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SUMMARY

The Report describes a way of designing a two dimensional array to
minimise the side-lobes while maintaining any given beamwidth of the radiation
rattern in the array plane., The amplitudes and phases associated with the
elements are adjusted by a modified gradient method which uses a linear pro-
gramming procedure. An example is given in which the side-lobe level

for ~
six~element array is lowered by 21 dB.
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1 INTRODUCTION

1.1 We are concerned with arrays consisting of a fairly small number (¥) of

clements placed in a horizontal plane. Each element is omnidirectional anid
unaffected by its neighbours. The array polar diagram will be considerod in

the horizontal plane only, and at a single frequency.

Having fixed, arbitrarily, the positions of the elements, then for o
linear method of beam-forming, we have to choose 2N quantities, namely, te
amplitude weighting and phase shift to be applied to each element. We noivaliy
desire that the final polar diagram should have a narrow main beam and lTou
side-lobes. The present work deals with the problem which may be stated

formally as follows:

For a given beamwidth, choose the weights and phases to mininisr);np
largest side-lobe. \\

1.2 The Dolph-Tschebyscheff theory solves this problem for linear and

equally spaced arrays. However, as far as 1 know, there is no theory avislabie
for the present case. The brute force method of trying all combinations of

weights and phases is quite impossible, unless N 1is trivially small, since it
nquires far too much computer time. The only practicable method seems to he
to seiect an arbitrary initial situation and then try to reduce the siuv-]obe

'cvel by sowe kind of gradient method.

In section 2 the method used in this Report is explained. It will .be
seen to be a gradient method, but with special treatment to deal with discon-
tinuities in the gradient of the object function. The special treatrent usec 4
linear programming procedure. In section 3 the method is applied to ~ine =0y

under cousideration. 1In section 4 numerical results for a particular array arc

presented.

2 GENERAL METHOD

2.1 1In this section we present in general terms the method of solution.

Any set of weights and phases may be represented as a vector in a space
of 2N dimensions. Since the array pattern should have a preset beamwidth,
the vectors are restricted to a space of dimension n, say, which is less than
2N, It might be expected that we could choose n coordinates arbitrarily, and
solve for the remaining 2N - n., This tur-s out to be the case, s0 we can
consider the problem to be one of minimising the side-lobe levei when the point

of interest is allowed to range freely over a space of n dimensions.



2.2 Ve shall denote the point of interest by z = (zl, ves zn), the number
of side-lobes by m and the values of the power at these side-lobes by

Ypr v Ve All these are functions of z. It may be that for some z,

m = 0. There are then no side-lobes and the problem is solved. In general

however m > 0 and so there ex'sts a largest Y with value y:

y = max (yi) . (1
i

In order to reduce y it is natural to make a step in the direction oi
-grad y

Az = =~ ¢ grad y (2)

where ¢ > 0. The simplest rule is to set ¢ equal to a constant, and in fact
the program to be described uses just this method in its initial stages., The
flow chart is shown in Fig.1.

2.3 After a number of cycles of this simple gradient method, the procedure
gets into difficulties. This happens when two or more side-lobes are nearly
equal, and the identity of the largest changes from cycle to cycle. The
gradient vector of y 1is discontinuous. It can happen that ¥ 1is actually
increased by a gradient step, due to the rdle of maximum side~lobe passing from
one lobe to another. In the program it was arranged that if y failed to
decrease over three successive iterations, the simple gradient method would be

abandoned in favour of the linear programming method described below.

2.4 In the neighbourhood of the point of interest z,, Ve may suppose that

the following linear approximations hold
yi(g) - yi(go) + (g-go) . (grad yi)io . 3)

Thus the change in Y is proportional to the projection of the displacement
(z - go) on the gradient grad vy In order to change all the Yiss it is
most efficient to use a displacement which belongs to the m—dimensional linear

manifold spanned by the gradients, that is, fo. some scalars ¢,, ... e’
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m
(@-z), = T c(arady); (4)
j=1
or
m
< -z— - 3_0 = jEI Ci grad yi . (5)

For, given any displacement, we could obtain the same changes in the vis by
using a smaller displacement, namely, that obtained by projecting the given

displacement on to the manifold spanned by the gradicnts.,

The point is that instead of dealing with an n-dimensicna® ‘isplacement,
we need only consider the m~dimensional vector c. Normally m 1is less than
n, and so the amount of computation will be reduced. 1In matrix notation we

put
- 1
-z, = g & (6)
N where g is an m x n matrix whose ith row is grad Yy written as a row

vector, and ¢ 1is a column vector of order m. The original linearised

equation may be written
y = brg(z-2) @)

where y and b ere column n-vectors consisting of yi(i) and yi(fo)'

Substituting, we obtain
Yy = b+he (8)

where h is the m x m matrix g g'.
In order to avoid trouble withnon-linearity, let us restrain ¢ so that
none of its components can numerically excecd a given quantity ¢; that is,

|ci|<c . i=1,2,...,m . (9)

These can be converted into one-sided constraints by setting




6 130

c. = p. - q, i=1,...,m (10)

| where the Py 4 satisty

; . - . | 4 ;
o< Py ., 0%q. Nt ; i=1,...,m. Q1) 3
Further, we 1nuroduce ri, s such that
TR PR P S L=1,...,m 12)
where r. >0, s; 2 0; i=1,...,m 3

We now introduce yet more variables xi, cee oy X such that

y = y. *+ X i=1,...,m . 13) ;

Since & = max (yi), then X 20 for each i. It is not convenient to have
i

y appearing in more than one equation, so we shall retain the equation

v
obtained from 1 = 1, namely
y - yl + ‘(1 (1"‘)
and eliminate § from the rest
0 = y, =y, *+x -x 3 1=2..,m . (13)
Substituting for Y the value
n J
b. + } h., c, (16)
i 51 ij 7j

as given by the matrix equation (8), we obtain
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m
y = b1 + z hlj ¢ +x (17)
j=l
m
~] - - - - . L
0 by = by +x; - x ¢ le (hij hIJ) ¢ i=2,...,m(18)
or
. m
y = bl + jzl hlj (pi - qi) * X (19)

m
0O = b, =b + jzl (hyy = by (py = a) +x = x5 i=2,...,n(20)

2.5 To summarise, we now have a standard problem in linear programring,

involving the (2m + 1) basic variables
xl ; Pl» ter 9 Pm; ql! s 1 q

and the (3m - 1) slack variables

Xy» s Xp b Tyaoeee sy Tob 80y eee 80
These are linked by the (3m - 1) equations
w m
b1 - bi R TR ST .Z (hij - hlj) pj + .z (- hij 4 hlj) qj sl=2,0.0,m
j=1 j=1
(2D
€ = 1, *p 3 i=1,...,m ,(22)
€ = s;*aq i=1,...,m .(23)




8 130
We have to maximise the object function —;, given by

m m

subject to the constraints

x. =0, pi 20, qi 20, xi 20, Si 20 ; i=1,...,m . (25)
In solving this problem we may use the fact that a feasible solution is

known, namely LFE P L Pl O corresponding to a zero step.

2.6 There are several wavs of solving linear programming problems, but in

this case we used the Simplex method. The tableau is shown as Table 1. The

procedure will not be explained here, but readers not acquainted with it will

find an elementary treatment in Vajdal. It is an algorithm which yields,

after a finite number of steps, the values of all the variables and the P

maximised object function.

Having obtained P; and q; we calculate <y from '

c. = p. =-q. (26)

and then by matrix multiplication find the step vector

-z, = ®oe . 27)

The (linearised) minimum value Y1in of y 1is obtained by negating the

maximised object function of the lipear programming routine.
Fig.Z is 8 simplified flowchart for the program,

2.7 We now calculate the actual value 9true of y at the new point of

interest., If it were rot forncn-linearity this would be equal to the value

§1in given by the linear programming routine., If ¢ 1is small enough the

two numbers will be nearly equal.

By repeated iteration we obtain a sequence of pairs of numbers

-(2) - (2)

v (-(1) §(1) ) (ylin ’

Ystart * Y1lin ° true’ °

)

true’ '
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with the property

~(i+1) < - (1)

lin true for all i. \28)
F
1f + 1is small enough
~(1) o -()
lin true (29)

so the sequence {yétie) is monotone decreasing, approxirately. 1In order to

guarantee a truly monotoune decreasing sequence, we adopt the following
FV procedure:=

~(i+1)  -(i)
Ytrue true
€ by ¢/2 and repeat the linear programming routine about the point of

"I , reject the point (i + 1) just obtained, replace

interest 1i".

' It is intuitively obvious that halving ¢, 1if necessary many times, will cause
 (i%1) . (i+1) ince (i1 - () .
true to approach Yiin ° and since ylin cannot exceed ytrue’ we will
. ~(1+1) . . - (1)
eventually arrive at a value of vy which 1s not greater than vy
true true

. ~{1 , . L . .
Thus we obtain & sequence {yirle} which is genuinely menotone non-increasing,

by this device of variable step length. The sequence is bounded below (by Q)

and therefore it converges.

In practice it was found that the sequence converged quite rapidly

(typically 20 jterations) until the values of Yerue YET® constant apart from

rounding errors. Tie values of € did not apprcach zerc. 1ln the tinal steady

state all the gradients grad y; are zero, and all the ¥yS equal.

2.8 The variable-~¢ device was also used to speed up the convergence, by

‘oubling ¢ when we appeared to be f:r from a final solution. The actual

rule adopted was as follows:-

(i) S(i+l) - (i+2)

"Suppose ¥y
UPPOSE ¥, ue’ true ’ true

are three successive values of v.

Then if the difference between the last pair is more than half the difference

between the first pair, i.e.

~(1+2) _ .(i+1) S(i+1) _ (1)
true Yerue > erve” ™ Yerue (30)

“v replace € by 2¢ on the next iteration". This rule allows us to start

sith 4 very small value of » say 10 . The computer will then keep
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doubling - until it approaches the firal value, or until non-linearity effects
vause the ':-halving' rule previously described to come into play.

No arrangements were made in the program to halt it when convergence was

obtained. Successive values of where printed and the program was

ytrue
interrupted by the operator when they became steady. The results were then

obtained via common storage by entering an auxiliary program.

3 APPLICATION T 2D ARRAY

3.1 Fig.3 shows the array consisting of N omnidirectional elements, which
we lahel 1, 2,...,N, and in which element 1 has coordinates (xj, yj).
The array may be regarded as lying in one plane (:y). We shall consider the

polar diagram for directions lying only in thi. plane.

The 'array function' f(A), which is a complex amplitude, is given by

N
F(A) = ) w, exp ik (x, cos A+ y, sin A) (31)
ey i i
J
where A = angle measured from the x-axis
k = Z-/wavelength

w are the €omplex) weights associated with the elements.

Wl...., N

The arra, power function will be defined to be
2
P(A) = |f(AY|T . 32)

3.2 Thue problem may now be stated as follows:

Given N, k, xl,...,xN, Yoo+ ¥y choose Wys ooy 80 that
the side-lobe level is minimised, subject to the condition that the beamwidth

has a prescribed value ZAO

1.3 The restrictions on beamwidth will be taken to mean that the following

vqiations hold
PM = 1

P@A) = i, P(- Ao) = 4 . (33)
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Thus ZAO is the -3 dB beamwidth (Fig.4).

O,

. The side-lobes will be defined as all the maxima of P(A) that Jdo not
j lie in the range -Ao to AO; i.e.

A = A, i=1,...,m
where {Ai} are the golutions of
§ P'(A) = O
P'"(a) <0 (34)

A < |A]l <n
(o]

The actual values of the side-lobes, the (yi} of the previous section,
are

3.4 The equation (33) may be expressed in terms of the array function as

f(0)

1

27} exp (i e)) (35)

f(Ac) 1

f(- Ao) = 2-i exp (1 ez)

by introducing the (as yet unknown) phases e, and e,. (No phase need be
1S
introduced in the first equation.) We then have three equations coupling the

N wvariables Wiseee Wy Provided that N 1is at least 3, we can solve
&

; these equations (in general) for any 3 of {wj} in terms of

€1 €5 {xi}, {yi}, Ao’ k and the remaining {w.}. We choose to solve for
w,, w, and w,. There are then N-3 'free' variables w,,...,w ; or
1 2 3 4 N ’

] rather, since {wj} are ccmplex, there are 2N-6 free real variables at our

disposal, to which must bte added the ey and €y giving 2N-4 free variables.

Thus we set n = 2N-4, and 2ys Zosenes? will correspond to

il

E

fol

i il

il
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e Re(w),  Im(w),..., Re(wy), Im(wy) . a3n

The cquations which express wl, NZ' w3 in terms of the free variables

are cumbersome, but may be found in Appendix A.

t
i

ol 1 b b

'
¢ 3.5 Having forced the array function to satisfy the mainbeam conditions by
. solving the equations for Wi Wo w3, we now need to locate the maxima. The
: moethod used was to compute P(A) for every A at suitable intervals
(say 10 gee) in order to find the maxima approximately, and then refine by
solving
f'A) = o , (38) :.
by Newton's method. The details are given in Appendix B,
All solutions with |A' <§Ao are then deleted and the remaining angles
re-ordered so that P(Al) is the largest of the P<Ai)' .
3.6  The procedures described in section 2 call for the gradients -
grad P(Ai) . i=1,...,m .
E
taken with respect to the 2N-4 dimensional vector z. Now
?P(Ai)
. = P(A.) + ———— ,
grad P(Ax) gradA; ( 1) 2Ai grad Al (39)
E where gradA denotes the gradient calculated as if Ai did not depend on
4 i
z. Fortunately, since Ai is a maximum,
JP(Ai)
- T 0 “o
: i
t
t
and so
: P(A. = . . 4
F grad (Al) gradA_ P(Al) (41)
i .
!
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The actual components will be

] : .

, [grad P(Ai)]j " Ta [P(Ai)l, i=1,2 (42)
[grad P(Ai)]zjﬂ = a—(m;—j:z—)-)- [P(Ai)l; 3= 1,000,8=3 (43)
[grad P(Ai)] 2j+2 - w [P(Ai)] H j = 1, . yN=3 . (‘0/4)

When we carry out the differentiations, remembering that the free variables
affect P(Ai) not only explicitly but also via the variables Wis Wy Vg, the
resulting expressions are rather lengthy, so these are relegated to Appendix C,

(in whicu the components of grad P<Ai) are written

dys dps Bys BpasenaByyg)

The numerical computation is not as long as the expressions might suggest since

the computer can use much of previously stored information.

4 NUMERICAL EXAMPLE

4.1 The example uses six elements, placed regularly around a circle of radius

0.25 wavelength (Fig.5). The main beam is to be mid-ws. between twy elements.

N = 6

X = %X <= 0.216506
Xy T X *® 0
Xy = X, = -0.216506
Yy = ¥y = 0.125
Y, = 0.25

) Yo T Yg T -C.125

i Yy = -0.25




—
i~

4.2 The mest natural way to obtain a beam in the x-axis direction is to apply
vhases to bring the elements in-phase in this direction; and then use equal
woelghting amplitudes. This gives
1 . .
w, = Zexp (-1%k Xj) s 1 =1,...,N (45)
.Y

or

w, = w, = (,034816 -~ 0.162990 i

1 6
W, = W = 0.166667
Wy = w, = 0.034816 + 0.162990 i .

The polar pattern of this array is plotted in Fig.6. The beamwidth is

84 deg, There are two side-lobes, located at +162.,3 deg with level =-11.15 dB.

This pattern should be compared with the later results obtained by the

s1de-lobe redustion program,

“.3  The high side—lobe levels under natural phasing makes this array a

sultabie subject for the program, provided we do not demand beamwidths much less

than 2% deg.  The actual values cf 2Ao used were 55 deg to 90 deg in steps of
5 dn‘}‘.

The initial values of the free variables were, at first, chosen to be

e1 = 0, e2 = 0

w, = 0.0348162 + 0.16299D i
We T 0.160667

we = 0.0348162 - 0.162990 1 ,

the ilast three being taken from the natural weighting. It was later found that
thi- hapnreaed to be a rather unfavourable starting point, and machine time

could Lo saved by starting {rom the values of e to Ve that constituted the

- - ' 1 i

find: valives for another A case.,
(4]

against itcratior number. The scep length is also shown in Fig.8. For this

130
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example, ZAO = 85 deg. The final power value was 4,40172 x 10-4 or
~33.56 dB in this case, showing an improvement of over 20 dB compared with the

natural weighting scheme for approximately the same beamwidth.

4.4 The results for the eight values of Ao are given in Tables 2 to 9.

For each element, the tables give
(i) the x and y coordinates in wavelengths
(ii) the weights wj in real and imaginary parts

(ii1) the weights in polar form, that is, amplitude and phase, with the

phase given in radians and in degrees,

The tables also contain the results of an independent program which

computed the -3 dB points and listed the side-lobes.

The actual polar diagrams corresponding to these results are plotted in

Figs.9 to 16.

It may be noted that the -3 dB pointa of these curves occur at the
required angles. Further, all the side-lobes are at the same level. This
common level depends on the beanwidth; the larger the beamwidth we can allow,
the lower the side-lobe level. The trade-off between beamwidth and side-lobe
level is illustrated in Fig.17, for this particular array. The point for the
original phasing is also plotted on this figure, and it is about 21 dB above
the curve. As the beamwidth ircreases, the side-lobe leve! drops rapidly.

As the beamwidth decreases, the level increases as if to approach O dB at about
40°. ¥o solutions have been found which give reasonable patterns for beam-
widths less than 500, vhich suggests that 'supergain' weightings do not exist

for this particular array.

4.5 The tolerances for these arrays are also of interest. Natura.ly,
reducing the side-lobe level makes the pattern more sensitive to phasing and
other errors, as it is necessary to compare tolerances in a wav which is not
masked by this effect. 1In this Report we express the tolerance a. the rms
phase error which applied (independently) to all elements, leads to a variance
of the compliex array function equal to 0,001. (Roughiy speaking, this means
that the 'noise' in the pattern is 30 dB down.) The value can readily be shown
to be
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|
#& . %Q degrees . (46)

bl

j=1

|£¢0)|

This tolerance is plotted in Fig.18 against beamwidth. On this curve is also
shown the tolerance for natu.al phasing. Note that the tolerance is maximum at
around 8&0, the original beamwidth, and becomes less at narrower beamwidth,
being about half the original value at 55°. For beamwidths around 70° to 90°
the tolerance is only slightly less than the original tolerance with natural
phasing (over 807). The fact that the side-lobe levels are shown going down
to some =40 dB does not of course mean that they could necessarily be achieved
in practice. It would be necessary to consider, for example, mutual coupling,
inter-element screening, departures from omnidirectionality, as well as the
phase and amplitude tolerances. However these effects apply to any array, and

it is outside the scope of this Report to include them.

4.6 The weights and phases for these optimised arrays have, in this example, .
rather curious properties. In the first place, they are not symmetric about

the beam axis, that is

* *
W, F Ve, w2¢w5, wa T,

It follows that each solution is one of a pair, the other being obtained by
reflection in the x-axis. Secondly, *he array has conjugate complex symmetry

about the y-axis, that is,

*
W - w w = W

40 and vy and w. are real.

5

Probably these properties are due to the geometry of this example, but they show
that these optimised arvays may be quite different from the arrays one would

normally consider.
5 SUMMARY
5.1 We have described a method of adjusting the complex veights in a two-

dimensional array in order to optimise its pattern. The optimisation consists

of minimising the side-lobe level (that is, the largest side-lobe) while holding

the -3 4B beamwidth at any value we choose.
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The procedure is a gradient method, modified to deal with the discontinu-
. ities in the gradient vector. At each iteration we choose the next step using a
linear programming routine. The step length is controlled by a parameter which

is varied automatically so as to minimise the number of steps needed,

17¢ method is a general one in that it can be applied to any problem

requiring the minimising of the largest of several non-linear functions.

5.2 As an example, we considered a six-element array shaped like a regular
hexagon, with the main beam mid-way between two elements., Starting from the
natural phasing scheme, the program reduced the side-lohe level from

=11 to =32 dB for unchanged beamwidth. The solutions indicated weights and
phases strikingly different from the natural phasing scheme,

Figs.9 to 16 show the polar diagrams for this array for various beamwidths.

The minimum side-lobe level decreases quickly as the beamwidth is allowed to

increase, and Fig.l7 shows the relation for this particular example. Such a

curve may be used to select a beamwidth when the side-lobe level is prescribed.

The tolerance, expressed as the rms phase error which would produce E
pattern noise at =30 dB, were only slightly less than those for the original

phasing (typically 807), so there is no objection to the optimised arrays with

regard to tolerance.
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Appendix A

A.1 VWe write the equations in matrix form

where [B (]

in which

is

cos

sin

cos

sin

cos

sin

[BC]|w

Hi

the 6 = 2N matrix of coefficients

b? ~ sin
b? cos
bI - sin
b{ cos
b; - sin
bI cos
bS -
J
b
J

b

-0

b

—+ 4 0O

b

—t

k x,

J

o

cos

]
-
t=
o o
Ny O+ O [ S e]

cos

sin b

o
[}

[ade} ]

o
[

sin

sin

cos

sin

cos

sin

cos

= k(x, cos A +y, sin A)
] ° ] o

bj = k(xj cos Ao -y, sin Ao)

W
[Zj} is the 2N column vector whose transpose is

bg .
by een
by

"

b; ces
b; ]

[Re(wl), Im(w,}, Re(w.), Im(w,), ...]

E is the six-vector whose transpuse is

{1, 0, (1/72) cos e;, (1/42) sin ey (1/v2) cos eyr (1/72) sin e2] .

19

(A-1)

(a-2)

(A-3)

(a-4)

(A-5)

(A-6)

A-7)
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The partitioning is such that B is 6~ 6, C is 6 x (2N-6), w is

b o- 1, © is (2x-6) - 1. This allows us to write

BW + C2 = E (A-8B)
whenee
, 1
W o= B (E - C2) (a-9)
or
W = AL - DZ (A-10)

whery A is the & 6 matrix B-1 and D is the 6 x (2N-6) matrix AC.

A depends on A and (xj, yi), j=1, 2, 3; D depends on Ao and
Q

’

(x., v.), j =4 to 28-6; thus A and D are independent of the weights
wj and rved not bu recomputed at each iteration. The vector 2 depends on

wj, j =4 to 28-6, via the equaticn

7, = Re(w), Z, = Im(w) ]
sz_7 = Re(wj), Z2j-6 = Im(wj) } (A-11)
Zogs ™ Rc(wN), Zoug = Im(wN)‘ .
The welghts B Mo Wy dare then obtained by
\-‘1 = W + i ‘\'2
w, = w3 + 1 wa (A~12)
\.j = WS + 1 W6

A2 Ihere oxists the possitility that B will be singulzr, in which case the

methnd will fuil,  This will happen if . for example, Ao = 0, However for

reasonable daita po trouble hes been encountered,

130
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Appendix B
B.1 The first stage in locating the maxima begins by computing the array
pll LA | pM,’l
vhere
P, = P(n(Zi/M - 1)) , i=1,...,M
(B-1)
Pher T Py
for some convenient integer M. M st be chosen large enough so that the
interval 2n/M 1is .iess than the interval between maxima, and is found by
experiment. We then cxamine the list and find all j such that
., < p. PP, -

Piy SP; 7 Pin (B-2)
giving as a first approximation

A = n(Zi/M -1 . (B-3)

B.2 The exact value of A at the maximum is then found by applying Newton's

metnod to solve
P'(A) = 0O . (B-4)
If A 1is an approximate solution, the next approximation A' is
A' = A -P'(A)/P"(A) . (B-5)

The iteration is stopped when |A' - A| < 10-.A and A' taken as the solution.

B.3 The formulae for P(A), P'(A) and P"(A) will now be derived.
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Writing Fo and F1 for the real and imaginary parts of f(A), 1i.e.
§ N
Foo= I by Fpo= )b, (B-6)
J'l J'l
where
b, = Re(wj) cos bo - Im(wJ.) sin bo (B-7)
b& = ke(wj) sin bo + Im(wj) cos bo (B-8)
- b0 = k xj cos A+ k yj sin A (B-9)
then
2 2
P(A) = F_+F| . (8-10)
| The b,s depend on j, but the notation ignores this for simplicity.]
The first derivative P'(A) 1is
dFo dF1
P @ thw
or
2(F P9+ F F)) (B-11)
where
F - r‘,‘ ﬁl
2 ¢ dA
J
. db0
LA e
]
= vV - -
= L Tb,by (B-12)
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: :
and ‘
db E
4 3
: Fy | & E
] E
. = E by by (R-13) ;
,l J
i
where :
b, = -k % sin A +ky. cos A . {B-14) :
J 3
1 The second derivative P'"(A) is f
dF dF dF dF ;
" - 2 Q 3 1 E
A - Z{Fo @ Thaw *ha: "B } 3
or
2FF+FF+F2+F2 (B-15) —
3 o 4 15 2 3 3
3 4
where :
j
d 4
= —_ (- 3
Y Lag © gy
] _
R I dbl b db4
L 4 dA 1 da
) E
= Y [- - -
TE=b, (=b) = b, (byb)]
] k
. 2 3
- A - b - E
= [v, b - b, bl] (B-16) ;
J 3
and similarly
- T oo _ _ 3
Fg = . (=byb =B, b%) : (B-17) E
? :
J
g i
§
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Appendix C :
€.l If a 1is any variable 3
37 P(Al) = Z(Fo Go + Fl Gl) (C-1)
where
VT () ]
F = ) Re(w,) cos b 3. Im(w.,) sin b J (C-2)
o L ] o] ] o
=1 L .
N T ] E
F, = | {Re(w.) sin b(J) + Im(w.) cos b(J) (C-3) .
1 L L j ) j o
i=1 .
{8D]
bo = Lk xj cos A+ k yj sin A (C-4)
and
BFO BFI
% = 3% & T om o (€-5)
C.2 To evaluate dl’ take a to be e Then
S () ()
¢ = —— VY |Rew.) cos b*?’ = Im(w.) cos b'J . (C-6)
o de, .- 3} o ) o
1 3=1
Now W)y Wy W, are functions of e but the remaining weights are not.
Hence

o o de o

3 . .
¢ = 7 {%—[Re(wj)] cos bd? -—a—[Im(wj)} sin b(J)} . (Cc-7)
j=1 1 1

However, Re(wj) is the (2j-1)th component of W, and is equal to

6
¢ - \ -
LoAgior i B T (PBg5 (c-8)
k=1
while Im(wj) is
6
kzl boi ok By T (Dz)zj . (c-9)
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Differentiating w.r.t. e gives

A 6 oE .
—— Re(w,) = 7 A, .Y (C-10)
ae1 h) k=1 2j-1,k ael
o] AE
J k
—_— Im(w:) = X A, . -—_ (C-11)
ael 3 k=1 2_] ,k del
But
agk 3E3 T'Ea
—— = 0 wunless k = 3 or 4, and = -E, — = L, . (C-12)
de de 4 Je 3
1 1 1
Hence we get
2 Re(w.) v (c-13)
ael j 1,2j-1
=2 Imw,) =V, .. (C-14)
de; j 1,25
where
Ik T A3 B T A By kT Trob (€-13)
Similarly, we write
g
392 Re(wj) V2,2j-l (C-16)
= ’ -
3e2 Re(wj) \2,2j-1 (C-17)
where
Vo0 T T A5 Be A e By k=ltob . (€-18)

By substitution

3 () )
GO - Zl vk,2j-l cos b - vk,2j sin bo (C-19)
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and, similarly,
G = % v sin b(j) -V cos b(j) (C-20)
o sl k,2j-1 0 k,2j o
where k = 1 for differentiation w.r.t. ey and 2 for e,
C.3 To find g, wve take o to be 2, . In differentiating FO and Fl we
have to remember that Wis Wy Vg depend on 2, via the matrix D, and also
that one of Wt ot s v2N-6 depends directly on Z,:
If k 1is odd, say 2i = 7 where 4 <€ i <N, then
G = % - D cos b 4 p . sin b v cos b (-2
o 5=1 2i-1,k o 235,k o “% Y
G, = % - sin b(j) -D cos b(j) + gin b(i) (C-22)
1 j;l 2j-1,k I 2j,k ) o ) <

If k 1is even, equal to 2i - 6, then

3 r . . .
- _ (i . (6D I i) -
G, 2 Dyj-1,k 68 Bgo" * Dy g sin by sin b (c-23)
=l L
G, = % -- D sin b4 - D cos b, cos b(j) (C-25)
1 . 2j~1,k o 2j,k 0 o : N
j=1 L
In either case, the gradient component is
g ° 2(1-‘o G° +Fy Gl) . (c-25)

A At o b Sttt 1 S S
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Table 1

TABLEAU FOR LINEAR PROGRAMMING ROLTINE

LT . uly, "y . Ly xew .
W
1 0 0 v 0 8] S
1
1) Tt L 0 0 0 $ S
3 U]
U et U [ v 0 3 1
, ; 1
G e ) 0 1 0 3 1
1 w w 113 ul w
E;+Ef LT Ly - ™ My .1 1- p-f z
W U
L LI L I, .. 1, _ 1t I- q-lq €,
u w, 1
L I T, _ W LS T 7 Z,
Yy LY Yy ¥} L
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N= € MAX.Sl=

.14¢971

E2=-8.73477E-03

1
X .2165@6
Y .125
WT-R ~.280@5
WT-1 3.08759E-¢2
WT - AMP .281747
PH-RAD 3.¢3178
PH-DEG 173.7¢8
5
X ]
Y -.25
WT-R .219784
WI-1 -3.87944E-96
WT-AMP .219784
PH~RAD -1.76512E-¢5
PH-DEG -1.01134E-¢3
1/2 PY4R  -27.5 27.5
¢ DB @ ¢
-8.51 DE @ 1¢1.3
-8.51 DB @ 18¢
-8,51 DB @ ~1¢1.3
DIR 4.3199% ( 6.35
-3@DB TOLS:
POS  6.45862E-@3 WL
WT .352439 DB
PH 2.3251 DEG

Table 2

BEAMWIDTH 55

DEG

(-8.5¢869 DB)

RAD

2

@

.25

.579239
-2,37417E-94
.57¢239
-4 .16347E-94
~2.38549E-92

6

.2165@6
-.125

3.52782E-¢2
-.199247

.19349
-1.38744
~79.4948

DEG
DEG
DEG
DEG
DEG
DB)

3
-.2165¢6
.125
-.280266
-3.93791E-92
.2819¢8
-3.93362
-173.814

130

4

-.2165¢6

-.125
3.537¢9E~92
.19¢323
.193582
1.387¢5
79.4719
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Table 3

BEAMWIDTH 6¢ DEG

|
!
bl s il ittt it ‘m.mll.m

N= 6 MAX.SL= 6,78598E-@2 (-11.6839 DB)
El= 4,96462E-¢3

1 2 3 4
X .2165¢6 # -,2165¢6 -.216506
Y 128 .25 J125 -.125 3
WIT-R ~-.2¢2399 474223 -.28235 5.35152F~@2
WT-1 -2.20666E-@#2 5.18891E-¢5  2,196171k-¢2 167044
WT-AMP .203598 474223 .2¢83539 .1754¢7 :
PH-RAD -3.03299 1.89419E~@4 3.¢43348 1.26476 e
PH DEG -173.778 6.26925E-03 173.8¢6 72.2363 3
5 6 3

X ¢ .2165@6 —4
Y -.25 -.125 E
WI-R .218211 5.3540QE-@2 E
WT-1 -1.083@9E-85  ~.167¢23 =
WT-AMP ,218211 .175394 E
PH-RAD -4.96350E-45  ~-1,26@59 =
PH-DEG -2.84388E-¢3  -72.2265 E
1/2 PWR -3¢ 3¢ DEG e
¢ DR @ ¢ DEG 3
-11.68 DB @ -1¢5.7 DEG

-11.68 DB @ 1¢5.7 DEG E
-11.68 DB @ 18¢ DEG E
DIR 4,R6244 ( 6.87 DB)

-3¢DB TOLS:
POS  7.79463E~¢3 WL
WT .425343 DB

Y 2.8¢6¢7 DEG

E2=-5.0242BE-83  RAD :

o el

sl inadn sl iat ot

i
3
3
3
1




N= 6 MAX.
El= 2.9¢223E

X

Y
WI-R
WI-1
WT-AMP
PH~RAD
PH=-DEG

X

Y

WI-R
WI-1
WT-~-AMP
PH-RAD
PH-DEG

1/2 PWR
4
-15.96
-15.96
-15.496
DIR 4.98824
-3¢DB TOLS:
POS  9.2827
WT 58654
PH 3.3417

=32

SL= 3.11699E-@2
-93

1

.2165@6

0125
-.127¢46
-6.5¢121E-@2

.142714
-2.66861
-152.9

S

¢
-.25

.226542
-2.78361E-@6
.226542
-1.22874E-@5
-7 .Q4P16E-B4

.S
DR @ ¢
DB @ 18¢
DB @ -111.1
DB @ 111.1
( 6.98

32.5

4E-@3 WL
7 DB
8 DEG

F2=-2,88797E-¢3

130

Table 4

BEAMWIDTH 65 DEG

(-15.9626
RAD

DB)

2 3 4

@ -.2165@6 -.2165¢6

.25 .125 -.125
391772 -.127¢47 5.51484E-¢2
-3.34624E-¢6 6.50226E-¢2 . 145494
.391772 .14272 .155595
~8,541315-¢6 2.66855 1.20849
~4.89381E-p4 152.897 69.2412

6 e C e e s
.216506

-.125
5.51492E-92 : )

-.145485 :
.155587

-1,20846

-6v.2397

DEG
DEG
DEG
DEG
DEG
DB)
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N= 6 MAX.SL= 1.333@SE-@2
Ele-4.47159E~04

1
X .2165@6
Y .125
WI-R -6.98724E-¢2
WI-I -9.16232E-¢2
WI-AMP .115226
PH-RAD -2.22231
PH-DEG -127,329

5
X (]
Y -.25
WI-R .227295
WT-T -4 .99895E-¢6
WT=-AMP .227295
PH-RAD ~1.8@336E-¢5
PH-DEG -1.83325E-¢3

1/2 PWR =35 35 DEG
¢ DB @ ¢
-18.75 DB @ 117.1
-18.75 DB @ -117.1
-18.75 DB @ 18¢
DIR 4.81854 ( 6.83
-3@DB TOLS:
POS  1.B4158E~¢2 WL
WT .568377 DB
PH 3.74968 DEG

Table 5

BEAMWIDTH 7¢ DEG

(-18.7514

E2= 3.25132E-@4  RAD

2

9

.25

.334035
6.02756E-05
.334935
1.8¢746E-04
1.4356QE~@2

6

.216506
-.125

6.12369E-92
-.134572

.14785
-1.14375
-65.5321

DEG
DEG
DEG
DEG
LCR)

DB)

3
=. 2165406
125
~-6.98346E-¢2
9.147@¢1E-¢2
.115¢81
2.2228¢6
127,361

4
-.2165¢6
-.125
6.12264E-@2
. 134584
.147356
1.14385
65.5378

31

it b u..hm

bl foul

bl Ul bofal et

Ll

atbodalati L

Ll

T

e “'Mu.l’.lulmul...ﬂuu L




32

N= 6 MAX.SL= S5 13755E-¢3
Fl= 4. 13922E-94

1
X .216506
Y 125
WT-R -1.75293E-92
wr-1 -.119457
WT-AMP .111839
PH=-RAD -1.72818
PH-DEG -99.04175
5
X ¢
Y -.25
WT-R ,2291¢4
WT-1 ~8,76854E-¢7
WI-AMP .2291¢4
PH-RAD -3.82732E-¢6
PH-DEG ~2.19289E-94
1/2 PWR =37.5 37.5
2 DB @ ¢
-22.89 DB @ -123.7
-22.88 DB @ 123.7
-22.89 DB @ 189
DIR  &.56¢476 ( 6.59
-3¢DB TOLS:
PGS  1.12424E-02 WL
WT .613481 DB

PH 4.94724 DEG

Table 6

BEAMWIDTI! ?5 DEG

(-22.8924 DB)
E2=-4.20647E-@4  RAD

2

@

.25

288194
3.13678E-¢6
288194
1.08877E-¢5
6.23817E-94

6

.216506
~.125

6.21188E-¢2
-.126864

.141256
-1.11546
-63.9114

DEG
DEG
DEG
LEG
DEG
DB)

3

-.2165@%6
.125

-1,75279E-92
.11¢447
.111829
1.72818
99.¢175

4

-.2165¢6

= 125
6.21181E-¢2
.126866
+141257
1.11547
63.912

13C
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Table 7

REAMWIDTH 8¢ DEG

N= 6 MAX.SL= 1.69646E-33 (-27.7945 DB)
El==1,84984E-¢3 E2= 1,85¢59E-¢3 RAD

1 2 3 4

X .2165@6 ) -.2165¢6 -.2165¢6
Y 125 .25 .125 -.125
WT-R 2.73322E-02 .253@21 2.73332E-¢2 6.28844E-¢12
WT-1 -.12¢433 3.52940E-96 .129423 .124688
WT=AMP .123485 .253921 .123486 .139648
PH-RAD ~1.34763 1.39498E-¢5 1.3476 1.1¢369
PH-DEG -77.2134 7.99266E-04 77.2119 63.2367

5 6 oL

X ¢ .2165@6
Y ~.25 -.125
WI-R .22988 6.28856F-¢2
WI-1 -3.63328E-06 -.,124677
WI-AMP .22988 .139639
PH-RAD -1.58@#51E-¢S -1.,1¢364
PH~DEG -9.@5567E-04 -63.2342

1/2 PWR -4¢ 4@  DEG

¢ DB @ ¢ DEG
=27.7 DB @ 13¢.8 DEG
=27.7 DB @ -13¢.8 DEG
=27.7 DB @ 18¢ DEG
DIR 4,28581 ( 6.32 DB)
~3¢DB TOL::
POS  1.16584E-¢2 WL
WT .636183 DB
PH 4.197¢1 DEG
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N= 6 MAX.SL= 4. 4Q33Q8E-Q4
Ei=-3.17555E-¢46

1

X .2165¢6
Y .125
WT-R 6.71199E-@2
WT-1 ~. 125609
WT-AMP . 142417
PH-RAD -1.48@¢4
PH-DEG -61.8819
5

X 1}
Y -.25
WT-R .229864
WI-1 ~3.937¢7E-¢6
WT-AMP . 229864
PH-RAD -1.71278E-¢5
PH-DEG -9.81352E-¢4
1/2 PWR -42.5 42.5

@ DB 2 @&

=-33.%F DB @ 138.5
=31 DB @ -138.5
-3. DB ? 18¢

Dit 36 ( 6.¢5
~3@DB TOLS:
POS  1.17455F-¢2 WL
WT Lh4@936 DR

PH 4.,22837 DEG

Table 8

BEAMWIDTH 85 DEG

(-33.5624

E2= 3.21454E-06 RAD

2

L)

.25

.22631
3.11¢32E-06
.22631
1.37436E-95
7.87452E-94

6

.2165@6
-.125

6.28803E-92
-.124669

.139629
~1.1@365
-63.2346

DEG
DEG
DEG
DEG
DEG
DB)

\
7

3

-.2165@6
.125
6.71194E-92
,125597
.142407
1.080¢1
61.88

4

-.2165¢6

-.125
6.28798E-92
+12468
-139639
1.16369
63.2369
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N= 6 MAX,.SL= 1.@7@051E-04  (=39,7@Q41 DB)
El= 4,18666E-@4 E2=-4,17683E-@4  RAD
1 2 3
X .2165@6 @ -.2165¢6
Y .125 .25 .125
WI-R 19291 . 204806 . 192915
WI-1 -.126915 6.@6649E-96 .126997
WT-AMP .162829 . 204886 .162826
PH-RAD -.893764 2.962¢06E-¢5 .89371
PH-DEG -51.2¢89 1.69714E-¢3 51.2¢59
5 6 T

X ¢ .2165@6

Y -,25 -.125

WI-R ,231238 6.34371E-¢2

Wr-1 -3.¢7767E-¢6 -.126@81

WT-AMP .231238 141141

PH-RAD ~1.33Q95E-@5  ~-1.1@464

PH-DEG -7.6258¢E-¢4 -63.291

1/2 PWR =45 45

3 DB@ @ DEG

-39.7 DB @ -149.4 DEG

-39.71 DB @ 149.4 DEG

-39.71 DB @ 18¢ DEG

DIR 3.79¢87 (5.79 DB)

-3¢DB TOLS:

POS 1.15987E-¢2 WL
WT .632929 DB

PH 4.17555 DEG

Table 9

BEAMWIDTH 9@ DEG

4
~.2165¢6
-.125

6.3436pF-92

1260492
14115

~1.100468

63.2934
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SYMBOLS :
A azimythal angle . 3
Ao semi~beamwidth to -3 dB points ;é
b y, at beginning of iteration N
bi components of b
¢ vector consisting of ¢_,...,cC ©
- 1 m 3
N scalars expressing Az 1in terms of the gradients
e, @ phases at -3 dB points -
£1(.) complex array function
9 matrix whose rows are grad ii ]
. . :
bij components of g
h g ;
hij components of h ;
i V=1 E
i, ] indices E
k 2n/wavelength E%
™ number of side-lobes ?
N number of elements ;g
n number of free variables '
N 2
P(.) array power function [f(.)| :
Pis 95 Ty S auxiliary variables used to convert problem to standard ?
! linear programming form E
v, complex weight for element i A
X v, Cartesian coordinates of element i ﬁa
3
¥; power level of side-lobe 1 3
v largest of y,
Yotart initial value of y
9512 linearised y after iteration i |
(1) ~ . . . 3
v true vy after iteration i
“true ]
i
2z vector consisting of 2., «.¢v.,W B
- 1 n -3
b
z, free variables, identified with e;r € and the real and i

imaginary parts of Wy e e a¥y

W

L irg T
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m C
N

grad

37
SYMBOLS (Cont 'd)
increment in z resulting from iteration
small constant limiting step length
. 3 ]
gradient operator (:——, vee -——-)
3z 32
1 n
matrix transpose
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