more 

hazardous than the loading with a uniform load. 

. By making use of the above given result, one can obtain formulas 

for the case of loading the panel according to Pig. l8l under the 

same boundary conditions along the contour, if during a solution 

of this problem one assumes that 

•■■IP(jr)cos^. 

»- /’(xlcosSL, 

men, the first original equation (11.2H) remains unchanged, 

and the second will assume the form 

By comparing the coefficients with 0° in these equations, one 

can see that it is 4 times less. The remaining coefficients in 

these equations coincide. Therefore, it is possible to make use 

of the formula (11.25), by increasing the coefficient H times in it. 
Thus 

•„*—1,384£-^». 

The sum total critical force in this instance is 

Q%^l,384E~ J coi ^)<ty=0.692£ . 
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Fig. l8l, 

As can be seen from the last expression, the limiting force 

obtained is 2 times higher in comparison with a uniform load and 

more than 3 times higher in comparison with the loading according 

to the law of the cosine. 

I 55. Rigidity of a Cylindrical Panel Under 
the Action of a Concentrated Force 

The problem dealing with the calculation of a cylindrical panel 

due to the effect of a concentrated force on it appears during the 

designing of the thin-walled constructions, which have hatchways 

with lids. The lids of the hatchways can be loaded with concentrated 

forces, transmitted by stringers or by any other elements of rigidity 

of the construction. 

For the determination of the critical value of force P, acting 

on the panel (Fig. 182), one can use the method of the division of 

variables. We will consider that the panel is hinged supported 

and the additional stresses along its contour are equal to zero. 

i.e., cm ■ 0, 0. «0,0 
* * y * xy * 0. 

Fig. I82. 
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For the function of deflection and stresses we will assume that 

w — W (y) cos , 

<?=F(y)cns —. 
Û 

By substituting these expressions in the original equations 

(11.5) and by replacing the derivatives for y with finite-difference 

expressions, we obtain 

f*[6+4(v)'+(v)‘]-[4+2(v)] 

“[4+2(7')’] + 

where b - pitch of the grid in the direction of axis y. 

The first approximation: i ^ 0 (Pig. 183). 

F-9 

Pig. J.83. 

Let us consider the concentrated force P as evenly distributed 

along the length of the pitch JIT » P/b. Then, the given equations 

for any point 1 will be 

f ’ [6+4 (t)*+(t)']—14+2 (t)1 ^+^+ 
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where 

By excluding and from these equations, we obtain 

ZP 7T 
.,o| 

‘‘“I 1 
jiiï/i** 

Considering here fe as a parameter, we will find the minimum P 

for fe: 

P — 0,28/:-¾3 t(«), 

where 

Figure l8fe represents a graph of function Ç(n) depending on n. 

On the basis of this graph it is possible to write 

/?• 
The problem about the sizes of a panel, at which one obtains 

the least critical force, in this case, is solved completely. 

For the parameter of fe we will have the expression 
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After the substitution here of n » 1 we obtain fe » 2.63. 

Then 

Instance 

«-¢-2,63/^1. 

The second approximation: b • ^ 0 (Pig. 185). In this 

This approximation coincides in accuracy with the first one. 

vr-0 
F-0 

Pig. 185. 

The sizes of the panel in this instance are equal: a-c=3,5//½ 

and Vtt. 

8 56. Rigidity of a Cylindrical Shell Under Torsion 
with the Account of the Effect of Tensile Stresses 

In the Axial and Circumferential 
falrectlons On It 

In the solution of the given problem in a rectangular system 

of coordinates for the function of deflection it is necessary to 

take that expression which reflects the spiral form of wave formation 



following the loss of rigidity. The most suitable function will be 

Similarly for the function of stresses let us assume that 

Let us set up the necessary derivatives from these functions 

and let us substitute them in the original equations (11.5). After 

the substitution we obtain 

¡HP'" - V <*’+»■)+£ «•)+ 

~5f(r' -'i+f*'' Ht-«y0- 

+ [£ P + «*) W"- r-] sin(^- - /.«)} + 

+ *;[(»"-^)00, n»)-2iw «»)]+ 

[*" Iln(7- -0+7^(7-^))+ 

+^(-^^(7-0)-0- 

In these equations W and F - functions of only variable x. 

By making useoof the Kantorovich-Vlasov method, let us multiply 

each of these equations by cos d<i and let us integrate within 

the limits of 0-2ir. As a result of these operations we will 

have 



F"-±(„>+3*)F' + ±(«3 -f vy F-Ëi.(u-- H r^o, 

+ ^[r,v («H 3ÂS) r-+Jj. («*+ À*)»r]+ 

Íí|ilr-^lr=o. 

Here by strokes the derivatives with respect to x are 

designated. 

Let us write down the last equations in the finite differences: 

(F^FJ+Fi+F, - -^(^,4-1^1-^)-0, 

atFt 4-^f (Wt+W,) 4- r, f W,]+ 

4- RN^W, 4- r, - a,Wk) 4- 2RN°Jt 0. 

Designated here is: 

«.=6+4 (~)* (**4*W(-J-)4 («*4-^. 

«I“s-44-2(“-)* (^4-3^¾ 

Let us formulate the boundary conditions for the functions of 

F and W. With the selected expressions for the functions $ and w 

the boundary conditions for the rigid sealing can be written the 

simplest. In this instance at the ends of the shell it should be 

»-r (jc)cos(ijï— 

“»(t- -..)-4^(4-..)-0 

or r4-o, 'w=Zi£Zl=o, vr,=w,. 
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of 

w 

Por the function of stresses $ at the ends of the shell we will 

assume that the condition that the additional forces /V and fí 

after the loss of rigidity are equal to zero: * ^ 

-Ù £l_o F -sir 
2A U’ = 

The first approximation: h » 1/2 (Pig. 186): 

^-^(0+0)+^+/-,(o+o-^rj-õ, 

0+0-^/-,-a,(0+0)+r,+ ^,1- 

-^(0+0-0.^,)-¾^^+N’/wffi r,„o. 

Designated here is: 

force; # . 2vR2N° 
KP *¡ 

-I*“ - axial tensile force; -11° - annular tensile 

- moment, which twists the shell. 

By excluding function P1 from these equations and considering 

that * 0. we obtain the expression for *Kp as a first approximation 

K [í+(¿r«i r I 
[-(é) iV+ 3).2)+(JL + X*)*J 

+ f8+4 (£)’(n?+3X:>+(2t)4 +»>« I 
3(1 -n¡)ak/4 ^ + 

^[î + (-L)’u| 
£in//2 +£u- 
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r-0 
/•# 

Fig. 186. 

Having completed the analogous computations for the second 

approximation (Fig. 187), Ä • ^ l, we obtain the expression for 

#Hp in the second approximation: 

nBUP bgtl 
-+ 

7r/n» V + AV] 

^ infill 
4<1 

[’*W 
•a. 

nU* 

4. ^î« 

Fig. I87. 

(11.27) 

For the analysis of expressions (11.26) and (11.27) we will 

divide the shells Into two classes - long and average ones. 

In the case of long shells one can consider that 
2 2 

and n >> A . Then, the expression (11.26) can be approximately 

written In the form 

whe1 

Is ] 

work 

mini 

when 

n an 

two 

where 

M',, 

ami1 '$+aT+bT+cT' 
(11.28) 

A • »* 

12(1Ä» . B 
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0. Then Let us examine a case, when NQ • N° 
x y 

m >•* i . /i» 

Let us find the minimum of this expression with respect to X : 

whence 

Then when n ■ 2 we will have the following least value of : 

(11.29) 

This expression for the critical value of the torsional moment 

is 14* greater than the value M , which is cited in published 
works [8], [26], 

Let us examine the case, when * 0, ¿ 0. Let us find the 

minimum of the expression (11.28) with respect to parameters X and n 

whereby we will differentiate this expression with respect to X and 

n and equate the derivatives to zero. In this case we obtain the 

two following equations: 

5X«-3/U*+ 

By solving these equations, we will find that 

>- c/3 _VI 
ojio./n • n~\/~= + ’ VlA+B /7 



I 

By substituting the found values for X and n in the expression 
(11.28), we obtain 

£i/t Vm j/3!+—'i 
(11.30) 

It is easy to verify that from the expression (11.27) of the 

second approximation the results of the analysis will agree with the 

results obtained from the first approximation (11.26). Therefore, 

for long shells it is inexpedient to go through the investigations 

of the second approximation. 

Prom the formula (11.30) it is evident that it is inapplicable 

at any values of annular forces of AT. From it one cannot obtain 

the formula of the critical forces under torsion of the shell, not 

loaded by a force of JIT. This occured due to the fact that an approxi¬ 

mate expression was used for the change in the curvature in a 

circumferential direction. Therefore, it is necessary to find that 

least value of the beginning of which one can make use of this 

formula. For this let us equate the right sides of the formulas 

(11.29) and (11.30) and from this equality when 0° - 0 we will find 

that the force JV° should satisfy the condition 

' l-ftl 

If Ny " where ? ” intensity of the pressure on the lateral 
surface of the shell, then 

(11.31) 

That pressure, the beginning of which should make use of the 

formula (11.30), can be determined by this condition. 

Prom the condition (11.31) it is evident that the least pressure 

for a thin shell will be very small. This pressure for steel and 

aluminum is presented in Table 11. 
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Table 11. 

Material E, kgf/cm2 
’min’ KsiV«"2 

y-0,001 -1-0.0' 

Steel 
Aluminum 

2*10« 
7-10» 

0,00028 
0,0000985 

0,28 
0,0985 

If force N® Is less In the determined formula (11.31) or If It 
y n 

is entirely absent, but still with an axial tensile force N acting 

on it, then one can make use of the expression (11.29), multiplied 
by 

iS ’ 

i.e., 

(11.32) 

Let us examine the shells of average length. We will consider 

j. Then, when • 0 the expression for 

the first approximation can be written in the form 

JÜHL 
nElRi + Ml»» 

12(1 — |i>) Att * (11.33) 

For the determination of the least value let us write down Kp 
the derivatives from this expression in terms of \ and n and equate 

them to zero, having obtained in this case two equations: 



where 

^)V«+4(i)V+4-i^-0, 

,.Æ- 
(l-f»)Ä» • 

From these equations let us find 

By substituting the values X and n in (11.33), we obtain the 

formula for the least value of torsional moment 

Ail 3.81 

The investigation of the expression for the second approxima¬ 

tion leads to an analogous formula; therefore, it is not given here. 

Now, let us turn to the examination of a case, when j* 0, 
0 3? 

Ny r 0t and let us limit ourselves to the examination of the 

expression for the first approximation, since from the previous one 

it is clear that this approximation yields entirely reliable results 

(11.3^) 

Let us differentiate this expression according to X and n and 

let us equate the derivatives to zero, obtaining the two following 



equations for the determination of X and n, which convert the 

expression (11.3*0 to the minimum: 

Here, the designations are introduced: 

N* I* 

By solving this system, we obtain the following equations for 

the determination of parameters X and n: 

«o“Y, a,-^-(a-3{0, 0,-¾. where 

Thus, the problem dealing with the torsion of a shell of an 

average length with forces and 0° existing in it results in a 

solution of the equation of the fifth degree relative to n2. By 

finding the parameters X and * with respect to the assigned values 

a, 6, and y, let us substitute them in the equation (11.314), which 

also provides the least value of torsional moment. Let us determine 

the limits of applicability of the obtained formulas. 

In the absence of forces and /14,° these formulas are obtained: X y 

a) for the long shells 



b) for shells of average length 

3,58 

(1-^1 
EVR. 

On the boundary between the average length and long shells one 

should find that 

From this condition we will find that if the length of the 

shell satisfies the condition 

/<4.3# j/Ã. 

then the shell will belong to the class of average lengths. If 

/>4,3/? then to the shel] that is long. 

If forces and N° act on the shell, then the limits of 
X y 

applicability of the obtained formulas in the enclosed type will not 

work. In this instance it is necessary to establish the limits of 

applicability of the expressions for M using actual numbers based 
KP 

on the given right sides of the expressions (11.30) or (11.32) and 

(11.3^) by means of equating, and select that length of Z, which 

divides all of the shells into two classes. In this manner the 

found length l will represent the longest shell of the class of 

shells of average length at assigned a, 3, y. For this shell the 

critical moment, calculated by the formulas (11.31) or (11.32) and 

(11.3¾)» will be one and the same. 

The lower limit of applicability of the formula for shells of 

average length can be determined from the condition 

where t - yield point of the material of the shell under shear 
S 

( T “ 0.6o ). 
8 8 
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In conclusion let us note that the solution of the given problem 

with a hinged support of the ends leads to the results, obtained 

above. 

§ 57. Rigidity of the Compressed Zone of a Circular 
Cylindrical Shell, Reinforced by a Ring During 

Its Loading with a Concentrated Axial Force 

In § 38 the approximate solution for a cylindrical shell under 

a load by an axial concentrated force was presented. There, the 

formulas for the membrane stresses in the elongated and compressed 

zones of the shell were obtained. In this section we will present 

the approximate solution for the detv'rmination of the critical 

force, at which the loss in rigidity of the compressed zone of the 

shell will take place. In this case let us propose that the 

investigated shell is under the action of internal pressure. Then, 

the formulas for the membrane forces of the compressed zone of such 

a shell will have the form 

x;n'_ PEM 
1- 

«•I 

•——a-“•**■ ’ 

n££i»t À 

where 0,0 - membrane axial and annular stresses from the internal 
M * K 

pressure. 

It was experimentally established that the pit after the loss 

of rigidity forms directly over the force as well as according to 

a form close to being square (Fig. I88). 
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The problem on hand can be solved, by making use of the 

apparatus of finite differences. In this case using the square 

grid of V. Z. Vlasov's equation one arrives at the form 

+^.+/.-^-(^1+^,- 2TJ, 

/,+/,-2/.+^(20^.-8(^,+ir,+r,+rj+ 
+20/.+^,+^+^+^,+^,+^,+^.1+ (U 
4 W* (W,+1/,- 21Z.)+WJ (IT/.+ Wm - 2\Z.)+ 

+ Y W*t (l/0 -1/,+l/f-1/,)-0. 

Here h - pitch of the grid; y®, ¿V°, “ membrane forces, provided 

by the formula (a). 

We will assume that the boundary conditions along the contour 

of the pit acquire the following form: 

=1/.=0, Ä) -?LrZL=o, \ =-gr.iT-r» =0 
* ’ Ux/. 2A ’ ^ dg )k 7k U’ 

.iï-= =0, o. 
djr* 

=0, 

dxdjf 

After the integration of these expressions we will find that 



•| = C,; ç-Ctf + C,; 

^■s=Ä,; 'f — BiX+Bi, 

V = AJf+0*- ox 

By setting all the constants of the integration here equal to 

zero (inasmuch as they do not affect the stress condition), we will 

obtain values of the function of stress for the contour 

?» 0, 
2k 

Thus, for the contour and postcontour points, we will have the 

values 

«Pi-W'i. JW». 

which correspond to the absence of angles of rotation and of membrane 

stresses at points of the contour of the pit after the loss of 

rigidity. 

On account of the fact that in the second equation (11.35) 

the three last components are variables, it is hardly possible to 

obtain a solution with a rather fine grid, because the calculated 

formula for the critical force takes on extreme complexity. There¬ 

fore, we will limit ourselves to the examination of only one 

approximation (Fig. 189). The pitch of the accepted grid h * 1/3» 

where l - size of the side of the pit. 

In order to get the solution of the problem it is necessary 

to formulate the equations (11.35) for any pair of points 1 and 2, 

since in each of these points one should take the corresponding 

values of forces N°, N°, N° . By not reducing the intermediate 
x u xu 
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1 

Fig. 189. 

computations, associated with óne composition of the equations for 

points 1 and 2, let us write out the final result of this solution: 

nop 
n£|t|£i 

B, Ffi-FiPt )* 

± 
£i -f £« i ß Fi + Fj V 

FiFt—FjFi ' W 
1440£|+1M0*J 

FiFt-FSt * (11.36) 

Designated here is: 

99 r i 
"i’l« 

■»* r 
360 £ 

0-1«*) *8 

60 

] 

360/?«, 

wA 

(30^2,,), 

96000 

+ (I - I*®) ^ »»£, L « 

+^[-h-<n$nrl*+ 

540 >»8*jr i 60 

360£l v 
-ÏT-X 

-2/, + 2/,+/,+/^ 
^.=2/,+/,-2/,-/^ 
^--/. + 4/,+2/,+0,5/^ 

v 1 1 

ring 
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ness 

the 

zone 
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sam^ 

iden 
1 
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I 

fore 

dentj 
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2h, J, W - height, moment of inertia and moment of rigidity of the 

ring (see Pig. 188); 6^^ - Young's modulus and the thickness of 

elongated zone of the shell; £2» ^2 “ Young's modulus and the thick¬ 

ness of the compressed zone of the shell; - Young's modulus of 

the material of the frame. 

If the material of the shell in the compressed and elongated 

zones, as well as that of the supporting ring is identical, then in 

the formula (11.36) one should assume that ■ £2 » £q • £. The 

same also pertains to the thicknesses of the walls: if they are 

identical, then ■ 62 ■ 6. 

The order of determination of the least value of the critical 

force is as follows. Let us assign a size to the side of the 

dent l (or feg) and let us calculate the sums and 
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then let us determine i>Kp* Such a calculation needs to be repeated 

for several values of l (or fe0), until one no longer finds the least 

value of P . Kp 

Figure 190 represents the results of the determination of the 

critical force for a construction of cylindrical shell with an 

existing Internal pressure and without one. Tests were also con¬ 

ducted on this shell under laboratory conditions, as a result of which 

it was established that the formula (11.36) gives a value of the 

critical force, overrated by 1.3 times. This should be expected, 

because one approximation for the solution of such a problem under 

a complex strained state is insufficient. However, one can make use 

of this formula, apparently, in the calculations for a very approxi¬ 

mate estimation of the bearing capacity of a shell, having in mind 

that it gives overrated values. 
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CHAPTER XII 

RIGIDITY OP SPHERICAL AND ELLIPSOIDAL SHELLS 

5 58. Equations of the Local Loss In Rigidity 
of Spherical ¿hells In Various Forms. The 

Rigidity of Spherical Segments 

Proceeding on the basis of the general equations of V. Z. Vlasov 

where In the case of a sphere under a uniform external pressure, 

they assume the form AT» — Af*—ÿ ç/fj. 

y V*?+-f i-—o. (12.1) 

where 

» 

In the beginning let us examine the axisymmetrical forms of the 

loss in rigidity of spherical segments. By expressing Laplace's v* 

operator in the form 

dr 9 

we will obtain the following entry of the system (12.1): 

ÍÍÍJ.2. _L £í+_L d-l_1 _L ÜLUn 
' r dr* r* dr*'r* dr R\dri~r r dr) \ 

i 1 äf , no/d*w , '2 d*v \ d'-w , l dw\ , 
dr*' r T,r~7r“^rr7T 17)+ 

(12.:) 



Por the bending moments and membrane forees there we will have 

the expressions 

Af,“ -At, = - D(fcf+ l*yj. 

*dy* djfi 

In the case of an axisymmetrical form of loss in rigidity of 

a spherical shell these expressions take the form 

£+>£)• 

»■-"■-Vi- 

Let us write donw the equations (12.2)-(12.3) as finite 

differences : 

(12.3) 

'•[*+(t)1-M4+2(t)+(t)’)']- ’ 
.FlM±m+±{±¡\+ 

F,('+-5-)+^-(1 -■5)-2+*+ïr("'*(6+JX 
x(-i-)*]-r,[4+^^)+(^)--^)-1- 

-r-[4-2(f)+(T)'+T(f),]+ 
+*'-(> +7-)+^.(1 -7-)}+ÿ»«*X 

X [«', (1 +^-)+14-. (1 

41.--^^,(1^)+4--(1-^)-214-.]. 



have 

f 

2.3) 

2.4) 

Here h - pitch of the grid. 

In order to write the original equations (12.2) as finite 

differences at point r * 0, it is first necessary to find the limits 

of certain differential expressions when r » 0. By applying the 

I'Hopital rule, we will obtain 

Then the original equations (12.2) for point r - 0, will assume 
the form 

ä*f 3EI Urn 

dr* 4R ér* ~ 

, 4DP d*w . 1 
3 WH ' 2 

0, 

0, 

or as finite differences 

Fi - 2^,+^(6^-44^, - AW, + W, + «/,)+ 

+-5-^(^,+^,-2^-°. (12.5) 

Let us use the equations (12.4) and (12.5) for the determination 

of critical external pressure of spherical segments. Let us first 

examine a case of a hinged support of a segment. The boundary 

conditions for this case will be 

Afr — 0, t»«0. 
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We will assume additional radial membrane stresses along the 

contour of the segment to be Or-0. In the developed form these 

boundary conditions at a pitch of the grid /»-r0 (Pig. 191) will 

assume the form 

.w,-~£i«",<i +o,M+*r,(i-o.V)-oi „0, 

whence 

Pig. 191. 

Along the contour of the segment the function of stresses $ 

will be equal to zero. This stems from the connection of the function 

of stresses with the bending moment from the load, acting on the 

contour [4]. In our case contour load or“0. Consequently, 

Balance equations for point 1 will have the form 

+ + 

- 2Ft + -(6^, -0.739^,-0,739^,)-0/^,-0. 

6^, + ^, + ^,4 

From these equations we will find 

Considering in this expression the pitch of grid h as a 

parameter, we will find 

Vip=0,9£^—j when r0-=l,l VW- 

Now, let us examine a grid with two points (Fig. 192) 
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Flg. 192. 

In this instance for the postcontour point W, we will have 

the equation 

(Mr),-r.-£ [K', ( 1 + 0,25ti)+( 1 - 0.25^))-0, 

whence 

s <p 

function 

the 

= f*-0. 

Point 1: 

agw 
2Ä 

-iro-o, 

Point 2: 

^(¢+2)-^,(4-2 + 1 + ^+^,(1+1)- 

-£ii[r,(i-i)_2r,]-0. 

f'(,-T)-2/r,+F[r,<6+2)_"'‘(4_s+1+T)- 

-o.sbb'.o + i)]+i?/i> [r, (i - J.)-2r,]_o. 

By excluding and F2 from these equations, we will obtain 

r,(ï! 0^+1-+-+^,(- 

r,(-!f ax«-.+1+:,+r,( 

.101.fi , a i 40 
—-- ax1—1- 
9 9 

?-tJ = 0, 

0, 

ïft? 



where 

a = 
is 

12 (1 — pi) Ri ' 

From the condition of equality to zero of the determinant of 

these equations we will obtain 

(£)" " T (íT+0'807 ) * /"ir - ^84+0.23^. 

where ^ 

*=VK* 

The values depending on parameter fe in Table 12 are given 

Table 12. 

k 0.6 0.7 0.8 0.9 1 

(£.)" 0.685 0,621 0,617 0,644 0.696 

From this table we will find 

(HI!5:0,62 When *=0,8 M r°^1 *6 

A more accurate value of the critical pressure can be determined 

by an extrapolation (5 2): 

(£L. “°^ 

*i>>=0.264£ — when ro iKCTP 1,8 

With the solution of this problem for the case of a rigid 

sealing of the contour (Flç. 193)» “0 and under the same boundary 

conditions for the function of stresses as a result of the first (/k=:r0) 

and second yr0j approximations and for the extrapolation we will 

obtain the following value of critical pressure: 
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«,0 = 0,360/:When r0íKetP = 3/W. 

Fig. 193. 

Now, let us examine the rigidity of a spherical segment with 

a rigid undeformatle circuit under external pressure. 

In this instance, except for the requirment of equality of 

angle of rotation to zero, it is necessary to impose an additional 

requirement about the lack of elongation of the circumference of the 

support contour and so forth. 

As finite differences these conditions have the form 

Fj + Pj — 7Pt_£_ Ft—Ft Q 
» r0 2A 

In the investigated problem in view of the nondeformability 

of the support contour after the loss of rigidity additional membrane 

stresses o, will appear. If one regards the axial line of the contour 

of the segment as a ring, loaded with an even load where 6 — 

thickness of the segment, then the bending moment in this ring 

from such load will be equal to zero. Considering the above shown 

connection of the bending moment with function of stresses, it is 

possible to show that this function along the contour will be 
Then 

The first approach: (Pig. 194): 



6^, - 0,7319F, - 0,739F,+= 0, 
2Ä 

Pig. IS«. 

Prom these equations we will obtain 

., 10.850 , 0,664«»*» 
’—*s"+—»—• 

The minimum of this expression according to parameter ft2 

1,6£^* when r0»l,iyT?S. 

obtains 

As a result of the second approximation A« ^(Fig. 195) one 

(^-(^+1.25**) ±j/'^-0,24+0,633*«, 

The dependence of ç” on parameter fe is shown in Table 13. 

Table 13. 

* 0.5 1.0 1.2 1.5 2 

mu 
2.5 1.32 1.26 1,95 2.1 

b 

Pi 

si 

an 

d1 
is 

oí 

! 

ha 

ax| 

an 

sh 

fo 
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From this table we will find that 

Iî51\" = I *J6 when r0--2,4V^. 
VEW Lp 

A more accurate value of the critical pressure can be determined 

by an extrapolation: 

= 1-2 rfhen ro»i(«tp—2.8KW. 

§ 59. Rigidity of an Enclosed Spherical 
Shell Under External Pressure 

During the determination of the magnitude of critical external 

pressure of an enclosed spherical shell let us assume that its 

surface after the loss of rigidity is covered with identical pits 

and bulges, having a form close to a square. Such a form of a 

deformed surface of a sphere with small displacements, apparently, 

is possible, because at the time of the loss of rigidity the areas 

of pits and bulges will be small. 

Of course, one can assume that the pits and bulges may also 

have other forms, different from a square. 

By analogy with problem of rigidity of cylindrical shell under 

axial compression let us consider that along the contour of the pits 

and bulges the following boundary conditions will be realized: 

w—0, A’x=0, 

Af,=0, Ar,=0, 

Af, = 0, 

As is known from the solution of the problem for a cylindrical 

shell, these boundary conditions satisfy the following expressions 

for a deflection and for the function of stresses: 
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1 

1 

W—-A sin —sin 
a a 

<f = Bl sin2 — sin2 52.s¡n2 iîî£ s|n2 2JL _i_ 
a a a a 

+ Bi sin2 — sin» ?5iL-f fl. sin2^ sin» . 
a a a a 

près 

mame 

After the substitution of these functions in the equations (12.1) 

and after their integration by the Bubnov-Galerkin method as a result 

of the third and fourth approximations according to the function 0 

and with one and the same expression for w we will obtain the 

following value of critical str'-Ts: 

9«p=0,315£-1 

The experimental data according to tests on enclosed spherical 

shells is lacking in the literature. Therefore, it is difficult 

to say anything about how reliable the last formula is. If however 

one were to Judge from the formal criteria of the solution itself, 

completely basing it on the accepted formulation of the boundary 

conditions along the contour of pits and bulges, then one can hope 

that the obtained result is acceptable for the practical utilization 

and is not too over rated in comparison with that known in literature. 

low 

forq 

can 

to 1 

S 60. Rigidity of a Spherical Layer in the Case 
ot External Pressure 

Let us examine the question dealing with the rigidity of a 

spherical band existing under the action of an external uniform 

pressure q. In this case let us propose that the formed bands are 

symmetrical relative to axis y, and the sealing of the edges of the 

bands are hinged (Fig. 196). 

and 
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Membrane forces in the subcritical state of the shell can be 

presented by the expressions, obtained from the solution of a 

momentless problem: 

.Vo = ino ~ T) — *in* Qp 
f 2 slnJ(ao + f) ’ 

JSJi' — llL »'n-(an -t- T) -- sln^tta 
‘ 2 sin! (a0 + f) 

Let us conduct all further computations for a comparatively 

low spherical layer. In this case let us consider that the meridional 

force A'Jis considerably less than the annular A'®, and that one 

can neglect them. Force N°h can be taken as a safety factor equal 

to its maximum value when ^=-90-a#. Then 

1 
N°t*qR, W®«0. 

r The equations of th^ rigidity in this case will have the form 

vV?=^-v*tr, 

^-=0. 
on 

ure. 

By dividing the variables according to the formula 

w=W(y)cot^t 

9=/=-(^)005- 

and by converting to finite-difference equations, we will obtain 

+ -7-(^.+ ^-2^-0, 

- 2a, (F„+^,)+^.+^.=^- (UT,+^- a,«/,). 

Designated here is 
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b - size of a half-wave in a circumferential direct! 
of waves in the direction of axis x. 

on; m - number 11 

The height of the layer should be taken as the size l. Let us 

consider that along the contour of pits and bulges In a circumferential 

direction one will realize the following boundary conditions : 

M,~0, AV-O, AT^-0. 

Prom these conditions for the points along the contour and 

postcontour, we will obtain the relationships 

IT,-=0, W,^Wh FkmmQt Ff—F,. 

The first approximation (Pig. 197): 

W-» 
r~o 

Pig. 197. 

th 

di 

By excluding the functions F1 and w from these equations, 
will obtain for/VJthe expression 

P? .a tmw I 
EK et 

JiîhML ■ »„-„ay • 
From the structure of this expression it is evident that th. 

minimum of critical pressure exists when m « 1, i.e., when in 
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longitudinal direction of the band only one half—wave is generated: 

burins the analysis of the obtained expression let us consider 

that the spherical band is short. Therefore, one can expect that 

the parameter will be a large number, a fraction 

[ -Cr)’ r 
8 + 4 (tM It) Í 

differing slightly unity and can be approximately written as 

Designated here is 

For the determination of the least value q it is necessary to 

take the derivative in terms of « from the last expression and 

equate it to zero. Having solved the obtained equation in this case 

relative to x and by substituting it in the expression for q we 
will find 

/.«¿I - , * 1/ i '* J I’ , 1 (t) ! 
\ tit /3(1-^)* f 1 12(1-H2) 1 6(1-^) 

Analogous computations for the smaller grid at a 

(Fig. 198) results in a formula, found from the first 
step 6= C 

A 

approximation. 



1-1 
w*o 
F-O 

Fig. 198. 

§ 6l. Rigidity of a Spherical Shell from the Effect 
of Inside Hydrostatic Pressure 

As shown In § 17, during the loading of a spherical shell by 

hydrostatic pressure the circuiiiferential forces Af® can assume 

negative values. At a certain value of hydrostatic pressure these 

forces can reach their critical value and the shell can lose rigidity. 

For the determination of the critical pressure of the liquid let us 

consider that the Intensity of the Internal forces In the compressed 

zone of the shell can be determined by the formulas In § 18: 

where the minus sign indicates tension. 

cone 

u, a 

inte 

calcj 

For the solution of the problem of forces N* and let us take 

their maximum and equal value at the equator. Such an assumption 

is entered as a safety factor, and we will obtain a somewhat under¬ 

rated value of the critical stress. 

We will solve V. Z. Vlasov's equations by using the method of 

Bubnov-Qalerkin. By limiting the first approximation, let us use 

the following expressions for the functions of deflection and 

stresses : 
w ~ A sin* — slu , 

a ft 

T « ft 

These expressions pertain to one certain pit or bulge (Fig« 199)« 

Because of the symmetry of the load, all the pits and bulges will 

be completely identical in area. The sizes of their a and b will 

be determinable from the condition of the minimum of loading. The 

boundary conditions along the contour of pits and bulges : 

obta 
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' w—0, 

^=0, 
dx 

v—0. 

x—0 
x—a 

w~0, 

My ==0, 

#T av--= ^-=0, dxi 
d-> 

dxdy 
■0. 

y—Q 
y=b 

Fig. 199. 

The accepted functions of <(> and w satisfy these boundary 

conditions. Let us substitute the necessary derivatives from <p and 

u, and likewise the force yv® and N® in Vlasov's equations and, 

integrate them within the limits of 0—a, 0—6. After the appropriate 
calculations we will have 

B= - 
16£m| f,+(f)i i 

9a'/? 1 tt+id)' 
it [»+ (“-)*] 
-LilLla+ZM(f 

By excluding parameters A and B from these equations, we will 
obtain expression for 

YÄ» 2Vi(l +x)t 

12£i + 

a(M V'+^'O 

T*-1 
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Designated here Is 

q- 

12(1-1.*) ' 

The minimum of the given expression in terms of parameter y 
will be 

By attaching various numerical values to parameter x, one can 

be certain that the minimum for \R will be at large values of x. 

Within the limit (at x -► •) we will obtain 

The critical value of the hydraulic pressure under the level 

of the liquid, passing through the equator, is provided by this 

expression. 

5 62. Ri 62. Rigidity of Ellipsoidal Doughnut-Shaped 
Shellifrom the Action of Internal Pressure 

Ellipsoidal doughnut-shaped shells, used as independent 

constructions of containers or as bottoms of tanks, under a 

specified internal pressure can lose rigidity by wrinkling a circum¬ 

ferential direction. The loss in rigidity in such shells proceeds 

in zone of compressive annular stresses. As shown in § 1^, this 

zone can be determined by the condition 

In the same paragraph the expressions for stresses of and oi 
are obtained. 
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The problem on hand will be solved by the method of finite 

differences, considering that in this case the form of wave formation 

after the loss in rigidity, following from the experiment, consists 

of identical pits and bulges in the circumferential airection of the 

compressed zone of the cover. Therefore, a solution will be presented 

in the circumferential direction and of its rigid sealing in the 

direction of the meridian. V. Z. Vlasov's equations, expressed 

through finite differences, will have the form 

+ ^1(^+^-2^ 

/=-1+/-,-2^+5^- (F,+Fm-2Ft)+2Ü- [er * (l +-Í-5+5*)- 

-4(1+5)(^,+ W',+ 5^+5^)+^,+ W-',+5*(^+W'.)+ 

+25(r,+»'o+w'f+rf)]+/?lAr«orl+r,-2W'Ä)+ 

+^^0(^+^.-2^,)-0. (12.6) 

V 

Designated here is • 

Expressions for the bending moments and angles of rotation: 

^=-1-1^1 + ^+^(^ + ^)-2(1+^)^1. 

Mu = — (<i (U'', + Wf',)+5 (U",,+W'.) — 2 (5+J*) W7,), 

^.==+-(^,-^.), — -W'J. 
dx 2* ' 1 dy 2* ' " 

These expressions will be subsequently used in the formulation 

of the boundary conditions along the contour of pits and bulges 

(see Figs. 201-20^). 

Let us obtain the boundary conditions for the function of 

stresses from the solution of the following system of equations 

relative to the additional stresses, which we will assume to be 

equal to zero along the contour of pits and bulges; 



By considering these conditions as differential equations, we 

will obtain (see § 57) 

/\-0, F, 0, Fa—F„. 
« 

Let us examine the compressed zone of the eliptlcal torus 

(Pig. 200) and set up equations (12.6) for the proposed pits or 

bulges having sizes and ¿2. 

Fig. 200. 

The sizes of the dents during the tests of such shells usually 

are small, and therefore, one can assume that the radii of curvature 

and of stresses in zone of these dents - constants, equal to their 

corresponding values on the external contour of the torus. Such 

an assumption is applied as a safety factor during the determination 

of the critical value of internal pressure. 

1) The first approach (Fig. 201): 

* 1-(7-)1-j. 

»uf« ütr. 
2fft 1 Mi 

By excluding and from these equations, we will obtain 



y 

ire 

on 

'> 

Pig. 201. 

Designated here is: 

By considering the size of the dent as a parameter in the 

obtained expression, let us find the relative minimum of pressure q 

with respect to /| : 

iRna* 

EM 
0.855»/Si fr+'t* 

The calculations, conducted, based on this expression, show 

that the least value for q is obtained at rather large values of 

parameter Ç. Therefore, in the right part of the last expression 

one can disregard unity in comparison with £, and in comparison 

with iQt- Then 

fa* 

EM 
0,855 

Qrf« 
or 

ff1 : 0.855£M 

The second approach (Fig. 202): 

Let us set up the equations (12.6) for any of the points 1. 

In this instance we will obtain the following expression for f«»: 
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§ã* tH i . w* i 
2£l*“ Qt + IQi I 4(1 -K)ÍT ^0 <*1--r 3P)i^ J * 

. -J 

Plg. 202. 

An analysis of this expression, conducted by an analogy with 

the case of the first approximation, leads to the following formula 

for the second approximation: 

ill: 0.7gM 

K-MŒ-'M* 
By not introducing bulky computations for the third approximation 

(Pig. 203) 

let us write out the final result, obtained by analogy with the 

result for the two first approximations: 

0.574£M 

Fig. 203. 

The subsequent, fourth approximation can be obtained by 

extrapolation: 
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or finally 

fc,.*«,,- 0.267*«,- 2,3U*» + 3.048*1» 

7iiP.»iieTi™ ““ 
0,351 A* 

(12.7) 

h 

ula 

.nation 

When r0 ■ 0 we will obtain the formula for a shell in the form 

of an ellipsoid of rotation, existing under the action of internal 

pressure: 

o,.men (12.8) 

Hekkeler’s formula which occurs rather extensively in the 

literature has the form (in our designations) 

4« 
1.21 en 

(12.9) 

In recent years a formula was proposed by Kh. M. Mushtari and 

V. I. Ko^Xev 

By comparing the formula (12.10) with (12.8), we will see that 

they agree according to the structure and can be distinguished only 

by the coefficient. Hekkeler's formula (12.9), as noted by Kh. M. 

Mushtari and V. I. Korolev, was erroneous. 

Because the same boundary conditions along the contour of pits 

and bulges were used in obtaining the formula (12.7) that were also 

used during the investigation of the rigidity of a cylindrical and 

spherical shells whereby the obtained formulas will agree satis¬ 

factorily with the experiment, then the given formula, apparently, 

will also give satisfactory results. Therefore, the formula 

(12.8), obtained from (12.7), likewise will give satisfactory results. 

The formula (12.10), however, was obtained under more rigid boundary 
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conditions along the contour of pits, and therefore, the results of 

calculations on It will be over rated. 

In the case of an ellipsoidal torus (Pig. 20*0, elongated in 

the direction of the vertical diameter the formula for the 

critical internal pressure assumes the form 

O.ttAStt 

Pig. 204 
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CHAPTER XIII 

RIGIDITY OP SHELLS OP ROTATION UNDER LOADING 
OP AN AXISYMMETRICAL LINEAR LOAD AND 

WITH INTERNAL PRESSURE 

S 63. Rigidity of a Cylindrical Shell Under Loading 
of an Axlsymmetrlcal Radial Linear Load and 

with Internal Pressure 

In Chapter VI certain problems with respect to the calculation 

of shells of rotation under loading of a linear axlsymmetrlcal 

load were examined. Por a certain value of forces acting on the 

shell they can lose rigidity in the compressed zone. During the 

determination of the critical value of these forces let us consider 

that the shells are under the action of internal pressure. 

1. A cylindrical cover under a load according to Fig. 205 for 

Internal forces, we will have the expressions 

Pig. 205. 

The minus sign indicates the fact that the stress is tensile. 
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For the solution of this and all subsequent problems of this 

chapter we will make use of the Bubnov-Oalerkln method. In order 

to obtain the approximate solution, let us consider that the 

deflection of the shell after the loss In rigidity with respect to 

variable x coincides with the corresponding expression of the 

subcritlcal state 

w—Aar*(itnkx+ca**x)coni».. (13.1) 

Let us use the function of stresses in the form 

s!n Ax+cos Ax) cot «I. 

Prom the expression for w It Is evident that the deflection of 

the shell after the loss in rigidity diminishes In proportion to the 

distance from the place of application of the load and it Is a 

periodic function of angle 6 In the circumferential direction, l.e., 

the shell after the loss In rigidity in the region of application 

of the load of signs assumes a form, corresponding to Pig. 206. 

From this figure It Is evident that the surface of hole because 

of the axlsymmetrical nature of load P will possess the feature of 

symmetry relative to coordinate x ■ 0. Therefore, It can be said that 

when x ■ 0 there will be no tangential stresses In the shell after 

the loss in rigidity. Making use of this circumstance, we can 

determine one of the parameters of A In the expression from the 

condition 

Hence 



Then, the function of stresses assumes the form 

?--- co* kx) coa ni. 

Having substituted these functions in V. Z. Vlasov's equations, 

after integration them, we will obtain 

By excluding parameters A and B from these equations, we will 

find that 

fip 
5£* 

(W- jr (—12 + 4* + Sx*) 

T £4 T 2* * 

+ -ií±i±i¿.+ 

where 

In certain cases the axial thrust is /V*-0. Then, by discarding 

tifce last component In the given formula, we will have 

*P /ftfrxi,._4_ , -12 -f 4x -t- 3x* , SfUm 
5£* 1 r x(-12 + 4x + a«*) T 4r T £» * 

A graph of the function is presented in Pig. 207 

/(*)= 
—12 + 4* + Sx* 

x<— 12 + 4x + 3x*) 

From the second branch of this graph it is evident that the 

least value of function /(a) it is equal to 1.135. Then 

P.,-0,444ffi j/jTj1 (13.2) 

when 



In order to take into account the force V* in an axial direction 

from the internal pressure, one should make use of the formula 

liTr jm~ 12 + 4* + a**) T 
. —12 + 4* -t- S** . 
+—z-^ 

+^.(4,90+1^). 

With the solution of this problem in the second approximation 

for function of stress 4 one could use the expression 

f ■» Ä^"u(«ln *JC-f cos kx) cos nt -f- 
+ Bte~Ut (sin 2*jc+cos 2kx) cos «I. 

In this case the previous expression (13.1) was used for «. 

the critical value of force P in this instance 

For 

«P 
5£» 

(/?*)»> 
•¡?/»"/r-a/»+ u f* 

2JÄW 4 

- + /• + 

£» £»x 

where 

/.- 

/. 

JS+1«jL+T£S ^ ^24 + 2^+4-^, 
15x 16 T 5 • 
* . * 3 , * 4M , Ifix , 7j** 

— 3+X+ 4 JC«, /4»« 15+ is **■ IS ' 
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‘YJ— axial force in the shell. If this force is created by internal 

pressure, then JV« --- LqR, 

By inserting in the given expression and by determining 

the minimum expression obtained in this case according to parameter 

X, let us find the value in the second approximation: 

1,940/? j/~ when * = 1.72 

From the comparison of the two approximations it is evident that 

with a sufficient degree of accuracy it is possible to only limit 

the first approximation. Therefore, the solutions of the problem, 

given below, apply only to the first approximation. 

2. Let JXB examine the oas* of a lot» in rigidity, when the 

deflection of all holes are turned to the center of the curvature 

of the shell. Or^ can obtain such a form of loss in resistance, if 

an infinitely long cylinder is fitted on the outside of the cover 

without clearance. Then the waves, which are generated after the 

loss in rigidity, will be turned towards the inside of the shell. 

One can express the form of the deformed surface of the shell 

approximately in the expression 

w = Ae~u (sin ftx+cos fcr) cos* «•. 

Although this expression does not completely satisfy the 

Imposed requirements of uniqueness of the deflection along the axis 

of the shell, because function r-*s(sinJkx+cosfcr) bears vibrational 

character, the branch of this curve, containing the greatest amplitude 

then, will be turned towards the inside of the shell. 

Let us take for function of stresses the expression 

? = Zte“**(*ln kx+cos kx) cos1 *1, 

which reverts tangential stresses to zero when x ■ 0. The uniqueness 

of the stresses at an angle 0 is considered to be the square of the 

cosine. By eliminating all intermediate computations, analogous to 



the above examined case, let us present the final results for the 

critical value of force P (In this case, the axial force N\ equal 
to zero): 

j/y when a-1,29 j/'ï. (13.3) 

By comparing the formulas (13«2) and (13<3)i we will see that 

the imposition of constraint on the form of the deformed surface 

has resulted in an Increase in the coefficient in the first member 

(13*3) by 5*5 times. 

3. Let us examine the problem dealing with thé rigidity of a 

cylindrical »hell, loaded according to Pig. 208, with an Internal 

pressure q and an axial tension N\ in its presence. 

Fig. 208. 

In the subcrltlcal state of the shell we will have the following 

expressions for the internal forces: 

N\- -Aft 

Nl—mRk*e-uiinkx—qR. 

For the functions of deflection and stresses we will take the 

expressions 

• _ A«'** *111 Ax cm «I, 

9M«-»' (B, ain hx + St cos Ax)cm st. 

Considering the character of the load and the expected form of 

deformed surface of the sliell after the loss of rigidity from 

moment m, we will see that when x ■ 0 the additional normal stresses 

am should pass through zero, and so forth. 
X 



Prom this condition we will find that • 0. By eliminating 

all the intermediate computations, connected with the integration 

of Vlasov's equations according to the method of Bubnov-Qalerlcin 

within the limits 0—oo, 0—2.t. let us write down the final result : 

where 

■ 4?_ (/fo)«--1-L.-4 + 4* + Jf> 
MEiR ' jt (— 4 + 4jï + jr* T Am 

^ £4 ^ »jr ’ 

+ 

The minimum of the given ex^erssion when A^a>0, (4--0,3 

I*+2,289/?4 when 

If the axial force N* is not equal to zero, then the critical 

value of moment m can be determined from the above given complete 

expression by means of its minimization according to parameter x. 

-•Y?. 

4. From th» expression for it is easy to obtain the formula 

for the critical value of angle 6q (Fig. 209) taking into account 

the internal pressure q and the axial tensile force N*. 

Fig. 209. 

In this instance the expressions for force and the deflection 

u in the subcritlcal state coincide with the analogous expression 

under a load of the shell by a distributed moment m. From the 

comparison of these expressions it follows that m=-4D*0o, whence 



By substituting mKp in this expression when Aß=0 we will obtain 

From this formula it is evident that when q m 0 the critical 

value of angle 9q does not depend on the elastic constants of the 

material of the shell. 

S 64. Rigidity of a Spherical Shell Under Loading 
by its Axlsymmetrlcal Linear Load and 

by int rnal Pressure 

Under loading of a spherical shell according to Fig. 210 in 

euboritioal state the following expressions for the internal forces 

are: 

N\- - Atf+*->♦ co* fttgfc 

A7J- _ítíL+ô.e-M(,in^+cosW). 

where 

Fig. 210. 

Here, the minus sign indicates the presence of stress. For 

the solution of the problem let us assume that 

• ft+co* ft) cos at, 

? (sin ft -f cos ft) co* «I. 

The expression for w based on the structure coincides with 

the expressions for tg in the subcritiaal state. The expression for 

t satisfies the condition 



By substituting the corresponding derivatives from the 

expressions of <|> and w in Vlasov's equations and by integrating 
them according to Bubnov-Galerkin's method within the limits through 

ÿ from zero to through 0 - from zero to 2tt, we will obtain 

„ E>.R \ fî* -t- 1.5"1) 

B=s—7~ s ' 2f_3?4 + S»n»+ -j- »Hl 

_i(V+1.5n>)+^X 

• . 

By excluding parameters A and B from these equations, we will 

have 

pp 1 r (i 4-1.5*)«  I »-114- 4» + 
£i “o.lr-/ I -l2 + 4or + S*» » 

+Jffi.(, + l,IU)], 

where 

/=» —J* e~*^cos^»co«2^tgÿtfÿ. 

According to Simpson's formula the value of the last integral 

will be 

(IQ M 

1.66e- ' coi^ cos^+.sr^coi f co. ^ + 

H» \ 
H- 9,66e” ^co, ™ co. y + 1255,8 *~ ^ co. a? coi y j. 



The meridional force/V„which appears in the shell from the 

action of load Pn, is considered in this expression. The calculations 

of the values of f are presented in Table 14. 

labia lii 
! 10 30 50 90 

N ‘ 
/ 0,5-10-tf 0,7.10-W 0,0-10-M 0,13-10-141 

The table shows that component / in the denominator of the 

fraction in front of the squared bracket can be ignored in comparison 

with 0.3*, because the latter will be considerably greater, than 

/ (by several orders). Then 

FP — (1 + 1,top ia+lr + ajri, yW /, - , 1 \ 
•£» 0.ar(-12 + 4jr + Âi*) ^ 4.1« i'l,2£4 V’ ^ «/* 

If in this expression we consider only the annular stresses 

from the internal pressure, then, by eliminating the component 1/x 

in the last member, we will obtain 

/y i) • (! + ».»«)« . -12 + 4« + a* . 
£» 0,3« (-12+ 4« +3«») 4,0« ^ 

The minimum of this expression in terms of parameter * is 

when 

If it is necessary to also take into account the meridional 

component of stresses from the internal pressure, then on should 

make use of the complete original expression, by determining its 

minimum according to parameter x. 

e 

Under a loading of the sphere by a distributed moment m according 

to Fig. 211 for the internal forces we will have the following 

expressions : 



ons 

son 

V 

ii ng 

For the approximate solution of the problem let us assume that 

w—Ae-M sin cos «I, 

<p= Be~9* sin Jtycos «•. 

These expressions satisfy all the necessary kinematic and 

statical boundary conditions along the contour of pits and bulges : 

«»0, 
Mm *=0 

.,-2-°. r 
After the substitution of the accepted expressions for deflection 

and function of stresses in Vlasov’s equation and their integration 

according to the Bubnov-Galerkin method within the limits 0-» and 

0-2it we will obtain the following value for the moment m: 

mf* I r (2 x)i -4 + 4* + * .1 
2£»Ä 18 (— 4 -f 4-r -t- x>) ' 32 ' 16« ' T 'j’ 

15 +/ 

where 

•i* 
f—j (sln* cos ft + cos* ft s,n ft) 

After the calculation of this integral according to Simpson's 

formula one obtains 

N 

I 
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/ X . 

*sí"(t+tH"t+ 
»«» 

+2,- < sin(i+i)slnf+ 

-1- 9,66e ‘ sln ^ -f -2.) sln + 

n> 
+1255,8«** * sin ^ + -2-J sin n¡i|. 

The meridional force <VS, appearing in the shell due to action 

of moment mi<pis considered in this expression, Just as in the case 

of the action of distributed force P. The calculations of the value 

f for the various 8 shows that Just as in the preceding case, they 

are by far less than the expected value of parameter x. Therefore, 

the value f can be ignored in the comparison with *• Then 

iS« _15(2 + *)» . 15(-4 - 4x + *») ■ 15^/. , 2\ (13.4) 
2£»Ä Sx (—4 + 4jt + jr*)"1” 32* r l«£* \ ^ x I’ 

If in this expression we discard the meridional component 
of stress from the internal pressure, then one can obtain the 
following formula for the critical moment 

mt* 15(2 + Jrp 1M-4 +4* + *») ■ 18f£g 
2ElR Ijt (—4 + 4j» + j»*) ' 32Jt 16£l ’ 

The minimum of this expression in terms of parameter x will be 

equal to 

mH¥—2,57 ~ 4-1.13f/?& (13.5) 

when 

«=2,04 

For the determination mup taking into account meridional 
component of stress from tjie internal pressure one must use the 
complete expression (13.4), by determining it minimum according to 

parameter x. 
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If the loading of a spherical shell is carried out according to 

Fig. 212, then the formula for the critical value of angle 0O can be 

obtained from the results of the example, given on page ^07 by 

using the dependence 

»o- 
mR 
4D? 

Fig. 212. 

Then when using, for example, the formula (13.5) we will obtain 

the expression for 6#,,, 

(/5+¾2 /?• 

N 

§ 65. Rigidity of a Doughnut-Shaped Shell Loading 
Tnem with an Axlsymmetrlcal Linear 

Load and by Internal Pressure 

A doughnut-shaped shell under a load aooording to Fig. 213 for 

forces JV® and A® of the subcrltlcal state we have the expressions 

- A^+Y«-»*cos^tgi, 

to 

Fig. 213. 

^12 
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As can be seen from the previous paragraphs of this chapter, 

the method of the solution of the investigated problems are very 

uniform. Therefore in this case let us limit ourselves to the 

summary of final results. 

For the investigated case the expression for has the form 

y»-»* __ (i + i.8m« . 
10*1*, 4jt(—3 -r Y*J» + O.15VV0) ^ 

i ^3j^j2£i®i2ïî£L4. i 
T ijf T 2*»*i«i’ 4*» • 

where 

In the ease of an elliptical torus 

#1--7-. V 
*, «(/*+•)’ 

the 

If the torus is circular in cross section, then 

»-¡TV «'’T- 

In the case of a sphere 

A torus under a load according to Fig. 214 

Aft- “ Art+5J- *-» (*ta K+co. 

AT*-- Art-i-^e-H.ln?». 

Then , 

SSWA, Jr <—4 + 4rjf f V4Jr») ' 

, - 4 + 4V*jt + V«jri . 2^*»»* • Art>* 
+ C ««fr+ m • 
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A shell under a load according to Fig. 216i the expression for 

the critical value of angle 0q can be obtained from the relationship 

Pig. 215. 
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c H A P T E R XIV 

RIGIDITY OP FRAMES, ATTACHED TO THE SHELL BY LOADING 
THEM WITH A LINEAR UNIFORM LOAD 

During the construction of tanks and other containers, 

consisting of a shell of various geometrical form at the places of 

their overlap rigid elements - frames are usually placed; these 

absorb the bracing forces which appear in the section of the Joint 

of the shell during the action of internal pressure. For a 

certain value of this pressure the bracing forces can attain a 

magnitude at which the loss in the rigidity of the frame is possible. 

In this chapter problems based on the determination of a 

critical value of the internal pressure in the tanks, at which the 

loss in the rigidity of the reinforced frame is possible are examined. 

The obtained formulas can also be used in the case when frame 

is loaded by a distributed load of some other origin. 

5 66• Rigidity of a Frame of a Lenticular Container 

Let us examine a linticular container, loaded by an internal 

excess pressure q (Fig. 216). 

From this figure it is evident that the linear forces S± and S2, 

applied to the frame from the bottom side, compress it, and at a 

certain value of internal pressure q the frame can lose rigidity. 

Subsequently, the loss in rigidity of the frame only in its plane 

will be considered. 

415 

form, 

surf? 

gravi 
I 

The t 

where 

and 7 

work^ 

compc 

q on 

below 

attac 

are g 

frame 

the tí 

I 
i 

value 

espeo 

the i| 



Pig. 216. 

For certainty let uc consider that the frame has rectangular 

form in cross section, and line of intersection of the average 

surfaces of shells 1 and 2 coincides with line of the centers of 

gravity of this frame. 

Problem on hand can be expediently solved by the energy method. 

The total potential energy of the investigated system is 

3=i/j* >+1 'ii‘+V™+v%+v\M+r. 

where V - energy of deformation of the shells Vcp, W* and ring Vmm, 

and T - work of the external forces. During the computing of the 

work of the external forces let us consider only the work of radial 

components of forces Sx and Sg, and disregard the work of pressure 

q on the deflection of the shell. 

Furthermore, during the solution of all the problems considered 

below let us base it on the fact that the loss in force of the shell 

attached to the frame, bears a local character. The pits and bulges 

are generated only in the narrow zone, which is adjacent to the 

frame. Hence, let us consider that in this case the apparatus of 

the theory of gently sloping shells is applicable. 

The results obtained under the above shown assumptions provide 

values for the critical forces as a reserve of force that is 

especially important during the analysis of the bearing capacity of 

the investigated complex systems. 
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In the developed form the expression for the total energy Is 

written so: 

+^nfe),+(^)'+2f ^ V+s 0 

• +?Ti^+^"+fT(^+^)^ 
In this expression the first two integrals determines the 

strain energy of the shell 1, third and fourth - strain energy of the 

shell 2, fifth - strain energy of the frame. The last integral 

expresses the work of compressive force S, equal to the projection 

of the linear forces and Sg on the plane of the frame. 

For the connection of the functions of stresses and $2 with 

the deflections of the shells w1 and »2 the equations of compatibility 

of deformations are used: 

El, (»Wj , àCWj \ 
R, \ difl ‘ ir* I 

Ri V àx* 

Because the deflection of pits and bulges diminishes in 

proportion to the distance from the frame, then in uhe expressions 

for the deflections and functions of stress of covers 1 and 2, this 

must also be considered and by limiting ourselves to only the first 

approximation, let us assume that 



le 

lity 

w, = (sin v cos ;í,9) cos nO, 

Wj »= (sin J»,? 4. cos 3,9) cos «•, 
?i—Ce“,,f (sin 3,9+cos ?,9) cos «•, 
ft=De-h* (sin p,9+cos ?j9) cos «•. 

In these expressions, the coordinate 0 is counted off Just as 

shown in Pig. 216. When ¢-0 the projection of deflections w1 and 
w2 on the plane of the frame should be equal to one another: 

4 sin 9, =*£ shift. (14.1) 

Furthermore, designated here is: 

?i= 
V 

3(1 

- 

3d-n*)^ 

T 

The expressions, accepted for the functions w and ¢, agree 

with the analogous expressions, obtained with the solution of the 

problem of the edge effect. Analogous expressions were used in 

5 64 during the determination of the critical value of the linear 

loads P and m for a spherical shell. After the substitution of the 

corresponding derivatives from the functions w and 0 in the 

expression of total energy and after the calculation of the integrals 

we will obtain 

.TC* 0>t+fl2ís?+0.75//<). 
2A?P: 

+0,75««)+ 

nOi 
2Ei¡R^ tâ+nr& +0.75««)- 

nOjflî /C|4 
2Aÿ, 

$+«$+0,75««)+ 

. nEJA- (n-— 1)¾ >in?y| nSAUtf— I) 
i- 2P*? ‘»o 2/?« 

Let us obtain the connection between the parameters C and A, D 

and B from the equations of compatibility of the deformations after 

their integration according to Bubnov-Galerkin method: 

C= 

D- 

C>.iM (2?? +3«») 

—“1-1| -i- 4ji}n2 -t- 3/i4 

EW B (23^ + .1/1¾) 

—I2>J 3«< * 
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After using the relationship (14.1) and (14.2), the expression 

for the total energy assumes the form 

proje 

inter 

Designated here is: 

AT, + 0.75«4, +0,75/1«, 

2?* +3n* 
obtai 

Q _ r| _ 
V‘ -I2?Î+4<iî?Î+3»H ’ 

Let us first apply the expression to the obtained energy of 

virtual displacements, according to which under conditions of 

equilibrium the sum of the work of all forces, applied to the given 

body for virtual possible movements, should be equal to zero, i.e. 

63-0. 

From this condition we will find that 

of tí 

formi 

forc< 
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(14.3) 
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R„- radius of the frame (ring). 

If the linear load P, acting on the frame, is made up from the 

projections of forces and 52» appearing in the bottom due to 

internal pressure, then 

P=5, cos ft+Sjcos <pj = qR' 
/?; CO* T 

Äj CO* f|/ 

Here q - intensity of the internal pressure. 

Then for the determination of critical internal pressure we will 

obtain the formula of the form 

X 

(14.4) 

The entire set of problems based on calculation for the rigidity 

of the frames, which reinforce lenticular container is embraced by 

formulas (14.3) and (14.4). These frames can be loaded by braced 

forces from internal pressure or by a distributed linear load of 

some other origin. 

In those and other cases the given formulas allow for the 

determination of critical values of the shown loadings inasmuch as 

these loads will be somewhat under rated for those containers, which 

differ from a complete sphere by virture of the safety factor. 

§ 67. Rigidity of the Frames of Cylindrical 
Containers having Spherical Bottoms 

Figure 217 represents a diagram of a cylindrical container with 

a spherical bottom. Because the container is under the action of 
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Pig. 217. 

Internal pressure, then the frame will be loaded by a distributed 

compressive force from the bottom side, equal toáico>9i, and by 

forces of the fringe effect, which we can subsequently Ignore. 

Por the solution of this problem let us employ the energy method, 

used in the previous paragraph. 

Por the components of deflection and for the function of 

stresses In this case It Is possible to assume 

«i » At'*1* (tin fc?+«o« M)co* 

Wf Be-*»* (sin ¿»x-f co> Jk*x) cos si. 
t,—Cf»** (sin fcf+cos f,?) cos ai, 
y,—Df-*»* (sin M+COS M) cos si. . 

Here 

The remaining designations are the same as those in the previous 

paragraph. 

Let us eliminate the intermediate computations and limit 

ourselves to the presentation of the final result: 
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Here S - the force in the transverse section of the frame. 

If the frame is under the action of braced forces, caused by 

internal pressure, then in the left part of this formula one ought 

to substitute 

Sup _ÇkiR] CO» fi 
Ri 2 

method, 

revious 

1^.5) 

In this instance we will obtain the formula for the determination 

of the critical pressure in the tank, at which the frame loses 

rigidity. 

5 68. Rigidity of a Frame which Reinforces 
the Cylindrical Part of the Tank 

In certain cases the cylindrical tanks are fitted with frames, 

spaced from the bottom, which during operational use can be loaded 

by a uniformly distributed compressive radial load. Let us determine 

the critical value of this load. 

Figure 218 represents a diagram of such a container. For the 

solution of the problem let us employ the same methods as those in 

the previous paragraphs. For the functions of deflections and for 

the function of stresses let us use the expressions 

w,=Ae-*'* (sin cos *,jc) coi ni, 

Wj=Be-** (sin k^x -(- cos k^x) cos /i9, 

?i=Ce-*'x (sin #,jc f cos kxx) co$ at, 
<fi—De~*‘x (sin k^x -f cos k¡x) cos at. 

Fig. 218. 
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When ä » 0, should be equal to Hence, It follows that 

zi » Æ. The result of the solution of this problem can be written 

based on the analog In the previous paragraph, where the coupling of 

a cylindrical shell with a spherical one was considered. For this 

purpose in the formula (14.5) one ought to substitute k\R\ in place 

of Pi and set * 90°. Then 

5.0 BJ («* — 1) 

Ä, R3, 
g», 

4Ä|*i (nJ-l) 

r. . i 1 -L *1*1*3/ n n! n* y ' Äl*2»l\ 

+0.75 -¡BtU' + --^ ' .'Y 

Value of a linear load will be found from the relationship 

S 69. Determination of the Effective Width of 
a Shell During the Calculation for the 

Strength of Isolated Frames "" 

Formulas (14.3)-(14.5) are valid only within the limits of 

proportionality. If the critical stresses in the frame will be 

higher than the limit of proportionality, then such a frame can be 

considered an Isolated ring. 

For such a calculation it is necessary to know, which part of 

the adjoining shell will operate in conjunction with the frame. 

One ought to take into account this part of the sheathings during 

the calculation of the isolated frame. First, let us examine the 

work of the cylindrical shell which is adjacent to the frame. Let 

us assume that the permissible deformation Eq are accepted for the 

frame. Then, for the deflection of the cover we will have the 

expression (as Fig. 219) 

w = to*“*' (sin kx + cos kx). 

4?3 



Pig. 219. 

which is obtained from the general formula for the deflection of an 

infinitely long cylindrical cover, loaded with edge by force Mn and Q 

(§ 26): 0 0 

ta — 1 (Jo cos kx -f MqM (cos sin kx)\,. 

if ig and Mg are determined from the conditions 

\ 
We will regard the effective width from the condition of equality 

of the energy of deformation of the shell, which should be adjacent 

to the frame, and regard the energy of deformation of the effective 

width of the cover, which should be included in the work of the frame 

during its calculation as an isolated frame (Fig. 220). 

The strain energy of the shell, adjacent to the frame (Fig. 219), 

will be equal to 

3« y/jf rfi -f 

I ffMP PC.. ""îTîT-i»*) J J W 
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where 

Having substituted here the accepted expression for w, after 

Integration we will obtain 

4(1+"Í2(Í^?)ÂI (W+-—iW). 

The strain energy of the shell In the section of effective 

width (see Pig. 220) is 

•>*«+ 

where 

Then 

1-,4 11(1-1«)* 

Prom the condition 3,-3, we will obtairi when y - 0.3 

The expression for a*‘t can also be obtained. If we base It on 

other prerequisites. Let us select, for example, such an area of 

a part of the shell attached to the frame, so that It could be 

transferred the same as the circumferential force, acting in the 
shell: 

"■ £*V**(*ta to+coste)' 

The total circumferential force 

On the other hand, for the connected part of the shell one can 
write the relationship in the form 



Qi — EF ti •■= 

Because according to the condition 

Ql-Q^ . 

then 

0,785 yT&. 

Now let us examine the determination of the effective width 

of the shell for the case of coupling the frame with the spherical 

shell. In this Instance the expression for the circumferential 

force has the form 

JV'-ftipr-iMslii ft+C0S ft)- 

The total force in the section of the shell is 

On the other hand, the total force, acting in the section of 

the connected part of the cover, is determined in the form 

Qi-Æ^H— 

Prom the condition that ■ Q2, we will obtain 

e*-0,785 

can 
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CHAPTER XV 

RIGIDITY OP REINFORCED SHELLS 

Reinforced shells are widely used in various engineering 

construction. 

Subsequently we will consider only those shells, in which the 

superstructure is located along the lines of the main curvatures. 

Such shells are called orthotropic-structural shells. The methods 

of calculating such shells are based on the well worked-out methods 

of calculating Isotropic shells. For this purpose one usually 

substitutes the reinforced shell with a certain equivalent, having 

a smooth shell with different hardnesses along the lines of the 

main curvatures. After Introducing this for the calculation of an 

orthotroplc-structural shell one can use the calculation apparatus 

of the theory of smooth shells. 

I 70. Dérivation of the Expressions for the Given 
Rigidity. Hooke’s Law for Reinforced Shells 

Let us examine a cylindrical shell, reinforced in axial and 

circumferential directions by stringers and frames. Let us replace 

this shell with a certain equivalent such as a smooth shell. By 

the word "equivalentM is meant the equality in rigidity of the 

reinforced and smooth shells. 

• 

Rigidity under tension-oompreaeion in an axial direction. 

Force P acting on a smooth shell under compression in an axial 

direction does work, equal to 
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where AZ - shortening of the shell, but 

FBt 
PI 

Tnfiie, ’ 

Then 

A ^ 
‘ TnAAE, ' 

With the compression of the reinforced shell by force P, a 

part of this force will be absorbed by the stringers P and a 
CT p 

part - by the sheathing PQÖ. In this case force P does work, equal 

to 

But 

ttÿ^ctÿ 
p*i 

r+t* * 

Then 

■(- \P«i 
p* 
F+B* 

should be equal to A2, or 

_Yrn-u. (15.1) 
2nRlEM Fctpffi, P«éP*# 

Having in view that 

A/w>-A/¿s 

p ^ ^jrPçfL 
F,.t£,4 nFtrfFtjß 

F«eH 

** i j_ "PtipBtip 

from these conditions 



Having substituted the values P and P „ in (15.1), we 
crp oo 

obtain 

In moat cases Pofl ■ PcTp ■ Et and the expression (15.2) is 
simplified. 

Dêtirmination of thé rigidity undor teneion-oompreeaion in tha 

oirounfarantial direction. In the determination of rigidity in a 

circumferential direction it is possible to make the assumption 

that the shell is under the action of a uniform internal pressure qt 

which produces work 

Ai-qáV, 

where AV - Increase in the volume of the shell, equal to 

xV=[n(R+wr-nRi)l*s2nWw. 

But 

whence 

Then 

Consequently 

B, B¿' 

At/-_fawy 

In the case of a reinforced shell, pressure q accomplishes 

the work 

At—q0t\V ot + 

where - the force, being exerted on one frame; a - 

distance between frames; 



I 

Then 

rmcm 

7«Ä*/f*4 , 2nmÄ*aifJ, 

A,^~^r+ eÏÏT- 

Just as in the first case, should be equal to ytg. Furthermore, 

By eliminating all the intermediate computations, let us present 

the final result 

e'“M1+w)- <15-3) 

If material of the sheathing and of the frames is identical, 

then E- » £ • E. 
00 w 

Détermination of the rigidity to ehear. During the calculation 

of orthotropic-structural shells it is considered that only the 

sheathing takes part in the work of shear. Therefore, let us assume 

that 

G 
2(1+1*)* (15.4) 

Determination of the specified rigidity to bending and toreion. 

Flexural rigidity for a reinforced shell can be determined in the 

following form: 

12(1 —1**1*») ' «CTP 

' 12(1 — fttPf) 
isim. 

« 

where J and J - moments of inertia of the stringer and frame; 
CTp LU 

a , a - distances between the stringers and frames, 
crp ’ w 
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As a safety factor the moments of inertia of the stringers and 

frames are commonly calculated relative to their own axis. 

The specified rigidity under the twisting of a reinforced 

thin-walled shell is usually assumed without allowing for the effects 

of the superstructure according to the expression 

By having the expressions (15.2)-(15.4) for Young’s modulus 

and for the modulus of normal elasticity, it is possible to write 

the relationships for the deformations and stresses according to 

Hooke's law 

The expressions for the linear forces and moments will have 

the form 

Aft= -0,(fc+n,*,), Af*» -20,30,. 

(15.5) 

The components of deformation and change in the curvatures 

are determined by the formula 

t «ÍLxiü 
" Pt ' dx' (15.5’) 

“ #F’ dxdy ' 

i*» w dl« 
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Furthermore, the following relationships are valid: 

D#y=D#x. (15.6) 

These relationships can be derived on the basis of the 

following reasonings. 

Hooke's law in the biaxial strained state of an orthotronic 

body has the form 

®0=Cniy -)- 

Let us examine the case, when a * 0: 
y 

1L=V=-Çlt 
•« # Cn 

and for stress we will have the expression 

where 

If cj • 0, then 
X 

£•_c —.—l! 
E'C"c¿‘ 

•f ' c„ 

and the stress a will be determined in the form 

where 

Let us set up the products 

E *=*C ¢,-0,-J. 

^î* 

^v,—C„4- 

CiiC» ’ 

CnC« 

^32 
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Because the right sides of these expressions are equal to 

each other, then hence the equality (15.6) follows. 

5 71. Differential Equations and Boundary Conditions 
for the Calculation of Reinforced Shells 

Por the derivation of equations of the equilibrium of reinforced 

shells let us employ the energy method. 

The expression of the total potential energy of the shell has 

the form 

• • • • 

Here through a and b the sizes of the shell are designated. 

By representing the expression for 3 through the components 

of displacements u, v and u, we obtain 

Hh «*. V» W, wtjn ww, wM)dxdy, 

where 



I 

ced 

Because the equilibrium conditions are considered, then the sum 

of work of all forces, acting on the shell, on the possible concordants 

with relationships to displacements, should be equal to zero, i.e., 

¢3-0. By satisfying the condition, we obtain 

• « 

OWmm 

After the Integration of each component of this expression in 

parts, using the relationships of Hooke’s law (15.5), we will have 

•3“ -|(2«-)!«»]! - ([(^+2^)^- 

- ([(^+8 \ 1 lN„lv\¡dy+ 
® • « 

• • •* 

0 0 0 0 ' • 

, , .»f,. .if, , N. . N. \ _ . . 
+ ^-^+-^+-^+-^-^)^^-0- 

Prom this expression, as is known, one can also obtain the 

differential equations and the boundary conditions of the problem. 

Inasmuch as variations 6u, 6u, Su are arbitrary, then from 
the condition of equality of the variations 63-0 to zero it 

follows that 

OX Off Oy OX 

M +^^+-^-+*f+¿r+»rí-*f-« o. 
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Each of the remaining nine components of the variation of 

total energy should be converted to zero at the points of the 

contour of the shell. They determine the boundary conditions of 

the problem. 

By means if the introduction of the function of stress $ 

according to the formula #,=-44- *V« =—, A’,= —ÍL. the first 
* da* * dx* " dxdu 

two equations will be satisfied identically, and the third assumes 

the form 

(15.7) 

For the relationship of the function of stresses <fr with the 

function of deflection the following equation can be obtained. 

According to Hooke’s law (15.5) and to the relationships 

(15.5') we obtain 

dm m 1 9 

ix “ £,» dyt Bt% At* R\ 
dv I n, »y 9 
dy £yi dxï £x4 dyi ft, 

dm i dv 1 d*T 
• dy dx G* dxdy 

After excluding u and u from these expressions we obtain 



's t 

."■'.es 

5.7) 

On the basis of equations (15.7) and (15.8) using the expression 

(p. 322) for a lateral load, the solution of wide range of problems 

of the rigidity of reinforced shells can be obtained. 

§ 72. Rigidity of a Reinforced Cylindrical Shell 
Under Axial Compression and with 

Internal"Pressure 

The critical stress of axial compression for a reinforced 

cylindrical shell can be determined, if for the function of deflection 

and for the function of stresses one assumes expressions, which were 

used in the solution of an analogous problem for a smooth shell 

(p. 329). By limiting the first approximation, let us select 

functions of w and $ in the form 

tc - ^ sin — sin , 
« * 

fl sin3 —sin2 
T « * 

(15.9) 

he 

» 

where a and b - sizes of the sides of pits and bulges. 

The accepted functions satisfy the following conditions along 

the contour of pits and bulges: 

.11,=0, *r-0, 

«-0, 

Because an axial compressive force 0° acts on the shell along 

with an internal pressure qt then 

(15.10) 

15.8) 

where ff° - qF; q - intensity of the internal pressure. 
y 

By substituting the expressions (15.9) and (15.10) in equations 

(15.7) and (15.8) of the previous paragraph, and by applying 
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Bubnov-Galerkin’s procedure when E * m e m e * e 

obtain the expreesion for the critical stress ^ 

where 
(15.11) 

By knowing the amount of critical stress, 

the limiting value of the compressive force: 
one can determine 

*=-f- nFtlf)9tP. 

Formula (15.11) can 

critical stress when the 

with the superstructure, 

obviously, that which at 

be used for the determination of the 

sheathing loses its rigidity simultaneously 

Most advantageous construction will be 

the minimum weight will sustain the 



I 

» U we 

5.11) 

greatest axial load, i.e., the shell will be optimum, if 

where G - weight of the entire shell. 

S 73. Rigidity of a Reinforced Cylindrical Panel Under 
Axial Compression and with Uniform 

Diametrical Pressure — 

Let us examine a cylindrical panel, reinforced by longitudinal 

and lateral supports and under compression in an axial direction 

during the simultaneous action of pressure, evenly distributed on 

its surface. For certainty we can consider that the pressure is 

applied from the concave side of the panel. Then, for the critical 

stress of compression we can make use of the formula also in the 

case when the pressure acts on the convex side of the panel. In 

this case it is proposed that the pressure is less than its critical 

value for the specified panel. 

From the general solution a formula can be obtained both as 

the particular case and for a nonreinforced panel. 

V The solving equations of the problem remain in the form 

^ (15.7), (15.8). 

Let us apply these equations to the investigation of a 

reinforced panel (Fig. 221). We will consider the extreme 

longitudinal profiles as being rather rigid upon bending as well 

as upon twisting. 

X, 

ne 

neously 

be. 
Fig. 221. 

ii 
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Let us realize the following boundary conditions along the 

contour of the panel 

w—0 

t»=0 

x—0 
x—a 

y—Q 
y—b 

3, = 0 

« —0 

x=0 
jc=a 

y=0 
y=b. 

where a - size of the half-wave in an axial direction. 

These boundary conditions can be satisfied, if we take the 

functions of w and $ in the form of the following approximations: 

w=^ ,!n sin» îf = A sin — «In* 5«-, 
I í at 

?=fisln*2£.slna.. 
a t 

Having substituted these functions in the original equations 

and having integrated them according to the Bubnov-Galerkin method, 

we obtain 

2561 r- 
8ln<| [«•«+ -J-«, i [t) [tí ) 

+iüíáIlÜjM 
"r lèEgimi ’ 

where it is designated 



a, =--g*-, 
Da Dg Dg 

E-=E{'^)' £'“£(,+ä)' 

Dg--g—[H-la,|-^l. 
* 12(1-Hi) I «rpW J 

n - et> —fl i 120- 
* 12(1-1»») l1+ ««w ]’ 

D4 = 
24(1 +|») 

m— —. 
« 

The critical force for a panel, which loaes rigidity together 

with the support, will be 

One ought to make use of the obtained expression for oKp of 

> the reinforced panel when the size of the panel b is less than the 

size of the half-wave, which is generated in a circumferential 

direction in an enclosed circular shell under compression, reinforced 

Just as is the investigated panel. Therefore, at first it is 

necessary to determine the size of the half-wave in a circumferential 

direction for an enclosed circular shell. If this size should be 

greater than size b of the investigated panel, then the above 

obtained formula for o will be applicable. 
np 

If however, this size should be less than the size of panel b, 

then the critical stress for the panel can be assumed to be equal 

to the critical stress of the enclosed shell. 

Under the assumption of the absence of a reinforced support 

we will obtain 

fl| — 1. —2, 

«4=1. «• — 

a - (»/3L_. 
* 12(1 —ft) 

1, £*=£*=£• 

«. 

uuo 



Then 

3«, ££. 
256 (¿r M* 

16£ 
8 UK 

•^71V"*+T Kt)’ -T (¿■I’]m'+(t)‘+ 

for 

is 

pro 

the 

(15.12) 
whe 

The formula (15.12) is determined by the critical stress of 

compression of the sheathing of a nonreinforced cylindrical panel 

(in the cages between the superstructure). For the optimum cylindrical J ■ 

shell it is necessary that the critical stress, according to the frar 

formula (15.11) should be equal to critical stress, determined by the 

formula (15.12), in the absence of a local loss of rigidity of the 

shelf of the superstructure. of 1 

5 7¾. Rigidity of a Cylindrical Shell. Reinforced 
by Equidistant Elastic Frames, 

under Èxternal Pressure 

In this case for the solution of the problem let us use the 

simplified equations of rigidity in the form 

wher 

¿«4 20,) 

_L _£_£_\ 
£„ ®a4tVg £t Eg) dxidyi 

0. 

(15.13) 
for 

where the 

-ßV I EJm 
12(1—-jíJ) a 

D - Eli 
1 12(1 — (•*) ’ 

GH 
! 12 ' 

wher 

D 
0 

im 



The equations (15.13) allow for the determining of the critical 

forces N® » qR. Inasmuch as the method of solution of this problem 
y 

is analogous to that used for the solution of the corresponding 

problem for a smooth shell, let us limit ourselves by presenting 

the final results. Additionally let us assume that * E. Then 

¢,,-0.9^ i/Vi-yrç, (15.14) 

where L - length of the shell; 

(15.15) 

- moment of inertia of the frame; - distance between the 

frames; 6 - thickness of the shell. 

If the shell is long, then the equation for the determination 

of the critical pressure can be obtained from (15.7): 

D, , _2_ dim 
dyi (dy* 

where 

D - El1 
' >2(1-^) »%■ 

By approximating function u with the expression 

w=4cos/i6, 

for the determination of the external critical pressure we obtain 

the formula 

where 

3OD0 
Ä» ’ 

El* 

12(1-|iî) ’ 

Dq - given according to the formula (15.15). 



The limit of applicability of the formula (15.1^) is determined 

by the condition 

Ä„o.92££|/ 

Hence, we will find that within the limits of elasticity, the 

formula (15.1¾) will be applicable to those shells whose length 

satisfies the condition 

/? L < 3,35/? ——j 
V A> 

i 75. Rigidity of a Reinforced Cylindrical Shell 
with Frames Under an ExternaT 
Pressure and Axial Tension 

In the solution of the given problem a simplified equation of 

equilibrium (15.7) is used, in which the components, containing 

^ <£1» a*tr are canceiieci out. in this case the equation of com- 
<wr* Oy' 

patibility of the deformations remains unchanged. 

For the solution of a system of solving equations let us use 

the method of division of variables in conjunction with the method 

of finite differences. By approximating the functions of w and <f> 

ttr = \V (*)cosn9, y—F(x) coirtfl 

and by substituting them in the system of solving equations of the 

problem, let us set up these equations in the from 

F*ai - «i (Fi+W, - 2WJ=0, 

F,+F,-2F, ^ ( W, - a, (Ur, -f ^-f. ^j_ 

N\ nW 
» 

(15.16) 



Designated here is 

.,=4+2..(^)-, 

.,=6+4.. (-1)-+¾.. (i)«, 

D0 = 1 4- 
/11 ’ 

n— et* 
12(1-(.1) ’ 

./ - moment of inertia of the frame; Z - distance between the frames; 

fí, 6 - radius and the thickness of the wall of the shell; 2n - number 

of waves in the circumferential direction. ✓ 

The equations (15.16) are used under the assumption that after 

the loss in rigidity from the action of external pressure in an 

axial direction of the shell only one half-wave can be generated. 

Such an assumption will be realized, for example, in the case of the 

action of a tensile axial force If this force were compressive, 

then the accepted assumption would be proportionable when the 

absolute value of the compressive force is small in comparison 

with its critical value. Such a situation appears with the creation 

of a deep vacuum in an enclosed cylindrical tank. 

o Subsequently, in the given equations it is considered that 

m I** where q - intensity of the external pressure. 

Boundary conditions at the ends of the shell 

w=0, Af,=0, A^-O, 0. 

These conditions, expressed through finite differences, have 

the form (see i 50): 

W"*=0, W,~-Wh Fk=*0, F,=F,. 

m \ L (Fig. 222). 

444 

The first approximation: h 



Ft ■£ 
ir-a w-o 
f-0 

Pig. 222. 

In this instance the given equations assume the form 

-s^.+gír^-r.-ro— 

or 

^. («.+2)= 
2£W 

whence after the exclusion of W1 and Fl we obtain 

l'RnW , 

/?» 
<£*» , DR(aa-l) 

**» Ä(«,+2) (I548O 

The second approximation: A - ^ L (Fig. 223). In this instance 
we will have 

f11 RiflU* N*R £A* , OffCaa-aj,-!) 
Ä» “ » oí. . . .. T ® £(a, — a« + 1) kn (15.19) 

-W, 
t- , i_S 
' ' *• W-Ö 

Fig. 223. 

In the expressions of the first and second approximations in 

each concrete case it is necessary to substitute the value which 

¿4 ¿*5 

W 

( 
c< 

I 

m
l
 



is supplied from the concrete conditions of the problem instead 

of force N®. 
X 

Stability of the internal ehell of an annular tank (Fig. 224). 

By setting up the sum of projections of all forces in the direction 

of the axis of the tank (Fig. 224a), we obtain 

whence 

L_ 

: îz 

• 

* 

. 

J' 

•• «« 

ft. 

Fig. 224. 

Having substituted the obtained expression for in formulas 

(15.18)-(15.19) with the minus sign (tension), after simple 

conversions we will have 



where 

A'^+w(è)'+n,(Ã)'- 

^=4 + 4.=(^+0,..(^. 
*1=3+2«>(i),+»*(^)*. (15.20) 

After the determination of and a more accurate value 
1 Kp Kp 

of the critical pressure can be determined by means of extrapolation: 

Rigidity of an external cover of an annular tank under external 

pressure (Pig. 224b). Let us set up the sum of projections of all 

the forces in the direction of the axis of the tank. Prom the con¬ 

dition of equilibrium we obtain 

2a(2r+/?)tf«=nl(2r+/?)*-(r+/?>*|*, 

Çr. 
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(15.1Í 

assure 

first 

three 

deter 

we ob 

whence 



! 
I 

f 

t 

(15.20) 

I 

a lue 

olatlon: 

! 

pternal 

f all 

b con- 

After the substitution of the expression in the formulas 

(15.18), (15.19) with a plus sign (compression) these formulas will 
assume the form 

The values of quantities and remain the same as in the 

first case. 

Rigidity of a oylindrioal ehell reinforced by frames under a 

three-dimensional external pressure. The force N° in this case is 

determined by the expression 

By substituting this value in the equations (15.18), (15.19), 

we obtain 



where the values are A., B. see (15.20). 

If the frames are lacking, then in the expressions dq one ought 

to sew • 0, and then these formulas can be used for the calculation 

of smooth shells. We can find the refined value of the critical 

pressure by extrapolation: 

9lip.MtT>1.8^. 

5 76. Rigidity of a Spherical Reinforced Shell 
Under External Pressure 

In the case of a reinforced spherical shell, the sizes of the 

boxes between the superstructural elements, generally speaking, 

are obtained by variables; therefore, the integration of the equations 

of equilibrium becomes rather complex. In order to simplify the 

solution and obtain the result as a safety factor, we will consider 

the sizes of the boxes approximately as constants and equal to 

their greatest values. Then, the differential equations of the 

rigidity will have the form 

4» àx* +(2"+rt-±-t-b£r+ 
1 ÜL, 4. V £<u £gp I àjfldfl 

=, \ 

j-n* g4» ' 30 Au ^ , 2(1-+h) Oh, fw , 
' Ä» djfl Pi dyi 

+^+0.).)+^-^+1)-0. 

Designated here is: 



Let us consider that after the loss of rigidity the shell is 

coveréd with pits and bulges (see § 59), close to being square. 

We obtain the least value of load, if for the functions w and ¢- 

we assume that the expressions are 

u sin — sin , 
a a 

<? - B sin* — sin* . 
a * 

Subsequently, let us limit ourselves only by the first approxi¬ 

mation, because in this case the result of the solution will differ 

little from the higher approximations (see § il9). 

As a result of the integration of the solving equations according 

to the Bubnov-Galerkin method we will have 

where 

__2048 _+ 

2£l 81^(0.75-0.25,) (-¿- + ¿:) + LTî](m,“,, 

—( 1+1») (O®,-r Oo,) ^. 

m ct= JiL 
24(1-,2) 

One should expect that the surface of the shell after the loss 

of rigidity is covered by large number of pits and bulges. In 

this case m >> 1. Then, one can approximately assume that 

2£i 
2048 

+ 0^100, + (14 2,)00, + 2(1+10]. 
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The minimum of this expression through parameter m2 will be 

?kp=0,438£? /—)* f — + 2U) D?y -f- 2 (1 - )l) 

V ,0'75-°'a"(iir+¿-)+!v' 

we obtain 
For a smooth shell with Dn = d = 1 f = i 

Ox ■ * Qy Än.r * 'Ox % -1. 

?,p=0,62£(i)’ ,,r 3„«,0,3I£i. 

5 77• Rigidity of a Reinforced Spherical Shell Mmw 
a Load of Its Rapidly Increasing 

External Uniform Pressure 

If the rate of application of an external load causes the 

accelerated motion of particles of the bod?, then in the equations 

of equilibrium it is necessary to add members, containing forces 

of inertia. During the examination of the rigidity of a spherical 

shell one can be limited by the addition of inertial load only in 

the direction of radius of the shell. Then, the equation of 

equilibrium assumes the form 

T(S+5r)+°h'S-+2<'->+^.> 

.fp, , 2(1 + 1«)A» »w . 
W V ~ Ä* A** r Ri tyl ^ 

where 6 - the given thickness of the shell. 

The equation of compatibility without changes is used in the 
form 

¿-£+t2<>+»-£-£l7^-+ 

i 1 *T ^ Ei já!» . dßw \ 
¿0. V ‘ R [d*'*' dyt)' 

^51 



The solution of the posed problem will be taken in the following 

form: 

—8inîJ-, 

,^/^(/) sin*^ sin* îj-, 

where 

r (0=^.(0-^0-. 

V0 - initial deflection; Vn(t) - complete deflection. 

Having substituted these functions in the original equations 

of the problem and having integrated them according to the Bubnov- 

Galerkin method, we obtain 

0p,+0+2*) D«+ 2 (1 -10 - (14-10 (ßo,+A*) X 

9n*Ä 

Y*.p 

- /n\*_Ë«?_ 

' • fc.3/?[(0.75-0,25^) (¿- + ¿) + ^] 

Designated here is 

6 - thickness of the shell, and 

After the exclusion of function F from these expressions 

we find that 

+ (15.21) 
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where it is designated 

K.-Ï«. K.-i ,-=-1-, 

YÄ», _ »"»up nR 
Oasm-- m =_ 

4006 4- 
R 

Sin« (mi - I) f (0,75 - 0,25u) + -Î-N + i±£ 1 
L \/?o» Rtt ) 2 J 

(t)*-4 , 
12(1—pi)(Mi_i) p«* ' (Í ~2|*)fl|*+2(l—|k)— 

Let us rewrite the equation (15.21) in the following form: 

(15.22) 

where 

é»=«X- 
S' 

Let us, for example, allow the external pressure q to increase 
linearly according to the law, q * at. Then 

= T. 

Hence 

(15.23) 

Let us assume t as the new independent variable, connected 
to t by the relationship (15.23). 

Then, the equation (15.22) can be written in the following 
form: 

£^+s(i-.)k.-^, (15 
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where 

^ ^£3(^)'(m»-1) 

C-^RKp 

The obtained equation (15»2^l) is a solving heterogeneous linear 

equation of the second order with variable coefficients. If we in 

this equation set Yq = 0, then the solution of the given equation may 

merely be trivial. The presence in the right part of this equation 

of a member, containing an amplitude of the initial deflection, 

offers possibility to obtain the solution of the equation, different 

from zero. 

For the determination of the amount of critical pressure of 

the given shell, as shown further on, the amount of initial deflection 

is unessential. This amount can be assigned arbitrarily. 

For the solution of the equation (15.2¾) let us apply the method 

of Bubnov-Galerkin. 

Let us regard the function in the form of a power series 

^=ûo+ô^+ô*ï*+«|t*+ . . . 

with initial conditions 

K^Ko, when T=0. 
6T 

This yields Yq = Qq, = 0. By limiting ourselves to the 

first three members, let us use subsequently the truncated series 

+ff»** 4- û|t*. 

Let us substitute this series in the equation (15.2¾) and 

integrate it according to the Bubnov-Galerkin method. As a result 
we obtain 



Then 

K"=K° {'+a1b;-a¿-1[{0'25B,-0M')x 

- (0,255,-0,2 (15.25) 

Designated here is: 

¿ _ 2 i STo 
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'f ,0+T 

Sti Sti 

Ä«=f+f-T- 

sti sti 
Ö*—rTo+V—r* O 7 O 

C(/0 +A/0) 
T0=- 

Ct 

«♦T 

With the integration of the equation (15.2^) the value Tq 

corresponding to the time tQ + At0, is taken as the upper limit, 

where tQ - time of accretion of pressure q from zero up to the 

greatest value, and Atg - a small quantity, selected arbitrarily, 

and satisfying the condition Atg << tg. 

Having the expression for Yn one can determine the limiting value 

of pressure q. For this purpose for each value of the number of 

half-waves m it is necessary to plot the graph Yn - /(t). The 

number of half-waves m, at which there is an intensive increase in 

deflection of ï , determines the approximately limiting value of 
n 

load q. The character of curves of Yn » f(x) is presented in 

Fig. 225, where it is clear that time can be taken as the limiting 

value. Then, the limiting value of the load will be 



§ 78. Rigidity of Square Spherical Panel in a Plan 
Under a Load with a Rapidly Increasing 

External Pressure 

The most rational construction of a reinforced spherical shell 

will be that in which a loss in rigidity of the entire construction 

on the whole (sheathing with the superstructure), as well as in the 

sheathings in the boxes between the superstructure elements, occurs 

simultaneously. 

If the superstructure is rather rigid, then for the determina¬ 

tion of the time which intensively increases with the beginning of 

the deflection of the sheathing, contained between the super¬ 

structure elements, one can take the expressions 

value 

i n 

I ting 

«»—U-' (/) *lnJ — sin* , 
« • 

a « 

where 

r (/)=ur. (0-*«. 

The accepted approximations of functions ü and <|> satisfy the 

following boundary conditions along the contour of the panel: 

w=0, •,«=0, 

*«=0, 
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The original equations of problem in this case take the form 

I 9 1 (^tg 2(1 4 (Q iifiw I ißw \ . 
[ djH ^ dx'.df 

, 2(1 ^!»)«> i . i /a»? . a*f \ . y> mw . 
' R* J R ia^ ~ dyl f a»* ^ 

d*T I n d*f I a«y g< /&w . d*W \ 
dx* T djfldyi dy* ' R \djfl' di/I )’ 

By not repeating all the intermediate computations, analogous 

to the computations of the previous paragraph, we can write the 

solving equation 

ata 
(15.26) 

where 

«♦T üT 
K0=* r. w' 

» • 

ll' 

3C*VÄ* 

»T 

mí-M 

ca 

a 

• wh 

ex 

su 

in 

The expression (15.25), in which it is necessary only to sub¬ 

stitute the quantities S and q* will be solution of the equation 

(15.26). The procedure further on of the solution remains as before: 

for each value of the size of the box vF/a a graph is plotted, 

Yn m f(t). The curve of this chart, will climb steeply sooner from 

the axis t than from the others, and will determine the limiting 

value of external load. 
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If the superstructure should be comparatively weak, then one 

can assume in terms of a safety factor that the panels of boxes have 

a hinged support. Then 

a - IT (/) sin 2isinîü-, 
a a 

s — F (/) sin1 — sin* t 
Û ä 

where 

For plotting the 

expression (15.25) of 

substituted in it the 

instance 

graph yn * /(t) one should make use of the 

the previous paragraph, having preliminarily 

expressions S and qf having form for this 

Remaining designations are given above. 



RIGIDITY OF THREE-PLY SHELLS WITH FILLER 
IN THE FORM OF HONEYCOMBS 

Three-ply layered constructions of shells with filler in the 

form of honeycombs have a number of advantages in comparison with a 

single-layer, the main one being their liglftness. At a substantially 

less weight the honeycomb constructions are able to absorb large 

loads. 

Recently these constructions made of steel have found utilization 

in aviation technology [3]. 

In this chapter the problem dealing with the calculation of 

shells with honeycomb filler for rigidity is examined. In this case 

let us limit ourselves to the examination of only such covers, in 

which the external layers have an identical thickness and are made 

from the same isotropic material. Let us assume that the honeycombs 

are likewise made from isotropic material, but are different from the 

material of the external layers. 

As accepted symmetry of construction of the wall, one can 

consider that the hypothesis of straight standards is applicable to 

it. In this case we can ignore the bending of the external layers, 

because their thickness is#assumed to be small in comparison with the 

height of the honeycombs. Finally, let us assume that the rigidity 

of the honeycombs under tension in a tangential plane is 
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insignificantly small in comparison with the rigidity of the external 

layers. Honeycombs are able to absorb only shear loads. 

Having made these stipulations, let us work toward a derivation 

of equations of equilibrium. 

§ 79. Differential Equations of Equilibrium and 
Boundary Conditions for Three-Ply 

Honeycomb Covers 

Equations of equilibrium of three-ply honeycomb covers can be 

obtained by the variation method. First, let us write down the 

expression for the strain energy of the bending of a shell. 

For the element of the shell having an area dxdy the potential 

energy of flexural strain will be 

AV/, +M¿/J)dxdy, 

where M . 
X 

V 

- internal moments, acting in the shell (Fig. 226); 

- changes in the curvatures, corresponding to these 

moments. 

This energy basically can accumulate in the external layers of 

the shell, because the honeycomb filler, having low rigidity, does 

not absorb bending md tcrtional moments. At the same time the 

i 

Í 
I 

460 



filler can absorb the shear loads. For the calculation of energy, 

produced by these loads, let us use Fig 22?. 

Fig. 227. 

The work of lateral force Q will be equal to 
X 

where w2 - deflection of the shell from the shearing forces. 

By considering force Qx as an external one with respect to element 

dxdyt it is possible to show that the work of this force is numerically 

equal to the strain energy of the element. For the determination of 

the angle of inclination to the tangent let us assume that the 

height of the filler after deformation does not change and is equal ^ 

to its height before deformation. From this assumption it follows 

that the angle of inclination to the tangent numerically equal 

to the angle of shear of the filler, is constant along the entire 

height of the filler. 

As a constancy of the angle of shear the shear stress in terms of 

the height of the filler will also be constant. Therefore, 

accordingly to Hookes’ law 

Qsäy ^ ¢, 
dx FG IHGdy 2HG * 

where 2H - height of the filler; G - shear modulus of the filler. 

Then, the potential energy in the filler from the shearing 

force O will be 
X 



Similarly from force Q 
y 

"'“»-T MO 
dxdy. 

The total energy of bending and shear will be 

(t m->’+T + +T J"+T2#) 

For the relationship of the shearing forces Q and Q with the 
** */ 

bending and tortional moments, let us use the equations 

O -àJk±È&l- C dM' I ***'• 
Q*~dx ^ a» + ax ’ 

which express the conditions of equilibrium of the element dxdy with 

respect to axes x, y. 

The bending and tortional moments (Fig. 228) can be expressed 

through the corresponding normal and tangential stresses in the 

following manner: 

AV/*=2<W^(tf+ 

= 

Fig. 228. 

462 



During the formulation of these expressions it was assumed that 

the external layers do not operate under bending, and that the 

bending and tortional moments in the sections of the shell will be 

realized through normal and tangential stresses, evenly distributed 

through the thickness of the external layers. 

Furthermore, accordingly to Hooke’s law 

»,=(—+t* —Y--[h + y) (xx+pox,)- 
* 0»/ 1-Ko\ 2 ' 

Analogously one can obtain 

Then, it is possible to write 

Aí J» “ ( ^ I'd) 

where 

_ Young’s modulus and Poisson's ratio of the material of 

the external layers. 

For the change in curvatures in this case we will have the 

following formulas: 



at 

d 

where . - additional components, taking into account the 
d.*-' d,r- 

effect of the shear forces Q and Q . X y 

The tension-compression energy of the external layers is deter¬ 

mined by the known expression 

9_o cr0-- 

where coefficient 2 takes into account the number of external layers. 

Components of deformation of the average surface are supplied 

by the following formulas: 

du . w àv . w 
‘'=ir+*r' 

_du , dv 
M~ dy ' dx ' 

of 

The total potential energy of the shell is 

where T - work of the external forces. 

In the developed form this expression will have the form 

[(£+*+£-)’+ 

+(^+t+^L)’+^p+t+^-)(^+f+^L)+ 
+2<'-'(^)'l+*)’+(^n-H— 

where q - the intensity of the external distributed pressure. 
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During the formulation of the expression for the total energy 

it was assumed that the radii of curvature on the small surface of 

the shell can be taken as constants. Let us use the condition 
subsequently that 

69-01 

which offers possibility to obtain both the differential equations 

of problem, and the boundary conditions. If the expression of the 

total energy pertains to the separately taken pit or bulge, being 

formed on the surface of the shell after the loss of rigidity, then 

the boundary conditions obtained in this ease will be natural for it. 

By not repeating all the intermediate computations, analogous 

to computations in f 36, let us present only the final results. 

The balance equations are 

' (16.1) 

The boundary conditions are 



l(é“ltl-‘ 

/fê-I»-* ¡(í“í“-* 

jlá:«-« . 

JK***)1^ 

Here F - the subintegral function In the expression for 3; 

•„•.£!]. _ designations of the derivatives from the eompc- 
* t* b 

nents of displacements u, v, », »j. 

The partial derivatives from function F has the form 

*r 
*•«# 

(16.2) 
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ff 

If we take Into account the values of the partial derivatives 

from function Pt then the first two equations of equilibrium (16.1) 

can be written In the form 

iff, 
**-=0. (16.3) 

In this case these relationships were used 

*ft.r the introduction of the function of etreeaes « according 
to the formula 

equations (16.3) will be Identically satisfied, and the third equation 

(lo.l) will assume the form 

+2 •+ 
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(I6.il) 

+ 

In this case the fourth equation of equilibrium (16.1) in 

developed form will be 

(16.5) 

The equation, which connects the function of stresses 4 with the 

W» can be obtained from the expressions for the components 

of deformations using Hooke's law 

(16.6) 

The strained and deformed state of the shell with honeycomb 

filler is completely described by equations (16.4)-(16.6). Prom 

these equations Just as In special cases the equations of the bending 

of beams and plates made from honeycombs( can be received. 

In problems of dynamics and of rigidity the distributed load q 

in these equations Is replaced by the expression of the form 

where the first component determines the value of the inertial load, 

and the remaining three - the value of the projections of the internal 

compressive and shear force normal to the shell. 
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During the solution of problems of the rigidity or of the vibra¬ 

tions of the shell It Is necessary to select that combination of 

given boundary conditions for the functions of ♦, u, wJ along the 

contour of pits and bulges, which conform with the character of the 

expected wave formation and which result In a minimum value of 

frequency or critical load. 

As an Illustration let us solve the problem dealing with the 

rigidity of a hinged supported rod, loaded along the axis. In this 

Instance the original equations will assume the form 

The boundary conditions of the problem will be satisfied by the 

following expressions for w and 

w* A*ta y-, dite-y-. 

By substituting the necessary derivatives in these equations, 

we obtain 

(7/+ » [« (7)'+ /-0)-0: 

By equating the determinant of these equations to zero, we 

obtain 

This formula during the course of resistance of the material 

can be derived by another means. 



* 

Let us apply the above obtained equations to the solution of 

certain problems of the rigidity of shells. 

f 80. Rigidity of a Cylindrical Shell with Honeycomb 
Filler Under Axial Compression 

In this Instance Rj ■ Furthermore, let us assume 

Uq ■ 0. Then, the original equations will have the form 

R d.n +--+-+ 
V * V * 

. _ N**9 
V ' * vi •+' 

n(»!L+»!L+±. !5L +íía.+íía.U2A/C ^+ 
T dy* TRi / \** 

Jä 

(16.7) 

^)-0- 

S+s fÄ_i655.. 
àjfldyi T êy* Ri* 

For the functions u, $ let us assume that the following 

expressions are: 

« =- A sin — sta , 
• » 

w, «5 sin Si sin-SL, 
• I 

Ÿ-CsVÜiirtiaL. 
« • 

These functions satisfy the condition of a hinged support of 

the contour of pits and bulges and the additional (self-balanced) 

normal and tangential stresses revert to zero along their contour. 

After the substitution of the accepted expressions in the 

original equations and after their integration we obtain 

MC 
9*R (f)’+^(T)‘['+(t)T+^(Tr['-(f)i- 
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WR [0.75+0.5(-^-+0,73 (y)4] 

lOgoM 

Having excluded parameters B and C from the first equation, we 

obtain the following expression for critical stress when A ¿ 0: 

(16.8) 

Designated here Is 

where l - length of the shell; at b - sises of pits and bulges In the 

axial and circumferential directions. 

The remaining designations are given above. 

By assigning parameters of wave formation m, n, the various 

integral values, based on the given expression, can determine the 

least value Jvfun. XKp 

The critical force of axial compression of the shell 

To get a more simple approximate formula one can discard the 

last component in the expression (16.8), considering the work of the 



honeycombs from lateral forces. By such an approximation a somewhat 

overrated value of the critical stress will be determined. Further¬ 

more, In the elaborated expression it is possible to discard the 

components, containing the parameter of wave formation n in comparison 

with m. This additional assumption, as the comparative calculations 

show, somewhat lowers magnitude of critical force. 

With the allowance for the shown assumptions comparatively 

simple expression can be obtained, from whiot we can determine the 

analytical minimum of critical stress: 

S 91. Rigidity of a Cylindrical Shell with Honeycomb 
Filler Ùrtder the Action of External Pressure 

For the solution of this problem it is necessary to make a 

replacement of the given load in the equations (16.7) 

in place of ^(Sr+iir)* 

As a solution of these equations one can assume that 

«->Asln~ •In*!, 

sin" sla«l, 

f~Csla" sins«. 

Following the substitution of the expressions for w, itj and # 

in the solving of equations (16.7), we obtain 
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(16.9) 

-7(f)‘+ 'v. [(fy+(f)T+ Dj [(f)*+(f)‘j- 

‘^[(rHin 

+ího*[(tJ+(tÍ\-* 

Por « shell of overage length one can expect that as a result 

of the loss of Its rigidity in the circumferential direction many 

half-waves are generated. Then, one can assume that 

(iWfjr. -»'• 
On this basis of equation (16.9), one can substitute more simply 

-t(tF+ 'W (t)*+ (tÏ~a,,‘(tÏ' 

^(fr 

After excluding parameters 4, B, C from these equations we 

obtain the following expression for the critical external pressure: 

(16.10) 

For the determination of the least value of pressure It is 

necessary to subsequently set n « 2, 3, 



To get the approximate formula for the critical lead in the 

expression (16.10) one can discard the component from DTQt associated 
with the work of the honeycombs to shear. Then, after the determi¬ 

nation of the minimum through parameter n we obtain 

wr ti 

In the case of a very long shell the wave formation does not 

depend upon the longitudinal coordinate *. Then, equations (16.7) 
will assume the form 

f V_. 
O* * êfi) 

Ä+ÄL)_W0 

(16.11) 

(16.12) 

In this case for the solution of the problem one can assume that 

«»Acosa!, «,»Acosa!. 

After the substitution of these expressions in equations (16.11)- 

(16.12) for the critical pressure we obtain 

»üdïLzJL/i - 
IHORt 

.■ne can be certain that the least value of critical pressure 
will be when n ■ 2. Then 



5 82. Determination of Rigidity of a Honeycomb 
Construction to Shear 

In the practical calculations of honeycomb constructions, It Is 

necessary to determine the rigidity of the honeycombs to shear at a 

rated value of shear moduli of the material made of honeycomb. 

At the assigned value of shear moduli of the material made of 

honeycomb, the given shear moduli which will have a honeycomb 

construction, as a whole, made .rom this material, can be determined 

from the condition of equality of the angles of shear during the 

loading of the samples, cut from the material with a known modulus 

Gj and from the honeycomb construction with an unknown modulus Gg 

(Pig. 229). 

Pig. 229. 

Thus, Yj ■ Y2. 

where 

H75 

Then 



Therefore 

The length of the sample made from honeycomb construction can 

be expressed by the number of sheared honeycombs In the following 

manner. The number of walls, which can be made from the length l , 
will be 1 

where 6c - thickness of the wall made of honeycombs. 

* 

In this case, the quantity of complete honeycombs Is 

A_i, 

Then for the length 

where d#n - diameter of the inscribed circumference in the honeycomb. 

Therefore, it is possible to write 

Let us rewrite this expression in the following form: 

Inasmuch as the size of the sample lj has been taken randomly, 

then from the last expression it is necessary to obtain that value 
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Of Gt> at which the critical force will be the least. Prom this 

requirement we obtain 
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CHAPTER XVII 

CALCULATION OP SHELLS FOR RIGIDITY UNDER THE 
SIMULTANEOUS ACTION OP SEVERAL LOADS 

If several different loads act on a shell, then the determination 

of their critical value from the solution of equations of stability, 

presents a problem of extreme complexity, and sometimes it is almost 

unsolvable. Therefore, it is advisable to have estimates of the 

bearing capacity of such a shell, by not solving the differential 

equations of the problems directly and by using the results, which 

can be obtained during the loading of the shell of each of the acting 

forces separately. Such a way, then is more expedient due to the 

fact that many problems of rigidity of shells have already been 

solvedfe 

Por the solution of the posed problem let us examine V. Z. 

Vlasov's equations: 

””-*(»7 %r+ir, £-)• (17.1) 

(17.2) 

The right side of the equation (17.2) determines the membrane 

forces, which appear in the shell due to the action of external forces. 

Depending on the character of these loads and the geometry of the 

shell, forces N°, N° can act either simultaneously or in some 
•fc y 'Ey 

combination. For example, with the loading of an ellipsoidal 

doughnut-shaped shell with internal pressure on it and N° forces 
X li 
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arise when the loading of a spherical segment by a bending moment all 

three components of internal forces appear simultaneously. In con¬ 

trast to this, with the loading of a cylindrical shell by an axial 

compressive force, only the force N1^ appears, when a load by an 

external uniform pressure - force by a tortional moment - force 

o y 
Nxy' Therefore, in the general, the expression for internal forces 

can be expressed in the form 

A^r=a7>+a"Q-j-a"/?+..., 

K~t'p+rQ+rR+.... (17.3) 

where P, Q, R, ... - external loads, acting on the shell; aï, &l, 

y — number of coefficients, which depend upon the parameters and on 

the current coordinates of the point on the surface of the shell. 

The structure of these coefficients is determined by the form 

of solution of the problem of the shell in the subcritical state. 

After the substitution of the expressions (17.3) in (17.2), we 

obtain 

-L Ü+JL A+DyiA».» 

~ P (o'*,++2y'^)+Q ((T*,+ß"x, +■ 2y*xJ+ 
+ ^(0^+^ + ^^) + ... (17.4) 

The subsequent problem amounts to how to solve the combined 

system of equations (17.1) and (17.4). 

Let us assume that this system has been solved and the result of 

this solution can be written in the form 

/"i(£, Í, A. #i. n)+Ft(D, Ru Rit m, a)— 

—/»(ai. h. vi. Ru Rh m< «)+Q(a». ?i, vi. Ru Ru m< «) + 
+ Ä(a», ?i, YÎ. Ru Ru »». «)+..• (17.5) 
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Designated here is: mt n - parameters, which characterize the 

wave formation of the shell; pt F¡¡ - components, which characterize 

the work of shell under tension-compression and bending. 

The right part of the equation (17.5) depends on the forces P, 

¢, P applied to the shell, the least critical value of which one is 

required to determine. 

For the future it is convenient to us- these ooads as coordinate 

axes of n-dimenslonal space and to rewrite the equation (17.5) in the 
form 

aj^fj+<»iAr,+a,«Ya<*0=1.0, 

where - accepted designation for forces P, ¢, p, _ coeffi 

cients, which depend both on the parameters of the shell, and on the 

parameters of wave formation; a0^F,+Ft. 

Equation (17.6) determines a certain plane in «-dimensional 

space, called a hyperplane. By assigning different values to the 

parameters of wave formation m, «, it is possible to obtain various 

hyperplanes. Each such hyperplane can be broken down, with respect 

to the whole space, into two halfspaces, one of which includes the 

origin of coordinates. It is possible to prove that any hyperplane 

is convex. Por proof let us introduce a certain function • into the 

examination, representing the left part of the equation (17.6): 

..+a*. 

For the future let us Introduce the concept of directional 

cosines in «-dimensional space. 

It is known that the position of a straight line in three- 

dimensional space is entirely determined by the amount of directing 

cosines. Position of a straight line in the «-dimensional space 



likewise Is entirely determined by its directional cosines with 

respect to its axes Xjt ...* X^. Based on this, let us assume 

that 

where ijt •••» in - directional cosines of the radius vector r, 

projecting from a point in halfspace, including point 0 of the origin 

of coordinates and carrying its origin to a point, having the coordi¬ 

nates and carrying its origin to a point, having coordinates X°1t X°0 
0 1 ** 

..., Xn. Then, for function t we obtain the expression 

If now one changes the length of the radius vector r, then the 

numerical value of function t will change. 

Inasmuch as this function is the left part of equation (17.6), ^ 

then at a certain value of r it will be revert to zero, and then with 

an Increase in r, it will no longer take a zero value nor change 

signs. 

Thus, it is possible to prove that all hyperplanes, corresponding 

to different values of parameters of wave formation m, «, are convex. 

Prom this assertion it follows that the surface, formed by the 

intersection of the various hyperplanes, is likewise convex. For the 

first time this theorem was proven by P. F. Papkovlc by another 

method. 

The proposed case can be used for the calculation of covers for 

rigidity by loading them simultaneously with several typeo of loads. 
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From the concept of the critical force it follows that all the 

hyperplanes intercept on the coordinate axes Xjt ..., Xn segments, 

equal to corresponding critical forces. For the numerical determi¬ 

nation of the least value of these critical forces it is sufficient 

to assume that all the acting loads, aside from a load of one type, 

are equal to zero, and to solve the problem of the rigidity of the 

shell only from the load of one type. In that case the hyperplane 

can determine only one point on the corresponding axis After 

this one should solve the problem of rigidity due to the action of 

a load of another type at zero values of remaining loads, and so forth. 

Thus, the coordinates of the critical hyperplane for a given 

shell will be determined, since the hyperplane, corresponding to the 

minimum values of critical forces, will be unique. Inasmuch as the 

plotting of the convex hyperplane for an assigned combination of 

critical forces is very difficult to do, then one can approximately 

substitute the hyperplane simply by a plane, intercepting at the 

coordinate axes X. as segments equal to corresponding critical forces. 

As an illustration let us offer two examples. 

Loading the Cylindrical Shell with an Axial Compressive 
Force and with a Lateral Uniform Pressure 

In this case the hyperplane degenerates into a straight line on 

a plane (Fig. 230). In this figure the external pressure carries a 

minus sign and it is deferred to negative section of the axis of the 

abscissa. 
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U? +-r-=1. (i?.i: 

«»ere iLj/X . crltlcal va¡ue 
r v-ue external pressure; 

^=0,26^^- - critical stress of nur.« 
ä ^ess or pure compression. 

This straight line bisects the niane in* ^ 
of which includes point o 0f the oriL V ^'-Planes, one 

designate this half-pia„e as V* and the °°0r<ilnate3 ’ If “e 

¡I CS" 63 ‘»at the points ^ 

the points .hich lie on the straight line i7 7f' eXClUdlng 
atate or steady eoulUbriu* of the cover t0 the 

the second half-plane, excluding the coin. ’ arran*ed 
(17.7), correspond to the state oÎ . the 3t''»18ht line 

»täte of unstabi. equilibrium of the shea 

All the points on the straight line (n 7\ 

determine the criticai state of the cover. ltS eMs- 

Because the equation (17 ç) _ n., 

forces, then, by extending the straight8!! relatlve t0 th* external 

(17-7). to the aide of positive values of prés ^ eqUatlon 
of critical .tres, of compression Zl 1 , re ’’ the daP«"de„ce 
obtained. the internal pressure, can be 

The equation of a straight line !n .k. 
in this case mill have the form' 

* (17.8) 

values of Internal pr«"^’ éeca ^ VaUd UP t0 dete™1ned 
---- ’• beCaU3e b*«‘""‘»« from , certain value 
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of internal pressure, the phenomenon of the loss of resistance, 

connected with the formation pits and bulges, will be accompanied by 

the flow of material of the shell at it ends. Therefore, the formula 

(17.8) will be valid only up to certain "small” values of internal 

pressure ?, depending upon the mechanical features of the material 

and geometric parameters of the shel]. For an estimate of the bearing 

capacity of the shell at large pressures it is necessary to make use 

of one of the theories of strength. For plastic materials it is 

possible to use the theory of the largest ta::gential stresses 

9i»m ~ 9«n ~ 9r 

By substituting 

we will have 

(17.9) 

Graphically, this formula describes the equation of a straight 

line by segments on the axes of coordinates (Pig. 230). 
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Experiments show that the formulas (17.8) and (17.9) give over¬ 

rated values for the critical stresses, which fall in the interval 

between "small" and "large" pressures. Within this range of pressures, 

as a rule, a mixed form of loss in rigidity, connected with the 

formation of pits and bulges, and corrugated folds, is obtained. 

With an Increase in the internal pressure one observes the gradual 

transition from wave formation in the form of pits and bulges to the 

formation of folds in the form of corrugation, arranged on the cir¬ 

cumference of the shell. 

Inasmuch as formulas (17.8) and (17.9) are derived independently 

from one another even under different assumptions, then it can be 

expected that the real curve, characterizing the critical state of 
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the shell under axial compression and Internal pressure, should be 

Inscribed as angle ACD so that the straight lines AC and CD would 

appear on it at points ^ and P. Experiments show that with sufficient 

accuracy for all practical purposes this curve can be selected in the 

form of a square parabola. In order to enscribe this parabola in 

angle ACD, let us select a new system of coordinates with an origin 

at point 4. Then, the equation of the parabola will have the form 

where - internal pressure, corresponding to point 0. This pressure 

can be determined from the condition 

whence 

Then 

(17.10) 

The total value of the critical stress in this case 

where 

(17.11) 

<-wT- 
e 

This formula is valid under the condition that q < qD. When 

i. qD one whould make use of the formula (17.9). 



Let us determine the greatest value oHp depending on the Internal 

pressure: 

whence 

or 

(17.12) 

This pressure corresponds to point C of parabola AC’L. 

After the substitution of in formula (17.11)t we obtain 

W-0.754+Q.25V 

Prom the expression (17.12) it is evident that pressure qc, is 

a function of ratio 6/F. 

Considering this ratio as a variable, we will find that when 

the greatest value for qc, occurs: 

(17.13) 

(17.1¾) 

The greatest Internal pressure, which can possibly be created 

in a shell during its combined work under axial compression and 

Internal pressure determines this expression. 



Having substituted the values 6//? and qr, with (17.13) and 
c max 

(17.14) in the expression (17.11), we obtain the limiting value of 

the critical stress of compression 

up. «at = 0,625«,. (17.15) 

The circumferential stresses in the shell in this instance, are 

«,=0,25«,. 

Thus for the construction of a shell having a maximum value of 

critical stress of compression in an axial direction, it is necessary 

to select such a ratio of 6/Ä, which satisfies the condition (17.13), 

and in the shell to create an internal pressure, which can be deter¬ 

mined by the formula (17.14). Such a cover will be optimum from the 

viewpoint of its bearing capacity. 

Let us examine the calculation of a cylindrical cover under 

axial compression and internal pressure taking into account the 

unloading due to internal pressure in an axial direction. We will 

have 

By having added the values of axial stresses from internal 

pressure to the right parts of these expressions, we obtain the 

formulas for the critical stresses with the allowance for the 

unloading 

- r _-L 1* 

graphically presented in Fig. 231. 

In this case in the angle ACD, a parabola is also inscribed, 

whose plotting is clear from Fig. 231. We obtain the values of 

pressure q, corresponding to points C and D, from the conditions 



3 =3 0. 
Kp Kp* 

re 

5) 

Î 
f Pig. 231. 

'dry 

3), Hence, we will find that 

r- 

he ,C“T 

Prom a comparison of these expressions with expressions (17.10), 

(17.12) it is possible to see that point of intersection C of the 

straight lines in both cases is determined by the same expression for 

<7^. Regarding point D, in the latter case, its abscissa increased 

by 2 times. 

Accordingly, as can be seen from Pig. 231, the maximum of 

critical stresses will likewise be displaced to the right. The 

pressure, corresponding to this stress, will be 

Considering this pressure as a function of the ratio 6/J?, we 

obtain the greatest value for at, when - =- -i— 
6 'k ft 0,52£ 

Having substituted the values 6/fi - a /0.52E for o' and a" In 
° S Hp Kp 

the original, we obtain 
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0.5’,+0,78 ± q, o’"=,,-0,26 J. q. 
•* •# 

Graphically these equations are presented in Pig. 232, where 

the plotting of a "flattened" parabola is also presented. By knowing 

the position of point X on the parabola, corresponding to the posi¬ 

tion of the greatest critical stress, it is possible to evaluate 

approximately the limiting bearing capacity of the shell. 

Directly from Pig. 232 we obtain 

•¡»-.ssOJK (17.16) * 
s’ 

In this case taking into account the unloading by 1.12 times in 

comparison with that obtained in (17.15) the limiting stress is 

increased. The circumferential stresses at this point is 

3,—0,375s,. 

Prom the formulas (17.15), (17.16) for the limiting values of 

critical stresses with and without allowing for unloading, it is 

evident that their amount differs from one another by at least 12%. 

Therefore, in practical calculations it is possible to make use of 

the formula (17.11), having supplemented its stress from the 

unloading: 



considering that q * qH + yht 

where qH - pressure of the booster; 

yh - pressure of the liquid column over the investigated 

section of the cover. 

Then, critical force will be 

/),,1-211419,,. 

Loading a Cylindrical Cover with an Axial Compressive 
Force, with a Lateral Uniform Pressure and 

Tortlonal Moment 

In this case we will have the following equation of the plane 

+-1-+-:- 
1» t* 

1. 

presented graphically in Fig. 233• 

The external pressure, acting on the cover, is assumed to be 

negative (it is deferred in the left part of the axis of the 

absciasa), and the internal one - positive. In connection with th 

the hyperplane appeared in the left quadrant. 



In this case the hyperplane divides all the space into two half¬ 

spaces: halfspace V*, including point 0 of the origin of coordinates, 
and halfspace V~. The first halfspace corresponds to the steady 

states of equilibrium of the shell, the second - to the unstable ones. 

The plane, which divided both these halfspaces, determines the 

critical states of the shell. 

In the first quadrant in Fig. 233 the hyperplane is plotted just 
as in Fig. 230. 

We can also apply the proposed method of determining the critical 

combination 0 loads to other elastic systems. 
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