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SU 1MARY

The Report describes a way of designing a two dimensional array to

minimise the side-lobes while maintaining any given beamwidth of the radiation

putern in the array plane. The amplitudes and phases associated witl! thi

elements are adjusted by a modified gradient method which uses a linear or'-

oramming procedure. An example is given in which the side-lobe level for i

six-element array is lowered by 21 dB.
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1 INTRODUCTION

1.1 We are concerned with arrays consisting of a fairly small number (N) of

elements placed in a horizontal plane. Each element is omnidirectional ;ind

unaffected by its neighbours. The array polar diagram will be consi1f-rI.,d in,

the horizontal plane only, and at a single frequency.

Having fixed, arbitrarily, the positions of the elements, then ''ir

linear method of beam-forming, we have to choose 2N quantities, nauwIV,

amplitude weighting and phase shift to be applied to each element. We nour•;Pv

desire that the final polar diagram should have a narrow main beam an'!l Ir

side-lobes. The present work deals with the problem which may he stted

ft)rmally as follows:

For a given beamwidth, choose the weights and phases to ,iinii ,,I .

largest side-lobe.

1.2 The Dolph-Tschebyscheff theory solves this problem for linear and

equally spaced arrays. However, as far as I know, there is no theory ., ,Iv

for the present case. The brute force method of trying all combinations .-f

wpights and phases is quite impossible, unless N is trivially small, since it

?quires far too much computer time. The only practicable method seems to be'

to select an arbitrary initial situation and then try to reduce the si--..oI,

1,'c'e! by some kind of gradient method.

In section 2 the method used in this Report is explained. It will be

seen to be a gradient method, but with special treatment to deal with discon-

tinuities in the gradient of the object function. Thv special treatrlent Z.,,;

linear programmnnng procedure. In section 3 the method is applied tu -1w

under consideration. In section 4 numerical results for a particular ari:yzv arc

presented.

2 GENERAL METHOD

2.1 In this section we present in general terms the method of solution.

Any set of weights and phases may be represented as a vector in a spat:-

of 2N dimensions. Since the array pattern should have a preset beanmwidth,

the vectors are restricted to a space of dimension n, say, which is less thn-n

2N. It might be expected that we could choose n coordinates arbitr;rily, and

solve for the remaining 2N - n. This tur.s out to be the case, :,o we can

consider the problem to be one of minimising the side-lobe level when the point

of interest is allowed to range freely over a space of n dimensions.
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2.2 We shall denote the point of interest by - (z ... , z), the number

of side-lobes by m and the values of the power at these side-lobes by

Y11 ... 0 Ym" All these are functions of z. It may be that for some z,

m - 0. There are then no side-lobes and the problem is solved. In general

however m > 0 and so there ex~sts a largest yi with value y:

9 - max (yi) (1)
ii

In order to reduce 9 it is natural to make a step in the direction oi

-grad

z= - grad (2)

where c > 0. The simplest rule is to set e equal to a constant, and in fact

the program to be described uses just this method in its initial stages. The

flow chart is shown in Fig.!.

2.3 After a number of cycles of this simple gradient method, the procedure

gets into difficulties. This happens when two or more side-lobes are nearly

equal, and the identity of the largest changes from cycle to cycle. The

gradient vector of j is discontinuous. It can happen that 9 is actually

increased by a gradient step, due to the r~le of maximum side-lobe passing from

one lobe to another. In the program it was arranged that if y failed to

decrease over three successive iterations, the simple gradient method would be

abandoned in favour of the linear programming method described below.

2.4 In the neighbourhood of the point of interest z o, we may suppose that

the following linear approximations hold

yi.() - yi(z ) + (z - zo) . (grad yi) Zo (3)

Thus the change in yi is proportional to the projection of the displacement

(z - z ) on the gradient grad y." In order to change all the yis, it is

most efficient to use a displacement which belongs to the m-dimensional linear

manifold spanned by the gradients, that is, fo, some scalars c,, .. m
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m
(z zo ci(grad yi)j (4)

or
m

_z - z 10 ci grad y, (5)jai

For, given any displacement, we could obtain the same changes in the Y.q hy

using a smaller displacement, namely, that obtained by projecting the given
displacement on to the manifold spanned b: the gradients.

The point is that instead of dealing with an n-dimensional "isplacement,

we need only consider the m-dimensional vector c. Normally m is less than

n, and so the amount of computation will be reduced. In matrix notation we

put

a-z (6)

where & is an m x n matrix whose ith row is grad yi written as a row

vector, and c is a coltmm vector of order m. The original linearised

equation may be written

y - b + I (z - z (7)

where y and b are column n-vectors consisting of yi(z) and yi(z ).

Substituting, we obtain

- b +h c (8)

where h is the m x m matrix j '.

In order to avoid trouble with non-linearity, let us restrain c so that
none of its components can numerically exceed a given quantity C; that is,

cil c , i = 1,2,...,m (9)

These can be converted into one-sided constraints by setting
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c. - Pi - q. ; 1 = 1,..., (10)
1(10

where tho pi. qi satisfy

0 • p. , , 0 - q. • t i = 1.... (11) (

Further, we illLroducv r., s. such that
11 1

Pi + r" - qi ÷ . = ; 1 .... m (12)

where r -> 0, s i ; ;i- l ..
We now introduce yet more variables xi,... xm such that

Y , Yi + Xi ;1 - I .... m (13)

Since y - max (vi), then x. > 0 for each i. It is not convenient to have

y appearing in more than one equation, so we shall retain the equation

obtained from i - 1, namely

y' " yl + X 1(0 ")

and eliminate y from the rest

0 (15)

Substituting for y. the value

m
b + • h.. c. (16)

i j'l 13 3

as given by the matrix equation (8), we obtain
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m
b I + I h1j cj + 1  (.17)

0 b b - 1 +x - X (h..h 1  c. h 1= 2,C ,rjB
j-i

or

m
ab + Z hj (pi - qi) + x, (19)

jai

0 - b - I + [ (hlj - h.j) (pi - qi) + xi - ; i = 2,...x,,n20)
j-l 3 13

2.5 To summarise, we now have a standard problem in linear programning,

involving the (2m + 1) basic variables

xl ; pl, "'" pm ; ql' "'" , qm

and the (3m - 1) slack variables

x2 ... P x m ; rI, ... , r ; s, . sm

These are linked by the (3m - 1) equations

m m
b - bi = xi -x 1 + I (hij - h1j) pj + I (- hij 1 lj) qj ; i = 2,... ,.

ja j il

(21)

a + Pi ; i-1.... m ,(22)

S si i i+ 1,...,m . (23)
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;e havw to maximise the object fu'nction -y, given by

M m
-b - (- y)+x + ) hlj p. + - hli qj (24)

jail

subject to the constraints

x. ) p i 0 , qi > 0 , r. > 0 , s. i = l,...,m (25)

In solving this problem we may use the fact that a feasible solution is

known, namely pi - q .- r. a s. * 0 corresponding to a zero step.

2.b There are several ways of solving linear programming problems, but in

this case we used the Simplex method. The tableau is shown as Table 1. The

procedure will not be explained here, but readers not acquainted with it will
1find an elementary treatment in Vajda . It is an algorithm which yields,

after a finite number of steps, the values of all the variables and the

mdximised object function.

Having obtained pi and qi we calculate c. from

c. - pi - qi (26)

and then by matrix multiplication find the step vector

Z-z = ' (27)

The (linearised) minimum value ylin of y is obtained by negating the

maximised object function of the linear programning routine.

Fig.2 is a simplified flowchart for the program.

2.7 We now calculate the actual value Ytrue of # at the new point of

interest. if it were not for ncn-linearitv this would be equal to the value

Ylin given by the linear programming routine. If c is small enough the

two numbers will be nearly eqaal.

hy repeated iteration we obtain a sequence of pairs of numbers

-start ( 1(1) (2) '(2). ''sar ( lin ' Ytrue ' Ylin ' true) '



[|
130 9

with the property

-ii+l) W
il) true for all i. (28)

If ,nuis small enough

_Wi _ (i) ( 9
Ylin Ytrue

so te squene ,(i)
so the sequence tyr} is monotone decreasing, approxirately. In order toItrue
guarantee a truly monotone decreasing sequence, we adopt the following

procedure:-

"If > (true ( reject the point (i + 1) just obtained, replace

c by c/2 and repeat the linear prograrmming routine about the point of

interest i".

It is intuitively obvious that halving E, if necessary many times, will cause
- (~l)• i~l a(i+l)W

Ytrue to approach Ylin and since lin cannot exceed itrue, we will

eventually arrive at a value of yitrue which is not greater than Y rue

Thus we obtain a sequence {y I which is genuineiy monotone non-increasing,
true

by this device of variable step length. The sequence is bounded below (by 0)

and therefore it converges.

In practice it was found that the sequence converged quite rapidly

(typically 20 iterations) until the values of y were constant apart fromS"~true•
rounding errors. Tile values of E did not approach zero. In the tinal steady

state all the gradients grad yi are zero, and all the yis equal.

2.8 The variable-E devize was also used to speed up the convergence, by

oubling u when we appeared to be frr from a final solution. The actual

rule adopted was as follows:-

"Suppose Y M (iie)u ( G+2) are three successive values of v.
Ytu tre true

Th~n if the difference between the last pair is more than half the difference

between the first pair, i.e.

G _2 (-~) (i+l) _ (i)

Ytrue -true Ytrue -true

r,•place c by 2L on the next iteration". This rule allows us to start
-6

,itil , very small value of , say 10 The computer will then keep
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doubling until it approaches the final value, or until non-linearity effects

,-skU the '..-halving' rule previously described to come into play.

No arrangenients were made in the program to halt it when convergence was

obtained. Sucvessive values of y where printed and the program was
true

interrupted by the operator when they became steady, The results were then

obtajnCd Via common storage by entering an auxiliary program.

3 APPLICAT!ON Tf't 2D ARRAY

3.1 Fig.3 shuws the array consisting of N omnidirectional elements, which

we label 1, 2,..., N, and in which element j has coordinates (x., y,).

The atray may be regarded as lying in one plane (:-y). We shall consider the

polar diagram for directions lying only in thi6 plane.

The 'array function' f(A), which is a complex amplitude, is given by

N
f(A) -jl w. exp ik (x. cosA+ yj sin A) (31)

where A - angle measured from the x-axis I
k = 2-/wavelength

1 ,...,wN are the (Comrnkex) weights associated with the elements.

The- arra, Power function will be de'ined to be

P(A) , If(A)2 (32) i-i

3.2 ThL proble:m may now be stated as follows:

G;iven N, k, Xl,...,XN, yN,'.'yN, choose wN,...,w. so that

thi side-lobe level is minimised, subject to the condition that the beamwidth

ha, a pre.scribed value 2A
0

3.3 The re-strictions on beamwidth will be taken to mean that the following

cq.vlkons hold

P'(O) = I

P(A ) ., P(- A 4 (33)
0 ' 0
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Thus 2A is the -3 dB beamwidth (Fig.4).

The side-lobes will be defined as all the maxima of P(A) that do not

lie in the range -A to A0 ; i.e.
0 0

A A. , ... m

where {A.} are the solutions of

P'(A) - 0

P"(A) < 0 (34)i r
0JAoi

The actual values of the side-lobes, the {y.} of the previous section,
1

are

Iy . P(A.i) (35)

3.4 The equation (33) may be expressed in terms of the array function as

f(o) 1

f(A ) = cxr (i e ) (36)

f(-Ao) - exp (i e)

by introducing the (as yet unknown) phases e, and e 2 . (No phase need be

introduced in the first equation.) We then have three equations coupling the

N variables w, ... ,wN Provided that N is at least 3, we can solve

these equations (in general) for any 3 of (w.} in terms of

el, e2 , {x ), {y.), Ao, k and the remaining {w.}. We choose to solve for

Wl, w and w3 . There are then N-3 'free' variables w4,... ,wN: or,

rather, since {w } are complex, there are 2N-6 free real variables at our

disposal, to which must be added the eI and e 2 , giving 2N-4 free variables.

Thus we set n - 2N-4, and zi, z2 ,. ,z will correspond to
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tI, e2, Re(w 4 ), Im(w 4 ) ,4 ... Re(w , Im(wN) (37)

The e'quations which express Wl' ,i2. w3 in terms of the free variables

ate cumbersome, but may be found in Appendix A.

3.5 Having forced the array function to satisfy the mainbeam conditions by

solving the' equations for w1 , w2 , w3 , we now need to locate the maxima. The

method used was to compute P(A) for every A at suitable interv-als

(say 10 L1,") in ordter to find the maxima approximately, and then refine by

solving

f'(A) - , (38)

by Newton's method. The details are given in Appendix B.

All solutions with 1A' < A are then deleted and the remaining angles

re-ordered so that P(A 1 ) is the largest of the P(Ai).

3.6 The procedures described in section 2 call for the gradients

grad P(A.) , i 1,... m
Iy

taken with respect to the 2N-4 dimensional vector z. Now

ý,P(A.)
grad PA.) grad P(A) + grad A (39)A. 2A. i

where Rrad denotes the gradient calculated ar if A. did not depend on
1.

z. Fortunatcly, since A. is a maximum, iI-- 1

:4P(A.)
S 0= 0 (40)

. A.

.nlld sk,

grad P(A.) - gradA. P(A.) .(l)

1
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The actual components will be

[grad P(Ai)j = • [P(A )J; j - 1,2 (42)
e S.

[grad P(A )i A2j+ P(A)j ; j = 1,. .. ,N-3 (43)

[grad P(Ai)] , ( [P(A)] = (44)
i 2j+2 1,..,N- (44))

When we carry out the differentiations, remembering that the free variables

affect P(Ai) not only explicitly but also via the variables wI, w2 , w3 , the

resulting expressions are rather lengthy, so these are relegated to Appendix C,

(in which the components of grad P(A.) are written

dl d21 9l' g29 ".". 'g2N-6 )

The numerical computation is not as long as the expressions might suggest since

the computer can use much of previously stored information.

4 NUMERICAL EXAMPLE

4.1 The example uses six elements, placed regularly around a circle of radius

0.25 wavelength (Fig.5). The main bean'. is to be mid-w-. between twu elements.

N =6

x,= x6 = 0.216506

x = x 5 0

x3= x4 -0.216506

Yl= Y3  2 0.125

Y2 = 0.25

Y4 = Y6  = -0.125

= 0.25
Y5 = - 25

k -' 21•



rI

14 130

4 lThe must natural way to obtain a beam in the x-axis direction is to apply

phases Lo bring the elements in-phase in this direction; and then use equal

wue ight ing arpl i tudus. This gives

W exp - i k x.) ' i : 1,... N (45)

or

W = w6 - 0.034816 - 0.162990 i

w -. w5 0 0.166667

w3 - w4 = 0.034816 + 0.162990 i

The polar pattern of this array is plotted in Fig.6. The beamwidth is

84 deg. There are two side-lobes, located at ±162.3 deg with level -11.15 dB.

This pattern should be compared with the later results obtained by the

z-iet--lobe reduction program.

. The high side-lobe levels under natural phasing makes this array a

suIt-bie su Lje'¢'t !r the program, provided we do not demand beamwidths much less

tian '4 dtg. The actual values cf 2A used were 55 deg to 90 deg in steps of
505 de'g.

Thc initial values of the free variables were, at first, chosen to be

eI = 0, e, = 0

w = 0.0348162 + 0.162990 i

w5 = 0.166667

W6 = 0.0348162 - 0.162990 i

th,: ijst tihrete being taken from the natural weighting. It was later found that

th, haprumic- to be a rather unfavourable starting point, and machine time

!:: . say,. by srarting from the values of eI to w6  that constituted the

aý ',,, - fur a;i.t-ht-u A case.

,.7 iI'.-otratcs tbi cotivergence of the -..aximum -ide-lobe as a plot

aaI~iz• ituCatior number. The slep length is also shown in Fig.8. For this
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example, 2A a 85 deg. The final power value was 4.40172 x 10-4 or0

-33.56 dB in this case, showing an improvement of over 20 dB compared with the

natural weighting scheme for approximately the same beamwidth.

4.4 The results for the eight values of A are given in Tables 2 to 9.
o0

For each element, the tables give

(i) the x and y coordinates in wavelengths

(ii) the weights w. in real and imaginary parts
J

(iii) the weights in polar form, that is, amplitude and phase, with the

phase given in radians and in degrees.

The tables also contain the results of an independent program which

computed the -3 dB points and listed the side-lobes.

The actual polar diagrams corresponding to these results are plotted in

Figs.9 to 16.

It may be noted that the -3 dB points of these curves occur at the

required angles. Further, all the side-lobes are at the same level. This

comnion level depends on the beamvidth; the larger the beamwidth we can allow,

the lower the side-lobe level. The trade-off between beamwidth and side-lobe

level is illustrated in Fig.17, for this particular array. The point for the

original phasing is also plotted on this figure, and it is about 21 d8 above

the curve. As the beamwidth ir"eases, the side-lobe level drops rapidly.

As the beamwidth decreases, the level increases as if to approach 0 dB at about

400. No solutions have been found which give reasonable patterns for beam-
0widths less than 50 , vhich suggests that 'supergain' weightings do not exist

for this particular array.

4.5 The tolerances for these arrays are also of interest. NaturaLly,

reducing the side-lobe level makes the pattern more sensitive to plhasing and

other errors, as it is necessary to compare tolerances in a way which is not

masked by this effect. In this Report we express the tolerance a- the rms

phase error which applied (independently) to all elements, leads to a variance

of the compiex array function equal to 0.001. (Roughly speaking, this means

that the 'noise' in the pattern is 30 dB down.) The value can readily be shown

to be
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If(o)I 1'i~ !2 eres .(6

This tolerance is plotted in Fig.18 against beamwidth. On this curve is also

shown the tolerance for natuLal phasing. Note that the tolerance is maximum at

around 840, the original beamwidth, and becomes less at narrower beamwidth,

being about half the original value at 550. For beamwidths around 700 to 900

the tolerance is only slightly less than the original tolerance with natural

phasing (over 80%). The fact that the side-lobe levels are shown going down

to some -40 dB does not of course mean that they could necessarily be achieved

in practice. It would be necessary to consider, for example, mutual coupling, i

inter-element screening, departures from omnidirectionality, as well as the

phase and amplitude tolerances. However these effects apply to any array, and

it is outside the scope of this Report to include them.

4.6 The weights and phases for these optimised arrays have, in this example,

rather curious properties. In the first place, they are not symmetric about

the beam axis, that is

wI w w W w3 w
1 6' 2 55 4

It follows that each solution is one of a pair, the other being obtained by

reflection in the x-axis. Secondly, the array has conjugate complex symmetry

about the y-axis, that is,

WI - w3 , w6  w4 , and w2 and w5 are real.

Probably these properties are due to the geometry of this example, but they show

that these optimised arrays may be quite different from the arrays one would

normally consider.

5 SLUMARY

5.1 We have described a method of adjusting the complex weights in a two-

dimensional array in order to optimise its pattern. The optimisation consists

of minimising the side-lobe level (that is, the largest side-lobe) while holding

the -3 dB beamwidth at any value we choose.
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The procedure is a gradient method, modified to deal with the discontinu-

ities in the gradient vector. At each iteration we choose the next step using a

linear programming routine. The step length is controlled by a parameter which

is varied automatically so as to minimise the number of steps needed.

T'e method is a general one in that it can be applied to any problem

requiring the minimising of the largest of several non-linear functions.

5.2 As an example, we considered a six-element array shaped like a regular

hexagon, with the main beam mid-way between two elements. Starting from the

natural phasing scheme, the program reduced the side-lobe level from

-11 to -32 dB for unchanged beamwidth. The solutions indicated weights and

phases strikingly different from the natural phasing scheme.

Figs.9 to 16 show the polar diagrams for this array for various beamwidths.

The minimum side-lobe level decreases quickly as the beamwidth is allowed to

increase, and Fig.17 shows the relation for this particular example. Such a

curve may be used to select a beamwidth when the side-lobe level is prescribed.

The tolerancu, expressed as the -ms phase error which would produce

pattern noise at -30 dB, were only slightly less than those for the original

phasing (typically 80Z), so there is no objection to the optimised arrays with

regard to tolerance.

ii

I
I

I

Ii
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Appendix A

A.1 We write the equations in matrix form

B C] [w] - E (A-1)
"JLz

where [B C] is the 6 x 2N matrix of coefficients

cos bI0 - sin b 0 cos b2 - sin b ..
0 0 0 0co 1  -B 1 cb 2  -sn 2

sin b0  cos b0  sin b0  cos b2
1 1 2 2

cos b+ - sin b+ cos b2  sin b2
1 1-in, 2  (A-2)

sin b+ cos b+ sin b+ Cos b+
1 1 2 cs 2

cos bI - sin b1  cos b 2 sin b2

sin bI cos b sin bI cos b

in which

b k x. (A-3)

b. - k(x. cos A + y. sin A ) (A-4)

b. = k(x. cos A - yi sin A ) (A-5)

LWJ is the 2N column vector whose transpose is

[Re(wI) Ira(w 1), Re(w..), Im(w2),.. (A-6)

E is the six-vector whose transpose is

I1, 0, (1//2) cos el, (I/'2) sin el, (1//2) cos e2 , (1//2) sin e 21 (A-7)
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The puit L[ i'hinyl is ,iuch tlhat it is 6 - 6, C is 6 x (2N-6), w is

1 " , i - -) 1. This allows us to write

BW + CZ = E (A-8)

C- B- ( - CZ) (A-9)

W a - DZ (A-10)

wh.rv. A is th,: t) 6 matrix B1  and D is the 6 x (2N-6) matrix AC.

A depends on A and (xj, y.), j - 1, 2, 3; D depends on A and

(xj., v.), j = 4 to 2N-6; thus A and D are independent of the weights

w. and ncud not ihL rezomputed at each iteration. The vector Z depends on

w., j 4 to 2N-6, via the equation

7, Re(w 4) Z2  a Im(w 4 )

Z'j-7 = Re(w.), Z2j-6 * Im(w.) (A-li)

Z 7 = Rc(w ), Z )N -6 0 I (WN) J

ThC wLtight:; 1 w), w' arc then obtained by

W WI w 1 2

w) - 3 + i ."4 (A-12)

W = W,5 + i W 6

" ". I, re : t ! tilo pos.Ait11ity thiat h will be singular, in which case the
uvtihod will fl!,i . This will happen if.. for example, A .0. However for

rucasoi).il)I J ii io trouble hcs been encountered.
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Appendix B

B.1 The first stage in locating the maxima begins by computing the array

Pis ' PM+I

where

Pi 0 P(,(2i/M - 1)) , i = 1,... M J (B-1)

PM+l " PI

for some convenient integer M. M lust be chosen large enough so that the

interval 271/M is ,ess than the interval between maxima, and is found by

experiment. We then examine the list and find all j such that

Pi-l `< Pi -ý Pi+l (B-2)

giving as a first approximation

A - -1(2i/M - 1) (B-3)

B.2 The exact value of A at the maximum is then found by applying Newton's

method to solve

P'(A) - 0 (B-4)

If A is an approximate solution, the next approximation A' is

A' - A - P'(A)/P"(A) . (B-5)

The iteration is stopped when IA' - Al < IO-4 and A' taken as the solution.

B.3 The formulae for F(A), P'(A) and P"(A) will now be derived.
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Writing F and F for the real and imaginary parts of f(A), i.e. I

N N, F

0 j - l j - 1 4j.1

where

b - Re(w.) cos b - Im(w.) sin b (B-7) 1:
3 0 J 0

b Re(w.) sin b + Im(w.) cos b (B-8) -

4 0 0

b = k x. cos A + k y. sin A (B-9)

then

2 2i
P(A) F + F 2(B-1)

0 1

IThe bs depend on j, but the notation ignores this for simplicity.]

The first derivative P'(A) is j
J dF dF1

P'(A,) 21 F° 0 + F I

or

2 (Fo- 2 + F F3 ) (B-1i)

where

F 3

db I
J 4

- Y b b 4 bi (B-12)j
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and
db 4

F3 " .dA

1, • 3 bI1 (B-1 3)
I

where

bi - k x. sin A + k y. cos A (B-14)

The second derivative P"(A) is

r dF2 dF dF3 dFI
_ ." A ) -- 2 1 F ° + F 2 -. + F I - + F 3

0"A = A+ 2 dA F 1 dA 3 d f
or

2{FoF 4 + F 1 F5 + F2 + F21 (B-15)

where

d I
IF 4  = ! (- b4b1 )

I f db d4]

4 3 L dA IdAJ

SY I- 4(- bo) - b (b b A)
o 1 3 1

- [b b -b b21] (B-16)
t~ 4 c 3 1

and similarly

F = (- b 3 b- b b3
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Appendix C

C.I If .L is any variable

7 -- P(A,) = 2(Fo Go + F1 GC) (C-1)

wlere

-- = " cos b) - sin b(j0] (C-2)F° j~l o o

F = Fl e(w.) sin b(j) + cos b (C-3)

b' = k x. cos A + k y. sin A (C-4)

0 J 3

and
3Fo F1

G 0 -- GC " - (C-5)o0 3 ' 1

C.2 To evaluate di, take a to be e1_ Then

No = .eljY[Re(wj) cos b - Im(w.) cos b .j) (C-6)

Now wi, w2 , w3  are functions of e 1  but the remaining weights are not.

Hence

3 (
G ljý-L-Re(w.)J cos ,, - * 1 Im(w.%] sin b . (C-7)
0 j=l 0 e 1 je. 0

However, Re(w.) is the (2j-l)th component of W, and is equal to

6
SA E - (DZ) (C-8)
k1 2j-l,k k '2j-1(C)k--I

while Im(w.) is
3

6
SA 2 j,k Ek - (DZ) zj (C-9)

k,-l
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Differentiating w.r.t. el gives

6 aEk )
Re(w.) = k-I A2  k (C-)

6 EEk

eIm(w.)j A2 j,k de (C-Il)

But
2Ek E 4

- 0 unless k = 3 or 4, and 3= -E4 E (C-12)
Ie1 3

Hence we get

a Re(wj) . V, 2 j 1  (C-13)

SIm(wj) ,2j (C-14)

where

Vl,k -Ak,3 E4 + Ak, 4 E3, k = I to 6 (C-15)

Similarly, we write

SRe(w.) - V (C-16)
e2 "2,2j-1

Re(w.) . V2 2 j_ (C-17)

where

V2,k - Ak, 5 E 6 + Ak, 6 E 5, k = 1 to 6 (C-18)

By substitution

G 3 k cos b()- V sin b0 j (C-19)0 j, 2j- o k,2j 0
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and, similarly, j
G = 3[Vk,2*1 sinb( V cos (C-20)bj0o j1 oj- a 0 k,2j 0o o(-0

where k - 1 for differentiation w.r.t, el, and 2 for e 2.

C.3 To find gk we take a to be zk* In differentiating F aLd F1 we

have to remember that w1, w2 , w3  depend on zk via the matrix D, and also

that one of w4, ... , W2N- 6 depends directly on zk'

If k is odd, say 2i - 7 where 4 • i • N, then

Go - D. cos b()o + D sin b(j)o + cos b(' (C-21)

I 2ij-l,k 0 21*,k Ja

F Qi - D cos b~jl] + sin b(i) (C-22)G . L D2 lk o - 2j,k o 0 (C

If k is even, equal to 2i - 6, then

Go- D cosb +2j,k sin b0 j - sin b(') (C-23)

im FI- (~
G1 Q ) 'j) + Dc~lk si a b(j) . ( -24)

G-C D - D 2j,k cos b 0 0 (C
iljl L 2j1k a 2k oo

In either case, the gradient component is

gk 2(F0 G0 + F 1 G) (C-25)
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Table 1

TABLEAU FOR LINEAR PROGRAMMING ROUTINE

E r E
..- -4 .. . -. . .• r

4+ + + C .. C - -

r V

€- -. ..

E

,-4 -4 -4

CN E~ CE.-- I I .. . .... C **** -

-~ -'

e-.J I

.~ .X

N I *.* I C *.- C -*" C)
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Table 2

BEAMWIDTH 55 DEG

N= 6 MAX.SL- .140971 (-8.50869 DB)
P-1 9.07103E-03 E2--8.73477E-03 RAD

1 2 3 4
x .216506 0 -. 216506 -. 216506
Y .125 .25 .125 -. 125
VT-R -.28005 .570239 -. 280266 3.53709E-02
WT-I 3.08759E-02 -2.37417E-04 -3.03791E-02 .190323
WT-A.MP .281747 .570239 .281908 .193582
PH-RAD 3.03178 -4.16347E-04 -3.03362 1.38705
PH-DEG 173.708 -2.38549E-02 -173.814 79.4719

5 6
x 0 .216506
Y -. 25 -. 125
WT-R .219784 3.52782E-02
WT-I -3.87944E-06 -. 190247
T-&MP .219784 .19349
PII-RAD -1. 76512E-05 -1. 38744
PH-DEG -1 .01134E-03 -79.4948

I/2 PWR -27,5 27.5 DEG
0 DB @ 0 DEG

-8.51 DB @ 101.3 DEG
-8.51 DB @ 180i DEG
-8.51 DB @ -101.3 DEG
DIR 4.31995 (6.35 DB)
-30DB TOLS:
POS 6. 45862E-03 WL
TWI .352439 DB
PH 2. 3251 DEG
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Table 3

BEAMWIDTH 60 DEG

N- 6 NAX.SL- 6,78598E-02 (-11.6839 DB)
El- 4.96462E-03 E2--5.02428E-03 RAD

1 2 3 4
X .216506 0 -. 216506 -. 216506
Y .12e .25 .125 -. 125
WT-R -. 202399 .474223 -. 20235 5.35152E-02
WT-I -2.20666E-02 5.18891E-05 2.19617E-02 .167044
WT-AMP .203598 .474223 .203539 .175407
PH-RAD -3.03299 1.09419E-04 3.03348 1.26076
PH DEG -173.778 6.26925E-03 173.806 72.2363

5 6
X 0 .216506 . ...
Y -. 25 -. 125
WT-R .218211 5.35400E-02
WT-T -1.08309E-05 -. 167023
WT-AMP .218211 .175394
PH-RAD -4.96350E-05 -1.26059
PH-DEG -2.84388E-03 -72.2265

1/2 PWR -30 30 DEG
0 DB @ 0 DEG

-11.68 DB @ -105.7 DEC
-11.68 DB @ 105.7 DEG I
-11.68 DB @ 180 DEG
DIR 4.86244 ( 6.87 DB)
-30DB TOLS:
POS 7.79463E-03 WL
AT .425343 DB

PH 2.80607 DEG
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Table 4

BEAMWIDTH 65 DEG

N- 6 MAX.SL- 3.11699E-02 (-15.0626 DB)
El- 2.90223E-03 E2--2.88797E-03 RAD

1 2 3 4
x .216506 0 -. 216506 -. 216506
Y .125 .25 .125 -. 125
WT-R -. 127046 .391772 -. 127047 5.51484E-02
WT-1 -6.50121E-02 -3.34624E-06 6.50226E-02 .145494
WIT-AMP .142714 .391772 .14272 .155595
PH-RAD -2.66861 -8.54131E-06 2.66855 1.20849
PH-DEG -152.9 -4.89381E-04 152.897 69.2412

5 6
x 0 .216506
Y -. 25 -. 125
WIT-R .226542 5.51492E-02
WT-I -2.78361E-06 -. 145485
WT-AMP .226542 .155587
PH-RAD -1.22874E-05 -1.20846
PH-DEG -7.04016E-04 -6ý.2397

1/2 PWR -32.5 32.5 DEG
0 DB @ 0 DEG

-15.06 DB @ 180 DEG
-15.06 DB @ -111.1 DEG
-15.06 DB @ 111.1 DEG
DIR 4.98824 ( 6.98 DB)
-30DB TOLS:
POS 9,28274E-03 •..

W' .506547 DB
PH 3.34178 DEG
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Table 5

BEAMWIDTH 70 DEC

N- 6 MAX.SL- 1.3330SE-02 (-18.7514 DB)
El-4.47159E-04 E2- 3.25132E-04 RAD

1 2 4
x .216506 0 -. 216506 -. 216506
Y .125 .25 .125 -. 125
WT-R -6.98724E-02 .334035 -6.98346E-02 6.12264E-02
WI-I -9.16232E-02 6.03756E-05 9.1470Th-42 .134584
WT-AMP .115226 .334035 .115081 .147S56
PH-RAD -2.22231 1.80746E-04 2.22286 1.14385 -

PH-DEG -127.329 1.03560E-02 127.361 65.5378

5 6
X 0 .216506
Y -. 25 -. 125
WT-R .227295 6.12369E-02
WT-I -4.09895E-06 -. 134572 i
AT-AMP .227295 .14785
PH-RAD -1.80336E-05 -1.14375
PH-DEG -1.03325E-03 -65.5321

112 PWR -35 35 DEG
SDB @ 0 DEG

-18.75 DB @ 117.1 DEG
-18.75 DB @ -117.1 DEG
-18.75 DB @ 180 DEG
DIR 4.81854 ( 6.83 D1B)
-30DB TOLS:
POS 1.04158E-02 WL
TA .568377 DB

PH 3.74968 DEG
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'able 6

BEAMWIDTI! 75 DEG

N- 6 MAX.SL- 5 13755E-03 (-22.8924 DB)
El- 4.13922E-04 E2--4.20647E-04 RAD

1 2 3 4
x .216506 0 -. 216506 -. 216506

Y .125 .25 .125 -. 125
IW-R -1.75293E-02 .288104 -1.75279E-02 6.21181E-02
wr-I -. 110457 3.13678E-06 .110447 .126866
WT-AMP .111839 .288104 .111829 .141257
PH-RAD -1.72818 1.08877E-05 1.72818 1.11547
Pit-DEG -99.0175 6.23817E-04 99.0175 63.912

5 6
X 0 .216506
Y -. 25 -. 125
'T-R .229104 6.21188E-02
vr-i -8.76854E-07 -. 126864
WT-AMP .229104 .141256
PH-RAD -3.82732E-06 -1.11546
PH-DEG -2.19289E-04 -63.9114

1/2 PWR -37.5 37.5 DEG
0 DB @ 0 DEG

-22.89 DB @ -123.7 DEG
-22.89 DB @ 123.7 LEG
-22.89 DB @ 180 DEG
DIR 4.56076 ( 6.59 DB)
-30DB TOLS:
POS 1.12424E-02 WIL
t.7 .613481 DB

PH 4.04724 DEG

I.

I•
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Table 7

BEAMWIDTH 80 DEG

N- 6 MAX.SL- 1.69646E-03 (-27.7045 DB)
El--l.84984E-03 E2- 1.85059E-03 RAD

1 2 3 4
X .216506 0 -. 216506 -. 216506
Y .125 .25 .125 -. 125
WT-R 2.73322E-02 .253021 2.73332E-02 6.28844E-02
WT-I -. 120433 3.52960E-06 .120423 .124688
WT-A"P .123496 .253021 .123486 .139648
PH-RAD -1.34763 1.39498E-05 1.3476 1.10369
PH-DEG -77.2134 7.99266E-04 77.2119 63.2367

5 6
X 0 .216506
Y -. 25 -. 125
WT-R .22988 6.2885bF-02
WT-I -3.63328E-06 -. 124677
WT-AMP .22988 .139639
PH-RAD -1.58051E-05 -1.10364
PH-DEG -9.05567E-04 -63.2342

1/2 PWR -40 40 DEG
0 DB @ 0 DEG

-27.7 DB @ 130.8 DEG
-2ý.7 DB @ -130.8 DEG
-27.7 DB @ 180 DEG
DIR 4.28581 ( 6.32 DB)
-30DB TOLI:
POS 1.16584E-02 V"L
WT .636183 DB
PH 4.19701 DEG
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Table 8

BEAMWIDTH 85 DEG

N- 6 .9AX.SL= 4.40308E-04 (-33.5624 DB)
EI--.17555E-06 E2= 3.21454E-06 RAD

1 2 3 4
X .216506 0 -. 216506 -. 216506
Y .125 .25 .125 -. 125
%7-R 6.71199E-02 .22631 6.71194E-02 6.28798E-02

-. 125609 3.11032E-06 .125597 .12468
WT-AMP .142417 .22631 .142407 .139639
PH-RAD -1.08004 1.37436E-05 1.08001 1.10369
PH-DEG -61.8819 7.87452E-04 61.88 63.2369

5 6
x 0 .216506
Y -. 25 -. 125
tT-R .229864 6.28803E-02
WIT - I -3.93707E-06 -. 124669
UT-A.MP .229864 .139629 - ji
PH-RAD -1.71278E-45 -1.10365
P11-DEG -9.81352E-04 -63.2346

1/2 PWR -42.5 42.5 DEG
DBo 0 DEC

-33.c( DB @ 138.5 DEG
-31 DB @ -138.5 DEG
-3. DB C 180 DEG
Dii 36 ( 6.05 DB)
-30DB 1OLS:
POS 1.17455E-02 WL
4 .640936 DB

PH 4.22837 DEG
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Table 9

BEAMWIDTH 90 DEG

N- 6 MAX.SL= 1.07051E-04 (-39.7041 DB)
El- 4.18666E-04 E2-4.17680E-04 RAD

1 2 3 4
X .216506 0 -. 216506 -. 216506
Y .125 .25 .125 -. 125
Wr-R .10201 .204806 .102015 6.34360E-02
WT-I -. 126915 6.06649E-06 .126907 .126092
WT-AMP .162829 .204806 .162826 .14115
PH-RAD -. 893764 2.96206E-05 .89371 -1.10468
PH-DEG -51.2089 1.69714E-03 51.2059 63.2934

5 6
X 0 .216506
Y -. 25 -. 125
iWr-R .231238 6. 34371E-02
wr-I -3.07767E-06 -. 126081
Wr-AMP .231238 .141141
PH-RAD -1. 33095E-05 -1.10464
PH-DEG -7.62580E-04 -63.291

1/2 PWR -45 45
0 DB @ 0 DEG

-39.7 DB @ -149.4 DEG
-39.71 DB @ 149.4 DEG
-39.71 DB @ 180 DEG
DIR 3.79087 ( 5.79 DB)
-30DB TOLS:
POS 1.15987E-02 WL
WT .632929 DB
PH 4.17555 DEG
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SYMBOLS

A azimuthal angle

A semi-beamwidth to -3 dB points
0

b y, at beginning of iteration

b. componn'hts of b

C vector consisting of Cl,...,Cm

scalars expressing Az in terms of the gradients
1-

phases at -3 dB points

f(.) complex array function

matrix whose rows are grad J.

components of

~- 1
h.. components of h

Sj indices

k- 2n/wavelength

number of side-lobes

N number of elements

n number of free variables

P(.) array power function If(.)12

Pi. qi, ri. si auxiliary variables used to convert problem to standard
linear programming form

w. complex weight for element i

x.V. Cartesian coordinates of element i

Yi power level of side-lobe i

largest of Yi

Ystart initial value of

linearised 9 after iteration iY!in

v true y after iteration i

Z vector consisting of z1 .... #wn

z. free variables, identified with eI, e 2 and the real and
1 imaginary parts of w w 2

4 N
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SYMBOLS (Cont'd)

Lz increment in z resulting from iteration

small constant limiting step length

grad gradient operator ( 4 li. " ' n)

m x n

marxtrnps
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