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Faculty of the School of Engineering and Avchitecture of the Catholic
University of America in partial fulfillment of the requirements for the

degree of Doctor of Engineering.

The author is indebted to Mr. Carroll B, Buttler, Air Force Armament
Laboratory, and Mr., Ron E, Davis, Arnold Research Organization, for an
advance copy of their wind tunnel data. Many ideas in this report evolved
during discussiona with Mr, James E, Brunk, Alpha Research, and Mr,
Abraham Flatau, Edgewood Arsenal, Their contributions sre gratefully

acknowledged.




F—g‘; T R R A R S A N S P e S S il oS s 3 sy B o BTGETRanm 0 s T TR AT T e e e R S R R AR R A S S R RO LS

b ertule 6 Phsyrboninbddalh e viata o5«

His

T ii

o P

ABSTRACT

- emy s e - = o

sl eRees badd e

Heinrich G. Magnus demonstrated experimentally, in 1852, that a

body rotating in an air stream experiences a force that acts substan-
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tially normal to the air flow. An autorotating flight vehicle, designed

to develop this Magnus force efficiently and to employ it as the major

lift force in free flight, is called a Magnus rotor., It has been con-

sidered for application in areas such as the recovery of rocket boosters
and aerial delivery. The underlying idea is to make the container sexve
as its own decelerator and thus eliminate the parachute, 1In this report
the equations of motion of Magnus rotors are derived arnd their performance

and stability analyzed and correlated with free flight tests,

. Tensor concepts are used extensively in formulating the flight
‘dynamical problem. 1In pa¥ticu1ar, the ordinary time derivative is re-~
placed by a covariant time derivative, the Rotational Derivative, thus
permitting an invariant formulation of the equations of motion, even
under time-dependent coordinate transformations. As in airplane and
missile dynamics, a reference flight is chosen and perturbation equations
are developed. The reference flight of a Magnus rotor may be accelerated
or decelerated, To determine its effect on the perturbation eguations, a

special tensorial formulation of the perturbations is introduced., It is

ATAoe

also tailored to yield the aerodynamic forces in a simple McLaurin
expansion, Because of the symmetry properties of Magnus rotors, certair
aerodynamic derivatives are zero., An casy-tc-apply rule is derived that

teils vhich derivavive of arbitrary order vanishes. The nonlinear acro-

dynamics are represented by derivatives up to the thizd order; with all
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second order derivatives vanishing because of the symmetry properties

ol Magnhus Rotors,

The perturbation cquations are nonlinear nonautonomous ordinary
differential equations of fifth order with three degrees of freedom:
rolling, yawing, and sideslipping. Their stability is analyzed first
for the simple but important case of linear aerodynamics and a steady-
state reference flight; i.e., the governing equations are linear and
autonomous. A simplified form of the roots is given. The roots describe
three modes: nutation, undulation, and precession. If the nutational
motions ave of major concern, the perturbation equations can be reduced
to two degrees of freedom: rolling and yawing. A further reduction to
one degree of freedom is achieved by combining the roll and yaw angles
to form the nutation angle and by employing the method cf averaging.
The result is a first order equation. Its stability is discussed.
Necessary and sufficient conditions for limit cycles are derived, and
it is shown that limit cycles can be avoided by proper design of the

Magnus rotor.

The complete equations of wotion are programmed in Fortran IV.
Some sample computer runs shcw the trajectories and attitude motions of
typicai Magnus rotors under varfous initial conditions. They aiso validate
the two- and one-degree-of-freedom perturbation equations and, in particular,

verify the analytical prediction of limit cycles.

Thirty models flight tested represented eight different Magnus rotors:

rectangular, triangular, and cylindrical shapes with different end plates

and mass distributions, Their trajectories and attitude motions are
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} correlated with cémputer SEmulatiopsrwhose aerodynamic input Jata are
! solely based on wind tunnel tests, The agreement is satisfactory. fo
measure the aerodynamic damping derivatives in free flight, the induced-
nutation and limit-cycle &étho&s are introduced. Two different Magnus
rotor shapes were testea for limit cycles, The test results aéree Qell

with the predictions, It was found that larger end plates or a high

moment of inertia about ‘the spin axis can eliminate the limit cycle.
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CHAPTER 1 3

I, INTRODUCTION

Heinrich G, Magnus demonstrated experimentally, in 1852, that a body
rotating in an air stream experiences a force that acts substantially
normial to the air flow. An autorotating flight vehicle, designed to
develop this Magnus force efficiently and to employ it as the major lift
force in free flight, is called a Magnus rotor (MR). It consists of a
center body, driving vanes, and, in mecet cases, endplates or ribs to

assure proper orieuntation in free flight.

In general, the designer has much freedom in seiecting tne geometrical
configuration 8o long a8 he provides driving vanes that generate a torque
about an axis, the spin axis, aud chooses a body with mirror symmetry
relative to a plane rormal to the spin axis., Any endplates will be
arranged so that they are normal to the spin axis and the mirror symmetry
is maintained. Five typical MR's are shown in Figure 1.1, They will be
used to demonstrate ard validate the analytical methods developed in this
report. Some of the pertinent dimencions are: span b,* chord c, and end-
plate diemeter d. The chord is defined as the diameter of that cylinder
that fits tightly over the center body without driving vanes and is

parallel to the spin axie, The reference areg is S=b - c.

The principal flight regime is the planar steady-state glide phase.
It is characterized by a constant descent velocity of the center of mass
along a straight line. The angle between this line and the horizon is

the glide angle. While descending, part of the pctentizl energy is

* All symbols are listed in Nomenclature, pige 209
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CHAPTER 1 3

converted via the driving vanes into kinetic energy, resulting in a
constant rotation of the MR about a ;orizontal spin axis. The so
generated aerodynamic circulation induces a Magnus force that {3 approxi-
mately normal to the flight velocity vector and the spin axis. Of
particular importance is the ratioc of the peripheral speed of the driving

vanes to the fiight speed of the MR, It is commonly referred tc as the

tip-speed rstic S . In steady-ztste flight any MR with geometrical

similar configuration has rhe same tip-speed ratio, regardless of size,
weight, and mass distribution. We now define the planar steady-state
glide phase as that part of the flight, when the angular velocity vector
is constant and horizontal and the linear velocity vector is constant and

normal to the angular velocity vector.

Unless the initial conditicns match the steady-state values, the ¥R
will go through some transient flight regimes, The most important one is
the planar transjent glide phase. It is defined as that part of the
flight when the angular velocity vector is still horizontal and the linear
velocity vector remains in a vertical plane normal to the angular velocity

vector, but the absolute values of both vectors change in time.

The planar glide phase comprises both the steady-state and transient
flight regimes. It is the flight phase that is of principal interest in

any performance analysis,

Other flight regimes, like end-on flight, end-over rotation, or flat
spin, are sometimes investigated. However, they are studied only to find

out how to avoid them through proper design. They usually are not part of

a performance analysis.,
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In recent years, the Magnus rotor principle has been considered for
application in areas such as the recovery of rocket boosters, Brunk (1, 2)¥
and aerial delivery, Boehler (3) and Foshag (4). The MR also has been
suggested for landing an instrumentation payload on Venus or Mars, The
underlying idea is to make the container serve as its own decelerator and
to e¢liminate the parachute. This is possible, because the high spin rate
of an MR results in a drag coefficient between one and two (based on
reference area S}, 1In addition, the large angular momentum makes it
insensitive to short-duration perturbations, and a lift-over-drag-ratic
between one and three nrovides ample targeting range, With one of the
several steering systems that have been proposed, the MR can be made to

impact at a predetermined point, Thus, the MR is a precision decelerator

system.

To discuss the flight dynamics of MR's in more detail, consider a
particular application, say, the delivery of supplies from an aircraft to
a ground station. The supplies are stored in the center body, and the MR
is prespun and launched through the tail gate of the cargo plane. Ideally,
if the initial conditions match the steady-state conditions and the flight
is free of disturbances, the MR would descend in a planar steady-state
glide phase, However, this is never satisfied, Usually, the spin rate
and the velocity vector are mismatched. If nc other disturbances occur,
the 1K would go through 2 planar transient glide phase until the steady-
state values are reached; i.e., the MR would perform a planar glide phase.
Again, this is an ideal case., The disturbances that can be expected are

misalignments during the launch phase, wind gusts, and geometrical and

* All references are listzd on pages 216 through 216
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CHAPTER 1 5

mass misalignments of the MR. They cause the MR to deviate from the planar
glide phase, The question of "how much" must be answered by a stability

analysis,

We are led to a similar stability analysis if we study the recovery
of rocket boosters using the MR principle. After burn-out and separation,
the bouster goes through an arbitrary tumbling motion while picking up
some spin with its driving vanes. The motion eventually transits into a
nutational mode with a herizontal axis of nutation. The nutation damps
out, and the steady-state velocity and rotation vectors are approached.
The latter part of the flight, starting with a sufficiently small
nutation-cone angle, can be considered as the planar glide phase of an

MR with perturbations in the initial conditiocns,

The dynamics of an MR can best be explained in terms of a horizontally
spinning gyroscope subjected to aerodynamic fcrces., The perturbations of
the planar glide phase are rolling, yawing, and sideslipping (see Figure 1.2).
They can perform three modes: nutation, precession, and undulation., The
nutation and precession modes are those of a gyroscope with the modification
that the nutation is aerodynamically damped. The undulation mode is a new
mode that results from the aercdynamic forces created by sideslipping p .
To these forces the MR responds with a orecession that, in turn, changes A .
The result is an unsteady precession; i.e., an undulation, Th. undulation
mode can be oscilletory or apericdic. In general, its motions are much

slower than those of the nutation mode.

The MR is insensitive tv shert duration disturbances, However, even

¢mall long-duration disturbances can cause the MR to deviate considerably
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ROLLING

B SIDESLIPPING

¥

FLIGHT DIRECTION

FIGURE 1.2 PERTURBED MOTIONS

from its planar glide phase. The most important such disturbance is a
center of gravity offset along the spin axis., !+ causes the MR to precess

horizontally at a constant rate,

To put the flight dynamics of MR's into perspective, we consider the
dynamics of airplanes and spinning missiles. The MR shares the gyroscopic
properties with the spinning missile. MHewever, its spin axis is approxi-
mately normal to the flight direction and in a horizontal plane, This
results in different perturbation equations., The equations of the missile
are 2xpressed in pitch, yaw, angle of attack, and sideslip angle and can
be brought into a convenient complex form, The perturbations of an MR

are rolling, yawing, ind sideslipping, and the equations are not amenable
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CHAPTER 1 7

to the complex variable transformation. Here, the angle of attack is
measured in the plane normal to the spin axis, between a driving vane
and the roll axis. It plays the part of the roll angle in the gisaile
case, Yet the roll orientation of a rapidly epinning missile is unimpor-
tant, while the angle of attack in the case of the MR influences the
aerodynanic forces considerably, because of the shape of the center body

and the driving vanes.

With regard to the symmetry of the external configuration, the MR has
the mirror symmetrical properties of &n aircraft rather than the rotational
symmetry of a missile. That is why the aerodynamics of MR's are expressed
in terms of airplane conventions, while borrowing the Magnus derivative
notation from missile aerodynamics, The MP. differs from an airplane by
its high angular momentum and its rapidly changing angle of attack, But
the perturbation equations can etill be séparated‘into longitudinal aud
lateral equations, The lateral equatione describe the rolling, yawing,

and sideslipping motions with a strong gyroscopic coupling in the roll

and yaw equations,

In general. the moment of inertia tensor of an MR is not circular
relative to the spin axis as is usually the cage in spinning missile
dynamics, This again shows that the orientation of the MR, expressed
by the angle of attack, plays a more important part than the roll
orientation of a missile. Summarizing, we note that the flight dynamics

of HR'Q are & combination of airplane and spinning missile dynamics,

A historical review of the Magnus rotor principle was given by
Foshag and Boehler (4}. It suffices to mention that Maxwell (5) first

discussed the phenomenon of a free-falling spinning card. Only recently
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have the [light dynamics of Magnus rotors again attracted the interest of
rescarchers. Brunk (1, 2) studied the equivalent problem of the dynamics
of spinning missiles at a 90-degrec complex angle of attack, deve;oping a
linear theory of the steady-state glide phase and employing a six-degree-
of-freedom computer simulation., Millevolte (6) investigated the 1iﬁear
aspects of the dynamic stability of Vortex Gliders (Magnus rotors) during
steady-state glide phase. The autorotaticnal characteristics of various
Magnus rotor shapes were studied by Bustamante (7, 8, 9) with particular
emphasis on the spin degree-of-freedom. All these efforts have helped to
explain some of the flight phenomena of MR's., But much research remains
to be done until the flight dynamics of MR's are understood as well as

aircraft and missile dynamics,
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2. PROBLEM STATEMENT AND APPROACH

A properly designed MR will descend in a planar glide phase to the
ground, The purpose of this report is to investigate the dynamics of the
planar giide phase. For a complete ansiysis, the equations of motion
must be derived, taking into account such effects as a noncircular moment
of inertiz ellipsoid, the rapidly rotating angle of attack, nonlinear
aerodynamic forces, and the acceleration of the center of mass during the
transient glide phase, But the equations should also be simple enough to
be examined analytically., In particular, they should be suited for a
stability analysis, This will yield the physical understanding of the
flight phenomena and provide some simple relationships that are helpful
in improving the design of an MR. To obtain the actual flight time
histories, the equations must be programmed for computer. Firally, the
required validation of these theoretical results can oﬁiy come from the

correlation of free-flight tests with computer runs,

Té implement this program, we introduce the following basic
assumptions:

1. The earth is an inertial reference frame and can be considered
to be flat,

2. The MR is rigid wiﬁh constant mass and i8 mirror symmetrical with
respect to its external geometry aﬂd its mass distribution,

3. The material density of the MR is much greater than the density
éf the surrcunding medium,

4, The perturbations of the planar glide phase are small, .
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5. The flight speed and spin rate do not drop below ten percent cf

their steauy-state values,

Assumptions 1 to 4 are familiar from the flight dynamics of airplanes.
Because MR motions are rapid and their distances traveled short compared
with the earth's rotation and diameter, respectively, Assumption 1 is well
justified, Assumption 2 enables one to focﬁs on the flight dynamical
problem by fntroducing the ideal MR, Jeroelastic and asymmetrical effects
are of second order and are not treated in this report in detail. The high
material density ratio, Assumption 3, is required to simplify the equations
and to permit the use of an averaging process. It is always satisfied if
air is the surrounding medium, The small perturbation assumpﬁion
eliminates the trigonometric functions, and Assumption 5 assﬁres that the

equations of motion do not become singular,

The problem requires an apptqach on two differext levels. The first
part of this report supplies the mathematical tools to formulate the flight
dynamics of MR's., It is mathematically riéoréus. The second paré,
beginning with Chapter 8, deals with the engineering analysis of the
flight dynamics of MR’s, There, many assumptions must bé>introducéd and
much intuition and experimental evidencs is needed to arrive at a manageable

set of aguations of motion.

The equations of motion consist of reference equations and perturbation

‘equations., The reference flight of the perturbation equations is the
planar glide phase. Since, in general, the center-of-mass of the MR is
accelerated, care must be takei. in deriving the perturbation equatioms,

This is achieved by using the methods of tensor analysis and by introducing
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the special concept of a Rotational Derivative. The definitions and
theorems are summarized in Chapter } and applied in Chapter 4 to obtain

a general formulation of the perturbation equations of atmospheric flight
dynamics. In Chapter 5 the systems for normalizing the equations are intro-
duced. The Dynamic-Normalized System is used to simplify the eguations of
motion, whereas the Aero-~Normalized System is needed to arrive at the

aerodynamic coefficients,

Up to Chapter 5, the development is general enough to apply to all
atmospheric flight dynamic problems., With the introduction of the Flight-
Mechanical and Gyro-Mechanical Frame Axes in Chaéter 6, the specialization
on MR's bagins. Affet collecting some of the kinematical relationships in
Chaptex 7, the Reference Flight is defined in Chapter 8, and necessary
and svfficient conditions are stated under vh;ch a planar glide phase is
possible., Then, the perturbation equations are derived starting with the
linear mcmentum {n Chapter ¢ and the anéulnr momentum in Chapter 10, The
formulation oi the aerodynamic ficces in terms of derivatives is executed
in detail in Chapter l1l. Again, the methods of tensor analysis are used
to prove a theorem that establishes the conditions for vanishing derivatives
of arbitrary order. Tﬁis is the key to the nonlinear representation of the
aerodynanic forces, In Chapter 12, the implicit dependence of the equations
of motions on the rapidly rotating angle of attack is eliminated by the
Method of Averaging. -The perturbation ;quationa are separated into Lateral
and Longitudinal Equations. The longitudiral equations are dropped, and
the final equations of motion (i.e., the referenée equations of the planar

glide phase and the lateral perturbaticn equations) are summarized.

The stability of the iateral perturbation equations is analyzed in
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Chapter 13. The linear perturbation equations are used to discuss the
stability of the first approximation, To analyze the effect of aerodynamic
nonlinearities, the perturbation equations are reduced to a one-degoee-of-
freedom equation using the Method of Averaging. The conditions under

which limit cycles occur are shown, as are the methods of avoiding them,

In Chapter 14, the theoretical methods are applied to several typical
Magnus rotor shapes., The equations of motion are programmed for computer,
and some typical flight histories are showm. Thé reduction of the perturba-
tion equation to a one-degree-of-freedom equation is justitied by comparison
with the integration of the exact equations by computer. To validate the
theoretical apprcoch, approximately 30 flight tests were conducted. Some
of the results are correlated with computer simulations whose aerodynamic
input data are solely based on wind tunnel tests. Two new methods are
introduced to measure the aercdynamic damping derivatives. They are the
induced-nutation and limit-cycle methods, Finally, in Chapter 15, the

contributions of this report are evaluated, the weak points exposed, and

future work described.

The report is divided into chapters and sections. 1In each chapter
the equations are numbere@ consecutively. If the equations‘are crogs-
referenced between different chap;ers; the chapter number precedes the
equation number. The reader who is not interested in the mathematical
development of the equations of motion can skip Chapter; 3, 4, 8, 9, 10,

and 11, and concentrate on the results in Chapters 12 through 15,
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3, TENSOR CONCEPTS IN FLIGHT DYNAMICS .

The formulation and interpretation of problems in flight dynamics
can be a formidable task if many bodies and reference frames are involved.
It is therefore important to have a concise mathematical language on hand
to model the physical processes. In this chapter a tool will be intro-
duced that is (i) capable of expressing dyramic problems in an invariant
tensor form under time-dependent coordinate transformations and (ii)

particularly tailored to problems whose major elements are rigid bodies.

To motivate the reader, we consider Newton's Second Law in its usual

form:
Sp =7 )

vhere it is always understood that the time derivative is taken relative
to an inertial frame. IXf we use a matrix formulation, we must specify
the coordinate system of the vector components. Let I indicate an

inertial coordinate system., Then Equation (1) is written as:
d < T
alpl - [£] @)

s .
For a non-inertial coordinate system, say ] , the well known Euler

transformation yields:
< [P'}s; [2®=1% (p1® = [41° )

8
where {,.9.,@“”] is a skew-symmetric matrix describing the angular
velocity of frame GB) relative to frame (X) . Comparing Fquations (2)

and (3) we note that Newton's law may assume different forms, depending omn
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the coordinate system it is expressed in, Consequently, the fommulation of
Equation (2) is not iavariant under a ccordinate tramsformation., This is
not a serious disadvantage if two frames suffice to formulate a problem.
But, in flight dynamics, many frames vsually are involved: inertial frame,
earth frame, stability frame, wind frame, body frame, ete. Then it is
desirable to work with an invariant (i.e., tensor) formulation in order

not to lose sight of the physics of the problem., However, the transforma-
tions between the coordinate systems are time-dependent, We therefore rneed
a tensor formulation that is invariant even under time-dependent coordinate
transformations, This will be achieved by introducing the so-called
rotational time derivative, :B'. Newton's law then assumes the invariant

tensor form with respect to all time-dependent coordinate transformations:

[ D] - (4] | @

. .
wiiere 29*" ic the rotational time derivative relative to the inertial

. 1 s
frame (1) ., Expressed in the coordinate systems T and ] , we obtain

the forms equivalent to the Equations (2) and (3):

[E"‘“P}‘ - 147 o | _ ()

-0 y .28
[Bmpl = [§] (6
Before we can give the definition of the rotational time derivative,
we shall state a few génetal principles and definitions on which the two
fundamental concepts of "position" and "motion" are based., The fundamental

kinematical theorems will then be formulated and proved. 1In later chapters

it will be shown, using the MR as an example, how the new tools are applied
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to problems in flight dynamics,

3.1 GENERAL PRINCIPLES AND DEFINITIONS

The three basic notions of classical mechanics are according to
Truesdell (1U):

a, Material Body. A body is a three dimensional differentiable
manifold, the elements of which are called particles. It possesses a non-
azgative scalax measuté that 18 called the mass distribution of the body.
In particular, s body is called rigid if the distances between every pair
of its pattiiles are Cime-invariant.

b. Porce. The force describes the action of the outside world on a
body and the interaction between the different rarts of the body, We dis-
tinguish between volume force (e.g., gravitational force) and surface

force {e.g., aerodynamic force),

C. Buclideap‘Sgace-Time.

Classical mechanics i{s the investigation of the interaction of these
three basic notions under four axioms (see Hamel (11)):

a. Time and space are homogeneous.

b. Space is isottqéic;

¢. Every effect must have its cause by which it is uniquely deter-

minead.

d. No particular iength, velocity, or mass is singled out,

The surface forces of the force system depend on the kinematics of the

body, This is expressed by the constitutive equation, Fr m Axiom b, it
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follows, as Noll (i2) showed, that the constitutive equations are invariant

under a rotation in space, He calls this the Principle of Material

Indiflerence.

The general principles must be cast into a mathematical language in

—

order to allow a concise formulation of the dynamic problem and meke it

amenable to mathematical analysis. We introduce two basic mathematical

notions:

L)

a. Point. A point is the mathematical model of a physical object

whose spatial extension is irrelevant., Example: particle,

b, Frame, A frame is an unbounded continuous set of elements over
the Euclidean three-space whose distances are time-invariant and which

possesses, as a subset, at least three noncollinear points,

L The following hxgothesis will govern the modeiing of dynamic problems:
] The mathematical notions of "point" and "“frame" -are

sufficient to formulate any problem in classical

dynamics.

This -statement cannot be proven universally, because we do not know
every conceivable problem in classicul dynamics, However, it can be made

plausible by considering the first two basic notions of classical mechanics.

L aid].

A body can be wmodeled by a frame or by points, depending on whether it is

rigid or not., Forces can be erpressed as the interaction of points or

L)

frames. Because dynamics is that branch of mechanics that deals with
material bodies and fotces as they interact in Euclidean space-time, the

hypothesis appears to be justified suffirciently.

The mapping of the elements of a frame oncto Euclidean three-space is
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accomplished via coordinate systems,

DEFINITIONS: A coordinate system is an abstract entity embedded in

Euclidean three-space that establishes a one-to-one correspondence
between the elements of a frame and the ordered triple of algebraic
numbers. A coordinate system is suid to be associated with a frame if

the one-to-one correspondence is time-invariant. All coordinate systems
asgociated with one frame form a class, 13, with czg'elements related by
translation and rotation, The entity of all these clagses over all frames

are the allowable coordinate systems, where we restrict ourseives to right-

handed orthogonal Cartesian coordinate systems. The group of allowable
coordinate transformations are the transformations between allowable
coordinate systems, They are, in general, functions of time. Only

within one class are the transformations time-invariant,

We are now in a position to define the meaning of a tensor as it will
be used throughout this report. The components of a first-order tensor in
a coordinate system, say ]6 » will be represented by lower case letters;
ey [ﬂa . ﬁpper case letters are reserved for the components of second-
ordur tensors; e.g., lt ]‘ . The transformation matrix between two coor-

-] A 8A
dinate systems, say T with respect to ] , i8 abbreviated by R Rl

(See Jeffreys (13)).

DEFINITION: A first-order tensor (vector) is the abstract collection of

orderad triples (i.e., components), each of which is associated with an
allowable coordinate system and such that any two satisfy the trans-

formation law

(x]® = (1% [x)* )
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] A
where J and ] can be any allowable coordinate system. If we refer to
i (1. k1®
this abstract collection, we write ¥} , LX is just a particular
Tl . e
element of LX] ; i.e.,, the components expir ssed in the 1 ccordinate

system, .

A similar statement defines a second-order tensor (tensor) with

Equation (7) replaced by:

(31° = [71%* [3)* (11®* f (8

l.xl again stands for the abstract collection of all ordered 9-tuples

associated with all allowable coordinate systems. The superscript v indi-
cates the transposed matrix., Higher-order tensors could be defined similar-

ly. However, they will not be required.

The notation combines the features of the dyadic and the matrix formu-
lations. For instance, LX] is the abstract dyadic form that does not
single out any coordinate system, Lzla is a 3 x 3 matrix whose elements
are the components of the second-order tensor in the coordinate system }‘ .
For further reference, we also adopt the convention that a frame is
represented by a capital letter in parenthesis, say (A) , and an element
or point of the frame by the same capital letter A with a possible subscript,
The coordinate systems assocfated with (A) also have the same capital letter,
A , possibly modified by a subscriptf;]h“.

Thus far, we have assembled the basi¢ mwathematical eléments needed to -
model kinematic problems. Two more concepts are reéuired to establish the
association between actual physical processes and the mathematical language.

These are: position and motion,
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3.2 (ONCEPT OF POSITION

The position of a point C or a frame ®) is a relative concept in the
sense that its definition requires a reference point R and a reference
frame (R). In particalar, the position of point ¢ relative to point R
is uetermined by the vector (*cnl. To describe the position of the
frame 3) relative to frame (R), we start with the definition of a frame
given in Section 3.1, The three noncollineer points B;,Bz,33 of frame
(B) are referred to the three noncollinear points Ry, Ry, Ry of frame R)
by the three vectors [X gm-‘l, is 1,9-,3 . Only six of the nine vector com-

ponents are independent; i.e., a frame has six degrees of freedom,

An alternate and more useful way to describe the positioa of a frame
is the distinction between location and orientation., Let 8 and R be two
representative points of (3) and (ﬂ.) . D‘m} is then called the location
of frame (B) relative to frerae (R) « The orientation of frame (B) relative

to frame (R) is determined by the rotation tensor (,R(’Nm l whose defini-~

tion is given below. By Euler's theorem on rigid bodies, and for that
matter on frames, the general displacement is a rotation about some axis
through a "fixed point.,” This "fixed point" is, in our case, an element
that belongs to (B) and (R) and s not affected by the rotation. Since @®)
and Lﬂ) are unoounded, such an element always exists, Location and orienta~
tion together describe the position of frame (B) relative to frame (R) .
Both (.Xan.\ ‘and LR(M(M] have three independent components; i.e,, together

they have the correct number to specify 6 degrees of treedom.

1¢ {n) 1s the unit vector of the axis of rotation and 8 the angle of

rotation, the rotation tensor is defined by:
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LR = conBlE] + (1- 0sB) lnlln) + sind LN) (9

where LE) is the unit tensor and {N)the skew-symmetric tensor ohtained
from [n\ . The derivation of this formula aad the proof of the tensor
property of lﬂ(mm)l can be found in Jeffreys (13). We note further
that the rotation tensor is orthonormal and that its determinant is +l1

for proper and -1 for improper rotations., The trace is

Ry, +~ Ry + Ryy = L +200s86 (10

In flight dynamics it is customary to use a triad of orthogonal axes
to represent a frame. But confusion very often arises because the axes of
the triad and the coordinate axes are used as synonyms, DNothing could be

more misleading., We will try to give an accurate account of the situation,

DEFINITION: A triad is a set of three orthonormal base vectors that connect

one physically important point of a frame, the base point, with three other

points of the frame.

The position of a frame, say (B) , is uniquely determined hy the
position of its triad. The base point ® defines the location and the base
vectors UOJ,LB,J, (b3] the orientation relative to a referénce frame (R).
The rotation tensor (Qm)(m] can be thought of as‘ mapping the base‘vectors
u)l], Uoz] ’&531 intc the base vectors (Kl X, {K;ﬁ,tk;] of the reference

frame; namely,

b

;] = IR®WYI (] 1. ,2,3 ()

Consider any two vectors LX 3“3} and L)‘qknl , where ‘3, and Rh are any

clements of (B) and (\R) , respectively, 1If [xﬁ,‘%‘x and‘.‘ﬂn“p‘] are composed
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of the same linear combination of the base vectors ‘.B‘] %[‘52] ,[_bal and

[nll,[ uz] )l n;j , respectively, then the two vectors are related by

[xq ) = LRE®® ]k, ] (12)
because, if

[xead = ¥ Lo ]« nle]+ ¥ lb,) (13)
aad

[ Xﬂuﬂl - TA_ l’tl] + "z[nz‘l + T$ L"-s.} (14)
then Equation (12) follows from Equation (11),

Now we are in a position to establish a relationship between the

rotation tensor and the coordinate transformation.

THEOREM: Consider two arbitrary frames (B),(R) and choose ‘.Xg odand
L1
LXR,R] as outlined above. In particular, Equation (12) is supposed to be
e R
satisfied, Define two coordinate systems Y and ] in (B) ara (R)

respectively, such that

L "s..of' \ Xa.e ]R (15)
Then the following relationship helds:

[ RO [ rO@R . [T]“T - (16)
PROOF: From Ejuation (15) it follows that

[xﬁuB]‘ - lT]”‘t[xnka]Q : » an

and
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[ R i_ QnT ‘. (3
'XG.‘B] - 17 xnkn\ (18)

-
Express Equation (12) first in the l coordinate system and compare with
Q
Equation (17) and then in *he } coordinate system and compare with

Equation (18). Equation (16) follows immediately.

It is very important to distinguish carefully between frame and space,
triad and coordinate system, rotation tensor and coordinate transformation
matrix, Frame, triad, and rotation are invariant tensor concepts, whereas
space, coordinéte system, and coordinate tfansformation are purely algebraic

notions,

3.3 CONCEPT OF MOTION

The concept of motion is formulated by introducing time into the
purely spatial concept of position; i.e., [Xen(ﬂ} and ‘.Q@)m) L‘H] .
Obviously, it is also a relative concept. It makes sense to talk about the

motfion of a peint or a frame only with réspect to another frame.

d

The time derivative at of a tensor is considered to operate on its
components., It preserves the tensor character if the allowable coordjinate
systems are‘related by time-invariant coovdinate transformations, However,
in flight dynamics, it is very often necessary to express the time rate of
change of a tensor relative to a reference frame in terms of the time rate

of change of this tensor with respect to a mcving boady. Usually, this is

achieved by introducing coordinate systems fixed with the reference frame
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and the moving body and taking time derivatives cof the corresponding
components. The correction factor is given by Euler's transformation
theoxem, As Jeffreys (13) points out, the time derivative with respect
to the moving body has lost its tensor properties, and one must continue

to solve the remainder of the problem in one particular ccordinate system.

We shall alleviate this shortcoming by introducing the concept of a
rotational derivative, A rotaticnal derivative is a time derivative of a

tensor relative to an arbitrary frame; e.g., an inertial frame or body

- frame, It is also a tensor of the same order and therefore a covarisnt

derivative with respect to the parameter t . The teim "tensor" is under-
stood here in the sense of the definitic.. given in Section 3.1. If we use
the rotational derivative instead of the ordinary time derivative, the time
rate of change of a tensor, relative to a moving bédy, is still 2 tensor.
In more general terms, we will be able to formulate tﬂe equations of motion
in tensor form and carry out much oirthe analysis without recurring to the
component form, For instance, we will be able to introduce perturbation
equations that are ﬁQt limited to a steady reference flight. Howevér,
before advancing intc applications, we must lay a sound foundation for the
rotational derivative. As far as I am aware, only Wrede (14) has reported
a similar concept. But his approach is limited to vectors and restricted

to one particular reference frame,

DEFINITION: Let LP] be an arbitrary vector (first-order tensor) and {P]
an arbitrary tensor (second-order tensor). Furthermore, lec(ji\ be an
atbitrary frame, The rotational derivative of a vector and teﬁsor with

respect to the frame (R) is written in dyadic form:
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(294 pi) , L@ {(el|]
L&® o) s, [ B® p]

This is an abbreviation for the abstract collection of all component forms

or shorter

"
that arise from the allowable coordinate systems. For instance, let ] be
(3
any allowable coordinate system, and let 1" be a coordinate system associated
MR )
with the frame (B\, where LT] is the possibly time-dependent transforma-
tion matrix, Then the components of the rotational derivative for a vector

aad tensor are defined:
™ " MR MR " )
[ p1" = 2 o) 13 (& 111™) [ (9)

v oy
[ " ne ne " MR Ma

[g®p) = 2[p] 4] (& DY P+ [PTHA EITHTT™ o)
Some of the important properties of the rotational derivative are: .

PROPERTY 1: The rotational derivative of a vector [p‘ relative to a frame

- = .
(Q) is a vector; i.e., let (H) and (_h) be any two frames with the associated
- - - O

" -h 1
coordinate systems ] and ] and the transformation matrix h’] , then
[D®p17 = 17)77 [ &™) (21)

PROPERTY 2: The rotational derivative of a tensor{P) telative to g frame

- =
(R) is a tensor; i.e., let (!4) and (H) be any two frames with the associated

k_J
-

" An
coordinate systems 1 and 3 and the transformation matrix LT] , thea

(D®OPT o [1)FF [p@pI® (+]FF -
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The second-order skew-symmetric tensors play an important role because
they represent corcepts like angular velocity, angular momentum, and torque,
In Euclidean three-space, they have only three independent components and
can therefore be contracted to a first-order tensor capacity (see
Brillouin (15)). If we restrict ourseclves to right-hand orthogonal
Cartesian coordinate system, then the tensor capacity is determined

unjquely. Such a first-order tensor capacity is called an axial vector.

PROPERTY 3: If the allowable coordinate systems are right-hand orthogonal
Cartesian coordinate systems, then an axial vector (L] has the same rota-
7tional derivative as a regular vector; i.e., let (ﬁ‘) and (!‘1) be any two
frames with the associated coordinate systems ]i and lh and the trans-

AR
formation matrix g , then

® AR o ]
(@) = (7] [ p®Y) (23)
The proofs of the three preceding properties are given in Appendix A.
PROPERTY 4: The rotational derivative is a linear operator,

. " ‘
PROOF: Let [P;] and [le be two arbitrary vectors and ] any coordinate
ayst:em; The rotational derivative with respect tc a reference frame

"
expressed in the ] coordinate system is

D% [p1- [p,,]}]ﬂn 4 (lpJ“#lp,l"hlﬂm 4T {pﬂ"ﬂpl\") (24)

[29{lp] *[qu],ﬂ - LS‘@‘)pL]H+ [H® p,]" (25)

Furthermore, let K be a time-invariant scalar and [P} any vector. We get




RN LA

7 A

CHAPTER 3 26

[ b‘“’{ulp]k}" -f;(klpla) +MMs (") w PR
(& ulpli] = k[ 2® 1" @

Equations (25) and (27) are the properties of a linear operator. They hold
for any coordinate system, Therefore, we can write the properties in an

invariant form:

L2® {Ip)+ Lp )1 = 181+ 1@®g,) (28)

(8% {wipl|] = kl&®p] (29)
It can easily be verified that the same properties hold for tensors.

PROPERTY 5: Chain Rule. Let{B])be any tensor and [P] be any vector. The

following rule holds:
(8% {{a1lpl}] = (8@ R)(p) + (81l &®p] 30)

Lod
PROOF: Let } be any coordinate system and consider the component form
of Equation (30}:

[ B {telpl|] = L&®el"lpl" + (a1 (£® 1" o

Write out the right-hand side using the definitions nf Equations (19) and

(20):




T

cnpres. 3 | 7
(B SIAN"S (41671 11" (r1™) a1 ()" +
Lol (G 1™ el el Lol ™ (o1 (™) 1"
-([eﬁp]")ﬂﬂ"“(,% [T]"“T)[B}"lp]" + (32)
s L1 (& L™ 1 (2 ) ("

The expression in the braces is zero because the first term is skew-symmetric:

LR \
(G ™) I e L™ 8 LTI"“\ = -1 4 "™ o
This proves the chain rule.

The five properties ~f the rotational derivative are the more important
characteristics that we will need in the sequel. In particular, we are now

able to defir- linear and angular velocity.

DEFINITION: Let 8 be a point and (R)a reference framc containing a refer-

ence point R . The position of 8 relative to (R} is given by [XBR(H].

The velocity of B relative to (R) is defined by
(Q) R) ;

It is commonly called the linear velocity of point 8 .

COMMENT: Let R; and Rz be two arbitrary points of (R) . Then we have

A BP 1 = LW« ] (35)

because introducing
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Lrand = Dxggd * Lxga,] (36)

and takiug the rotational derivative relative to (R) yields:

l%m) XGR;] = {' gm)x Bﬂg,‘l + [- %(R\ XRZRL} G7)

But

@
[9‘?_):&2&1}:-[0] (38)
R
because, for a coordinate system ) associated with (R )

[ 2® anm]n -5 xgzn‘jn = [o)® (39)

Therefore, Equation (35) is correct, and we do nci have to specify a special
fe’ferenceipoinc to define the linear velocity uniquely. Ail that is needed
is ¢ reference frame. This is the explanation for the particular notation
in Equation (34). It reduces to the familiar definition if we show its

R
components in a ) coordinate system:

R d R 7
Lol =lD® x,. 1 =5 Uxged (40)

DEFINITION: Let (B) and {R) be two arbitrary frames whose orientation
relative to each other is given by {R(B)(R) “:)} . Let Bk and B be
elements of (B) and conunected by the vector(xgkei. According to

Equation (12) there exists a similar vector [XR.‘R] in (‘2) such that

[xge1=LR®®Ix, 1 (1)

Take the rotational derivative relative to (R) and use Property 5.
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[3&1)%&] - [ p® Rts)mnxn.n] + Rts)m“ 9"’%.,113 (42)

The last term is zero, Substitute Equation (41) into Equation (42):

(8% 5y o] = LB® W] e ]Tlxsk‘] 43)
and abbreviate

[ Q&) = [ R g gexa ] -
to get

(2% xq4,4) = [ QO™ 1x, ) 5)

Ln(ﬂ(ml is called the angular velocity tensor of frame (8) with respect

to frame (R),

It ie certainly a second-order tensor. Its skew-symmetric property

is proved as follows. Consider

LB® [ (RO RSV} = [ o™ g) (“6)
ﬁe first show that lng] -lOl . For any zoordinate system, say ]‘ H

[ 1® =2 1el% (1% % (G 1P TP 6]
« oI N 1% (G MY e

- £ (M= 111™) - Lo}

Therefore, Eqimtian (46) becomes:

[ o Q“’““’][R("““’]T + [ RBW @R n GNR) }T ‘ lo] (48)' 7
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or by detinition:
[ Q&) , | Q&Ow )T = {o) %9)

There is another important relationship linking the angular velocity

tensor to coordinate transformation matrices:

[ Q®® ) = (% [11%) 111™ (50)
or
.
[ Q™™ = (1™ & (™ 51)

R
Equation (50) is proved simply by taking the ] components of Equation (44)
and employing Equation (16). Equatiun (51) follows then from Equation (50)

by coordinate transformation.

Note that Equation (19) can be written, in view of Equation (51) as:

| o® P]H -4 [\o]" L1 pt” (52)
However, a word of caution is necessary. Equation (52) may guggest that
ad'* LP]H is a tensox because [BLMP]\H and, seemingly, (_.Q(mm)llhtplﬁ
are tensors, But we know from Jeffreys (13) that neithar term on the

right-hand side of Equation (52) is a tensor. OUnly the sum iz a tensor.

Before stating other important properties of the angular velocity

tensor, we need to formulate the fundamental theorem of kinematics that

goveras the change of frames.

THEOREM OF TRANSFORMATION OF FRAMES. Let (A) and (8) be two arbitrary

frames related by the angular velocity tensor L §l§3)(A\} . Then for

any vector LP] the following relationship holds:
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[ BWe] = [9'(“)p} + lﬂ“’“"’][p} (53)

where every term is a first-order tensor.

The proof is somewhat lengthy and given in Appendix A. Note that
Euler's theorem is a special case of Equation (53). Because if we choose

the proper coordinate systems, we get:

4 [plA = [T]AG{;?; p1%s L @™ [p)® S (54)

The additive property of angular velocity tensors will now be proved,
Consider three arbitrary frames(A), (8), and (¢). Apply Equation (53)

three times:

g_gwp] = [g(o)P] + [Sl@mnp] (55)
[3®p1 ~ 1Bp]) + LQ®1p) (56)

[ W p]) = lﬁ“”p] + [ Q‘g""]lrﬂ (57)

Substituting Equations (56) and (57) into (55) and in view of the fact that

(P] is an arbitrary vectosx:

[ QW] = [ QO®] L [ Q&™) &

Notice the consistent sequence of superscripts.

Another useful property to remember is:
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[_Q_(e\m] - iﬂ(‘“‘”} (59)

It follows again from applying Equation (53) twice

| pW p] = | %mpl s QW “pl (60>

‘L%‘c’)pl - \ﬁ'mp\ +{ ﬂ("m]\p] 61)
and adding both equations.

Finally, we will prove a second important theorem:

THEOREM OF ROTATION OF VECTORS., Let {A) and (8) be two arbitrary frames

related by the rotation tensor L‘QQ?M“}} . Then for any vector [P} the

to.towing holds:
| B@o] - | ROXM T B® { |R®'W ][P]X ] (62)

This can be interpreted as follows: The rotational derivative of ipl
relative to (A‘ can also be evaluated by first rotating (P] f:‘m:ough ‘.R(M(A‘l
and then taking the rotational derivative relative to the likewise rotated
frame, now called 03\; then the result is rotated back through ‘fz«”(~3}T .
This theorem is actually a consequence of the isotropic property of space,

Axiom b of Section 3.l; i.e., taking the rotational derivative is invariant

under spatial retations of all points and frames involved,

PROOF . Apply the Chain Rule to the left side of Equation (62):

1 8%p) - (ROWTLB RO 1ip] 4§ ] -
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and the Theorem of Transformation of Frames to the last term of Equation (63):

33

[ 9@3{)] - [ RE | e Q(swnp] +[B®0] 4 L QWi Pl o

It remains to be shown that
[Q(Mm ]T Lﬁ(s) R(MLM] = - [Quum]

Let us start with a form equivalent to Equation (41)

["n.‘n] = [R™® | xg o)

and take the rotational derivative relative to (R):

lol = l 5(&) R(ﬂm ]h‘me] + [Q@ue\nbm Xa..el
We compare the transposed form
¢
[ Wy, o1 =- LROW T [g@ @Oy )

with Equation (43) and conclude

[Q®® ] L _ [ @7 p® pimie) )

But this ls just the form of Equation (65).

(65)

(66)

(67)

(68)

(€9)
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%. PERTURBATION EQUATIONS

We shall apply the tensor concepts of Chapter 3 to shed light on the
perturbation equations commonly used in flight dynamics. Two different
perturbation methods can be distinguished, Their areas cf application
depend vn tne role the aerodynamic forces play. In space dynamics, where
the aerodynamic forces are small, the first method is used, The second
method applies to atmospheric flight dynamics where aerodynamic forces

dominate,

Consider a rigid body subjected to aerodynamic and gravitational
forces, Its mass and gravity center are assumed to coincide for all
practical purposes. The Euler equatiens of mechanics are in the tensor

formulation of Chapter 3:

[8(1) P@)(ﬂ] - ‘.{_“\ N [‘F%l 1)

i( #rie) lu(mml - [ma} 7 @)

The allowable coordinate systems are right-hand orthogonal Cartesian
. 29(1) . . . .
coordinate systems, is the rotational derivative with respect to
t O )
an isertial frame (¥) [Pm }is the linear momentum of the body ®)
o [l (5\(1\)
relative to the inertial frame, and e is the angular momentum &f
the body relative to the inertial frame and referred to the mass center,‘g.
Lga] and [Vh,} are the aecrodynamic force and moment, respectively, and
[$)l the gravitationzi force., BRecause the allowable coordinate systems
are restricted to right-hand orthogenal Cartesian cocrdinate systems, the

skew-symmetric angular momentum and aerodynamic moment tensars sye writien

_as axial vectors,
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Consider two solutions of Ejuations (1) and (2). Call the first one

{ (n)m ] 1 @\ml

the refereace flight: Call the second one the

(mml [ i &m(.)]

-

perturbed flight: t P The & and r below (}!)
indicate that the body,frame is in a reference state or a perturbed state,

respectively. To arvive at the so-called first perturbaticn equations,

define the perturbations- from the reference flight as the vector increments:

['SP@W] - P@g(n) ®@) 3

P

(62,591 = 1489 - [£,9%] @

Because both the perturbed flight and the reference flight satisfy the
equations of motion, and because the rotational derivative iz a linear
operator, we obtain from Equations (1} and (2) in view of Equations (3) and

(4y:

[30:) SP(aum ; w\} H» ()] 4 U%(pn H}(r\)} (5)

[ pO§ Lawml = {m, (] - Lmun) (6)

where (X) and (?f) inditate that the respective functions are evaluated
during reference or perturbed flight. The last two terms in Equation (5)
cancel because the gravitational force is invariant under the flat-earth
approximation, Define the perturbations of the aerodynamic force and

moment ac the vector increments

Lsgad = Lhatpl - Liatm] m
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(Sm, b = L) - Lot} ®)

We obtain then the first perturbation equations of a rigid body in

free flight:

[ D« gplsmn ) = ‘.8{_“} | ()

als)
| Ji.g(‘ﬂ 1= 18wm,) (10)

These are the most concise forms in which we can write the perturba-
tion equatiops. They are valid in any allowable coordinate system, whether

it is associated with an inertial system or some moving system,

To formulate the so-called second perturbation equations, we have to

introduce a third frame, the stability frame (8) . The aerodynamic forces
are expressed in a coordinate system associated with this stability frame,
Just as we have to distinguish between a body frame being in a reference
state during reference flight and in a perturbed state during perturbed
- , (s) () ; .
flight, so we have to defise %' and P as the stability frame in the
refew nece state and perturbed state, respectively. The relationship

. { &) & 4
hetween :hem is given by the orthonormal rotation tensox R r u.]

()

thut expresses the rotation of the frame with respect to the frame
(A - (€284
(3 . Finally, the angulayr weleccity tensor (53- ] describes the

angular welocity of the stability frame (s relative to the inertizal

“feame (I3,
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Define the perturbations from the reference flight as the vector

increments:
lep®n 1= 1 SIOBTCIITINCE) a
[e4,99)= 11891 - LR 1,9 (12)
le QO] -1 Q9] LR QIR RY (13)
lefal = LE(] - [RTY) L ] (14)
Lem,d = Lmg(pr] - 1RES Y L, im] (15)

" In writing Equations {12) and (15) in form of axial vectcys, we must restrict

the rotation tensor to the class of right-hand orthonormal rotations.

Let Equations (1) and (2) describe the equations of motion during a
perturbed flight., Introducing Equations (11), (12), (14), and (i5) then

'yields:

ﬁm mm3 [ﬁ(x){mﬂmupm(:)]“ [e‘d‘ (v)(ﬁ) {; W\* “?\1(15)

[%“’l@‘”l (B REEO1H] = [em, 1+ (RS2 m,]) an

The second term on the left-hsnd side can be put in a more convenient

1 anl- e d o

form., In view of the Theorem of Transformations of Frames, Equatrion (3.53),

we write for the linc :r momentum term:

LR B BRGNS0} ,+m(“"”}lrz""”!\ﬁ"’.‘“’]us'}
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Apply the Theorem of Rotation ol Vectors, Equation (3.62), and then again

Equation (3.53) to the first term on the right-hand sidc:

[ %kf; } {Q(S) (s‘)} p@m“] = | p® (:-')] [ P(e)(n 1

(19)
- [Q(ﬂu)]uﬁm @2&)3 e (m:)u (a)nn
and substitute Equation (19) into (18):
! . (N(®
(29 { 1R pEMY) = (RGN B9 9] 4
(20)

+ { [SL(‘;("] _[Q@)wn Q@;m]m@@)} \\rz“”"ll ®0)

from Equations (16) and (20), after introducing the definition of Equation

(13), we obtxin:

RGBT ] T HOep ™« LeQ N RPN 2L

{21)

=19 ]+ 1R (”W@( 0]- (RER ] Uy e Led)

The underlined terms are the equations of motion, Equation (1), of the

s
reference flight rotated by [(Z“)( )]

Perfowming the same operations oa the angular momentum Equation (17)
yields an equivalent equation; however, without gravitational term. Both
together are called the second perturbation cquations of a rigid body in

free flight. They are summarized below making use of the invariance of

. They are satisfied identically.
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the gravitational term; i.e,, [ [.}((,\l - [‘}l‘)‘)]

[g(l)cp(ﬂ(n] R {eﬂ(ﬂm][m;!:‘ nr)((;)m}: ‘[qﬁ]-r ((E)—[R?e}]) [f)(x)] (22)

[3(r)€1°ko)m] le n("“’]['l(?(?lllé?ml - [EMJ (23)

where ‘.El is a second order unit tensor.

DISCUSSION: The second perturbation equations determine the deviations from
‘ .

a reference £flight that has been rotated by [R(s(;) « The second

terms on the left-hand sides of Equations (22) and (23) are the correction

factors. To see the advantage of the second perturbation method, compare

Equation {7) with Equation {14)., Figure 4.1 shows the quantities involved,

[8fd]

&.(ri |

[fatp]

(R [ftr)

FIGURE 4.1 THE TWQ KINDS OF PERTURBATIONS

[Cfali contains -the aerodynamic forces due to a deviation from the rotated
reference flight only, while (.Sh] also depends on this rotation. This

" difference can be seen if [ﬂ((’nis eliminated from Equations (7) and (14):
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[8f) = Leb )+ (RS 1 -1el) U, m) (26)

A more detailed discussion of why the second perturbation method is better
suited to formulate the aerodynamic forces than the first one is given in

Section 11.4,

Equations (22) and (23) reveal best the difference between the two
perturbation methods. For applications, an alternate form of the second
perturbation equations 1s sometimes moxe convenient, It is obtained simply
() (s) }

by subtracting the reference equations of motion multiplied by Lll

from the perturbed equations of motion:

[ 8% wm) [R("("] (5 ®©)_| [ef) (L€D- [R‘“’“' )H-)(u)] (25)

[ B} ‘&)(I)} [ s) ) u ﬁU)ls\BN)] . [émal (26)

COMMENT: The second perturbation method can be considered as a generaliza-
tion of the classical small disturbance method (see Etkin (16)); While

the sacond perturbation equations are expressed in tensor form .z there-
fore valid in any coordinate system, the classical disturbance equations
hold oniy in one coordinate system, usually a stabilitf or hody system,

For example, the detinition of small disturbances for the velocities and 7

the aerodynamic forces are:
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. +5 - T4 s r s
[ eu ) Up U,,W el rLP L.
Cew}om (Vo | = [W| 3 (&M} = [Mp] ~ [M | @D
Ew W W EN N N
L ‘ - PdP L nJ" ] PJ P 3 hJ,l

vhere P and g indicate the perturbed and reference flights, respectively.
During the perturbed flight the variables are measured in the stability

coordinate syatem ]F' of the perturbed state, and during the reference

s
~ flight they are measured in the stability coozdinate system 11 of the

reference state. Because the two coordinate systems. are not the same, the

small disturbances in Equation (27) are not vector increments, but rather
the scalar differences between components measured in two different
coordinate systems, This can be a serious disadvantage if the time

derivative of Equation (27) is taken:

3 - <€ - 4%
Eu up U,
d d |v d
T L€ - < - £ 1y (28)
dt €V ) at P dat "
Ck\' .WPJ—r ..NBJ n

because it is very difficult to interpret the physical meaning of the last
time derivaiive. The only alternative is to make it vanish by restricting
the analyesis to nonaccelerated reference flights, Another disadvantage of
the classical approach lies in the effort tequire;';o think in thfee

components, Errors might result from an intuition too badly sirained,

The perturbation methods used in this report employ strictly tensorial

concepts; i.e,, invariante under allowable coordinate Eransformations. This
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possible by introducing the new concept of a rota-

i
3
1
|
f CHAPTER 4
E
E formulation was made

tional derivative to replace the time derivative. No restrictions have

to by impused on the reference flight, and the intuitional thinking

process is improved.
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5. NORMALIZATION

It i3 often possible to simplify the treatment of the equations of
motion and, at the same time, to emhrace a general class of related
problems by normalizing the variables and parameters. This normalization
process should be introduced eerly {nto the formulation of the equations
and should be uniform for all components of a vector or tensor., There
are two conflicting requirements to be satisfied when selecting the
normalizing quantities: they should be constant in time and reduce the
aerodynamic forces to the standard coefficient form, For instance, a
constant. reference flight speed usually is employed to normalize the
equations of motion, but the actual variable flight speed is used to arrive
at the aerodynamic coeffi:ients, We shall therefore introduce two normaliz-
ing systems, Following Hopkin (17) we shall define a dynamic-normalized
system for the equations of motion and a" aero-normalized system for the
aerodynamic forces,

5.1 DYNAMIC-NORMALIZED SYSTEM

Equations derived from the Euler equations of mechanics, Equations
‘4.1) and (4.2), allow three independent dimensions to be specified, In
the "ordinary system" they are mass™, lengthl, and timeT. The dynamic-
normalized system is based on Mass™, Force F, and Velocity v. The

relationships between the systems are:
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ordinary system dynamic-normalized system
M= M M= M
L vim £ ML
»E o ——
F T (1)
VM L
T = = vV T

For our particular Jdynamic-normalized equations of motion, we select
the following time-invariant quantities to define the unit scales of the

three independent dimensions

Dimension
M [N Y

! 2
m  70VYgs

Unit Scale

e

3%

TABLE 5.1 DEFINED UNIT SCALES OF THE DYNAMIC-NORMALIZED SYSTEM

where m is the vehicle's mass, S the reference area, Vg¢ the absolute
value of the steady-state velocity, and ¢ is some constant reference air

density.

In specifying three dimensions, the dynamic-normalized system is a
consistent dimensional set. By consistent we mean that the equations of
motion remain unchanged when expressed in dynamic-uncrmalized dimensions.

There is no need to carry along artificial constants,

Any other d._mension with its unit scale must be derived from the three
basic dimensions. Thus, two of the dimensions in the ordinary system must
be derived from the dynamic-normalized system as shown in Equation (1).

Their derived unit scales are
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Dimension L T
2m im

Unit Scale n?T
¢S 9V S

TABLE 5.2 DERIVED UNIT SCALES OF THE DYNAMIC-NORMALIZED SYSTEM

where we introduced the time parameter ¥ to abbreviate the time unit scale.

5.2 AERO-NORMALIZED SYSTEM

The functions expressing the aerodynsmic forces are most conveniently
formulated in the aero-normalized system. The thres independent dimensions
are specified to be lengthl,, force ¥, and velocity V. The relationships

between the ordinary and aero-normalized system are:

ordinary system acro-normalized system
M o= -‘3\1-‘-5- L =L
L = F = %&i (2)
T = —‘\"I— V = %—

and between the dynamic and aero-normalized system:

dynamic-normalized system aero-ncrmalized system
L
MV
H = EL‘ N L  J e v,
vt F
F = g F = F 3)
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The unit scales fox the independent dimensions of the aero-normalized
system are chosen such that the vaciabies in the aerodynamic functions

ussume their simplest form:

Dimension

L F v

Unit Scale n

t 1
{ . EQVRS v
TABLE 5.3 DEFINED UNIT SCALES OF THE AERO-NGRMALIZED SYSTEM

where { is some reference length and V, the absolute value of the velocity
vector, ﬁo;e that the unit scale for force and velocity are time-variant.
Therefore, aero-normalized quantities should not be used where time

derivatives must be taken, unless great care is beinsg exercised,

1f we adopt the three independent dimensions of the aero-normalized
system as the three basic dimensions, the two dimensions, M and T , of

the ordinary system are derived dimensions. Their derived unit scales are

obtained from Equation (2):

Dimension

M

Unit Scale

<in]

7 ¢St

TABLE 5.4 DERIVED UNIT SCALES OF THE AERO-MORMALIZED SYSTEM

5.3 DISCUSSION AND APPLICATION

Throughout this study we shall use the dynamic-normalized system

whenever dynamic problems arise, A horizontal bar will indicate a




CHAPTER 5 47

dynamic-normalized quantity. For instance, the Xuler equations of mechanics,

Equations (4.1) and (4.2), become:

[B0p®0) = [},]+1F) @

[B® O] = (] (5)

vhere the dynamic-normalized rotational derivative is

50 = » g® ®)
with the time parameter ? defined in Table 5.2.

Similarly, the perturbation equations (4.9), (4.10) and (4.22), (4.23)
expressed in the dynamic-normalized system receive just a bar above each
quantity. There is oue exception to this rule. The rotation tensor of
the perturbation equations contains only elements that depend on angles.
Because angles are already nondimensional quantities, the rotation tensor

is not affected by a change in the dimensional system.

The aero-normalized system will only be employed to formulate the
aerodynamic derivatives. Once the aerodynamic forces are combined with
the rate of change of linear and angular momentum, we will express all
terms in the dynamic-normalized system, A circumflex will designate an

asero-normalized quantity,

Table 5.5 summarizes the dimensions and unit scales of some important

physical quantities in the three systems.
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The relationship between the three different forms of one quantity are
derived from the requirement that the equations must be dimensionally con-

sistent, Some examples are given below:

m‘-mﬁ’-i’-sm' Q)
(s]1 = :’s',‘ [s]= u:] ®)
¢ = Im_z i 9)
§ Vs, S Ve
(o] = Vg lb] = Ve (o) (10)
[Pl = m VSS [—p} = ‘92: Vngl (?] (11)
=5 vie =1 e 1 o
, DR
lw] = _Ev_':_g_ lw] = f L] | | (13)
(2] = 22t¥e (71« § Vg et av
Iml = mVs [ml = % Va S1 i) (15)
4m‘ ey g.s S (16)
(1] = -S;Q_i— (]l = 384" Ix}

1f dynamic-normalized and aero-normalized variables are compared, two

additional parameters are introduced for convenience:
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mass parameter }A = —?LS”‘T—
- \}n
velocity parameter Vo = o
Vs

From Equations (7) through (16) we obtain:

V';\. -“/AW‘|
5] = p I'sl

t ‘—'-/.AU,L [:]

(51 = 5 W]
A ’J —
lpl = W {p]

1
A _ A’i _/_(_
LL) Vnt ]
(m] = -{—.j-z ™

E S~ .

50

a7

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)




P

e
e e e

CHAPXER 6 » 51

6, FRAME AXKES

The nodeling cf the flight dynawic problem in this report requires
an extensive use of physical and mathecatical concepts. Many of them are
defined in Chapter 3. It is particularly important that we understand

the meanings of: frame, triad, and toordinate system,

Frames are the building stones for modeling rigid body problems.

They represent physical concepts like earth frame, reference frame, body
frame, etc, Three noncollinear frame points are sufficient to determine
the position of a frame. However, many times a triad is used to represent
a frame. It is defined by a right-hand orthonormal triad of base vectors
and the base point; i.e., by four frame points. Therefore, two of the
base vectors and the base point define a frame uniquely. Frames and their
triads are physical concepts in the sense that they are invariants under
allcwable coordinate transformations. Thus, they can be cast into temsor

formalism.

In contrast, a coordinate system is not a physical concept. All it
does is to establish a one-to-one correspondence between the frame points
and the ordered set of algebraic numbers, The set is called the coordinates

of the pcint, However, knowing the coordinates of a point is not sufficfient

-to locate a point because there are an infinite number of coordinate systems

that can be associated with a particular frame, Only if we introduce another
point of fhe frame as a reference point and if we focrm the coordinate differ-
ences, can we define the relative location of the point. Thus, we acriva

at a displacement vector connecting hoth frame points. The ccordinate
differences are called the components of the displacement vector in a

particular coordinate system, The abstract collection of the components
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in all allowable coordinate systems constitutes the vector. The same

collective point of view is used to define all other vectors and tensors.

Knoving a set of components of a vector does not uniquely determine a

coordinate system., It énly fixes the zet of ccordinate systems generated ¥
by translational transformations. Thus, the location of the origin of

the coordinate system is immaterial. In effect, all points of a frame

are origins for the set of coordinate systems gererated by translation,

The geometrical picture of a Cartesian coordinate system in a three-

7

dimensional Euclidean space is modeled by three orthonormal axes. It is
this geometrical analcg that causes confusion because, intuitively, the

geometrical picture is elevated to physical reality, even though we know

. that a coordinate system is a pure mathematical concept. However, in
flight dynamic problems the notion of axes is too deeply rooted to be
dispensed with. We will, therefore, retain this term but associate it
with the physical concept of a triad. The base vectors of the triad will
be called the frame axes. There exists a particular simple component form
of the axes, the unit component form {%i , etc. The set of coordinate sys-
tems, generated by translations, that provide this form are of special

interest., They are usually meant, when we talk about a coordinate system

E associated with a frame.

To summarize, a frame isrrepresented by a triad whose base vectors are
called the frame axes. Two axes and their origin, the base point, define
the position of a frame., The coordinate systems associated with a frame
are purcly mathematical concepts. There is always one set of them in
which the axes attesin a particular simple form, In a geometrical analog

we would say that the coordinate axes of this set are parallel to the

o
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frame axes, This set is used to express the components of a vector in a

given frame.

Throughout this study we will use right-hand Cartesian coordinate
systems and right-hand orthonormal triads. The base points of all triads
coincide with the center of mass, ® , of ﬁhe Magnus rotor (MR). There are
two groups of frames: the flight mechanical frames, Table 6.1, and the
gyro-mechanical frames, Table 6.2, The sequence of rotations of the flight
mechanical frame axes is shown in Figure 6.1. It differs from that of con-
ventional airplane dynamics (see Etkin (16)) becsuse the singularity at
glide angles ¥ = t 90 degree is undesirable. An MR in transient flight
mzy perform a full loop, thus changing its glide angle 360 degree, We,
therefore, prefer to locate the ningularities at roll angles } 90 degree,

This is a better choice because, later on, the perturbation equations will

be limited to small roll angles but the glide angle will remain unrestricted,

The singularity of the sequence of the gyro-mechanical frame axes is
at 1= 0. But this is just the position of the spin axes in reference
flight, The gyro-mechanical frame axes, therefore; camnot be used to
formulate the general perturbation equations, Nonetheless, théy are useful
to discuss the gyroscopic properties of MR's and, notably, to estimate the

order of magnitude of certain terms,
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SEQUENCE OF ROTATIONS - 7!] LI *]Y¢ ]/

€ »
R =
Yo
S =
Ws
B »*
L=
N~

T o =+ = — - &4 et S =

56

s _ W
X3p*Xs3p

xs
EARTH AXES y = GLIDE ANGLE
REFERENCE AXES ¥ * YAW ANGLE
YAWING AXES ¢ * ROLL ANGLE
STABILITY AXES a ¢« ANGLE OF ATTACK
WIND AXES B = ANGLE OF SIDESLIP
BOOY AXES o = NODE ANGLE
LINE OF NODE AXES n = CONE ANGLE
NUTATION AXES { = BODY ANGLE

FIGURE 6.1 INTERSECTIONS OF THE FRAME AXIS WITH THE UNIT SPHERE
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Except for the zarth frame, we must distinguish the individual flight
mechanical frames during reference and perturbed flight. The definiticns
of the frame axes, given in Tables 6.1 and 6.2, can be applied to both
flight states except for the reference axes., For the latter, both defini-
tions are provided. Note that the following frame axes coincide during

W _& M @
” L3 "

reference flight: ~

. The nodal and nutation frame

axes of the gyro-mechanical frames are not defined for the reference flight.

A definition of the spin axis remains to be given. The spin axis of an
MR intersects the mirror plane orthonogally at the center of mass. Its
positive direction is determined by the following corkscrew rule: Pick up
an MR with your right hand such that the driving vanes offer the most
resistance against a right-handed twist with your hand. The spin axis has

then the same direction as the axial vector representing the twist.

- Figure 6.1 presents the axes as they 1n§e£aect the unit sphere. The
lines are the great circles on the sphers connecting two axes. They
carry the angles of rotation between the frame axes. These angles can
be defined either by rotation tensors or transformation matrices, We
choose to use here the transformation matrices. Associate with each frame
a coordinste system that puts the components of the system axes in the
simplest form [g], ;tc. The transformation matrices between these

coordinate systcms are given in Table 6,3.
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7. KINEMATICS

All kinematic concepts have been introduced in Chapter 3, In
particular, Equations (3.19) and (3.20) define the rotational derivatives
of tensors and Equation (3.44) the angular velocity tensor. Here we shall
concentrate on providing the formulas needed for the further development

of the equations of motion.

One method of evaluating the angular velocity is given by Equations
(3.5G) and (3.51). But usually one tries to avoid the matrix multipli-
cation and instead regards the angular velocity tensor as an axial vector
and adds vectorially the individual components along the axes of rotation,

® ) |*
As an example we shall evaluate the angular velocity vector (,u ¢ l

of the stability frame of the perturbed flight, (:) » relative to the
inertial frame, (l:) , expressed in a cocrdinate system ] ¢ associated

with 6') . Refer back to Figure 6.1 and read off:

@ @) 1% o[ x9S v @1 * we) 1Y
(w3 ), =l + [} ), LS9 ], W
To simplify the evaluation, express the last two terms in different
coordinate systems:
wed [ 60 v @) 10 R
[w9%], SR WL 0 M 1 M L M
with . a
¢ {o Y o
w"r’ “{3] = |0 [w“'("] ; L4910 - | % @
0 [* 0
e P . ¢

Carrying out the multiplications yields:
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$) d
l w\sp(ti ] ]

d
where the dot stands for the deri.vatived-,‘,_ .

(4), we get

[www}

and if we add [w

s
PN

Three more formulas are derived directly from Figure 6,1.

GIAR N
[ w9%]

[ mw]

l ) (w)(f) ]

=

(e)(s)]P

[ . .
$ + Yp sinp

hosind  + %P cos ki cosd

4« cwsd - ?P cos th sind

~ . -1‘
4

f sing

L"i‘ cos ¢ |

H

&
029 + 44 sind

i cos &
S P

1%

-

d

p

P
to Equation (5), we obtain

60

(%)

If we set ‘Z'Par 0 in Equation

&)

(6)

(7)

®

€))
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‘
0
¢ )
[T - |, (10)
0
R

For further reference, ve shall also need the time derivatives of Equations

(6) and (10):

<3
P ®) (@ s . . . .
;;[w P)(P) p Ao + A sind + 4 4 cosd (11)
fcosd ~ apd sind
. ¢P
o 1%
\J o
c%{w@:@:,],._g Ax (12)
. Lo
[

In Chapter 6 two groups of sxis systems were introduced: the flight-
mechanical and gyro-mechanical frame axes. The flight-mechanical frame
axes are used to formulate the aerodynamic forces and the equations of
motion. The purposes of introducing the gyro-mechanical frame axes are to
estabiish the conn.ecfion with the dynamics of gyroscopes and to obtain order
of magnitude estimates for certain terms in the equations of motion, Im
the following we shall derive the relationships between the flight- .
mechanical angies ¢ and A and the gyro-mechanical angles & and n ,
together with their time derivatives, This could be done via the appropri-
ate coordinate transformations. However, to avoid lengthy matrix multipli-

cations, we shall employ spherical trigonometry,

Consider the spherical triangle (x* xt\; , Xl;)of Figure 6.1 and

reproduced in Figure 7.1,
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FIGURE 7.1 SPHERICAL TRIANGLE

We read off:

sing =~ cos (90°-~n) cos (Q0° - & + 270°)

sind = Sin n cos o3

Similarly we get:
sin (90* - & =+ 210°) = ton i tan (Qo'-q)

or

ton M =~ — ¥anq sin &

62

(13)

(14)

(15) -

(16)
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The first time derivatives of Equations (14) and (16) are:

‘; - -& sinn sind «+ "[CC’SQCC’S & (17)
(1- sinly cos? )
- n o)

. _-a sinn cosncos d - sind

4'-

1 - s;nl’l Cos"b (18)

To simplify the expressions, we introduce the small-angle assumption, From
Figure 7.1 we conclude that small angles ¢ and a imply a small angle n .

With this assumption that the cone angle n is a small angle, we obtain

from Equations (14), (16), (17), and (18)

¢ =~ neosd : {19)
b =-nsind : (20)
43 - - Qé’;sinb + neos & (21)
ho= Q_éaﬁsé - qsind ‘ (22)

The cecond-cvrdar time derivatives are deduced from Equations (17) and (18),

- Again, assuming that n 1is a small angle, they become:

& = (- q_ét-b :'i_)msé -—(2.;1’6'4 vlg)sinb ’ - (23)
o= 7(.1e'>z‘F-'L‘) sind - (Lnd 4 nd) cosd (24)

Let us multiply Equation (21) by Equation (22) and Equationi (14) by Equation

{22), respectively:

$i = % ,('lz'b-z_ Q") sin2d - QQZQ cos 25 (25)
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. _ ‘ Z - 2.° . . (26

,u,.q:..z (~r(£>—rla>w522>-rm_stb) )
Squaring the Equations (19) through (22) and adding the first two and last

; two equations yields:
t '

4,2_,. ¢* = N 27)
and

. * 2 N

4‘14_4‘ ='7.22>2*'Q2 (28)
For further reference we also give the time derivatives of the cone angle
n and the node angle & for small angles 4 and 4 :

".]_ %4 4«4‘ (29)

T T Y
L bk v ad
b = ———L—0 (30)
K+ &

All these equations will be used later to estimate the order of magnitude
of certain terms. As an example, we want to show that the absolute value of
{ (Q'*g(,‘ @P‘ ] is of the order rl'b ; i.e.,

@ _ , - 31)
I w9 = 0{ga] | R (31)
From Equation (5) generate the absolute value and obtain in view of Equation
(28):

PRI . . .
l< 1B ®F = (3 41)7 = (48524 q2)" (32)
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Because the nutation rate & for common MR's is much greater than the decay

of the cone angle T+ Leeey

o{:é'»&/ ot = Io® (33)
and because 0= O implies ':(_= 0 , we receive the desired result

) ®) ~ .
llwr, ‘,Il ~ nd (34)

The time derivatives of all expressions are in real time, In later
chapters we shall often need them in dynamic-normalized time. This can be

d
achieved simply by substituting at or a circle for c% or a dot,

respectively,
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8. REFERENCE FLIGHT

1 Consider a Magnus rotor (MR) in free flight., Its most important

fiight regime is the descent in a vartical plane with horizontal spin

axis., We call this flight condition the planar glide phase. It will

serve as the reference or unperturbed flight for the stability investi-
gations in later chapters. Before deriving the equations of this refer-
ence f{light, we shall establish the conditions under which the MR is

able to perform a planar glide phase,

8.1 CONDITIONS FOR THE EXISTENCE OF A PLANAR GLIDE PHASE

The equations for the planar glide phase were formulated by Brunk (1).
They describe two translational and one rotational degrees of freedom of
an MR, It is intuitively clear that a mirror-symmetrical MR can actually
achieve a planar glide phase, provided that no external disturbances
occur, However, we shall present a rigorous proof., Before we can formu-
late this proof, we must define mirror symmetry and the planar glide phase
in mathematical terms. Let us begin by introducing the concept cf a

reflectional tensor that will lead us to the definition of mirror symmetry.

Consider a plane, P , normal to the MR's spin axis. The point of
intersection with the spin axis is ® ., We consider two sets of displace-
ment vectors. The {irst set connects the mass elements Amh ) = L,2,~;-) n
to the right of the plane P with the point B, ‘-Sue] . The right-hard
side is the side of the positive spin axis., The second set connects the
mass elements Amt" 1=1,2,-ym to the left of the plane P witl';

the point B, {-51 3] (see Figure 8,1).
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P
amy Am,
R + SPIN AXIS
! |
P

FIGURE 8.1 LOCATIONS OF MASS ELEMENTS

Let the subscript be chosen such that, if k=L , the displacement
vector [s lgl is the mirror image of [S,‘a] with respect to thc mirror plane

P . This can be expressed mathematically by a tensor [H] such that

[se] = [HIls ) @
In a body axis system, (H] has the form
6
. 10 o] :
(W1~ Jo-1 0l @)
0 0 1]

It is symmetric and orthegonal with a value det {[Hl‘ =~-1 . We will

refer to it as the reflection tensor. Any displacement vector in the

plane 7 , [sn} , is reflected into itself; i.e.,
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Uspa) = LH1Ls,q) (3)
The reflectionat tensor operates on a second-order tensor, [A] , a8
(A1 = WA WY )

IL [A] is skew-symmetric, say LQ], then an equivalent form of Equation

(4) is obtained for the axial vector [wl of LO.]

fw'] =-Iellw] (5)

To prove this we write Equation (4) in subscript notation with summatior

conve¢ntion:

i .
. . : (6)
Q00 =~ Wi S, H, 7 v
Contract the second-order tensor by multiplying both sides by E—iiq and
sum twice
\ :
N . . “ (7)

Because, from Jeffreys (13), page 72,

i Hin Bus = deb (H) Wiy &y, ®)

lJ\-(

and deb (M) = — ) , Equation (7) becomes

& 0, (9)

0.

Jwe

e =~ Hi €

The axial vectors of the skew-symmetric tensors are

oy ol )
wi =5 fie Qik } wl.‘felnsﬂhs (10)
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Therefore, we can write Equation (9) as ‘

;' = — Hiy Wy an

which is in the form of Equation (5).

DEFINITION: An MR is said to have mirror-symmetrical mass distribution if,
for every mass element Am,‘ 5 N= l,l,m syt located at f.sm] , we can find

a mass element Aml’ Amn-, 1:],‘2,...,“ located at {SQG] = ('H-usua) .

DEFINITION: An MR is said to have a mirror-symmetrical external configura-

tion if, for every surface element AA,,_ ; hs 1)2, .-ty at [Sna]

we can find a surface element AA,= 8A,.. [=12.... located at
L R) 7 2 } ’%

[sea] = (H1llseel.

From the first definition, two properties of the mirror-symmetrical MR
follow immediately: (i) its center of mass is in the mirror plane P, and
(ii) 1its moment-nf-inevtia tensor is invariant under a reflectional tensor

operation; i.e,,
[1®7 = (W11 T® i) (12)

To prove Equation (12), we express the moment-of-inertia tensor by its

definition:

Lhitr®edtn] = S ami s, Jlsielluilelluy -
- ’ (13)
-$ am; LH L s;01lsig) [T
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where S ) l:: 1,‘2,--- ;U is the summation of sufficiently small mass
4

elements over the total MR. Let us separate the second term in Equation
(13) into a right-hand contribution, % H k= 1»2)' ‘s N and a left-hand

. i
contribucton,% 5 1.1)2’...) n with n ,Zu..

S am; (W )lsigllsig W] - S am, (15,0 llspalIRT +

(14)
+ SL AVN{ (H"SQQ“[SQG:\T[H“F

Because the MR posgesses mirror-symmetrical mass distribution, Equation (1)

and its inverse [Sna“' [_H][slel holds for all N = 1,2,, e g

Thus, we write Equation (1&4)

S tim; W] Usia s o TIHT = S 8, Usyells,al +

(15)

+§ A“‘L Lsue][sner

Furthermore, QAw, =« Aw g and é - S{ . Therefore,

gﬁmi(rH“Sifs]iS{Q}rin *§ Owm; [S(B\LSéB]T 7 (16)

Substituting Equation {16) into Equation {13) delivers thc desired preof:

T = S g UsiaT szl -Lsiallsial | = 126 o7

Let us define now what we mean by planar glide phase.

DEFINITION: An MR performs a planar glide phase if three conditions are

satisfied throughcut the flight:
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XTI e
[la(?m]flﬁmp(ﬁ)m]= 0 o 19)

[ P(‘i) ® W (0@,3(1)} =0 , (20)

THEOREM., The necessary and sufficient conditione for the existence of a
planar glide phase are:

1. The MR possesses mirror symmetry with respect to its external
geonetry and the moment of inertia tensor satisfies Equation (12).

2., Tha perturbations during flight are limited to forces whose
reaultaﬁt vectors lie in the vertical plane and to horizontal moment
vectors,

3. The initial conditions are:

2. Mirror plane is vertical; i.e,, the gravitational force is

contained in the plane:

INE (Rl (21)

b. The linear momentum vector is contained in a vertical plane:

{ P(‘,’.’(”(DH = [wil p(?zm (o) ] (22)
¢, The angular momentum vector is horizontal:
[ @ (0)) = - (11714 ¥9 (0)] (23)
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PROOF: We shall first give the initial orientation of the aerodynamic
force and moment, As outlined in Section 11.3, the aerodynamic force

must satisfy the relationship

Uo]= L] a2y i O] lm(""”(oﬂ,lol;f” OV

(24)

= (W] Lad Mgy Ru M Lsiq0r), Mtw("“"w\l,(H.]tﬁn&“ i)

where H.‘ and Q,t are the Mach number and the Reynolds number, respectively.
8\(x A (1)

L wU( ) (0‘] and [.Ugh(* (0) ] are the aero-normalized angular and

linear veincities, respectively, of the MR relative to an inertial frame at

time t=0.
Because the surface is mirror symmetrical, we have:

Lsig (0] = LR]Ls;q (0] | (25)

From Equation (22):
(r) ” (¢) '
[/Ug._ M) = Wil (0] (26)
and from Equation (23) with Equation (12):
A
L o®D ()] = - 11l 099 (] @)
Therefore, Equation (24) has the form:

[fa@] = (W] Lfa(o)) (28)

A similar procedure leads to:

[ma 0] = = LRI m, (0)] * - (29)
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This means that initially the aerodynamic force is in a vertical planec

and the aerodynamic moment is horizontal.

Now we shall show that Equations (18) through (20) are satisfied at += 0,
Equation (18) is automatically satisfied by Condition 3¢ of the theorem.

Using the equation of motion, Equation (4.1), and premultiplying by
T
8) (&
[ lB (h)() (0)] gives:

L8P 0T (B9 ) - (4 V)T, 0014 14,89 mfu}x (30)

The right-hand side is zero because [L(O‘] and q}\ are in a vertical
plane, Therefore, Equation (19) is algo satisfied, Also, premultiply

8
Equation (4.2) by [P ®) &) (0)

p¥¥ @1 185 £,89] = L oQO () T (1m, (o)) &

] and obtain

This is again zero, and Equation (20) is therefore alsc satisfied., Summeriz-

ing, we have at the initial time +=0 :

1,9 ()] lfy) = 0 ¢2)

[ £, ()] 18 991 - ¢ 2
[ p®9 (0117 1BE 4,8 <0

which agrees with Equations (18) through (20). To arrive at these equations,

(34)

we employed Conditions (1) and (3) of the theorem. It can easily be verified
that, if any of these conditions is violated, then Equations (32) through
(34) do not hold and, by definition, the MR is not in a planar glide phase
initially, Therefore, for £+~ 0 , Conditions (1) and (3) are the necessaxy

and suf_ficient: conditions for a planar glide phase.




T

CHAPTER 8 74

To extend the reasoniny to positive times, we interpret the Equations
(32) through (34) as stating that, after a time increment * , the linear
momentum vector is still in the vertical plane and the angular momentum
vector remains horizontal: Now we can again show that Equations (18)
through (20) are satisfied for the time =5t However, because
pertufbations may be acting during the time increment, we must impose
Condition (2) of the theorem, These admissible perturbations do not affect
the restrictions on the linear and angular momentum vectors, But any other
perturbation would force the linear momentum out of the vertical plane and/
or the angular momentum from its horizontal attitude., Therefore, Conditions
(1) through (3) are the necessary and sufficient conditions for a planar
glide phase at t= 8t . This process can be rapeated for the next time

increment, and so on, Thus, the theorem is proved,

8.2 EQUATIONS OF MOTION

We shall formulate the reference equations of motion in a coordinate

)
system associated with the stability frame (ﬁ) during reference flight

(see Table 6.1), From Equations (5.4) and (5.5), we obtain:

o,

AP T W L W TR Rl o

i ! d ———
j‘_;. [ 1 G(t’?(:\]: L1 _Q(i)(n): Us(r?.)(ﬂ}u = Lm0l (36)

From Section 8.1, we know Lhat the linear momentum and the aerodynamic and

gravitational forcesremain in the vertical plane; i.e.,
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P@)(ﬂl lH‘nP(‘»(ﬂl (37)
L] = W1Lh o) 38)
n = [HYIL (39)
1, 1 LW (5,
and that the angular momentum and aerodynamic moment remain horizontal; i.e,,
@)m] - w1tk (e)(t)] (40)
(g ] = =LH1lm, ()] 1)
With the reflection tensor
<
o 1 0 0
ful, =lo -1 o (42)
0 0 1 .

Equations (37) through (41} require that some of the components in Equations

(35) and (36) must be zero. We obtain the following result:

r oo ¢ F— < - -d
= m
0 D + ;—‘3—; 0 43)
- —_— = Vs
~W Y, {as (n) % ws ¥,
b Jp- o “n - “R
- - <
r 0 0
I6 | = (n)
‘1 xR ma;_ %4)
)}
R J, L 0 e
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where V. is the flight speed, LT),‘ the spin rate about the spin axis,

ij the moment of inertia about the spin axis, and Y; the glide angle.
Equation (43) is the linear momentum equation with the first compoment
along the flight path and the third component normal to it, The last terms

on the right-hand side are the gravitational force components. The angular

momentum Equation (44) consists of the component about the spin axis only.

We turn now to the determination of the aetodynaﬁic forces, In
Chapter 11, Equations (11.13) and (11.14), we shall show that the follow-

ing functional relationships exist:

T ot \ g ¢ Ny
[‘-a hUl = Vh Lc;{HR, QR) [b“("-\lk ) le:Ku \;‘ ) {, bg:ﬂ lyq\} 43)

_ v
[w«“(n‘)] = -}‘5 (Ch { SAME DEPenDeEnceE |1 %6)
‘where we made the ASSUMPTION:

I w(" ® | << | wm" \  wn

i.e., the maximum rate of change of glide angle is less than one percent of

the spin rate. Furthermore, by definition, we have
r < '
A

A 7 g lv"- [1
[D,sfﬂi,,_ =10 | = |0 (48)
o 0
[ 3 r
Let
- <¥
0
B
[w@(s') = | i (49)
0
— 4 x

o
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.
d 3 8
h}
and remember that [bu(’\\j,l'""' [T] A [ bk‘lh)l n contains the only
variable an_ . Then we can simplify the functional relationship in

Equations (45) and (45).

{‘(-aml = V:[CF{ H..)Qn,o(“ t:J, \S] (50)
- '\;2
[wﬁ(n‘l - —ﬁ—lcr\{ﬁu,&, dn_, d)n\] (51)

The 1ift and drag coefficients are introduced by the following definition:

- 1s - _ e
db Cr‘(,l)
0 = |0 (52)
L C'g (ﬁ—)

L ‘R - ) dn

The spin torgque coefficient is written as
1¢ - ~g

[ 0 0
Ay | = Gy, (0 o (53)
0 0

- p 'l - -~ R

Experimental evidence justifies the following simplified functional

forms for the coefficients:
CD = co{ Mn, Qn,, O‘us (54)
A
,CL = CLG { M, Qn, ohn & Wy (55)
) A
dH - ,CH‘ k H’l) Q’\)d’tl! + dea){ Hu)nn) dg_s Wa (56)
v;here C,, C‘_’ C"a :C

y —Had
Equations (54) through (56) into Equations (43) and (44), and convert all

must be determined experimentally. Substitute
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aervo-normalized quantities into dynamic-normalized terms, The final

result is:
v 52 O
Vfl == - CD Vn - —V—ss% sin x’l (57)
3 L A v
" M T Vss% Va "
L 1 = 1l g - .
(O =}7f}vn Cr, + 7= Vn CHA& o, (59)

where we used the previously introduced assumption that the rate of change

of glide angle is much smaller (<1%4) thau the spin rate.

Vi,
the flight velocity \'l,‘_ and the glide angle ¥, are the polar coordinates

Yn , and &')n are the dependent variables, The absolute value of

—— =]
of the velocity vector. The dynamic-normalized spin rate O, = A, is
- T OA
related to the tip-speed ratio via w,t=}AV,tw,‘ . The aerodynamic co-
efficients depend implicitly on My , Ra , and d‘u’ For a discussion of

the equations refer to Section 12,1,
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9. LINEAR MOMENTUM

In this chapter we shall derive the equations that describe the partur-
bations of the linear momentum of an MR frcm tiie reference glide phase. The

dynamic-normalized form of the Perturbation Equation (4.25) will be used:

(5001 8287 71 = (R +{Le)-R981} (F, ]

Our goal is to express the differential equations in a coordinate

¢
system associated with the perturbed stability frame (P) .

To begin with, let us concentrate on the first term in Equation {1).
Equations (5.10) and (5.11) show that the linear momentum and linear

velocity have the same value in a dynamic-normalized system, Therefore,
[0 Q%] = [ B bg ™) @)

For ease of calculation, we perform a transformation of frames from (T)

{w)

to the wind frame P in a perturbed state:

[ 8@ m],[B(u) ("]*rlﬂ(““‘)]{u.,m]'r[ “““llug:”l(s)

Furchermore, introduce the two convenient coordinate systems ]‘o and ]P :

d
3%y 15 = 1y e (& Loy 13 O R L

where by definifion:

Vr
lu, Nl ] )
o
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ASSUMPTION l: Let the angles <L,A+) /5 be small enough that the cosine of

the angle can be replaced by one and the sine by the angle itself.

With this assumption, Equation (4) ca: be written out using the

corrcsponding relationghips derived in Chapters 6 and 7:

'-_i-_’ [ - o - Tg
Gp - (B ik - %) Tpp
8%, ‘”] =1 Vop+(Bani-4¥,) Up (6)
’XPVP+(A-‘4YP-+¢)VP(3-¢J\VPJ
- P
The second term on the left-hand gide of Equation (1) becomes, if

4
expressed in the ]r-coordina!:e system,

4 Lﬁ*,:@l’j,a{rx,ntn@*‘) TZCTEE 1,4%“’#"“’1 )

which is the left-hand side of Equation (8.35). Both equations combined

yield the perturbation of the linear momentum:

-

g
S 5\:—((? + 1= 4% )T ]
Wp -t (%)] 5 (w]l’ r(*ﬂ(***% V)0 @
| -(x,V,,~m,(\+{4x',+¢)v,;s-++vj
L

P
where oV is the perturbation of the dynamic-normalized absolute value of

the flight velocity, defined by
8V = Vp - Vp (9)
and its time derivative

(10)

<:lo

=V, -
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- = 2
ASSUMPTION 2: Let dV <<\, 8V << Vo . This is well juscified because
the angles ¢ s Ak , and [S are small, and, therefore, disturbances will
have a small effect on the change and rate of change of the total flight

veloeity,

Of particular interest for the further development is the second
equation in Equation (8)., Let us impose Asgumption 2 and show that the

® -
term 4’» YP Vn can be neglected; i.e.,

tl¢*°{,, W << Nl AM | 1)

To do that we convert Equation (11) into gyro-mechanical quantities using

the Equations (7.19) and (7.22):

“ir'l cos & | << ll-'LZ;ccsb-v‘is:nbM 12)

For all MR's the rate of change of cone angle l.i_ is much smaller than the
o -
nutation rate & ; i.e.

ol8 /7 = ot (13)

Therefore, even for a small cone angle N , we can replace Equation (12) for

all practical purposes by

i i‘,‘o rl(osb B« rlZ; cos S| (14)

and, thereafore

I ﬁ, N o2< K& o (15)

® = .
vhich says that, for the term ¢‘f’ V._ tc be neglected, the rate of change

of gli;de“angle must be much smaller than the nutation rate, This is certainly

satisfied (U{8/§P$ 2 lot) .
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The same arguments alse lead to a simplification of the first and third

equation in Equation (8). Summarizing we get:

[%("p(e)m Qw&] {%‘"P““"lp at (WM + AV (16)

where

&Y = ¥p - Y @

is the perturbation rate of the glide angle. The desitred form of the pertur-
bation equation is finally obtained by substituting Equation (16) into
Equation (1) and expressing the last term of Equation (1) in the ]‘P -coor-
dinate system

- ’ Ts - s
8V = (B4 g )Vap -8Y cos¥

:_I (\71(,{5) + :J\ Vr = lel‘« _\'2:' *S‘MY}-&QND&Yu (18)
L‘S? Vu +($(s'¢q.ﬂ‘)\7n ’STQ‘V\Y}_
dp . S e

The left-hand side represents the perturbations of the time rate of change

of lirear momentum froﬁ the reference flight, The first and third components
are cxpressed in [light direction and normal to it in a vertical plane,
respectively, They are nonlinear in (5,4\ and {5 . The second component
gives the time rate of change of linear mmentu;n along the spin axis. It

is linear in Ah and {3 , and will be of major interest in the sequel, The
terms on the right-hand are the perturbatioas of the aerodynamic forces and

the gravitatiopal contributions.
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10, ANGULAR MOMENTUM

We shall derive the equations that describe the perturbations of the
angular momentum of an MR from the reference glide phase. We begin with

the dynamic-normalized form of Equation (4,23)

(DY LI P]+ (£ 290] 091 O] = (e m,) &

Before converting to component form, we will show that Equation (i) can be
simplified considerably by comparing the order of magnitudes of individual
terms, Again, as in Chapter 9, we shall assume that é , q\ , /5 are small

angles. Then, because of Equation (7.27), the cone angle IL is also small.

10.1 SIMPLIFICATIONS

SIMPLIFICATION 1: The major contribution to the perturbation of the angular

5
velocity le o ] comes from the rotation of the frame (P) relative to
(%) ; l.e., the nutation rate is greater than the time rate of change of

glide angle, Thkis intuitively leads to the approximation:

[Cw(d)(n] ~ Lw(s‘)(.n)] @)

JUSTIFICATION: From definition Equation (4.13)

PRI w(;-:ri(n]_[ﬁ(?(f]][ w(";mklw“f‘?] w‘;u:)h(&][ mw (&)

where the individual terms have the following order of magnitude




.
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" Lgf}@f; = G{z,rl‘ (see Equation (7.34))
1e] -[R@f‘)@]" = 0’{1k (see Table 6.3)
(4)
I u)(“,?(t) W = C {?’,\\ (see Equation (7.7))
“ L\)Lr) ‘S,Z “ = U{ J?k (see Equation (7.8))

Equation (2) is justified if

1@ »lhw‘“’"’] (le]-1=¥E) [L¥E] |

”~~

5)

and it is certainly also justified if we can show that

I w(‘r,"‘"z > w“'"" I+ hle)-[REQ TN WO

Expressed in order of magnitudes:

1O {n& 41 5> Kok + RO {ni AL )

The maximum time rate of change of glide augle r,,_ and its maximum
perturbation 5‘( are of the same order of magnitude. Furthermore , SY
decreases as the magnitude of the disturbance decreases. We can therefoxe
let the last term of Equation (7) be representative for the order of magni-
tude of the right-hand side of Equation (7). Because the rate of change of

L
glide angle, X"_\ is much smaller than the nutation rate; i.e.,
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o{9d) _ oldl _ 2 o

cy{'li;& 0'{itmg -

Equation (7) is satisfied, and, thus, Equation (2) is justified.

SIMPLIFICATION 2: Equation (1) can be reduced to: -

(2% £,8°1-(REDI(BY £,99] = (cm,) o

JUSTIFICATION: Introduce Simplification 1 into Equation (1) and refer the

R)‘
rotationa. derivative to the (P -frame, using the Theorem of Transforma-

.....

tion of Frames, Equation (3.53):

(B9 SOBATNet P LQTEURYT 14 E®1=(em] a0

The last two terms of Equation (10) have the following orders of magnitude

MHREVULEDN = 6411 01 o 1LY

(11)
I 1R 1L B = 018qh oda} o] 1 2 EEN}
Beéause
(&) (s
I €q "u& olal = 1ot a2

v {mn ICEII 1%

the aecond term on the left-hand side of Equation (10) can be neglected.

Suhstitute Equation (4.12) into Equaﬁion (10)
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[E]ﬁﬁ]'{[@(m%mm Qs)(r; )1+[QLR)($)][RL¢\\4!1[ (s}(n]} 3 m,) 3

This can be brought into the form of Equation (9) if we first apply the

Theorem of Transformation of Frames to the first term in the braces,

generating 9‘?

&(i) - 9(:) .

and then the Theorem of Rotation of Vectors to shift to

SIMPLIFICATION 3:

Equation (9) can be further reduced to:

L5® 199 1- [REOUBY L9991 = (em,)

(14)

JUSTIFICATION: Let

(e)(:)} u (e) le&""“] [I @) ]‘ @ml i wtn)(t\]‘) 1L %Xn)]*u \nm 15)

[ 156;}&)1'5 [IB@)]L wﬁe)(t) @) ([wb)(f)] *[w(s;)(t)]‘);u (9)@)] +u(1)m 16)

Grn

3
and substitute into Equation (9), recalling that (‘ ,L"’»\

(‘é{;} 1;(6(}'@(:)] (4)('1) ][B(B) IB(I;)([?] _d%@ 1 ﬂs)m] [Q(f)‘ﬁ)“%ual(u\ul [tm ](1/)

If we can show that, on the left-hand side, the last two terms are small
compared with the first two terms, then Equation (14) is justified. Abbre-
viated, we have to prove that

hall>s il (18)

s

where || @ || is expressed most conveniently in a -Jn coordinate system:

Ini=%04 (R)m] [R® té)]*ol (L (n)mJ +[_O_(n)(m] f (rdm] | o
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@R ] i (p.)(r)] '

The last term is zero, because [w is parallel to l_

Therefore, the order of magnitude of ‘B“ is

sl = ¢, 5%} 4 . (20)

The first two terms are expressed in a ](’ coordinate system:

AN =I5L B0E - S 1e WR[BW L O®E |

with the order of magnitudes

VAl = 10 LT 8xy + 0 {nE T, dp ) 22)

where { is the angle of attack and st the dynamic-normalized moment of

inertia about the spin axis.

Equation (18) is proven if we can show that

- o . - _bo = o .
01T, nddy |- 04§, ax | 01T, %) @3)
Yo% '} +
Os

The perturbation of the angular spin acceleration, Sol , depends on the
magnitude of the disturbance. It usually does not exceed 103 rad/dant? and

° o
decreases with decreasing disturbance. In contrast with this, 6 {bd‘a'&-’

= 5 x 10° rad/dnt2. Thus, it remains to be shown that

U‘HW-Z;JP} > G{]‘:?S?‘; | (24)

This is satisfied even for very small nutation angles rl » because

LA
ols¥y ~

(25)

g -
and, if tlr O , then S must also be zero. This completes the justification

_of Equation (14),
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DISCUSSYON: Equation (14) will be used for further evaluation of the angular
momentum, Its form is similar to Equation (4.26). However, it has some
important simplifying features: (i) the rotational derivatives are refexred
to the reference frame and ot to the inertial frame, and (ii) the total
angular momentum is calculated relative to the reference frame; i.e., the
contribution of the rotation between the reference frame and the inertial
frame is neglected. These simplifications are possible because of the high
angular spin momentum inherent in an MR, A somewhat less convenient, yet

more elegant, form can be found by proceeding in a similar faskion:

DR 46771 - (REDUBE 1,8 D1- Lem,) @

QA n
G ) . -
n is replaced by {I} , we arrive at Equation (4.26). This means

that the disturbance of the rate of change of the angular momentum of an
MR can be calculated as if the reference frame of the reference flight
were an inertial system, Equation (14) goes even farther, permitting tﬁe
reference frame of the perturbed flight to be consideredras the-inertial
frame for calculating the rate of change of angular momentum of the

perturbed MR.

10.2 EQUATIONS IN COMPONENT FORM

We shall express the rate of change of-angular momentum in a coordi-
nate system associated with the stability frame during perturbed flight,
Before writing out the components, let us cast the moment of inertia -

tensor into a special form most suitable for [urther discussion,
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Because the mass distribution of an MR is assumed to be mirror-
symmetrical, the spin axis is always a principal moment-of-inertia axis.
Some MR's have an inertia ellipsoid that is circular with reference to the
spin axis; i.e., they have an inertia spheroid. However, others (e.g.,
wing rotors, see Boehler (3)) have noncircular or triaxial inertia
ellipsoids., To treat both cases most easily, we separate the inertia
ellipscid into a mean spheroid and a perturbation ellipsoid. Correspond-

ingly, we write the moment-of-inertia tensor during reference flight as

[1,81= 110 §) + 1 a1, @) 1)

and during perturbed flight as

[IB(M} - lI cir (0)} [ AT (\;)1 (28)

To show the advantage of this formulatior, let us express the moment of

inertis tensor

8

11,215 =

0
) (29)
Tap '¢ :

c o H
o o

e

in a 1? -coordinate system. After performing the proper transformations

and introducing the double angle Zdr, we obtain:

- 19 _ . g
1UsL) 0 0 osid, 0 sinfop
©® \
[Ie P}P 0 I, 0 +z(13-11) 0 0 0 (30)
0 o 7'.(I|*I3) siano(P 0 COsQol‘s
] of - ’ - e
Ideatify the first term as the mean circular moment of inertia tensor

( T cir (B)

& p -\r and the second term as the perturbation inertia temsor
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1 @
B [’ 1(

and therefore maintains the first term only. For a triaxial inertia ellip-

An MR with circular or triangular cross-section has 13-‘11

soid and high aspect ratio: IS"\\" _[1 , and the second term becomes small

compared with the first term, Furthermore, we can regard the first term

as that part of the moment-of-inertia temsor that is time-indeperdent if
g

expressed in a ]r-coordinate system, The time derivative with respect to

the ] - coordinate system is obtained from the second term:

s
- -
sin 2O(P 0 a:sZol!;

2lar (‘"]P Bo(Iy-T,) | 0 0 0O (1)
CoszalP O "SinzdP

L -
P
To evaluate Equation (14), we insert the dynamic-normalized form of
s
Equations (27) and (28) and express the first term in a 3? -coordinate

)

system and the second term in a ]“ - coordinate system. The resclt is

cu(s) rd*l (g)(n) " [ :\1 )@.)]

A [Id'(B) (s}&t\] +

P ‘5??

s4flor® L "‘“‘l +ar, 24 e A ST ["’"‘} 32)

s e ettt

9 cw(ﬁ) 3 - d
LA EOP 41 09F, — Tem,l]

where we used the facts that

8¢ 5~ ¢4
[T]M'LRQ?(‘:]“ - [E]P, ’ (33)
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and
sT O TE (LY - (o 2

which follews from the particular form of [AIBQ:_) ]i as ohtained by replac-
ing P by X everywhere in Equation (30). The first and last lines in Equation
(32) are the contributions of the circular part of the inertia ellipsoid,
while the second line takes the deviations into consideration. For an MR

with an inertia spheroid, the second line is, of course, zero.

To write out the components, we substitute Equations (30) and (31),
and the proper equations from Chapter 7 into Equation (32). Assuming small

angles ¢, thy 4 and abbreviating

-zl (ffs"’—I") = T ; ZL‘ (f;“‘il) = A:i ; Tl"f\} (35)

we obtain, in view of Equation (8.44):
i .8
-0 - ° = = © °
+{—I,aLP + (1—1\}‘,4\4»& A

Ip
: ($+2¢P¢)sin2¢‘, + {-3;-& (Q&P +A{°~¢)Ax« Ecos&xr.\

L{a; ‘(ZJP*‘F‘H‘I‘k sinﬂo(r +(A‘i:+£c2r$ )Cosfolp 'p(36>

- s
o |
- 00 - , é
0
L d P
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The quantities in Equation (36) have been grouped so that the terms contain-

-] L]
ing o(’, can be compared with the terms of Mﬁ" .

SIMPLICATION 4: || ‘?"4’“ << || D{P I i.e., terms with A}o\¢ can be

neglected,

JUSTIFICATION: From Equation (7.26), we have

o l 2 0 2 o ° A
A{KP"E-{“Q &-YL 660626—7.'13\»\ 2&\‘ G7)
Therefore, the ovrder of magnitude is

0{he) = 08} @)

The ratio between spin rate and nutation rate is approximstely
© Y - -
a(r,/& % I/I} (39)

i.e., greater than one for most MR's.

Therefore,
O lapl _ olal _ O’l-/‘?& > ot .

olbel  O4gEY ol ]
and Simflicacion 4 is justified.

©

. o -
ASSUMPTION: Let OLF,Qgc{n . This is well justified because, by Azsump-
tion 1, Chapter 9, the deviztion /3 from the reference flight velccity is

limited to small angles. 7 :

Introduce Simnlification &4 and this Assumption into Equation (36) and

use the definition
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Sol = 52’(,- ol 1)

Then the equations assume the form

) .4

~00 = © o

¥ 60 .0 o A
TE-Tye 4 Ul + 20 5in 2tp - (Lot Ycos ok

P aa

T.}(So"&ﬁ@&&) +07 |{ 4\2‘ ‘;1) Sm-zﬂp "‘24‘4; os 2"[’ ‘-"[Chn‘): “

=09 = e ¢ 8 A0 °oe
The +Tydud | ($-Leuih)sinZop+ Ui+ Supindy)
They are called roll, pitch, and yaw equations. The terms of the perturba-

tion ellipsoid in the roll und yaw equation are strikingly symmetrical.

This suggests the following theorem,

THEOREM: Consider an MR w;th a triaxial inertia ellipsoid that performs a
perturbed flight along a planar reference trajectory., Assume angles 4>,
A {5 are small, Let the inertia ellipsoid be decomposed into mean
circular and perturbation ellipsoids, as shown in Equation (30). Then the

rate of change of angular nomentum calculated from the perturbation ellip-

soid vanishes in the roll and yaw equations.

PROOF: Multiply the rell «yuation by t and the yaw equation by -1 and add:

Tl oid) +iTyda oo id) + {EUR« L84 2400 169 simdap +
’ (43)

AT |- G 18+ L2k, (K + 18} cos S = 1 Em ~ Evmg,

Abbreviate this equation:

IT +i‘f\a_bz,,‘f‘ + AT (asinlup +beosItp ) = i';"-‘;x’ E—v:a% (44)
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where T is the complex orientation angle used in missile dynamics (see

Etkin (16)). The terms of the perturbation ellipsoid can be combined into

one expression:

AT Vals ol sin (Zd', + ton 2) (45)

Qlo

But, because 0=-tb, the square root in Equation (45) is zero. Therefore,

Equation (44) reduces to

—— ede——

- 00 - [-Y ) B
This completes the proof.

Similarly, tae contribution of the perturbation ellipsoid to the pitch
equation can be estimated by combining the two terms of AL . We obtain

for the pitch equation in Equation (42):

f\’(sz'(';f:#-tﬁa;\“#Ai(k‘:z+&?)Siﬂ(de+X)t é—v?al (47)7

ith % as a phase factor, The order of magnitude of the perturbation

ellipsoid is based on Equation (7,28):

oAt (;Fh&t) $in (9“°‘P+l“ = 0 ,ﬁ 'il A%\ (8)

This is best compared with the last term of the spheroid (see Equation

(7.25)):

— o O _ _}_ l'l\ (49)
OAT 4ié) = OLT 6 |
Even thcugh the value of Equation (48) is of the same order as that of

Equation (49), the contribution of the perturbation ellipsoid follows a
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sine wave with twice the spin frequency. Therefore, its net effect is zero

for all practicel purposes.

With this additional information, we can put the angular momentum

equations into their final form:

- <

oo

-— - L [ -1
I$ - IL}Q(" ).}«

i}u&"ﬁu M+ i) = lemT,

50
0 (50)

- 00 - [

[_I 4‘ + Il’ KAr $
DISCUSSION: The assumption of- ;mf;ll angles & , Mo, (5 is the only major
assumption that Equation (50) is based on. The other assumptions and
simplifications are a consequence of either small angles or the high
angular spin momentum., They are stated separately to clarify the exposi-
tion. However, note /that we did not assume that the perturbation ellipsoid
is small compared with the mean spheroid. Therefore, Equation (50) holds
for any type of MR. Tne left-hand sides of the roll and yaw equations

are linear in the perturbation variables ¢ and th with a time-dependent
parameter o?,, . <'1'hey are décéupled from the pitch equgtion. The pitch

equation is nonlinear.
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1. AERODYNAMIC FORCES

In order to treat the aerodynamics of MR's from a general viewpoint,
we shall employ a tensor formulation of the aerodynamic coefficients,
The coefficients are expanded into a Taylor series, yielding the aero-
dynamic derivatives. Some of the derivatives are zero because the MR's
external configuration is mirror symmetrical. A theorem will be derived
that gives a quick answer as to which derivative of arbitrary order exists

and which has to be zero.

11.1 FUNCTIONAL RELATIONSHIES

ASSERTIONS :

The aerodynamic forces depend on the following quantities (see, for
instance, Hopkin (17)):

a, External form (shape, roughness) of MR

S( Size of MR, represented by reference length 4

c. Properties of the air: pressure P density § , viscosity ¥

d. Position and motion of the MR with respect to the unperturbed air.
Three well justilied assumptions will be made:

ASSUMPTIONS :

1, The parameterg in Assertions a and b are constant for a particular

" flight of a particular MR,

Justification: Because we are mostly interested in analyzing the

stability of MR's, we do not consider effects of moving control

surfaces or aeroelastic derflections,
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; 2. The aercdynamic forces depeund -only on the linear and angular
velocities of the MR with respect to air and not on the _
accelerations.

Justificatioun: This assumption is usually not justified in air-

plane aerodynamics., However, as Brunk (1) pointed out, the
acceleration of bodies without 1lifting surfaces has only a small
effect on the aerodynamic forces. So far, no experimental ..vidence
has been- found that contradicts this assumption.

3. The air is assumed tc be at rest or in uniform rectilinear motion
with respect to the inertial frame,
Justification: It is too difficult to analyze the dynamics of a
flight vehicle subjected to arbitrary wind conditions. Therefore,
this assumption is commonly made. It yields satisfactory approxi-

mations, provided the air is not too turbulent,

From the assertions and assumptions, we shall derive the functional
depe;dence of the aerodynamic forces, To express Assertion d in mathematical
form, let the frame @R) represent the air, idealized by Assumption 3, and
let frame (@) symbolize the MR. Then, ;ccording to Section 3.2, the
position of the MR is given by the triad of base vectors [b“li k*l,lﬂ .
Note also, that by Equation (3,11), the base vectors [k)k] are related to

some base vectors, [lik], , of frame CA) through the rotation tensor

i r{QSMA\] ; namely,

2k T

T (o 1= IR®%][a,] | w=1,2,3 )

)

The motion of the MR relative to the air is determined by the linear

velocity (see Equation (3.34)) of the center-of-mass B :
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L) = [B®xq, ) @)

and the angular velocity (see Equation (3.44))

[ -Q(mm} - [ HW n @A) ][Q(B\(M]T 3)

From Assertions a through d we establish the following relationship of

the aerodynamic force:

[f:7 = Uf ] porm, size (1) py 4, v, [ Q@@ [ ®11] @)

Dimensional analysis and, in particular, the T -ttasorem permit us to
eliminate the explicit dependence of the function {1 from three of its
variables. We choose to absorb the reference length { , the air density e,

and the absolute value of the velocity “ DQU\“, V . Ve obtain:

[fa1= SVZIQ[,H { rorMF acToRS, M, R, Lb, ], % [w@)m\,% @)1

For geometrically similar MR's, the form factors are the same. Furthermore,
1 1

£~ can be replaced by any other characteristic area, like ‘igr b , where

b is the span of the MR, Introducing the notation for aero-normalized

quantities of Chapter 5.2, we caa write Equation (5) as:

A N .
)= £V'e U Dnep, L, 1, 1® 9] Lo 1) ©

The aerodynamic moment referred to the center of mass B bhas the same
functional form., Dynamic-normalize the ferce and moment equations and
!

introduce d; , CH as the aerodynamic force and moment coefficients to

obtain:
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[Fa] vl eAmr, b L (B’““] lfo Wil )
—. ¥ A@:s)m N 8
Lmad = 5 L, R, o], L™, Log Y ®

These two equations describe the aerodynamics of geometrically similar

MR's.

11,2 TAYLOR SERIES EXPANSION

The perturbation Equations (4.22) and (4.23) or (4.25) and (4.26)
require the aerodynamics to be expressed as perturbations defined by

Equations (4.14) and (4.15). Their dynamic-noxmalized form is:

[c}ul - Lfatp) (M- lQWﬂ][@.(h\] | ©
lem,] = [maip)] —‘LF‘L"B)M\M (n] (10)

The aerodynamic functions or the right are evaluated from Equations (7)

and (8). Because Equations (7) and (8) are valid for any flight trajectory,

they also determine the aerodynamics of the reference fli,lit and the perturbed

flight, We need only introduce the proper notation to distinguish each case:

[{.a(r))] V e (p)] V’, lC' {HP’RI’){b () )] [w('”(ﬂ\“ ‘)W“D(A)_M(u)

L@)k%lc},(mb%{CN{HF,RP,M[A][ “""‘H (”“’l o L*‘l\l“”
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and

A
fa”‘“ v [c: )= V {m} L] [w(a)w] (e)(A\ ‘Dgnml\} 13

— . Un N g "o oW
Lol L (n\] L1 Mo 2 o) 108 [0 [0 1) a0
where we have separated the angular velocity into two parts:
A A A
(8) &) - (@) t,.08) (&) (15)
LLO P ] [ UD P P ] +>~ UJ P ]
A . Ah3($) A
(w“,?*"‘] -l . | &) (16)

The varjables of the perturbed and unperturbed flights are related through

&V = Vp - Vp 7 (17)
M= M, - Mg (18)
SR = Rp~-Ry ' (19)
Leb,) = [bu (pV) - IR @)6’] lb, 0]}, w«=1,2,3 (20)
[Cw“”“‘} - [wkﬁ) (5‘)1 [Q_(S‘) @©) ]lw‘i"?\‘ ] 21)
[&,GL“)(M} = [(4')’*(?@} - lfl(? @,,‘ \[LGW,,W*\] (22)
(€61 = Loy ®1- (R e 50 -
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Substitute Equations (11) through (14) into (9) and (10). Because Assump-

o2
tion 2, Chapter 9, permits us to set Vern , we can establish the

following relationships:

- =1
[ef.] =V, Lece) (24)
. 2
Lewm, ] = /A 2 red) (25)
where we defined the perturbatiovs of the aerodynamic coefficients as:
lec.l = 1C(p)1- {n*’(g‘lfd (ny ) (26)
ledu 1= Lup)) - anm\[d“m} (27)

The problem we have to solve is how to express [(- c;l and [E C‘n] in
a form suitable for applications, The most common method is to expand
(.C;(rn] and (CM ((’)1 in a Taylor series about the reference values
[C;(h‘\ and [C‘H(R"\ . As the 'small" expansion variables, we choose

A A
Lfl)énland [_£ w@)m]. Symbolically, we can write this as:

[V =1 te 0)14 o liwml \'M‘c \[c &M 4 e @8
|

(.=0 %Ch
[d(p)] =[C, le=0) 1 \(tn“‘] 'l(aw““‘“] L@
iIf we can show that 5 €=0
{c,.te=0)] = @ N1e (30)
and- 7
L, (e=0)) = (RE T 1L chn] (1)
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both are satisfied then, in view of Equations (26) and (27),(CdF] and

[(C'H-l are expressed in a McLaurin series given on the right sides of

Equations (28) and (29).

Let us demonstrate this procedure in wore detail for LC-CF.-\. From

Equation (l1), with Equations (17} through (23), we obtain for [CF(\O\} :

[C'::{H.JJH,R 32, leb 1§ b, ] lem("’) [R@MH (e)d\])
AL A A . A
L™+ (RT D1wEWY, ler @1+ 1R 1 og1} ]
A A
={¢, [t R0 [R5 b, 00), [RELB8TY (RO (8 o e

[3‘ ,{Mﬁqm b (Pn [w((;)(f,)l [ka';(s‘)“ w“"‘"] {R@;(’)][D m]“[{ (A)]

Cco

PC“ | same DepenoEncE ﬂ T PO

4 EW
E=y

A 4
C(A)b“k)x = (_Ol. Accord-

The derivatives are evaluated at LCU LA)} =

ing to Equation (30), we have to show that

, A
{c‘ [Ma 20, RS S Mb k{n\])[Q@r‘Kj\)uw&w s’)@)u mml o811 u&”m
(33)

A, A
awuc [P, L), TECIRPCIORTNTIY
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The proof is based on the Principle of Material Indifference, which follows
from the isotropic property of space (see Section 3.1). That is: consider
a physical process consisting of certain frames, The interactions of these
frames produce the outcome. From the isotropic property of space, we con-
clude that, if the frames are subjected to a rotation, then the outcome is

rotated by the same amount,

Apply this principle to our particular situation; i.e., let the genera-
tion of aerodynamic forces be the physical process. The frames involved
are the body, stability, and air frames. The motions of the body frame
with respect to the air frame and some scalar quantities of state deter-
mine the aercdynamics. Consider the special situation described by
Equation (33). On the left, all vectorial variables, representing the

$© ]

frames and their interactions, are rotated by [r2 . According to

the principle, the outcome on the left must be equal to the original out-

lS)&ﬂ }

come rotated by But this is exactly the contents of the

right-hand side of Equation (33). This completes the proof.
The McLaurin series of [Cdpl can now be obtained from Equation (32}.

L e, L L L BN e o

(34)

leC,l= [

‘M)

[Bd

A 4
doow {SA“E DEPENDENCE B][&w@)(‘“x F oo
“ ‘ :

The expansion for (C(jn\ is generated the same way and its derivatives

have the same functional dependence.

DISCUSSION: Equation (34) differs from the classical expansions used in

airplane and missile aerodynamics in two respects. First, it is formu-
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lated in an invariant tensor concept, because it is valid in all allowable
coordinate systems. Second, in airplane dynamics, the aerodynamic forces
are expanded in terms of the linear and angular velocities of the aircraft
with refevence to the air frame. In the dynamics of spinning missiles,
the variables to be expanded are the sama linear velocities as in the

airplane case:; however, the angular velocities are the velocities of the

3 nonspinning body frame with reference to the air frame, The spin angular
i velocity is usually treated as a constant parameter.

The aevodynamics of MR's follow the missile case as far as the
selection of the variables in the expansion is concernred. The nonspinning
body frame is here the perturbed stability frame i? + But the aero-
dynamic treatment of the spin degree-of-freedom must be given more

t attention because of the complex geometrical shape of the MR's body

E section. Care has been taken in deriving Equation (34) to show this
dependence clearly., It is given by [bx(‘)ﬂ and- {(‘3@3 ("g } . Note that
both quantitie;~appear in tﬁe form associated with the perturbed flight,
because they are not included in the expansion. The same holds for f1b

5 and !?P . However, it is necessary that the derivatives are only
functions of the reference variables. This can be partially achieved

by introducing Assumption 2 of Chapter 9 and the Aésumption of Chapter 10,

o)

They permit the simplifications:

Re e R, (35)

. A \ AG\‘(“;‘
(w8 ~ w5 7]
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The discussion on how to treat tb (p) the orientation of the MR during
K ’

perturbed flight, will be given below.

To relate the derivatives to the data obtained from wird tunnel
rests, we must express Equation {34) in a coordinate system most suitable
for applications. Because internal strain-gage balances promise the best
test results, we choose the coordinate system ]i_ assuciated with the

perturbed stability frame as defined in Chapter 6. This agrees with

missile testing practice., We get:

[ ¢ _[9Ck | s A(e)s»‘ i"mwf (Aw\*\g[ Awf
e, Tp= gz M R, Lo T o T 2, log L e

A A) )
g Prip : o6
AW TN
+\ —_F SAME DEPENDENCE S\ led®™ 40
YoEmw P i

The functional dependence of the derjvatives can be simplified and

wiitten ‘n a more concise form. Let the base vectors be expressed in body

coordinates:
¢ B’ 8
= - (37
b, 1y = I71 0, Lo, (37)
.S
{bk(P)JPiS therefore represented by O(P alone, Because, by definitiorn,
- § -
A sl l )
[UB,?)];; = |0 (38)
, D .

the acro-normalized- velocity is constant, Furthermore, we can assume that

A

LW ]S‘
R

p on the aerodynamics is small compared with

the effect of [

o) (918 : ,
[(0 Poply Using the simplifications of Equation (35) and the definition

Equation‘(lS) and Equation (8.48) we summarize:
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; s
¢ [C: A ¢

- U-F A A
{5Cc]p [M}g\){Man;d‘p)wn}}P‘eus\}P

(39)
B(‘F A ‘\g A 4
+[,()_(E;(;XA))\}1!\) Rn, d‘))w,\x kal’\)@‘(k)}(’* LI I

So far we have shown only the linear terms of the expansicns., A more

concise notation will be required to express higher order terms. We intro-

duce:
( Caﬂ \ f C“ \
¢ ¢
N R
.13 ¢ d
{ z Fo ﬂ ¥y r 4.?3_‘ - Cl (40)
(f—cglp ("Nl C‘m Cg
cnz C\m
L dﬂs \ Cn
fa=1,13
R L 3 = 1)...)6
(4] ()"
U A
A 2 &
)] S - A A A
wrgy ay |a] 8,
tew“"*’l,,, Wa (:J‘ 1 gf>
031 E?
A A
l‘o3 L €

The McLaurin expansions up to the third term become, if all partial deriva-

tives are continuous:
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DOs + =
O 70 b
| ! ¢ 5 2
+i’(‘?‘lc—f"-' AL) 4'20 Ft ‘ Ab + -—X——E-ﬂ;— (:\)al:)b) 4’ (42)
00, 00, 0 05y, IAIIZ
3
4\ (—’bk-‘fi_ﬁ oD, 9+3___QELD, w+3_£EL_Ua Wy, LD d’-———’bd& (Oawbw)
b D“ bb b ‘ DD‘ sb(o 'ava awbbé 3 wb’bwc

= <= — Wa +
HL ’Dvﬂ “ wa
¢ 2C, Wy
R ] QY =My f; __._L. )
4 + w £ + (43)
[ ')%K (; d A 'DC‘H A "a}dﬂ A A A
31 0540520, I e e e L

with 1,&,‘0,0*1)7.73 and summation convention. Equations (42) and (43)

can be combined formally ard written in a concise form if we use dL and

1-3 as defined in Equations (40) and (41).
L4
d: Ve, LAY
R e N P i REL R
%“ 2- }’lb%il ‘“

7 with

i=142,---,6 ; jt)sls.u’jk‘l)z’.“)é ;W= 1.

b4

and summation convention.
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Let us abbreviate the derivatives by
% NN .
D¢ Cmtx,---\w
’,.).zh...'a}h‘

Thun we can give a mixed matrix and subscript notation for the first three

(45)

=

t

terms in Equation (44):

{¢;}= {C‘thr{%h\ + "‘! llgl\T{ C‘;i‘s“kk*id +

(46)

+ i—l ({}SLQTQCLi.;li}*{CiLiIZ84 e 4 {CS”ISX){%;’}) ‘1}33'&

where the indices run over the same numbers as in Equation (44) but the
summation coavention is replaced by matrix multiplications., The notaticen

[ } is used to indicate a 6-dimensional vector space and to contrast it
against the 3-dimensional Euclidean space, L3 . To give an example for
Equation (45), we convert back a derivative to physically meaningful nomen-
clature using the notation of Equations (40) and (41).

e 3
A € P e
¢ 3¢ b 7)

E—2

b VO D 'I)Cfs PER

11.3 CONDITIONS FOR VANISHING DERIVATIVES

In evaluating the aerzodynamics of a particular flight vehicle, import-
ant information can be derived just by investigating the conditions imposed
by the symmetrical properties of the ezternal shape. Maple and Synge (18)

conducted a thorough study of the aerodynamic symmetry of projectiles.

" fheir findings are limited to missiles, because they base their method
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ov the complex variable presentation of velocities and forces. In airplane

and Magnus Rotor dynamics, the forces are not amenable to this treatment.
Charters (19) developed a method that permits one to decide which firsc

order derivative is zero because of symmetry conditions.

in this section we shall derive an existence theorem for derivatives

of arbitrary order. It will be based on the principle of material indif-

ference (see Section 3.1) and on the property of the reflection tensor as

introduced in Section 8.1, Even though we shall use the MR to formulate

the proof, the theorem applies equally as well to airplanes with mirror

symmetry.

‘We start out with an argument similar to that in Section 11.2; i.e.,
the Principle of Material Indifference requires that rotating the elements

that produce a physical process, is equivalent to rotating the outcome of

g L4
the process. However, instead of using *LR('}L?] as the rotation

tensor, we use the reflection tensor [}4]. Specifically, let the perturba-

tions of the aerodynamic forces, [ﬁd;\ and (_Cd“], be the physical

process. JIts outcome is determined by the perturbed motions that are

described by the motions of the body and stability frames relative to the

air frame. Equation (34), for instance, delineates the functional depend-

encies fcr the force disturbances. Now, the principle of material indif-

ference postulates the following relationship:
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| et Rp T ), LT 9L R8GO
{ullrz‘j’(:’nvw} [l o1, -tulleed R L P

[““.E.C iHP)QP,Lb\ [ @)(S)l & q@ [ @m tn")@)kumx & 3,\6:\3&)(“}\}

b~ aal o i o

where [bu] are the base vectors of frame (B) . The justification for
writing the skew-symmetric tensors as axial vectors, even though they are

subjected to a reflectional tensor, is given by Equation (8.5).

Let us show now that

] (L] = tullbu] (49)
| o "0

nY llw“’(" 1= -1 BQY w@”"‘l 1)

{ Q(S‘) ! A;\g}“} i’ @8 4 :“““ ) (52)

Equation (49) is given by Equation (8.25). The Equations (51) and (52)

foliow from Eq;mtians (8.37) and (8.41), using Equation (8 12). To prove
8 (&)

Equation (50), we take recourse te the definition of UAJK‘,(P} and

multiply out:




e e e e e

-
T

ied

a4

M e e e ey

CHAPTER 11 111
- o _ ]
d
‘—,{d = - - d
0 0 0 1 0
e P e

Because Equations (49) through (52) hold, we dc not have to show them
explicitly in Equation (48). The conditions that the aerodynamics of
mirror-symmetrical MR's must obey are then given for the force perturba-
tions by Equation (48), The same reasoning leads to the conditions for
the moment perturbations, where we have to recall that the moment is an

axial vector. Summarizing we have:

lec {[Hllau“’l ML) = [ete [\{e o [c WM e

iach{mltco““] —[9]&&2""“’1&] =—’ml[adk{&efs‘§’l,[eAw@““‘}\l (55)

From these equations we shall formulate the conditions for vanishing
derivatives expressed in the ];'P -coordinate system. To airrive at a con-
cise formulation, we use the subscript notation as defined in Equations
(40) and (41). The elements of the rotation tensor U"’] expressed in the

¢
] -coordinate system will be written as k;l‘ . Using summation convention

we obtain,

A 7 A
CC'FLX“M Ry, - k\ae &e& - hfnacr“{ Pu A (3%

. V .
£CHL{ k“d D" Yy~ L‘bf.é’—‘ = ~th£dHn ké")&)b& 6D
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To combine both equations, let us introduce the six-component vectors :3:-'5

ard C“\ of Equations (40) and (41)., Because it can be shown that

A .

k Y 14)

el B CUASYRE PRI
by, o

and
h, eC 41 -
5 n = (\‘__1)(- C‘L . L:l’.--,e (59)
)

by, €Cy,

we can combine Equations (56) and (57) and arrive at the most concise form

in which the mirror symmetry conditions can be expressed:

d;{(‘*l)mii\ - (—-l)m C;U:;]] 7 (60)

For tne functional form db{%i\ , introduce the series expansion, Equation

(44) ,
R U A SRR AL PN S S
O R T TR e U O C, B 4o

| B! htl h)., . Ll 4, :
+k‘-(.i) ¢ .. ("l) Cll %31};1." %”‘k - t‘l) CL %’L + (61)

e (..*1 3131 3. i vl 31)\‘ AL .
+ 1) Colmyy + o +4 )G RS

Comparing terms of equal power yields

[ . Z-jk +k*l.+.l
C_Jl!!"..)k - (_1) =
8

C iljz vee sk

) (62)
t

-

- ~ N B4l 4lal : )

For instance, the condition for the linear terms “ -E—l) ' * Ci“l
UG P4l A S

can be rewritten 3s Ci](‘.’l) " - {“L) Ci ! which is ir the form

of Equation (61). Equation (62) is satisfied if either the power of (-1)
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is even or the derivative is zero, We summarize the results in the follow-

ing theorem.

Atk 2 e

THFCREM: Assume that the MR possesses a mirror-symmetrical external con-

figuration as defined in Section 8.1i. Let

. ) A,

C‘Jl )t--. l\( D CL

v ’D?:S 'D%j Y S
} ]

i

Ml

3 be an aerodynamic derivative of the disturbed flight in the notation of

Equations (40) and (41), where
L. 3,2) cory G indicates the force or moment component
K= 2) ee ¢ (indicates the order of the derivative

jk= 1)2, vee & indicates the linear or angular velocity
3 component of disturbance
The existence of the derivative is determined by a function 4(33')

defined as:
+ {+ §) = derivative exists

.‘. (- 1) = derivative vanishes

P
where ”S = (—-1) -

& D3, 255
1 EXAMPLE: Does the derivative ~ — = C exist? We have:
3 9eb de§ Ded 5
E -
;‘ 1-5) K-3, JL-Z ,31-.—5,33-5
- 245+5 +543 41 2
. j’* Q—i) = Q—l) = -]
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theretore }(—l) = derivative does not exist. The theorem is easy to apply
and particulavly helpful if nonlinear aerodynamic effects must be considered.

It is not only applicable te MR's but also to aircraft with mirror symmetry.

11.5 DISCUSSION

The purpese of this discussion is to answer two questiouns: (i) why
{s the stability frame introduced, and (ii) why is the second perturba-

tion method used rather than the first one (see Chapter 4)?

In airplane dynamics, the stability coordinate system is introduced
to simplify the expressions for the aerodynamic forces. Because it is
vrelated to the body coordinate system by a time invariant transformation
(see Etkin (16)), it is also a body coordinate system., To investigate the
aerodynamics of spinning missiles, a non-rolling body coordinate system is
defined, which permits the forces to be expressed in an associated aero-
ballistic coordinate system. This coordinate system is not a body‘coor-
Jdinate system. In MR dynamics, the situation is similar. The attention
is focused on nutational and precessional motions, and the spin degree-cf-
treedom is only of interest as far as it affects these motions. Theéefore,
as in missiie dynamics; a non-relling body coordinate system is introduced.
However, because the major flight direction .s normal to thé spin axis,
the aercballiscic coordinate system, as defined in NOLR 1241 (20), cannot .
be used for MR's. Instead we employ the stability coordinate system as
given in the same report. The x-axis is parallel te the projection of the

velocity vector onr the mirror plane, and the y-axis is parallel to the
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spin axis. This coordinate system suggests the introduction of the stability
frame, which is given by the spin axis, the projection of the velaecity vector
on the mirror plane, and the center of mass, B, The motions of the
stability f{rame with respect to the air frame constitute the nutation and

precession of an MR, We distinguish between a stability frame during refer-

(s)

ence flight GS) and during perturbed flight P * Because the deviations of

n
]
P A ~
in the variables (.EU (M] and [C w@) (A)} , which permits the most con-
o P

from @A are assumed to be small, a Taylor expansion can be generated

venient treatment of the flight dynamical problem.

Another important reason for introducing the stability frame lies in
the method of measuring aerodynamic forces in a wind tumnel., The internal
strain gage balance is best suited to determine the aerodynamic derivatives
of a spinning MR. It is aligned with the spin axis, fixed with reference
to the mass center of the MR, and directly related to the projection of
the velocity vector on the mirror plane., In short, the strain gage

balance constitutes the stability frame in wind tunnel measurements.

Note also that the mirror-symmetry conditions can be used ‘to the same
advantage in a stability coordinate system as in a body coordinate system.
This is based on the fact that the reflection tensor of mirror symmetry

has the same simple form in both coordinate systems.

Why is the second perturbation method used? Consider the aerodynamit.
forces acting on an MR in perturbed flight. The perturbations of the
aerodynamic forces are caused by kinematic and aerodynamic 2ffects, Véry-

ing attitude angles produce the kinematic effect by changing the direction

of the aerodynamic force vectors without changing their magnitude. This

—_ 7 T T
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is described by an expression like ‘R@‘ B‘X‘_% (h)) (see Equation (4.14)}).
It can easily be evaluated, On the other side, the aerodynamic effect is
dlfflctﬂ.t to determine. It is generated by the perturbation variable:z

[CL) W} and [(Lo(g (‘l as they alter the fluid flow around the MR, 7As

an example, consider the side force component acting on an MR, If the MR

is rolled chrough C‘: , the side force changes its direction by ¢ but not its
magnitude, However, an MR that alters its flight direction exf»eriences a

different magnitude of the side force bpecause of the different fluid pattern.

Thus, we are led to define a vectorial force increment that focuses

attention on the aerodynamic effect:

lefa) - Wa(p)l \R@‘@]Lm1 (63)

Because it is independent of the attitude angles, its Taylor expansion
assumes the simplest form, as derived in Section 11.2. In contiast, the

force perturbation

[%1:.] = H:Qﬂ - H;—(;)—] : | (64)

is a function of the attitude angles and therefore unnecessaril); complicates

the Taylor expansion,

To illustrate this, we r‘omparo the perturbation LCC -lr of Eauat:.on

(36) with the perturbation {.SC lr, derived in a similar fashion:

Aad A s
LYLF] \%’%{ ey b (P“ {wm(ﬂh["“@ml ,[”ﬂ(:“r\}p‘f”?h

(65)

. S
(¢ A
+[ ;SZ)_(%R) { same dependence \L’ [( w(“)(” f?-# o
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A
Because [w(ﬂ( ] and lba“)} are known in a J" coordinzte system,
we must introduce the coordinate transformation ('T}P" to express them in
the 3' coordinate system, as required in Equation (65). Thus, the deriva-

tives become a function of the anglies ¢ ,A}\ , and 5{

11.5 APPLICATIONS

So far we have not 8pe(.if1ed the components of the expansion variables
S
l {‘_Dg JP and [Ewenﬂl - By Assumption 3 of Section 11,1, the air

frame can be used as inartia:. frame, Therefore, we can write
A A '
Wit @) (66)
lenT, ~ Leo @] «

Alahims A ¥
le w(s')(a, J;‘, = | Cw(s)u)]e | 67

and thus establish the connection between the rate of change of linear and

angular momentum and the formulation of the aerodynamic forces,

The linear velocity perturbation is, by definition, Equation (4.11), and

in view of Equation (5.10)
) A @@ 11 ) @
lepd] - [DB‘I‘] - ir P A]LUQS ] (68)

Expression in a ] coordinate system and transformation into a more con-

venient form results in:
A ¢ .dd, AL
Leu®5 =[T] [A) N o -[R@@]r Mpnlog ]i (69)

Let us substitute Equation (8.47) and the equivalent definition
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into Equation (69) and write, in view of the notation of Equation (41)
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SV e

The relationship with the dynamic~normzlized velocity perturbation is

obtained from Equation (5.20):

€0
() A @© 7|
[C,Ust] V, lewg' ), = Vil|ev
Ew
where -
— W - V -
6V £ - [ == . V -~
Vss '’ VP ii; > o

[ A
€
A
Y
A
Ewr
L

Therefore, the velocity components are:

- q¢
A
€in

A
v =

A
tw
- dr

because we can set, according to Assumption 2 of Chapter 9:

= - 1
SV 1V
(Vp 10
)
- §
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(10)

(71)

(72)

(73)

(74)

(75)

(76)
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The angular velocity perturbation is, by definition, Equation 4.13),

and in view of Equation (5.12):

[r0®D) - Ug(?m] - [R(’} o (tz(i)m} G7)
“0()(’5]

with\k /l as the aero-normalizing unit. This can be replaced by
as shown in Simplification 1 of Section 10,1. Using Equation (7.5) and in

view of the notation of Equation (43), we obtain

L F A e
A QA+ S A ¢ y 4 s ¢j
[Cw(s‘)m] - [Cw(ﬂm] a|cal= [bo(‘:)(gl =144 a8
' f eh f A
Ap
b P b ‘P
where
- L d P4 d (79)
¢ Lt 5 T :

The relationship with tbe dynamic-normalized velocity perturbation is

obtained from Equation (5.23):

© -9
&p
(e @)m] }AV Le w@“‘] /A ei (80)
en
where s- or
f; ]
@A) 2 S o
IEw@‘W]P ~ [w(sm)] = |4 s1)
[]
and Nk JP
o _ oA o d
=7 Lé ) =T S M (82)

Therefore the relationship is:
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Now we shall use the theorem of Section 11.3 to write cut the deriva-

tives up to the thir¢ order for the three coefficients dx), d( , and C‘., .
These coefficients aré.particularly important for the further development

of the theory. Since the L’s in cj; are even numbers for all three co-
efficiénts, the theorem has the same form. A schematic summary is given

in Table 11,1, based on the matrix notatisn of Equation (46). The expan-
sion of the three coefficients up to third orderx consists of 774 derivatives.
This number is cut in half by theé theorem and further reduced, because pairs
of the mixed derivatives are equal. Moreover, some of the derivativ:s must
be zero because, by the definition of the stability coordinate system,

A
Eve =0 . However, there are still 84 derivatives to be evaluated.

The deterwrination of these derivatives is probably the most difficult
task in Magnus rotor dynamics. Some information car be found in Brunk (1,2)
and Bustamante (7). However, much research is still to be dune in this
field. A combination of engineering intuition, experimeutal results, and
mathematical analysis must be employed tciarrivc at quantitative values,

The final verification will come through free flight tests, .

_Here, we do not intend to treat this area of Magnus Rotor Dynamics

exhaustively. We shall rather concentrate on some aspects that are

required for the latter part of this report.
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To begin with, we want to show that the dependence of the coefficients

d\}, dl , and CI., on sil and 8?1, can be neglected, Equation (75) yields
C&:XQ; i.,e., Ca is the perturbation of the flight velocity. But the
flight velocity appears only in terms of Reynolds number and Mach number
in the coefficients, and small changes of the Reynolds number and Mach
number have a negligible effect on the coefficients., By Equation (83),
5,%- ¢$\ Because of the small angle assumption, &a isAsmall compared
with CF) and c?& , and its influence on the coefficients can therefore be
disreg.irded. This simplification means that, in the termminology of
Chapter 12, the la“eral aerodynamics are decoupled from the longitudinal
motions, Thus, the number of derivatives to be evaluated is further
reduced. The remaining ones are marked by a black square in Table 1l.1.
They ére summarized in Table 11.2 in the same arrangement. We shorten

the list further by two reasonable arguments:

A A
ARGUMENT 1: The side force does not depend on the P and R angular

velocities,

ARGUMENT 2: The gyroscopic coupling moment is much greater than the com-

parable aerodynamic coupling,

The derivatives thus deleted are marked by a corresponding sign in
Table 11,2, Fourteen of them remain to be evaluated, According to
Equation (39), they are still functions of My, R,, °Lf” and L:),‘. db@
and C} y are the linear and cubic side-force derivatives. They are mainly
due to- the drag force caused by the component of the flight velocity along
the spin axis, Therefore, d‘}ﬁ is usually negative and decreases with the

increasing size nf the end plates. For MR's without end plates, d" 3 can
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A
become important. The dependence of botn derivatives on Wy is weak and is

therefore dropped in most applications,

The rolling derivatives d‘ﬁ and d‘ﬁ"‘ are referred to as the linear
and cubic Magnus :noment derivatives. They are caused by a shift of the
Magnus lift force along the spin axis due to the sides}ip,angle‘{!u‘.
Because the Magnus lift is approximately proportional to the tip speed
ctatio, (:)u » the Magnus moment derivatives will also strongly depend on (:). .
To express this dependence explicitly, we expand the derivatives in power

A .
series of W, . For the linear Magnus moment derivativ., we have, for

instance:

dl[& = dt,h{ HQ,Q,"O(F\ + CIQP{H“’Q" ci’& (1\)“4. (84)

1f L:)’L-——'(‘, » the Magnus lift is zero., Consequently, the constant term in
the expansior can be neglected., Because of insufficient wind tunnel data,
the linear term is recained only. Thus, the linecar coefficients of the
power seties, clt::/s and C‘(d} 2’ are usualiy meant by Magnus moment deriva-
tives. They are ixﬁportaﬁt for the stability of the nutation mode and can,

in particular, cause a nutation limit cycle,

The yawing moment derivatives Chﬁ and Ch (33 are generated by the
shift of the drag force along the spin axis. In the first approximatinmn,
A - A
they are independent of (W, because the drag force is independent of Wy .

They mostly affect the stability of the undulation mode,

The aerodynamic damping is expressed in the derivatives C‘lf‘,‘, dlrfz,

c

wa » and d C‘(‘; and C'“’; are always negative, In the stability
r :

[} .
x3

'S i i C d h to be known,
analysis, only their sums, C’Qﬁ +Chﬁ an £‘$+ hWiy ave to be n
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These derivatives cannot be measured in conventional wind tunnels. They
require either a curved working section as in the old NACA Langley

Stability Tunnel or some free-flight simulations,

The remaining mi:sed derivatives dl tas €, A C“ﬁtl‘&‘ , and d

Ay
- "6
express the aerodynamic damping of a yawed MR, Again, the rolling moment
A
derivatives are expanded in W, , and :he linear terms are writteu as
Pz a and C“: A 1 No experimental data have been obtained on these

“ret

derivatives.

For further reference, let us write out some components of Equations
(24) and (25) using the derivatives of Table 11.2 and the format of Table

11.1, Equations {75) and (83) introduce the dynamic.-nomali,ze& variables,

{al:z]: -\-IZ' (d3{° p fé d’/&“ ) : (85)
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12, EQUATIONS OF MOTION

Thus far, all the required details have been derived for the perturba-

tion equations of an MR in planar glide phase., What is left is to investi-

gate the possibility of separating the equations into laceral and longitudinal

perturbation equations and to eliminate the dependence on the rapidly

rotating angle cf attack.

12,1 LATERAL PERTURBATION EQUATIONS

The perturbation equations are given by Equations (9.18) and (10.50).
We observe that the second component. of Equation (9.18) and the first and
third components of Equation (10.50) can be evaluated without knowing the
solution of the remaining three components, provided that the aerodynamic
forces can be sesarated accordingly. Borrowing from airplane terminology,

we call this set the lateral perturbation equations and the remaining

three equations the longitudinal perturbation equations. Notice that the
laterzl equations are deccupied from the longitudinal equations but the
converse is not true. The lateral perturbation ejuations are the side
force, rolling, and yawing equations, with the side slip angle /3 , roll
sagle ¢, and yaw angle M‘ as the perturbations, The longitudinal perturba-
tion equations consist of the two flight-path equations and the pitch
equation, with the increments of the flight speed 5{/ , glide angle oy s

and the angle of attack Jdol as the perturbations,

Now we want to justify the separation of the aerodynamic forces into

the same two groups so that the lateral forces can be evaluated without
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knowing the longitudinal motions. Equations (11.85) through (11.87) provide
part of the justification., They do not depend on the variabies 3¥ and

5_\; . But the aerodynamic derivatives do depend on O‘P = O‘lnf-gb( implicitly,
as seen from Equation (11,84), However, in Section 12.3 we shall show that
the dependency on O(P can be averaged over one revolution resulting in a
zero net effect. Therefore, the lateral equations are entirely deccupled
from the longitudinal equations. They are summarized in Table 12,1

together with the equations of the reference £flight,

DISCUSSION: The equations of motion are presented in their dynamic-
normalized form (see Chapter 5). The crossbar indicates that the quantity
is measured jn dynamic-normalized units, and the circle stands for the

time derivative wich respect to the dynamic-normalized time t .

Equations (1) through (3) are Equations (8.57) through (8.59), The
first equation is the force equation tangent to the flight pathk, while the
second is the normal force equation. The moment equation about the spin
axis is given by the third equation, There are two major assumptions that
must be satisfied:

1. The MR is mirror symmetrical with respect to its external geometxy
and its mass distﬂbution.

2. Ihe rate of change of glide angle is much smaller than the rate
of change of tha angle of attack; i.e., ;—n L < aZn
Furthermore, the condition v,._* 0 must be imposed to keep the coefficients
finite. Otherwise, the equations must be revisad, The aerodynamic co-
efficients are still a function of Mach number Ma, Reynolds number R,

and angle of attack da.’ If the initial flight speed of a particular

pioblem does not reach into the compressible regime, and if the air density
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changes only little during the flight, the aerodynamic coefficients can
be considered to be a functinn c¢f &, only. In Section 12.2, we will show
that even this dependence can be eliminated and that, under those condi-
tions, the aerodynamic coefficients can be considered to be constants,
The equations of the reference flight are highly nonlinear and cannot be

simplified further. They must be solved by computer.

Equations (4) through (8) describe the lateral perturbations of an
MR during the planar glide phase. They are referred to the coordinate
system ]; associated with the stability frame (7)) of the perturbed
motions. Equation (4) is the force equation along the spin axis.
Its first term on the right includes the inertial force component —:\7 / Va.
caused by the acceleratior of the mass during the reference flight.
The last two linear terms are the gravitational contributions. The
moment Equation (5) is similar in structure to Equatior (6). The first
terms on the right are the aerodynamic moments about the roll axis X\gr
and the yaw axis X3§r , respectively. The following two terms are the
aerodynamic damping and the gyroscopic coupling and vice versa, respec-
tively. All nonlinear gerodynamic contributions are collected in the
righc matrix. In addition to the two assumptions already stated in the
previous paragraph, the lateral paerturbation equations are valid under the
following major conditions: ]

3. The angles {5 . <i> , A.}\ remain small throughout the flight.

4. The aerodynamic forces depend on the linear and angular
velocities only and not on the accelerations.
The small-angle assumpt;ion means that the sine of an angle is replaced by

the angle itself and the cosine is set equal to one, For an engineering
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analysis, angles up to 20 degree can be admitted. This causes errors of 2%
and 6%, in the sine and cosine, respectively, at 20 degree. One of the
consequences of this assumption is that the nonlinear behavior of the
aerodynamic forces must occur at small angles in order to be correctly

analyzed by these equations,

The aerodynamic coefficients are functions of My, Rpn, and 0(', .
As in the case of the reference flight, we can gain much information by
limiting ourselves to the dependence on C’(P alone., And again, in Section
12.3, we shall show that this dependence can be neglected if certain
conditions are satisfied. Also, the value V,,- 0 must be excluded in
order that the coefficients are finite., In Table 12,1, the perturbation

equations are separated into linear and nonlinear parts. If we neglest

the nonlinear part, and if we consider the steady-state glide phase only,

the perturbation equations are linear differential equations with constant
coefficients and therefore easy to solve. I1f we consider the transient

glide phase, the equations remain linear but become nonautonomous, Adding
the noulinear aerodynamic terms makes the equations nonlinear and nonauton-

omous; i.e., for solutions, we have to rely on a digital computer,

12.2 AVERAGING THE REFERENCE EQUATIONS

In this section we shall give a mathematical justification for the
intuitive reasoning that the effect of Okn on the reference flight can

be averaged over one revolution, provided that o, changes rapidly enough.

7 The method of averaging, as developed by Bogoliubov and Mitropolsky (21),
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will be employed, In particular, we refer to the "Case of the Rapidly
Rotating Phase', as outlined in Chapter 5, Paragraph 25 of .their book,

and assume that the reader is familiar with this part,

The underlying idez is to introduce a transformatior composed of the
averaged state and small vibrations due to olk . This leads to the averaged
equations of motion that are independent of &, . The vibrations are
described by a power series in terms of a small parameter L/l , and, thus,
the averaged equations will have the same power series expansion. The
search for such a large parameter A requires a slight change of the
equations of the reference flight. In view of Equation (5.23) and

Equation (5.13), we obtain

— g A =l Vg wy A Wy
= - —_ 4. i (9)
Wn ,AA Vn Wp /M Vy; Vl Vss Wes /M L\)“ Do
and define
A= "03 (10)
/A $S

For common MR's, A is a iarge parameter compared with the circular

A
frequencies of the solution, because Wgg is of the order of one, and M,

the density ratio between the MR and air, is of the order of 103. Repre-

sentative circular frequencies of the solution are of the order of 10'1

Substitute Equation (9) into Equations (1), (2), and (3):

'2' "‘2 'Z' .

V, =-CoVn - V?; sin ¥n (1)
o AW ~

Y - C‘L,. We — - & ws ¥, : (12)
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d Wa CHa =12 Hd(:) - On
Flon! Tz a T W o )

(33 }4 I\}wss F I\} wss

with
A, = (14)
4t M Qs mss
The new variable is E%f , the percentage of the spin rate relative to its
5

steady~state value., We abbreviate these equations to obtain a correspond-

ing form used in Ref., 21:

e}

dy,.
‘T Y“(d")%‘)t’u‘jﬁx , «=L4%,3

rd

(15)

ddln
— 16
ALa:; | (16)

where the state vector is:

oJ - - - L
i t’! Vn
"h - ¥ ) a7
‘13 (O /wss 7

Accordmg to page 417 of Ref. 21, the transformatxons

.0
%“:qk +i;,:‘33{ G . Cosno( + I’—L“S\n nd \-Fo{p (18)

oo
X p = gn."—’ Z z~‘l{an Sndn‘(‘a h&ﬂﬂdn}*'o{ & (19)
n=i1"Ys

generate the averaged equations:
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dwk 1 2 )\ g " be!.”.
lg\(ko_..z -—-:,{ G - —2F, 1t
t A in N " N %
o , ::: ‘33 ra‘} 3 K ? ‘81 (20)

coln ~ i \

=2 = = (21)
dt l‘}s +0 {l'—

where the tilde denotes the averaged variable, \(

%0

is the first term

_ in the Fourier expansion:

_p
Yo=Y, + L {FK,,Cosn&’,‘+G\(,,sinn&A\ (22)
) h'L ) )

. S~y
with the Fourier coefficients still being a function of the H}u $ . In

order that the second terms on the right of the Equations (18), (19), and
On
~ Wes
that L’SE: 0.1 ; i.e., Fhat the spin rate never drops below 10% of its

~)
(20) remain small, we must put a restriction on %3' . We require
e v X s )
steady state value. Now, because is a large value ( 0 and the
terms of Yko are of the order of onme, it suffices to let the zeroth
).
order approximation
dy, f
T (5) (23)
di o ¢ :
réprasent'the equations of motion of the reference flight. The error

committed is given by Equation {18).
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12.3 AVERACING THE LATERAL PERTURBATION EQUATIONS

We would like to use the same averaging method to eliminate the

dependence of the lateral perturbation equations from <XP . However,

the method given in Ref. 21 is ouly applicable to autonomous differential
equations, whereas the coefficients of the lateral perturbation equations
depend ¢n the state of the reference equation; i.e., we have to deal with
a nonautonomous case., Fortunatelv, the coefficients change slowly in time
compared with O(P so that the averaging method can be extended to the
lateral perturbation equations. We shall outline the procedure below,

again closely following the book by Bogoliubov and Mitropolsky (21).

The lateral perturbation Equations (4) through (8) will be abbreviated

as:

<:bzk .
df X (df’)xt)t) 5 K= l,...,s .) L= 1,...)5 (24)

Notice that the rapidly rotating phase Oﬁf is different from the previous
case. We therefore cannot use Equation (14) directly. But we can still
A
take the same large parameter A= }46\');3 if we include a correction ¢

term A (X“;g) . Thus, we form

_p }\ Win (*) A’ X ; : (25)
dt wss ( k, ) _ .
- Wh(t)
where A(‘:‘u,i\ is small compared with XTO—— by the Assumption of
$S

Section 10.2.

As in Ref., 21, Equation (25.2), let us introduce the transformations

= 1 (),
yw“”“‘*'g'\-‘xx“?u Ld‘f’)xi)*) — (26) -
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= 4 ~N N o
o(P=R'P+ a;' o Un (alp, §;)T) @7

with the difference that the coefficients of the power series are also time-~

dependent, They will reduce Equations (24) and (25) to the form

29 (% %) (28)

dat I &
= -2 2 Lo @9
Substitute Equations (26) and (27) into Equation (24):
ka ( s‘ gg‘ ‘317'0)+ 0;(\ ?‘_x ) (
—.' N3
'D&’ dt 9% c)xq> dt A ’bo({, d&

% ds s
7>Xq_<d¥ 2t

(30)

0 1
) B\ Rp+ U (dp 8 F) 4 K545, e Xi)e- *)
Then, similarly insert Equations (26) and (27) into Equation (25):

dly L da L dd,
. {au Uy detp | Bu, Wy dxq} }}{aul aau

'bot‘) d& ’)alf, dt '6? dt ’bi
(31)
W, ol¥y muzk Wall) ot LW o -&
+ 3x,' dt 2t -4 Wes A{«x“+l§k (dp)x‘ &)+m’£
ﬁ(ﬂ ’)u
We want to show now that the partial derivatives -: and ;a-i' are of

order i relative to their preceding term. By ﬁquatlons (26) and (27),

?S’ and Ul are the first "vibrations" of the solution vectors ¥, and

[and
c(P , respectively, Their gradients relative to dr are certainly of

the same order of magnitude or greater than their gradients with respect
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~
dd

to the slowly changing time t . Furthermore, because = '—'U()\) , We
i at

obtain the desired result:

U
W5 % gz

~ A & (32)
3 t a&P at

k(b_(il.l ~ rb_u_l dO(P

= (33)
DE Wp dE
Substitute Equations (28) and (29) into Equations (30) and (31) and compare
0 .|

equal powers of A )\

© (> < ng w.,G) = X (R %1 +%—§-kd‘{ 4
(X)) + 2, om k(cxr,x‘,t) 3 (34)

® z
Ko (2)+ 5 E - S, (Xi,E)+ 35 X(")(x. R TRL O C
1

Do(F Wss
(35)
) STRPEVIREY
2k, (g, §5)F) + “g“’(at,,,x‘,&)
’ao‘p
Q%)+ i DR+ 57 1Y T 3 A0
P 1Y (36)
= A& E s
QEy W o W @
0O 5% Tom (F1) + 57 o
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These equations correspond to the Equations (25.4) of Ref. 21, but contain
two more partia: derivatives with respect to time (underlined terms), We
want te show that these partials can be neglected and begin with the term
of Equation (30), Compare Xk(&'r,?{i)ﬂ with %:‘—‘dt . Because Xk
changes slowly in X , we have ¢
%
ot

The same reasoning holds for Equation (33); i.e.,

A - = 39
sFol <« ARE) (39)

dt «< X, (&p,%:,t) (38)

Therefore, partial derivatives with respect to time do not occur in terms
with powers of A’ and )C‘ . Rather they appear in terms with x—2 and
higher order. But, because the averaging methcd is based on the first
two powers only, we can carry over the results from‘Bogoliubov and
Mitropolsky directly. The only difference lies in the implicit time-
dependence of some of the terms in the Equations (34) through (37). Thisi
does not pose any problem, because there are no further operations on the

time & as the solution of the averaging method is developed. The time &

is just another parameter.

From Equations (25.16), (25.17), and (25.18) of Ref. 21, we obtain

the result that the transformation

3 o - ~7- - ~ 1
Xk-)(k }L. g, a3 ){ Gk,“('Xi ,Q) cosn ;f + FK'“ (x: ,{) ".‘""’dr}‘*o { ﬁ\fao)
o= olg +0 H‘ \ 1)
kp = P ) kt i

generates the averaged equations
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ey g T e [, e 110( k)

A ,an,.m 'bx,' qn '3‘71 Fam
Wi
do Wi (¥) & - L
Z‘I' x—A: + A, (XK)t) + U(;\z) (43)

where the following Fourier expansion was used:

~ rf ~ ~N -~ . ~ .
B ldp )= SRV %{E‘,n(x\,t)Cosnar+Gk,}x\,05mndr& (4%)
Again, as in the previous section, we will be gatisfied by the zeroth

order approximation of the lateral perturbation equations

da¥,,

e R, Git) | @)

The error incurred is given by Equation (40).

12.4 AVERAGED EQUATIONS OF MOTION

We have arrived at the major set of equations describing the flight
dynamics of MR's in the planar glide phase., They are given by Equations
(23) and (45) and have the same form as the equations of Table 12.1,
axcept for a tilde over the variables to indicate the averaging process.

In the sequel, we only shall deal wiLh these averaged equatioas and drop
the tilde for simplicity. Equations (1) through (8) of Table 1l.1 repre-
sent then the equations of motion, averagsd over o(, and OLP , respectively,
and, thgs, the aerodynamic coefficients and derivatives are only functions
of the Mach and Reynoids numbers, We summarize the major assumptions for

these equations:
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1. The MR is mirror symmetrical with respect to its external geometry

and its mass distribution.
L-]

2. ¥, << 62“

3. ,3 , 4b, AF are small angles, i.e. less than 20°,

4, The aerodynamic forces depend on the linear and angular
velocities only and not on the accelerations.

5. The density ratioc between the MR and the surrounding medium is
large; i.e., }47:, Cf(lol) which results in a spin rate high enough
to justify the averaging process,

6. The flight speed and the spin rate do not drop below ten percent

of their steady-state values; i.e.,

. = 0.1V, = 01

‘:).h. ..2_. 0.1 ws

The value of '"ten percent" is somewhat arbitrary. It should emphasize that
neither the flight velocity nor the spin rate should become too small to
invalidate the averaging process. The reference values V;; and CS‘,

are chosen because they are simple characteristic constants of a

particular MR.

The averaged equations of motion of the planar glide phase are comn-
sidered to be the most important set of equatione for the flight dynamics.
of Magnus rotors because they cover most of the motions of interest. They
describe the dynamics of an MR released from a launcher and the motions of
a randomly released MR after some initial transient motions., This assumes
that the MR was properly designed so that it is actually able to achieve a

steady-state glide phase, If'this is aot the case, the MR may slip into
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one of the undesirable flight phases like "end-on flight," "end-over rota-
tion" or "top mode." Our equations would not be applicable to these flight
regimes, The averaged equations of motion are also capable of describing
the influence of nonlinear aerndynamic forces that might occur at small
sideslip angles {3 and give the effect of the accelerated center of mass
on the lateral perturbation equations. But it should be emphasized that,
by Assumption 5, the dynamics of very light MR's in air or common MR's in

water may not be well presented by the averaged equations,

The longitudinal perturbation equations will not be investigated
further, because they only add some small corrections to the flight

speed, spin rate, snd glide angle of the reference flight,

There are two important extenesions of the equations of motion, Table
12.1, that should be mentioned., First, we can supplement the homogeneous
lateral perturbation equations by inhomogeneous terms, representing an
external side focrce and an external torque about the roll and yaw axes.
We shall omif the details. The other extension aliows for a slow turning
of the spin axis in a horizontal plane. This turning or spiraling is
cbserved very often in free flight, whenever the flight models were not
balanced carefully enough before test, It is caused by a slight mass

asymmetry resulting in a small shift of the center of gravity along the

-g¢pin axis., Let this displacement between the geometrical center and the

gravitational center be "a", and make it positive for a shift along the
positive spin axis. Suppose that the MR is in a steady<state glide phase.

The time rate of change of angular momentum then balances the gravitarional

torque:
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[ DF) ib(e\(e) ] = [M,}] = am [(}} (46)

To introduce the proper coordinate systems, consider the vertical plane
normal to the steady-state angular momentum vector, This is the plane

we refer to when we speak about the equations of the reference flight,
Table 12,1, of the planar glide phase. It was taken to be fixed in the
earth frame (E) and therefore also fixed relative to an inertial frame
(I). Now, we s*ill require that this plane is normal to the steady-state
angular momentum vector but 1ift the restriction that it is fixed relative
to an earth frame. Call this plane the guiding plane, and let ]P be the
associated coordinate system with the X.P -axis horizontal and in the
direction of flight and the X;P-axis in the direction of the gravita-
tional vector. Express Equation (46) in this coordinate system, and note
that, for small center-of-gravity displacements, the angular momentum

vector does not change relative to the guiding plane. We obtain:

[ q ®te ]Pua@ta)f - am (%]" “7)
vwhich reduces to

dih
— - am (48)
T I}m“ = amq

where €f§ is the angular velocity of the guiding plane about a vertical

at
axis:
e 4 - _S2m (49)
d* I}w‘s

So far we have assumed that the MR is in a quasi-steady-state glide phase;

i.e., the absolute value of the angular momentum vector is constant while
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the vector turns in a horizontal plane. We can extend this to other flight
regimes, such as perturbations in quasi-steady-state glide phase and
transient glide phase, as long as the time rate of change of the angular
momentum vector with respect to the guiding plane is small relative to
“[S).(P“E)]P[IG@XH )p “ . Under this condition, we solve the equations
of motion, Table 12,1, with reference to the guiding plane and then
perform a coordinate transformation [.Tlps to obtain the solution

relative to the earth frame. The transformation angle is given by

Equation (49). In short, the case of the turning of an MR due to slight

mass asymmetry is raduced to a coordinate transformation.
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13, STABILITY ANALYSIS

Suppose we are interested in evaluating the performance of a given
MR, It would suffice to analyze the equations of the reference flight
only, But'for the results to be a good approximation of the actual
behavior, the particular MR must be stable with respect to the reference
flight, Otherwise, any perturbations would cause the MR to deviate too
far from the reference flight., A stability analysis, therefore, has to
proceed a performance evaluation, Other problem areas that are solved
with the methods of a stability analysis are the identification of the
important design parameters, the improvement of a particular MR design,

and the response of an MR to disturbances,

The stability analysis is based on the lateral perturbation Equations
(12.4) through (12.8) of Table 12.1. They are a fifth-order system of
nonlinear nonautonomous ordinary differential equations, We shall first
show>that, under certain assumptions, a transformation reduces them to a
fourth-oxder system. Then we shall discuss the asymptotic stability of
the first approximation in general terms, using a theorem by Malkin (22).
The simplest but also most important case is the stability in the planar
steady-state glide phase with linear behavior of the aerodynamic forces.
The associated equations are linear and autonomous. They were already
investigated by Millivolte (6). Here, we shall only summarize the results
and give some simplified expressions for the roots of the characteristic
equation, To treat certain aspects of the nonlinear nonautonomous case,
the equations are reduced first to the two degrees of freedom: rolling

and yawing. Then, the yaw and roll angle are combined to form the nutation
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cone angle, resulting, via the method of averaging, in a first-order non-
linear and nonautonomous differential equation. Its stability is discussed
in detail, and necessary and sufficient conditions for limit cycles are

given,

13.1 REDUCTION TO A FOURTH ORDER SYSTEM

To simplify the notation, we shall abbreviate the equations of the

planar glide phase; i.,e., the reference equations of Table 12,1, by

K=1,2,3 5 i=1,2,3 ¢

®

$e = (\3") )
with the state vector \31' ny ‘31'\‘}1 ,‘a‘t l:),, . The lateral perturba-
tion equations, Table 12.1, are abridged by

o

X = Ot Xp + 94, 0638) 5 Amn =1L .05 @

[~
with the state vector X1={5 , Xza ¢ ) x_s = AF. ) )(,*:d;, XS"' )‘\ .

We shall also refer to Equation (2) in a special matrix form:

-

e

-

-

Qy

0

-1 a,a nsﬁ

T

>R

Pe

& Qu Oy ay 0 0 ¢ Ju (53“3114’3* ‘}_n{gi +31‘0(i$l
ZF’ =l Ay -0y Gy 0 0 ‘T‘ Ja ﬁz* In "‘r‘s* 3 33/314; *33'?3‘;12 @
d] {o 1t o o ofél o -
LJ‘ 0 0 1 0 Oofi¥ |0
- e inhalies L )

The elements are found by comparison with the lateral perturbation equations

of Table 12,1,
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A salient feature of Equation (3) is that it admits a one parametric

family of stationasry solutions; i.e., the state vector

(x¢)g = {0,0,0,—li'anfn,kg ()

satisfies the Equation (3) for any value of A . The physical explana-

tion follows from Figure 13.1. It shows the roll and yaw angles of the

HORIZON

%

FLIGHT DIRECTION

FIGURE 13.] ROLL AND YAW ANGLES PROJECTED
ON A HORIZONTAL PLANE

spin axis projected on a horizontal plane and the glide angle plotted in

negative direction. If the spin axis is horizontal, the ratio of roll to

& nY (5)
rs "

This is the same ratio we obtain from the last two components, ¢5 and L‘As
of Equatidn (4). Therefore, the stationary solutions imply a horizontal

spin axis. In particular, it means that, once the perturbations have
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dampered out and the MR has achieved its steady-state flight, its spin axis
will be borizontal though it may be heading in another direction. The MR
has no heading stability, Such a behavior indicates that one eigenvalue of
the CJl"‘ matrix is zero., This can easily be checked by actually evaluat-

ing the characteristic equation.

Under certain simplifying assumptions, this zero root can be removed
by a transformation resulting in a fourth order system of differential
equations. The details follow, Introduce the new roll angle é about
a horizontal axis:

of \ {
é =—% —_— ¢CDSX' + A sinY \ (6)
n n
Vs Uy A
and take the time derivative with respect to the dynamic-normalized time
L
o

v . _
® - Vss {- -Vi:{- (4’ CosYn + Ah SiV\Yn) + %g(¢ oSS n + KhSin Y, )
gﬁ;('-ck EﬁV\Yi + A COS)bt)

The last term is much smaller than the preceding term because é,ﬂa are

(7)

small angles and the glide angle X}, changes much slower than the roil
and yaw angles executing nutational motions. Without this term and in
view of Equation (6), we get

=__§+_2_\[n¢+'t’3 Sm\'n»‘ 7 (8)

©

Substitute Equations (6) and (8) into Equation (3):
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€3 >e
2
O
1
o
—
6 o
@b of
-~
— —~
= >
©-0 o
e Fo
v‘_' \—*'
A N

Qu Qn Gy 0

- + (9)
Gy -Gy O3y O

o
°
~0

Ho

W
0 Op Q¢ Wn

el
o

[ 5 s L ]
and abbreviate

The order of the system of differential equations has been reduced by one
and the dependence on Ap and $ replaced by § + In other words, the
dependence on the heading of the MR has been eliminated. A check of the
eigenvalues of b‘}s will show that the zero root has also been removed.
The remaining. eigenvalues of t>Q5 are identical with the non-zero eigen-

values of bﬂ,s because ‘the transformation cof variables is linear.

We succeeded in removing the zero root through a simple transforma-
tion, This root was independent oi the shape or mass of the particular
MR under consideracion and was present in the transient and steady-state
glide phases. It also could happen that one of the other eigenvalues
assumes a zero real value, But this is only possible for a very special
combination of shape and mass distribution and therefore unlikely to

occur, We shall not deal with this cese any further.

We now ask whether asymptotic stability of the first approximation
of Equation (9) implies asymptotic stability of the nonlinear system?
A theorem by Malkin (22) p. 322 provides the conditions under which the

answer is affirmative:
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If the equations of the first approximation are regular

and if all its characteristic numbers axe positive,

then the unperturbed motions of Equation (10) are
asymptotically stable, provided the functions 31 (}‘,%L’},:”-E)
satisfy in \%4\ < W = constant, +2 0 the inequality:

190 (1,1, 1, 1) < A 11+ 4 12 410 ) -

A>0 ) m>1]
We shall show that Equation (9) satisfies these conditions, A necessary
and sufficient condition for the first approximation to be regular is,
according to Malkin (22) p. 294 that

R i -
Livn I b, dt = CONSTANT <o : s= 1,1,3 4 (12)
t->ce o J

Consider the elements of the trace of b,*s(;) . They approach eicher a
constant or zero value as time increases, Therefore, Equation (12) is

satisfied., The characteristic number of a function {-G) is defined

(Malkin (22) p. 283) by

. Inl B
w(f) =~ bm -fL- (13)
o S
To find the characteristic numbers of the first approximation,
o -
2= by k)2, : (14)

separate the matrix \ogs into a constant part Cqs and a variable part

§) . The slements of %) be chosen such that:
d‘}s(&) e elements o d‘}s() e chosen such tha

oo

Lim dqs ) =0 soogeE L el (15)
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This is always possible because the solutions of the reference Equations
(12.1) through (12.3) of Table 12.1 tend to constant values as time
increases, cQs is just the matrix of the autonomous case; i.e., the
matrix of the first approximation of the lateral perturbation equations

in steady-state glide phase:

%% > Cﬁ_s%‘ (16)
A theorem by Malkin (22) p. 305 states that, if Equation (15) is satisfied,
the characteristic numbers of Equation (14) are equal to the characteristic
numbers of Equation (16)., But the characteristjc numbers of an autonomous
linear system, Equation (16), are the negative values of the real parts of
the eigenvalues of the matrix an. Therefore, if Equation (16) is
asymptoticaily stable, all its characteristic numbers are positive, and,
consequently, all characteristic numbers of the first approximation,
Equation (14), are positive, The conditions, Equatfon (11), are satisfied
because the nonlinear aerodynamic functions 3‘ are power series expansions
of %l » ¥y, and ?:3 and because \7,,_- 0 is excluded. We conclude that
asymptotic stability of the first approximation, Equation (i4), implies
asymptotic stability of the nonlinear Equation (10). Moreovér, asymptotic
stability of Equation (14) is simply established if the autoncmous 7

Equation (16) is asymptotically stable,

13,2 STABILITY OF THE FIRST APPROXIMATION

The important stability theorem has already been stated in the previous

section; namely, that asymptotic stability of the autonomous ljnzar perturba-
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tion Equation (16) fmplies the asymptotic stability of the nonautonomous
linear Bquaticua (14). We can extend this to Equation (2); separate the
a(m(ﬂ magrix into onstant and time-dependent parts as at the end of

the previous section:

xi = qim (t) X = ( hlm + le (&) ) Xm (7

Again, Pgmu) tends to zero as time increases., But now, instead of
asymptotic s<ability, only stability can be inferred., We conclude that,

if the equilibrium ol the autononous perturbation equations
L — h .
X = MY 18

is stcble, the equilibrium of the nowautonomous Equation (17) is stable

too.

Wa have shown that the issue of stability can be reduced to (he simple
problem of the stabjlity oi the !inear autonomous perturbation equations.
However, a word of caution is wecessary, The perturbation equations are
valid only so long as the éggles ¢ ,A}\ , f& remain small throughout the
flight, This can always be satisfied for sufficiently small initial

conditions 20 . But for an engineering analysis the initial conditions -

kS
canrot always be made ar! itrarily small, Then, we have to ask whether a
particular solution of an asymptotically stable system, Equation (14},

stays within the small angle limits, say £ , for all times i'>tg for

some small initial conditions; i.e.,

I (& %, <& roran Exi, l'li-o,ll\ <fce as

The search for an answer leads to theorems thaC establish an upper bound

on the sclution vector. See Bellman (23) p. 44, Cesari (24) p. 43, and
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Zubov (25) p. 78. However, all bounds {nclude arbitrary constants that
cannot be predetermined, The only way, therefore, to judge whether the
Condition (19) is satisfied for a particular MR is to actually calculate

the solutions for some representative initial conditions by computer.,

In general, the eigenvalues of the matrix hln or Cﬁs are
evaluated by computer, But fer design purposes, we can use simplified
formulas that have been shown to be accurate within * 5% for common MR
configurations., The simplification is based on the overriding effect of

the gyroscopic coupling term 023 (see Equation (3)). More specifically,

it is assumed that

Gy 3> Q,, ond Q33 (20)
2

The result is that the pair of roots of the so-called nutation mcde are

approximated by:

. .
- - —— 21
Sy 5y B, mts{ lay+ ayy) Ay~ Clux T \Ap b

where

- \:_sf { (Clﬁ*’d‘%ﬁ) %} - Clds,g\ (@)

L % 1,}
T.
- - .‘* o -
™ 1 Wss @)

The other fxair of roots of the undulation mode are:

Qn

- = | ( \/ aQu 2 1\
=% 4h ==\0,+— | +\L U _- - (24)
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where

) (25)

Ha
.'iu’{ %2 }:—I:;:: ;(SPV“C‘% Ci:as‘&ss-(:)SS C(&’Psin Y“\‘g (26)

The dimensions of the roots are radians per dynamic-normalized unit time,
This result can be verified by multiplying out the nutation and undulation
roots, The approximate characteristic equation thus obtained agrees with
the characteristic equation of the matrix hb‘ subjected to the simplifica-

tions of Equation (20).

The nutation roots are always conjugate complex with a nutation

frequency of

g = \" ‘:555 (27>

=i 1

just as in the case of a classical gyroscope. Equation (22) determines
the aerodynamic damping. The damping derivatives Clr',‘ and Cu« , which
are always negative, are opposed by a usual negative Magnus moment
derivative C‘l(:)/s « The higher the moment-of-inertia ratio i,}’ T , the
higher the nutation réte and the more effective the aerodynamic damping.
The undulation roots can ber conjugate complex or both real. Their rate
of change of amplitude is generally two orders of magnitude less than
that of the nutation mode. In gyroscopiz terms, the undulation mode of
an MR is the uhsteady precession caused by aerodynamic torques, It would
not be present in a vacuum. - In the oscillatory case, « necessary and

sufficient condition for asymptotic stability of the undulation mode is:
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i

and, because C’
p

c - d,. (29)
= Pzi}dl“’l‘

This is always satisfied for a negative Magnus moment dt A . If the

is negative for most practical MR's:

undulation mode is purely exponential, Equation (28) is only a necessary
condition. Without giving the details, we remark that the sufficient
condition can be derived from Equation (24) Thus, we have seen that the

C

important aerodynamic derivatives are C 1‘3 "P , and the sum cl",‘ + dhﬁ

|3 A
and the important mass parameter is I} L.

The effect of the acceleration of the center of mass on the lateral

perturbation equations is limited to the matrix element

- L ] * (30)
ali -v-u + d}p v’l

In steady-state it is desirable to have a highly negative d't(\ , 48 can
be seen from Equation (28). This can be generalized to the transient case
by saying that the more negative O“ is, the smaller the deviation of the
solution vector from the unperturbed flight for a given set of initial
conditions, Therefore, we ‘conclude from Equation (30) thaot the effect of
a decelerated center of mass is destabilizing whereas acceleration tends
to stabilize the perturbations. Some sample sclutions in support of this

statement will be given in Chapter 14,

We have indicated that the undulation mode is much slower than the

nutation mode, Consequently, one can identify them as two separate motion
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histories and would like to investigate them separately., If the nuta-
tional motions are of main interest, one can assume that the center of
mass remains in the plane defined by the planar glide phase. This implies
that /5--—AL and therefore reduces the pecturbation equations to two

degrees of freedom, namely, rolling and yawing. We obtain from Equation (3):

p - - -

Gy Oy -0y ||é '3“’4‘3*‘}11&’3‘*%13 *N-‘auw

=G Quy -9y | |4k | + “‘}3\*;*‘}314‘3*%33*}';"%%"‘&‘1 (41
0 L 0

L ;.*J L. O o

[
[

£o 2 G
' )

or abbreviated:

T, = une %, + W, (3,5, 5, %) ; nt=1,23 02

The eigenvalues of the matrix U,, are with the assumptions, Equation (20):

- = 4= \ »

SN’ ?N + lle 2-‘—0-13{ (att+ an) Q'Lg —qz\k tl;al3 (33)

T i

gu - (C‘uc‘zt + Qq3 qu) (34
Uya

We again recognize in Equation (33) the roots of the nutation mode, Equation
{(21). The undulalion mode is represented by only one real root, Equation
(34). In steady-state glide phase it has the form:
= Vs Vszs Cor A
§u= 1z 12 — 2 lp ur,+1"-} 5 7 (35)
Moyt pss o

which has no common features either with Equation (25) or Equation (26).

But then we do not attempt to analyze the undulation mode with Equation

(31).
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13.3 NUTATION LIMIT CYCLES

In the previous section we chowed that the stability of the perturba-
tion equations can be determined from the linear autonomous perturbation
equations, But this reﬁuires initial conditions smzll enough, so that
the state vector remains sufficiently small. In an engineering analysis,
the investigation is focused not only on the question of stability, but
also on the motions of MR's, resulting from realistic initial conditions.
For a majority of MR's, the first approximation is still satisfactory.
Fowever, wind tunnel tests show that for certain configurations, the rolling
and yawing moment coefficients are not approximated satisfactorily by the
liqear derivatives only. Even for small angles (3 , higher order deriva-
tives must be considered., This can lead, as observed in flight tests, to
limit cycles of the nutational motions; i.e., a coning motion about a

horizontal axis with constaut cone angle.

For the first part of this section, we shall concentrate on the most
important aerodynamic nonlinearities, namely, %u and 13‘ (see Equation
(31)). This case is also more easily treated than if other nonlinearities
are included. Afterwards the effect of the nonlinear damping derivatives,
%u and %31 , will be discussed. The complete set of nonlinearities will

not be studied because little is known about the values of the mixed

derivatives 123, C}w, (}n, and %“.

We can begin our analysis of limit cycles with the two-degrees-of-
freedom Equation (31) because this phenomenon is basically a nutational

motion. First, we perform a transformation of variables from the flight

mechanical angles and te the gyro mechanical cone angle and
1

o - STE e T T T AR T AR Ty T T T e s mm e m e
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node angle & . This is accomplished by substituting Equations (7.19)
through (7.24) in Equation (31). The relevant angle for the nutational
motions is the cone angle n » whereas we shall not be particularly
interested in the value of the node angle & . From the observed
exponential damping of the nutation mode we also expect that a first-
order differential equation in n is 2 reasonably good approximation.
Guided by these physical considerations, we eliminate o't from the two
equations just obtained by multiplying the first equation by sind and
the second equation by €0%& and adding both equations. Arranging terms

in form of a differential equation in 1 yields:
:l.{ -1& 4 Ay + (.0\3._.." Qu_) wsd snd S +
[-T-Y S . .
+vl{-2> + {0y, $ind + 0y 0583 -ay, Stnzg’:-aus'nbcosb\ (36)
+ '13(-%2' sind ~q,,cosd & Sind = 0

This equation cannot be solved as it stands. It would have to be supple-
mented by an equation in & . However, in tke following we shall show
that, if we can approximate 3' and Z>° by some known quantit»ies, and 1if
we consider & as a rapidly rotating phase, the averaging method of
Bogoliubov and Mitropolsky can again be applied and Equation (36) reduced

to a solvable first-order differential equation.

From the linear theory, we have for the nutation frequency, in view

of Equation (21):

& Opa an)

Because this does not depend on the aerodynamic derivatives, we can

assume that the nonlinear aerodynamic uffect is also small and that
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Equation (37) holds also for Equation (36). In cteady-state glide phase,
[} ©

L
& =0, In the transient glide phase, & changes like the slowly-

changing Q4 . Therefore, we can assume that:

IS N << Il Cogy + Uy ) S (38)

Furthermore, it is easily justifiable to drop the last term in the first

line of Equation (36) because

Hay-2s, )cosd sindll=lllay; au)'z sinda << I1-23 4 ayli=lla Jkas)

With those simplifications, Equation (36) reduces to

Qa Q .
Vi = (Gu s‘V\zb 4+ 033 CDSlb - A 87\'\26 - _.3.‘ sin bmsd \ ‘1
Qs Q3
" (40)

1% 4 An 3 2
( Om Sin'd + Ons sin & cosd ) )

This equation is similar to Equation (12.24) with the rapidly rotating

phase & . We abbreviate:

dn , -
s = Nzt ) (41)

and express the rate of change of the phase by

b2y \ CO:;(I’)
—_— = = e 42
51 Cipy A o (62)

where, in view of Equation (12,9), the large parameter beacomes:

. ‘
= =t )\ (43)
‘ I

The time-dependence of Equation (41) is due to the Q - %3, and %3‘

X A
l=-"f‘*/“‘°55

in Equation (40), As in Section 12.3, this is a "slow" time-dependence,

and, therefore, the results obtained there can be carried over directly,
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Corresponding to Equations (12,40) and (12,41), we introduce the trans-

formations
; IR - ~ _ o 1)
‘ TN 4, nw&m{‘c"'h(ﬁ,’t)wsn$+ Fa (], snn b&ﬂ)(xz’ (44)
T 1
5=&+ U(iz) (45)

which generate the averaged equations (see Equations (12.42) and (12.43)):

o\ (FTLY s[5 96, L)

g__g 7 lwn(;) .L) »
; oy o ls @

when the following Fourier expansion was used:

< ' ~>
NGB, 7,0 = Nyt L { Rl ) cosnB + G, () siam b} )
=
To determine the Fourier coefficients, convert the powers of the trigono-

metric functions in Equation (40) into multiples of the phase angle & ,
and compare coefficients of the same harmonics with Equation (48), The
result is:

: N, = { (Otya + Oqq ) Ay am O E”‘ _3 tu p3 (49)
b 2oy I RURGPT it TR ) Ml Qs

] Fz = —1“ { L‘alt+a33)QI3+al!§q+
Loy,

b
w

»)-
O

~

a .
~S2

(50)




| o e A RN € 2N

CHAPTER 13 159
QS\ ~ 1 ra t N3
G, =-L 42 ~ 1 T3 (51)
t 2 QA rl' 4 023 Q
I
E o —-= = (52)
4 8 al'& rl.
G, = L 3 (53)
4 [ an

Substitute Equations (49) through (53) into Equations (44) and (46):

(A 4a‘~{(au‘b‘ Yy ] 3) 0523+ (0,40, Ja40,)749,1 XW%E
(54)
> o \
-3217_}:{%‘-' 0 ok d +q, Fsinkd S +0 (ﬁz)
—'3 201‘5 “.\C(u‘f 033) Oy - ahl ~% (}1\ &
(55)

6a 3 “( C“““t&“l’s*“hl%u 2%"51‘\"’3 (%7.)

Writing out the individual terms yields the final equations:
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+“(’Cﬂ*+0n£)?}+ Cfd; )ﬁ-* 2 ( "{3}“——'\7“:)“ Singgg" (56)
i

-1—‘%(%’)); {\J d QCos‘rZ>+--Cu Qsm‘#?:&*-o{{n\

(57)
=3z T
l Vu I {i‘dl[’; 4 C i):—i} +Cl(3ﬁldh/33 -20“[16‘!6’53\‘%3* U(L‘l)

The equations above were arranged in the following way: in Equation (56),
the terms between the first pair of braces are the sacond hatrmonics, and
the expressicns between the second pair of braces are the fourth harmonics
of the first-order corrections of \'L . The averaged equation of motion
of the cone angle, Equation (57), displays the zeroth order approximation
within the first braces and the first-order correction between the second
braces. From Equation (55), we see that the accuracy of the zeroth

o I, -
approximation depends on the nutation frequency &= Qaq = _-_—\3' Wn - The
greater the moment of inertia ratio %/i and the spin rate (-3,‘ , the
better the approximation, An estimate of the error incurred is obtained
from Equation (56), In the sequel we shall first investigate the zeroth

order approximation and then look into the possible error,
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The simplest case is obtained if all nonlinear terms are drop;;ed:
et ) (dgad VD -l R 6®)
'l. Z}ali\} (P+ ) {(S/& {8

The root of this equation agrees with the real part of the nutation root,
Equation (22); i.e., the decay of 1 equals the exponential decrease of
the envelope of the nutation mode. This result was to be expected if the

averaging method is a physically justifiable process.

Now we consider the nonlinear zeroth order approximation:?

. _ _ ]
~-.l._\'i{ ' w 1 ~1§ (59)
171 /‘22} [lceg‘,‘*ch_g)i ’C(.ﬁp]'l,‘ 8 dl(g/s-;'l

and note first that it is independent of dupz ; i.e., in the zeroth

approximation, the effect of C‘hpg cancels over one nutation cycle, A
°
necassary condition for the existence of a limit cycle is ﬁ"- 0 and

r’i*o . yielding:r

I

{

"1 _ (CQB{ ML)?—%P (60)
Le Cra

Only the real and positive value is physically of interest. To determine
whether a limit cycle will actually occur, the stability at ILLdmust be

investigated. We have the simple condjtions

fgfi. < 0
M la
Ll o
(')7. W

where Equation (59) furnishes the relationship:

stable limit cycle

(61)

unstable limit cycle
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oid v l T, z
- - =, ad )¢ (62)
~ 1 e +Cna A ¥
'D!L L M I\' {’ T (n‘\ k
which is according to Equation (22):
?—'E— = _.2% - 163)
[LARY "

Consequently, the conditions expressed in Equation (61) are equivalent to

%‘N >0 stable limit cycle
(64)

§N P unstable limit cycle
By stable limit cycle we mean that any solution of Equation (59) tends
toward the limit cycle, provided it initiated closely enough to iLC .
If the limit cycie is unstable, the solution wilrli diverge from it, no
matter how close to ?iLC it ériginated. Summarizing, we state: the neces-
sary arnd sufficient condition for an MR to experience a nutation limit
cycle is that 'fiw , evaluated from Equation (60), has z; positive value

and that the nutation root is unstable; i.e., §N>0 .

Next we want to show that this :ondition can only be satisfied if the
linear Magunus moment derivative Cl‘:: is negative. The damping deriva-
4 - . -
tives d(n and C.v,'t can only be mnegative. In oxder for EN to be
positive, d‘a must be negative. If d( A is a nonlinear function of {5
I W
+

in the range I 20°, a negative d(lf)p will be accompanied by a positive

and, thus, Equation (60) has a positive value,
4’
Up‘
~
The cone angle of the limit cycle, Qu -, does not depend on the

_ ~
state of the planar trajectory. Therefore, once it has reachad ’hc ,

an MR will maintain this cone angle, even though it might still be in
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the transient glide phase. Consider Equation (59). The rate of change of
®

a" in the transient glide phase is proportional to the only variable Vn .

o
~o

The higher the velocity, the greater N .

In general, it is undesirable for an MR to nutate in a stable limit
cycle because it is detrimental to its performance. A properly designed
MR must satisfy two conditions: the limit cycle is unstable, and the
nutation root is stable. Both are fulfilled by §N< 0O . Then any
nutational motion of the spin zxis will converge into a horizontal
attitude. To avoid a limit cycle, the designer can choose a configuration
with positive CU . However, because these shapes are not very common,

Sp

he might accept a negative C'td but assure a negative ?N value by

A
increasing theI.a’ L ratio or providing larger end plates to increase the
aexodynfmic damping derivatives. We conclude that it is very important

to assure a stable nutation mode. 4n unstable nutation mode will either

lead to a limit cycle, if d‘ﬁ:) is sufficiently nonlinear, or to a diver-

gent nutation and an ensuing tumbling motion.

The zeroth approximation predicts a circular limit cycle; i.e., the
spin axis moves on the surface of a circular cone., To estimate the devia-
tions from the circular motions, we consider the seccnd harmonics of the

first-order approximation of Equation (56) and write them in the form

Te “'iw{ L+Acosla + Bsin 18 k= ?I:Ld{u Fsin (QZ-UX\& (65)
where:

F = (Ai"t— |l )1/1

. X o= {—an‘l 8 (65)
7 A
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7 o2
A M T i ~ 1 (67)
T (T}) Gy po1 (C"P * 7 G Tac |
IRV Y -
YA S I T, A | ~1
A (f )an}azf[( d‘P*C‘“ﬁ)T\&+ClGP+ECIQﬁ3wl (68)

From Equation (65), it follows that the maximum deviation is given by ¥

and occurs at 2054} = ¥ or

L -1 8 69
Lot = (69)
A A

We now extend our investigation to include the effect of the nonlinear
er L
the nonlinear terms %l\ . (}ll’ 33‘ , and %31 are taken to be different

~
éman i

damping derivatives d 5 and This means that, in Equation (31),

from zero. The analysis proceeds just like in the first part of this

q °
section, lowever, we have to deal with the & and A.}‘\‘sexpressed in gyro-
mechanical angles that are guite awkward. To simplify the expressions, we

o °
restrict the validity of the ensuing equations to cone angles 2 CQL 207 ,

Then we can use the approximate relationships:

$3 - _ Q}é?’ S;n32> 7 (70)
@3 = - rf‘ & st (71)

After averaging the equations over one nutation cycle, we obtain the

result equivalent to. the Equaﬁions (54) and {55)
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{ i ;i'* Zj;a;’i{(u:’"{* 21, 33‘ ;i,s) c0528+[((-au+ an)au.; au) ',‘1".'.

+ ((~3u+a%z)ais“‘%u\)ﬁs] Sinz.g— (72)

l v ~ PRy SIS g .‘.L
3 a},{%z‘ sk -[(%u*‘a;,_)a;—fau]ylgsln %S*r V] ( xz)

:_"G'I “Z-CLT £ [(au* “n)azs’“ulﬁ*%u‘blﬁ‘g s -%U};ﬁ& )

v
(73)

131;5'{3{[ (-ontag,)a,, au.h W 2[(‘3"‘*%“) a“m“\a" g,;f* 0 ({h)

The underlined terms constitute the effect of the nonlinear aerodynamic

damping, Like before we can find a limit cycle at

(74)

T
- A iy
Le C

g (0) (3] (cipr o)

if, and only if, the right-hand side is positive and the nutation xoot is un-
stable. Compare Equation (74) with Equation (60). We have stated earlier
that dlk'» 3 is positive most of the time. Therefore, if dﬂ‘;""d";}l ’
are positive (i.e., if damping diminishes for higher nutatioun rates), the
cove angle of the limit cycle is larger than that given by Equation (60).

For increased damping at high nutation rates, the limit cycle will be smaller.
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14. COMPUTER SIMULATIONS AND TEST RESULTS

In this chapter, the dynamics of actual Magnus rotor flight models
are investigated, The basic configurations are shown in Figure 1.1, and
they are classified by the form of the cross-sections as cylindrical,
triangular, and rectangular Magnus rotors. Some sample trajectories
are calculated, using the equations of motion from Table 12.1, as pro-
grammed for computer in Appendix B. The mass and aerodynamic input data
are given in Appendix C., Wind tunnel data from NACA Langley, Aerojet
General, and Arnold Research Organization are used to obtain the aero-
dynamic derivatives. To validate the aSsumptions of the previous chapters,
order-of-magnitude comparisons are made of the pertinent terms. Finally,
the Magnus rotor models were flight tested, and the results are correlated

with computer simulations,

14.1 COMPUTED FLIGHT HISTORIES

The calculations of the trajectories and attitude motions are based

on the equations of motion (Table 12,1), with the additional simplifying

assumptions that the aerodynamic coefficients and the air density are

censtant, This implies aerodynamic coefficients independent of the Reynolds

and Mach numbers and a short flight during which the zir densicy does not
change appreciably. Because we are mostly concerned with transient and
short-time attitude motions, the last assumption is not very restrictive.-

Moreover, the computer program is easily extended to include a variable

o
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density atmosphere. To limit the calculations to the incompressible
flight region is a more serious restriction. It had to be made to
simplify the calculations and because of the lack of reliable transonic
and supersonic wind tunnel data. The justification for neglecting the

dependence on the Reynolds number will be given next,

Extensive studies haQe been performed to investigate the Reynolds
number effect on externally drivem, smooth cylindexs, e.g., those of Van
Aken and Kelly (26) and Swanson (27). Van Aken and Kelly shew that the
Magnus 1ift coefficient is sensitive to changes in Reynolds number if (i)
the test Reynolds number is close to the critical value of the nonspinning
cylinder, and (ii) the tip-speed ratio is below 0.6. The critical Reynolds
number for smooth cylinders is approximately 4 x 102, ihey explain this
sensitivity by the flow separation on the bottom and the top of the cylinder
caused by the flow transition from laminar to turbulent and vice verse.

For tip-speed ratios above 0,6 and at high supercritical Reynolds numbers,

no Reynolds number effect was observed.

The MR's investigated in this chapter have a steady-state Reynolds
number between 105 to 3 x 10° and a steady-state tip speed ratio between
0.4 and 1.2, In the transient glide phase, we experience a Reynolds

number range of 104 to 106 and a tip-speed range of 0.1 to 20. Thus,

" the MR's are well within the critical range. However, because an MR is

never a smooth cylinder but always has sharp driving vanes, no laminar
flow is expected to develop and no flow transition can occur. Therefore,
even fof low Reynolds numbers? the MR should fly supercritically, and the‘
dependence of Fhe aerodynamic coefficients on the Reynolds number can be

neglecﬁed. The limited wind tunnel tests that have been conducted support

this assumption,
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The purpose of this section is to provide a broad sample of flight
histories for the reader so that he can develop a "feel" for the flight
dynamics of MR's, Table 14,1, page 173, summarizes the computer simula-
tions. The MR's are the same as the models used in the flight tests.
Their most important physical characteristics are included in the table,

For mere details, refer to the run sheets and drawings in Appendix C.

The tirst flight histories, Run 13, simulate a typical low speed
release of a rectangular MR from a helicopter with a transient nutational
motion about a horizontal axis. They are graphed in Figures 14.1 through
14.4, Flight speed, glide angle, and spin rate are highly dampened. A
small overshoot occurs first in the flight speed, which causes a delayed
overshoot in the spin rate and the glide angle. The transient nutation
is also dampened with an increasing cyclic frequency according to the
increase of the spin rate. The vacuum approximation for the nutation

frequency, Equation (13.37), is in real time:
Qg =5 = o (1)
N 1 R

It correlates very closely with the actual nutation frequency of Figure

14.4. The Rectangular MR | has a steady-state lift/drag (L/D) ratio of
A

2.16 and a steady-state tip speed ratio UDSS of 1.13. It is the best

performer of all shapes investigated in. this report.

Its high transient spin-up potential is illustrated in Figures 14,5
and 4.6, The initial linear and rotational kinetic energy is converted
into potential energy, resulting in a full loop. This Computer Run 15

simulates the launch of an MR with overspin from an aircraft. It is

assumed that the spin axis is rolled 3 degrees from the hcrizental., The
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ensuing lateral motions are shown in Figure 14,7. To show the influence of

the deceleration of the center of mass on the stability, as discussed in

Section 13.2, the equations of motion were solved again i~ Run 23, but with-

?

out the acceleration term V, I Vo . The result is a more stable lateral
motion. Therefore, in agreement with Section 13.2, the effect of the

decelerated centec of mass is destabilizing,

To show that an accelerated center of mass is stabilizing, a typical
flight history is graphed in Figures 14,8 and 14,9, Run 25 is the solu-
tion of the complete equations of motion, while the acceleration term has
been deleted in Run 24, Much effort was spent in Chapters 3 through 10
to derive the perturbation equations of an MR about an accelerated refer-

ence flight. Figures 14,7 and 14.9 justify the travail,

Refer back to the end of Chapter 6 for the definition of a positive
spin axis. The MR is said to be launched with a positive spin 1if the
angular velocity vector has the same direction as the spin axis. All
pre-spun MR's are launched with a positive spin because, in the other
case, the driving vanes would de-spin the MR immediately, causing it to
tumble until it reorients itself and picks up positive spin. On the
cther hand, an MR can be released with a positive or negative horizontal
linear velocity component. 1In Computer Run 15, it is positive. This is
the normal case. It is also called the "lift-up" launch, because the
1ift force initially points upward. A-launch Qith a negative horizontal
lianear velocity component is i:he "lift-down" case. Figures 14.10 througﬁ

14.12 show such a "lift-down" flight history. The initial conditions are

those of Run 15, except for a negative horizontal line.r velocity component.

The effect can be seen in Figure 14,11. As a charged particle in a magnetic
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field, the MR is subjected for the first two seconds to a centripetal
force, the Magnus lift, resulting in a near circular trajectory.
Because the overspin is so high, it loops again before reaching the

steady-state glide phase,

Next, we simulate the flight of a triangular MR in the Figures 14,13
through 14,15, We assume that the MR is launched with a high horizontal
linear velocity component, low spin rate, and a roll angle of 3 degree.
The MR rapidly picks up spin and climbs to approximately 30 meter above
release while losing much of its velocity. Consequently, even though the
spin rate is still high, the Magnus lift force is small and the MR starts
descending towards its steady-state glide phase. The Triangular MR 1 is
not as good a performer as the Rectangular MR 1, 1Its steady-state values
are L/D = 1,50 and ‘2)‘5 = 0,77. The attitude motions, Figure 14,15,
exhibit a transient nutation that is quickly dampened out. The xoll and
yaw angles reach a steady-state value of #,:-0.\3— degree and jh,= 0.20
degree, This means, according to Figure 13,1, that the MR is heading in
a new direction with its spin axis still horizental. A check is provided
by Equations (13.5) and (13.6). The change in heading angle LE is cal-

culated from:

5 - (42 a2V @

A simulation of the release of a cylindrical MR is shown in Figufes
14.16 and 14.17. It is launched with a small linear velocity and a high
spin rate. Because of the high moment of inertia about the spin axis, the
Cylindrical MR 1 loses its rotational speed only slowly. 1In Figure 14.16

the steady-state values are not yet reached. Thay are: Vssz 231 m /$cc
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Wy = 1574 RPY ;X‘ss--lc-’z.'&" . With a L/D = 1.10 and (f)“ = 0.53, the
Cylindrical MR 1 is the poorest performer among the three shapes investi-
gated so far. It was also assumed that initially /3 = 3 degree. Because
- of the small linear velocity at launch, the sideslip vanishes quickly,
After 1.5 sec of flight time, it is below 0.1 degree. The effect on the

roll and yaw angle is negligible,

So far the aerodynamic stability coefficients of the MR's hehaved
sufficiently linear to be represented by the linear stability derivatives
only, Now we shall investigate two Magnus rotor shapes whose rolling
moment coefficients exhibit a nonlinear behavior at the origin. They are
the cylindrical MR without end plates and the rectangular MR with cut-off
end plates. The nutational motions in steady-s.ate glide phase are simu-
lated for each shape with two different moment of inertia rations ¥ lI‘i'
First, we choose for the cylindrical MR 4A, T,IB = 2,19, which, according
to Equat"ion (13.60), results in a limit ¢ycle with Q'Lé = 12,5 degree,
‘The result is plotted in Figure 14,18, 1In particular, note the circula}'
motion as predicted by the zeroth order approximation (see Section 13.3).
The corrections are indegd small., Furthermore, in good agreement is the
approximated nutation frequency .Q-N= 9.63 CPS, as calculated from Equation
(1), with the exact nutation frequency ‘Q;N"’ 9.80 CPS from Computer Run 30.
In Section 13.3 we stated that one way to eliminate the limit cycle is to
decrease the ratio i/I‘ . Figure 14.19 shows the result for I‘Lj = 1,28,

. The other possibility is to increase the damping by end plates. This was

demonstrated by Computer Run 40,

A similar result is-obtained for the rectangular MR with cut-off end

plates. The noncircular end plates lower the aerodynamic damping and
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generate a nonlinear behavior of the rolling and yawing moment coefficients.
Equation (13.60) predicts a steady-state limit cycle at Q&d = 1,36 degree,
wihich is in very close agreement with Figure 14,20, We also notice again
that the limit cycle is very nearly cirszular, as predicted by the zeroth
approximation. A decrease of ‘the I ’13 ratio to 8,50 dampens the nutation
cycle., This is demonstrated by Computer Run 37 in Figure 14,21, using the
initial conditions of Run 36. The other method of eliminating the limit
cycle (i.e., the increase in aerodynamic damping through larger end plates)
leads back to the circular end plates of the Rectangular MR 1, as exempli-

fied in the Figures 14,1 to 14.4,
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FIGURE 14.3 TRANSIENT NUTATION OF RECTANGULAR MAGNUS ROTOR 1.
COMPUTER RUN 13 ’
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FIGURE 14.18 STEADY.-STATE LIMIT CYCLE OF CYLINDRICAL MAGNUS
ROTOR 4A. COMPUTER RUN 30
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© FIRST CYCLE
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FIGURE 14.19 DAMPENED NUTATION CYCLES IN STEADY-STATE FLIGHT OF
CYLINDRICAL MAGNUS ROUTOR 11. COMPUTER RUN 31
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FIGURE 14.21 DAMPENED NUTATION CYCLES IN STEADY-STATE FLIGHT OF
RECTANGULAR MAGNUS ROTOR 3. COMPUTER RUN 37
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14.2 VALIDATION CF ASSUMPTIONS

. Let us go back to the earlier chapters and scrutinize the assump-
. tions in view of the flight simulations of the previous Section 14.1.
In Chapter 2, the basic Assumption 3 can be directly related to the mass
; parameter pu= Imn /SS‘L , as it has been done in Assumption 5 of Section

12.4. The individual values for our Magnus rotor models satisfy the

condfition O'Lp)é 107' , as shown in Table 14,1, Furthermore, a check
shows that Assumptions 3 and 6 of Section 12.4 hold for all computer
simulations. The justification for Assumption 2 will be part of the

following outline.

e T

During the derivation of the equations nf motion, we have made several
order-of-magnitude estimates to simplify some of the terms., The more im-
portant ones are summarized in Table 14.2. The first three estimaves

3 .
should be greater than 100. The next order-of-magnitude term relates to

S0 (1 d
Equation (10,25}, which includes the unknown term 8‘[=fe uY,, . How-

- (e
ever, from the previous computer runs, we know that ¥, changes slowly

T s Rl

_ o
for most parts of the flight. Therefore, the perturbation ¥ is also

a small term. To verify Equation (10.25), it is left to show that

6{50‘(‘,& is large throughout the trajectory and in particular at the
maximum value of %n. . Where the largest 80‘6" can be expected, This
' value is given in Table 14,2, The ordeér of magnitude requirements on
: 7’the remaining estimates are only 2 |0 because they are used to arrive

at simplified formulas, which can always be checked out by the exact

computer calculations.
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As a sample we use three computer runs, Run 13 represents a typical

drop test, while Runs 15 and 40 give some extreme release conditions. In
Table 14.2, the minimum values of the order-of-magnitude terms ducing a

particular run are given, together with their times of occurrence. Run 13

fulfiils ail conditions. Two of the order-of-magnitude estimates in

Fun 15 ané six in Rupn 30 are not satisfied, But in all cases this is

due to the extreme transient behavior and lasts only a fraction of the
total flight. The closer to the steady-state glide phase, the better the
conditions hold. Therefire, even though the order of magnitude estimates

are not satisfied throughout, computer Runs 15 and 40 simulate the

flights of the respective MR's accurately enough.

At the conclusion of Section 13.2, we introduced the two-degrees-of-
freedom lateral equations of motion to study thé nutational motions. The
simplifications wére based on the assumption that {3=-—4~. To validate
this assumﬁtidn; the initial conditions of Run 13 were chosen so that
only the nutation mode wouldibe excited, 7The transient time history of‘S
and Ak are shown in Figure 14,4. Because the initial conditions were
not matched exacrly, a constant l% value of 0.1 degree is superimposed.
If we disrégatd this effezt, ﬁ and -}b are equal within 3%. An even
better agreement is found in Run 30. There is no constant Ma and (5’-:—11}1

within 0.5% accuracy. In Run 36 15 and —A} are within 3%,

An important assumption that leads to the one;degree-nf-freedom
equation of Section 13.3 is exoressed in Equation (13.37). Table 14.3

compares the approximate and exact values, They lie within 2% of each

other. An equally good agreement of the transient nutation frequencies

is given in Figure 14,22,
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B T NUTATION FREQUENCY (CPS) FROM
RUN 8 = ajz COMPUTER RUN
30 9.63 9.80
3 17.08 16.90
36 3.33 3.36
37 4.36 4.40 3

TABLE 14.3 STEADY-STATE NUTATION FREQUENCIES
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Finally, we want to show that the zeroth order approximation of the

one-degree-of-freedom equation of motion, Equation (13.59), gives an

accurate account of the nutational motions. The test case is the pre-

dicticn of a limit cycle.

We refer to the Figures 14,18 and 14.20.

In both cases the nutation angle calculated from Equation (13.60) is

within 3% of the value obtained from the exact Computer Runs 30 and 36.

Furthermore, the zeroth order approximation requires a circular lLimit

cycle,

This is well demonstrated in the Figures 14.18 and 14.20,
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14,3 FLIGHT TEST RESULTS

The flight tests were conducted between June 1968 and Jupe 1970,
The test area was equipped with two man-operated turrets to track the
:flight models., One turret carried a high-speed 16-mm Millikan movie
camera with an 800-rmm telephotvo lens. The angles of the turrets were
recozded digitally in half-second time intervals and fed into a computer
to yield space ccordinates, velocity and glide angle. To obtain the

artitude angles, the film was processed through a photoanalyzer.

Prior ts each test a pilot balioon was released and tracked. The
ralloon data were used by the computer to correct the MR tracking results
for ti.. mean wind. The flight models were launched from a hovering heli-
copter either by hand or by a so-called jo-jo method; i.e., a canvas
wragped around the MR provided the initial spin rate. This limited the

release conditions to low speed and small spin rates,

Several error sources must be considered when interpreting the data:

1. Human error. The turvet operator follows the MR through a
monocular with a solid view angle of 0,6 degree, the same as
the angle of the 800-mm camera lens, No corrections are
made -if the model is not centered on the film.

2. Mechanical error. Backlash in the encoders and gear boxes
amounts to approximately 0.3 degree.

3. Wind error. Changes in wind speed and direction during rest
and local gusts cannot be accounted for,

4, Helicopter downwash error. At release the helicOpte; rotor
biades induce a downward velocity on the MR, No correction

is made for this effect,
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5. Photoanalyzer error. The two attitude angles A\\ and ¢ are
projected on the plane film surface, A separate estimate of

4\ and ¢ can only be made with an error of 25%. However,

¢ for the nutation and limit cycle tests, only the projection

of the nutation cone angle ll on a plane is required. If
the MR flies ctraight towarde the cameraz, this angle can be

measured within - 0,25 degree.

Thirty MR's representing ¥ different types were drop tested. The
best test of each categdory was analyzed. They are summarized in Table
14.4, &he n~urpose cf {iie tests was to validate some of the theoreticzl
predictions, to show the influence of end plates and moment-of-inertia
ratios, and to develop test methods to determine the nutaticnal damping

derivatives.

To achieve the proper moment-of-inertia ratios, various materials
(aluminum, steel, Srass, acrylic plastic, styrofoam) were used to build
the flight modeis. Great care was taken to avoid mass unbalances. In
Models RECT. MR 1, CYL. MR 1, and CYL. MR 3, a special impulse fixture
was added to induce a nutational motion. The impulse was generated by
two cylindrical tubes, located at both ends of the MR normal to the spin
axes, containing one to 2.5 grams of black powder, An electronic timer

. fired two MK 1 Squibks, which in turn set off the black powder charges.,
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The first fiight test resul¢s are shown in Figures 14.23 through
14.28, together with the computer simulation Run 19. A disturbance was
introduced through impulse fixtures at 13.5 seconds into the flight. The
{nduced nutational motion was analyzed from the film,andrgraphed in
Figure 14.28; it produced a 77 drop in the spin rate (sge Figure 14,24),
Its influence on the flight speed and glide angle, Figure 14.23, is less
certain because wind, mechanical, and human errors can introduce an in-
accuracy of the order ¥ 5%. But the result of the analyticgl irvestiga-
tion 3eems to be confirmed because the effect of lateral perturbations on

the reference flight is small,

All results of the fiight test of July 26 (Figures 14,23 through
14.27) are in good agreement with the computer simulatioq. This is due
to the relatively wezk wird (12 ft/sec) blewing from the turrets to the
helicopter and the fact that the RECT. MR 1 fiew straight towards the
camera, such remaining only a short time in the downwash of the heli-
copter rotor. A transient nutation was also observed and recorded in
Figure 14.27, The computer simulation shows a slowly changing rolling
motion superimposed over the nutational motion. The photoanaljzcr does
not allow thé extraction of such a slow mction from the film. Otherwise

the agreement of the nutational frequencies and amplitudes is satisfactory.

To determine the aerodynamic damping derivatives from free-flight,

the Induced-Nutation Method was tried out. An impulse is initiated during

steady-state flight and the nutational response analyzed (see Figure 14.28).
The time-tfo-halve-the-amplitude, *“N , and Equation (13,22) yield the

damping derivatives:
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- -
dtf,*‘cu,: - _%_ {Cg, 138 v .T_‘é \ 3)
9 b tu, )

The result, C$ﬁ'*(j“ﬁ = -21,4, agrees well with NACA's value of -19,82
measured in the Langley Stability Tunnel., Notice also the constant
rnutation frequency throughout the decay. This confirms the linear

perturbation eguation as a good model of the flight dynamics.

The effect of cutting off the end plates at two sides is given next.
We tested two models with different moment-of-inertia ratios, the Rect-
angular MR's 2 and 3. Because the aerodynamic coefficients behave non-
linearly at sﬁh11.§ideslip angles, the possibility of limit cycles must
ke investigated. According to EqJ;tion (13.60), the Rectangular MR 3
is not capabie of a4 limit cycie (See Figure 14,21), I1ts moment-of-
ineitia ratio i Ifg is too law and its nutation mode, EquationA(13.21),
is stable., This was confirmed by a flight test. The transient perform-
ance is given in Figure 14,29, An increase in thei:(f%\ratio leads to
a limit cycle. For the Rectangular MR 2, we calculated Mg = 1-36 degree.
The flight yielded lch'= 1.25 degree as shown in Figure 14.3G, The
measured frequency of 3,75 CP5 also compares favorably with Simulation

Run 36, Figure 14,20, of 3.36 CPS.

31 Figure 14.31, the flight test of the Triangular MR 1 i8 compared
with the computer simulation. The wodel disintegrated after 9 seconds of
fligbt time. Except for the spin history, the correiation is poor. This

is probably due to the strong winds of 35 ft/sec during the test.

[
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To obtain the unknown damping derivatives for the cylindrical MR with
end plates, the induced-nutation method was used. Figure 14,32 shows such
a typical transient flight performance. The correlation of the calculated
with the measured flight speed is poor because of human error during the
early tracking phase. Figures 14,33 and 14.34 give the decay of the nuta-
tion mode for the Cylindrical MR's 1 and 3. Using Equation (3) we obtain
dlﬁ 4 C‘.‘R = -35 from Figure 14,33 and -27 from Figure 14.34. The mean

value -31 will be used,

Without end plates the cylindrical ‘MR exhibits a nonlinear behavior
of the rolling and yawing moment coefficients, For i‘1}= 1,28, the nuta-
tion mode is s.able (see Figure 14.19), and no limit cycle is predicted by
Equation (13.60). This was confirmed by the flight test of the Cylindrical
MR 11, Ics transient performance is corxrelated with the computer simula-
tion in Figure 14.35. Again, because of the high winds, the glide angle
and the flight speed do not check out well, 1If the ilf‘} ratio is increased
to 2.19, a 1limit cycle exists, as shown by the computer simulatior, Figure

14.20, and the flight test result, T'igure 14,36.

There is an alternate method, the so-called Limit-Cycle Method, to

measure damping derivatives from free-flight tests. It’ can ber used if,
through proper choice of tlie i’f,} ratio, the MK performs steady-state
limit cycles. The limit cycle cone angig r(w is measured and the damping
derivatives are evaluated from Equation (13.60) :
’ = * 2
Cos+C,. =£-{C'q'3 +i€£&ﬁk %)
P n I} I 8
From Figure 14.36 ve obtain for the Cylindrical Magnus Rotor 4A without

erld plates: dcﬁ 4+ Ch,t = -3,2,
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FIGURE 14.24 SPIN RATE OF RECTANGULAR MAGNUS ROTOR 1. FLIGHT VIST JULY 26. -
SIMULATION RUN 19




ST S TS SR e

9

N

1

CHAPTER 14

61 NNY¥ NOILVINWIS 9T ATINC

1531 1HOIN4 | JOLOY SANOVW YVINONVLIOIY 40 ANOQLOIIVIL ST VL IANOI

2z
o\l ¢ boo:
o\ 4 6 ~oQ
o] o\ w
a (o] /O\ Al
(o .u\o\\o.n
|
'd
8u\o\w_ cl
'g\\
3INVBYNLSIA” n@_@ ,
278 gy
o @
6 QO 8
A —oo0I
o @
c®
NOILVINWIS ¥3LNdWOD B ..%
iS31 1H9NN4 © g
c®
2
23S 1=4
- 1 i |
00€ 002 00!

SH313W - X 3JONVY

SH3IL3IW-Z dON¥G IVIILY3A




vy

T

CHAPTER 14

173

200

t=1.55 SEC

It +1.00 SEC ELAPSED TiME FROM RELEASE

FIGURE14.26 TRANSIENT NUTATION OF RECTANGULAR MAGNUS ROTOR 1 WITH
INITIAL CONDITIONS FROM FLIGHT TEST JULY 26. SIMULATION RUN
19 .
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*IGURE 14.27 TRANSIENT NUTATICN OF RECTANGULAR MAGNUS ROTOR 1.
FLIGHT TEST JULY 26.SIMULATION RUN 19
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FIGURE 14.28 INDUCED NUTATION OF RECTANGULAR MAGNUS ROTOR 1. FLIGHT TEST JULY 26
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HGURE 14.30 STEADY-STATE LIMIT CYCLE OF RECTANGULAR MAGNUS ROTOR 2.
FLIGHT TEST JUNE 30
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NUTATION FREQ. 3y *9.0 CPS
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FIGURE 14.33 INDUCED MUTATION OF CYLINDRICAL MAGNUS ROTOR 1. FLIGHT TEST JUNE 10
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FIGURE 14.34 INDUCED NUTATION OF CYLINDRICAL MAOGNUS ROTOR 3. FLIGHT TEST JUNE 30 -
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15. CRITICAL EVALUATION OF RESULTS

The contributions or this report are in two areas: the formulation
of flight dynamical problems in general and the flight dynamics of Magnus
rotors (MR) in particular, As is 50 often the case, the general formula-
tion evolved from the specific requirements of Magnus rotor dynamics:
the reference flight of the perturbation equations can be under accelera-
tion, nonlinear aerodynamics must be included, and many coordinate systems
are involved, Tensor algebra is the natural remedy for too many coordinate
systems, It presents the equations in an invariant form, valid in all
coordinate systems. In flight dynamics, most coordinate transformations
are time dependent, To preserve the invariant form of the equations of
motion, the rotational derivative was introduced to replace the ordinary
time derivative, Then, for instance, Newton's Second Law can truly be
written in an invarient form for inertial or noninertial coordinate

systenms,

The tensor formulation of the perturbation equations is carried out
as far as possible, leading to a generalization of the classical small
disturbance method and to 2 particularly convenient series expansion of
the aerodynamic forces. No restrictions have to be placed on the refer-

ence flight. It can be accelerated or decelerated,

The state-of-the-art of Magnus rotor dynamics has been advanced in
several respects., The perturbation equations of the steady-state glide
phase are extended into the transient glide phase. The nonlinearities of

the aerodynamic forces are taken into account by derivatives up to the
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third order. A simple theorem states which derivative must vanish because
of the mirror symmetry of MR's. This considerably reduces the number of
derivatives. A one-degree-of-freedom perturbation equation is introduced
by combining the roll and yaw angles into the single nutation angle and
using the method of averaging. With this equation, necessary and suiffi-
cient conditions are derived for the existence of nutational limit cycles.
Other intuitive concepts have been given a sound mathematical basis: the
effect of a noncircular moment of inertia ellipsoid can be neglected, and
the influence of the rapidly rotating angle of attack is averaged out over

one revolution, ,

To back up the analytical results of this report, an extensive flight
test program has been conducted. Two ﬂew methods proved to be successful
in determining the otherwise diffiéult to obtain damping decivatives,

They are the induced-nutation ané the limit-cycle methods. The first

one requires Some external energy source that induces a nutational motion
in szeady-state flight, while the second one can be applied to MR's capable
of limit cycles by the proper choice cf the moment of inertia ratio. A
good correlation was obtained between the analytically predicted and the

free-flight limit cycles.

The agreement between the simulated trajectories and the test results
is only satisfactory. This is mainly due to the high winds encountered
during testing and mechanical and human tracking errors. A more accurate
trackipg facility should be used for further testing, and the wind should
not exceed 5 knots. Also, the acquisition of attitude angles from high-

speed film is not accurate enough to determine the roll and yaw angles
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separately, The MR should be equipped with on-board instruments such as
accelerometers vr gyromagnetic sensors, and the measurements recorded on

the ground.

The accuracy of the computaer simulations depends on the quality of
the wind tunnel data. Because of the high spin rate, the aerodynamic
coafficients of an MR are difficult to measure. Improved testing methods
should be developed. 1In particular, more transient wind tunnel tests
should be conducted., They would provide a better basis for the formula-
tion cf the transient behavior of the aerodynamic coefficients than has
been attempted in Chapter 11, No theoretical analysis of the aerodynamics
of MR's was conducted., This is an area which requires more research. It
is particularly important to improve the understanding of the airflow
around MR's and to derive methods for the theoretical evaluation of aero-

dynamic derivatives,

Except ‘or Section 12.4, the ideal MR pcstulated by Assumption 2 of
Chapter 2 occupied cur interest throughout this report. Such aber;ations
as configurational and mass asymmetries were not discussed in detail,
Recause ihey usually are small, they can be treated as external disturb-
ances of the ideal MR, Their effect should be studied further. An

especially fruitful area of research'méy be the resonance instability of

MR's.

The general tensorial formulation of flight dynamics, as outlined in
Chapters 3 to 5, was successiuily spplied to the dynamics of MR's, This
method should also bz smployed tc formulate the flight of missiles and air-

planes and thus be developed inte a generai tool of flight dynamics.
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NOMENCLATURE

Vector in Euclidean three-space, Lower case

letter,

Second-order tensor in Euclidean three-space.
Upper case letter,

Right-handed orthogonal Cartesian coordinate

system called B.

Components of a vector or tensor expressed in

L)
the ] -coordinate system,
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Trans formation matrix of coordinate system']B

with respect to coordinate system ]A .
Frame A, Upper case letter.

Frame A during reference flight,

Frame A during perturbed flight,

Point A. Upper case letter.

Displacement vector of point B with respect
to point A. Arrow points to B.

Rotation tensor of frame (B) with respect to
framé ).

Skew;symmetric angular velocity tensor of
frame (B) with respect to frame (A).

Time derivative., Operates on the components
of a tensor.

Time deriyative;7dynamic—normalized.
Rotational time derivative with respect to

frame (A).
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Rotational time derivative, dynamic-noxmalizead.

Absolute value sign and matrix norm,

Aix frame.

- Center-vf-gravity offset along spin axis.

Center of mass of Magnus rotor.

Body frame.

Body frame during reference flight.
Body frame during perturbed flight.
Span.

Chord.

Aerodynamic force coefficient vector.
Aerodynamic moment coefficient axial vector.
Drag coefficient. 7
Lift coeffictent,

Magnus 1ift coetficient.

Accelerating spin torque.

Damping spin torque.

Axial force coefficient.

Side force coefficient,

Normal - force coefficient,

Rolling moment coefficient,

Pitching moment coefficient.,

Yawing moment coefficient,
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Cog2=0 6,
Cap = BC. /9
Cops = 2k (94
= 0C[Dep

Cpa = 0Cy | 2ep’
C'y.,;; =9C, [ ek

.,4-; = '()% IDCRQ
c‘p 1= 0[O écp G
e, ’:,-a‘c‘ 3% &,
C'pu- 2%, /0/8 ben
C =7 %, [9p Beh?

P
d

3&)

D

Sice force derivative,

Cubic side force derivative.
Magnus moment derivative.

Cubic Magnus moment derivative.
Yawing moment derivative.

Cubic yawing moment derivative.
Roll damping derivative.

Cubic roll damping derivative.

Yaw damping derivative.

~ Cubic yaw damping derivative.

Mixed linear roll damping derivative.
Mixed guadratic roll damping derivative.
Mixed linear yaw damping derivative.
Mixed quadratic yaw damping derivative.
End plate diameter.

Rotational derivative relative to inertial
frame (I).

Drag force,

Second order unit tensor.

Earth frame, A

Aerodynamic force,

Gravitational force.

Fodpier coefficients,

Earth aﬁceleration constant,

Fourier céefficieqts.

Noriinear aerodynamic functions,

Reflection tensor.
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Moment-of-inertia tensor of body (3) referred

to center of mass B,

Transverse moment of inertia.

Spin moment of inertia.

Dynamic-normalized transverse moment of inertia.
Dynamic-normalized spin moment of inertia.
Angular momentum of body (B) relative to inertial
frame (I) and referred to the mass center B,
Axial vector.

Reierence length,

Lift force,

Lift over drag ratio.

Aerodynamic moment. Axial vector.

Magnus rotor.

Mass of MR, ‘

Mach number of reference flight.

Order of magnitude.

Linear momentum of body (B) relative to

inertial frams (X).

Perturbations ;f the angular veldcity components.,
Dynamic pressure.

Rotation tensor éfithe«pertﬁrbed stability frame_
relative to the reference gtability frame,
Reference frame.

Reynolds numbeé of reference flignt.

Réference ares.

Stability frame,
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Displacement vector of element £ relative to
point B,

Summation sigh over a continuum,

Roots of nutation mode,

Roots of undulatioﬂ mode,

Time.

Dynamic-normalized time,

Aero-normalized time,

Perturbations of the linear velocity components,
Flight speed. 7
Reference flight speed.

Steady-state flight speed,

Flight speed perturbation.

Velocity vector of center of mass B relative
to air frame (A).

Velocity vector of the center of mass during
reference flight, B, , relative to the
inertial frame (I).

Weight of MR,

Wind frame.

Body axes.

Stability axes during pcr;urbed flight.
Stabiliﬁy\axes during vcference £light,
Yawing axes,

Line of node axes.

Nutation axes.
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Angle of attack.

Dynamic-normalized spin rate during reference
flight.

Angle of sideslip,

Glide angle,

Glide angle perturbation.

Complex angle of orientation,

Perturbation -symbol.

Pertutbationvsymbol.

Body angle.

Cone angle.

Mass parameter.

Air density.

Node angle.

Time parameter.

Roll angle.

Roll angle referred to earth frame.

Yaw angle.

Yaw angle referred to earth frame.
Skew-symmetric angular velocity tensor of
perturbed stability frame relative to
inertial frame, 7
Axial vector of LSI-L?(E)} .

Angular velocity axial wector of body frame (B)
relative to air frame (4).

Perturbations of angular velocity of frame (S)

relative to frame (I).
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Spin rate, Component of the angular velocity
vector along the spin axis,
Dynamic-normalized spin rate during reference
flight,

Tip-speed ratio.

Aero-normalized spin rate during reference

flight or tip-speed ratio.

Perturbed flight.

Reference £light,

Steady-state flight,

Aero-normalized.
Dynamic-normalized.
Averaged value,

Transposed.
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PROOFS OF SECTION 3.3

PROPERTY 1: The rotational derivative of a vector [p] relative to a

frame LR‘ is a vector; i.e., let (P_ﬂ and (_?1) be any two frames

Hf
tion matrix (T} , then

[5® 517 - (117" (B p)F
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M n
3 with the associated coordinate systems ] and 1 and the transforma-

1)

i PROOF: The proof will be carried out in subscript notation with summation

~derivative:

convention., We shall use the following notation:
- : .
] P" -~ [P] arbitrary vector
P; <o [P]R components in ]Q-coordinate system
~ fi R\ ,
Pi — {P] components in ] - coordinate system
= 2 R
pi «— [P]h compounents in ] - coordinate system
R, e [n]\'l vector fixed in reference frame but orherwise
d -
arbitrary ; gpl. = 0
- HR
{-;‘- > (T transformation matrix
f.l.‘ > [T }RR transformation matrix
. . — - = ¥
j % - = e MR MR
— ¢ bk < [T1T = (1™ (1]

|

S tan) = (V- d (5 F-
dt (Pt NL) C-i-'-c (Pt ’1( J T (Px R\)

To prove Eguation (1), we will generate a scalar l’);n; and take the time

(2)
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Expanding the first relatfonship of Equation (2), we obtain:

d _3d . - o = (3)
nLdéPL“PuEﬁ_nu"’ g,g;Ps
vhere we used the fact that J; is a vector fixed in the reference frame,

. o
i.e., ;; e =0

Ry = Iul ) & %)

and substitute into Equation (3):
o d . Q‘_- — i T /0!__-' . 7 5
G- (dtk'k()Pwnc *{:si\\',:Ps)’h )
Because M| is arbitrary, we get:

d

ai= (;—‘(iu;\ﬁk *Isi (%f)s\) (6)

Multiply and contract

T = %)
Sip = g kg

on hoth sides of -Equaticn (6)

1 . T.(2¢ - F.(<a 8
8 Sip = t 8 (5 l('\\’Pk +3g; b (& Ps) @
Thus
d T lasx T (dt x| *
G- Edan Sl SRy ®

The second relationship of Equation (2)

d a o= = S
& i) = 5 (fi ) - - 10)




-

~

T ey Y T T R
A : ~ v .

)

v

b cn sk #

SRR IR e v

APPENDIX A 221

yields a similar equation using the same procedure:

] ‘Fo k s

d T ld= 1 (4
arfe = tu{a% Pa -'-f;(i (&

leal |

Set Equation (9) equal to Equation (11)

5‘{0* Ps g (dk hﬂ”’“ 3 ) M{df Pat Lno kde kPJ ) PP\ 4

Multiply and contract kk( on both sides of Equation (i2) and introduce

¥ - -
- AY
%h = {&{ ng (13)
We get

d(- Pe + t d& bui P* { { Pn+ ‘*fn)( Jcm) ‘) 5 (14)

which, in matrix notation, takes the form:
dp AR poaRr(di ARy (F o qfiR)dy R aferd ity R
A e (G ) = 4 o TG T ) &<1s>
This can be written according to Equation {(3.19):
[B(“)plﬁ = v " [B“‘)pl (16)

which is exactly the form of Equation (1),

PROPERTY 2: The rotational derivative of a tensor U’} relative to frame
QZ) is a tensor; i.e,, let () and (fi) be anyrtwo {yames with the
. ) " 1h : X
associated ccordinate systems ] and and the transformation matrix
R
QT] , then

-—
=

(p@p1® = (117F [ o®p1f (1) RET an
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PROOF: The proof is similar to that of Property 1. As additional nota-

tion, we need ounly Q;i , a tensor whose components are time invariant

with respect to the frame Q’l) , L.e., dg; Q;A‘ = Ois

We form a scalar with the twice-contracted product of RJ and Q;s

and take the time derivative

& (Pinn)=g (P s ) =S (B B:)

at VPR ) = g UH R =g LR e (18)
Expanding the first relationship of Equation (18), we obtain:

.. d 5 d =
Q‘l CT; ') Qlw\ St pl\m kV\ vy an (19)

Take the time derivative of

Ruw = & {“i Ri; (20)

d = 1 .(8 L. a1 \1I S .
dt Runw = {{'\,} Al ehl\ + La‘i {'—\d) ¥V\3 Q\‘ ) (21)
and substitute into Equation (19). Because Qi; is arbitrary, we get,

in view of Equation (20):

do. 1 .7.d5 . T : \s 1.5
&P = bty TP B (& B VPt (G Fii) by P (22)

Multiplying Equation (22) by

8[’1 = tn‘o | ST 6;‘] = ‘ES} *s‘ ' ; - (23)

and contracting yields:

C% pf ; ‘\, r{cﬂ 'P(m-l» tl( (d( &:“‘5 pkh* ' An (qy t‘ ) (‘\n k (24)
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The second relationship of Equation (18)
4 hrg) - 8 (BRy) @)
St T TN TR B

yields a similar equation using the same procedure:

3"* PM= ‘EM:.QP {:lT* 51,,,-&-"(“(%:@\(;) 6‘("-# P c% (‘n\“) Emsk (26)
Set Bquation (:%) equal to Equation (26), multiply both sides by taq R‘, ,
contract, and introduce

» - - * T =

tog =~ {'c«; {'sq, 5 {-"t = tbp ‘tkp @n
The result is:

= Pat ty (Bt P 4P, (580 By = 5

_ L 3 " a = = d - e = _d_ o= -
- tb& {'as {d—c— pt»s + ¢ &n (a {‘mA Dos + ’PM (a{- f,m\ {,.,, X
and in matrix notation:

& P14 (1] (g 1R e + 1P1® (&™) T
| (29)

This can be written according to Equation (3.20):
- -—- - =T
[B®p" = (T1"M [PW D]h \T]HH 7 (30)

which is exactly Equation (17).

PROPERTY 3: If the allowable coordinate systems are righi-~hand orthogonat

Cartesian coordinate systems, then an axial vector N.] has the same
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rotational derivative as a regular vector; i.e., let Q“\\ and (E\) be any
. . R A
two frames with the associated coordinate systems ] and -\ and the

. i (11
transformation matrix , then

lp®@ 1™ = (11FR 1B @ P 1)

PROOF: It is sufficient to show that, if P.‘; of Equation (22) is a skew-
symnetric second-order tensor, say L-ii , Equation (22) can be reducad to

Equation (9) with axial vector l; . Rewrite Equation (22) for L?i :

di.._ L ... 47 I T .d7. [d \-
Introduce the definition

L,‘" = C;jp ,Q(: . L = éi(’ 1() (33)

into Equation (32):

dy T T F 97 .%5 R 34
51"5 de !lo = {?vs)tl; eln_-‘c“’ L‘_* E 1 {h«d 4( .F.“) 'S (34)
To reduce further the second term on the right-hand side of Equation (34),

we use the transformation relation

~—

Cpan = [+ ST Eam Eicm (35)

Multiplying both sides by fr‘ + and taking the time derivative yields:

£
gkun{ Eki at {’ cit hﬂ) b, \ = H\ Eijs d{» kns, (36)

Substitute Equation (36) into Equation (34)

a T T - T == -_— . é_ —
C!jro-ng() = {'\m" l'“ EL““ % 114' ‘t‘ Ei)vs (d" (‘ns) l,t ' 37

and use the inverse of Equation (35)
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l -
- £
(5] iwaq

to combine the terms on the right-hand side of Equation (37):

Eijs = byt Bag (38)

.od = T . L ldr.L1ola1 V1
€‘H’dt‘ 1‘)= Eﬁh\} ‘:u\d Flt{a‘_)q.a‘*%}s(;ﬁ_ {"Rs\l,t\ (39)

In view of

giw} I’w’, ta = It Eijp t}(’ (40)
ve get:
d o JdT . T (4T \7

For right-hand orthogonal Cartesian coordinate systems, l;\ =+1
Furthermore, because i’i are free indices, there will be for each
p=1,2,3  a combination of (;} such that Eijp# 0 . Therefore,

Equation (41) becomes

—

o0

which is exactly in the form of Equation (9).

THEOREM OF TRANSFORMATION OF FRAMES. Let (&) and (B) be two arbitrary

frames related by the angular velocity tensor [..Q.(B)(M] . Then, for

any vector [p] s the following relationship holds:

[8‘“(}] = [%@p] + [Q@(M]!Pl (43)

where every term is a first-oxder tensor,
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PROOF: We shall use the following notation:

P‘. &> [P} arbitrary vector
ag vector fixed in frame (A‘) but otherwise arbitrary
bi vector fixed in frame QB) but otherwise arbitrary

& o]
F-\ o> [P] components in first arbitrary coordinate system ]
-

B A
i &> [P]h components in second arbitrary coordinate system ]

-

3’& components in coordinate system 3A associated with
frame (A\ ; note: %E\ =0
. ) ”
E b; components in coordinate system ]B associated with
da® _
frame (B) ; mote: b, =0
EFf - 1 N ’ h RA A
P = & B <= [l T
- ] A -
F Pi = Hi P; D — [P} = lT] [(’]A coordinate
. -=T trans formations
= 7 4 - 3 . n nn 7] ?
p. = &u buj Pu = ti Pu lP] ‘g\T]— [pl

; P = & P; — (e )

Equation (3.45) permits us to introduce the components of two angular

velocity tensors:

1

Jd ~ ~ @A) ™. 44 ]

abhi= K5 by ' “8 :
é ‘

d = = .(A“(ﬁ) . -

ar Qi = ‘Q'H- G N (%))

3 i To prove the theorem, geunerate two scalars Q;P; " and \o; (‘); , take their

time derivatives and add:
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-d- ~ d o~ D D ad a. o
dt CPL‘*JE’ ( . Pt) * (.a‘ () ) +d‘_* (_b‘ P‘) (46)‘
~ o~ d_ ~ d o~ [ R R ~ x
(a|+‘vg)d}r’;+ptd_+b‘x VO "'b( )d*p +P dﬁ’ Qa; 47

Substitute Equations (44) and (45) into Equation (47) and get:

~ o~yd s (D \d3S (A\(m*' ®)w
(0.4 b; \d-; pi’ (o-‘-(.lg‘ ) P Q p& Q{) ‘o“ (48)
This can be simplified, noting that each term is a scalar aznd that:

& 4 X ® = ‘s
Qe ﬁ_\‘sU(A) - 4 Q;i(ﬁ\(\) (49)

(ai+b; )d!—" = ((4.-(- b )cu» pi + (6‘4} +i:;)53;@m F{ (50)

We will express the first factor of every term as (0_.‘4 -l::.) , using the

appropriate coordinate transformations, and convert the arbitrary vector P"

into r)\‘) PL components by
N 1 s b oa
Pi= iP5 Po= RP | - ev
We obtain:
~ Ty litet d = 1 1y =
LaL*"L)“’li tii 3‘; fi + to &b ) P \ =
) (52)

@I =
"‘(C‘L*b l«{t‘ "z‘r,%f); *{ Eﬂr‘":'#)p: .QB(; 3§
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Becausa a( and L’L are the components of arbitrary vectors contained in

(A) and Q}) , respectively, (aUEL) are the components of an arbitrary

vector, From Equation (52) it follows:

5 d us()-
(%Pl"'('l‘(d QJ\-)PJ = kk({d‘ Pk +£“‘(q+ ]._) ( * '\ (53)

and in matrix notation:

2 LP]'_& ™ (G 1™ [p]ﬁ =
(54)
= = = > T = / = L
- & A" + 1170 (G ") ip1 lQ@“‘]hlpl k
which, in view of Equation (3.19), becomes:
[8(‘*p]ﬁ = [T]Rﬁ{ lb(‘”(, e Lq®w R lp]g & (55)

o
"N , .
Because ] and -] are arbitrary coordinate systems, we can write Equation

~ (55) in the tensorial form of Equation (43).
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APPENDIX B

COMPUTER PROGRAM MAGSIX

The equations of motion of a Magnus rotor in perturbed planar glide
phase, Table 12,1, were programmed in Fortran IV for the Control Data
Corporation Cémputer CDC 3150, 1t was assumed that the air density and
the aerodynamic coefficients are constant, To solve the differential
equations, a fourth-order Runge-Kutta method was used because it is
stable, self-starting, and adjusts the time increment so that a specified

upper error bound is not exceeded (see Ralston and Wilf (28)).

The functional operation of the program is shown in Figure B.l.
The main prcgram MAGSIX reads the data, controls the computational process,
and writes the headings, input parameters, and initial conditions., The in-
put data are given in the dimensions Kg(mass), m, sec, while the calcula-
tion is performed in dynamic-normalized (DN) units. To convert from one
system to the other, the subroutine CONVERT is used. The actual calcula-
tions are executed in the subroutines RKGS and FCT, They start at the
initial time specified by PRMT (1) and proceed in time intervals not to
exceed the value PRMT (2) until the final time PRMT (3) is reached. Then
the cottrol is transferred back to MAGSIX for new input data. The results
of the calculations are written by the subroutine OUTPUT in row form,

following the initial conditions.
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SUBROUTINE
DATA FCT
MAIN PROGRAM SUBROUTINE
MAGSIX —» RKGS
I A_ALZPRMT(2) <1F
4 t<PRMT(2)

\ !
N_/

SUBROUTINE ,- fe—— SUBROUTINE
~.CONVERT ', _ OUTPUT
\ .

1

——

| PRINTED OUTPUT

HEADINGS {
PARAMETER
INITIAL CONDITIONS

NUMERICAL RESULTS ’ /]

— —

e

FIGURE Bl MAGSIX FUNCTIONAL ACHART
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Table B, 1 summarizes all the required input data, The accuracy of
the computations is controlled by the upper error bound, PRMT (4), and
the error weights W(1); I =1, ..., 10. At each time step the total error

is calculated by the formula

o
5 = llb_ 2. Wilr) AP(T) (8.1)

I=]
If 3>PRNT (4), the time interval is halved and the calculation repeated.

The number of these bisections is given on the print-out in the column
IHLF. The maximum error incurred at each time step by the 1's state
variable is

— L 15 -«

E(T) &€ — Prny (4) ®.%

- W (3)

Some of the symbols used in the program have already been given in
Table B.1. The remaining definitions are collected in Table B.2., The

Fortran IV statements follow on pages 234 through 238, with the first

portion of a print-out sheet on page 239,
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RUN No,:
IDENTTF ICATION:
MAGNUS ROTOR PARAMETERS CONTROL PARAMETERS '
« *
| SYMBOL | COMP.SY| VALUE | DM, GOMP.SY. | VALUE , DIM,
K RHO KG/M || No. of Equations | NDIM 10 -
! s s M2 |l Initial Time PRMT (1) DNT
</? RL M i| Final Time PRMT (2) DNT
1 ' i
Cm bogw KG || Upper Time Incr. PRMT (3) DNT
| | ' :
I THOL | KG M2 {| Upper Error Bd. PRMT (4) s
!
1y SMOT KG M2 T
INITIAL CONDITIONS | ERROR WEIGHTS
%o Gss ! DEG
= U sYM. |co.s| VALUE | piM. [syM.} vaL) pmm,
D -
;C Ve |[PCL) ¥/SEC |AV, 1.05 |DNL/DNT
LA 0(2)
¥ W Yo [P DEG | py, |.049| RAD
c@3)
? Ha Wy |P(3) RPM A, | -001 |RAD/DNT
d W = A {r®) DEG AP .2 RAD
' Yp c(5) <
. ¢ {rpe5) DEG {Ad |.2 | mrap
C}ﬁs | c(6) a . o
- ‘ < $ Irce) DEG/SEQ Ad | .05 |RaD/UNT
Lia @ C(D) o
“A A ey DEG  [AMp|.2 | RaD
Cep  c® = - o
v ( - A [p(8) | DEG/SEQ Affs | .05 |RAD/DNT
Laas ! CO) ' M
C“P; 2 X  {P(9) M ax |1 DNL
lﬁ') i C(10) ta A
= 2 |P(10] M AT |1 DNL
C‘&p’f c(il) i ~-
ot
Cra ag| c012) < |l REMARKS:
() -
rP =
dn{; C(L3) - * COMP.SY, mcans: Computer Symbel
(-4
Cnp | cas) a
Q
dﬂ{sa Cc(15)
[ |
Cpas | c@ie) A
nA3 3
dnﬁ“ ()
Cugpr| €018)
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APPENDIX B
SYM. COMP, SY. EXPLANATION
Bss GSS steady-state glide angle
Vo VSS steady-state flight speed
 od TAU time parameter
I TMOIDN transverse M,0.I. dynamic norm,
T—y SMOIDN spin M,0,I, dynamic norm.
Vr VR flight speed
¥n GAMR glide angle
p BETA side slip angle
¢ FHI rolling angle
< PHI.
K PSI yawing -angle
M PSI,
X XX range
> YA vertical drop
0o WRAN tip speed ratic
DNT dynamic-norm. time
- DNL dynamic-norm. length

TABLE B.2 COMPUTER SYMBOLS

233
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My FURTRAN (4eU)/7MIUS Gos19/70

PROZRAM mMagy] X
CIMENS TN Y(lu)09(10)9UtRY(10)rpHMT(?)oAUX\B'IU)9AAA(§G)
COMMON 3MeRHI s3I R ¢ TMUL93MOT 9GS50 GeBMUVSS s TAUY TMGIDN,SMOTDNSC(18)
CyACCEL
EXTERNAL FCTouulP ’ .
1 CALlL 9kEEWN
READ (20911) 1au
COTICLC o) o £ JFCAE (U
e READ(els1F)ams
RERAD(90G0L0) 095,90 e MO sSMUL2OSOs (C(I)eisl9id)
FEAU(OUs18)wdive (Brtt (L) e ]=]9e)
FEAU(OGSIa) (Y1) aDERT D) sI=] oNDIM)
ECCEL=S0.
RESS=085%( 404 /45
€=9.8U6b
cMUS (2,%eM) /7 («=UPSURL)
CumMla3In(653)
LuMZ=ak> (LUM])
CuM3ssenp epayyurz/sell)
vSS=SakT (Cuvd)
TausarL®ki/vd>
TMGICNETMDL /7 Lamd (T oMy ) #E2)
SMOIDNSSIELT/ (aM® (QLYDMU) #u2)
CapL CONVERT(FoYolonvinm)
PRITE(Elolb) [RINGBARIRAIZGSS4D9VSES KLy TAUIBMyBMU4TMOT, TMOIDN,
CSM0I9:FU1UN’(C(i)o1=§9l5) i
WRITELEL 1) (R tD) 4 Y (i) 0 =1410)
WRITE(6LlyiN)
CALL RROSIPRETSYoDERY onDiMy THLF 9FCToyUUTPAUX)
Cagl REL{3TIve)
il Feomatiled
le FORMAT (RURLI
15 FOGRMAT (FZU.0)
1o FORMAT (legbXobel,2)
1> FORMAT (cF2(ot)
16 FORMAT (lrloGAsen FUN WU 9129904107777

C/e9rm RhC =stlu,ceeir AG/CUM 5SS *9Elu,296M DEG o

C/.yp $ =stlU,cocyr dum vSO =eb10,206n M/SECy

CFegr WL Sotivectrcyrm M ) TAU =+tlye2e6H SEC o

C/ Sk bF =sEluececun AG g BHMU =4t10e2y S
C/y9H TMUL =9k ibacreur KpoSOM TMquu S9E1Qecy .
C/e6m  SMUT =eklu,cré0n Rp,56M SMOIDN seel0,20//77 )

C/q8H CO =sE1G,zomn Clw =24E10.,2,8H CMA S’EIO 2sgH  CMDw s
Cﬁlo.dvﬁﬂ _CYe =4E10e2+8n (CvyB3 80510.2v/o°H CLbw =¢E10.29

CEM  CLP =4El0.20ar "CLB3 x9E}0s2+8H CLP3 ssEl0.298H CLB2P =,
CE10e298H CLBP2 =9E10e29/98H - CNB %¢E10,298H CNR =3g]10e29
CEHN _ CNBI =4E10,248F CNR3 29€10.298H CNB2R x9E}Q., ZeaH CNBR2 =,

CE10e2077/7/7)

17 FORMAT (20X420H ANITI“L CONDITIONS 47/ ) )
C/e20X99n VE 2,E1UsCsl6H M/SEC  VHON =9E10,209H DNL/ONT ,
C/’ZOX",‘H GAM:{ 2.E&1»002'16H DEg = R G‘"n :’E’IOQZ.’QH R‘U T 9

C/s201896h wh SetiVecrlon KPM wRON 29E10,2¢91 RAD/DNT
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‘ Cif?ﬁioﬁﬁ

Cl/ec0Xoon-

C/e2CXGF
C/e20X024H
C/e20X95H
C/120X9OH
C/yelXxoint

EETA i.EIU.Z;léH
PH] =,E1054916H
Prnle =yEivecoloh
PS] =4tlvecoibN
FS5I. =4ElDe2016M
Ax SetlVecoritr
{i syElVecolonm

DEG

ogb
LEG/SEC
veoL
DEG/SEC
™

"

BETA

PHI
PHI.

PSI
PST.
XXON
ZZON

» 235
24E10,2¢v9H RAD .
29E10,209m mAD ’
=’£10.2|9H RAD/DNT ’
Sot10,299H RAD ’
=4E]J0,2+94 RAD/DN" ,
=’§-10.2'9H DNL ’

£4£10,299H DAL

N
I8 PORMAT (JF1e&Ureo2r THAGECTOKY AND ATTITUDE MUTIONS OF THE MAG

1y

iv

100
ivl

raU

z0]

CCoa Xy THUEG/SECe/7/)
ISEC=1TIME/LVUO-
IMINSISEC/60
ISECSFLUAT(I5cC) =60 c®FLOAT (IMIN)
CRITE(6ly19) f1iNy]DCy
FOPMAT (1ekIrunnIng Tie l3y9n MIN ANDO [3ean SEC)

to 70 )

CaLL rREDLITIME)

STOF
END

- SUBROUTINE CuvveNT (P oY 9 wCODEINDIM)
CIMENSIUM PL1y)eY(dU) ek (L0)

ComMmMON EV,RHU’SoRL’TMUIo:MOIvﬁssoﬁoBMUoVSS’TﬂUtTMOIDN,SMOIDNoC(18)

CeACCEL

el s -

FAD=5T7,2958 » all)=i/veS 3 A(2iS1/PAD % A(J)STAU®0.10472
E(4)z]l/RAD 3 A(3)= L/HAD » A(6IZTAU/RAD % A(7)3]/RAD
F(8)=TAU/mAD > A(9)31/(BMUSRL) § &A(10) =1/ (OMUHRL)

CU TO (180s2Uu)wColt

Lo 101 1slewy: -

Y(I¥sP(l)®a(y,

rETUSV

FETURN
ExD

Lo 201 Is)ewasl~
Fenysy(hyzae

)

NUS R
CCTGRe/ /7 e 22y LUFDYN e olURMe 43Xy oHACTUAL 14 X9 2n XXy BX s SHZZ 43X EHVR , 3Ky
CUMGOMR bR e Zhwrg X g 4rVRUINYSX g 4HWRDN 94X s o HWRANI SXSGHBETA (SX 9 IHPH] 95Xy
CIHPSIvoAsamPRI s TXxs4NP O] e 93X 9 4HIHLF ¢ /94X 94nTIME JBKy4HTIME /7 94Xy

CIHDNT ¢ JUA 9 3nSECoEX LRMIDAY [HM9 A9 SHM/SEC Y 3A 9 SHDEG s 3X 9 3HRPM 9 3X 4 THUM
CL/DNTebr KBD/7UNT R RAU/ZANT ¢ 3R 93HUEGe9X 9 3HLEG B X9 3HDE G 6 X THOEG/SE
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SUARLPUT [l s (P T Yy QESY oNOIMy IHLF +FCT o uu TP AUXT "

CIMENDT I v (1Y eubu (1) edUA(Eel) vAla) o (a) o {9} oPRMT (]}

[.'\) 1 I:llVOI’ﬂ

fuxtds iz, ghnonnordueny ({)

FRMT (D) 3V

AzPIMT (L) & ArduzprMilc) 3 HSPRMT(3) » CALL FCT(X9YsDERY)

IF (Mo (XEND=X) )39 3/9c .

“(l)-o“ P A(c)=e2923732 » A(3)=1,7071vuT 3 Afe)s, 1 6060667
E(1)=3(9)=22,u } o(c)3ui3N=],0 T

C(l)sL(»)-o 5> ¢ ((2)3.¢9d0932 % C(3)31.707407

€9 3 I=leniw

PoX(1eIdsY(l) » Aus(del)SVERY(])

G aX(3el)=a0k(PeilsVev

[25C=u b azme~ 2 [FUF=3=] IsTeP=1ENU=0

[F((KomeXenn)#=) /4843 T

FIAENU=A

(£ Ws1

CalLL wuUTP(KaYoimmyslney g dUIMePRMT)

[C (24T (o) e janran

Iresir=o

ISTEP=I>TEPe) £ Uz

AJza(J) v HY=J) 2 wusC(Y

LY 1l [=ien0)

»lsHOUESY () 3 <Zz3u® (nl=pJRAUX(69]))

Y(I)SY{E)err? 5 lz=2evrlenry

A (nell=AA(set) endd=CuPr]

I (Je")idyineis

vw3Jel -

IF(d=3) 13v1ee. 4

Azhe 01 <

CALL FCi(aevyoeutdY) 2 vu iU 10

1 {1TeST) inelnely

ECRIR G AN I RO

A 4040021 (]) .
[TEST=] » InTr~zSiePe alEveg

fALFElRere] 5 ASAer D nIentm

€119 I=ledusd

T(I)=AUA(I o) 2 VE~(D}=AUK(291)

A xlorlI=ajalsey)

i) TO v

{4n0=15ic~/7?

(F(1STE e, =y "Il )cleZasey

Call FOIENeY e YY)

S 22 13 s

RyL{oe}d=sr(])
8Tl sunRY
vy TGO Y

C”LT-U .
'-‘) 24 180wy )
UkL‘-«Cu"A\A\“OL;VHLD\AUQ(“'I)GY(I))

LR LT == Tow) J v d¥eg

[9(InLP=1u) 2043028 )
. ) 3§
) 27 1Fpeta |

-Mx(m'l‘i-uux( 1) i
FaTeP=]sT-vel~irPan 2 azavn § lENUZ) 2 GU TU 1Y

Catk P e nYy
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LY 29 1=leniy T T
Ay (lel)sy () = Ayslessy=uery (D) b AUXA (3ol )=AuX (09 ])BY(I)SAUK (S ])
JF CerY(I)SAaux(/v}, -
Cal VUTP (AwriaY s I8 [RLF 93D IMoPRMT)
IF (PRMT (b)) eUs3usay
0 U0 31 [=lenDln
Y(;)-“UA(LoI)
3i RY(1)=Aux(241)
IREC-IHLF T N Toommn s T e e e
IF (IEND) 32032939
J¢ lAaLF=lnLFeyl 3 ISTEP=IsTeP/2 % HzH +H ) T
IF(IRLF) 4433033
Jg I*0D=18Tery/2
Ir (ISTEFP=[MUU=110D) 4934 09
=% [F(DELT=e02¥P~Vi(5)) 3093044
29 I-LF=lHLF=1 » STEF=idier/e » ASH4H » GU Tu ¢
<5 IHLF=11 » CatLe FCTUXoYeDERY) % GU TO 39
37 In F=i2 » U 10 39
a5 ImlLFzl3
39 Call UUTY (KeYsDzRY s LNLF 9 NUIMyPRMT)

WU REFTORN 7 ) ot S

EnD

‘uqﬂouTIwi FCT(AayenEAT)

LIMENSTuN YL )'UFHY(tu)
COVMON nM.%ﬂu--vﬂLol“gloaﬂﬂloebs b.bMu,VbSOIAU,TMGIuN SMOIDNyc (18
~enCCEL

CERQY(L)SeC (1) *Y (])¥«2=(TAYRG/VOO)PSINIY (2))

CERY (2)3C(2) %Y (3) /eMU=T1aUPGeCOS(Y(2) )/ (VSSHY (1))
CeY(3)=C(#r{L}e®2/ (DMURSMULDN) +C(4)RY (L) #Y(3)/ (SMOTDON®sMU® L)
~Ll-'.'?vg@)i (=aCCha/Y (L) «Y(1)#C(D))#Y (o) er(0) *TAUPGHCOS(Y(2)) ¥y iD)/
ClUSSRY (1)) e TauvavS iy ()@Y (T)/Z7(VES¥r (1)) +C(0iaYTIT ¥y (4} ®43/p.,
LERY(D)SY (h)

;QY(a)~C(7)“Y(x)*v(J)°Yl“)/(T"UIUN°bMU*“eJ0&(5)“7&1)0y(b)/(1m010~
P*nuu““/)osmolJu“f(:)*r(d)/TMuIUNoC(9)°v(1)“Yc4)ov(6)*«3/(6.'T~UIDN
f“ﬁ‘U**Z)'C(ld)“Y(ﬁ)““J/(O.“Y(l)“TMOIuw“ﬂNu#oﬁ)¢C(11)0y(3)¢y(4)4¢2#
CY1BY/(be ¥ THOI N oML # 3] e 112) Y (41 8Y (o) #4297 (3) /(0o # TMOIUNSEBMy# 4

Y1)

CERY(7)=Y(H)

CERY() S (L/ T o fURYY LU LL3) %Y (1) 9824y (4) /8My © SMOTUN*Y (3)¢Y(6).
CLU14) Y (1) #Y () /nML¥¥2 » C(15)¥Y (1) sdavy(4)¥*3/ (6a%aMy) + Clla)*®
CY ()97 [, star ¥y 1)) c(17)91(1)“7(4)“»¢¢r(5)/(° eEMYB#2, »
CCLLB) #Y Lu) BY (<) %92/ (0o ¥nmMy¥e3))

LErY {9 SY-( 1) %00ty () ‘

CFRY(&O)-~V(L)“‘1N(Y(¢)) -
- hETUMIN - -

ol
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U T e g irtAG Y subrY s lnLF oND Mg PRAT)

LIMENST YOG ew (LU o LERY L)) 9 PRMT(T)

COMMUN At arry s o/ o THUT 0001 655593 eRMUs VSSyTAU TMOIDN SMOIONyC (18)
CeaCCtL

LCCEL=DERY (D)

T=Tauex

Capl CuNVERT(rFeYe2onul 4)

AWANSY (3)/ (mmu®y (1))

AEITE(OLe L R o tar(9) 9P (LU aR (1) oP(2) P (3) oY (L)Y (3] swRANIP(4) 9P (D)
G- (1) ¢P (D) sP(BlelnLt ’
2 FORMAT (LK0E L edoF 1UeurcFOeler lolodFOeeFu 9P BeoFBe3 3FBe292ELLe2
Coi%)

~F Tuhn

[

NO ERRORS
L0AD, 56
QUN1O
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RUN NO.: 1
IDENTIFICATION:  REGT. MR
MAGNUS ROTOR PARAMETERS CONTROL PARAMETERS
SYMBOL | COMP.SY{ VALUE | UIM, COMP,SY, | VALUE | DIM.
¢ Mo {1.225 | ke/M> || No. of Equations | NDIM 10 -
< ) L0468 | M2 Initigl Time PRMT (1) 0 DNT
| ey RL 0625 Iy Final Time PRMT(2) | 10 | DNT
m BM 150 | %6 Upper Time Incr. prvr(3) | 107t par
I TMOL | .0268 | XG M2 |{ Upper Ecrror Rd. PRMT(4) | 1.7¢] -
1y sMo1 | .oc4u | kG W2
INITIAL CONDITIONS ERROR WEIGHTS
Yoo ess  [-24.7 DEG ,
8YM. {co.S{ VALUE | pm¢. [sy<.l vaL) DIM.
Co c(1) 1.31 —
‘ Ve [P 16.6 {M/sec AV, |.05 |DNL/DNT
LA c(2) 2,51
d“ To |P@)]-77 |{DEG AY, | -049] raD
c) .508
Ha Wy P3| 850 |REM {4, | .001 {RAD/DNT
¢ C(4) -.450 »
Mad : «“ - .
z A lew)y| o |bEc D | .2 RAD
dW" c(s) | -3.82 <
» ¢ |y 3 |oee Jadb |.2 | o
C'.ms c(6) 0 A . °
c ' < 4’ P(6)] o DEG/SE]Q A | .05 |RAD/DNT
L2 c(7) -357 |
' A ey o o B | .2 RAD
Cep | c® |-5.82 | = . !
¢ - A [2(8)] -40 DEG/SEQ A4l | .05 {RAD/DNT
tAus| C(9) 0
“p » x |p@@| o Moo{ax .1 | pe
Cepa | cao | o m
¢ > 2 [P0} ¢ X 8% |1 DNL,
IGP’F Cc(11) 0 -
[
c‘,ﬂ al c2) | o < REMARKS ;.
7 Pr > Y f e o TN
C‘n c(13) -.737 — Aerodynamjc data from KACA
) N 7 . o Langley Stability Tunnel
Cn ~13.80 Test RM 8L 55 J 26
d"n C(14) : Hovewber 1955
nal c(15) 9
p wl
Cnig C(16) O -l
- L
c‘,,m cany | 0
A c(185 0
d“ﬂnt (185 ]
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RUN NO.: 15
IDENTIFICATION: RECH, MR 1
MAGNUS ROTOR PARAMETERS CONTROL PARAMETERS
SYMBOL | COMP.SY] VALUE | DIM. COMP,SY, | VALUE | DIM,
g RH10 L(GIH3 No. of Equations NDIM 10 -
~3
[ 5 - M2 Initial Time PRMT (1) 0. DNT
c/l RL . |M Final Time PRMT(2) | 5. DNT
m BM ~  |xc Upper ‘Time Incr. pReT(3) | 10"} | DNT
|1 THOL G M2 || Upper Error Bd. PRMT(4) | 10°5 | -
) [€3]
Iy SMOI @) xg M2
0 INITIAL CONDITXONS ERROR WE1GHTS
%, GSS DEG :
" SYM, |co.s] vaLue | oM, |syM.| vaL) pimM.
o c(L) -
Ve |PQ)| 100 {M/SEC AV, |.05 IDNL/DNT
Yo 122 o {DEG  |AY, |.049] RraD
Cha c(3)
Wy |P@)| 4000 |ReM  |Ag5, | .001 |RAD/DHT
Cuga | c@® »
a ] =z A 1pw@w) 0 |DEG Ap .2 RAD
Yr c(5) < ) . '
» ¢ 1r(5) 3 |oec {ad |.2 RAD
d%a c{6) a . . "o ,
C. < ¢ l26) 0 [pec/sed ad | .05 |RAD/DNT].
L8 c(7) o
‘A = 4‘ P(7) 0 |DEG AM\ o2 RAD
dl; c(8) - - . o
g i A 1P(8) 0 |DEG/SEGAMs | .05 |RAD/DNT
Wps| 9 ; | -
= n X {P(9) 6| M a% | .1 DNL
‘Cln‘;’w’ eoy | = b
4 > 2 |PQ10] 01 M A% |1 DNL
LR § C(ll) o)
lags S
Cra ay c12) S < (| REMARKS:
lor ! N e
c(13) -
4]
o e
Cna | caw "
C 2 .
v €(15)
p 3
dni, c/16) A
y <
Cugdn| €(18) )
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RUN NO.: 19
IDENTIFICATION: RECT. MR 1
MAGNUS ROTOR PARAMETERS CONTROL PARAMETERS
SYMBOL | COMP.SY{ VALUE | DIM. COMP.SY. | VALUE | DIM,
1 RHO 1.164 | ke/M® || No. of Equations NDIM 10 -
[4 s .0468 | M2 Initial Time PR¥T(1) | 0.238 | DNT
cld RL L0625 | M Final Time PRMT(2) | 6. DNT
m BM 1.50 | xg Upper Time Incr. PRMT(3) [10°2 | BNT
I TMOI .0268 | kG M% || Upper Error Bd. PRMT(4) |107° -
Iy SMOT .0040 | kg u?
”.7 INITIAL CONDITIONS ERKOR WEIGHTS
) GSS -24.7 | DEG -
d c(l) Sm. Co.s. VAI‘UB Dmo Sm. VAIJ. Dmo
o] i
/ Vo |P(D)] 8.5 |M/SEC [AV, |.05 |pNL/TaT
LA 0(2)
d“ ( Yo |B@) -85 {pE6  |pY, |.049] RaD
c(3)
e Wy {P(3)| 360 |ReM  |AZ | .GO1|RAD/DNT
Chgs | c® @
d z A P&} o |DEG AS |2 RAD
4p c(5) < .
H ¢ |pe)| -25 | jadbi.2 | rap
c‘*ﬁg c(6) a & °
< D IP(6) 0 [DEG/SEQ Ad | .05 {RAD/DNT
C(gﬁ c(7) o :
) - A leay] o joee sz | rap
lﬁ C(B) —t i s °
¢ — A |P(8)] 141 |DEG/SEG Ajja | .05 [RAD/DNT
A Cc(9
1op ) . » x |e@] 2 M fa% 1.1 | ow
¢ = e
£33 cqo) > f
» > 2 (FP(10] 20 M A% | -1 DNL
‘C‘& 1al C(i1) ~ .
¢ Pf i 1 % .
c(12) b < REMARKS :
A A ———
c’lw’ f‘i - < || e
p -]
Cn; C(14) .
Coaas °
" c(15)
ﬁ (=
d”r‘z‘ c(16) B
< -
¢ (18)
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RUN NO,: 21
E IDENTIPICATION: RECT. MR 1
E MAGNUS ROTOR PARAMETERS CONTROL_FARAMETERS
SYMBOL | COMP.SYJ/ VALUE | DIM. COMP.SY. | VALUE | DIM,
% RHO xa/M> || No. of Equations | NDIM 10 -
) g s T w2 Initial Time PRMT(L) | O | DNT
K
- c/i L M Final Time PRMT (2) 5 DNT
=
f m BM > K6 Upper ‘Time Incr.  |PR4T(3) | 1071 | baT
- (<4
I THOT G M2 || Upper Error Bd. PRMT(4) | 105 ] -
w
1y SMOL - KG M2 ]
" INITIAL CONDITIONS ERROR WEIGHTS
¢ ¥, Gss DEG '
1 33 .
) sve, |co.s] vALUE | pIM. |syM.] vALJ piM.
) c(1) — p
p Vo |B()| 100 |M/sEC |AV, |.05 |DNL/DNT
LA 0(2) )
a v Yo [P 180 |oE¢ Ay, |.049| RaD
c(3)
C"" Wy |P(3)| 4000 |REM AL, | .001 |RAD/DNT]
MgA C(4) “
di - A [p@| o e |ap .2 | R
Cup | c® <
v ¢ |»(5) 3 [vee  |ad .2 | map
d'ﬂ" c(6) a . o
p < ¢ )| o [pec/sedad |.05 |mav/pNT
L c(7) ot :
¢ “p A jead| o oz o]z | mwo
L3 c{8) « = . ,
y P S M |e@®)] o |DEG/SEQA4 | .05 |RAD/DNT
Liat] €9 )
© z ) X |P(9) 0 M 6x |1 DNL
C,‘ ﬁ‘) c{10) = x| : }
A o > 2 (p(10] o |II'M AT |1 DNL
“'ll:o/g'f c(il) H L
3 . H
Cra af €02 | 2 < || hmARKs: 5
dnp R IE = :
na c(13) @ H
"1
Cn; c(14) w
[~]
dn 3 Cc(i5)
A v 3
C’,,ﬁ, c{16) 9
d -
Q{17
Cugn| €18
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RUN NO,: 23

IDENTIFICATION: RECT. MR 1

MAGNUS ROTCR PARAMETERS

CONTROL FARAMETERS

| Cngal a0

SYMBOL | COMP.SY{ VALUE | DIM. COMP.SY. | VALUE | DIM.
1 RHO ) KG/H3 No. of Equations NDIM 10 -
[4 s “ M2 Initial Time PRMT (1) 0 DNT
- _
c/d RL M Final Time PRMT (2) 5 DNT
Z' -
m BM 5 ke Upper ‘Time Incr, PRMT(3) | 1072 | DNT
-4
1 | mor XG M? || Upper Error Bd. PRMT(4) | 1070 ] -
1y SMOT, 6 kG M2 ‘ -
= _ INITIAL CONDITIONS ERROR WEIGHTS
GSS @ DEG . 4
sy, |co.s!| vaLue | pm, |sw.| vaL) DM,
Cp c(1) —
Vo |P()} 100 |M/sEc [AV, }.05 |DNL/DNT
y Yo [B@| o {oEc  |py, |.049] Rap
c(3)
Ho Wy |P(3)| 4000 Irem  |a3, | .001 [RaD/DNT
w z N |rw@) 0 |pEG AP |2 RAD
dt’,; c(5) <
» ¢ |pG5)] 3 |oEec  |ad |.2 | map
d'ﬂ’" c(6) a . o
< $ |ee)! o [pEe/sedad |.o05 |Rap/oNT
Cepe plc® t
1 M. lecyi o joec  |omhl.z | map
Ces | c® | 7 . . .
& ' - A | 2(8) O |DEG/SEQALs | .05 |RAD/DNY
l,st c(9) 4
2 » X (P9 0 ¥ ax% | -1 DNL
Cepa | cao | = m
od > 2 [P0} 0 M. AT |-t DNL
Cya 14| cC11) "
o I I B
c'% Al c2) | < || RowRKs:
(o o n > '
d.\,, c(13) - -
’ 4
Cnp | caw e
[=]
du 3 | c{15) )
A ot
«

Cupar| ca®)
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RUN NO.: 24

IDENTIFICATION: RECL. MR I

L
T T e e,

MAGNUS ROTOP. PARAMETERS CONTROL PARAMETERS
SYMBOL | COMP.SY{ VALUE | DIM, COMP,SY, | VALUE | DIM.
%
g RHO l((l/l'(3 No. of Equations RDIM 10 -
g s - Mz Initial Time PRMT (1) 0 DNT
c/d RL M Final Time PRMT (2) 5 DNT
2 “
m BM - | KG | Upoer Time Incr. PRMT(3) 10"2 | DNT
1 THOL - KG M2 [| Upper Error Bd. PRMT(4) { 107°] -
Iy SMOT w KG M2
4 : = INITIAL CONDITIONS ERROR WEIGHTS
¥os GSS n DZC ,
a syM. |co.s| vaLue | DM, |[SyM.| VAL] DIM.
o c(1) o
p Ve |BQD 0.1 |M/SKC AN, |.05 [DNL/DNT
LA 0(2)
! dw , Yo {P@}- 90 |DEG  |pY, |.049| RAD
: ; c{3)
c"‘ ~ W, {P)}] 200 |RPM 83, | -001 |RAD/DNT
Ky A c(4) n
» div > A few| s o jap |2 | Rap
Y c{5) <
~ ¢ {r¢)] o |[oec Jad |.2 | map
E i d}p’ c{6) =] $ o
i : < $ |e@)| o [pEG/sEdAd |.05 |[RAD/DNT
* CL;,,, e)) o
- . A lecnl o foec  ja.2 | raD
Ctg c(8) - 7 . o
¢ , — Ar |P(®)}] O |DEG/SEGAM | .05 |RAD/DRT
A.3! C(9)
l""ﬁ z n x {p(9} O M {ax |1 DNL
.», Cpas [ caoy | = | w 7
3 A P ~1 e > 2 |p(l0}] O u AT i1 DNL
& S o1 ; :
] . I':i‘;f; (1) . :
}{‘?4 AL 0(12) [8) < w
2p P ” > ;
C.,p c(13) ”
o
Cnp | cts) .
b : Qa
] dhpl ¢(15)
: ] ) »
Cpas | c(18) -
17
Cugpr} ©018)
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APPENDIX C 249
RUN NO,: 25
IDENTIFICATION: RECT. MR 1
MAGNUS ROTOR PARAMETERS CONTROL_ PARAMETERS
SYMBOL | COMP.SY| VALUE | DIM, COMP.SY, | VALUE | DIM
1 RHO KG/M3 No. of Equations NDIM 10 -
) g s I Y Initial Time errcl) | o | onT
-l
c/} RL M Final Time FRMT {2) 5 DNT
m BM Z |ixe Upper Time Incr.  |PRMT(3) | 1072 puT
[+ = -
I TMO1 X M2 Upper Error Bd. PRMT (4) 10 > -
1y SMOT b kG M2
= INITIAL CONDITIONS ERROR WEIGKTE
Gss «a DEG -
a sYM, {co,s| vaLuE | pM. [swyM.| vaL) oM.
D c) g "
Ve |PQL) 0.1 {M/SEC |AV, |.05 |DNL/DNT
Tn {p@)| -90 |oE6  jpy, |.049| ®aD
Ch, c(3)
Wy |P(3)} 200 |ReM A | .00 |RAD/DNT
d z |r) 5 |oEG ap |2 RAD
Cup | c® p .
” ¢ les)] o v {ad |.2 | map
C'H" c(6) a : o
< ¢ Je@y| o [vec/sedad |.05 |rap/oaT
Cea pl e ot '
A lecn| o fpee [ smp|.2 | wap
6—'1; c(8) « =z . o
¢ - - A {p(8) 0 |DEG/SEQ Al {.05 |RAD/DNT
1A ] C(9)
UP B -
¢ : = « x || o ¥ Jax |.1 | om
lﬁ') c(10) = W
o - 2 12Q0) 0 M Ai .1 DNL
d(,; 14} C(11) -
) wAP , & ,
Cra af €2y {2 < || REMARKS:
e 4 N >
. Can cayn | @ -
p .
dn,‘,‘ C(14) m
Chu a2 .
" c(15)
p I
Cpas | cae) ”
d -«
¢1n
nﬂt;’,‘, )
| Cupanr| cG®)




v

SPPISHYEN € 250
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RUN NO.: 3t

A
P

i IDENTIFICATION: YL, !k -a

MAGNUS ROTOR PARAMETERS CONTROL_PARAMETERS

SYMBOL | ComP.SY)] VALUE | DIM, COMP,SY. | VALUE | DIM,
% RHO 1.139 | e/ || No. of Equations | NDIM 10 .
[ S L0464 I M2 Initial Time PRMT (1) 0 DNT
cfl RL 0762 | H Final Time PRMT (2) 2 | oNT
m BM 2.7 K6 Upper -Time incr. PRMT (3) 1072 | pnT
1 ™0I | -9267 |G M%|| upper Error Bd. pRMT(4) | 107°] -
Iy smor | 122 | xG M2
A INITIAL CONDITIONS ERROR WEIGHTS
.9 GSs =3 DEG :
syM, 1co.s| VALUE | DIM, |[SYM.] VAL.J DIM.
o c(1) 1.2 -
! a Ve {PQ)| 24 {u/sEc [AV, |.05 [DNL/DNT
A c(® 1.6
d‘-w Yo {P@)| -57 |DEG AY, | -049] RAD
~ c(2) 22 '
- Ha W, |P@)| 1290 |ReM  [A(5, {001 [RAD/DNT
Cuoa | O |-.55 n
dﬂd‘. z p lewf o DEG A[& .2 RAD
c(5) -1.0 <
" » ¢ eyl 12.5|pec  |Ad |.2 | Rap
] C}ﬁg c(6) 9 =) e o
c‘ < ¢ |re)] © [pEc/sEqAd |.05 |RAD/DNT
LA c() |-2.11 o
Rt Yy A leen] o loec [ Mh.2 | rap
oy c8) |-1.5% - . ]
¥ P » At [P(8)| -768 |DEG/SEQAs} | .05 |RAD/DNT
y Bp » X (PO} 0 M ax | .1 DNL
Ceras | cao o " _
i P | > 2 (pao] o ¥ [a3 ) | m
¥ el LR Y c{i) ¢ b -
! wpp &
C'u af c@2 | o < REMARKS :
(1
Cl /‘r cQ3) 47 : Aerodynamic data fpom ARO, Inc., Wind
nn ’ i, Tunnel Test PC 0037, May 1970
_ 1/ '
-1.7=
Cap | cam - 1/ from Flight Tedt, June 1970
d“ 3 c(15) 0 .
’ =
Cpas | c@ey | © n
<
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APPENDIX C 251

RUN NO,: 31

IDENTIFICATION: CYL. MR 11

MAGNUS ROTOR PARAMETERS CONTROL PARAMETERS
_ SYMBOL | COMP.SY] VALUE | DIM. COMP.SY. | VALUE | DIM.
¢ RHO 1.139 | Ke/H>!| No. of Equations | NDIM 10 -
g s L0464 | M2 Initial Time PRMT (1) 0 DNT
c/l RL .0762 | M Final Time PRMT (2) 2 DNT
m BM 2.580 | kG Upper Time Incr. PRMT(3) | 1072 | DNT
1 | moI .0170 | kG M?|| Upper Error Bd. pRMT(4) | 1075 -
1y SMOI .6133 | ¢ M2
INITIAL CONDITIONS ERROR WEIGHTS
¥ GSS ~57 DEG _
a Py SYM, |C0.S| VALUE | DIM. {SYM.| VAL. DIM,
D —
p ( Ve lp)| 26 |[mssec [AV, |.05 |own/pNt
LA H 2)
d“‘ o Te (2@ -57 |oEc  |py, |.049] RaD
c@3
He Wy [P@3)] 1290 |RPM AC3, | -001 |RAD/DNT
€ ad | @ »
d % A e o DEG AP |2 RAD
1.“3 c(5) <
- ¢ |pi)| 12.5 |pEG Ad | .2 RAD
C}ﬁ’ c(6) Qa : °
~ < ¢ Ip6)] o [pEG/SEAd |.05 |Rap/DNT
Clsp | o ot
| R A leay] o loee Ahl.2 | RAD
d © « — M |P(8)] -768 DEG/SEQ Al | .05 |RAD/DNT
Lps| CO
CP o " x |[p@)] o ¥ fax |2 ] m
'lﬁﬂ c(10) =) m
¢ o > 2 (P(l0] 0 | M a2 |1 DNL
l&/;“ c(1) o
o I & .
Cra a c(12) < REMARKXS :
‘w l = o ———,
d "f . (% >
C 4
ni c(14) a1
d [~]
npﬁ c(15)
3
d <«
17
| Cupgr| ca®
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APPENDIX C© 252
RUN NO.: 130
IDENTIFICATION:  RECT. MR 3
MAGRUS ROTOR PARAMETERS CONTROL PARAMETERS
SYMBOL | COMP.SY| VALUE | DIM, COMP.SY, | VALUE | DIM,
Q RHO 1.127 | k6/M3 || No. of Equations | ¥DIM 10 -
(3 s 568 | M2 Initial Time PRMT (1) 0 DNT
cf2 RL .0625 | M Final Time pRMT(2) | .o | DNT
m BM 1.367 | XG Upper ‘Time Incr. PRMT(3) | 10°% | DNT
|1 TMOI .0238 | KG M2 || upper Error Bd. PRMT(4) | 10-5} -
I, SMOI L0028 | xG M2
INITIAL CONDITIONS ERROR WEIGHTS
L GSs -27.7 | DEG _
a SYM, 1c0.S| VALUE | pmM. |syM.| vaL) b,
> c(1) 1.42 poy
Ve jPQD) 7 |M/SEC |AV, | .05 |DNL/DNT
Ca c(2) 2.39
Yo |e@) -50 {oec  |py, |.049| Rap
Cha c(3) .508
Wy [P 300 [ReM |G, |.001}RAD/DNT
Cruga | €@ | -85 » -
P = A lew)] 3 foec  (Ap .2 | rap
Cyp c(s) | -2.51 < )
- ¢ |r5)] o |bEc ad |.2 RAD
C'.ms c(6) 0 a . o
» < ¢ |e6)] o [rec/sedad |.05 |rap/pNT
L c(7) |-1.23 ot
p A leay] o Joec [ Opf.2 | Rrap
d;; ci8) | -4.24 - . .
) A 1P(8) 0 |DEG/SEQAMs | .05 |RAD/DNT
Claas| co | 35
P @ x e o [ M jax .1 | om
Cepa | cao | o x |
- 2 POl 0 | M a3 |1 DNL
C[A 1a] C(11) 0 —
NAF _
& .
dl A agl €Q2y | 0 < REMARKS:
w/\r . > .
d" c(13) 1.30 - Aerodynamic data from NACA Langley
s o Stability Tunnel Test RM SL 55126,
C"’? c(14) -10 m November 1Y55
[~]
C'”A’ 1 cqs) 1 -212 '
- ]
C"i’ ce) | O A
(‘ <
. c(17 i
Cagarl ca) | °
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RUN NO,: 34

IDENTIFICATION: CYL., MR 1

MAGNUS ROTOR PARAMETERS CONTROL PARAMETERS
i
SYMBOL | COMP.SY| VALUE | DIM. COMP,SY. | VALUE | DIM.
R RHO 1.127 | ke/M? || Nc. of Equations | NDIM 10 -
g S L0464 | M2 Initial Time PRMT (1) 0 DNT
e/l RL 0762 | M Final Time PRMT (2) 7 | DNT
m BM 3.148 | K5 Upper ‘Time Incr. FRMI(3) | 1072 bNt
1| mor .0598 | kG M? || Upper Exror Bd. PRMT(4) | 1077} -
1y SMOI | .0248 | ke M2
INITIAL CONDITIONS ERROR WEIGHTS
ess |-42.3 | opEg :
SYM. | CO.S{ VALUE | pIM. |syM.} vAL.) DiM.
¢y c@) | 1.3 —
“ Ve {P(D] 13.5 {u/sEC AV, | .05 |bNL/DNT
LA c@2) | 2.64
d“ Yo {P@)] -32 |DEg AYy | -049]| Rap
c(3) .21
Ho Wy [FG)f 470 frew [pfg, | .001 [RAD/DNT
Cuga | c@ |-.40 »
P w = 5 e o DEG AP 1.2 | Rrap
yp | e -4 <
- ¢ {2y o |bec |adl.2 | mo
c‘?ﬂs ce) | o a || 4 o
c < CP p(6)] o DEG/SE]Q 8¢ | .05 |RAD/DNT
LA c@) |-2.0 ot
y A iy A fean| o joee {ah].2 | mo
A ) -10~ .
l? c(8) z °
¢ , - A lp@8)| O DEG/SEQ AM4 | .05 |RAD/DNT
Loas| CO9)
“P " x |pe)y| o M |ax% |1 ] om
Clﬁ’ c@o) | O (=}
¢ > z [P0} O M AT | .1 DNL
l“:'/"f c(i1) | O :
fl‘;ﬁaz caz) | O < || Rewass!
- >
d" f c@3) | -2.0 - Ac_arodynamic data from ARO, Inc.
y n 1/ o4 Wind Tunnel Test PC 0037, May 1970
nl C(14) |-20= )
d N . ) a 1/ from Flight Test, June 1970
hﬁﬁ -C(15) 0 ‘
-l
d"ﬁ‘ c@s) | o “
d <
¢17) o
np‘,ﬁ )
,d..ﬁ:; c(18) | o
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RUN MO.: 35
IDENTIFICATION: TRIANG., MR 1
MAGNUS ROTOR PARAMETERS CONTRGCL PARAMETERS
SYMBOL | coMp.SY] VALUE | DIM, COMP.SY. | VALUE | DIM,
Q RHO 1.127 | ke/M3 || No. of Equations  |NDIM 10 -
[ ] L0810 | M2 Initial Time PRMT (1) 0 DNT
cfd RL L0880 | M Final Time PRMT (2) 5 DNT
] m BM 2.395 | xe Upper ‘Time Incr. pRaT(3> | 10°2| oNT
1 T™OL 0541 | k6 M2 || upper Error BA. prT(6) | 107°] -
: Iy sMoI | .0123 | kG M2
INITIAL CONDITIONS ERROR WEIGHTS
1 ¥e ess |-33.7 |opee :
i syM, |co.s| VALUE | DIM. |SYM.| VAL DIM.
cp c(1) 1.03 =
Ve |P(D)| 19 |[M/sEc |AV, |.05 |DNL/DNT
Ca c(2) | 2.0 ‘
, w |t Yo |e@) -s0 |[pEG  [p¥, |.049] RAD
g Cra c@ | .247 _
2 : Wy |PQ)| 200 RPM 8id, | - 001 [RAD/DNT
4 Cuga | c@ |-.325 »
[ 7 > N |rw) o |pec A[L .2 RAD
Ct"g c(s) | -3.85 <
- Il & te)| 3 fome  |ad |.2 | R
c'.mo c(6) 0 a : °
c < ¢ |r)] o [vEc/sedad |.05 |RAD/DNT
3 Ls c(7) |-.35 o4
‘ “p A [en| o [oec  |ah].2 | ma
Cl'g c(8) ~3.4 = . i o
,.. A [p(8) 0 |DEG/SEGAMNs | .05 |RAD/DNT
Cagf c® | o M
P » x [p@] o Mo{ax |1 DAL
Crpa | caoy | o ¢ |
P > |l 2 [paol o | w fa3 |2 | m
Coaaal can | o - .
p ” _
Cra ag] cQ2) | O < || REMARKS:
wap >
(j“ c(l) |-2.0 ~ Aerodyngaic data from Aerojet General
(i " Corp., IR & D Report 8706-23(01)FP
Cnp | cas |-13.1 » april 1965
(=]
C‘ 3 ]
r "ﬁ C(15) B
C‘,,A‘, “cqey | o -
d <
<17 L
nﬁ‘,t )
Cogr| ca® | ¢
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APPENDIX C

RUN NO,: 3¢
IDENTIFICATION: RECT. MR 2
MAGNUS ROTOR PARAMETERS CONTROL PARAMETERS
SYMBOL | COMP.SY] VALUE | DIM. COM?.SY. | VALUE | DIM,
Q RHO 1.140 | k6/3 || No. of Equations | npmM 10 -
s s 0468 | M2 Initial Time PRMT (1) 0 Dty
c/d KL L0625 | M Final Time PRML (2) 1 DNT
" BM 1,607 | X6 Upper Time Incr. PRMT (i3 1072 | DNT
1 TMOT 0336 | kG ¥ || Upper Error Ba.  |PRMT) | 1073 -
“Fy—}sM01 0028 | ¥e M2
INIT1AL CONDITIONS ERROR WEIGHTS
R GSS -27.7 | DEG
SYM. {CO.S) VALUE | pmd. [syM.| VAL, DIM.
Co c(L) —
Ve |PQ)} 17,9 |M/SEC AV, ].05 IDNL/DNT
CLA 0(2) -
w Ve {2@|-27.7 {pEG  |pY, |-049] RAD
d’m c<3) — '
Wy {P(3)]| 2400 {RPM AiS, | -001 |RAD/DNT
CN,[A C(ll) Vi
= 5 1e@!t o |pEG pf 1.2 RAD
d‘w ¢(5) p
- ¢ les)l 1.5 |pEG ad 1.2 RAD
Cyp® | (6> a % .
P $ Ipe)] o {pEG/SEd Ad .05 |RAD/DNT
Cea c(7) o ,
A 4 teayf o fove  lah].2 | wap
Cya c(8) ™ - , .
P " . A+ |B(8)| -30  |DEG/SEGAMs | .05 |PAD/DNT
dl:, 3| ¢(® _
A - o x eyl o | ox s ]| om
Cegn | caoy | = a
¢ P " > 2 [paol o | M a3l | om
LA 1A c(L1) -
271 Il R .
Coa agl €012) < REMARKS :
i g - = ||
C,V, C(13) -
5 od
Cna 1 c(i4) .
d [=]
nald C(15)
‘; e
Crgs | cae) A
d %
€17)
h/s"f“, .
Cuppr| c0)
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RUN NO.: S ¥

IDENTIFICATION: RECE, MR ¢

MAGNUS ROTOR PARAMETERS CONTROL PARAMETERS
SYMBOL | COMP,8Y] VALUE | DIM, COMP,SY, | VALUE | DIM,
Q RHO ’ KG/H3 No. of Equations NDIM 10 -
s s e M2 Initial Time PRMT (1) 0 DNT
cv“
e/l RL ] Final Time PRMT (2) 1 DNT
m BY Z ixe Upper Time Tncr. pRMT(3) | 1072 oNT
24 -
1 | moz KG M2 {{ Upper Error Bd. PRMT(4) | 1073} -
Ty SMOI 2 XG M2 -
2 INITIAL CONDITIONS ERROR WEIGHTS
%o css Z DEG —
syM. |co.5| VALUE | pmM, |syM.] VAL) DIM.
Cq c(1) 42
p Vo [P()| 12.9 |M/SEC [AV, |.05 JONL/DNT
LA 0(2) .
w Yo |P@)| -27.7 |DEG | A, |-049] RAD
Cra c(3) n
W, |P(3)| 2227 |RPM Ai3, | -001 |RSD/DNT
2 @ = A |e@| o joec |Apd }.2 | RaD
up c(5) < )
v - ¢ {pesy1 1.5 |pEG A | .2 RAD
C}ps c(5) A . o
< ¢ |p@)] © [pec/sedad |.05 |{rap/DNT
Cl.‘:.ﬁ c(7) »
/ . o ley| o foee  [apf.2 | ma
t¢ e ” : A |e@)| -27.8 |pec/szd A
L8
/ wh - « x |p¢9)] © M jax |1 DNL
1;;'3 c(10) o 1
¢ o > z pQop O ] 4% 11 DNL
"‘:’/3“ c(11) - L
A
« 3
C'L‘; sl €(12) - < REMARKS :
AP - >
(,‘,\[3 c(13) -
o~
Crt,’“ c(14) 1
d [=]
Hp? c(15)
% |
C‘h;:; C(16) -
)
¢Ln)

Cuggr| ca®
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APEENDIX C 257
RUN NO.: 38
IDENTIFICATION: CYL, MR 11
MAGNUS ROTOR PARAMETERS 7ONTROL PARAMETERS
SYMBOL | comp.SY{ VALUE | DIK, coMP,SY. | VALUE | DM,
] mo | X/ |} No. of Equations | NDIM 10 .
(4 s . u2 Initial Time PRMT(1) | .53 DNT
™
c/d RL M Final Time PRMT(2) | 7 DNT
m BM Z Ixe Upper Time Incr. PRMT(3) | 107! | DNT
1 ™I ™ %G M2 || Upper Error Bd. PRMT(4) | 1070 | -
JyofsMOR a G M2 :
2 INITIAL CONDITIONS ERROR WEIGHTS
) GSS w DEG - .
~d c(l) sm. co.s VMOUB Dm. sm’ VAL. Dmc
[+ - -
p Vo 12Q)] 18 (M/SEC AV, |.05 [DNL/DNT
LA c(2) -
du Yo (@)} -51  |pEG 8Y, | -049]| RAD
c(3)
Ha ‘ W, [r@a)| 230 RPM A>, | -001 |RAD/DNT
Cuga | e o g
d > A e O |pEc ap .2 RAD
4p c(5) <
p ~ ¢ |e)| O Joec |ad |.2 | map
4p® | ©® a s °
< $ |r@)| © [oeessedad |.05 |rapn/ont
Cea plco o
y A fey] o Joec | aih].z | map
lﬁ c(8) g z . o
¢ ) - M @) o |DEG/SEC A | .05 [RAD/DNT
ddat | €O
¢ p 7 w x {P(9) 0 M ax | .1 DNL
L ﬁ') c(10) =) w
¢ o > 2 [P0} o M a2 |1 DNL
1534 c(11) ~ 2
, - H : |
Cra x| €012) < || REMARs:
") 2 s — ,
rP @ > |
d"p c(13) -
' o
Cn; c(14) .
Capa | cas) )
] C(15
p [~
Cpas | cas) n
d <
¢417
"‘/3"'2 {17)
Caggr| ca®

B —
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APPELEIA € 258
RUN BO.: 3o
IDENTIFICATION: “TRTANG. MR 1
MAGNUS ROTOR PARAMETERS CONTROL PARAMETERS
SYMBOL | COMP.SY] VALUR | DIM, COMP.SY, | VALUE | DI,
't RHO 1.225 | ks/M3 || No. of Equatiors NDIM 10 -
g s .0810 | M2 Initial Time | prMT (1) o | oNT
c/e RL L0880 | M Final Time 1 PRMT(2) 7 DNT
m M 2.395 | X6 Upper ‘Time Incr.  LPRMT(3) | 1072 | DNT
1 T4OI | .0541 |XG M?|! Upper Error Bd. PRMT(4) | 105} -
1y sMOI | .0123 | K M®
INITIAL CONDITIONS ERROR WEIGHTS
1.7 Gss -33.7 | DEG .
syM. |co.s) VALUE | pmM. |syM.] VALJ DINM,
¢y c(1) =
Vo |PQ)| 100 jMssec 1AV, |.05 |oNL/DNT
(“L& C(Z)
¢ Yo {e@)| o |pEG  [py, |-049] RaD
c(3) -
Ha Wy |P(3)| 200 [REM  |AQS, |.001 |RAD/DNT
z I R 1Y 0 |DEG A{S .2 RAD
Cup | € P
H ¢ |ps)| 3 [oec |adb .2 | maD
d}ps c(6) a . o
- $ |re6) 0 |[DEG/SE]Q Ad | .05 |RAD/DNT
Cty c(7) o
p : A e ) 0 |DEG BN ] .2 RAD
Cys c(8) g - . o
¢ . - A |P(8) 0 {DEG/SEQ Ajs | .05 |RAD/DNT
i8] €(9) _
P z ) x [P(9) 0 M A% |1 DNL
Cega | camy | o b
¢ " > 2 (PO} o ¢ M a% -1 DL
taasl cQl) H
“pp a .
Cra ayl €Q2) - « || REMARKS:
w‘nr - 1-1 > ) '
Cn c(13) » e
~o .
Cn,‘,‘ C{14) a1
C‘ [=]
nald C(15)
!3 2
C, pa ] €0 -
) <
Ch gal €
Cugpa| ©08)
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APPEMDIX C 259
RUN NO,: 40
IDENTIFICATION: CYL. MR ¥
MAGNUS ROTOR PARAMETERS CONTROL PARAMETERS
SYMBOL { COMP,8Y{ VALUS | DIM, GOMP.SY. | VALUE | DIM,
¢ RHO 1.225 | ke/4> || No. of Equations | NDIM 10 -
(4 3 464 | p2 Initial Time 1 PrUT(1) 0 | DNT
c/d RL 0762 | Final Time PRMT(2) 7 | DNT
m BM 3.148 | XG Upper ‘Time Incr. PRMT (3} 102} DNT
1 ™OI | .0598 | ke MZ|| Upper Error Bd. PRMT(4) | 1077} -
Iy SMOI | .0248 | xa m2
INITIAL CONDITIONS ERROR WEIGHTS
Yy | GSS -42.3 | DEG :
a P syM. Jco.s| vALUR | DM, |syM.| vAL] DM,
) s -
p Ve [P(D) 1 |M/SEC [AY, |.05 |DNL/DNT|
LA 0(2)
d“‘ Vo 1P@| o {pEc  [py, |.049] maD
c(3)
e Wy |2()}400c [REM  |aQ5, | 001 |RAD/DNY
Cw aa | °® "
d = A e 3 |pEG AP |2 RAD
94n c(5) < :
y H ¢ |es)] o |oee (ad .2 | R
7[5’ c(6) a N °
< ¢ {r6)| o [pec/sedad | .05 |man/oNT
CLa plcm ot
- A leay| o (e [oth|.2 | Rap
dl; c() . z b °
¢ - M |P(8) 0 |DEG/SEAls | .05 ;RAD/DNT
Lia8] C(9)
¢ p = 0 x P9 0 M ox {1 DNL
4 ﬁ') Cc(10) = (5]
o > z [P0} o M 82 |1 DNL
Cosasl cav - :
=3
c‘%p?, c(12) w < || REMARKS:
17 >
C.‘p c(13) i’
-
Cn,’.‘ c(14) 2
d =]
Mﬁa c(15)
"~
d.,a, c(16) A
<
17
Cug2e| ©(18)
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RUN NO.: 4
IDENTIFICATION: CYL. MR 3
MAGNUS ROTOR PARAMETERS ‘ CONTROL PARAMETERS R
SYMBOL | COMP,5Y{ VALUE | DIM, COMP,SY. | VALUE | DIM.
A RHO 1.127 XGIH3 No, of Equations NDIM 10 -
[ 5 L0465 | M2 Inttial Time PRMT (1) DNT
/L RL L0762 | M Final Time PRMT (2) DT
m BM 3.282 | KG Upper Time Incr. PRMT (3) DNT
: 1 ™OI | .0617 | XG M?|| Upper Ervor Bd. PRMT (4) -
Iy SMOI | .0247 | K6 M?
INITIAL CONDITIONS ERROR WEIGHTS
¥ss Gss -42.3 | DEG -
SYM, [co.S| VALUE | DI, |SYM.] VAL DIM.
co cq) -
Ve lRPQD) M/SEC | AV, }.05 |DNL/DNT
dl.d C(2)
T {22 DEG Ay, |.049] RAD
R
Cra c(3)
Wy |P(3) REPM Ai3, | - 001 |RAD/DNT
Cuga | €@ »
¢ z B lrw DEG Ap |2 RAD
94n c(5) <
p » $ le5) DEC  |&d |.2 | Rrap
l’p, C(G) o e o
< $ |r6) DEG/SEqQ Ad | .05 [RAD/DNT
Cra pl e o
y " A ey PEG | A).2 | wap
Lg c(e) . 7 . °
¢ H A [p(8) DEG/SE AMja | .05 |RAD/DNT
M’P' c(9)
= 7 x P(9) M % |1 DNL
Cpa | can | = at
¢ ‘ e > 2 |e{10] M AT |1 DNL
LA 22 ¢(11) - e
a4 A P - £ H .
Cra ag] CL2) &) -G REMARKS ;.
wl‘r 7] >
dn c(13) - CYL, MR 3 was flight tested only. It is
» o) similar to CYL, MR 1 with small changes
- Cn; c(i4) X in mass distribution.
~
dn 2 c(15)
A rd
Cn a1 | cae -
L
Cyy ga| e
Cug2r| cae)
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