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STRUCTURE OF TEMPERATURE FIELD IN TURBULENT FLOW

.

A. M, Obukhov

(Presented by Academician A. N. Kolmogorov)

The mean square of the temperature difference
at two points of flow 1s used as the characteristic
of the temperature field structure. The relation-
ship between this quantity and the distance between
observation points is determined theoretically.

The order of magnitude of the characteristics of
the temperature pulsation field in the atmosphere
is evaluated.

.

The microstructure of the temperature field in the atmosphere 1is
a question of considerable interest in meteorology. Small thermal
discontinuities lead to turbulent heat transfer and twinkling of
stars; they also have a substantial effect upon the propagation of
sound and a number of other phenomena in the atmosphere.

Comparatively rough measurements of temperature pulsations in
the lowest layer of the atmosphere [1] show that the temperature
field in the actual atmosphere is quite "variegated" and apparently
has as complex a structure as the wind velocity field. This
circumstance 1s directly connected with the turbulent state of the
atmosphere.

In 1941 A. N. Kolmogorov [2] proposed the use of the mean square
of the difference in velocities at two near points or tiow, examined
as a function of distance % between the observation points, as the
quantitative characteristic of the microstructure of the velocity
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field in turbulent flow. We shall call this functioﬁ the structure
function of the velocity field.

A completely analogous method can be used for the statistical
description of the structure of the temperature pulsation field in
the atmosphere after examlning the mean square of the temperature
difference at two points. The relationship between this quantity
and the distance between observation points (structure function of
the temperature fleld) characterizes the intensity of temperature
pulsations for discontinuities of various scales, which makes 1t
possible to speak of the "spectrum" of temperature discontinuities.

Although a number of theoretical and experimental works [2, 3, 43
have been dedicated to the problem of the loecal structure of
the velocity field in turbulent flow, the structure of the temperature
field in turbulent flow has not as yet been clearly established.
Known data from observation$ on the temperature difference in the
atmosphere do not allow us to evalu{ate even approximately the
structural function of the temperature field s‘nce there are no
proper measurements made with the ald of inertialless devices for
sufficiently smal{ distances between observation points.*®

Now the first attempt has been made to exemine theoretically the
problem of the structure of the temperature field in turbulent flow.
Based on the concepts in the theory of local isotropic turbulence,
we manage to arrive at a number of conclusions relative to the
structural function of the temperature field. Thus, for not very
small distances between observation points, the mean square of the
temperature difference, according to the theory developed below, is
proportional to the distance to the power 2/3. We are assuming that
the amplitudes of temperature pulsations are relatively small (as
compared with the mean absolute temperature of the medium) and do not
substantially affect the turbulent pulsation regime of flow velocity,

7

*From the methodological side, the question of measuring micro-
pulsations of temperature is obviously even more complex than the
measurement of instantaneous differences in wind velocity at two
points of flow. We can hope, however, that these difficulties are
surmountable so that, with time, we can have the necessary experimental
data on the structural function of the temperature fleld in the
atmosphere, 1.e., data on the "spectrum" of temperature discontinuities.
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brought about by external causes of a purely dynamic character. In
other words, in this work we are considering it possible to disregard
Archimedes forces arising in the medium (air) in a nonuniform
temperature field and are treating the heat transferred by the flow
as a "paasive anhstance."* Tn anaspdarce with the first assumptiorn,
it 18 further assumed that turbulent motion in the atmosphere can be
taken as "incompressible" (based on the terminology of Freedman).

Luminous heat exchange in the medium is not taken into account
in this work. However, the consideration of molecular heat
conductivity in the medium (air) is essential for motions of very
small scale.

The mechanism of equalizing temperature in sufficlently large
volumes can be explained, obviously, only by the joint action of
turbulent motion and heat conductivity in the medium; owing to
irregular turbulent motion, particles of air having different
temperatures can approach so closely that it becomes possible to
equate temperature between them through molecular heat conductivity.
In other words, the turbulent motion inside a nonuniformly heated
medium with weak gradients at the beginning contributes to the
"accentuation" of local temperature gradients which then are leveled
off by the action of molecular heat conductivity.

In order to obtain any kind of quantitative conclusions from
this overall physical picture, we must introduce a number of auxiliary
assumptions, among which the basic one for the following discussion
is the "measure of discontinuity" in the temperature field.

#*The problem of the effect of systematic discontinuities in a
g remvMe e devam Uil sk Vma M RAGLE degal€ Lad uwceh cAdamined 0Dy us
in a somewhat different aspect (by the method of semiempirical
turbulence theory) in the work "turbulence in a medium with nonuniform
temperature" [4].
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§ 1. "Measure of Discontinuity" and "Free Energy"
of Temperature Fleld

Let us examine the temperature fleld in a medium with a specific
heat capacity ¢ in a certaln region V#¥,

Let T be the mean temperature of the field (averaged based on
volume V):

f=i—g§§ oT (2, ¥, 3)dv, (1)

where

dv=dzxdydz,

M“SSSPJ" (mass of body).
¢

We shall introduce the speclal designation for temperature
deviation from mean:

@y 2y=F(@= ¥ 2)~—T. (2)

As a measure of "temperature discontinuity" of the field in
region V, it is natural to introduce quantity G which is the integral
with respect to region V from half of the square of temperature

deviation:
1
G~ —WP (F')dv. (3)

)

v

It is obvious that G = 0 if and only if temperature 1is constant
throughout the volume. The factor 1/2 is introduced in analogy with
the expression for kinetic energy relative to motion in a fluid, which

*In exaliluiag L€ Lempérature field In the atmosphere, heat
capacity ¢ should assume heat capacity of air cp at constant pressure

and, therefore, the total energy of the system should be replaced by
the heat content.



is obtained 1f in the formulas described above temperature 1s replaced
by the vector of flow veloecity.

It is also expedient to introduce a speclal designation for
the measure of discontinuity related to a unit of mass of the med{ium

¢ 1 A ,
¢=5= ”z'iSj T
) .

It should be noted that quantity G has a deep physical meaning,
determining with an accuracy up to the factor maximum work W which
can be obtained from a nonuniformly heated body, considering it as an
i1solated (in the heat sense) system. We can arbitrarily call this
maximum work W the "free energy" of a nonuniformly heated body.*

The quantity W for a uniformly heated body is obviously equal to
zero since, in this case, the body i1s in a state of thermodynamic
equilibrium.

Let us actually calculate W for body V with a given témperaturé
distribution T(x, .y, 2z).

Obviously, in order to extract the maximum amount of work from
a certaln system, we must bring the system to a state of thermodynamic
equilibrium with the ald of some reversible process. The difference
in total energy of the system during such a transition from the
prescribed initial state to the hypothetical final equilibrium state
determines quantity W. Let us degignate in terms of ¥ the temperature
of the body in the final state. T is obviously constant since it
corresponds to the state of thermodynamic equilibrium. Thus, measuring
the maximum work in thermal units, we have:

*The term "free energy" of a nonuniformly heated body which we
are using in this text should not be confused with the analogous
concept in thermodynamics, which has a meaning only for 1sothermal
processes. oince we shull nowhere use e ciassical eipiessiuvin £oi
free energy, such terminology should not lead to a misunderstanding.



W= “'fjcpT (r. g 2)dv— J'J'J'«:pi‘ dv =M (T —17), (4)
g v

where T is the mean temperature of the body.

In order to determine % we shall use the condition of process
reversibility which brings the system from the initial to the final
state. Total entropy of the system during such a process remains
constant. When we write the cquality of entropy of a heated body
for the 1nit£a1 and the final states, we obtain an equation for
determining T:

S -S‘S'SCP lg7(z, y, z)dv = S‘SS cplgfuvs (5)

hence

v

!gi-'-—,-'..l“a!l!'_" ; ~)dv
~ M‘M 2t 9 (6)

N
T can be called the "mean geometrical" temperature of the body.

Thus, the "free energy" of a nonuniformly heated body is equal
to the product of the heat capacity of the body times the difference
between the "mean arithmetical" and "mean geometrical" values of
body temperature. Substituting T, determined from (6), into (4),
we obtain the final expression for W:

W o= ,._ur{ - vxp[ “’}M; Iy ".'_‘_"-7"’_'.3le . (7
\

Expression (7) can be considerably simplified, assuming that the
temperature deviation T' is very small as compared with T, 1In this
case, since

Ji§e7 (r  2)dv ==,



we obtain a convenient approximate representation for W (principal
term of expansion in (7), disregarding integrals from ratio T'/T to
a power higher than second:

W * Sg(i,ur'wméc. (8)
*JJJ 3 r

Thus, the approximate expression (8) for "free energy"” W differs only
in factor ¢/T from the measure of discontinuity G of the temperature
field, introduced above.

Let us calculate, in this same approximation, the increase in
entropy AS during full equalization of temperature owing to
irreversible processes (heat conductivity) while full energy of the
system is preserved. Such a process brings the body to constant
temperature T so that the change in entropy is easily calculated:

a5 = el ui—es‘[_[pu((z. rre —emp w147 e

hence, disregarding terms of a higher order, we cbtain a very simple
expression for ensropy increment:

M= =G (9)

From (8) and (9) 1t follows that in the examined approximation

W =TaS, (10)

as would be expected on the basis of the common concepts of thermo-
dynamics.

Thus, on the basis of the expression obtained above (8) for
W and (9) for AS the quantity G, introduced by us in a purely formal
manner, can be treated with the same law as the measure of "free energy
of the field"” or as the measure of the lack of entropy of the tempera-
ture field ("negative entropy").

%We can assume that in problems of dynamic meteorology when
analyzing processess occurring inside a nonuniformly heated air mass,
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§ 2. Time Variation in Measure of Temperature
Field Discontinuity

We shall examine the motion of uiu incompressible fluid with
density p (for simplicity assumed to be constant) which has varlable
temperature T(x, y, z, t). Let A be heat conductivity and « be
temperature conductivity of the fluid. The boundaries of the volume
will be assumed solid and heatproof. We shall calculate with these
assumptions the variation in quantity G, determined above, for the
entire volume.

Temperature in the moving medium satisfies, under the
assumptions made, the following equation:

@ % = AT,
or
"L 4div(v, grad F) = ual. (11)
Since, according to assumption
dive =0,
upon substituting iuto equation (11)
T, v 2 0)=F 4T (e y 20

we obtain a completely analogous tquution for deviaticn in T(x, y, 2,
t):

"r, . - d " oa e
pak div(v, wrnl 7°) = udT" (11bis)

here x is the coefficient of temperature coaductivity.

8(Continued from p. 7) in order to estimate the energy reserves,
1¢ ¢z advissble to ute guantity W which is the thermal ensrgy reserve
and which can theoretically be transformed into the energy of motion
of air masses,



We shall multiply this expression by pT'(x, ¥, 2, t) and
integrate with respect to region V. Applying the theorem of Gauss
and observing that on the boundaries of the region

0.=0 and (gead T) =",

we obtain:
% -—:L“‘p(gnd T)rdo. (12)

Using the measure of temperature discontinuity, relative to unit of
mass g = G/M, equation (12) can be written in the form

“'!=_.(mirr. (12b1s)
where averaging is accomplished with respect to volume V.

The equation obtained for its structure is fully analogous to
the equation for energy dissipation. If we assume g is a formal
aralog of kinetic energy, the following expression wiil be an

analog of the disiipative function of Stokes, relative to a unit
" of mass, for the temperature field:

N=x(gradT)s,

which determines the rate of temperature levelling. Let us remember
that temperature conductivity x and kinematic viscosity v have
identical dimensionality and for air have similar numerical values
(v = 0,14, x = 0,19 cmz/s).

Equation (12) shows that in a hypothetical medium for which
x = 0 (there is no heat conductivity) inside closed volume V the
measure of discontinuity G remains constant, whatever the motion
inside the fluid (velocity fleld ¥(x, y, z, t). On the other hand,
farmila (12) alen chAwe that in artnugl media with low heat ~opdurtivieyu
(air, water) true levelling of temperature discontinuities
(decrease in G) virtually occurs only if local gradients are
sufficiently great.



Here we can draw a qualitative picture of what occurs
with the temperature field during turbulent mixing in a medium which
has very low heat conductivity. If the initial temperature distribu-
tion is sufficiently "smooth," then at a very low x we can assume
N is practically equal to zero not only at the initial moment but
also during a certain period of mixing. As a dally test shows,
irregular "turbulent" motion in a fluld affects the temperature
field s» that the temperature, averaged along a certain finite volume
w, has the tendency to level off (levelling "on the average"). If
we bresk the initlal volume V down into small cells (cublc form) of
volume w = V/k, then during mixing the mean trmperatures of the
cells will have a tendency to approach constant T. However, if
the full measure of discontinulty G or, correspondingly, g is
preserved, then inside each shell the field must be extremely
nonuniform since, in this case, the mean amplitude of temperature
fluetuations inside the small volume w will approach the mean
amplitude of temperature variations observed at the initial moment
for the entire volume V. Owing to the fact that during an increase
in mixing time the dimension of region w, for which the above
temperature levelling “on the average™ will be observed, must
decrease, true temperature gradients with such a process must
increase, and, beginning at a certain moment, the mechanism of
molecular heat conductivity must come into play. True levelling of
temperature discontinuities, i.e., decrease in quantity G (entropy
increase), will occur after this inside rather small elements of
volume; there are less of them the lower the heat conductivity of the
medium) owing to the action of molecular heat conductivity. It is
easy to see that a quasistationary (statistically) regime must be
established 1n a certain time interval inside the rather small cells,
with which the 1increase in the measure of discontinuity inside
volume w, due to mixing, is compensated by the actual levelling off
of the temperature field inside volume w from the action of molecular
heat conductivity.

Thug, the affcet of turbulence lecads tu a rediscricution of the
measure of temperature dlscontinulty along the "spectrum" of
tenperature discontinuities. The concept of "spectrum" of the
temperature fleld can be defined more accurately if we consider a
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Fourier expansion in series (integral) of the temperature fleld and
note then that quantity g will be computed in an additive manner from
corresponding quantitiés relative to various spectral components.

This method of the characteristics of the temperature field can be
performed in the same manner as was done for the velocity field by

A. M. Obukhov in 1941 [3] and somewhat later by Onzager [5] in solving
the same problem.

In this work we shall not carry out the method of spectral
expansion in detall as applied to the problem of the microstructure
of the temperature field, but will attempt, on the basis of the
above qualitative assumption, to go directly to the study of the
structural function of the temperature field, using the assumptilons
from the theory of similitude and the analysis of dimensionalities.
This method, to a considerable extent, 1s analogous to the method
which was used by A. N. Kolmogorov [2] in hls research on the
‘microstructure of the velocity fleld in turbulent flow.

§ 3. Structural Function of the Temperature Fleld

-.In the introguctcry paragraph we spoke of the structural function
of the temperature field. The structural function 1s the mean
(in the statistical sense) value of the square of difference of the
temperature values at two observation points M and M':

HM, M) =T (M) —T (M)} (13)

We shall assume the. temperature field to be locally isotropic.
This means that function H(M, M') virtually depends only upon
distance 2 between points M and M' under the conditlon that M and M'
are selected from a certain region V0 and the distance between them
is small as compared with the outer scale of turbulence 20. Scale no,
under these test conditions, 1s determined by the geometry of the
flow; we can take as 20, for example, the mixing length according
to Prandtl. This definition is fully analogous to the definition of
a wuvaisy is0Cropic velecclty fleld in a turbulent ficw, which wacs
glven by Kolmogorov in 1941. The assumption of local 1sotropicity for
the temperature field in a turbulent flow is, thus, completely natural.

11



Using this condition of local isotropicity, we can write
HM, MY=H() (14)
when & < 20, where

o

=YY@ —p+ —y)_';l- (z' —2).

It 1s obvious that when & = 0, H is zero and also H'(0) = 0 from
symmetry considerations.

The second product of the structural function in zero, as is
easy to see, is directly expressed in terms of the mean value of the
square of temperature gradient. We shall examine the coordinates
of points M and M' as independent variables (xl, X5s x3, xi, xé, xé)
and vary in sequence the right and left sides (13) with respect to
points M and M':

((vo'H (M, M')J{.m'), =—2{(grad T (M)-grad T (M')3M .3M")); ,
Here the point designates the tensor product of the vectors, and the

right and left sides are the biscalar products. Due to the arbitrari-
ness of vectors §M and §M', it follows that

N —— ] g
grad, T (M) grads T (') = — -~ —= = H(). (15)
= dx*0x -
Using the condition of local isotropicity (14), it is easy to
calculate the right side of (15)

grade T (M) arady (') = - H' (13,5 + 1. [H" - ”'m] Retip

. (l..ﬁ:i.'.".l

3 By= {5 «

+ 4
WO

,
,l“ — .4"
Ny == - 5. 1t

[}

\
are components of a unit vector determining the direction from point
M to M'.
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Passing to the limit when M' » M(%2 + 0) and summing up with
respect to subscripts o = B, we obtain the unknown formula for the
mean square of the temperature gradient:

(grad 7= 2 1~ (0). (17)

Multiplying the right and left sides of (17) by the temperature
conductivity x, we get the expression for the mean value of
characteristic N introduced above (§ 2) -~ "the levelling rate of
temperature discontinuities"

=i 3
, N=-i-xlf"(0) (18)
and, consequently, at very small £ (later we define more precisely
the meaning of the expression "small" 2, introducing the corresponding
scale):

H() z-'—ll"(O)l'=—;-%'.". (19)
The structural function of the temperature field H(R), roughly

'speaking, can be treated as the measure of intensity of temperature

-discontinuities g (calculated per unit of mass) for scales not

exceeding £. This follows from the fact that discontinuities

- considerably exceeding £ will not substantially affect the

tehpeﬁature difference at distance %. More accurately, the connection

betveen the spectrum of temperature discontinuities and the

atructural function can be established by applying a Fourier expansion.

Using the above qualitative plcture of the levelling process for
temperature discontinuities in turbulent flow, we can now attempt to
find an expression for structural function H(L) for "not very small"
values of & corresponding to scales where the direct effect of heat
conductivity of the medium is negligible. It is natural to assume
that with a quasistationary regime for temperature pulsations in this
region of scale variation, the value of H(L) must be determined only
vy quauu;uy N \andaivg of energy disslpatlicn 1n tha shezrny -°
Kolmogorov ' for velocity pulsations) and by turbulence characteristics.
'The coefficient of heat conductivity, consequently, must not directly
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enter.into the set of determining parameteré. According to the
theory of Kolmogorov, in this region of the scales the structure of
the field of turbulent pulsations in flow velocity is completely
determined by mean energy dissipation ¥ calculated per unit of mass
of the medium. Thus, we can write in the general form:

H(h=F(N, O, ). (20)

Before proceeding to the study of the form of function H(2) on
the basis of dimensionality analysis, it 1s necessary to make one
essential comment relative to temperature dimensionality. Since we
assumed a "passive" character in the transfer of heat by the flow,
with which randomly distributed discontinuities in the temperature
field do not affect turbulent motion (this corresponds to relatively
small temperature deviations from mean and considerable turbulence
of a purely dynamic origin) the mechanical equivalent of heat
is not among the "determining parameters." In connection with this,
when analyzing dimensionalities for temperature, we can use an
arbitrary scale independent of the choice of scales for dynamic
quantities.* Thus, we can éssume the special dimensionality 6 for
temperature,

Let us write the dimensionality of quantities which enter into
formula (20): '

[H] =08, [®]=LT 3 (V)= or, ] = L.
(in these formulas T is the dimensionality of time).
From these quantities we can set up only one dimensionless

combination

HO:

- (number);
N

%Let us also note that the reverse transition of mechanical
energy into heat (from dissination) in a turbulent flow causes such
an insignificant tempersture variatlon that this process can also be
disregarded.
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hence it follows that structural function H(%) has the form:

H =k
w ‘0

(21)
or
0, D=V TN)-T( ) =Bl*, (22)

where k 1s a numerical constant apparently having the order of unity;

B..k.ﬁ i1s the basic characteristic of the local structure of the
Ve

t
temperature field.

The relationship obtained between the mean square of the
temperature difference in turbulent flow and the distance between
observation points 1s completely analogous to the "law of two thirds"
for the velocity fleld, obtained by Kolmogorov and Obukhov in 1941
[2n 3]):

. [Py =M =co¥ 1, (23)

where ¢ 1s a numerical constant on the order of unity.

Thus, there is a peculiar similarity in the structure of the
temperature fleld and the velocity field in a locally isotropic
turbulent flow. It lies in the fact that the ratio of mean-square
amplitudes of temperature difference and velocity difference does
not depend upon the distance between observation points and has the

.

€=l

order of L

Now we can evaluate the scale of the least temperature discon-
tinuities, inside of which the fileld approaches linear because of the
action of heat conductivity. Thils scale corresponds to the region of
abnlication of an asvmototic representation of the structural
function H(L) for small 2. Let us define the corresponding scale of

%, as a point at which two asymptotic representations of H(&) (19)

15



and (21), which correspond to "small" and "large" values of &, Jjoin
(Fig. 1; here the dashes represent the hypothetical curve of H(%) in
the transition zone).

With such a definitlon, 21 must satlsfy equation

1 N p N
T-;'g:k'_b-;rhl.’
hence
/T
YV & (24)

The scale of 21 does not depend upon the intensity of temperature
pulsations. Due to the fact that for air the Prandtl number Pr = v/k
has the order of unity, the scale of 21 agrees in order of magnitude
with the internal scale of turbulence n, introduced in the paper of
Kolmogorov cited above ("smallest size of vortex"):

V.
~ —_— 2
,.‘/3 (25)

The concepts developed above concerning the microstructure of the
temperature field in turbulent flow can be used in meteorology when
studying the pulsations of temperature in the lowest atmospherilc layer
under the condition that wind speed is sufficiently great and
turbulence has a dynamic origin.

e

Lol

Fig. 1.
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We can attempt to give a rough estimate of the order of magnitude
of basic characteristics of the structural function of the temperature
field in the atmosphere. Using the above formulated condition of
"similarity” in the characteristics of the temperature field and the
velocity field, we can determine the "transfer coefficient" from the
amplitude of the wind veloecity to the amplitude of the temperature
pulsations by comparing two recordings of temperature and wind
velocity obtained under similar conditions. On the basis of the
data presented in Lettau's book [6], we can evaluate this "transfer
coefficient” as a quantity or. the order of 0.5° at 1 m/s or
5.10~3 em™1s.

’

Then, in accordance with the measurements of the wind velocity
pulsations made by G&decke [7] and the author [8] the microstructure
characteristic of the temperature field B (coefficient of proportional-
ity when 21/3 in the expression for mean square temperature difference)
can be estimated at several hundredths of a degree per cml/3 This
corresponds for a base at 1 m to a mean amplitude of temperature
difference on the order of a tenth of a degree.

According to,Gddecke's data, the internal scale of turbulence
can be estimated as a quantity on the order of 1 cm; this same
quantity must have the above scale of '1 which characterizes the
size of the "smallest grains" causing the temperature discontinuity
of the atmosphere.

These rough estimates must be, of course, defined more precisely
on the basis of special measurements of rapidly pulsating temperature
differences in the atmosphere at small distances (from several
centimeters to a meter).

Such research 1s of interest not only in connection with the
above theory but is important in order to explain a number of problems
relating to atmospheric acoustics and optics.

Acauemy of ociences, uodi Recelved
Geophysical Institute 28 March 1948
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