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FOREWORD 

This report was prepared by N. J. Pagano of the Plastics and Com¬ 

posites Branch, Nonmetallic Materials Division, Air Force Materials 

Laboratory. The work was conducted under Project No. 73^2, "Fundamental 

Research on Macromol ecu lar Materials and Lubrication Phenomena," Task 

No. 73^202, "Studies on the Structure-Property Relationships of Polymeric 

Materials," and was administered by the Air Force Materials Laboratory, 

Air Force Systems Command, Wright-Patterson Air Force Base, Ohio. 

This report covers research conducted from September 1969 to April 

1970. The report was released by the author in April 1970. 

The author wishes to express his appreciation to Mrs. Sharon 

Hatfield, Aeronautical Systems Division, Wright-Patterson Air Force 

Base, for the computer analysis required in the numerical solutions and 

to Mr. B. Maurer for performing numerical calculations. 

Th»s technical report has been reviewed and is approved. 
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ABSTRACT 

Investigation of the success of classical lamination theory in 

predicting the response of composite laminates under static bending is 

extended by consideration of the influence of shear coupling. Specifically, 

we treat the exact solution of the problem of a pinned-end laminate 

composed of N layers, each of which possesses only a single plane of 

elastic symmetry, under cylindrical bending. Several example problems, 

Involving unidirectional and angle-ply composites, are solved and the 

detailed results compared to corresponding approximate solutions. Some 

observations are offered in regard to the general range of validity of 

classical laminated plate theory. 
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SECTION I 

INTRODUCTION 

In two previous papers (References I and 2), the three-dimensional 

elasticity solutions for the static bending of composite laminates 

were formulated in which the axes of elastic symmetry of the various 

layers are parallel to the plate axes (0°, 90° fiber orientations). In 

the former work, the problem of cylindrical bending (plane strain) was 

considered, while in the latter, a rectangular plate pinned on four edges 

was treated. Tabular and graphical data presented for these configurations, 

which include sandwich plates as special cases, have established rather 

significant conclusions regarding the success of approximate laminated 

A 
plate theory in predicting stresses and displacements in such bodies. 

Work of this type provides some of the basic framework under which one 

can quantitatively define what is meant by a "thin plate" for anisotropic 

and laminated materials. 

Because of the special configurations which were assumed in References 

1 and 2, the influence of shear coupling on the response of composite 

laminates were not ascertained. In order to assess this influence and 

its consequences on the range of validity of classical laminated plate 

theory (CRT) (References 3, the presence of "off-axis" layers in a 

laminate was considered, and the state of deformation studied where the 

displacement vector is independent of one of the coordinates, i.e., 

cylindrical bending. Unlike the analysis in Reference I, however, each 

*Some general conclusions summarizing the results of References 1 and 2 
and the present work are presented in the concluding remarks. 
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of the three displacement components is, in general, different from zero 

¡n the present case. After outlining the solution for a composite laminate 

with pinned ends, a few specific example problems were solved and the 

results compared to the corresponding CRT solutions. In this way, 

further evidence was acquired regarding the range of validity of the 

approximate plate theory. 

2 



AFML-TR-70-128 

SECTION II 

ANALYTICAL SOLUTION 

Consider a laminate composed of N anisotropic layers bonded together 

as shown in Figure 1. It is assumed that each layer possesses a plane of 

elastic symmetry parallel to xy, otherwise the elastic coefficients are 

arbitrary, i.e., for fiber-reinforced layers, the fibers are only con¬ 

strained to lie in planes parallel to xy. The body is simply supported 

on the ends x ■ 0, Í, and is subjected to the normal traction ■ q(x) 

on the upper surface. Now consider the class of problems known as 

cylindrical bending, where the displacement vector, and hence, the stress 

and strain tensors, are independent of y, so that 

U * u(x,z), VStfU.z), W : w(x,z) (I) 

where u, v, w are the x, y, z components of displacement, respectively. 

This deformation is analogous to plane strain, however, as discussed by 

Lehknitskii (Reference 5), the state of plane strain (v ■ 0) cannot exist 

under the general conditions of material symmetry considered here. 

Owing to the presence of a plane of elastic symmetry, the constitutive 

relations for any layer take the form 

3 
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where Cjj (I, j - 1,2—6) represent the stiffness coefficients with 

respect to x, y, z, end the strain components are engineering strains. 

Using the equilibrium and strain-displacement relations of linear elasticity 

In conjunction with Equations I to 3, it Is found that the governing 

field equations for any layer are expressed by 

Cia,,»M * 

♦ ♦ c««'.x+ (c.. * '„’"•«t * 0 

♦ ♦ C.4*.«+ ' CM + C«)"' « * ° 

♦ («„♦ C»«.,,* e„«*r. * 0 

(4) 

In the absence of body forces. The boundary conditions on the laminate 

surfaces z ■ th/2 are given by 

h/2) * q(x) 

^(x.-h/Z) * rM(x,±h/2) * ryI(x,th/2) « 0 (! 

while the boundary conditions on the ends are taken as 

ax * Txy * w * 0 ot * * '6' 

to simulate simple supports. It should be noted that, In general for 

this class of problems, none of the stress components vanishes Identically. 

The laminate solution follows from the satisfaction of Equation 4 within 

each layer subject to the boundary conditions (Equations 5 «nd 6) as well 

as the Interface continuity conditions. The latter require continuity 

of the functions u, v, w, 2, r X2, and ry2 at each Interface. 

h 
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As in Reference 2, the three~dlmensionel elesticity solution thet is 

sufficiently general to solve the present boundary value problem is 

formulated for any given layer. Since the following treatment is quite 

similar to that appearing in Reference 2, some of the computational details 

have been omitted in favor of references to the latter paper. A solution 

of Equation k which satisfies Equation 6 identically has the form 

u = U(z ) cos px 

V * V(z ) cos px (7) 

w * W(z ) sin px 

where 

p » p(n) * nir/£ (n * 1,2,3,- • • ) (8) 

Assuming that 

(U,V,W) « (U*,V*tW*) exp(psz) (9) 

where U*, V*, and W* are constants, as in Reference 2, it is found that 

the roots for s are defined by the sixth-order algebraic equation, 

-As* + Bs4 ♦ Cs* + D * 0 (10) 

The coefficients in Equation 10 are given by 

A 

B 

s c ( C C - C *) 
Ms"'«4''SB «s' 

i C (CC-C1) + 0(00-01) 
44 ' Il SS 11' ss' SS SS is' 

- 2C (c e -c *) - ec (c c - c c ) 
IS 44 W 4S 46 16 SS IS Si 

c . (¢,,4 2C„)(C„C„-C„CW)- C„(CM cM-c„*) 

4 (0,,4 2Cm>(C„Cm-C„ C„) - CM( C„CM - C„*) 

0 * 0,,(0,,0,,-0 

(II) 
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The solution of Equation 10 has been presented in Reference 2, hence it 

suffices to record the solution as 

UU) = Íu.(*), V(i) « ¿L.U.(i), W(z) = £ R.W(z) (12) 
j = | 1 jS| 1 1 ) = 1 1 J 

where 

Uj(z) = FjCj(z ) + GjSj(z) 

(j * 1,2,3 ) 03) 

Wjlz ) * G|Cj (z ) + fljFjSj (z) 

In Equation 13( Fj and G 
J 

are constants and 

Cj(z) = coshtpm.z), Sj(z) a tinh(pmjZ), 

Cj(*) * cos(pmjZ), Sj(z) * $in(pmjZ), 

"i*1 lft>)+M)>0 

«i* - i <0 

wi th 

m Xj + -& 

i/t 
(15) 

and 

s = TfK'..- V«1 T]‘+ C"( c»+ '«’■ c»(c'»+ c»)] 

Ri * mj* _C44**C»ajmj -CII* " "C»' ] (16) 

while the expression for y y which defines the solution of Equation 10, 

is the same as in Reference 2. Thus, the displacement functions are 

given by Equations 7 and 12 while the stresses can be expressed as 

6 
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P »in px £(-<:,,+ mjRJ C|,“ LjC#1) Uj(i ) (i * 1,2,3,6) 

p co« px[ajm]LjC4j* <ajmj + RjîCei] Wj<*) (1 8 4,5) 

(17) 

where <Tj , cr2, <r^, cr^, a^ stand for a*, er a*, 

ayzt <rxz, **xy' resP«ctlve1y. /»rovided that the quantity H defined 

in Reference 2, Equation 15,satisfies the inequality H < 0, which is the 

usual case for continuous fiber reinforced materials, all constants and 

functions appearing in Equation 12 to 17 are real. If the material in a 

given layer is transversely isotropic with respect to any axis in the xy 

plane, for example, some tedious algebra shows that H < 0 provided that 

< -s/cu cat “ C|* (18) 

Here, Cjj are the stiffness coefficients with respect to the axes of 

elastic symmetry x , y , z, where x is the axis of transverse isotropy. 

Equations 7, 12, and 17, in conjunction with the appropriate boundary 

conditions, constitute the general solution for the response functions 

in any layer of the laminate under the applied loading 

q(x ) = cr sin px ( 19) 

where ¢7- is a constant. Adding a second subscript for identification 

of a given layer, there exist 6N arbitrary constants F,. , G.. (k * 1,2, 

---N) in the solution. These constants are defined by the six boundary 

conditions represented by Equation 5 and the 6(N-1) aforementioned 

interface continuity conditions. More complex loadings can be handled 

through Fourier series analysis. 

7 
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The preceding solution falls In the event that v becomes uncoupled 

from u and w In Equation 4. This situation occurs If the material of a 

given layer Is orthotropic with Its planes of elastic symmetry parallel 

to X, y, and z. Subclasses of orthotropic symmetry arise If the layer 

is transversely Isotropic with respect to the y-axls or isotropic. In 

all of these Instances, the solutions for u and w presented In Reference 1 

hold In the present case, while v takes the form 

v * [ V,*exp(rpz) + Vt*axp(-rpz)] coa px (20) 

where 

r * «VC«I1'* <2'> 

and V*, Vj «r® constants. The stress components can be determined from 

the constitutive law and strain-displacement relations. 

The CRT solution of the general problem under consideration has 

been formulated by Whitney (Reference 6). It Is only necessary to 

integrate Whitney's equations (Equations 3 to 5) for the particular 

loading function treated here and apply the appropriate boundary 

conditions on the ends x ■ 0, Í. The In-plane stresses o,x, 0^, 

and r are determined by the usual approach in plate theory, while 
xy 

the transverse stress components az, T xz, and r y2 are found by 

subsequent Integration of the ’iyer equations of equilibrium as discussed 

in Reference I. 

8 
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SECTION m 

SPECIFIC RESULTS 

Graphical results comparing the exact and CRT solutions for several 

particular laminated systems are presented in Figures 2 to 15. The layer 

material properties considered in References I and 2 have been assumed 

here, namely 

EL = 25 X 10* PSI, Et = 10* PSI 

Glt * 0.5 X 10* PSI, Gtt * 0.2 X 10* PSI 

* vJL * 0.25 

(22) 

where the material is square-symmetric, with L representing the fiber 

direction, T the transverse direction, and v ^ is the Poisson ratio 

measuring normal strain in the T-direction under uniaxial normal stress 

in the L-direction. Direct calculations indicate that H<0 for all 

layer orientations considered. 

Three groups of problems are treated, where in each case, the layer 

properties are given by Equations 22 and we let n - 1 in Equation 8. 

(1) a unidirectional composite in which the fiber direction is 

inclined at an angle 6 to tne x-axis, where 9 is measured in the 

clockwise direction from x to the fiber direction 

(2) a two-layer coupled angle-ply, where the bottom and top layers 

are oriented at 9 and - 9, respectively, to the x-axis and are of 

equal thickness. 

9 
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.»-«I* where the ply orientations and 
(3) a three-layer symmetric angle p y 

(a. p - ft + ft ) and (h/4, h/2, h/4). 
thickness, respectively, are (+ Ö. 

Normalized functions are defined as follows: 

(<V ,T*y] 

^xz'7yz) 

(Û,v) 

<rS 

o-s (Txz,Tyz) 

• °y ,Tity^ 

—^r-(u,v) 
<rhS3 

(23) 

IOOEtw 
w * -T— 
w <rh3 

S = i/h , z = z/h 

term of the,« fundes, «h, variou, CPT solution, are Inundan, 

of S. Furthermore, it will h. heiofui In studyin* the infiuence of fiber 

orientation to adopt the following definitions 

* _ 

60’S 
(4/2, h/2) 

(24) 

* 

120‘hS 
r w(i/2,0) 

The quantity a *x represent, the normal I ted maximum value of ox- The 

CRT values of <r ^ and ..ity for 6 and S in unidir.dona, 

and sy^tric angie-piy ie,nates, .,- cases (0 -d (3), under the 

assumed ioading. The quantity Q,, Is defined as the reduced (pian, stress) 

stiffness coefficient of a single iay.r in the »-direction (off-axis 

propert/)• 

10 
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The relationship between the normalized maximum central plane 

deflection w* and S, with parameter 9 , is shown in Figure 2 for the 

unidirectional body, case (1). As S increases, each curve asymptotically 

approaches the CRT solution, which corresponds to the horizontal line 

through unity. Note that both coordinates in Figure 2 are plotted on log 

scales. For convenience in the determination of w, the appropriate 

values of Qj| as a function of fiber orientation is listed in Table I. 

These values also apply in connection with Figure 8. 

The distributions of and f at x = £,/2 and x = 0, respectively, 

in the 15° unidirectional plate are shown in Figures 3 and i*. where the 

rapid convergence to the respective CRT results are seen. This rate of 

convergence is typical for all the stresses, therefore the remaining 

stress distributions are not presented for this case. This general 

behavior is also in evidence as the fiber orientation is varied. It is 

interesting to note that the CRT solution for is identical for 

unidirectional and symmetric angle-ply laminates, independent of 9 and 

number of layers under the conditions being studied. For S = 4 or 

higher, the exact solution for the maximum value of cr^ appears to be 

nearly independent of the number of layers. For example, the ordinates 

of the curves of Figure 9 for case (3) are within a few percent of the 

corresponding results for case (1). In fact, for 5=2, the two results 

differ by less than 7$- 

A few specific aspects of the response of the two-1ayer coupled 

laminate are given in Figures 5 to 7. As in previous studies (References 

1 and 2), CRT demonstrates extremely close agreement with the exact 

11 
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solutions for the various stress components and only errors appreciably 

in the determination of plate deflection at low values of S. 

A comprehensive representation of the response of the three-layer 

angle-ply is presented in Figures 8 to 15. In these figures, various 

stress and displacement distributions are given in planes x - constant 

for which the particular function assumes Its greatest magnitude. As in 

References 1 and 2, CRT predicts the stress component crz very accurately, 

hence the (rz distribution is not presented. Also, the distribution of 

ä is not shown since it is similar in form to that of 5,. The rapid 

convergence toward respective CRT solutions observed in these curves 

for 0 - 30° is typical for all values of Q . 

12 
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SECTION IV 

CONCLUSIONS 

In summary, the work presented in References I and 2 as well as that 

accomplished here serves as a guide in defining the precision of CPT 

calculations for the response of composite laminates under static bending. 

The CPT stresses generally converge more rapidly to the exact solution 

than plate deflection. For example, although exceptions can be observed 

in data given in these papers, the use of CPT for calculating stresses 

normally leads to errors of less than 10¾ for span-to-depth ratios as 

low as 20. This includes the transverse or interlaminar stress com¬ 

ponents az, txz, and r yz when they are determined from the in-plane 

stresses through integration of the equilibrium equations of elasticity. 

For the most part, a single material system has been considered, 

however, the material is highly anisotropic and represents a severe test 

of the accuracy of CPT. On the other hand, at values of S between I* and 

30, which are very common in laboratory experiments for flexure, shear, 

and dynamic modulus characterization, CPT appreciably underestimates 

plate deflection. In such cases, use of approximate theory in the 

description of gross response characteristics, such as deflection or 

vibration frequencies, requires consideration of shear deformation, e.g., 

References 7 and 8. It has been observed (Reference 8) that the theory 

incorporating shear deformation can substantially reproduce the deflection 

predicted by elasticity theory in the class of problems treated in 

Reference 1 with, however, no improvement on CPT stress predictions. 

More information in this regard will be presented in subsequent work. 
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TABLE I 

REDUCED STIFFNESS COEFFICIENTS 
FOR A SINGLE LAYER 

e Q,, « IO" 

0 
15 

SO 
45 
60 
75 
90 

25.063 
21.976 
14. 629 

7. 1416 
2. 5993 
1. 1415 
1.0025 

15 
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Figure 3. Normal Stress Distribution, N - l, 0 -15° 
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«* 

Figure 4. Transverse Shear Stress Distribution, N - 1, 0 - 150 
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Figure 5- Maximum Centrai Plane Deflection, N - 2, 0-158 
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Figur« 6. Norm«l Stress Distribution, N - 2, ¢-158 
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« 

Figure 7. Transverse Shear Stress Distribution, N - 2, 0-15 
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Figure 10. Normal Stress Distribution, N ■ 3, 0 ■JO0 
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Figure 12. Transverse Shear Stress Distribution ( r ), 
N - 3. e - 30‘ 
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^(1/2.5) 

Figure 13. In-plene Sheer Stress Distribution, N 3, 0 • 30° 
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