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ABS T RAC T

IHeinrich C. Magnus demonstrated experimentally, in 1852, that a

body rotating in an air stream experiences a force that acts substan-

tially normal to the air flow. An autorotating flight vehicle, designedL to develop this Magnus force efficiently and to employ it as the major

lift force in free flight, is called a Magnus rotor. It has been con-

sidered for appliation in areas such as the recovery of rocket boosters

and aerial delivery. The underlying idea is to make the container serve

as its own decelerator and thus eliminate the parachute. In this report

the equations of motion of Magnus rotors are derived and their performance

and stability analyzed and correlated with free flight tests.

Tensor concepts are used extensively in formulating the flight

I dynamical problem. In particular, the ordinary time derivative is re-

Iplaced by a covariant time derivative, the Rotational Derivative, thus
permitting an invariant formulation of the equations of motion, even

under time-dependent coordinate transformations. As in airplane and

missile dynamics, a reference flight is chosen and perturbation equations

are developed. The reference flight of a Magnus rotor may be accelerated

j or decelerated. To determine its effect on the perturbation eqtations, a

special tensorial formulation of the perturbations is introduced. It is

also tailored to yield the aerodynamic forces in a simple McLaurin

expansion. Because of the symmetry properties of Magnus rotors, certai

aerodynamic derivatives are zero. An easy-to-apply rule is derived that

tells which derivative of arbitrary order vanishes. The nonlinear aero-

dynamics are represented by derivatives up to the third order; with all
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second order derivatives vanishing because of the symmetry properties

of Magnus Rotors.

The perturbation equations are iionlinear nonautonomous ordinary

differential equations of fifth order with three degrees of freedom:

rolling, yawing, and sideslipping. Their stability is analyzed first

for the simple but important case of linear aerodynamics and a steady-

state reference flight; i.e., the governing equations are linear and

autonomous. A simplified form of the roots is given. The roots describe

three modes: nutation, undulation, and precession. If the nutationdl

motions are of major concern, the perturbation equations can be reduced

to two degrees of freedom: rolling and yawing. A further reduction to

one degree of freedom is achieved by combining the roll and yaw angles

to form the nutation angle and by employing the method of averaging.

The result is a first order equation. Its stability is discussed.

Necessary and sufficient conditions for limit cycles are derived, and

it is shotn that limit cycles can be avoided by proper design of the

Magnus rotor.

The complete equations of motion are programmed in Fortran IV.

Some sample computer runs shcw the trajectories and attitude motions of

typical Magnus rotors under various initial conditions. They also validate

the two- and one-degree-of-freedom perturbation equations and, in particular,

verify the analytical prediction of limit cycles.

Thirty models flight tested represented eight different Magnus rotors:

rectangular, triangular, and cylindri.cal shapes with different end plates

and mass distributions. Their trajectories and attitude motions are
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correlated with computer simulations whose aerodynamic input data are

solely based on wind tunnel tests. Thic agreement is satisfactory. - To

measure the aerodynamic damping derivatives in free flight, the induced-

nutation and limit-cycle methods are introduced. Two different Magnus

rotor shapes were tested for limit cycles. The teat results agree well

with the predictions. It was found that larger end plates or a high

moment of inertia about -the. spin axis can eliminate the limit cycle.
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CHAPTER 1

1. INTRODUCTION

Heinrich G, Magnus demonstrated experimentally, in 1852, that a body

rotatithg in an air stream experiences a force that acts substantially

normal to the air flow. An autorotating flight vehicle, designed to

develop this Magnus force efficiently and to employ it as the major lift

force in free flight, is called a Magnus rotor (MR). It consists of a

center body, driving vanes, and, in most cases, endplates or ribs to

assure proper orientation in free flight.

In general, the designer has much freedom in selecting thie geometrical

configuration so long as he provides driving vanes that generate a torque

about an axis, the spin axis, aud chooses a body with mirror symmetry

relative to a plane normal to the spin axis. Any endplates will be

arranged so that they are normal to the spin axis and the mirror symmetry

is maintained. Five typical HR's are shown in Figure 1.1. They will be

used to demonstrate ai d validate the analytical methods developed in this

report. Some of the pertinent dimenciins are: span b,* chord c, and end-

plate diameter d. The chord is defined as the diameter of that cylinder

that fits tightly over the center body without driving vanes and is

parallel to the spin axis. The reference area is S - b * c.

The principal flight regime is the planar steady-state glide phase.

It is characterized by a constant descent velocity of the center of mass

along a straight line. The angle between this line and the horizon is

the glide angle. While descending, part of the potential energy is

All symbols are listed In Nomenclature, page 209
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CHAPTER 1 3

converted via the driving vanes into kinetic energy, resulting in a

constant rotation of the MR about a horizontal spin axis. The so

generated aerodynamic circulation induces a Magnus force that is approxi-

mately normal to the flight velocity vector and the spin axis. Of

particular importance is the ratio of the peripheral speed of the driving

vanes to the flight speed of the MR. It is commonly referred to as the
A

tip-speed ratio w . In steady-;-tnte flight any MR with geometrical

similar configuration has the saie tip-speed ratio, regardless of size,

weight, and mass distribution. We now define the planar steady-state

glide phase as that part of the flight, when the angular velocity vector

ic constant and horizontal and the linear velocity vector is constant and

normal to the angular velocity vector.

Unless the initial conditicns match the steady-state values, the MR

will go through some transient flight regimes. The most important one is

the planar transient glide phase. It is defined as that part of the

flight when the angular velocity vector is still horizontal and the linear

velocity vector remains in a vertical plane normal to the angular velocity

vector, but the absolute values of both vectors change in time.

The planar glide phase comprises both the steady-state and transient

flight regimes. It is the flight phase that is of principal interest in

any performance analysis.

Other flight regimes, like end-on flight, end-over rotation, or flat

spin, are sometimes investigated. However, they are studied only to find

out how to avoid them through proper design. They usually are not part of

a performance analysis.
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In recent years, the Magnus rotor principle has been considered for

application in areas such as the recovery of rocket boosters, Brunk (1, 2)*

and aerial delivery, Boehler (3) and Foshag (4). The MR also has been

suggested for landing an instrumentation payload on Venus or Mars. The

underlying idea is to make the container serve as its own decelerator and

to eliminate the parachute. This is possible, because the high spin rate

of an MR results in a drag coefficient between one and two (based on

reference area S). In addition, the large angular momentum makes it

insensitive to short-duration perturbations, and a lift-over-drag-ratio

between one and three provides ample targeting range. With one of the

several steering systems that have been proposed, the MR can be made to

impact at a predetermined point. Thus, the MR is a precision decelerator

system.

To discuss the flight dynamics of MR's in more detail, consider a

particular application, say, the delivery of supplies from an airc.raft to

a ground station. The supplies are stored in the center body, and the MR

is prespun and launched through the tail gate of the cargo plane. Ideally,

if the initial conditions match the steady-state conditions and the flight

is free of disturbances, the MR would descend in a planar steady-state

glide phase. However, this is never satisfied. Usually, the spin rate

and the velocity vector are mismatched. If nc other disturbances occur.

the MR would go through z, planar transient glide phase until 'he steady-

state values are reached; i.e., the MR would perform a planar glide phase.

Again, this is an ideal case. The disturbances that can be expected are

mlsalignments during, the launch phase, wind gusts, and geometrical and

* All references ore listed on pages 216 through 216
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mass misalignments of the MR. They cause the MR to deviate from the planar

glide phase. The question of "how much" must be answered by a stability

analysis.

We are led to a similar stability analysis if we study the recovery

of rocket boosters using the MR principle. After burn-out and separation,

the booster goes through an arbitrary tumbling motion while picking up

some spin with its driving vanes. The motion eventually transits into a

nutational mode with a horizontal axis of nutation. The nutation damps

out, and the steady-state velocity and rotation vectors are approached.

The latter part of the flight, starting with a sufficiently small

nutation-cone angle, can be considered as the planar glide phase of an

MR with perturbations in the initial conditions.

The dynamics of an MR can best be explained in terms of a horizontally

spinning gyroscope subjected to aerodynamic forces. The perturbations of

the planar glide phase are rolling, yawing, and sideslipping (see Figure 1.2).

They can perform three modes: nutation, precession, and undulation. The

nutation and precession modes are those of a gyroscope with the modification

that the nutation is aerodynamically damped. The undulation mode is a new

mode that results from the aerodynamic forces created by sideslipping A .

To these forces the MR responds with a ?recession that, in turn, changes 13

The result is an unsteady precession; i.e., an undulation. Th, undulation

mode carn be oscillatory or eperiodic. In general, its mctions arc much

slower than those of the nutation mode.

The MR is insensitive to short duration disturbances. However, even

cmall long-duration disturbances can cause the MR to deviate considerably
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ROLLING
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FLIGHT DIRECTION

FIGURE 1.2 PIRTURSED MOTIONS

from its planar glide phase. The most important such disturbance is a

center of gravity offset along the spin axis. ". causes the MR to precess

horizontally at a constant rate.

To put the flight dynamics of MR's into perspective, we consider the

dynamics of airplanes and spinning missiles. The MR shares the gyroscopic

properties with the spinning missile. Iewever, its spin axi., is aipproxi-

mately normal to the flight direction and in a horizontal plane. This

results in different. perturbation equations. The equations of the missile

are expressed in pitch, yaw, angle of attack, and sideslip angle and can

b. brought into a convenient complex form. he perturbations of an MR

are rolling, yawing, and sideslipping, and the equations are not amenable



CHAPTER 1 7

to the complex variable transformation. Here, the angle of attack is

measured in the plane normal to the spin axis, between a driving vane

and the roll axis. It plays the part of the roll angle in the missile

case. Yet the roll orientation of a rapidly spinning missile is unimpor-

tant, while the angle of attack in the case of the MR influences the

aerodynwaic forces considerably, because of the shape of the center body

and the driving vanes.

With regard to the synmetry of the external configuration, the MR has

the mirror symmetrical properties of in aircraft rather than the rotational

symmetry of * missile. That is why the aerodynamics of MR's are expressed

in terms of airplane conventions, while borrowing the Magnus derivative

notation from missile aerodynamics. The MP. differs from an airplane by

its high angular momentum and its rapidly changing angle of attack. But

the perturbation equations can etill be separated into longitudinal and

lateral equations. The lateral equations describe the rolling, yawing,

and sideslipping motions with a strong gyroscopic coupling in the roll

and yaw equations.

In general, the moment of inertia tensor of an MR is not circular

relative to the spin axis as is usually the case in spinning missile

dynamics. This again shows that the orientation of the MR, expressed

by the angle of attack, plays a more important part than the roll

orientation of a missile. Sum arizing, we note that the flight dynamics

of MR's are a combination of airplane and spinning missile dynamics.

A historical review of the Magnus rotor principle was given by

Foshag and Boehler (4). It suffices to mention that Maxwell (5) first

discussed the phenomenon of a free-falling spinning card. Only recently
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have the flight dynamics of Magnus rotors again attracted the interest of

researchers. Brunk (1, 2) studied the equivalent problem of the dynamics

of spinning missiles at a 90-degree complex angle of attack, developing a

linear theory of the steady-state glide phase and employing a six-degree-

of-freedom computer simulation. Millevolte (6) investigated the linear

aspects of the dynamic stability of Vortex Gliders (Magnus rotors) during

steady-state glide phase. The autorotaticnal characteristics of various

Magnus rotor shapes were studied by Bustamante (7, 8, 9) with particular

emphasis on the spin degree-of-freedom. All these efforts have helped to

explain some of the flight phenomena of MR's. But muc& research remains

to be done until the flight dynamics of MR's are understood as well as

aircraft and missile dynamics.
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2. PROBLEM STATEMENT AND APPROACH

F,

A properly designed MR will descend in a planar glide phase to the

ground. Tht purpose of this report is to investigate the dynamics of the

planar glide phase. For a complete analysis, the equations of motion

must be derived, taking into account such effects as a noncircular moment

of inerti& ellipsoid, the rapidly rotating angle of attack, nonlinear

aerodynamic forces, and the acceleration of the center of mass during the

transient glide phase. But the equations should also be simple enough to

be examined analytically. In particular, they should be suited for a

stability analysis. This will yield the physical understanding of the

flight phenomena and provide some simple oelationships that are helpful

in improving the design of an MR. To obtain the actual flight time

histories, the equations must be programmed for computer. Finally, the

required validation of these theoretical results can only come from the

I' correlation of free-flight tests with computer runs.

To implement this program, we introduce the following basic

assumptions:

1. The earth is an inertial reference frame and can be considered

to be flat.

2. The MR is rigid with constant mass and is mirror symmetrical with

respect to its external geometry and its mass distribution.

3. The material density of the MR is much greater than the density

of the surrounding medium.

4. The perturbations of the planar glide phase are small.
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5. The flight s!wed and spin rate do not drop below tei, percent cf

their stcamuy-sLate values.

Assumptions I to 4 are familiar from the flight dynamics of airplanes.

Because MR motions are rapid and their distances traveled short compared

with the earth's rotation and diameter, respectively, Assumption I is well

justified. Assumption 2 enables one to focus on the flight dynamical

problem by introducing the ideal MR. Aeroelastic and asymmetrical effects

are of second order and are not treated in this report in detail. The hig

material density ratio, Assumption 3, is required to simplify the equations

and to permit the use of an averaging process. It is always satisfied if

air is the surrounding medium. The small perturbation assumption

eliminates the trigonometric functions, and Assumption 5 assures that the

equations of motion do not become singular.

The problem requires an approach on two different levels. The first

part of this report supplies the mathematical tools to formulate the flight

dynamics of MR's. It is mathematically rigorous. The second part,

beginning with Chapter 8, deals with the engineering analysis of the

flight dynamics of MR's. There, many assumptions must be introduced and[ much intuition and experimental evidence is needed to arrive at a manageable

set of equations of motion.

The equations of motion consist of reference equations and perturbation

equations. The reference flight of the perturbation equations is the

planar glide phase. Since, in general, the center-of-mass of the MR is

accelerated, care must be take. in deriving the perturbation equations.

This is achieved by using the methods of tensor analysis and by introducing
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the special concept of a Rotational Derivative. The definitions and

theorems are sunamrized in Chapter 3 and applied in Chapter 4 to obtain

a general formulation of the perturbation equations of atmospheric flight

dynamics. In Chapter 5 the systems for normalizing the equations are intro-

duced. The Dynamic-Normalized System is used to simplify the equations of

motion, whereas the Aero-Normalized System is needed to arrive at the

aerodynamic coefficients.

Up to Chapter 5, the development is general enough to apply to all

atmospheric flight dynamic problems. With the introduction of the Flight-

Mechanical and Gyro-echanical Frame Axes in Chapter 6, the specialization

on MR's begins. After collecting some of the kinematical relationships in

Chapter 7, the Reference Flight is defined in Chapter 8, and necessary

and stfficient conditions are stated under which a planar glide phase is

possible. Then, the perturbation equations are derived starting with the

linear eumentum in Chapter 1) and the angular momentum in Chapter 10. The

formulation of the aerodynamic :rces in terms of derivatives is executed

in detail in Chapter 11. Again, the methods of tensor analysis are used

to prove a theorem that establishes the conditions for vanishing derivatives

of arbitrary order. This is the key to the nonlinear representation of the

aerodynamic forces. In Chapter 12, the implicit dependence of the equations

of motions on the rapidly rotating angle of attack is eliminated by the

Method of Averaging. The perturbation equations are separated into Lateral

and Longitudinal Equations. The longitudinal equations are dropped, and

the final equations of motion (i.e., the reference equations of the planar

glide phase and the lateral perturbation equations) are summarized.

The stability of the lateral perturbation equations is analyzed in
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Chapter 3. The linear perturbation equations are used to discuss the

stability of the first approximation. To analyze the effect of aerodynamic

nonlinearities, the perturbation equations are reduced to a one-deg:ee-of-

freedom equation using the Method of Averaging, The conditions under

which limit cycles occur are shown, as are the methods of avoiding them.

In Chapter 14, the theoretical methods are applied to several typical

Magnus rotor shapes. The equations of motion are programmed for computer,

and some typical flight histories are shown. The reduction of the perturba-

tion equation to a one-degree-of-freedom equation is justified by comparison

with Lhe incegration of the exact equations by computer. To validate the

theoretical approoch, approximately 30 flight tests were conducted. Some

of the results are correlated with computer simulations whose aerodynamic

input data are solely based on wind tunnel tests. Two new methods are

introduced to measure the aerodynamic damping derivatives. They are the

induced-nutation and limit-cycle methods. Finally, in Chapter 15, the

contributions of this report are evaluated, the weak points exposed, and

future work described.

The report is divided into chapters and sections. In each chapter

the equations are numbered consecutively. If the equations are cross-

referenced between different chapters, the chapter number precedes the

equation number. The reader who is not interested in the mathematical

development of the equations of motion can skip Chapters 3, 4, 8, 9, 10,

and II, and concentrate on the results in Chapters 12 through 15.
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3. TENSOR CONCEPTS IN FLIGHT DYNMICS.

The formulation and interpretation of problems in flight dynamfcs

can be a formidable task if many bodies and reference frames are involved.

It is therefore important to have a concise mathematical language on hand

to model the physical processes. In this chapter a tool will be intro-

duced that is (i) capable of expressing dynamic problems in an invariant

tensor form under time-dependent coordinate transformations and (ii)

particularly tailored to problems whose major elements are rigid bodies.

To motivate the reader, we consider Newton's Second Law in its usual

form:

where it is always understood that the time derivative is taken relative

to an inertial frame. If we use a matrix formulation, we must specify

the coordinate system of the vector components. Let I indicate an

inertial coordinate system. Then Equation (1) is written as:

411 t3 [ fill (2)

For a non-inertial coordinate system, say 3 , the well known Euler

transformation yields:

Itx~ ~ (3)

where Sct is a skew-symmetric matrix describing the angular

velocity of frame (9) relative to frame (1) . Comparix'g Fquations (2)f : and (3) we note that Newton's law may assume different forms, depending on
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the coordinate sytem it is cxpressed in. Consequently, the formulation of

Equation (2) is not invariant under a coordinate transformation. This is

not a serious disadvantage if two frames suffice to formulate a problem.

But, in flight dynamics, many frames usually are involved: inertial frame,

earth france, stability frame, wind frame, body frame, etc. Then it is

desirable to work with an invariant (i.e.., tensor) formulation in order

not to lose sight of the physics of the problem. However, the transforma-

tions between the coordinate systenis are time-dependent. We therefore need

a tensor formulation that is invariant even under time-dependent coordinate

transformations. This will be achieved by introducing the so-called

rotational time derivative, o . Newton's law then assumes the invariant

tensor form with respect to all time-dependent coordinate transformations:

Wt -(4)

wiiere is the rotational time derivative relative to the inertial

frame LI) . Expressed in the coo-rdinate systems 3 and . , we obtain

the forms equivalent to the. Equations (2) and (3):

(5)

Before we can give the definition of the rotational time derivative,

we shall state a few general principles and definitions on which the two

fundamental concepts of "position" and "motion" are based. The fundamental

kinematical theorems will then be formulated and proved. In later chapters

it will be shown, using the MR as an example, how the new tools are applied
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to problems in flight dynamics.

3.1 GNERAL PRINCIPLES AND DEFINITIONS

%lie three basic notions of classical mechanics are according to

Truesdell (lU).

a. Material Bod. A body is a three dimensional differentiable

uanifold, the elements of which are called particles. It possesses a non-

negative scalar measure that is called the mass distribution of the body.

In particular, a body -is called rigid if the distances between every pair

of its particles ate time-irvariant.

b. Porce. The force describes the action of the outside world on a

body and the interaction between the different rArts of the body. We dis-

tinguish between volume force (e.g., gravitat:ional force) and surface

force (e.g., aerodynamic force).

c. Euclidean .pace-Time.

Classical mechanics is the investigation of the interaction of these

three basic notions under four axioms (see Hamel (11)):

a. Time and space are homogeneous.

b. Space is isotropic.

c. Every effect must have its cause by which it is uniquely deter-

mined.

d. No particular length, velocity, or mass is singled out.

Co

The surface forces of the force system depend qn the kinematics of the

body. This is expressed by the constitutive equation. Fr m Axiom b, it
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follows, as Noll (2) showed, that the constitutive equations are invariant

under a rotation in space, He calls this the Princ .ple of Material

Indiiference.

The general principles must be cast into a mathematical language in

order to allow a concise formulation of the dynamic problem and maka it

amenable to mathematical analysis. We introduce two basic mathematical

notions:

a. Point. A point is the mathematical model of a physical object

whose spatial extension is irrelevant. Example: particle.

b. Frame. A frame is an unbounded continuous set of elements over

the Euclidean three-space whose distances are time-invariant and which

possesses, as a subset, at least three noncollinear points.

The following hypothesis will govern the modeling of dynamic problems:

The mathematical notions of "point" and "frame" -are

sufficient to formulate any- problem in classical

dynamics.

This -statement cannot be proven universally, because we do not know

every conceivable problem in classical dynamics. However, it can be made

plausible by considering the first two basic- notions of classical mechanics.

A body can be modeled by a frame or by points, depending on whether it is

rigid or not. Forces can be e--pressed as the interaction-of points or

frames. -Because dynamics is that branch of mechanics that deals with

material bodies and forces as they interact in Euclidean space-time, the

hypothesis appears to be justified sufficiently,

The mapping of the elements of a frame onto Euclidean three-space is
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accomplished via coordinate systems.

DEFINITIONS: A coordinate system is an abstract entity embedded in

Euclidean three-space that establishes a one-to-one correspondence

between the elements of a frame and the ordered triple of algebraic

numbers. A coordinate system is said to be associated with a frame if

the one-to-one correspondence is time-invariant. All coordinate systems

associated with one frame form a class, with 001 elements related by

translation and rotation. The entity of all these classes over all frames

are the allowable coordinate systems, where we restrict ourselves to right-

handed orthogonal Cartesian coordinate systems. The group of allowable

coordinate transformations are the transformations between allowable

coordinate systems. They are, in general, functions of time. Only

within one cla3s are the transformations time-invariant.

We are now in a position to define the meaning of a tensor as it will

be used throughout this report. The compontnts of a first-order tensor in

a coordinate system, say , will be represented by lower case letters;

e.g., Lx1 • Upper case letters are reserved for the components of second-

ordfr tensors; e.g., L 11. The transformation matrix between two coor-

dinate systems, say ] with respec. to ] , is abbreviated by IT A .

(See Jeffreys (13)).

DEFINITION: A first-order tensor (vector) is the abstract collection of

1ordered triples (i.e., components), each of which is associated with an

allowable coordinate system and such that any two satisfy the trans-

formation law
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where and can be any allowable coordinate system. If we refer to

this abstract collection, we write Lis just a particular

element of IXI ; i.e., the components expi ssed in the 3 coordinate

system.

A similar statement defines a second-order tensor (tensor) with

Equation (7) replaced by:

L81'6 - [T' ]" " I A[T1(81

'LE again stands for the abstract collection of all ordered 9-tuples

associated with all allowable coordinate systems. The superscript T indi-

cates the transposed matrix. Higher-order tensors could be defined similar-

ly. However, they will not be required.

The notation combines the features of the dyadic and the matrix formu-

lations. For instance, LZI is the abstract dyadic form that does not

single out any coordinate system. L 1 is a 3 x 3 matrix whose elements

are the components of the second-order tensor in the coordinate system .

ror further reference, we also adopt the convention that a frame is

represented by a capital letter in parenthesis, say (A) , and an element

or point of the frame by the same capital letter A with a possible subscript.

The coordinate systems associated with (A) also have the same capital letter,

A , possibly modified by a subscripti- .

Thus far, we have assembled the basic mathematical elenents needed to

model kinematic problems. Two more concepts are required to establish the

association between actual physical processes and the mathematical language.

These are: position and motion.
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3.2 CONCEPT OF POSITION

[ The position of a point or a frame W is a relative concept in the

sense that its definition requires a reference point R and a reference

frame (R). In particalar, the position of point d relative to point

C< is uetermined by the vector t)%0j. To describe the position of the

frame Q relative to frame CM, we start with the definition of a frame

given in Section 3.1. The three noncollineer points 1&,5,% of frame

(BY are referred to the three noncollinear points QL, Q1, 3 of frame (q)

by the three vectors L%^ 1)j2,3 . Only six of the nine vector com-

ponents are independent; i.e., a fva'wAe has six degrees of freedom.

An alternate and more useful way to describe the positioai of a frame

is the distinction between location and orientation. Let 8 and Z be two

representative points of(S) and (5k) . tXqw) is then called the locatiou

of frame s) relative to frrAe (Q) . The orientation of frame (9) relative

to frame (Q) is determined by the rotation tensor L(6"' ( whose defini-

tion is given below. By Euler's theorem on rigid bodies, and for that

matter on frames, the general displacement is a rotation about some axis

through a "fixed point." This "fixed point" is, in our case, an element

that belongs to (1) and (M) and is not affected by the rotation. Since (1)

and CQ) are unbounded, such an element always exists. Location and orienta-

tion together describe the position of frame () relativa t0 frame (M)

Both 6ftj .and Lrs") I have three independent components; i.e., together

they have the correct number to specify 6 degrees of freedom.

If61 is the unit vector of the axis of rotation and 9 uhe angle of

rotation, the rotation tensor is defined by:
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where LE is the unit tensor and I the skew-symmetric tensor obtained

from Ln1 . The derivation of this formula aad the proof of the tensor

property of Lr1 (P r I can be found in Jeffreys (13). We note further

that the rotation tensor is orthonormal and that its determinant is +1

for proper and -1 for improper rotations. The trace is

In flight dynamics it is customary to use a triad of orthogonal axes

to represent a frame. But confusion very often arises because the axes of

the triad and the coordinate axes are used as synonyms. Nothing could be

more misleading. We will try to give an accurate account of the situation.

fDEFINITION: A triad is a set of three orthonorm9l base vectors that connect

one physically important point of a frame, the base point, with three other

points of the frame.

The position of a frame, say ( ) , is uniquely determined by the

position of its triad. The base point e6 defines the location and the base

vectors t6jl Ll 1.1 L the orientation relative to a reference frame (P.).

The rotation tensor rrl I can be thought of as mapping the base vectors

t61) into the base vectors [ 1,1 1,E Itj of the reference

frama; namely,

Consider any two vectors txS'1 and L , where %. and Q. are any

elements of (S) and.) , respectively. If [ and L are composed
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of the same linear combination of the base vectors [E. j 1 , and

%1,[nz L h.I , respectively, then the two vectors are related by

I L (12)

because, if

L , ,1 A T, 6,t]+ T, 6,1 ~ (13)

and

Q1 kI--L t t]+ Tt LIn 1) + tgL1  s (14)

then Equation (12) follows from Equation (11).

Now we are in a position to establish a relationship between the

rotation tensor and the coordinate transformation.

TiEORi: Consider two arbitrary frames (Bi , [) and choose Uc ,.l and

L )t as outlined above. In particular, Equation (12) is supposed to be

satisfied. Define two coordinate systems 1 and in (8' and

respecti'vely, such that

66463~~1' L xQ11j (15)

Then the following relationship hels:

L - TS (16)

PROOF: From Equation (15) it follows that

)- l5" -[ X'. (17)

and
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Express Equation (12) first in the 1 coordinate system and compare with

Equation (17) and then in he coordinate system and compare with

Equation (18). Equation (16) follows immediately.

It is very important to distinguish carefully between frame and space,

triad and coordinate system, rotation tensor and coordinate transformation

matrix. Frame, triad, and rotation are invariant tensor concepts, whereas

space, coordinate system, and coordinate transformation are purely algebraic

not .ons.

3.3 CONCEPT OF MOTION

The concept of motion is formulated by introducing time into the

purely spatial concept of position; i.e., [X all4 and[~

Obviously, it is also a relative concept. It makes sense to talk about the

motion of a point or a frame only with respect to another frame.

The time derivative A of a tensor is considered to operate on its

components. It preserves the tensor character if the allowable coordinate

systems are related by time-invariant coordinate transformations. However,

in flight dynamics, it is very often necessary to express the time rate of

change of a tensor relative to a reference frame in terms of the time rate

of change of Lhis tensor with respect to a mcvlng body. Usually, this is

achieved by introducing coordinate systems fixed with the reference frame
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and the moving body and taking time derivatives of the corresponding

components. The correction factor is given by Euler's transformation

theorem. As Jeffreys (13) points out, the time derivative with respect

to the moving body has lost its tensor properties, and one must continue

to solve the remainder of the problem in one particular coordinate system.

We shall alleviate this shortcoming by introducing the concept of a

rotational derivative. A rotational derivative is a time derivative of a

tensor relative to an arbitrary frame; e.g., an inertial frame or body

frame. It is also a tensor of the same order and therefore a covariant

derivative with respect to the parameter t . The texm "tensor" is under-

stood here in the sense of the defintic... given in Section 3.1. If we use

the rotational derivative instead of the ordinary time derivative, the time

rate of change of a tensor, relative to a moving body, is still a tensor.

In more general terms, we will be able to formulate the equations of motion

in tensor form and carry out much of the analysis without recurring to the

component form. For instance, we will be able to introduce perturbation

equations that are not limited to a steady reference flight. However,

before advancing into applications, we must lay a sound foundation for the

rotational derivative. As far as I am aware, only Wrede (14) has reported

a similar concept. But his approach is limited to vectors and restricted

to one particular reference frame.

DEFINITION: Let (pI be an arbitrary vector (first-order tensor) and LP]

an arbitrary tensor (second-order tensor). Furthermore, let (R) be an

arbitrary frame. The rotational derivative of a vector and tensor with

respect to the frome (9) is written in dyadic form:
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or shorter

This is an abbreviation for the abstract collection of all component forms

that arise from the allowable coordinate systems. For instance, let I be

any allowable coordinate system, and Let ) be a coordinate system associated

with the frame (R, where L71 MR is the possibly time-dependent transforma-

tion matri-. Then the components of the rotational derivative for a vector

aad tensor are defined:

[~, IHpl - tp]+ t,"11 L.'i" LpI (9- (

h + tT 1 (20)

Some of the important properties of the rotational derivative are:

PROPERTY 1: The rotational derivative of a vector [pI relative to a frame

is a vector, i.e., lt (7) and( )-be any two frames with the associated

coordinate systems 3 and and the transformation matrix Li'-  , then

[L [T = t JL 'pJ (21)

PROPERTY 2: The rotational derivative of a tensortPI relativc to a frame

(Q) is a tensor; i.e., let (t4) and (i be any two frames with the associate'

coordinate systems and and the transformation matrix LII , then

? = [T T)"M (22)
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The second-order skew-symmetric tensors play an important role because

they represent concepts like angular velocity, angular momentum, and torque.

In Euclidean three-space, they have only three independent components and

can therefore be contracted to a first-order tensor capacity (see

Brillouin (15)). If we restrict ourselves to right-hand orthogonal

Cartesian coordinate system, then the tensor capacity is determined

uniquely. Such a first-order tensor capacity is called an axial vector.

PROPERTY 3: If the allowable coordinate systems are right-hand orthogonal

Cartesian coordinate systems, then an axial vector M( has the same rota-

tional Jerivative as a regular vector; i.e., let (ti) and (A I be any two

frames with the associated coordinate systems and and the trans-

formation matrix 1.71 , then

T']L - T] 1 (23)

The proofs of the three preceding properties are given in Appendix A.

PROPERTY 4:. The rotational derivative is a linear operator.

PROOF: Let and [.N-1 be two arbitrary vectors and any coordinate

system. The rotational derivative with respect to a reference frame

expressed in the coordinate system is

c -~-L)'p,1 Ppo, '  AV-L (25)

Furthermore, let k be a time-invariant scalar and Li any vector. We get
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tl I " d k [p~l + ITrt " A [Tj, (26)

[ ',{ tp /1" (27)

Equations (25) and (27) are the properties of a linear operator. They hold

for any coordinate system. Therefore, we can write the properties in an

invariant form:

[,'!) t IPl + [ t7.pA- -pa l (28)

(29)

It can easily be verified that the same properties hold for tensors.

PROPERTY 5: Chain Rule. LetLBI be any tensor and p be any vector. The

following rule holds:

,31) t I p It - tJBc-) 3lLpl + tLSI (r("3 0)-

PROOF: Let be any coordinate system and consider the component form

of Equation (30):

Write out the right-hand side using the definitions of Equations (19) and

(20):
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M -T

+ f'i- ,.r'/)t ""pi'.,, t1 tp l "T('(T1"

+ t ( [t]' jtg"', tr1M (_T[. [\+

The expreasion in the braces is zero because the first term is skew-symietric:

UL tTV'h") LT] j {' I Lr3hQ 1.Vl\I -rl ~TJ c (33)

This proves the chain rule.

The five properties -,f the rotational derivative are the more important

characteristics that we will need in the sequel. In particular, we are now

able to defir- linear and angular velocity.

DEFINITION: Let B be a point and ) a reference frae containing a refer-

ence point R . The position of B relative to (P) is given by Lx (t.

The velocity of B relative to (R) is defined by

It is commonly called the linear velocity of point B

COMMENT: Let Q, and r be two arbitrary points of QR) . Then we have

xecaus nt x 3 (35)

because introduct~i
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+ X~ ( 36)

and takiing the rotational derivative relative to (9) yields:

But

cb r II X 101 (38)

because, for a coordinate system associated with CR)

t] q " £0 (39)

Therefore, Equation (35) is correct, and we do nGL have to specify a special

reference point to define the linear velocity uniquely. All that is needed

is a reference frame. This is the explanation for the particular notation

in Equation (34). It reduces to the familiar definition if we show its

components in a coordinate system:

T (q) L cd x - -' [ )C (40)

DEFINITION: Let (1) and (R) be two arbitrary frames whose orientation

relative to each other is given by t[P 3P i  ) 1 . Let G, and B be

elements of (B) and connected by the vector[Xf3 Accordir.g to

Equation (12) the-re exists a similar vector [tqkfHl in (9-)such that

Take the rotational derivative relative to and use Property 5.
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[2(l)Xhe x 0WOR Q&)R Qlx +[ X f (42)

The last term is zero. Substitute Equation (41) into Equation (42):

'pro I M O LQLIq (43)

and abbreviate

to get

is called the anular velocity tensor of frame (') with respect

to frame,(r) .

It is certainly a second-order tensor. Its skew-symmetric property

is proved as follows. Consider

1 .5 01 t~ tz(1"1 k 'IT1 (46)

We first show thatLbEmL . *For any coordinate system, say 3

E &wUtE 014 [TIS't cl C.T)E' ( T IT3) LT]nIt I

+ r LTILT Ii - OI

ef Eati (

Therefore, Equation (46) becomes:

Vr c-oILr(w St)T(8
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or by definition:

There is another important relationship linking the angular velocity

tensor to coordinate transformation matrices:

- ( ? T1 tr (50)

or

(** (M) (51)

Equation (50) is proved simply by taking the ] components of Equation (44)

and employing Equation (16). Equativn (51) fol.ows then from Equation (50)

by coordinate transformation.

Note that Equation (19) can be written, in view of Equation (5L) as:

ci M (52)

However, a word of caution is necessary. Equation (52) may zuggest that

9-k Lp 1' is a tensor because A.)- pI- and, seemingly, . P L"H)(t pl

are tensors. But we know from Jeffreys (13) that neither term on the

right-hand side of Equation (52) is a tensor. Only the sum is a tensor.

Before stating other important properties of the angular velocity

tcensor, we need to formulate the fundamental theorem of kinematics that

governs (he change of frames.

THEOREM OF TRANSFORMATION OF FRAMES. Let (Al and (G) be two arbitrary

frames related by the angular velocity tensor L&W2.A) . Then for

any vector the following relationship holds:
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L ;&(A)I . ()p L (6 (A) (53)

where every term is a first-order tensor.

- The proof is somewhat lengthy and given in Appendix A. Note that

Euler's theorem is a special case of Equation (53). Because if we choose

the proper coordinate systems, we get:

t- Ll%4 L(54)

The additive property of angular velocity tensors will now be. proved.

Consider three arbitrary frames (A) , ( ), and (.). Apply Equation (53)

three times:

9)k a + (55

L~IK L (56)

r .j~ )Aj~ (57)

Substituting Equations (56) and (57) into (55) and in view of the fact that

is an arbitrary vector:

L I .. '1fVLe + L -()A (58)

Notice the consistent sequence of superscripts.

Another useful property to remember is:
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[ ~j'~(l~ -j~ '1JA~(r) ~(59)

It follows again from applying Equation (53) twice

+ (60/

+4 ~~4 (61)

and adding both equations.

Finally, we will prove a second important theorem:

THEOREM OF ROTATION OF VECTORS. Let W and (B) be two arbitrary frames

related by the rotation tensor . Then for any vector the

to-Lowing holds:

A)p P L'1() o (62)

This can be interpreted as follows: The rotational derivative of trl

relative to (A) can also be evaluated by first rotating F] through ,.af)( ' l

and then taking the, rotational derivative relative to the likewise rotated

frame, now called iB'; then the result is rotated back through [ [ ( T .

This theorem is actually a consequence of the isotropic property of space,

Axiom b of Section-3.L; i.e., taking the rotational derivative is invariant

under spatial rotations of all points and frames involved.

PROOF. Apply the Chain Rule to the left side of Equation (62):

£ A~ B(A~L ~) ( Y 1 +~ r (63)
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and the Theorem of Transformation of Frames to the last term of Equation (63):

ob(A[ p rAL Iq r LA)Al r (64)

It remains to be shown that

a[ s IiT L() I L- ()G (65)

Let us start with a form equivalent to Equation (41)

X, - (66)

and take the rotational derivative relative to (R):

L01 L c + [i L 1 (67)

We compare-the transposed form

with Equation (43) and conclude

But this Is just the form of Equation (65).

I.
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4. PERTU~rATION EQUATIONS

WN shall apply the tensor oncepts of Chapter 3 to shed light on the

perturba:t ion equations commonly used in flighit dynamics. Two different

perturbation methods can be distinguished. Their areas of application

depend on tne role the aerodynamic forces play. In space dynamics, where

the ,aerodynamic forces are small, the first method is used. The second

method applies to atmospheric flight dynamnics where aerodynamic forces

dominate.

Consider a rigid body subjected to aerodynamic and gravitational

forces. Its itass and gravity center are assumed to coincide for all

practical purposes. The Euler equations of mechanics are in the tensor

Cormulation of Chapter 3:

[ ,,(t 1 '(. = (')

The allowable coordinate systems are right-hand orthogonal Cartesian

coordinate systems. is the rotational derivative with respect to

an inertial frame i) , Lp~1is the linear momentum o-f the body ()

relative to the inertial frame, and L L& .3 is the angular momentum of

the body relative to the inertial frame and referred to the mss center, 3.

tfa1 and [Mal are the Perodynamic force and monent, respectively, and

P the gravitational force. Because the allowable coordinate systems

are restricted to right-hand or thogonal Cartesian coordinate systems, the.

skew-symmetric angular mom-ntum and aerodynamic molent tensars ore written

-as axial vectors.
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Consider two solutions of E uations (i) and (2). Call the first one

the reference flight:-[ O I t I Call the second one the
perturbed flight: L P (A3)m The a and r below

indicate that the body frame is in a reference state or a perturbed state,

respectively. To arrive at the so-called first perturbation equations,

define the perturbations- from the reference flight as the vector increments:

() 1)] . S P% 1 (3)

(4)

Because both the perturbed flight and the reference flight satisfy the

equations of motion, and because che rotational derivative is a linear

operator, we obtain from Equations (1) and (2) in view of Equations (3) and

(4):

t~[y ll - (5)

where (W ana indiuate that the respective functions are evaluated

during reference or perturbed flight. The last two terms in Equation (5)

caneel betause the gravitational force is invariant~ under the flat-earth

approximotion Define the perturbations of the aerodynamic force and

moment as the -vector increments

- [fA -[ ) I (7)



ChIAPTER 4 36

M (8)

We obtain then the first perturbation equations of a rigid body in

free flight:

L~(t g~L)(t' ~ =(9)

These are the most concise forms in which we can write the perturba-

tion equations. They are valid in any allowable coordinate system, whether

it is associated with an inertial system or some moving system.

To formulate the so-called second perturbation equations, we have to

introduce a third frame, the stability frame ($h . e aerodynamic forces

are expressed in a coordinate system associated with this stability frame.

Just as we have to distinguish between a body frame being in a reference

state during reference flight and in a perturbed state during perturbed

flight, so we have to define and as the stability frame in the

refe"nce state and perturbed state, respectively. The relationship

between them Is given by the orthonormal rotation tensor (z

N~)
thit expresses the rotation of the frame p with respect to the frame

Finally, the angular velocity tensor - describes the

angular .e-loe[ty of the stability fr-ne (G relative to the inertial

fran- (a)
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Define the perturbations from the reference flight as the vector

increments:

I:, I lLc -(4 (0) (12)T

In writing Equations (12) and (15) in form of axial vect")s, we must restrict

the rotation tensor to the class of right-hand orthonormal rotations.

Let Equations (I) and (2) describe the equations of motion during a

perturbed flight. Introducing Equations (11), (12), (14), and (15) then

'yields:

The second term on the left-hand side can be put in a more convenient

form. In view of the Theorem of Transformations of Franes, Equation (3.53),

we write for the lin. ,r momentum -term:

V W
YIPi 8
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Apply the Theorem of Rotation of Vectors, Equation (3.62), and then again

Equation (3.53) to the first term on the right-hand sid,.:

(19)-- (a.)t W I ' [ r .,l fo , Tr() S

- P. 1  x -ti IL

and substitute Equation (19) into (18):

(20)

+ ~~ ~ Y -fe, La l 2 t

From Equations (16) and (20), after introducing the definition of Equation

(13), we obtain:

(21)

The underlined terms are the equations of motion, Equation (1), of the

'reference flight rotated by t. They are satisfied identically.

Performing the same operations on the angular momentum Equation (17)

yields an equivalent equation; however, without gravitational term. Both

together are called the second perturbation equations of a rigid body in

free flight. They- are surmarized below making use of the invariance of
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the gravitational term-, i.e.,~~f~(

where [El is a second order unit tensor.

DISCUSSION: The second perturbation equations determine the deviations from

a reference flight that has been rotated by R The second

terms on the left-hand sides of Equations (22) and (23) are the correction

factors. To see the advantage of the second perturbation method, compare

Equation (7) with Equation (14). Figure 4.1 shows the quantities involved.

FIGURE 4.1 THE TWO KINDS OF PERTURBATIONS

L :al contains the aerodynamic forces due to a deviation from the rotated

reference flight only, Qhile W&Ifa also depends on this rotation. This

difference can be seen if L . s eliminated from Equations (7) and (14):
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L c + (24)

A more detailed discussion of why the second perturbation method is better

suited to formulate the aerodynamic forces than the first one is given in

Section 11.4.

Equations (22) and (23) reveal best the difference between the two

perturbation methods. For applications, an alternate form of the second

perturbation equations ts sometimes more convenient. It is obtained simply

by subtracting the reference equations of motion multiplied by I r~i ) 3
from the perturbed equations of motion:

-T (. Wc L [ W( ) (25)
-., ,I Vtpt'=Itf1 -EH , ,,t)(rj,,] ))

- ~ ~ e~j(26)

COQMENT; The second perturbation method can be considered as a generaliza-

tion of the classical small disturbance method (see Etkin (16)). While

the second perturbation equations are expressed in tensor form --.z there-

fore valid in any coordinate system, the classical disturbance equations

hold only in one cvurdinate system, usually a stabilit or body system.

For example, the definition of small disturbances for the velocities and

the aerodynamic forces are:
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(27)F- II

CA V P "i M4

where p and . indicate the perturbed and reference flights, respecttvely.

During the perturbed flight the variables are measured in the stability

coordinate system of the perturbed state, and during the reference

flight they are measured in the stability coordinate system I, of the

reference state. Because the two coordinate systems- are not the same, the

small disturbances in Equation (27) are not vector increments, but rather

the scalar differences between components measured in two different

coordinate systems. This can be a serious disadvar'tage if the time

derivative of Equation (27) is taken:

CAY. - - (28)
dt d

because it is very difficult to interpret the physical meaning of the last

time derivaive. The only alternative is to make it vaiiish by restricting

the analysis to nonaccelerated reference flights. Another disadvantage of

the classical approach lies in the effort required to think in three

components. Errors might result from an intuition too badly strained.

The perturbation methods used in this report employ strictly tensorial

concepts; i.e., invariantv" under allowable ,coordinate transformations. This
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formulation was made possible by introducing the new concept of a rota-

tional derivative to replace the time derivative. No restrictions have

to be imposed on the reference flight, and the intuitional thinking

process is improved.



r
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5. NORMALIZATION

It la often possible to simplify the treatment of the equations of

motion and, at the same time, to embrace a general class of related

problems by normalizing the variables and parameters. This normalization

process should be introduced early into the formulation of the equations

and should be uniform for all components of a vector or tensor. There

are two conflicting requirements to be satisfied when selecting the

normalizing quantities: they should be constant in time and reduce the

aerodynamic forces to the standard coefficient form. For instance, a

constant reference flight speed usually is eaployed to normalize the

equations of motion, but the actual variable flight speed is used to arrive

at the aerodynamic coeffLients. We shall therefore introduce two normaliz-

ing systems. Following Hopkin (17) we shall define a dynamic-normalized

system for the equations of motion and ag aero-normalized system for the

aerodynamic forces.

5.1 DYNAMIC-NORMALIZED SYSTEM

Equations derived from the Euler equations of mechanics, Equations

(4.1) and (4.2), allow three independent dimensions to be specified. In

the "ordinary system" they are maasM, length L, and timel. The dynamic-

normalized system is based on Mass M, Force F, and Velocity V. The

relationships between the systems are:
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ordinary system dynamic-norma L ized sys tern

- M M

L F F-T (1)

HLV

F T

Fir our particular dynamic-normalized equations of motion, we select

the following time-invariant quantities to define the unit scales of the

three independent dimensions

Dimension

Unit Scale rn Vs S V,'

TABLE 5.1 DEFINED UNIT SCALES OF THE DYNAMIC-NORMALIZED SYSTEM

where rn is the vehicle's mass, S the reference area, Vis the absolute

value of the steady-state velocity, and 3 is some constant reference air

dens ity.

In specifying three dimensions, the dynamic-normalized system is a

consistent dimensional set. By consistent we mean that the equations of

motion remain unchanged when expressed in dynamic-normalized dimensions.

There is no need to carry along artificial constants.

Any other d.menston wit), its unit scale must be derived from the three

basic dimensions. Thus, two of the dimensions in the ordinary system must

be derived from the dynamic-normalized system as shown in Equation (1).

Their drlved unit scales are
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Dimension T

Unit Scale 2M &.M . n

TABLE 5.2 DERIVED UNIT SCALES OF THE DYNAMIC-NORMALIZED SYSTEM

where we introduced the time parameter T to abbreviate the time unit scale.

5.2 AERO-NORMALIZED SYSTEM

The functions expressing the aerodynamic forces are most conveniently

formulated in the aero-normalized system. The three independent dimensions

are specified to be length L, force F, and velocity V . The relationships

between the ordinary and aero-normalized system are:

ordinary system aero-nomalized system

1--L L L..

(2)L L - - t

L V L
V T

and between the dynamic and aero-normalized system:

dynamic-normalized system aero-normalized system

FL M'Vt

F F F - F (3)

v-V v V
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The unit scales for the independent dinmensions of the aero-normalized

system are chosen such that the variables in the aerodynamic functions

assume their simplest form:

Dimension L

Unit Scale 4!- *v

TABLE 5.3 DEFINED UNIT SCALES OF THE AERO-NORMALIZED SYSTEM

where t is some reference length and Vt the absolute value of the velocity

vector. Note that the unit scale for force and velocity are time-variant.

Therefore, aero-normalized quantities should not be used where time

derivatives must be taken, unless great care is bein", exercised.

If we adopt the three independent dimensions of the aero-normalized

system as the three basic dimensions, the two dimensions, H and " , of

the ordinary system are derived dimensions. Their derived unit scales are

obtained from Equation (2):

Dimension
I I

Jnit Scale i j
TABLE 5.4 DERIVED UNIT SCALES OF THE AERO-ORIMALIZED SYSTEM

5.3 DISCUSSION AND APPLICATION

Throughout this study we shall use the dynaric-normalized system

whenever dynamic problems arise. A horizontal bar will indicate a
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dynamic-normalized quantity. For instance, the Suler equations of mechanics,

Equations (4.1) and (4.2), become:

" wi0 1 L- ) (5)

where the dynamic-normalized rotational derivative is

r ~. (6)

with the time parameter V defined in Table 5.2.

Similarly, the perturbation equations (4.9), (4.10) and (4.22), (4.23)

expressed in the dynamic-normalized system receive just a bar above each

quantity. There is ouse exception to this rule. The rotation tensor of

the perturbation equations contains only elements that depend on angles.

Because angles are already nondimensional quantities, the rotation tensor

is not affected by a change in the dimensional system.

The aero-normalize system will only be employed to formulate the

aerodynamic derivatives. Once the aerodynamic forces are combined with

the rate of change of linear and angular momentum, we will express all

terms in the dynamic-normalized system. A circumflex will dcsignate an

aero-normalized quantity.

Table 5.5 summarizes the dimensions and unit scales of some important

physical quantities in the three systems.

[

I¢
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The relationship between the three different form of one quantity are

derived from the requirement that the equations must be diu~ensionalLy con-

sistent. Some examples are given below:

#a

2. m I A

I A

Ls,,,- teIl (8' t: ,)

L mVtu -_y V,,1L AY (10)

- A,

1Z.1 (13)

I t VLA&Ek (14)

I~Lt AI (16)

If dynamic-normalized and aero-normalized variables are compared, two

additional parameters are introduced for convenience:
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mass parameter J, - _ _

velocity parameter

From Equations (7) through (16) we obtain:

A_ I 
(17)

A I [ 
(22)

A Lp 
(2)

VIt

Af (2)
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6. FRAM AXES

The-'odeling of the flight dynawic problem in this report requires

an extensive use of physical and matherstical concepts. Many of them are

defined in Chapter 3. It is particularly important that we understand

the meanings of: frame, triad, and foordinate system.

Frames are the building stones for modeling rigid body problems.

They represent physical concepts like earth frame, reference frame, body

frame, etc. Three noncollinear frame points are sufficient to determine

the position of a frame. However, many times a triad is used to represent

a frame. It is defined by a right-hand orthonormal triad of base vectors

and the base point; i.e., by four frame points. Therefore, two of the

base vectors and the base point define a frme uniquely. Frames and their

triads are physical concepts in the sense that they are invariants under

allowable coordinate transformations. Thus, they can be cast into tensor

formalism.

In contrast, a coordinate system is not a physical concept. All it

does is to establish a one-to-one correspondence between the frame points

and the ordered set of algebraic numbers. The set is called the coordinates

of the point. However, knowing the coordinates of a point is not sufficient

to locate a point because there are an infinite number of coordinate systems

that can be associated with a particular frame. Only it we introduce another

point o the frame as a reference point and if we form the coordinate differ-

ences, can we define the relative location of the point. Thus, we aeriva

at a displacement vector connecting both frame points. The ccordinate

differences are called the components of the displacement vector in a

particular coordinate system. The abstract collection of the components
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in all allowable coordinate systems constitutes the vector. The same

collective point of view is used to define all other vectors and tensors.

Knowing a set of components of a vector does- not uniquely determine a

coordinate system. It only fixes the tet of coordinate systems generated

by translational transfomnations. Thus, the location of the origin of

the coordinate system is immaterial. In effect, all points of a frame

are origins for the set of coordinate systems generated by translation.

The geometrical picture of a Cartesian coordinate system in a three-

dimensional Euclidean space is modeled by three orthonormal axes. It is

this geometrical analog that causes confusion because, intuitively, the

geometrical picture is elevated to physical reality, even though we know

that a coordinate system is a pure matheiatical concept. However, in

flight dynamic problems the notion of axes is too deeply rooted to be

dispensed with. We will, therefore, retain this term but associate it

with the physical concept of a triad. The base vectors of the triad will

be called the frame axes. There exists a particular simple component form

Li
of the axes, the unit component form 0O . etc. The set of coordinate sys-

tems, generated by translations, that provide this form are of special

interest. They are usually meant, when we talk about a coordinate system

associated with a frame.

To summarize, a frame is represented by a triad whose base vectors are

called the frame axes. Two axes and their origin, the base point, define

the position of a frame. The coordinate systems associated with a frame

are purely mathematical concepts. There is always one set of them in

which the axes attoin a particular simple form. In a geometrical analog

we would say that the coordinate axes of this set are parallel to the
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frame axes. This set is used to express the components of a vector in a

given frame.

Throughout this study we will use right-hand Cartesian coordinate

systems and right-hand orthonormal triads. The base points of all triads

coincide with the center of mass, 8 , of the Magnus rotor (MR). There are

two groups of frames: the flight mechanical frames, Table 6.1, and the

gyro-mechanical frames, Table 6.2. The sequence of rotations of the flight

mechanical frame axes is shown in Figure 6.1. It differs from that of con-

ventional airplane dynamics (see Etkin (16)) because the singularity at

glide angles r - i 90 degree is undesirable. An MR in transient flight

may perform a full loop, thus changing its glide angle 360 degree, We,

therefore, prefer to locate the singularities at roll angles t 90 degree.

This is a better choice because, later on, the perturbation equations will

be limited to small roll angles but the glide angle will remain unrestricted.

The singularity of the sequence of the gyro-mechanical frame axes is

at j= 0 . But this is just the position of the spin axes in reference

Lflight. The gyro-mechanical frame axes, therefore, cannot be used to
formulate the general perturbation equations. Nonetheless, they are useful

to discuss the gyroscopic properties of MR's and, notably, to estimate the

order of magnitude of certain terms.
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Except for the earth frame, we must distinguish the individual flight

mechanical frames during reference and perturbed flight. The definiticns

of the frame axes, given in Tables 6.1 and 6.2, can be applied to both

flight states except for the reference axes. For the latter, both defini-

tions are provided. Note that the following frame axes coincide during

reference flight: _ - ) - L . The nodal and nutation frame

axes of the gyro-mechanical frames are not defined for the reference flight.

A definition of the spin axis remains to be given. The spin axis of an

MEL intersects the mirror plane orthonogally at the center of mass. Its

positive direction is determined by the following corkscrew rule: Pick up

an MR with your right hand such that the driving vanes offer the most

resistance against a right-handed twist with your hand. The spin axis has

then the same direction as the axial 'vector representing the twist,

Figure 6.1 presents the axes as they intersect the unit sphere. The

lines are the great circles on the sphere connecting two axes. They

carry the angles of rotation between the frame axes. These angles can

be defined either by rotation tensors or transformation matrices. We

choose to use here the transformation matrices. Associate with each frame

a coordinate system that puts the components of the system axes in the

simplest form [ etc. The transformation matrices between these

coordinate systems are given in Table 6,3.
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rzE m 0 1 T-SY10 S)

[To L~ l 0 1 [j0 1 0
[TJ 1  LS 0 c c p Lsit 0 CifLs~

tSA - C* 0 [T 0 c4 S4* ;LT) fsf t
0-s* C o

[TI 0 0 ;Lr3 1

I)LQ 0C6T 0ctSL " 0 or
~ 0p 0 D

S4 C* ScJIC

+ sr s Jr +4S c cY

TABLE 6,3- COORDINATE TRANSFORMATION MATRICES
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7. KINEMATICS

All kinematic concepts have been introduced in Chapter 3. In

particular, Equations (3.19) and (3.20) define the rotational derivatives

of tensors and Equation (3.44) the angular velocity tensor. Here we shall

concentrate on providing the formulas needed for the further development

of the equations of motion.

One method of evaluating the angular velocity is given by Equations

(3.50) and (3.51). But usually one tries to avoid the matrix multipli-

cation and instead regards the angular velocity tensor as an axial vector

and adds vectorially the individual components along the axes of rotation.

As an example we shall evaluate the angular velocity vector C W

of the stability frame of the perturbed flight, (} relative to the

inertial frame, (L) , expressed in a coordinate system I associated

with %) . Refer back to Figure 6.1 and read off:

- o .(I)

To simplify the evaluation, express the last two terms in different

coordinate systems:

[rC+ [T[ ) ] 44Ti ff r p (2)

with

- 0 [, ; ,,. [.Jl;
'  t I (3)

Carrying out the multiplications yields:



r
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]p sr-4 4. i C05A+ os.+

PS
4(4

A~ c 0 64 '- t 5 zr 4 o P

where the dot stands for the derivativeA . If we set 0in Equation

(4), we get

( (a s;n (5)

L o co4 p
and if we add [W to Equation (5), we obtain

=A (6)

Three more formulas are derived directly from Figure 6.1.

(7)

I" I
to W (8)

P. i
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I0
[ M ] (10)

For further reference, we shall also need the time derivatives of Equations

(6) and (10):

W4 i 4 4 C.05

(12

In Chapter 6 two groups of axis systems were introduced: the flight-

mechanical and gyro-mechanical frame axes. The flight-mechanical frame

axes are used to formulate the aerodynamic forces and the equations of

motion. The purposes of introducing the gyro-mechanical frame axes are to

establish the connection with the dynamics of gyroscopes and to obtain order

of magnitude eatimates for certain terms in the equations of motion. In

the following we shall derive the relationships between the flight-

mechanical angles + and + and the gyro-mechanical angles 6 and rL.

together with their time derivatives, This could be done via the appropri-

ate coor6inate transformations. However, to avoid lengthy matrix multipli-

cations, we shall employ spherical trigonometry.

Consider the epherical triangle Y X , )(z'r)of Figure 6.1 and

reproduced in Figure 7.1.
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X~X2

. iX~s

FIGURE 7.1 SPHERICAL TRIANGLE

We read off:

sirm4 cos (qoo-r l cos (o" - 70 ° ) (13)

s~ir = s;n rt cos 6 (14)

Similarly we get:

sin (qo" - 7 * Z7O" )an 90'_ r,) (15)

r

ton -onm sin 4?--)(i6)
9t
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The first time derivatives of Equations (14) and (16) are:

-_sinI sin 6 -_ cosq cos (17)
( - sin Cos z ) IL

2 - snLrL cosz , (18)

To simplify the expressions, we introduce the small-angle assumption. From

Figure 7.1 we conclude that small angles 4 and 4 imply a small angle r .

With this assumption that the cone angle r is a small angle, we obtain

from Equations (14), (16), (17), and (18)

rCOS-6 A19)

j tSi (20)

" - * s jCos (21)

4 bs (22)

The second-order time derivatives are deduced from Equations (17) and (18).

Again, assuming that r. is a small angle, they become:

qb 6 L6 s (23)

(24)

Let us multiply Equation (21) by Equation (22) avid Equation (14) by Equation

(22), respectively:

S
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[ 1 ' . o Sk (26)

Squaring the Equations (19) through (22) and adding the first two and last

two equations yields:

zc -r (27)

and

For further reference we also give the time derivatives of the cone angle

and- the node angLe 6 for small angles 4. and A'

C* _4- A (29)

6- (30)

All these equations will be used later to estimate the order of magnitude

of certain terms. As an example, we want to show that the absolute value of

(!11 ] is of the order rL6  ; i.e.,

II A II Orta~(31)

From Equation (5) generate the absolute value and obtain in view of Equation

(28):

VI (32)
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Because the nutation rate 6 for conon MR's is much greater than the decay

of the cone angle ; i.e.,

and because r= 0 implies 2= 0 , we receive the desired result

I )I (34)

The time derivatives of all expressions are in real time. In later

chapters we shall often need them in dynamic-normalized time. This can be
4 d

achieved simply by substituting 4d or a circle for ! ot a dot,

respectively.
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8. REFERENCE FLIGHT

Consider a Magnus rotor (MR) in free flight.. Its most important

flight regime is the descent in a vartical plane with horizontal spin

axis. We call this flight condition the planar glide phase. It will

serve as the reference or unperturbed flight for the stability investi-

gations in later chapters. Before deriving the equations of this refer-

ence flight, we shall establish the conditions under which the MR is

able to perform a planar glide phase.

8.1 CONDITIONS FOR THE EXISTENCE OF A PLANAR GLIDE PHASE

The equations for the planar glide phase were formulated by Brunk (I).

They describe two translational and one rotational degrees of freedom of

an MR. It is intuitively clear that a mirror-symmetrical MR can actually

achieve a planar glide phase, provided that no external disturbances

occur. However, we shall present a rigorous proof. Before we can formu-

late this proof, we must define mirror symmetry and the planar glide phase

in mathematical terms. Let us begin by introducing the concept of a

reflectional tensor that will lead us to the definition of mirror symmetry.

Consider a plane, P , normal to the MR's spin axis. The point of

intersection with the spin axis is B . We consider two sets of displace-

ment vectors. The first set connects the mass elements Arm, ; l Z""f

to the right of the plane P with the point S, . The right-hand

side is the side of the positive spin axis. The second set connects the

mass elements AM t )I= 1) 2-" .. to the left of the plane P with

the point 1, st (see Figure 8.1).
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P
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P

FIGURE 8.1 LOCATIONS OF MASS ELEMENTS

Let the subscript be chosen such that, if ).. , the displacement

vector Lstu, is the mirror image of [S,,1 with respect to thc mirror plane

P This can be expressed mathematically by a tensor [14] such that

In a body axis system, b4T has the form

[Wj 0 -L 0o (2)

It is symmetric and orthogonal with a value det l[[Wi- -I * We will

refer to it as the reflection tensor. Any displacement vector in the

plane P , l , is reflected into itself; i.e.,
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-~31 L1 ~~ (3)

The reflectionai tensor operates on a second-order tensor, LAI , as:

A'j = tW t Al [ 41 (4)

if Al is skew-symmetric, say La11, then an equivalent form of Equation

(4) is obtained for the axial vector 61 of U11:

t 0, = (5)

To prove this we write Equation (4) in subscript notation with suumation

convention:

.. WWS(6)

Contract the second-order tensor by multiplying both sides by F-Zi, and

sum twice

e .. .(7)

Because, from Jeffreys (13), page 72,

P S dr4tN C H (8)

and d e 4 .- j , Equation (7) becomes

P 1 EL_(9)

The axial vectors of the skew-symmetric tensors are

S C W it,(10)
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Therefore, we can wriLe Equation (9) as

which is in the form of Equation (5).

DEFINITION: An MR is said to have mirror-symmetrical mass distribution if,

for every mass element Am, ; h-i12--. - ) located at LSX,1] , we can find

a msselme t ps~ located at I~1441s,.

DEFINITION: An MR is-said to have a mirror-symmetrical external configura-

tion if, for every surface element aA h u ,2,.-. at L Slte

we can find a surface element AAL 6AA; Is 1.,'.# located att siel .. tLt,,ssl.

From the first definition, two properties of the mirror-syimetrical Mt

follow immediately: (i) its center of mass is in the mirror plan. P $ aed

(ii) its moment-of-inei:-tia tensor is invariant under a reflectional censor

operation; i.e.,

1I (S)1 I W (0) I TW (12)

To prove Equation (12), we express the moment-of-inertia tensor by its

definition:

H ' i alL.H1 d i [v'i81 LIe 11 -eI
(13)

T  T

[14
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where .( [ " A is the summation of sufficiently small mass

elements over the total MR. Let us separate the second term in Equation

(13) into a right-hand contribution, 1)21' rt and a

contribution, r x 1,2, , n with -n A

; z.

(14)

Because the MR possesses mirror-symmetrical mass distribution, Equation (1)

and its inverse ts, i - holds for all h ,

Thus, we write Equation (14)

(15)

+

Furthermore, - V, and Therefore,

T (16)

Substituting EquaLiun (16% inlto Equation "13) deliver- the desired proof:

[14[1 ~ ~ 1 t~t J (17)

Let us define now what we mean by planar glide phase.

DEFINITION: An MR performs a planar glide phase if three conditions are

satisfied throughout the flight:
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ts A0 (19)

THEOREM. The necessary and sufficient conditions for the existence of a

planar glide phase are:

1. The MR possesses mirror symmetry with respect to its external

geometry and the moment of inertia tensor satisfies Equation (12).

2. The pert:rbations during flight are limited to forces whose

resultant vectors lie in the vertical plane and to horizontal moment

vectors.

3. The initial conditions are:

a. Mirror plane is vertical; i.e., the gravitational force is

contained in the plane:

Lf~1 Lf4t~j1(21)

b. The linear momentum vector is contained in a vertical plane:

I+It P (t, ( o1 (22)

c. The angular momQntum vector is horizontal:

A ( (23)
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PROOF: We shall first give the initiaL orientation of the aerodynamic

force and moment. As outlined in Section 11.3, the aerodynamic force

must satisfy the relationship

A%

(24)

where Ni and Q,. are the Mach number and the Reynolds number, respectively,

L Z L A and ( I are the aero-normalized angular and

linear ve-Jocities, respectively, of the MR relative to an inertial frame at

time 40.

Because the surface is mirror symetrical, we have:

I sit (D)l IV41tsi"()] (25)

From Equation (22):

A) ()~ (26)

and from Equation (23) with Equation (12):

%)k1 (0) - - t( 3 W ()

Therefore, Equation (24) has the form:

Idl()I-I"ItA1(oV (28)

A similar procedure leads to:

. - (29)
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This means that initially the aerodynamic force is in a vertical plane

and the aerodynamic moment is horizontal.

Now we shall show that Equations (18) through (20) are satisfied at -= 0.

Equation (18) is automatically satisfied by Condition 3c of the theorem.

Using the equation of motion, Equation (4.1), and premultiplying by

(0) gives:

6(% (0 (30)

The right-hand side is zero because [ (O and ty are, in a vertical

pland. Therefore, Equation (19) is alto satisfied. Also, premultiply

Equationa (4.2) by Lp ~O)and obtain

Y olLLj ~l) p((~g W (31)

This is again zero, and Equation (20) is therefore also satisfied. Summariz-

ing, we have at the initial time +- 0

p G(1() (OfITl (32)

IQF (34)

which agrees with Equations (18) through (20). To arrive at these equations,

we employed Conditions (1) and (3) of the theorem. It can easily be verified

* that, If any of these conditions is violated, then Equations (32) through

(34) do not hold and, by definition, the MR is not in a planar glide phase

initially. Therefore, for 4'- 0 , Conditions (1) and (3) are the necessary

and sufficient conditions for a planar glide phase.
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To extend the reasoniny, to positive times, we interpret the Equations

(32) through (34) as stating that, after a time increment A , the linear

momentum vector is still in the vertical plane and the angular momentum

vector remains horizontal, Now we can again show that Equations (18)

through (20) are satisfied for the time . However, because

perturbations may be acting during the time increment, we must impose

Condition (2) of the theorem, These admissible perturbations do not affect

the restrictions on the linear and angular momentum vectors. But any other

perturbation would force the linear momentum out of the vertical plane and/

or the angular momentum from its horizontal attitude. Therefore, Conditions

(1) through (3) are the necessary and sufficient conditions for a planar

glide phase at 4- . 'This process can be repeated for the next time

increment, and so on. Thus, the theorem is proved.

8.2 EQUATIONS OF MOTION

We shall formulate the reference equations of motion in a coordinate

system associated with the stability frame C )  during reference flight

(see Table 6.1). From Equations (5.4) and (5.5), we obtain:

~j~L ft1I JLLILJ iL 4(,L )Is +t OI 3511 MW--M

1,( (36)

From Section 8.1, we know .hat the linear momentum and the aerodynamic and

gravitational forcesrenain in the vertical plane; i.e.,
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(5 T (37)

L WILte k (38)

- (39)

and that the angular momentum and aerodynamic moment remain horizontal; i.e.,

116 e) () I -1 L (ra)W 1(40)

LM %)I - - 1Lvt(41)

With the ref1ection tensor

14 0 -1 0 (42)
0 0 1

Equations (37) through (41) require that some of the components in Equations

(35) and (36) mu'st be zero. We obtain the following result:

o - .v

0 D (43)

(44)

L D
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where V1, is the flight speed, C,1 the spin rate about the spin axis,

i I the moment of inertia about the spin axis, and Tt the glide angle.
i Equation (43) is the linear montentum equtation with the first component

along the flight path and the third component norml to it. The last terms

on the right-hand side are the gravitational force components. The angular

momentum Equation (44) consists of the component about the spin axis only.

We turn now to the determination of the aerodynamic forces. In

Chapter 11, Equations (11.13)-and (11.14), we shall show that the follow-

ing functional relationships exist:

AAB

Mi(l) -i C t At (46)

-where we made the ASSUMPTION:

A A

i.e., the maximum rate of change of glide angle is less than one percent of

the spin rate. Furthermore, by definition, we have

[ I = - 0 V: (48)

Let

0 j
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and remember that hbL( , contains the only

variable 0'.,. Then we can simplify the functional relationship in

Equations (45) and (46).

V,~ IM ) r, WL,~tL(50)

A'A

The lift and drag coefficients are introduced by the following definttion:

- 0 (52)

T]- L ( rL)
The-spin torque coefficient is written as[ .9 .1

[dM I (53)

Experimental evidence justifies the following simplified functional

forms for the coefficients:

Hot)QPL5alt(54)

AA
OL a 'r,~,~ A L (55-)

dM 4.A (56)

where I&, h , Ci 4  must be determined experimentally. Substitute

Equations (54) through (56) into Equations (43) and (44), and convert all



CHAPTER 8 78

aero-normalized quantities into dynamic-normalized terms. The final

result is:

- ~c~L. (58)

-- A1 (59)

where we used the previously introduced assumption that the rate of change

of glide angle is much smaller (<17.) than the spin rate.

V,1. ) and a. are the dependent variables. The absolute value of

the flight velocity VL and the glide angle To are the polar coordinatesa

of the velocity vector. The dynamic-normalized spin rate *( I is

related to the tip-speed ratio via pV, .. The aerodynamic co-

efficients depend implicitly on Hp , , and . For a discussion of

the equations refer to Section 12.1.
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9. LINEAR MOMENTUM

In this chapter we shall derive the equations that describe the pertur-

bations of the linear momentum of an MR from the reference glide phase. The

dynamic-normalized form of the Perturbation Equation (4.25) will be used:

o (1)

Our goal is to express the differential equ~ations in a coordinate

system associated with the perturbed stability frame

To begin with, let us concentrate on the first term in Equation (1).

Equations (5.10) and (5.11) show that the linear momentum and linear

velocity have the same value in a dynamic-normalized system. Therefore,

to - -9 . (2)

For ease of calculation, we perform a transformation of frames from (i)

(W)
to the wind frame r in a perturbed state:

JD ~ ~ ~ I -m -D j(']3

Furthermore, introduce the two convenient coordinate systems and

I- a- - -

where by definition:

=?
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ASSumptION I: L.vL the angles 4Af, () be small enough that the cosine of

the angle can be repLaced by one and the sine by the angle itself.

With this assumption, Equation (4) cat- be written out using the

corresponding relationships derived in Chapters 6 and 7:

4P +

The second term on the left-hand Eide of Equation (1) becomes, if

expressed in the :l-coordinate system,

tS 
S4) W

j~it e "1 (7)~i Ir tp~ xt

which is the left-hand side of Equation (8.35). Both equations combined

yield the perturbation of the linear momentum:

-L I

where EV is the perturbation of the dynamic-normalized absolute value of

the flight velocity, defined by

and its time derivative

0 0 0

V - (10)
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ASSUMPTION 2: Let Ved.V V -j V, . This is well just ified because

the angles an , an are small, and, therefore, disturbances will

have a small effect on the change and rate of change of the total flight

velocity.

Of particular interest for the further development is the second

equation in Equation (8). Let us impose Assumption 2 and show that the

term tY can be neglected; i.e.,

To do that we convert Equation (11) into gyro-mechani cal quantities using

the Equations (7.19) and (7.22):

hip,, O1 V C0S - isimbl (12)

For all HR's the rate of change of cone angle r is much smaller than the

nutation rate 6 ; i.e.

~ ,o2.(13)

Therefore, even for a small cone angle YL , we can replace Equation (12) for

all practical purposes by

tI~~ i~osb ~(U r~cosIt.(14)

and, therefore

IIt I1 L( IMI (15)

which says that, for the term *9Vftto be neglected, the rate of change

of glide angle must be much smaller than the nutation rate. This is certainly

satisfied vt ~t
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The same arg-uments also lead to a simplification of the first and third

equation in Equation (8). Summarizing we get:

P - (16)

where

is the perturbation rate of the glide angle. The desi ed form of the pertur-

bation equation is finally obtained by substituting Equation (16) into

Equation (1) and expressing the la3t term of Equation (1) in the 3 coor-

dinate system

rv +
A) 44 V~ = + ~ ~(18)

The left-hand side represents the perturbations of the time rate of change

of linear momentum from the reference flight. The first and third components

are cxpressed in flight direction and normal to it in a vertical plane,

respectively. They are nonlinear ir and . The second component

gives the time rate of change of linear momentum along the spin axis. It

is linear in + and ( , and will be of major interest in the sequel. The

terms on the right-hand are the perturbations of the aerodynamic forces and

the gravitationiO contributions.



CHAPTER 10 83

10. ANGULAR MOMENTUM

We shall derive the equations that describe the perturbations of the

angular momentum of an MR from the reference glide phase. We begin with

the dynamic-normalized form of Equation (4.23)

Before converting to component form, we will show that Equation (I) can be

simplified considerably by comparing the order of magnitudes of individual

terms. Again, as in Chapter 9, we shall assume that 4 , , ? are small

angles. Then, because of Equation (7.27), the cone angle t is also small.

10.1 SIHPLIFICATIONS

SIMPLIFICATION 1: The major contribution to the perturbation of the angular

velocity L O comes from the rotation of the frame relative to

W) ; i.e., the nutation rate is greater than the time rate of change ofP
glide angle. This intuitively leads to the approximation:

(2)

JUSTIFICATION; From definition Equation (4.13)

I L vel U ,,' %3)

e- 
- -? itu d e

where the individual terms have the following order of magnitude
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IILO pII~~{2Ut ~(see Equation (7.34))

~ -R4), (see Table 6.3)

(4)

(r (see Equation (7.7))

IL LOT (see Equation (7.8))

Equation (2) is justified if

1 (%)(rz) t QP )U ,,t[o7 i-, LLe - , II (5)

and it is certainly also justified if we can show that

ItI- II (6)

Expressed in order of magnitudes:

ti> orICI~ I + I0'13111(f\B(7)

The maximum time rate of change of glide angle TI, and its maximum

perturbation ST are of the same order of magnitude. Furthermore) 1

decreases as the magnitude of the disturbance decreases. We can therefore

Let the last term of Equation (7) be representative for the order of magni-

tude of the right-hand side of Equation (7). Because the rate of change of
O

glide angles T,% is much smaller than the nutation rate; i~e.,
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01Io (8)

Equation (7) is satisfied, and, thus, Equation (2) is justified.

SIMPLIFICATION 2: Equation (1) can be reduced to:

- 't I --,e.n (9)

P (9)

JUSTIFICATION: Introduce Simplification 1 into Equation '(1) and refer the

rotational derivative to the -frame, using the.Theorem of Transforma-

tion of Frames, Equation (3.53):

The last two terms of Equation (10) have the following orders of magnitude

(11)

Because

-~ (12)

the second term on the left-hand side of Equation (10) can be neglected.

Substitute Equation (4.12) into Equation (10)
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13 't (13)

This can be brought into the form of Equation (9) if we first apiy the

Theorem of Transformation of Frames to the first term in the braces,

generating , and then the Theorem of Rotation of Vectors to shift to

SIMPLIFICATION 3: Equation (9) can be further reduced to:

76-a) Ie P CA(14)

JUSTIFICATION: Let

and substitute into Equation (9), recalling that [I "

If we can show that, on the left-hand side, the last two terms are small

compared with the first two terms, then Equation (14) is jusLified. Abbre-

viated, we have to prove that

where i- j is expressed most conveniently in a cE coordinate system:

TZ(1) (()9)
I 71N lac~J
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The last term is zero, because 7j is parallel to jj ()(rfl

Therefore, the order of magnitude of is

llCUTy, g 1 (20)

The first two terms are expressed in a coordinate system:

with the order of magnitudes

114 ~DO~ ~I (22)

where A is the angle of attack and the dynamic-normalized moment of

inertia about the spin axis.

Equation (18) is proven if we can show that

{~\~ g~\ ET,~r6\(23)Oe

The perturbation of the angular spin acceleration, JtL , depends on the

magnitude of the disturbance. It usually does not exceed 103 rad/dnt2 and

decreases with decreasing disturbance. In contrast with this,

5 x 105 rad/dnt3 . Thus, it remains to be shown that

00

Orr ('r (24)

This is satisfied even for very small nutation angles T , because

*OF 
0

> (25)

and, if 0 , then 5 must atso be zero. This completes the justification

of Equation (14).
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DISCUSSTON: Equation (14) will be used for further evaluation of the angular

momentum. its form is similar to Equation (4.26). However, it has some

important simplifying features: (i) the rotational derivatives are referred

to the reference frame and noz to the inertial frame, and (ii) the total

angular momentum is calculated relative to the reference frame; i.e., the

contribution of the rotation between the reference frame and the inertial

frame is neglected. These simplifications are possible because of the high

angular spin momentum inherent in an MR. A somewhat less convenient, yet

more elegant, form can be found by proceeding in a similar fashion:

If (a) is replaced by (t) , we arrive at Equation (4.26). This means

that the disturbance of the rate of change of the angular momentum of an

MR can be calculated as if the reference frame of the reference flight

were an inertial system. Equation (14) goes even farther, permitting the

reference frame of the perturbed flight to be considered as the inertial

frame for calculating the rate of change of angular momentum of the

perturbed MR.

10.2 EQUATIONS IN COMPONENT FORM

We shall express the rate of change of angular momentum in a coordi-

nate system associated with the stability frame during perturbed flight.

Before writing out the components, let us cast the moment of inertia

tensor into a special form most suitable for further discussion.
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Because the mass distribution of an ILR is assumed to be mirror-

symmetrical, the spin axis is always a principal moment-of-inertia axis.

Some MR's have an inertia ellipsoid that is circular with reference to the

spin axis; i.e., they have an inertia spheroid. However, others (e.g.,

wing rotors, see Boehler (3)) have noncircular or triaxial inertia

ellipsoids. To treat both cases most easily, we separate the inertia

ellipsoid into a mean spheroid and a perturbation ellipsoid. Correspond-

ingly, we write the moment-of-inertia tensor during reference flight as

-4Oi. (27)

and during perturbed flight as

(28)

To show the advantage of this formulation, let us express the moment of

inertia tensor

(a) S [6 I 0 (29)

in a I -coordinate system. After performing the proper transformations

and introducing the double angle ' we obtain:

(I,+I3) 0 0 s 0 sln2oip

u 0 i~ 0 +4t-~ 0 0 (30)

0 01t,*13) ,sin2 a 0 cos2 ar

Identify the first term as the mean circular moment of inertia tensor

[ Tand the second term as the perturbation inertia tensor
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An MR 'ith circular or triangular cross-section has 1 A

and therefore maintains the first ten only. For a triaxial inertia ellip-

soid and high aspect ratio: ' and the second term becomes small

compared with the first term. Furthermore, we can regard the first term

as that part of the moment-of-inertia tensor that is time-independent if

expressed in a e-coordinate system. The time derivative with respect to

the ] -coordinate system is obtained from the second term:

S0 0 (31)

To evaluate Equation (14), we insert the dynamic-normalized form of

Equations (27) and (28) and express the first term in a 3 -coordinate

system and the second term in a J - coordinate system. The re&.!lt is

Liwhr weuse 1 d th + Wt tha) +

P~ Pr r~~e

where we used the facts that

d I I it -d(33)
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and

Le ( - LO (34)

which follews from the particular form of as obtained by replac-

ing P by N. everywhere in Equation (30). The first and last lines in Equation

(32) are the contributions of the circular part of the inertia ellipsoid,

while the second line takes the deviations into consideration. For an MR.

with an inertia spheroid, the second line is, of course, zero.

To write out the components, we substitute Equations (30) and (31),

and the proper equations from Chapter 7 into Equation (32). Assuming small

angles + ) and abbreviating

we obtain, in view of Equation (8.44):

1* + {I + (E -241

L + r(6

0
p
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The quantities in Equation (36) have been grouped so that the terms contain-

ing OY can he c pared with the terms of

SM CATION 4: ie., terms with + can be

neglected.

JUSFlvICATION: From Equation (7.26), we have

A r'6 c (37)

Therefore, the order of magnitude is

(38)

The ratio between spin rate and nutation rate is approximately

0 (39)

i..e., greater than one for most MR's.

Therefore,

IO ~(40)

and Simplicatioq 4 is justified.

0 0

ASSUMPTION: Let O( . This is well justified because, by Assump-

tion 1, Chapter 9, the deviution from the reference flight velccity is

limited to small angles-

Introduce Simnlification 4 and this Assumption into Equation (36) and

use the definition
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S O0 (41)

Then the equations assume the form

4- 0 
o 0 sih2 y - o oslt

00 0 34(42)

-00 0

They are called roll, pitch, and yaw equations. The terms of the perturba-

tion ellipsoid in the roll and yaw equation are strikingly symmetrical.

This suggests the following theorem.

THEOREM: Consider an MR with a triaxial inertia ellipsoid that performs a

perturbed flight along a planar reference trajectory. Assume angles +,

4 , P are small. Let the inertia ellipsoid be decomposed into mean

circular and perturbation ellipsoids, as shown in Equation (30). Then the

rate of change of angular momentum calculated from the perturbation ellip-

soid vanishes in the roll and yaw equations.

PROOF: Multiply the roll .uation by t and the yaw equation by -1 and add:

0 o @ -- 2 A• +

(43)

+ A! + *4 ) + 6 1t L o P m il o

Abbreviate this equation:

'0 n + A71 a vi 2oy+ 6 os ft) t F- --
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where T is the complex orientation angle used in missile dynamics (see

Etkin (16)). The tertis of the perturbation ellipsoid can be combined into

one expression:

-. 1 (45)ta

But, because c0=-tb, the square root in Equation (45) is zero. Therefore,

Equation (44) reduces to

L P i i -4 L -vvv (46)

This completes the proof.

Similarly, the contribution of the perturbation ellipsoid to the pitch

equation can be estimated by combining the two terms of t . We obtain

for the pitch equation in Equation (42):

00 (47)

,ith ')L as a phase factor. The order of magnitude of the perturbation

ellipsoid is based on Equation (7.28):

(48)

This is best compared with the last term of the spheroid (see Equation

(7,25)):

C- (49)

Even though the value of Equation (48) is of the same order as that of

Equation (49), the contribution of the perturbation ellipsoid follows a
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sine wave with twice the spin frequency. Therefore, its net effect is zero

for all practical purposes.

With this additional information, we can put the angular momentum

equations into their final form:

+ 4 = (50)

DISCUSSION: The assumption of- small angles * , Ai is the only major

assumption that Equation (50) is based on. The other assumptions and

simplifications are a consequence of either small angles or the high

angular spin momentum. They are stated separately to clarify the exposi-

tion. However, note that we did not assume that the perturbation ellipsoid

is small compared with the mean spheroid. Therefore, Equation (50) holds

for any type of MR. The left-hand sides of the roll and yaw equations

are linear in the perturbation variables 4 and * with a time-dependent
a

parameter 0(f . They are decoupled from the pitch equation. The pitch

equation is nonlinear.
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It. AERODYNAMIC FORCES

In order to treat the aerodynamics of MR's from a general viewpoint,

we shall employ a tensor formulation of the aerodynamic coefficients.

The coefficients are expanded into a Taylor series, yielding the aero-

dynamic derivatives. Some of the derivatives are zero because the MR's

external configuration is mirror symmetrical. A theorem will be derived

that gives a quick answer as to which derivative of arbitrary order exists

and which has to be zero.

11.1 FUNCTIONAL RELATIONSHIPS

ASSERTIONS:

The aerodynamic forces depend on the following quantities (see, for

instance, Hopkin (17)):

a. External form (shape, roughness) of MR

b, Size of MR, represented by reference length

c. Properties of the air: pressure p , density 9 , viscosity '0

d. Position and motion of the MR with respect to the unperturbed air.

Three well justitied assumptions will be made:

ASSUMPTIONS:

I. The parameters in Assertions a and b are constant for a particular

flight of a particular MR.

Justification: Because we are mostly interested in analyzing the

stability of R's, we do not consider effects of moving control

surfaces or aeroelastic deflections.
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2. The aerodynamic forces depend only on the linear and angular

velocities of the MR with respect to air and not on the

accelerations.

Justification: This assumption is usually not justified in air-

plane aerodynamics. However, as Brunk (1) pointed out, the

acceleration of bodies without lifting surfaces has only a small

effect on the aerodynamic forces. So far, no experimental vidence

has been found that contradicts this assumption.

3. The air is assumed to be at rest or in uniform rectilinear motion

with respect to the inertial frame.

Justification: It is too difficult to analyze the dynamics of a

flight vehicle subjected to arbitrary wind conditions. Therefore,

this assumption is commonly made. It yields satisfactory approxi-

mations, provided the air is not too turbulent.

From the assertions and assumptions, we shall derive the functional

dependence of the aerodynamic forces. To express Assertion d in mathematical

form, let the frame (A) represent the air, idealized by Assumption 3, and

let frame CG) symbolize the HR. Then, according to Section 3.2, the

position of the MR is given by the triad of base vectors [b l, k. 4423

Note also, that by Equation (3.11), the base vectors U041 are related to

some base vectors, tOW] of frame A) through the rotation tensor

L. ~ namely,

The motion of the MR relative to the air is determined by the linear

velocity (see Equation (3.34)) of the center-of-mass B
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tA) (A)(2)

and the angular velocity (see Equation (3.44))

From Assertions a through d we establish the following relationship of

the aerodynamic force:

Dimensional analysis and, in particular, the I -theorem permit us to

eliminate the explicit dependence of the function f from three of its

variables. We choose to absorb the reference length L , the air density ,

and the absolute value of the velocity 11 o. AJ V W We obtain:

[L !I [f~trZFACTOPS) Mq )j.) CA)A) (5)
'V G)1 ~

For geometrically similar MR's, the form factors are the same. Furthermore,

can be replaced by any other characteristic area, like 6 , where

b is the span of the MR. introducing the notation for aero-normalized

quantities of Chapter 5.2, we can write Equation (5) as:

Ax A

to N (A ) (6

The aerodynamic moment referred' to the center of mass 3 has the same

functional form. Dynamic-normalize the force and moment equations and

introduce , as the aerodynamic force and moment coefficients to

obtatn:
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A A

-1~2- V ,, tcittM ,Q , t to(- tlijv A)3\l (7)

-2. A A

These two equations describe the aerodynamics of geometrically similar

MR's.

11.2 TAYLOR SERIES EXPANSION

The perturbation Equations (4.22) and (4.23) or (4.25) and (4.26)

require the aerodynamics to be expressed as perturbations defined by

Equations (4.14) and (4.15). Their dynamic-normalized form is:

Le7i - (9)

= I 1 ( (10)

The aerodynamic functions on the right are evaluated from Equations (7)

and (8). Because Equations (7) and (8) are valid for any flight trajectory,

they also determine the aerodynamics of the reference fli '.;t and the perturbedL flight. We need only introduce the proper notation to distinguish each case:

A1 A

r11



CHAPTER 11 100

and

where we have separated the angular velocity into two parts:

A A

+wI (16)

The vriables of the perturbed and unperturbed flights are related through

= - V , - f t 
( 1 7 )

5 1M = I -p M , .
(18)

S 1(21)

A A 1  A-

A- 
(22)
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Substitute Equations (11) through (14) into (9) and (10). Because Assump-

tion 2, Chapter 9, permits us to set V2 V, , we can establish the
1'

following relationships:

t2v1c~ (24)

-_ycj T (25)

where we defined the perturbatioils of the aerodynamic coefficients as:

C'Flm~ (26)

" L~Y - r I I[ (it) (27)

The problem we have to solve is how to express [c dr, and LEd Iin

a form suitable for applications. The most common method is to expand

and (dM()Iin a Taylor series about the reference values

~.d~It~ and C rI.As the "small" expansion variables, we choose

I i~A~andIA~t>~ Symbolically, we can write this as:

4.Fe~ (9(A 1 4_ (28)

D 1 4.

If we can show that L=0C~

1(30

and-

L dM (c)Y 1LcdtcK (31)
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both are satisfi ed Lhen, in view of Equations (26) and (2 7), [d and

I. are expressed in a McLaurin series given on the right sides of

Equations (28) and (29).

Let us demonstrate this procedure in more detail for L[dpl. From

Equation (11), with Equations (17) through (23), we obtain for t f1r' :

AA
L4 TP~~2,LJ ~lA~~ ,z 04 ) 1 1 [ LOs 0)~, 1

MO~ t6WAI (hL)] j +'151 [Zpt P

A A A

ing~ q t, Eqato (3) weAv o hw t
G C'O ,, h

L e l 0,I p i(33

_- (33)

A 'AAtsoi 's )z ,o~ ~ ~ ~ ~~~~~~~~V4 Wo~ate we°autdattid I - '1 ood

'= P 6 n ) W it f t
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The proof is based on the Principle of Material Indifference, which follows

from the isotropic property of space (see Section 3.1). That is: consider

a physical process consisting of certain frames. The interactions of these

frames produce the outcome. From the isotropic property of space, we con-

clude that, if the frames are subjected to a rotation, then the outcome is

rotated by the same amount.

Apply this principle to our particular situation; i.e., let the genera-

tion of aerodynamic forces be the physical process. The frames involved

are the body, stability, and air frames. The motions of the body frame

with respect to the air frame and some scalar quantities of state deter-

mine the aerodynamics. Consider the special situation described by

Equation (33). On the left, all vectorial variables, representing the

frames and their interactions, are rotated by mr ~ .According to

the principle, the outcome on the left must-be equal to the original out-

come rotated by tLp (1# . But this is exactly the contents of the

right-hand side of Equation (33). This completes the proof.

The McLaurin series of tedF can now be obtained from Equation (32).

A A A A
(6(1 Qf)14 N (b p1 W c~

(34)

The expansion for [EdK is generated the same way and its derivatives

have the same functional dependence.

DISCUSSION: Equation (34) differs from the classical expansions used in

airplane and missile aerodynamics in two respects. First, it is formu-
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Lated in an invariant tensor concept, because it is valid in all allowable

coordinate systems. Second, in airplane dynamics, the aerodynamic forces

are expanded in terms of the linear and angular velocities of the aircraft

with reference to the air frame. In the dynamics of spinning missiles,

the variables to be expanded are the same linear velocities as in the

airplane case- however, the angular velocities are the velocities of the

nonspirining body frame with reference to the air frame. The spin angular

velocity is usually treated as a constant parameter.

The aevodynamics of RR's follow the missile case as far as the

selection of the variables in the expansion is concerned. The nonspinning

body frame is here the perturbed -tability frame But the aero

dynamic treatment of the spin degree-of-freedom must be given more

attention because of the complex geometrical shape of the MR's body

section. Care has been taken in deriving Equation (34) to show thiA

dependence clearly. It is given by [b an&~ ~(3~ PI Noet

both quantities appear in the form associated with the perturbed flight,

because they are not included in the expansion. The same holds for h

and Q , However, it is necessary that the derivatives are only

functions of the reference variables. This can be partially achieved

by int-rodueins Assumption 2 of Chapter 9 and the Assumption of Chapter 10,

They permit the simplifications:

(35)|A

pA W(t
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The discussion on how to treat t k(p1 the orientation of the MR during

perturbed flight, will be given below.

To relate the derivatives to the data obtained from wind tunnel

rests, we must express Equation (34) in a coordinate system most suitable

for applications. Because internal strain-gage balances promise the best

test results, we choose the coordinate system 3 assuciated with the

perturbed stability frame as defined in Chapter 6. This agrees with

missile testing practice. We get:

L6,(P)' LA3(A) A

(36)

A (4) j IE~' \~A~ .

The functional dependence of the derivatives can be simplified and

written "n a more concise form. Let the base vectors be expressed in body

coordinates:

T

Lb~ ~'= [I 11 PA(37)

Ibwip+ )is therefore represented by X alone. Because, by definition,

{5,. "  
h . "" 0 (38)

the acro-normalized- velocity is constant. Furthermore. we can assume that

the effect of (A on the aerodynamics is s:nall compared with

1 . Using the simplifications of Equation (35) and the definition

Equation (18) and Equation (8.48) we summarize:
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(39)

So far we have shown only the linear terms of the expansions. A more

concise notation will be required to express higher order terms. We intro-

duce:

L(FP (6 . (40)

CMC"

A A i)
V) V

A A

AA

)%Alj A A

A (A

The MeLaurin expansions up to the third term become, if all partial deriva-

tives are continuous:
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Ft

4 ( I ,CIF, A a A u i (42)A - AJ.4AWALO+ A W' A

AXF A C)4d 1: A3 A AF .3 A p A

A.- .,-. A A

And A6o ne In,4. A, j(43)
VAbA A ~ 63l h Qk

+1A 4 LAJh)A A A A 41M.A A A A A A

V- V ArL V,0 ,4 A 4 6L ,- a VAL 

with .1, L) , ,c1), and sumation convention. Equations (42) and (43)

can be combined formally an-d written in a concise form if we use dLand

Sas defined in Equations (40) and (41).

1-'JL k

with

and summation convention,
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Let us abbreviate the derivatives by

(45)

Then we can give a rixed matrix and subscript notation for the first three

terms in Equation (44):

(46)

+ itl hh . .. +

where the indices run over the same numbers as in Equation (44) but the

summation convention is replaced by matrix multiplications. The notatien

t I is used to indicate a 6-dimensional vector space and to contrast it

against the 3-dimensional Euclidean space, L I . To give an example for

Equation (45), we convert back a derivative to physically meaningful nomen-

clature using the notation of Equations (40) and (41).

( LP = (47)

It A cA

!I. 3 CONDITIONS FOR VANISHING DERIVATIVES

In evaluating the aezodynamics of a particular flight vehicle, import-

ant information can be derived just by investigating the corditions imposed

by the symmetrical properties of the external shape. Maple and Synge (18)

conducted a thorough study of the aerodynamic symmetry of projectiles.

Their findings are limited to missiles, because they base their method
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oo the complex variable presentation of velocities and forces. In airplane

and Magnus Rotor dynamics, the forces are not amenable to this treatment.

Charters (19) developed a method that permits one to decide which first:

order derivative is zero because of symmetry conditions.

in this section we shall derive an existence theorem for derivatives

of arbitrary order. It will be based on the principle of material indif-

ference (see Section 3.1) and on the property of the reflection tensor as

introduced in Section 8.1. Even though we shall use the MR to formulate

the proof, the theorem applies equally as well to airplanes with mirror

symmetry.

We start out with an argument similar to that in Section 11.2; i.e.,

the Principle of Material Indifference requires that rotating the elements

that produce a physical process, is equivalent to rotating the outcome of

the process. However, instead of using n as the rotation

tensor, we use the reflection tensor Lxi. Specifically, let the perturba-

tions of the aerodynamic forces, [CIand (Lld,,I, be the physical

process. -Its outcome is determined by the perturbed motions that are

described by the motions of the body and stability frames relative to the

air frame. Equation (34), for instance, delineates the functional depend-

encies gor the force disturbances. Now, the principle of material indif-

ference postulates the following relationship:

1t
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A A

[ (,) W to ((4,9)

t ~13 1-3H

AA

'al N r V )stMI')P

prv

sujeced on a eletonltesr is given by Equation (8.5).TeEqai s(5) nd 52

f Lew usro w natows th.a ndt.1,uigEutin(.2.T

Eqain(60 , (e50)rcus h dfntono n

uliAl Au
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0 1 0 0 0

= - 0 -1 0 (53)

0 0 0 1 0
P p -p

Because Equations (49) through (52) hold, we do not have to show them

explicitly in Equation (48). The conditions that the aerodynamics of

mirror-symmetrical MR's must obey are then given for the force perturba-

tions by Equation (48). The same reasoning leads to the conditions for

the moment perturbations, where we have to recall that the moment is an

axial vector. Summarizing we have:

A A A A

[E 1,E 'l)- [d e C W1 I -' -,V1LF~eVI 9 I ,t)1j (W(A)IMi (55)

From these equations we shall formulate the conditions for vanishing

derivatives expressed in the -coordinate system. To arrnie at a con-

cise formulation, we use the subscript notation as defined in Equations

(40) and (41). The elements of the rotation tensor 0+1 expressed in the

-coordinate system will be written as ki Using summation convention

we obtain,

e A (56)

M~t~k~L e.\'~LM~kL 4 ,L~.\(57)
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To comb ine oth equtt, ns, let us introduce the six-component vectors

1 a ed-j of Equations k40) and (41). Because it can be shown that

A

and

L1 , t4 L (59)

we can combine Equations (56) and (57) and arrive at the most concise form

in which the mirror symmetry conditions can be expressed.

- Q-i '~~ dI~(60)

For the functional form , introduce the series expansion, Equation

(44)

'()' (it +  )Z! (- (-) a  = * i~~ - + (

H ti*I-k + (615

- .. , 4k,

d~L~z.(62)

For instance, the condition for the linear terms -+ 3L

can be rewritten as (j ) ( l4 --- (.4) ' which is in the form

of Equation (61). Equation (62) is satisfied if either the power of (-I)
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is even or the derivative is zero. We summarize the results in the follow-

ing theorem.

THFOREM: Assume that the MR possesses a mirror-symmetrical external con-

figuration as defined in Section 8.1. Let

be an aerodynamic derivative of the disturbed flight in the notation of

Equations (40) and (41), where

L- 1,2 ..o ) indicates the force or moment component

-)2) .. indicates the order of the derivative

jtu = 1,2, "-, G indicates the linear or angular velocity
component of disturbance

The existence of the derivative is determined by a function $ .')

defined as:

4. (4 1 -derivative exists

4. (-) --- derivative vanishes

where U

EXAMPLE: Does the derivative N d exist? We have:

+ --f +I-[. 2
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thereft-re 1(-I . derivative does not exist. The theorem is easy to apply

and particularly helpful if nonlinear aerodynamic effects must be considered.

It is not only appl icable tO MR's but also to aircraft with mirror symmetry.

11.4 DISCUSSION

The purpose of this discussion is to answer two questions: (i) why

LS the SLability frame introduced, and (ii) why is the second perturba-

tion method used rather than the first one (see Chapter 4)?

In airplane dynamics, the stability coordinate system is introduced

to simplify the expressions for the aerodynamic forces. Because it is

celated to the body coordinate system by a time invariant transformation

(see Etkin (16)), it is also a body coordinate system. To investigate the

aerodynamics of spinning missiles, a non-rolling body coordinate system is

defined, whlich permits the forces to be expressed in an associated aero-

ballistic coordinate system. This coordinate system is not a body coor-

dinate system. In MR dynamics, the situation is similar. The attention

is focused on nutational and precessional motions, and the spin degree-of-

freedom is only of interest as far as it affects these motions. Therefore,

as in missile dynamics, a non-rolling body coordinate system is introduced.

However, because the major flight direction .s normal to the spin axis,

Lhe aeroballiscic coordinate system, as defined in NOLR 1241 (20), cannot

be used for MR's, Instead we employ the stability coordinate system as

given in the same report. The x-axis is parallel to the projection of the

velocity vector on the mirror plane, and the y-axis is parallel to the
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spin axis. This coordinate system suggests the introduction of the stability

frame, which is given by the spin axis, the projection of the velocity vector

on the mirror plane, and the center of mass,S . The motions of tihe

stability frame with respect to the air frame constitute the nutation and

precession of an MR. We distinguish between a stability frame during refer-

ence flight R and during perturbed flight Because the deviations of

from ( are assumed to be small, a Taylor expansion can be generated

in the variables Al ) and A), which permits the most con-

venient treatment of the flight dynamical problem.

Another important reason for introducing the stability frame lies in

the method of measuring aerodynamic forces in a wind tunnel. The internal

strain gage balance is best suited to determine the aerodynamic derivatives

of a spinning MR. It is aligned with the spin axis, fixed with reference

to the mass center of the MR, and directly related to the projedction of

the velocity vector on the mirror plane. In short, the strain gage

balance constitutes the stability frame in wind tunnel measurements.

Note also that the mirror-symmetry conditions can be used to the same

advantage in a stability coordinate system as in a body coordinate system.

This is based on the fact that the reflection tensor of mirror symmetry

has the same simple form in both coordinate systems.

Why is the second perturbation method used? Consider the aerodynamit.

forces acting on an MR in perturbed flight. The perturbations of the

aerodynamic forces are caused by kinematic and aerodynamic effects. Vary-

ing attitude angles produce the kinematic effect by changing the direction

of the aerodynamic force vectors without changing their magnitude. This
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is described by an expression like UZ(see Equation (4.14)).

It can easily be evaluated. On the other side, the aerodynamic effect is

difficult to determine. It is generated by the perturbation variables

C' ,,'. and _ as they alter the fluid flow around the MR.

an example, consider the side force component acting on an MR. If the MR

is rolled through 4 , the side force changes its direction by 4 but not its

magnitude. However, an MR that alters its flight direction experiences a

different magnitude of the side force because of the different fluid pattern.

Thus, we are led to define a vectorial force increment that focuses

attention on the aerodynamic effect:

(63)

Because it is independent of the attitude angles, its Taylor expansion

assumes the simplest form, as derived in Section 11.2. In contiast, the

force perturbation

-.- (64)

is a function of the attitude angles and therefore unnecessarily complicates

the Taylor expansion.

To illustrate this, we compare the perturbation t"CFlrof Eauation

(36) with the perturbation L& elt, derived in a similar fashion:

F H1, Q1 N j(p)t A(I A
13 (65)

same dependence (oI' 1'
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Because L (A) ,and t are known in a coordinte system,we must introduce the coordinate transformation L a p to express them in

the r coordinate system, as required in Equation (65). Thus, the deriva-
tives become a function o' the angles +, , and '.

11.5 APPLICATIONS

So far we have not specified the components of the expansion variables
e and F • By Assumption 3 of Section 12.1, the air

frame can be used as inertial frame. Therefore, we can write

Lc A A¢t;IV 1141 , (66)#ml
jc 

(67)

and thus establish the connection between the rate of change of linear and

angular momentum and the formulation of the aerodynamic forces.

The linear velocity perturbation is, by definition, Equation (4.11), and

in view of Equation (5.10)

EDIIAD- ( 1 (68)

Expression in a coordinate system and transformation into a more con-

venient form results in:

Let us substitute Equation (8.47) and -he equivalent definition
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w

AA

1(70)

into Equavion (69) and write, in view of the notation of Equation (41)

. I - - 1 Vep (71)
PA

where
A am V , - A_,- (72)

SVV V V

The relationship with the dynamic-normalized velocity perturbation is

obtained from Equation (5.20) :

where

- FV V A(74)vs-; '. Up \_ r VSS

Therefore, the velocity components are:

AL (75)V
.€ Li - #j

A

L 0 L 0 

because we can set, according to Assumption 2 of Chapter 9:

V VSS 1  
(76)

Vs., V).
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The angular velocity perturbation is, by definition, Equation (4,13),

and in view of Equation (5.13):

AA

rc%~~z3.A It3~L) (77)
[ A w(with V fI as the aero-normalizing unit. This can be replaced by -O r i

as show.n in Simplification 1 of Section 10.1. Using Equation (7.5) and in
view of the notation of Equation (43), we obtain

SW I3 I ,. ft ItZ-L = - (78)

where

(7,)

The relationship with the dynamic-normalized velocity perturbation is
obtained from Equation (5.23):

Al~
L Y,,j

where

and

i=-z- 4  ,(82)

Therefore the relationship is:
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A (83)

Now we shall use the theorem of Section 11.3 to write out the deriva-

Lie u othe third order for the three coefficients , ,and

These coefficients are particularly important for the further development

of the theory. Since the L*5 in C are even numbers for all three co-

efficients, the theorem-has the same form. A schematic summary is given

in Table 11.1, based on the-matrix notation of Equation (46), The expan-

sion of the three coefficients up to third order consists of 774 derivatives.

This number is cut in half by the theorem and further reduced, because pairs

of the mixed derivatives are equal. Moreover, some of the derivativ- s must

be zero because, by the definition of the stability coordinate system,

A
F",0 . However, there are still 84 derivatives to be evaluated.

The deteLrination of these derivatives is probably the most difficult

task in Magnus rotor dynamics. Some information can be found in Brunk (1,2)

and Bustamante (7). However, much research is still to be dune in this

field. A combination of engineering intuition, experimental results, and

mathematical analysis imust be employed to arrive at quantitative values.

The final verification will come through free flight tests.

Here, we do not intend to treat this area of Magnus Rotor Dynamics

exhaustively. We shall rather concentrate on some aspects that are

required for the latter part of this report.
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To begin with, we want to show that the dependence of the coefficients

d n 4 A

, t , and d on CU and IA can be neglected. Equation (75) yields

A A
C V ; i.e., EU is the perturbation of the flight velocity. But the

flight velocity appears only in terms of Reynolds number and Mach number

in the coefficients, and small changes of the Reynolds number and Mach

number have a negligible effect on the coefficients. By Equation (83),

- ++. Because of the small angle assumption, Z is small compared

A A
with E and , id its infiueLice on the coefficients can therefore be

disregArded. This simplification means that, in the terminology of

Chapter 12, the lateral aerodynamics are decoupled from the longitudinal

motions. Thus, the number of derivatives to be evaluated is further

reduced. The remaining ones are marked by a black square in Table 11.1.

They are summarized in Table 11.2 in the same arrangement. We shorten

the list further by two reasonable arguments:

ARGUMENT i: The side force does not depend on the and n angular

velocities.

ARGUMENT 2: The gyroscopic coupling moment is much greater than the com-

parable aerodynamic coupling.

The derivatives thus deleted are marked by a corresponding sign in

Table 11.2. Fourteen of them remain to be evaluated. According to

Equation (39), they are still functions of Hi, IZ, Ioi, and W.

and are the linear and cubic side-force derivatives. They are mainly

due to- the drag force caused by the component of the flight velocity along

the spin axis. Therefore, is usually negative and decreases with the

increasing size of the end plates. For MR's without end plates, 4 can
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/

FA AL1~ AAI

A t i.

I \&:~&%t AS{ &(

7Neglected because of Argument 1.
Neglected because of Argument 2.

TABLE 11.2 LATERAL DERIVATIVES
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A
become important. The dependence of both derivatives on WOt is weak and is

therefore dropped in most applications.

The rolling derivatives and a are referred to as the linear

and cubic Magnus moment derivatives. They are caused by a shift of the

Magnus lift force along the spin axis due to the sideslip angle j.

Because the Magnus lift is approximately proportional to the tip speed

A A

ratio, ) , the Magnus moment derivatives will also strongly depend on LOlL.

To express this dependence explicitly, we expand the derivatives in power
A

series of L,. For the linear Magnus moment derivat-v.., we have, for

instance:

A (84)

A W

If tA~j-&, the Magnus lift is zero. Consequently, the constant term in

the expansio' can be neglected. Because of insufficient wind tunnel data,

the linear term is ru-ained only. Thus, the linear coefficients of the

power series, d and ,(A are usually meant by Magnus moment deriva-
(4)

tives. They ,are important for the stability of the nutation mode and can,

in particular, cause a nutation limit -cycle.

The yawing moment derivatives and d are generated by the

shift of the drag force along the spin axit,, In the first approximation,

A -A
they are independent of W. because the drag force is independent of O,0.

They mostly affect the stability of the undulation mode.

The aerodynaic dsmping is expressed in the derivatives rj dI ,

, and d4 A and % are always negative. In the stability

analysis, only their sums, d A and dh % , have to be known.

p A
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These derivatives cannot be measured in conventional wind tunnels. They

require either a curved working section as in the old NACA Langley

Stability Tunnel or some free-flight simulations.

The remaining mixed derivatives an dM
d , I an Al

express the aerodynamic damping of a yawed MR. Again, the rolling moment

derivatives are expanded in -Jx, and -he linear terms are written as

A'~~ I ad(I No -experimental data have been obtained on these

derivatives.

For further reference, let us write out some components of Equations

(24) and (25) using the derivatives of Table 11.2 and the format of Table

11.1. Equations (75) and (83) introduce the dynamic-normali.zed variables.

(85)

L fCViL r LOOP'JAp+

t+-
'A3,'
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12. EQUATIONS OF MOTION

Thus far, all the required details have been derived for the perturba-

tion equations of an MR in planar glide phase. What is left is to investi-

gate the possibility of separating the equations into laceral and longitudinal

perturbation equations and to eliminate the dependence on the rapidly

rotating angle of attack.

12.1 LATERAL PERTURBATION EQUATIONS

The perturbation equations are given by Equations (9.18) and (10.50).

We observe that the second component of Equation (9.18) and the first and

third components of Equation (10.50) can be evaluated without knowing the

solution of the remaining three components, provided that the aerodyniamic

forces can be separated accordingly. Borrowing from airplane terminology,

we call this set the lateral perturbation equations and the remaining

three equations the longitudinal perturbation equations. Notice that the

lateral equations are dacoupled from the longitudinal equations but the

converse is not true. The lateral perturbation ecuations are the side

force, rolling, and yawing equations, with the side slip angle ( , roll

aagle 4, and yaw angle + as the perturbations. The longitudinal perturba-

tion equations consist of the two flight-path equations and the pitch

equation, with the increments of the flight speed aV , glide angle ar
and the angle of attack Jd. as the perturbations.

Now we want to justify the separation of the aerodynamic forces into

the same two groups so that the lateral forces can be evaluated without
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knowing the longitudinal motions. Equations (11.85) through (11.87) provide

part of the justification. They do not depend on the variables 5' and

fV_ . But the aerodynamic derivatives do depend on cot.-o( implicitly,

as seen from Equation (11.84). However, in Section 12.3 we shall show that

the dependency on 0 can be averaged over one revolution resulting in a

zero net effect. Therefore, the lateral equations are entirely decoupled

from the longitudinal equations. They are summarized in Table 12.1

together with the equations of the reference flight.

DISCUSSION: The equations of motion are presented in their dynamic-

normalized form (see Chapter 5). The crossbar indicates that the quantity

is measured in dynamic-normalized units, and the circle stands for the

time derivative with respect to the dynamic-normalized time .

Equations (1) through (3) are Equations (8.57) through (8.59), The

first equation is the force equation tangent to the flight path, while the

second is the normal force equation. The moment equation about the spin

axis is given by the third equation. There are two major assumptions that

must be satisfied:

1. The MR is mirror symmetrical with respect to its external geometry

and its mass distribution.

2. The rate of change of glide angle is much smaller than the rate

of change of the angle of attack; i.e., .

Furthermore, the condition V#L4' 0 must be imposed to keep the coefficients

finite. Otherwise, the equations must be revised. The aerodynamic co-

efficients are still a function of Mach number HA., Reynolds number Q.

and angle of attack o(,t. If the initial flight speed of a particular

problem does not reach ito the compressible regime, and if the air density
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changes only little during the flight, the aerodynamic coefficients can

be considered to be a function of 0(4 only. In Section 12.2, we will show

that even this dependence can be eliminated and that, under those condi-

tions, the aerodynamic coefficients can be considered to be constants.

The equations of the reference flight are highly nonlinear and cannot be

simplified further. They must be solved by computer.

Equations (4) through (8) describe the lateral perturbations of an

MR during the planar glide phase. They are referred to the coordinate

system ) associated with the stability frame W of the perturbed

motions. Equation (4) is the force equation along the spin axis.

Its first term on the right includes the inertial force component -f/.

caused by the acceleratior of the mass during the reference flight.

The last two linear terms are the gravitational contributions. The

moment Equation (5) is similar in structure to Equatiop (6). The first

terms on the right are the aerodynamic moments about the roll axis X%

and the yaw axis X3 respectively. The following two terms are the

aerodynamic damping and the gyroscopic coupling and vice versa, respec-

tively. All nonlinear aerodynamic contributions are collected in the

right matrix. In addition to the two assumptions already stated in the

previous paragraph, the lateral parturbation equations are valid under the

following major conditions:

3. The angles , 4 , 4 remain small throughout the flight.

4. The aerodynamic forces depend on the linear and angular

velocities only and not on the accelerations.

The small-angle assumption means that the sine of an angle is replaced by

the angle itself and the cosine is set equal to one. For an engineering
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analysis, angles up to 20 degree can be admitted. This causes errors of 2%

and 6%, in the sine and cosine, respectively, at 20 degree. One of the

consequences of this assumption is that the nonlinear behavior of the

aerodynamic forces must occur at small angles in order to be correctly

analyzed by the3e equations.

The aerodynamic coefficients are functions of i, f , and 0(

As in the case of the reference flight, we can gain much information by

limiting ourselves to the dependence on C p alone. And again, in Section

12.3, we shall show that this dependence can be neglected if certain

conditions are satisfied. Also, the value V 0 must be excluded in

order that the coefficients are finite. In Table 12.1, the perturbation

equations are separated into linear and nonlinear parts. If we neglect

the nonlinear part, and if we consider the steady-state glide phase only,

the perturbation equations are linear differential equations with constant

coefficients and therefore easy to solve. If we consider the transient

glide phase, the equations remain linear but become nonautonomous. Adding

the nonlinear aerodynamic terms makes the equations nonlinear and nonauton-

omous; i.e., for solutions, we have to rely on a digital computer.

12.2 AVERAGING THE REFERENCE EQUATIONS

In this section we shall give a mathematical justification for the

intuitive reasoning that the effect of ( 0on the reference flight can

be averaged over one revolution, provided that O changes rapidly enough.

The method of averaging, as developed by Bogoliubov and Mitropolsky (21),
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will be employed. In particular, we refer to the "Case of the Rapidly

Rotating Phase", as outlined in Chapter 5, Paragraph 25 of -their book,

and assume that the reader is familiar with this part.

The underlying ide= is to introduce a transformation composed of the

averaged state and small vibrations due to 0,. This leads to the averaged

equations of motion that are independent of o0k . The vibrations are

described by a power series in terms of a small parameter- X , and, thus,

the averaged equations will have the same power series expansion. The

search for such a large parameter X requires a slight change of the

equations of the reference flight. In view of Equation (5.23) and

Equation (5.13), we obtain

- c VA 14j$ A ,IL

-Alt7- - 446,Z-(9)

and define

Loss (10)

For common MR's, A is a large parameter compared with the circular

A
frequencies of the solution, because WSS is of the order of one, and/,

the density ratio between the MR and air, is of the order of 103. Repre-

sentative circular frequencies of the solution are of the order of 10- .

Substitute Equation (9) into Equations (1), (2), and (3):

-(12)

YL~~i 44 CS i
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IA

CA_ AA. + (1.3)
(A • + oss

with

C( 0( (14)

The new variable is , the percentage of the spin rate relative to its

steady-state value. We abbreviate these equations to obtain a correspond-

ing form used in Ref. 21:

dOtt (16)

where the state vector is:

L~i] . T (17)

According to page 417 of Ref. 21, the transformations

gnrte L t cos n ti'Cons l t+C b" n + (19)

generaLe the averaged equations:
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Vt*0 (20)

+ t

=a (21)

where the tilde denotes the averaged variable. is the first term

in the Fourier expansion:

P~o w,,lCOS0n 'in Ot \ (22)

with the Fourier coefficients still being a function of the S . In

order that the second terms on the right of the Equations (18), (19), and

(20) remain small, we must put a restriction on % - We require

that .i ; i.e., -that the spin rate never drops below 107. of its

steady state value. Now, because X is a large value ( t0t and the

tersms of Y. are of the order of one, it suffices to let the zeroth
k)P

order approximat" on

.\( (23)

represent the equations of motion of the reference flight. The error

committed is given by Equation (18).

f
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12.3 AVERAGING TIE LATERAL PERTURBATION EQUATIONS

We would like to use the same averaging method to eliminate the

dependence of the lateral perturbation equations from 0 . However,

the method given in Ref. 21 is only applicable to autonomous differential

equations, whereas the coefficients of the lateral perturbation equations

depend cn the state of the reference equation; i.e., we have to deal with

a nonautonomous case. Fortunately, the coefficients change slowly in time

compared with O so that the averaging method can be extended to the

lateral perturbation equations. We shall outline the procedure below,

again closely following the book by Bogoliubov and Mitropolsky (21).

The lateral perturbation Equations (4) through (8) will be abbreviated

as:

- , La 1 .. , (24)

Notice that the rapidly rotating phase O(p is different from the previous

case. We therefore cannot use Equation (14) directly. But we can still

take the same large parameter .101 A oSS if we include a correction

term A (X ,i). Thus, we form

A , 4, A xi) (25)

where is small compared with by the Assumption of

Section 10.2.

As in Ref. 2i, Equation (25.2), let us introduce the transformations

cote (26)X
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r ii) (27)

with the difference that the coefficients of the power series are also time-

dependent. They will reduce Equations (24) and (25) to the form

k, (28)

Substitute Equations (26) and (27) into Equation (24):

at + iT -ZT= NT (30)
_ -3~ - (), ,, . .. '

Then, similarly insert Equations (26) and (27) into Equation (25):

o . dt i' A ' 3c - -

(31)

WCA)

We want to show now that the partial derivatives - and are of

I 
ar

order T relative to their preceding term. By fquations (26) and (27),

and are the first "vibrations" of the solution vectors Y. and

respectively. Their gradients relative to Ar are certainly of

the same order of magnitude or greater than their gradients with respect
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to the slowly changing Lime Furthermore, because , we

obtain the desired result:

Ot ar(32)

,= M-t  -- ( 3 3 )

Substitute Equations (28) and (29) into Equations (30) and (31) and compare

equal powers of X ,

_ OY X (34)

(35)

(36)

A

- (0

') U1  - 'L - (37)
A 4( Lt)+~



CHAPTER 12 137

These equations correspond to the Equations (25.4) of Ref. 21, but contain

two more partia, derivatives with respect to time (underlined terms). We

want to show that these partials can be neglected and begin with the term

of Equation (30). Compare 7k Z )j I with -k dl Because

chpnges slowly in 4 , we have

< X (38)

The same reasoning holds for Equation (33); i.e.,

r6 A ti 4e A C(39)

Therefore, partial derivatives with respect to time do not occur in terms
1 -2

with powers of )0 and X I. Rather they appear in terns with c and

higher order. But, because the averaging method is based on the first

two powers only, we can carry over the results from Bogoliubov and

Mitropolsky directly. The only difference lies in the implicit time-

dependence of some of the terms in the Equations (34) through (37). This

does not pose any problem, because there are no further operations on the

time i as the solution of the averaging method is developed. The time

is just another parameter.

From Equations (25.16), (25.17), and (25.18) of Ref. 21, we obtain

the result that the transformation

(41)

generates the averaged equations
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dXX WS

where the following Fourier expansion was used:

00

W( (44)

or r) prxiiono th ~ (,)COS,*, +G
Again, as in the previous section, we will be satisfied by the zeroth

order approximation of the lateral perturbation equations

"-- - (45)

The error incurred is gi.ven by Equation (40).

12.4 AVERAGED EQUATIONS OF MOTION

We have arrived at the major set of equations describing the flight

dynamics of MR's in the planar glide phase. They are given by Equations

(23) and (45) and have the same form as the equations of Table 12.1,

except for a tilde over the variables to indicate the averaging process.

In the sequel, we only shall deal wiLh these averaged equations and drop

the tilde for simplicity. Equations (1) through (8) of Table 11.1 repre-

sent then the equations of motion, averaged over O and OL , respectively,

and, thus, the aerodynamic coefficients and derivatives are only functions

of the Mach and Reynolds numbers. We swnmarize the major assumptions for

these equations:
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1. The MR is mirror symmetrical with respect to its external geometry

and its mass distribution.

0 0
2. W'< ~

3. ( , 4, are small angles, i.e. less than 200.

4. The aerodynamic forces depend on the linear and angular

velocities only and not on the accelerations.

5. The density ratio between the MR and the surroLnding medium is

large; i.e., P "2t O (ioD) which results in a spin rate high enough

to justify the averaging process.

6. The flight speed and the spin rate do not drop below ten percent

of their steady-state values; i.e.,

0. .1VS% 0.1

The value of "ten percent" is somewhat arbitrary. It should emphasize that

neither the flight velocity nor the spin rate should become too small to

invalidate the averaging process. The reference values V* and F$$

are chosen because they are simple characteristic constants of a

particular MR.

The averaged equations of motion of the planar glide phase are con-

sidered to be the most im.portant set of equations for the flight dynamics.

of Magnus rotors because they cover most of the motions of interest. They

describe the dynamics of an MR released from a launcher and the motions of

a randomly released MR after some initial transient motions. This assumes

that the MR was properly designed so that it is actually able to achieve a

steady-state glide phase. If this is not the case, the MR may slip into
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one of the undesirable flight phases like "end-on flight," "end-over rota-

tion" or "top mode." Our equations would not be applicable to these flight

regimes. The averaged equations of motion are also capable of describing

the influence of nonlinear aerodynamic forces that might occur at small

sideslip angles ( and give the effect of the accelerated center of mass

on the lateral perturbation equations. But it should be emphasized that,

by Assumption 5, the dynamics of very light MR's in air or common MR's in

water may not be well presented by the averaged equations.

The longitudinal perturbation equations will not be investigated

further, because they only add some small corrections to the flight

speed, spin rate, and glide angle of the reference flight.

There are two important extensions of the equations of motion, Table

12.1, that should be mentioned. First, we can supplement the homogeneous

lateral perturbation equations by inhomogeneous terms, representing an

external side force and an external torque about the roll and yaw axes.

We shall omit the details. The other extension allows for a slow turning

of the spin axis in a horizontal plane. This turning or spiraling is

observed very often in free flight, whenever the flight models were not

balanced carefully enough before test. It is caused by a slight mass

asymm.etry resulting in a small shift of the center of gravity along the

-spin axis. Let this displacement between the geometrical center and the

gravitational center be "a", and make it positive for a shift along the

positive spin axis. Suppose that the MR is in a steady-state glide phase.

The time rate of change of angular momentum then balances the gravitnrional

torque:
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-&CO 1 tCr (46)

To introduce the proper coordinate systems, consider the vertical plane

normal to the steady-state angular momentum vector. This is the plane

we refer to when we speak about the equations of the reference flight,

Table 12.1, of the planar glide phase. It was taken to be fixed in the

earth frame (E) and therefore also fixed relative to an inertial frame

(I). Now, we still require that this plane is normal to the steady-state

angular momentum vector but lift the restriction that it is fixed relative

to an earth frame. Call this plane the guiding plane, and let I be the

associated coordinate system with the X1
P -axis horizontal and in the

direction of flight and the )(-axis in the direction of the gravita-

tional vector. Express Equation (46) in this coordinate system, and note

that, for small center-of-gravity displacements, the angular momentum

vector does not change relative to the guiding plane. We obtain:

(P) 1E) QM(47)

which reduces to

C1 + (48)

where dF ih the angular velocity of the guiding plane about a vertical

axis:

d+ 0 ok 
(49)

So far we have assumed that the MR is in a quasi-steady-state glide phase;

i.e., the absolute value of the angular momentum vector is constant while
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the vector turns in a horizontal plane. We can extend this to other flight

regimes, such as perturbations in quasi-steady-state glide phase and

transient glide phase, as long as the time rate of change of the angular

momentum vector with respect to the guiding plane is small relative to

Rj EP)IE-1(' j Under this condition,. we solve the equations

of motion, Table 12.1, with reference to the guiding plane and then

perform a coordinate transformation IT1, E to obtain the solution

relative to the earth frame. The transformation angle is given by

Equation (49). In short, the case of the turning of a. FMR due to slight

mass asymmetry is reduced to a coordinate transformatton.
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13. STABILITY ANALYSIS

Suppose we are interested in evaluating the performance of a given

MR. It would suffice to analyze the equations of the reference flight

only. But for the results to be a good approximation of the actual

behavior, the particular MR must be stable with respect to the reference

flight. Otherwise, any perturbations would cause the MR to deviate too

far from the reference flight. A stability analysis, therefore, has to

proceed a performance evaluation. Other problem areas that are solved

with the methods of a stability analysis are the identification of the

important design parameters, the improvement of a particular MR design,

and the response of an MR to disturbances.

The stability analysis is based on the lateral perturbation Equations

(12.4) through (12.8) of Table 12.1. They are a fifth-order system of

nonlinear nonautonomous ordinary differential equations. We shall first

show that, under certain assumptions, a transformation reduces them to a

fourth-order system. Then we shall discuss the asymptotic stability of

the first approximation in general terms, using a theorem by Malkin (22).

The simplest but also most important case is the stability in the planar

steady-state glide phase with linear behavior of the aerodynamic forces.

The associated equations are linear and autonomous. They were already

investigated by Millivolte (6). Here, we shall only summarize the results

and give some simplified expressions for the roots of the characteristic

equation. To treat certain aspects of the nonlinear nonautonomous case,

the equations are reduced first to the two degrees of freedom: rolling

and yawing. Then, the yaw and roll angle are combined to form the nutation
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cone angle, resulting, via the method of averaging, in a first-order non-

linear and nonautonomous differential equation. Its stability is discussed

in detail, and necessary and sufficient conditions for limit cycles are

given.

13.1 REDUCTION TO A FOURTH ORDER SYSTEM

To simplify the notation, we shall abbreviate the equations of the

planar glide phase; i.e., the reference equations of Table 12.1, by

with the state vector 1 , i) '.Z" )rt) a t. 1 .The lateral perturba-

tion equations, Table 12.1, are abridged by

).t=~ o i,, , 4c J .((Y,,,t :, Jv ,,,,- 1.., (2-)
o0

with the state vector 1+=' ) 4 , A } - ) X-- P4

We shall also refer to Equation (2) in a special matrix form:

r
Iall 0 a1 Q 1 (

%~-c~ % 10 (3)
o 3 o 0 o 4o 0

0 10 i 0 0 + 0

The elements are found by comparison with the lateral perturbation equations

of Table 12.1.
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A salient feature of Equation (3) is that it admits a one parametric

family of stationary solutions; i.e., the state vector

L.Xt)s 0,0,0, - X farth),X (4)

satisfies the Equation (3) for any value of X . The physical explana-

tion follows from Figure 13.1. It shows the roll and yaw angles of the

*

/HORIZON

FLIGHT DIRECTION

FIGURE 13.1 ROLL AND YAW ANGLES PROJECTED

ON A HORIZONTAL PLANE

spin axis projected on a horizontal plane and the glide angle plotted in

negative direction. If the spin axis is horizontal, the ratio of roll to

(5)

This is the same ratio we obtain from the last two components, +5 and AK

of Equation (4). Therefore, the stationary solutions imply a horizontal

spin axis. In particular, it means that, once the perturbations have
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dampened out and the MR has achieved its steady-state flight, its spin axis

will be horizontal though it may be heading in another direction. The MR

has no heading stability. Such a behavior indicates that one eigenvalue of

the Of. matrix is zero. This can easily be checked by actually evaluat-

ing the characteristic equation.

Under certain simplifying assumptions, this zero root can be removed

by a transformation resulting in a fourth order system of differential

equations. The details follow. Introduce the new roll angle about

a horizonf:al axis:

4 __ Lt ~caco + +sivf\ (6)

and take the time derivative with respect to the dynamic-normalized time

Tt

The last term is much smaller than the preceding term because are

small angles and the glide angle T, changes much slower than the roll

and yaw angles executing nutational motions. Without this terin and in

view of Equation (6), we get

Z 0

Substitute Equations (6) and (8) into Equation (3):
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- 0+ (9)A)4
OltI

031 o 61 Q%3ir Lj 09

and abbreviate

6 , G + c (10)

The order of the system of differential equations has been reduced by one

and the dependence on * and + replaced by . In other words, the

dependence on the heading of the MR has been eliminated. A check of the

eigenvalues of * will show that the zero root has also been removed.

The remaining eigenvalues of 1 are identical with the non-zero eigen-

values of b because the transformation of variables is linear.

We succeeded in removing the zero root through a simple transforma-

tion. This root was independent o2 the shape or mass of the particular

MR under consideracion and was present in the transient and steady-state

glide phases. It also could happen that one of the other eigenvalues

assumes a zero real value. But this is only possible for a very special

combination of shape and mass distribution and therefore unlikely to

occur. We shall not deal with this case any further.

We now ask whether asymptotic stability of the first approximation

of Equation (9) implies asymptotic stability of the nonlinear system?

A theorem by Malkin (22) p. 322 provides the conditions under which the

answer is affirmative:
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If the equations of the first approximation are regular

and if all its characteristic numbers are positive,

then the unperturbed motions of Equation (10) are

asymptotically stable, provided the functions ,

satisfy in 1:I constant, +- t 0 the inequality:

We shall show that Equation (9) satisfies these conditions. A necessary

and sufficient condition for the first approximation to be regular is,

according to Malkin (22) p. 294- that

bm ~ ~com.srAKT - o S. (12)j)L

Consider the elements of the trace of bol( ) . They approach eicher a

constant or zero value as time increases. Therefore, Equation (12) is

satisfied. The characteristic number of a function 4) is defined

(Malkin (22) p. 283) by

tn R01

To find the characteristic numbers of the first approximation,

separate the matrix 64 S into a constant part CS and a variable part

~) . The elements of d $A) be chosen such that:

Lim ol LT = 0 9. iS lur (15)
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This is always possible because the solutions of the reference Equations

(12.1) through (12.3) of Table 12.1 tend to constant values as time

increases. C,, is just the matrix of the autonomous case; i.e., the

matrix of the first approximation of the lateral perturbation equations

in steady-state glide phase:

2 (16)

A theorem by Malkin (22) p. 305 states that, if Equation (15) is satisfied,

the characteristic numbers of Equation (14) are equal to the characteristic

numbers of Equation (16). But the characteristic numbers of an autonomous

linear system, Equation (16), are the negative values of the real parts of

the eigenvalues of the matrix C I. Therefore, if Equation (16) is

asymptotically stable, all its characteristic numbers are positive, and,

consequently, all characteristic numbers of the first approximation,

Equation (14), are positive. The conditions. Equation (11), are satisfied

because the nonlinear aerodynamic functions 1 are power series expansions

S , and I and because Vt 0 is excluded. We conclude that

asymptotic stability of the first approximation, Equation (14), implies

asymptotic stability of the nonlinear Equation (10). Moreover, asymptotic

stability of Equation (14) is simply established if the autonomous

Equation (16) is asymptotically stable.

13.2 STABILITY OF THE FIRST APPROXIMATION

The important stability theorem has already been stated in the previous

section; namely, that asymptotic stability of the autonomous linear perturba-
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tion Diuatin (16) Implies the asynptoLC stability of the nonautonomous

linear EquatLton (14). We can extend this to Equation (2); separate the

a.w (;) matrix itito instant and time-dependent parts as at the end of

the previous section:

x 414CU xr tVA(17)

Again, Pg(A tends to zero as time increases. But now, instead of

asymptotic slability, onty stability can be inferred. We conclude that.

if the equilibrium o( the autonon.ous perturbation equations

(18)

is stable, the equilibrium of the nottautonomous Equation (17) is stable

too.

We have shown that the isee of stability can be reduced to Lhe simple

problem of the stability o' the -near autonomous perturbation equations.

However, a word of caution is -necessary. The perturbation equations are

valid only so long as the angles 4 , , ( remain small throughout the

flight. This can always be satisfied for sufficiently small initial

conditions . But for an engineering analysis the initial conditions

cannot always be made arl itrarily small. Then, we have to ask whether a

particular solution of an asymptotically stable system, Equation (14),

stays within the small angle limits, say £ , for all times *:t for

some small initial conditions; i.e.,

hL ( PO~. ALL O r- 19

The search for an answer leads to theorems thaC establish an upper bound

on the solution vector. See Bellman (23) p. 44, Cesari (24) p. 48, Pnd
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Zubov (25) p. 78. However, all boundt, krclude arbitrary constants that

cannot be predetermined. The only way, therefore, to judge whether the

Condition (19) is satisfied for a particular MR is to actually calculate

the solutions for some representative initial conditions by computer.

In general, the eigenvalues of the matrix h or Cjks are

evaluated by computer. But for design purposes, we can use simplified

formulas that have been shown to be accurate within t 5% for common MR

configurations. The simplification is based on the overriding effect of

the gyroscopic coupling term 1ZI (see Equation (3)). More specifically,

it is assumed that

aU.3 " 1'> and aq-4 (20)

? I> l one, 013 OncA Q

The result is that the pair of roots of the so-called nutation mcde are

approximated by:

LkI 19N ILn~ C41 (cap c ) c,- O' ± t C1ZS(2.1)

where

h o r I- Iro t 
(

L N (23)

The other pair of roots-of the undulation mode are:

umj Al (m )± (Ct)4'l rc..aC (24)
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wherc

U am cS (25)

The dimensions of the roots are radians per dynamic-normalized unit time.

This result can be verified by multiplying out the nutation and undulation

roots. The approximate characteristic equation thus obtained agrees with

the characteristic equation of the matrix h1 ,. subjected to the simplifica-

tions of Equation (20).

The nutation roots are always conjugate complex with a nutation

frequency of

I- (27)

just as in the case of a classical gyroscope. Equation (22) determines

the aerodynamic damping. The damping derivatives d and Otg which

are always negative, are opposed by a usual negative Magnus moment

derivative d . The higher the moment-of-inertia ratio I! , the

higher the nutation rate and the more effective the aerodynamic damping.

The undulation roots can be conjugate complex or both real. Their rate

of change of amplitude is generally two orders of magnitude less than

that of the nutation mode. In gyroscopiz terms, the undulation mode of

an MR is the unsteady precession caused by aerodynamic torques. It would

not be present in a vacuum. In the oscillatory case, a necessary and

sufficient condition for asymptotic stability of the undulation mode is:
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d' 0 (28)

and, because 5 is negative for most practical MR's:

C _ A (29)

This is always satisfied for a negative Magnus moment C!, A If the

undulation mode is purely exponential, Equat.on (28) is only a necessary

condition. Without giving the details, we remark that the sufficient

condition can be derived from Equation (24) Thus, we have seen that the

important aerodynamic derivatives are AA and the sumdI d%

and the important 
mass parameter 

is 
Its 

A

The effect of the acceleration of the center of mass on the lateral

perturbation equations is limited to the matrix element

+ (30)
A 

V. + .1
In steady-state it is desirable to have a highly negative , as can

be seen from Equation (28). This can be generalized to the transient case

by saying that the more negative Oit is, the smaller the deviation of the

solution vector from the unperturbed flight for a given set of initial

conditions. Therefore, we conclude from Equation (30) tLat the effect of

a decelerated center of mass is destabilizing whereas acceleration tends

to stabilize the perturbations. Some sample solutions in support of this

statement will be given in Chapter 14.

We have indicated that the undulation mode is much slower than the

nutation mode. Consequently, one can identify them as two separate motion
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histories and would like to investigate them separately. If the nuta-

tional motions are of main interest, one can assume that the center of

mass remains in the plane defined by the planar glide phase. This implies

that f . -- and therefore reduces the perturbation equations to two

degrees of freedom, namely, rolling and yawing. We obtain from Equation (3):

.T [ ~ - . um -im

000
LA I L 0 1 + J 0

or abbreviated:

"-, .+ 99 (TUn, , ), ; n,+ 1,2,3 (32)

The eigenvalues of the matrix Um are with the assumptions, Equation (20):

I A. t' 4 -k 2, ) Ot'Li., - A. +. j- " 1.3I. (33)

C4 V 4I C1 (1

We again recognize in Equation (33) the roots of the nutation mode, Equation

(21).- The undulaLiun mude is represented by oily one real root, Equation

(34). In steady-state glide phase it has the form:

2- 2 ,Ae eA(5

V4 P 3S r + (35)4

which has no common features either with Equation (25) or Equation (26).

But then we (to not attempt to analyze the undulation mode with Equation

(31).
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13.3 NUTATION LIMIT CYCLES

In the previous section we showed that the stability of the perturba-

tion equations can be determined from the linear autonomous perturbation

equations. But this requires initial conditions small enough, so that

the state vector remains sufficiently small. In an engineering analysis,

the investigation is focused not only on the question of stability, but

also on the motions of MR's, resulting from realistic initial conditions.

For a majority of MR's, the first approximation is still satisfactory.

However, wind tunnel tests show that for certain configurations, the rolling

and yawing moment coefficients are not approximated satisfactorily by the

linear derivatives only. Even for small angles ( , higher order deriva-

tives must be considered. This can lead, as observed in flight tests, to

limit cycles of the nutational motions; i.e., a coning motion about a

horizontal axis with constaut cone angle.

For the first part of this section, we shall concentrate on the most

important aerodynamic nonlinearities, namely, Uh and I (see Equation

(31)). This case is also more easily treated than if other nonlinearities

are included. Afterwards the effect of the nonlinear damping derivatives,

li and IU, will be discussed. The complete set of nonlinearities will

not be studied because little is known about the values of the mixed

derivatives 'Z.& J,,, and J.

We can begin our analysis of limit cycles with the two-degrees-of-

freedom Equation (31) because this phenomenon is basically a nutational

motion. First, we perform a transformation of variables from the flight

mechanical angles 4 and Auto the gyro mechanical cone angle and



CHAPTER 13 156

node angle 6 This is accomplished by substituting Equations (7.19)

through (7.24) in Equation (31). The relevant angle for the nutational

motions is the cone angle IL , whereas we shall not be particularly

interested in the value of the node angle 6 . From the observed

exponential damping of the nutation mode we also expect that a first-

order differential equation in t is a reasonably good approximation.

Guided by these physical considerations, we eliminate 0 from the two

equations just obtained by multiplying the first equation by Si%6 and

the second equation by Co 6 and adding both equations. Arranging terms

in form of a differential equation in r) yields:

- + a v - A 33 z- COS 6sin~1  4

sin '6 a irbLsa (6

+ 3 s46 1, Cos& '~ - ct2%3 0- 3 5l~c 1 (6

This equation cannot be solved as it stands. It would have to be supple-

mented by an equation in . However, in the following we shall show

that, if we can approximate and 9 by some known quantities, and if

we consider 6 as a rapidly rotating phase, the averaging method of

Bogoliubov and Mitropolsky can again be applied and Equation (36) reduced

to a solvable first-order differential equation.

From the linear theory, we have for the nutation frequency, in view

of Equation (21):

Ck Z2.-S (37)

Because this does not depend on the aerodynamic derivatives, we can

assume that the nonlinear aerodynamic effect is also small and that
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Equation (37) holds also for Equation (36). In steady-state glide phase,

0

a 0. In the transient glide phase, 2 changes like the slowly-

changing OL . Therefore, we can assume that:

00 (38)

Furthermore, it is easily justifiable to drop the last term in rhe first

line of Equattan (36) because

0l ~n2; II <-ll2 , C Z 1IG1ll&jk39)

With those simplifications, Equation (36) reduces to

~jwtb C~s ~s~J& K & - -! SIVIb~&r

(40)

Sj,46+ b 1X 3 aCos& t3

This equation is similar to Equation (12.24),with the rapidly rotating

phase b . We abbreviate:

du -(41)
i'L)

and express the rate of change of the phase by

C X __! (42)

where, in view of Equation (12.9), the large parameter becomes:

A (43)

The time-dependence of Equation (41) is due to the C., .,, and 31

in Equation (40). As in Section 12.3, this is a "slow" time-dependence,

and, therefore, the results obtained there can be carried over directly.
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Corresponding to Equations (12.40) and (12.41), we introduce the trans-

formations

G% +0 (45)

which generate the averaged equations (see Equations (12.42) and (12.43)):

~4~( 7\~ J~$L- ~(46)

x7 M X12.) y (47)

when the following Fourier expansion was used:

= (48)

To determine the Fourier coefficients, convert the powers of the trigono-

metric functions in Equation (40) into multiples of the phase angle 6 ,

and compare coefficients of the same harmonics with Equation (48). The

result is:

L u-Ct ) C4,.4++!. L + (50)

2C4 13
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Zc~L Ci~3 (52.)

G4 Vt

Substitute Equations (49) through (53) into Equations (44) and (46):

(54)

3 Ic~-t /+

(55)
dt 2c

Writing out the individual terms yields the final equations:

11

I
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(56)

-~ 1 A JOTL ds C s4+ iv 4 .

(57)

The equations above were arranged in the following way: in Equation (56),

the terms between the first pair of braces are the second harmonics, and

the expressions between the second pair of braces are the fourth harmonics

of the first-order corrections of T . The averaged equation of motion

of the cone angle, Equation (57), displays the zeroth order approximation

within the first braces and the first-order correction between the second

braces. From Equation (55), we see that the accuracy of the zeroth

approximation depends on the nutation frequency 6-- a.Z . The

greater the moment of inertia ratio y l and the spin cate t , the

better the approximation. An estimate of the error incurrEd is obtained

from Equation (56). In the sequel we shall first investigate the zeroth

order approximation and then look into the possible error.
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The simplest case is obtained if all nonlinear terms are dropped:

Cie T ~ (58)

The root of this equation agrees with the real part of the nutation root,

Equation (22); i.e., the decay of I equals the exponential decrease of

the envelope of the nutation mode. This result was to be expected if the

averaging method is a physically jrstifiable process.

Now we consider the nonlinear zeroth order approximation,

f j k 2i (59)

and note first that it is independent of dI4A3 ; i.e., in the zeroth
-j (3

approximation, the effect of du cancels over one nutation cycle. A

necessary condition for the existence of a limit cycle is q' 0 and

#0 , yielding:

(c4  A-c (60)

Only the real and positive value is physically of interest. To determine

whether a limit cycle will actually occur, the stability at LLdmust be

investigated. We have the simple conditions

< 0 stable limit cycle

(61)

7 ' > 0 unstable limit cycle

wLd
-where Equation (59) furnishes the relation ship:
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[ ,L4 ~ 1 ,R(62)

which is according to Equation (22):

(63)

Ld
Consequently, the conditions expressed in Equation (61) are equivalent to

> 0 stable limit cycle

(64)

S0 unstable limit cycle

By stable limit cycle we mean that any solution of Equation (59) tends

toward the limit cycle, provided it initiated closely enough to tLc

If the limit cycle is unstable, the solution will diverge from it, no

matter how close to ikc it originated. Summarizing, we state: the neces-

sary and sufficient condition for an MR to experience a nutation limit

cycle is that ,Le , evaluated from Equation (60), has a positive value

and that the nutation root is unstable; i.e., 0

Next we want to show that this :ondition can only be satisfied if the

linear Magnus moment derivative C^ is negative. The damping deriva-

tives and(fad can only be negative. In order for to be

positive, must be negative. If d is a nonlinear function of

in the range + 200, a negative d(A will be accompanied by a positive

, and, thus, Equation (60) has a positive value.

The cone angle of the limit cycle, IL ' does not depend on the

state of the planar trajectory. Therefore. once it has reached qLd '

an MR will maintain this cone angle, even though it might still be in
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the transient glide phase. Consider Equation (59). The rate of change of

in the transient glide phase is proportional to the only variable V

The higher rhe velocity, the greater ').

In general, it is undesirable for an IR to nutate in a stable limit

cycle because it is detrimental to its performance. A properly designed

MR must satisfy two conditions: the limit cycle is unstable, and the

nutation root is stable. Both are fulfilled by 0 . Then any

nutational motion of the spin axis will converge into a horizontal

attitude. To avoid a limit cycle, the designer can choose a configuration

with positive d However, because these shapes are not very common,

he might accept a negative but assure a negative value by

increasing thet) E ratio or providing larger end plates to increase the

aerodynamic damping derivatives. We conclude that it is very important

to assure a stable nutation mode. An unstable nutation mode will either

lead to a limit cycle, if Ce A is sufficiently nonlinear, or to a diver-

gent nutation and an ensuing tumbling motion.

The zeroth approximation predicts a circular limit cycle; i.e., the

spin axis moves on the surface of a circular cone. To estimate the devia-

tions from the circular motions, we consider the second harmonics of the

first-order approximation of Equation (56) and write them in the form

~ .+ A cosl 60 4 13 sin' 22 (65)

where:

( 3)" a (66)
.0; A
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A +__1 (67)

From Equation (65), it follows that the maximum deviation is given by e

and occurs. at s rt o

s owe w (69)

2. A
We now extend our investigation to include the effect of the nonlinear

damping derivatives d(-and (I% S. This means that, in Equation (31),

the nonlinear terms *j I JS , and %Lare taken to be different

from zero. The analysis proceeds just like in the first part of this

section. However, we-have to deal with the V and Is expressed in gyro-

mechanical angles that are quite awkward. To simplify the expressions, we

restrict the validity of the ensuing equations to cone angles ... . .

Then we can use the approximate relationships:

SiV (70)

rL& os. (7l)-

After averaging the equations over one nutation cycle, we obtain the

result equivalent to the Equations (54) and (55)
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3 20 1

(72)

The underlined terms constitute the effect of the nonlinear aerodynamic

damping. Like before we can find a limit cycle at

-(fA+d, )#-d-h 74

202,. 8 1'+ 1 1 -I,

if, and only if, the right-hand side is positive and the nutation root is un-

stable. Compare Equation (74) with Equation (60). We have stated earlier
that osi onstito f the ffe of. thefonle, aif o-d n

are positive (i.e., if damping diminishes for higher nutatiun rates), the

cone angle of the rimit cycle is larger than that given by Equation (60).

For increased damping at high nutation rates, the limit cycle will be smaller.
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14. COMUUTER SIMULATIONS AND TEST RESULTS

In this chapter, the dynamics of actual Magnus rotor flight models

are investigated. The basic configurations are shown in Figure 1.1, and

they are classified by the form of the cross-sections as cylindrical,

triangular, and rectangular Magnus rotors. Some sample trajectories

are calculated, using the equations of motion from Table 12.1, as pro-

grained for computer in Appendix B. The mass and aerodynamic input data

are given in Appendix C. Wind tunnel data from NACA Langley, Aerojet

General, and Arnold Research Organization are used to obtain the aero-

dynamic derivatives. To validate the assumptions of the previous chapters,

order-of-magnitude comparisons are made of the pertinent terms. Finally,

the Magnus rotor models were flight tested, and the results are correlated

with computer simulations.

14.1 COMPUTED FLIGHT HISTORIES

The calculations of the trajectories and attitude motions are based

on the equations of motion (Table 12.1), with the additional simplifying

assumptions that the aerodynamic coefficients and the air density are

constant. This implies aerodynamic coefficients independent of the Reynolds

and Mach numbers and a short flight during which the eir densicy does not

change appreciably. Because we are mostly concerned with transient and

short-time attitude motions, the last assumption is not very restrictive.

Moreover, the computer program is easily extended to include a variable
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density atmosphere. To limit the calculations to the incompressible

flight region is a more serious restriction. It had to be made to

simplify the calculations and because of the lack of reliable transonic

and supersonic wind tunnel data. The justification for neglecting the

dependence on the Reynolds number will be given next.

Extensive studies have been performed to investigate the Reynolds

number effect on externally driven, smooth cylinders, e.g., those of Van

Aken and Kelly (26) and Swanson (27). Van Aken and Kelly show that the

Magnus lift coefficient is sensitive to changes in Reynolds number if (i)

the test Reynolds number is close to the critical value of the nonspinning

cylinder, and (ii) the tip-speed ratio is below 0.6. The critical Reynolds

number for smooth cylinders is approximately 4 x 105. They explain this

sensitivity by the flow separation on the bottom and the top of the cylinder

caused by the flow transition from laminar to turbulent and vice versa.

For tip-speed ratios above 0.6 and at high supercritical Reynolds numbers,

no Reynolds number effect was observed.

The MR's investigated in this chapter have a steady-state Reynolds

number between 105 to 3 x 105 and a steady-state tip speed ratio between

0.4 and 1.2. In the transient glide phase, we experience a Reynolds

number range of 104 to 106 and a tip-speed range of 0.1 to 20. Thus,

the MR's are well within the critical range. However, because an MR is

never a smooth cylinder but always has sharp driving vanes, no laminar

flow is expected to develop and no flow transition can occur, Therefore,

even for low Reynolds numbers, the MR should fly supercritically, and the

dependence of the aerodynamic coefficients on the Reynolds number can be

neglected. The limited wind tunnel tests that have been conducted support

this assumption.
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The purpose of this section is to provide a broad sample of flight

histories for the reader so that lhe can develop a "feel" for the flight

dynamics of MR's. Table 14.1, page 173, sumnarizes the computer simula-

tions. The MR's are the same as the models used in the flight tests.

Their most important physical characteristics are included in the table.

For more details, refer to the run sheets and drawings in Appendix C.

The kirst flight histories, Run 13, simulate a typical low speed

release of a rectangular MR from a helicopter with a transient nutational

motion about a horizontal axis. They are graphed in Figures 14.1 through

14.4. Flight speed, glide angle, and spin rate are highly dampened. A

small overshoot occurs first in the flight speed, which causes a delayed

overshoot in the spin rate and the glide angle. The transient nutation

is also dampened with an increasing cyclic frequency according to the

increase of the spin rate. The vacuum approximation for the nutation

frequency, Equation (13.37), is in real time:

It correlates very closely with the actual nutation frequency of Figure

14.4. The Rectangular MR I has a steady-state lift/drag (L/D) ratio of
A

2.16 and a steady-state tip speed ratio U) 5 of 1.13. It is the best

performer of all shapes investigated in this report.

Its high transient spin-up potential is illustrated in Figures 14.5

and 14.6. The initial linear and rotational kinetic energy is converted

into potential energy, resuLting in a full loop. This Computer Run 15

simulates the launch of an MR with overspin from an aircraft. It is

assumed that the spin axis is rolled 3 degrees from the horizontal. The
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ensuing lateral motions are shown in Figure 14.7. To show the influence of

the deceleration of the center of mass on the stability, as discussed in

Section 13.2, the equations of motion were solved again i% Run 23, but with-

out the acceleration term V r • The result is a more stable lateral

motion. Therefore, in agreement with Section 13.2, the effect of the

decelerated center of mass is destabilizing.

To show that an accelerated center of mass is stabilizing, a typical

flight history is graphed in Figures 14.8 and 14.9. Run 25 is the solu-

tion of the complete equations of motion, while the acceleration term has

been deleted in Run 24, Much effort was spent in Chapters 3 through 10

to derive the perturbation equations of an MR about an accelerated refer-

ence flight. Figures 14.7 and 14.9 justify the travail.

Refer back to the end of Chapter 6 for the definition of a positive

spin axis. The MR is said to be launched with a positive spin if the

angular velocity vector has the same direction as the spin axis. All

pre-spun-MR's are launched with a positive spin because, in the other

case, the driving vanes would de-spin the MR immediately, causing it to

tumble until it reorients itself and picks up positive spin. On the

other band, an MR can be released with a positive or negative horizontal

linear velocity component. In Computer Run 15, it is positive. This is

the normal case. It is also called the "lift-up" launch, because the

lift force initially points upward. A- launch with a negative horizontal

linear velocity component is t:he "lift-down" case. Figures 14.10 through

14.12 show such a "lift-down" flight history. The initial conditions are

those of Run 15, except for a negative horizontal linear velocity component.

The effect can be seen in Figure 14.11. As a charged particle in a magnetic
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field, the MR is subjected for the first two seconds to a centripetal

force, the Magnus lift, resulting in a near circular trajectory.

Because the overspin is so high, it loops again before reaching the

steady-state gl$.de phase.

Next, we simulate the flight of a triangular MR in the Figures 14.13

through 14.15. We assume that the MR is launched with a high horizontal

linear velocity component, low spin rate, and a roll angle of 3 degree.

The MR rapidly picks up spin and climbs to approximately 30 meter above

release while losing much of its velocity. Consequently, even though the

spin rate is still high, the Magnus lift force is small and the MR starts

descending towards its steady-state glide phase. The Triangular MR I is

not as good a performer as the Rectangular MR 1. its steady-state values

A
are LID = 1.50 and tSS, = 0.77. The attitude motions, Figure 14.15,

exhibit a transient nutation that is quickly dampened out. The roll and

yaw angles rea-h a steady-state value of 01.-.V degree and 45, 0.20

degree. This means, according to Figure 13.1, that the MR is heading in

a new direction with its spin axis still horizontal. A check is provided

by Equations (13.5) and (13.6). The change in heading angle * is cal-

culated from:

S(2)

A simulation of the release of a cylindrical MR is shown in Figures

14.16 and 14.17. It is launched with a small linear velocity and a high

spin rate. Because of the high moment of inertia about the spin axis, the

Cylindrical MR I loses its rotational speed only slowly. In Figure 14.16

the steady-state values are not yet reached. Thoy are: 2-.7 rn Sei
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A
I5cli 174PPM S _+2. . With a L/D = 1.0 and W,,,= 0.53, the

Cylindrical MR I is the poorest performer among the three shapes investi-

gated so far. It was also assumed that initially 3 = degree. Because

of the small linear velocity at launch, the sideslip vanishes quickly.

After 1.5 sec of flight time, it is below 0.1 degree. The effect on the

roll and yaw angle is negligible.

So far the aerodynamic stability coefficients of the MR's behaved

sufficiently linear to be represented by the linear stability derivatives

only. Now we shall investigate two Magnus rotor shapes whose rolling

moment coefficients exhibit a nonlinear behavior at the origin. They are

the cylindrical MR without end plates and the rectangular MR with cut-off

end plates. The nutational motions in steady-s~ite glide phase are simu-

lated for each shape with two different moment of inertia rations I Iir.

First, we choose for the cylindrical MR 4A, TiI 2.19, which, according

to Equation -(13.60), results in a limit cycle with r = 12.5 degree.

The result is plotted in Figure 14.18. In particular, note the circular

motion as predicted by the zeroth order approximation (see Section 13.3).

The corrections are indeed small. Furthermore, in good agreement is the

approximated nutation frequency. = 9.63 CPS, as calculated from Equation

(1), with the exact nutation frequency Sl,= 9.80 CPS from Computer Run 30.

In Section 13.3 we stated that one way to eliminate the limit cycle is to

decrease the ratio I . Figure 14.J.9 shows the result for II = 1.28.

The other possibility is to increase the damping by end plates. This was

demonstrated by Computer Run 40.

A similar result is -obtained for the rectangular MR with cut-off end

plates. The noncircular end plates lower the aerodynamic damping and
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generate a nonlinear behavior of the rolling and yawing moment coefficients.

Equation (13.60) predicts a steady-state limit cycle at I., = 1.36 degree,

which is in very close agreement with Figure 14.20. We also notice again

that the limit cycle is very nearly ciri;ular, as predicted by the zeroth

approximation. A decrease of the I I ratio to 8.50 dampens the nutation

cycle. This is demonstrated by Computer Run 37 in Figure 14.21, using the

initial conditions of Run 36. The other method of eliminating the limit

cycle (i.e., the increase in aerodynamic damping through larger end plates)

leads back to the circular end plates of the Rectangular MR I, as exempli-

fied in the Figures 14.1 to 14.4.
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14.2 VALIDATION OF ASSUMPTIONS

Let us go back to the earlier chapters and scrutinize the assump-

tions in view of the flight simulations of the previous Section 14.1.

In Chapter 2, the basic Assumption 3 can be direccly related to the mass

parameter A / t , as it has been done in Assumption 5 of Section

12.4. The individual values for our Magnus rotor models satisfy the

cond-ILion U,) 0 , as shown in Table 14.1. Furthermore, a check

shows that Assumptions 3 and 6 of Section 12.4 hold for all computer

simulations. The justification for Assumption 2 will be part of the

following outline.

During the derivation of the equations of motion, we have made several

order-of-magnitude estimates to simplify some of the terms. The more im-

portant ones are summarized in Table 14.2. The first three estimates

should be greater than 100. The next order-of-mignitude term relates to
0 * 0 *0

Equation (10.25), which includes the unknown term - • How-
00

ever, from the previous computer runs, we know that Tf changes slowly

for most parts of the flight. Therefore, the perturbation ST is also

a small term. To verify Equation (10.25), it is left to show that

arl 60( is large throughout the trajectory and in particular at the

maximum value of where the largest 51 can be expected. This

value is given in Table 14.2. The ord6r of magnitude requirements on

the remaining estimates are only 2 10 because they are used to arrive

at simplified formulas, which can always be checked out by the exact

computer calculations.



F

CHAPTER 14 -188

** 0 0 0C * 0 0u en 0 cl nP
[-4 1______

r- 0 0 en c N 0

0a E-4

In v-4 -4

0 cn-4 r- X

za ". 0 Nen 0 0 0

-44U

N -

IA 0C 0 0 0 0 0

*n 0D 0nCO C% cn CA OD 0i c
\0 4 -4 -4 -4 -4 - 4 c4

0

94[->

*Al

-0 0 0
E l Al A A' Al

Al Al 010 __ _% -' -01

0) oo ; -0%

6 G3



CHAPTER 14 189

As a sample we use three computer runs. Run 13 represents a typical

-drop test, while Runs 15 and 40 give somne extreme release conditions. In

Table 14.2, the minimum values of the order-of-magnitude terms during a

particular run are given, together with their times of occurrence. Run 13

fulfills all conditions. Two of the order-of-magnitude estimates in

Run 15 and six in Run 40 are not satisfied. But in all cases this is

due to the extreme transient behavior and lasts only a fractiDn of the

total flight. The closetr to the steady-state glide phase, the better the

conditions hold. Therefcre, even though the order of magnitude estimates

are not satisfied throughout, computer Runs 15 and 40 simulate the

flights of the respective MR's accurately enough.

At the conclusion of Section 13.2, we introduced the two-degrees-of-

freedom lateral equations of motion to study the nutational motions. The

simplifications were based on the assumption that -+- . To validate

this assumption, the ini lal conditions of Run 13 were chosen so that

only the nutation mode would be excited. The transient time history of

and + are shown in Figure i4,4. Because the initial conditions were

not matched exactly, a constant 1 value of 0.1 degree is superimposed.

If we disregard this effe:t, j and - are equal within 3%. An even

better agreement is found in Run 30. There is no constant and

within 0.5% accuracy. In Run 36 P and -4 are within 3%.

An important assumption that leads to the one-degree-of-freedom

equation of Section 13.3 is expressed in Equation (13.37). Table 14.3

compares the approximate and exact values. They lie within 2% of each

other, An equally good agreement of the transient nutation frequencies

is given in Figure 14.22.

|



C IAPTER 14 190

NUTATION FREQUENCY (CPS) FROM

RUN i -. an COMPUTER RUN

30 9.63 9.80

31 17.08 16.90

36 3.33 3.36

37 4.36 4.40

TABLE 14.3 STEADY-STATE NUTATION FREQUENCIES

Finally, we want to show that the zeroth order approximation of the

one-degree-of-freedom equation of-motion, Equation (13.59), gives an

accurate account of the nutational motions. The test case is the pre-

diction of a limit cycle. We refer to the Figures 14.18 and 14.20.

In both cases the nutation angle calculated from Equation (13.60) is

within 3% of the value obtained from the exact Computer Runs 30 and 36.

Furthermore, the zeroth order approximation requires a circular limit

cycle. This is well demonstrated in the Figures 14.18 and 14.20.
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14.3 FLIGHT TEST RESULTS

The flight tests were conducted between June 1968 and Jure 1970,

The test area was equipped with two man-operated turrets to track the

flight models. One turret carried a high-speed 16-mm Hillikan movie

camera with an 800-m telephoto lens. The angles of the turrets were

recorded digitally in half-second time intervals and fed into a computer

to yield space coordinates, velocity and glide angle. To obtain the

attitude angles, the film was processed through a photoanalyzer.

Prior-tz each test a pilot balloon was released and tracked. The

oaLloon data were used by the computer to correct the MR tracking results

for ti.. mean wind. The flight models were launched from a hovering heli-

copter either by hand or by a so-called jo-jo method; i.e., a canvas

wraped around the MR provided the initial spin rate. This limited the

release conditions to low speed and small spin rates.

Zeveral error sources must be considered when interpreting the data:

1. Human error. The turcet operator follows the MR through a

monocular with a solid view angle of 0.6 degree, the same as

the angle of the 800-mm camera lens. No corrections are

made -if the model is not centered on the film,

2. Mechanical error. Backlash in the encoders and gear boxes

amounts to approximately 0.3 degree.

3. Wind error. Changes in wind speed and direction during rest

and local gusts cannot be accounted for.

4. Helicopter downwash error. At release the helicopter rotor

blades induce a downward velocity on the MR. No correction

is made for this effect.
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5. Photoanalyzer error. The two attitude angles 4 and are

projected on the plane film surface, A separate estimate of

and + can only be made with an error of 25%. Howevert

for the nutation and limit cycle tests, only the projection

of the nutation co,e angle I on a plane is required. If

the MR flies traight towards the camera, this angle can be

measured within + 0.25 degree.

Thirty MR's representing 8 different types were drop tested. The

best test of each category was analyzed. They are summarized in Table

14.4. The -urpose cf the tests was to validate some of the theoretical

predictions, to show the influence of end plates and moment-of-inertia

ratios, and to develop test methods to determine the nutational damping

derivatives.

To achieve Lhe proper moment-of-inertia ratios, various materials

(aluminum, steel, brass, acrylic plastic, styrofoam) were used to build

the flight models. Great care was taken to avoid mass unbalances. In

Models RECT. MR 1, CYL. MR L, and CYL. MR 3, a special impulse fixture

was added to induce a nutational motion. The impulse was generated by

two cylindrical tubes, located at both ends of the MR normal to the spin

axes, containing one to 2.5 grams of black powder. An electronic timer

fired two HK 1 Squibs, which in turn set off the black powder charges.
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The first flight test results are shown in Figures 14.23 through

14.28, together with the com.pater simulation Run 19. A disturbance was

introduced through impulse fixtures at 13.5 seconds into the flight. The

induced nutational motion Vas analyzed from the film and graphed in

Figure 14.28; it produced a 7% drop in the spin rate (see Figure 14.24).

Its influence on the flight speed and glide angle, Figure 14.23, is less

certain because wind, mechanical, and human errors can introduce an in-

accuracy of the order t 5%. But the result of the analytical investiga-

tion seems to be confirmed because the effect of lateral perturbations on

the reference flight is small.

All results of the flight test of July 26 (Figures 14.23 through

14.27) are in good agreement with the computer simulation. This is due

to the relatively weak wird (12 ft/sec) blowing from the turrets to the

helicopter and the fact that the RECT. MR 1 flewstraight towards the

camera, such remaining only a short time in the downwash of the helt-

copter rotor. A transient nutation was also observed and recorded in

Figure 14.27. The computer simulation shows a slowly changing rolling

motion superimposed over the nutational motion. The photoanalyzer does

not allow the extraction of such a slow motion from the film. Otherwise

the agreement of the nutational frequencies and amplitudes is satisfactory.

To determine the aerodynamic damping derivatives from free-flight,

the Induced-NuLaLion Method was tried out. An impulse is initiated during

steady-state flight and the nutational response analyzed (see Figure 14.28).

The time-to-halve-the-amplitude, 4I and Equation (13.22) yield the

damping derivatives:
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The result, t A -21.4, agrees well with NACA's value of -19.62

measured in the Langley Stability Tunnel. Notice also the constant

nutation frequency throughout the decay. This confirms the linear

perturbation equation as a good model of the flight dynamics.

The effect of cutting off the end plates at two sides is given next.

We tested two models with different moment-of-inertia ratios, the Rect-

angular MR's 2 and 3. Because the aerodynamic coefficients behave non-

linearly at smuall sideslip angles, the possibility of limit cycles must

be investigated. According to Equation (13.60), the Rectangular MR 3

is not capable of a limit cycle (See Figure 14.21). Its moment-of-

ine,.tia ratio I If is too low and its nutation mode, Equation (13.21),

is stable. This was confirmed by a flight test. The transient perform-

ance is given in Figure 14.29. An increase in the IT I- ratio leads to

a limit cycle. For the Rectangular MR 2, we calculated I = 1.36 degree.

The flight yielded 1.25 degree as shown in Figure 14.30. The

measured frequency of 3.75 CPS also compares favorably with Simulation

Run 36, Figure 14.20, of 3.36 CPS,

it Figure 14.31, the flight test of the Triangular MR I is compared

with the computer simulation. The model disintegrated after 9 seconds of

flight time. Except for the spin hLstory, the correl.tion is poor. This

is probably due to the strong winds of 35 ft/sec during the test.
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To obtain the unknown damping derivatives for the cylindrical MR with

end plates, the induced-nutation method was used. Figure 14.32 shows such

a typical transient flight performance. The correlation of the calculated

with the measured flight speed is poor because of human error during the

early tracking phase. Figures 14.33 and 14.34 give the decay of the nuta-

tion mode for the Cylindrical KR's 1 and 3. Using Equation (3) we obtain

-. = -35 from Figure 14.33 and -27 from Figure 14.34. The mean

value -31 will be used.

Without end plates the cylindrical -MR exhibits a nonlinear behavior

of the rolling and yawing moment coefficients. For tij= 1.28, the nuta-

tion mode is sLable (see Figure 14.19), and no limit cycle is predicted by

Equation (13.60). This was confirmed by the flight test of the Cylindrical

MR 11. Its transient performance is correlated with the computer simula-

tion in Figure 14.35. Again, because of the high winds, the glide angle

and the flight speed do not check out well. If the ti ratio is increased

to 2.19, a limit cycle exists, as shown by the computer simulatiop, Figure

14.20, and the flight test result, igure 14,36.

There is an alternate method, the so-called Limit-Cycle Method, to

measure damping derivatives from free-flight tests. It can be used if,

-through proper choice of the If ratio, the MR performs steady-state

limit cycles. The limit cycle cone angle 1,t, is measured and the damping

derivatives are evaluated from Equation (13.60):

A r8
From Figure 14.36 we obtain for the Cylindrical Magnus Rotor 4A without

end plates: 4 = -3.2.
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15. CIUrTICAL EVALUATION OF RESULTS

The contributions of this report are in two areas: the formulation

of flight dynamical problems in general and the flight dynamics of Magnus

rotors (MR) in particular. As is so often the case, the general formula-

tion evoLved from the specific requirements of Magnus rotor dynamics:

the reference flight of the perturbation equations can be under accelera-

tion, nonlinear aerodynamics must be included, and many coordinate systems

are involved. Tensor algebra is the natural remedy for too many coordinate

systems. It presents the equations in an invariant form, valid in all

coordinate systems. In flight dynamics, most coordinate transformations

are time dependent. To preserve the invariant form of the equations of

motion, the rotational derivative was introduced to replace the ordinary

time derivative. Then, for instance, Newton's Second Law can truly be

written in an invarient form for inertial or noninertial coordinate

sys tems.

The tensor formulation of the perturbation equations is carried out

as far as possible, leading to a generalization of the classical small

disturbance method and to a particularly convenient series expansion of

the aerodynamic forces. No restrictions have to be placed on the refer-

ence flight. It can be accelerated or decelerated.

The state-of-the-art of Magnus rotor dynamics has been advanced in

several respects. The perturbation equations of the steady-state glide

phase are extended into the transient glide phase. The nonlinearities of

the aerodynamic forces are taken into account by derivatives up to the
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third order. A simple theorem states which derivative must vanish becauae

of the mirror symmetry of MR's. This considerably reduces the number of

derivatives. A one-degree-of-freedom perturbation equation is introduced

by combining the roll, and yaw angles into the single nutation angle and

using the method of averaging. With this equation, necessary and suffi-

cient conditions are derived for the existence of nutational limit cycles.

Other intuitive concepts have been given a sound mathematical basis: the

effect of a noncircular moment of inertia ellipsoid can be neglected, and

the Influence of the rapidly rotating angle of attack is averaged out over

one revolution.

To back up the analytical results of this report, an extensive flight

test program has been conducted. Two new methods proved to be successful

in determining the otherwise difficult to obtain damping decivatives.

They are the induced-nutation and the limit-cycle methods. The first

one requires some external energy source that induces a nutational motion

in steady-state flight, while the second one can be applied to MR's capable

of limit cycles by the proper choice cf the moment of inertia ratio. A

good correlation was obtained between the analytically predicted and the

free-flight limit cycles.

The agreement between the simulated trajectories and the test results

is only satisfactory. This is mainly due to the high winds encountered

during testing and mechanical and human tracking errors, A more accurate

tracking facility should be used for further testing, and the wind should

not exceed 5 knots. Also, the acquisition of attitude angles from high-

speed film is not accurate enough to determine the roil and yaw angles
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separately. The MR should be equipped with on-board instruments such as

accelerom~eters -,.r gyromagnetic sensors, and the measurements recorded on

the ground.

The accuracy of the computer simulations depends on the quality of

the wind tunnel data. Because of the high spin rate, the aerodynamic

coefficients of an MR are difficult to measure. Improved testing methods

should be developed. In particular, more transient wind tunnel tests

should be conducted. They would provide a better basis for the formula-

tion of the transient behavior of the aerodynamic coefficients than has

been attempted in Chapter 11. No theoretical analysis of the aerodynamics

of MR's was conducted. This is an area which requires more research. It

is particulacly important to improve the understanding of the airflow

around MR's and to derive methods for the theoretical evaluation of aero-

dynamic derivatives.

Except 'or Section 12.4, the ideal MR postulated by Assumption 2 of

Chapter 2 occupied our interest throughout this report. Such aberrations

as configurational and mass asymmetries were not discussed in detail.

Because '.ney usually are small, they can be treated as external disturb-

ances of the ideal MR. Their effect should be studied further. An

especially fruitful area of research may be the resonance instability of

MR's.

The general tensorial formulation of flight dynamics, as outlined in

Chapters 3 to 5, was successfully applied to the dynamics of MR's. This

uethod should also be 5mployed to formulate the flight of missiles and air-

pl .ines and hus be developed into a general tool of fl ight dynamics.
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NOMENCATURE

CONVENTIONS

(al Vector in Euclidean three-space. Lower case

letter.

LA) Second-order tensor in Euclidean three-space.

Upper case letter.

Right-handed orthogonal Cartesian coordinate

system called B.

Components of a vector or tensor expressed in

the )8 -coordinate system.

IT] Transformation matrix of coordinate system 3
with respect to coordinate system

(A) Frame A. Upper case letter.
(A)(A Frame A during reference flight.

tA Frame A during perturbed flight.

A Point A. Upper case letter.

[BAl Displacement vector of point B with respect

to point A. Arrow points to B.

Rotation tensor of frame (B) with respect to

frame (A).I Skew-symmetric angular velocity tensor of

framne (B) with respect to frame (A). -
~.- C)Time derivative. Operates on the components

of a tensor.

S- Time derivative, dynamic-normalized.

$M) Rotational time derivative with respect to

frame (A).



210

(Al Rotational time derivative, dynamic-normalized.

II I Absolute value sign and matrix norm.

SYMBOLS

(A) Air frame.

a Center-of-gravity offset along spin axis.

3Center of mass of Magnus rotor.

(a) Body frame.

Ce)
Body frame during reference flight.

P Body frame during perturbed flight.

b Span.

C Chord.

(4FI Aerodynamic force coefficient vector.

[-h1 Aerodynamic moment coefficient axial vector.

COD= CIcs Drag coefficient.

dL LI Lift coefficient.

C'L/ (Magnus lift coefficient.

1 "Accelerating spin torque.

d u A~I , Damping spin torque.

S- g Axial force coefficient.

C' - V( / Side force coefficient.

/- Z I' Normal-force aoefficient.

L L I IRolling moment coefficient.

e Hn I/c L Pitching moment coefficient.

SIc~.L Yawing moment coefficient.
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rSide force derivative.

Cubic side force derivative.[ #v i / Magnus moment derivative.

~-c

d. 3l2tltl /eIA't, Cubic Magnus moment derivative.

Yawing moment derivative.

2 I j' S l Cubic yawing moment derivative.

r W- f 9l P Roll damping derivative.

A c -E2'pI Cubic roll damping derivative.

d d/ C) Yaw damping derivative.

DAC,,/2ctO Cubic yaw damping derivative.

IA CPWt Mixed linear roll damping derivative.

A-'u" CP/I Al aL Mixed qadratic roll damping derivative.

%A Mixed linear yaw damping derivative.
A, , lei, / h L  Mixed quadratic yaw damping derivative.

End plate diameter.

Rotational derivative relative to inertial

frame (I).
) Drag force.

Second order unit tensor.

(ii) Earth frame.

1 Aerodynamic force.

Gravitational force.

F Fourier coefficients.

Earth acceleration constant.

G, Fourier coefficients.

, %Nonlinear aerodynamic functions.

£ ]J Reflection tensor.
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Moment-of-inertia tensor of body (3) referred

to center of mass B.

I Transverse moment of inertia.

Spin moment of inertia.

i I~ , Dynamic-normalized transverse moment of Inertia.

L~=t~~l r Dynamic-normalized spin moment of inertia.

[ t ~ Angular momentum of body (B) relative to inertial

frame (I) and referred to the mass center B.

Axial vector.

"LC c/ Reierence length.

L Lift force.

L 0 Lift over drag ratio.

Lm.1 Aerodynamic moment. Axial vector.

MR Magnus rotor.

rv t Mass of MR.

Mach number of reference flight.

01 Order of magnitude.

[t 1 Linear momentum of body (B)-relative to

inertial frame (1).

EP) Perturtbations of the angular velocity components.

9 r IDynamic pressure.
Z [ ,,Rotation tensor of the perturbed stability frame

P FL

relative to the reference stability frame.

(j ) Reference frame.

- m Reynolds number of reference flight.

Reference area.

( ) Stability frame.
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lS [ sDisplacement vector of element relative to

point B.

Summation sign over a continuum.

N = LrL N Roots of nutation mode.

LA= -Roots of undulation mode.

Time.

Dynamic-normalized time.
AV,

. Aero-normalized time.

A A A
F | W i Perturbations of the linear velocity components.

V Flight speed.

VX Reference flight speed.

V~S Steady-state flight speed.

- - Flight speed perturbation.

Velocity vector of center of mass B relative

to air frame (A).

Lui(t)] Velocity vector of the center of mass during

reference flight, 3. , relative to the

inertial frame (1).

W Weight of MR.

(W) Wind frame.

)(I YI% )X3Body axes.

1 'Stability axes during perturbed flight.

Stabilitv axes during reference flight.

N( ,Yawing axes.

SX "  L- )(I Line of node axes.

M Nutation axes.



214

Angle of attack.

Co Dynamic-normalized spin rate during reference

flight.

Angle of sideslip.

Glide angle.

Glide angle perturbation.

1Complex angle of orientation.

g Perturbation -symbol.

Perturbation symbol.

TBody angle.

Cone angle.

A& IM Mass parameter.

Air density.

6 Node angle.

Time parameter.

4Roll angle.

Roll angle referred to earth frame.

Yaw angle.

AYaw angle referred to earth frame.

0,flW. Skew-sytnuetric angular velocity tensor of[1'

perturbed stability frame relative to

inertial frame.

[ WttAxial vector of LSLYP~
(A) Angular velocity axial vector of body frame (B)

relative to air frame (A).

LLCA) II Perturbations of angular velocity of frame (S)

relative to frame (I).
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w Spin rate. Component of the angular velocity

vector along the spin axis.
S

Dynamic-normalized spin rate during reference

flight.

S= -Tip-speed ratio.

V
A - ^ Aero-normalized spin rate during reference

Vit flight or tip-speed ratio.

SUBSCRIPTS

P Perturbed flight.

IL Reference flight.

SS Steady-state flight.

SUPERSCRIPTS

A Aero-normalized.

Dynamic-normalized.

Averaged value.

T Transposed.
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APPENDIX A

PROOFS OF SECTION 3.3

PROPERTY 1: The rotational derivative of a vector [p] relative to a

frame CIR is a vector; i.e., let (M and be any two frames

with the associated coordinate systems 1 and n and the transforma-

tion matrix tT1 then

PROOF: The proof will be carried out in subscript notation with summation

convention. We shall use the following notation:

pi p] arbitrary vector
pi Lpf components in -coordinate system

p( [p components in 2 - coordinate system

components in -coordinate system

t M[tl vector fixed in reference frame but otherwise

arbitrary It 0

i -- [LT transformation matrix

S- [T transformation matrix

- L _ -_ = [T]hq IT]"

To prove Equation (1), we will generate a scalar and take the time

derivative:

'3 (2)
di Cit
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Expanding the first rel.ationship of Equation (2), we obtain:

(3)

where we used the fact that fl is a vector fixed in the reference frame,

i~e., 4 h. 0

Let

S(4)

and substitute into Equation (3):

(5))Ldt F l

Because Rj is arbitrary, we get:

a C(J3 (6)
dt r

Multiply and contract

'~L. - -(7)

on both sides of-Equation (6)

FT~ C% ( j (8)

Thus

d - I ~ ~ .- (9)

The second relationship of Equation (2)

d - (10)
~~at
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yields a similar equation using the same procedure:

Set Equation (9) equal to Equation (11)

Je +1,UId ' (12)

Multiply and contract on both sides of Equation (12) and introduce

tK JL(13)

We get

dl (14)
dj- +f, -d 4 &

which, in matrix notation, takes the form:

$p"- - T~j~R~ 1-~ .?;' t! t~- r (15)

This can be written according to Equation (3.19):

(16)

which is exactly the form of Equation (1).

PROPERTY 2: The rotational derivative of a tensor [PI relative to frame

is a tensor; i.e., let (, and 1= be any o frames with the

associated coordinate systems lt and .1 and the transformation matrix

, then

~A~lp R = (1T
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PROOF: The proof is similar to that of Property 1. As additional nota-

tion, we need only , a tensor whose components are time invariant

with respect to the frame , i.e., A 0i

We form a scalar with the twice-contracted product of P.- and

and take the time derivative

Expanding the first relationship of Equation (18), we obtain:

c i - (19)

Take the time derivative of

L(~ ~(20)

(C' +~ -

and substitute into Equation (19). Because Q;, is arbitrary, we get,

in view of Equation (20):

dt.: =i" -+ a ' zi l( 2

Multiplying Equation (22) by

d or(23)

and contracting y-ields:

~ t~ )P4 P(a~.~ .~ (24)
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The second relationship of Equation (18)

d
C1- (25)

yields a similar equation using the same procedure:

dt ~k + i~~ (26)

Set Equation (k') equal to Equation (26), multiply both sides by a%

contract, and introduce

The result is:

(28)

CA Cj tAj t I
and in matrix notation:

d + 4 CP ( T]" 'r) ITI]a

(29)

-[TI"' IT LP ttiTV)I f 1p3'll tt1 T j1i'

This can be written according to Equation (3.20):

[B plm = T " L',- P I IT 1 (30)

which is exactly Equation (17).

PROPERTY 3: If the allowable coordinate systems are right-hand orthogonai

Cartesian coordinate systems, then an axial vector har the same
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rotational derivative as a regular vector; i.e., let (i and l_ be any
two frames with the associated coordinate systems and P and the.

transformation matrix [ 1] , then

M (31)

PROOF: It is sufficient to show that, if Ri of Equation (22) is a skew-

symmetric second-order tensor, say i, Equation (22) can be reduced to

Equation (9) with axial vector * Rewrite Equation (22) for

L1. A. , ( ,- , (32)

Introduce the definition

L; Li~ - (33)

into Equation (32):

- -~;CL~A '~ C(34)

To reduce further the second term on the right-hand side of Equation (34),

we use the transformation relation

a- ,~(35)

Multiplying both sides by 4t and taking the time derivative yields:

{~C j (+ V))i (36)

'Ew d+~1

Substitute Equation (36) into Equation (34)

an se he ivere o ui (35)(37)

and use the inverse of Equation (35)
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I (38)

to combine the terms on the right-hand side of Equation (37):

In view of

(40)

we get:

For right-hand orthogonal Cartesian coordinate systems, 1+' + .

Furthermore, because t)i are free indices, there will be for each

F- l), 3, a combination of 1 3. such that Ej 0 . Therefore,

Equation (41) becomes

t Tits) T~t(42)

which is exactly in the form of Equation (9).

THEOREM OF TRANSFORMATION OF FRAMES. Let CA) and (B) be two arbitrary

frames related by the angular velocity tensor [S-(&(A1. Then, for

any vector , the following relationship holds:

y(43)

where every term in a first-order tensor.
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PROOF: We shall use the following notation:

Pz arbitrary vector

CG vector fixed in frame (A) but otherwise arbitrary

6i vector fixed in frame NI but otherwise arbitrary

- ( components in first arbitrary coordinate system 3
M i - [p] components in second arbitrary coordinate system

components in coordinate system 3 associated with

framte (); note: !9 ^. = 0

components in coordinate system associated with

frame nt) ; 6oe 0

+J~j p~ *- R L I TVRAIVI~A
g~

-- " coordinate

= 2 ~ IpinTL h transformations
-L Lp1  I

4 z as

Equation (3.45) permits us to introduce the components of two angular

velocity tensors:

Ci A.(!3)(A) '.(44)

c(45

To prove the theorem, generate two scalars C; and take their

time derivatives and add:
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vi ) (47)

Substitute Equations (44) and (45) into Equation (47) and get:

C P ilj)(t)1 (48)

This can be simplified, noting that each term is a scalar and that:

'(49

~ l ) i 'a ,,'

We will express the first factor of every term as (t41o i) , uaing the

appropriate coordinate transformations, and convert the arbitrary vector FL

into components by

4 = (51)

We obtain:

(52)

C4c c

kt+; W A
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Because and are the components of arbitrary vectors contained in

and ), respectively, (at+I6L) are the i-omponents of an arbitrary

vector. From Equation (52) it follows:

and in matrix notation:

ci LTIMA L(d [rT )-

(54)

JI (T {M Mr" L.4 1T1 )LI

which, in view of Equation (3.19), becomes:

[2)(Al r 1 ,l 5 -- fgt p (GPII + 1p (55)

Because 1 and 7 are arbitrary coordinate systems, we can write Equation

(55) in the tensorial form of Equation (43).
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APPENDIX B

COMPUTER PROGRAM MAGSIX

The equations of motion of a Magnus rotor in perturbed planar glide

phase, Table 12.1, were programmed in Fortran IV for the Control Data

Corporation Computer CDC 3150. It was assumed that the air density and

the aerodynamic coefficients are constant. To solve the differential

equations, a fourth-order Runge-Kutta method was used because it is

stable, self-starting, and adjusts the time increment so that a specified

upper error bound is not exceeded (see Ralston and Wilf (28)).

The functional operation of the program is shown in Figure B.1.

The main prcgram MAGSIX reads the data, controls the computational process,

and writes the headings, input parameters, and initial conditions. The in-

put data are given in the dimensions Kg(mass), m, sec, while the calcula-

tion is performed in dynamic-normalized (DN) units. To convert from one

system to the other, the subroutine CONVERT is used. The actual calcula-

tions are executed in the subroutines RKGS and FCT. They start at the

initial time specified by PRMT (1) and proceed in time intervals not to

exceed the value PRMT (2) until the final time PRM (3) is reached. Then

the control is transferred back to MAGSIX for new input data. The results

of the calculations are written by the subroutine OUTPUT in row form,

following the initial conditions.



APPENDIX B 230

SUBROUTINE
DATA FCT

MAIN PROGRAM SUBROUTINE
MAGSIX ' RKGS

t RT IFRM (2

tt P

SUBROUTINE,,- SUBROUTINE

-"CONVERT'%-_ OUTPUT

PRINTED OUTPUT

'HEADINGS
PARAMETER

INITIAL CONDITIONS

NUMERICAL RESULTS INLCA

FIGURE B.1 MAGSIX FUNCTIONAL CHART
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Table B. 1 summarizes all the required input data. The accuracy of

the computations is controlled by the upper error bound, PRMT (4), and

the error weights W(I); I = 1, ... , 10. At each time step the total error

is calculated by the formula

to

&w -Alp r ~' OP (B .1)

If c tVI (.4), the time interval is halved and the calculation repeated

The number of these bisections is given on the print-out in the column

IHLF. The maximum error incurred at each time step by the I's state

variable is

Some of the syabols used in the program have already been given in

Table B.1. The remaining definitions are collected in Table B.2. The

Fortran IV statements follow on pages 234 through 238, with the first

portion of a print-out sheet on page 239.
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RUN NO.:

IDENTIFICATION:

IAGNUS ROTOR PARAMETERS CONTROL PARAMETERS

SYMBOL COMP.SY, VALUE DIM. COMP.SY. VALUE DIM.

RIIO KG/M 3  No. of Equations NDIM 10 -

S M2  Initial Time PRMT(i) DNT

C/4 RL H Final Time PRMT(2) DNT

rn BM KG Upper Time Incr. PRMT(3) DNT

I THOI KG M2  Upper Error Bd. PRMT(4)

I SMOI KG MI KG INITIAL CONDITIONS ERROR WEIGHTS
6,, GSS ' DEG .

C (I) SYM. CO.S VALUE DIM. SYH. VAL, DIM.

Vx P(1) M/SEC A'T, .05 DNL/DNT

YC.(2) I , P (2) DEG .ilft .049 RAD

14 P(3) RPM .001 RAD/DNT

CL ( P(4) DEG .2 R_

C P(5) DEG a .2 RAD

-I.- P (6) DEG/SEC 4 .05 RAD/)NT
c(7) 4 p(7) DEG b4 .2 RADv0

C8 zP (8) DEG/SEC .05 RAD/DNT
Al,,ss 0 (9)

x P (9) M 6 . DNL
1-4 C(19) gc .

P C(1o) M po .1 DNL

2A C(11)

.A2C(1L2) REMARKS:
>

C(L3) COMP.SY. means: Computer Symbol

A C(14)

cf" A3 C(15)

A3 C(16)

h C (17)

C(18)[-# (s
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SYM. COMP. SY. EXPLANATION

GSS steady-state glide angle
VSS VSS steady-state flight speed

TAU time parameter
ThOIDN transverse M.O.I. dynamic norm.

T SMOIDN spin M.O.I. dynamic norm.
VR flight speed

F GAMR glide angle
BETA side slip angle
PHI rolling angle

F PHI.
PSI yawing:angle

-PSI.

XX range
ZZ vertical drop

WRAN tip speed ratio
DNT dynamic-norm. time
DNL dynamic-norm. length

TABLE B.2 COMPUTER SYMBOLS
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CO~FvK4QI4 1M.I.)dMNL9

CtACCEL
EXTERNA6. FCTodUIP

I CALL jkE

E0T ( IC .e)0 * rCt\F C c i

kCCELz0.
GSS3jSb*0,0114v,

LJ m .0tAP / (m i NL

CUM3=j*IKL*tyj*0UVMA. lI)

CALL CONVtT0-9YjavvM)
I:E(tiI 14Q'N.MAAJ,0GS59 bVS,IIL TAU 9 dI4,8MUs TMOI.TMOIUNq

CALL RELUC11Ir'c)

li1 FoRMAJ CNJAj)
1., FCRMATCFZIJ,b)

F4 (,;M T Ai£tU~b E

_c/ 9t4 Tw cj =qtu.eseom &(b.SQm (35sD xtElu,96 DG

C/oet CO l~d~r bu CLt) ,E1.ZtL OA ,1O.6e CMSE

C/ 9H CL ,Eu.4qe' NL8 u~l.Z8 CL3 =E10.298"CBPa

CE1O9 $NSloIa vLP Z,E1 ori '%/ M NSHEOWN,~ CNR 'E1O.2'

-e _CNi3 xvs,EO298t CNR? stE1O-.298H CNB2R a9E4o@2t8H CNBR2 z,
CE O2////Il)

17 FORMAT(2Ox*20H lNITIAL CONDITIONS /
C/02X99M VP 2sE1Uo.s16 M/SL.C VROp4 ZiI,2 DNL/DNTq

c/t2oxqri GAI~c -mqElV9Z916H DEG GAM4R 89t-10.2Z,9H PAU
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c i -- 9i 7 ETA isEIQ.2916H DJEG SETA 2 9 P0.29Y AD
C/120Otgm- PiI :iIU~lVe1b OV., PHI z9E10.,99 PAD
C/02cxq'dr PtiI. ZtEbldiseH LEG/SEC PHI. ,E1Q.,2,9H RAD/DNT

c~e oxyh PSI =*l~qb UEb PSI *LJO0499H RAU
Ci #20x9'rl PSI. = qE 1-0. 2, D 6 EG/SEC PSI. = ,E 1-6.2,s9H RAD/DN

I'! ORMAT(II194UA,2p- TNAjECTQkY AND ATTITUL)E MOTIONS OF THE MAGNUS R

C4HGAMHt4X*e,*4A,4VkiJ.,94*Rt9X4HwN,4A,4HIN,4 4I1 t,5 !X3PHI 9A9
CIPSIeX4PHe97*PI3X4HILF/4,4T'MEbA4HtIME.//?,4X,
CZHDNT,1UA4'hiSE.CtbX, I?'~btI~HM,; A95HM/SEC,3A,4MOEG,3X,3HRPM,3A7Mt)N
CL/ONT~f-- kA/LUNlqf IkAU/ANT,3),-3HUEG,,A3HFEG3j,(-3DEG9,4j4FiYtG/SE
CC ,4X lhULb/bLCq///)

iMIN=I5LC/t.O
ISEC:FLt4AT TC 1cC) f'Uc*FLOA-T(IMIN)

1V~ FOPMA!(4hPUvi'4IeVG 'flit 14,9h MIN ANb j239d4fl SEC)
L-O TO I

I ( CALL iiI't
TOP
ENO

-UBROuTlt.E CUv'Vc 3kTiP9q,.1C0DE-,NOM)

COMMON bwP~1USPLTriuI 9)moloIS9rgSGmuVSStAuTMUION,S5{OONC( 18)
COACCE. -

PAD=57,e958 AU1)=11V-S $A(2)=I/PAU * A(j)=TAU*0).L0 4 72
£4)zi/kAD i A(z)'. i/ZO) A(6)=TAU/WAD * .l(flZII/RAjm

A(8WAUAMA0 A'9)=l/(8MUJ*pL) S AJ~l(f0R
C-0 TO

106~ to 201 X1) .9

101
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IF (H* (XE.NJ-AK) 3691,3 1 o
2 * .(e).eQ9J A(3)=1.707O * (-z1bb6

CmxCC(3)zzo.O? i

3 '1

I CALL

I ie ;=J~l -

I F (J-a) i1 A C

14. CALL FCi(A,rdtAY) a vu 10 1

L~ =lJI(0.1t; I)

I I Ai(t9I) ZiIJ A('L)
Tov

?,e

~. 7 1I z 1,Ar k

'T 0

1 A~w-4m J 1LNU=o) I O IU Id
-- LL. C' C Ya



APPENDIX B 237

Ci t-2Y 11,Mt1

jiCY ( ) =AuxA (2 s I

I QEtC: iLF

Je? 1rILF1IHLF-I i lSTEP=IaLP/2 Hz+

lP( IHLF)4,3393J

3 -LFII4LF-I b :STEP ;iblter/ !b M# (OU TV 4

.~IHLF:11 CML..FCTtx9YtOEHY) s Gu To j<)

E rj r

C 9 MCCEL

CL41Y (4)=-(AC-j I2)Y ),/MJ. +y (1*C( () 3 (SSY())A*,*oSY2 *
c vsy ~o.*ioiy-(T* 7 VS"

hCl4O~*?) S I)ij,* 4) *(d)/TMVIU9C (9 * ( 1) *Y 1) *Y(4) **3/ (6.*Tm1VB)N
C(oJ'A**2) #C (1 i)*Y (6-4j (0**Y (1) *TMUIujlv4It-t4*4) +C ( 1) *y(3) *y (4) *4*20

':y 1;= M

u"qy (1) 1/.~~(.(j*~) *2*Y 4) /Smu bm lMtUN*y (3) *y (b).
C~l4)Y1)Y1)r+~~ *-~C(16)*

LC~y () z3/(-Y (4)

k TiiO
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CLLL Cu,%vEt4T(e*Yo?9A6~i1 )

NO EQROQ~S
LOAi)i 56
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I ' i Ib.0,COO

I I41

iv i ,

:1 gi a. I

! Ub

31.O avt
*k 

I I

im 0 IVK

1 Ie CHUin A
I z ia : - - x j j

0 0 ;;N @.

10,'

W~ tza *o g IN

0 r I In rI nMw£iww 01 1- 1

NO 0..(0 a

z z '0a c

UCa ws en , zfvO

0 !M :A)W W W hi IV N1 III 4 2 hi
Ni m wa of "i so

tjD 0 o q Uhti-

Cj 0 CI oo 
N~

47 W- I I, 1 C

0 In_ ! ,IC 1V

Vr _r. 0 Ig AoWW

0C000 z .7X cc.hi iL or 4i
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MAGNUS ROTOR DATA

_ Z

, a a

C , ,
00

I I -

z
0

II_ m

0 CV0

I a

I C9
0

C1 I-010 0
z

X

0 tLU-C
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o i
I0

0 uj

z

N~ 0
0

z

00

CID _____
Vu
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Ix

0
0 4U

z

0 0
0 $z

0 0

VU,

0- 0
0

0 z

o ki
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RUN NO.: u

IDENTIFICATION: RECT. t 1,

MAGNUS ROTOR PARAMETEWS CONTROL PARAMETERS

SYMBOL .OMP.SY, VALUE JIMN. COMP.SY. VALUE DIM.

RHO 1.225 KG/M No. of Equations NDIM 10 -

S .0468 M2  Initial Time PRMT(l) 0 DNT

C/t RL .0025 M Final Time PRMT(2) Io DNT

BM 1.54, KG Upper Time Incr. PRMT(3) I "  DNT

THOI .o2( KG - 2  Upper Error Bd. PRMT(4) I,6-

SMOI .0C40 KG M2

INITIAL CONDITIONS ERROR WEIGHTSGSS -24. 7 DEG - i -I"
C(1) 1.31 M. CO.S VALUE D... SYM. VAL. DIM.Vc P(1) 16.b M/SEC C, .05 DNL/DNT,-, C(2) 2.51

-t4 
T. P(2) -77 DEG Alt.049 RADS C(3) .508

d"A C(4) .4508 (lit P(3) 850 RPM M3 .001 RAD/DNT
d c(4) -.45 (4) DEG 2 RAD

C(5) -3.82 .
H € P(5) 3 DEG 4 .2 RADe ,- C (6) 0 0() 0 (6) 0 DEG/SE &$ .05 RAD/DNT

C (7) -.357 0 4 P(7) 0 DEC 2

P(7) 0 DE .2 RAD
-A c(8) -5.82

l A3 C(1O) 0

0 4 P( O 0 D /S j .0 DiN T
C(ll)

C'XA A, C(12) 0 < lFJARs:

C(13) -.737 Aerodynamic data Irom NACA
- Z Langley Stabi).;ty Tutnel

A C(14) -13.80 Test KM S. 55 J 26
November 1 15',

L41 A2 C(15) ,

C(16) 0

,ntA ,(1.7) 0

AL (18 ,,



244

RUN NO.: 13

IDENTIFICATION: RECi. MR I

MAGNUS ROTOR PARAMETERS CONTROL PARAMETERS

SYMBOL COMP.SY. VALUE DIM. COMP.SY. VALUE DIM.

PilO KG/M3  No. of Equations NDI 10

S - 2  Initial Time PRMT(l) 0. DNT

c/ RL M Final Time PRMT(2) 5. DNT

BM e XG Upper "Time Incr. PRMIT(3) 10"I  DNT

I ThOl KG H2  Upper Error Bd. PrRT(4) 10 5  -

I, SMOi KG M2  ", ,,.-

fn INITIAL CONDITIONS ERROR WEIGHTS
GSS DEG ,

D C(1) SYM. CO.S VALUE DIM. SYM. VAL. DIM.

V. P(1) lOO H/SEC 6V .05 DNL/DNT
C (2w C(2) T., P(2) 0 DEG .049 RAD

MAwx P (3) 4000 RPM .001 RAD/D1T

C),: C(4)
,z ( P 0(4) -DEG .2 RA
CP) P(5) 3 DEG a4 .2 RAD

CP ()(6) 0 DEG/S( & .05 R/DNT

P (() 0 DEG .2 RAD

djA- C(8) . ,
(1.4 c(8) O DEG/SEaC A+. .05 RAD/DNT

W itt -C 9) (0) P(9) 0 H 65 .1 DNL

A,, Q c(10)

>-I~ P(10 0 M Ij . DNL
1cC(1I) H I_ - -

1IP
A 1 C(12) 4 REARKS:.

C(13) H

d"A C(14)

C(15)

.- t, 3 C (16)

tA (17)

A C(18)_ LI -
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RUN NO.,: 19

IDENTIFICATION: RECT. MR I

MAGNUS ROTOR PARAMETERS CONTROL PARAMETERS -

SYMBOL COMP.SY, VALUE DIM. COMP.SY.[ VALUE DIM.

RHO 1.164 KG/M3  No. of Equations NDIM 10 -

[ S .0468 M2  Initial Time PRVT(i) 0.238 DNT

C/L RL .0625 m Final Time PRMT(2) 6. DNT

ln BM 1.50 KG Upper Time incr. PRMT(3) 10- 2 DNT

I THOI .0268 KG M2  Upper Error Bd. PRMT(4) 10-5  j-

' SMOI .0040 KG M2  - _"_|

INITIAL CONDITIONS ERROR WEIGHTS

V, P(1) 8.5 M/SEC Un .05 DNL/NT

0Le c(2) T. P(2) -85 DEG Alt.049 RAD

d a C(3) (0 (3) 360 RPM .001 RAD/DNT

dI4 C(4) t
( /3 P(4) 0 DEG .2 RAD
() P(5) -25 DEG .4 .2 RAD

-LAS 9 (6)
S P(6) 0 DEG/SEC .05 RAD/DNT

+ c(8) P(7) DEG 6Xi .2 RAD

A C) P(8) 141 DEG/SEC A .05 RAD/DNT

x P(9) 2 K .1 DNL
C(10)CI

ce P(10 20 'K ~ 1 DNL

A 0(1) H -C(11-

e4- C(14)

L in C(15)

d" AS C(16)
.1

t4 (17) "_ 1o ______________

e(A



A1PENDIX C 246

RUN NO.: 21

IDENTIFICATION: RECT. MR I

L MAGNUS ROTOR PARAMETERS CON4TROL PARAMETERS -

SYMBOL COMP.SY, VALUE DIM. COMP.SY. VALUE DIM.

'RHO Ki3/K 3  No. of Equations NDIH 10

S Hn 2  Initial Time PRMT(l) 0 DNT

cI1Z RH Final Time PRMT(2) 5 DNT

V"BK KG Upper-Time Incr. PRA4T(3) 10-1 DNT

ITHOl KG K2  Upper Error Bd. PRM!T(4) 10-5 -

SHOI KG M2 1
INITIAL CON4DITION~S ERROR WEIGHTS

-S -E SYM. JCO.S, VALUE1 DIM. SYM. VL DIM.

C(1) P P(1) 100 K/SEC a~vf .05 DNL/DNT
YLC, P(2 T 1(2)' 180 DEG % .09 A

Lot, (3) 000 PM -j3x .001 RAD/DN

LA C (5) P3  (4) 0 DEG alp~ .2 D

P (5) 3 DEG .2 R.2
19 C (6) b

P~ (6) 0 DEG/SEC& .05 RAD/DNT

c(7P A~ (7) 0 DG.2 RA])

P() (8) 0 DEG/SE C4 .05 PRAD/DNT
A j C (9)

P 1(9) 0 M 0 1 DNL

P ~~~ 1(10 0.1 3 N
L A 14 c(1i) -- L-

1  A~ IC(12) RKRS

C 13)H

en A C(14)

C(i5)

d" C(16)

C(17)

%sA1 i(8
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RUN NO.: 23

IDENTXFICATION: RECT. MR 1

MAGNUS ROTOR PARAMETERS CONTROL PARAMETERS - ,

SYMBOL CORP.SY, VALUE DIM. COMP.SY. VALUE DIM.

RHO KG/M No. of Equations NDIK 10 -

S HZ Initial Time PRHT(I) 0 DNT
,-4

c/t IL M Final Time PRMT(2) 5 DNT

BM : KG Upper Time Incr. PRMT(3) 10- 2  DNT

I THOI KG M2  Upper Error Bd. PRMT(4) 10-5

SHOT, KG M2  --

INITIAL CONDITIONS ERROR WEIGHTS
1,$ GSS DEG , .T

-(SYM. CO.S VALUE DIM. SYM. VAL.1 DIM.
LD C(1)- --

Vx P(1) 100 M/SEC I3n .05 DNLIDNT

ma C (2) TL P(2) 0 DEG hyt.049 BAD

c(3)
P"(1(3) 4000 RPM &i3 .001 RAD/DN

C~~H~A c(4) 0
P 1(4) 0 DEG AP .2 RADdp C(5) 1<

H P(5) 3 DEG .2 RAD

C(6) T 16

P(6) 0 DEG/SEC -.05 RAD/DNTCL$, C(7)
7 0 P(7) 0 DEG £4 .2 RAD

F) H P(8) 0 DEG/SEC .05 RAD/DNT

4 )0 H Aj .1 DNL
' ZIA= C(1O) H - ?- -

C(10) wC I(9 0 .1 DNL

uL~iol 0 M Nt C(12 .4> ~ w
d "/ 1 _ C (13 ) .

d.D  C(16),-

C(18)
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RUN NO.: 24

IDENTIFICATION: REC1. MR 1

MAGNUS ROTOR PARAMETERS CONTROL PARAMETERS -

SYMBOL COtP.SY VALUE DIM*. __ COP.SY. VALUE DIM.

RHO KG/H 3  No. of Equations NDIM 10 -

S H2  Initial Time PRMT (l) 0 DNT
-4

C/Z RL M Final Time PRMT(2) 5 DNT

BM KG Upper Time Incr. PRMT(3) 102 DNT

THOI KG M2  Upper Error Bd. PRmT(4) 10-5 -

SKOI W, KG M2

INITIAL CONDITIONS ERROR WEIGHTS

GSS DEG -- - -

Sym. 00.S, VALUE DIM. SyM. VAL DIM.

0(1) Vi P(1) 0.1 H/SEC 4 .05 DNL/DNT

PTI P(2) - 90 DEG .049 RAD

te w(3) t P(3) 200 RPM &j .001 RAD/DN

C(4) WW.T
t z P(4) 5 DEG .2

S C(5) H 4, P(5) 0 DEG 4 .2 RAD

(I0 ( P(6) 0 DEG/SEC &4 .05 RAD/DNT

P(7 4 (7) 0 DEG .2 RAt)

I H, P(8) 0 DIG/SEC A 05 RA/DNTj

/ (9) z ( P(9) 0 1 .1 DN,
C(10)-

>, ?~P(10 () H 1 DNL

1--- Al (121 REMARUC8:

C(13) H

dmA C(14)

d 1 1  0G(16)

A C(18)

x
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RUN NO.: 25

IDENTIFICATION: RECT. MR I

MAGNUS ROTOR PARAMETERS CONTROL PARAMETERS

SYMBOL COMP.SY VALUE DIM. COMP.SY. VALUE DIM

RHO KG/M3  No. of Equations NDIM 10 -

S H2  Initial Time PRMT(1) 0 DNT
,-4

C/Z RL M Final Time P.RMT (2) 5 DNT

V" BM KG Upper Time Incr. PRMT(3) DNT

THO1 KG M2  Upper Error Bd. PRMT(4) 10- 5

I SMO l " KG M2 ' " .. . . .

INITIAL CONDITIONS ERROR WEIGRTS
GSS DEG - 7--....

- SYM. CO.S VALUE DIM. SYM. VAL. DIM.
(1)" Vp1  P(1) 0.1 M/SEC Y, .05 DNL/DNT

C (2) P (2) -90 DEG Ain .049 RAD., C c(3)
0)4 P(3) 200 .P Aj3 .001 RAD/DNT

('" C c(4)
z (/ P(4) 5 PEG .2 RAD

C (5)
' r P(5) 0 DEG j4 .2 RAD

dleJ C(6) t o
Pj' P(6) 0 DEG/SEC &$ .05 RAD/DNT

LC)44 P(7) 0 DEG X .2 A
eLA C(8)

, Aft P(8) 0 DEG/SEC A .05 RAD/DNT

W1 P (9) 0 M 6A .1 DNL
el A C0(10)

> P P(10 0 M &j .1 DNL

A~ Al (12) -REIARXS:

C(13) H

enA C(14
XH

d, AS C(16)
C(7
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RUN NO.: w

IDENTIFICATION: CYL. 'Ii, ,A

MAGNUS ROTOR PARAMETERS CONTROL PARAMETERS

SYMBOL COI OP.SY VALUE DIM. E_ COMP.SY. VALUE DIM.

R1O 1.131) KG/ 3  No. of Equations NDIM 10 -

S .4~b4 M2  Initial Time PRMT(l) 0 DNT

c/L RL .0762 M Final Time PRMT(2) 2 DNT

cit BM 2.01 KG Upper Time incr. PR4T (3) 10-2 DNT

TMOI .0267 KG M2  Upper Error Bd. PRMT(4) 10- 5

SMOI .'L22 KG M2

INITIAL CONDITIONS ERROR WEIGHTS
O'.GSS -57 PG - ....- .- -. -

S- 0- 0.VALUE DIM. SYM. VAL DIM.dD  C (1) 1.2 " Sim , O s VALU.. .

D (1) L2 x W P (1) 24 M/SEC M . 05 DNL/DNTI

T(, 'P(2) -57 DEG .049 RAD

C0(3) .22
tMa C)ft P(3) 1290 RPM x .001 RAD/DNT

0(4) P6 E/E &(OL .005 RAD/DNT

(7) P(4) 0 DEG .2 RAD
0 (5) -1.0 ) .

P(5) 12. DEG a .2 RA)

0(6 c~) -l -51

p(6) -768 DEG/SEC A .05 RAD/DNT

C4 0) - P(9) 0 D 12 DNL

A (9 0 C(1D) . Rn
C(4 0 j P(1O 0 x j 1 DNIL

c(12)> Aerodynamic data frow ARO, Inc.,~ Wind

C(13) .47#-t Tnnel Test PC 0027, May 1970
6A A C(14) - !

- i! from Flight Test, June 1970

C(15) ,

dn 1A

A (7
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IDENTIFICATION: CYL. MR 11

MAGNUS ROTOR PARAMETERS CONTROL PARAMETERS

SYMBOL COP.SY, VALUE DIM. COMP.SY. VALUE DIM.
-3 -

RHO 1.139 KG/M3  No. of Equations NDIM 10 -

S .0464 M2 Initial Time PRMT(1) 0 DNT

C/t RL .0762 M Final Time PRMT(2) 2 DNT

BM 2.580 KG Upper Time Incr. PRMT(3) 10-2 DNT

TwbOI .0170 KG M2 Upper Error Bd. PRMT(4) 10- 5

Ij SMOI .0133 KG H2 
-M2_

INITIAL CONDITIONS ERROR WEIGHTSO- $ S S -5 7 D E G - - '__ _ _ _

SYM. CO.S, VALUE DIM. SYM. VAL. DIM.

VC) P(l) 26 M/SEC &V .05 DNL/DNT

ci c(2) Tm P(2) -s7 DEG A,, .049 RAD

C (3)

C(4) P(3) 12Q0 RPM .001 RAD/DNT

( P(4) 0 DEG .2 RAD
C(5)

P "(5) 12.5 DEC & .2 RAD
4' P(6) 0 DEG/SEC 6 .05 RAD/DNT

C(7) PA P(7) 0 DEG A/4 .2 RAD

dt C c(8) o z•
C P8 F(8) -768 DEG/SEC A4 . 05 RAD/DNT

C(9) z x P(9) 0 M 6 .j DNL

AS C(10) r
> P(O 0 'Mf.l DNL

4 
A VCf11)~.

W A F~AA -
_________A..

A Al4 C(12)

c(i3) 13

Pt C(1.4) .

c6 2 C(15)I

dth s C(16)
d.Aj ;(17)

A (8
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RUN NO.! 32

IDENTIFICATION: RECT. MR 3

MAGNUS ROTOR PARAMETERS CONTROL PARAMETERS -

SYMBOL COMP.SY VALUE DIM. COMP.SY. VALUE DIM.

RHO 1.127 KG/M No. of Equations NDIM 10 -

S .)468 M2 Initial Time PRMT(l) 0 DNT

C/L RL .0625 M Final TLme PRMT(2) .b DNT

rn BM 1.367 KG Upper Time Incr. PRMT(3) 10": DNT

I THOI .0238 KG M2 Upper Error Bd. PRMT(4) 1 10- 5

SMOI .0028 KG M2

INITIAL CONDITIONS ERROR WEIGHTS's$ GSS -27.7 DIG - i -,

GSS -.27) . - SYM. co.s VALUE DIn. SYM. VAL. DIM.
C (1) 1.42 Vit P() 7 H/SEC &'-Y, .05 DNL/DNT

C(2) 2.39 Tot P(2) -50 DEG fif..049 RAD
. C(3) .5o8

C (3) -.50 P(3) 300 RP, .001 RAD/DNT
4 M C(4) -. 45 P P(4) 3 DEG a .2 Rc p C(5) -2.51

( 2 P(5) 0 DEG 4 .2 RAD

jp$ C (6) o
CP(6) 0 D EG/SEC t4 .05 RAD/DNT

CL4,, C(7) -1.23 c 4 P(7) 0 DEG .2 RAD

I fA C(8), -4.24 z
H 44 P(8) 0 DEG/SEC a4 .05 RAD/DNT

Alss C(9) 345

x P (9) 0 M 65 .1 DNL
1 A C(1O) 0

d A P0(0 0 0 H .1 DNL
w (1) i-4 - - -

dLtA Al _C(12) 0) REMARKIS:

0(13) 1.30 H Aerodynamic data from NACA Langley
W Stability Tunnel Test RM, SL 55J26.

A  C(14) -10 November 1955

L C(15) -212

C(16) I

C(17) 0

C(18)
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kRUN NO.: 34

IDENTIFICATION: CYL. MR 1

MAGNUS ROTOR PARAMETERS CONTROL PARAMETERS

SYMBOL COMP.SY VALUE DIM. COMP.SY. VALUE DIM.

RHO 1.127 KG/K3  No. of Equations NDIM 10

S .0464 M2  Initial Time PRMT(1) 0 DNT

C/Z RL .0762 M Final Time PRMT(2) 7 DNT

SBM 3. 148 Kr, Upper Time Incr. PRMT (3) 10-2  DNT

TOI .0598 KG M 2  Upper Error Bd. -

Is SMOi .0248 KG H2  -
INITIAL CONDITIONS 

ERROR WEIGHTS4"$, GSS -42.3 DEG -

- SYM. CO.S. VALUE DIM. SYM. VAL. DIM.
C(l) 1.3 - P - -3.-

S:/SEC & .05 DNL/DNTC(2) 2.64 T, P (2) -32 DEG .049 RAD

C(ft P(3) 470 RPM I .001IRAD/DNT
C (4) -.40 tC -. ( P(4) 0 DEG .2 RAD

C(5) -4.9 .4
H P (5) 0 DEC, A .2 PAD

C(6) 0 n
, 44 P(6) 0 DEG/SE t4 .05 RA/DN

C(7) -2.0 aP(7 0 DE2 AD

e(8) zi/  .q P(7) 0 DEG
0 H P(8) 0 DEG/SE C .05 RAD/DNT

)I P(9) 0 6 5 .1 DNLA #3 C(10) 0 4
> P(10 0 H bj .1 DNL

C(1l) 0 - -..-.

Q A C(12) 0 REMAKS:

C(13) -2.0 Aerodynamic data from ARO, Inc.
"PWind Tunnel Test PC 0037. May 197(0d(A(C(4) -201 /

( 01/ from Flight Test, June 1970
-c(15) 0

d nt% (16) 0oP

j~ c (18) 0

(aft
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RUN NO,: ,

IDENTIFICATION: TRhANG. MR I

MAGNUS ROTOR PARAMETERS CONTROL PRAMETERS
SYMBOL COMP.SY VALUE DIM. COMP.SY, VALUE DIM.

RHO 1.127 KG/M3  No. of Equations NDIM 10

S .0810 M2  Initial Time PRMT() 0 rDNT

c/ RL .0880 M Final Time PRHMT(2) 5 DNT

BM 2.395 KG Upper -Time Incr. PRHT(3) 10-2 DNT

THOI .541 KG M2  Upper Error Bd. PRHT(4) 10-5

Is  SMOI .0123 10 H2  " -----
INITIAL CONDITIONS ERROR WEIGHTS

sGSS -33.7 DEG . . . ..-. .

- D .... . " 1.-3SYM. CO.S, VALUE D12. SYH. VAL. DIM.

C(1) 1.03 V P(1) 19 M/SZC &Y .05 DNL/DNT
CL C(2) 2.01 1 1(2t F (2) -40 DEG .049 RAD

C(3) .247 P(3) 200 RPM .001 RAD/DN

.. C (4) -. 325 (AGJ

Lt-() .2z P(4) 0 DEG .2 RAD

t./t A  C(5) -3.85 .4

CHS -38P (5)1 3 DEG tI'.2 RAD

C(6 0P (6) 0 D G/S IC .05 RAD/DNT

C(9) 3 4 1(7) 0 DEG .2 AD
C (a) 4 a ) 0

+ P 8 E/E .05 P.AD/DNT

di- 0() C (0) 0

C(1.) 0 P 1(9)0 () 65 DNL

, I - -C(--) -

C(17) 1I

Af C(12) RX__ __W

c"3 C(13) -2.0 H Aerodyna.tic data from Aerojet General
04 Corp., IR & D Report 8706-23(0l)FP

le" A C(1.4) -13.1 April 1.965

C(15) '

0n (17) 0

AL~ C(18)
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RUN NO.: 3t,

IDENTIFICATION: rECT. IR 2

MAGNUS ROTOR PARAMETERS CONTROL PARAMETERS -

SYMBOL COMP.SY, VALUE DIM. COM SY. VALUE DIM.

RO 1.140 KG/H 3  No. of Equations NDIM 10 -

S .0468 M2  Initial Time PRMT(1) O D

C/t RL .0625 X Final Time PRM'(2) DNT

BM 1.607 KG Upper Time Incr. PRMT(3) 10 - 2 DNT

I °I .u336 KG U2 Upper Error Bd. PRNT'4) 10 -  -

"- " ' "---' " ----- %'SMOI . o028 KG M2  -

INITIAL CONDITIONS ERROR WEIGHTS
GSS -27.7 DEG - -

-- - SYM. CO.S, VALUE DWI.. 'SYR,. VAL. DIM.
d o  C() - -1.-.

Vit P(1) ]n.9 M/SEC &t, .05 DNL/DNT

CP(2) V P(2) -27.7 DEG .049 RAD

a C(3)
14i P(3) 2WO0 RPM WP3 .001 RADI'DNT

C (4)
- .(4) 0 DEG 1*2 RAD

C (5)

P (5) 1.5 DEG A .2 FAD

P (6) 0 DEGISE( ( .05 RADIDN"

C(13) b-C(>7)

I A3 C(10 ) :D 0,
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RUN NO.: 3i

IDENTIFICATION: IECT. R 4

MAGNUS ROTOR PARAMETERS CONTROL PARAMETERS -

SYMBOL COMP.SY, VALUE DIM. _OHP.SY. VALT DIM.

RHO KG/H 3  No. of Equation* NDIM 10

S cl M2  Initial Time PRHT(l) 0 DNT

c/L RL m Final Time rmT(2) I DNT

BH KG Upper Time Incr. rRkIT(3) 10 2  DNT

THOI KG M2  Upper Error Bd. PRHT(4) 10- -

SMOI KGH 2  --M -

INITIAL CONDITIONS ERROR WEIGIITS
055 DEG -i

SYM. O.S VALUE DIN. SYM. VAL. DIM.
LAD c(1) - - .

V, 7(1) 12.9 M /SEC 6Yft .05 ONL/DNT

T.() *1 F 7(2), -27.7 IDEG Alm .049 R.D

no t 7 (3) 2227 RPH A- .001 RaD/DNI
" H44 c (4) V

z P (4) 0 DEG .2 RAD
,.c., C(5) ,

H IS P(5) 1.5 DEG , .2 BAD
,.$ ,, C (65) o •C)4 7(6) 0 DEG/SE( 64 .05 RAD/DN'I

C(7) (7) 0 DEG At .2 RAD

( 4n P(8) -27.8 DEG/SEC .05 RAD/DNT

IV P (9) 0 M 65 . DNL

A3 C (10) 
1

AC C(11)

C(12)REKARKS:

c(13)

A d C(14)

Lme C(15)

k ,Aj (16)

-Q __17__ __



[

APPENDIX C 257

RUN NO: 38

IDENTIFICATION: CYL. MR 11

MAGNUiS ROOFARAMETERS ______________ PARAMETERS

[ ~SYMBOL COKP.SY, VALUE DIM. ________________ CHDIM.
K o. o quaons

S M2  jInitial Time 2RMT(l) .53 DHT

CiA RL K Final Time PRMT(2) 7 DNT

BM z KG Upper-Time Incr. PRMT(3) 10- DNT

THKG H2  Upper Error Bd. PRMT (4) 1O105
-k~~ 7.-- ~ -~M0IKG H2-I-INITIAL CONDITIONS ERROR WEIGHTS

OSS DIG- - - - -

_______ - - SY .COS, VALUE] DIM. SYH. VAL. DIM.

C()V 11(l) 1.8 H/SEC &'J .05 DNLIDNT

Y,, P(2)1 -51 DEG On .049 RD

(lt P(3) 230 PM .001 RAD/DNT

SLA ( z P(4) 0 DEG _2 .2 D
SP 2  It (5) 0 DEG [ .2 RAD

e AS C(6)I- P(6) 0 DEG/S 6c(t .05 RAD/DNT
C (7) P ) DEG .2 ,

cO(8) .n) 4 (8) 0 ] EG/SE R 44 .05 RAD/DNT

ca ) P (9) 0 D gM .1 DNL
CA t C(L0) %o

I5? ( P(10 0 D 6 .1 DNL
e i c(11) _ _ -

C 1(3) H

en A C(14)

C~b a 0(15)

C(16)

S, ,:C(17)

A f c(18)
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RUN NO.: 3J

IDENTIFICATION: 'TPiANG. MR I

MAGNUS ROTOR PAL*ETERI CONTROL PARAMETERS

SYMBOL COMP.SY, VALUE DIM COWPSY. VALUE DIM.

3
RHO 1.225 Ks/H No. of Equatiors NDIM 10 -

S .0810 H2  Initial Time PRMT(1) 0 DNT

cit EL .0880 M Final Time PRMT(2) 7 DNT

rn BM 2.395 KG Upper-Time Incr. PRHT(3) I0- 2 DNT

I THOI .0541 KG M2  Upper Error Bd. PRMT(4) 10- 5  -

Is fSMO4 .0123 KG MH'i - -INITIAL CONDITIONS ERROR WEIGHTS

GSS - 33.7 DEG -1 - .YM. - ---
T - ( . CO.S VALUE DIM. SYM L DIM.

4D  C(P) P(1) 100 M/SEC 64 .05 DNL/DNT

T.2 P (2) 0 DEc2) .049 R

"a tol, P(3) 200 RPJ 46 01 RAD/DNT

eM'j' C(4) ,z P(4- 0 DEG .2 RAD

d~p C(5) ,4
P(5) 3 DEG .2 RAD

) (6) 0 DEG/5E( .05 RAD/DNT

C(7) (7) 0 DEG .2 PAD

dfA C (8) z" -) P (8) 0 DEG/SE .05 RAD/DNT

dA C (9)
0(9) v P (9) 0 K .1 DNL

C(10) -1 1
C' A 0(11) H -~

CA Al C(12) REMARKCS:

dn r (13) H

RA ) -(17)

k Ai C(18)
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RUN NO.: 40

IDENTIFICATION: CYL. MR I

MAGNUS ROTOR PARAMETRS CONTROL PARAMETERS

SYMBOL COMP.SY VALM DIM. _ _COP.SY, VALUE DIM.

3'IUHO 1.225 KG/M No. of Equations KDIM 10 -

3 .0464 1A2 Initial Time PRMT (1) 0 DNT

c/L ,L .0762 K Final Time PRKr(2) 7 DNT

BM 3.148 KG Upper-Time Incr. PPMT(3) 10-2 DNT

I THOI .0598 KG M' Upper Error Bd. PLMT(4) 10 -

SMOI .0248 Kl k2 -

INITIAL CONDITIONS ERROR WEIGHTS
", GSS -42.3 DEC

- SYM. CO.S, VALUE DIM. SYI. VAL. DIM.

4 ~ )Vx P (1) 1 H/SEC 5,~ .05 DNL/DNT

TLA P(2 1 (2) 0 DEG .049 RAD
C(3)

O P(3) 4000 RPM & .001 RAD/DN
L4 CA 0(4) L4) .2

C5 P P(4) 3 DEG . Acip C (5)
H * P( 5) 0 DEG ft~ .2 RAD

r (6 ) 0 DEG/SE( f .05 RAD/DNT

CP7 (7 DEG tL.2 RAD
d C(8) P() f

H r(8) 0 DEG/SE 1A .05 RAD/DNT

m c(9) H * P(9) 0 D A' .1 DNL

I& c(o) H I
WC A r (w)FH
• f C(12) M__,RKS

C. C(13)

A C(14)

C(15)

A C(16),..

Q(17)

A C(18),A



RUN NO.: 4)

IDENTIFICATION: CYL-. MR 3

MAGN S ROTOR PARAMETERS _ ___ CONTROL _AEE_ S

S 0NBOL CO1P.SY, VALUE DIM. C0P.SY. VALUE DIM.

RHO 1.127 KG/11 No. of Equations NDIM 10 -

S .0464 M2  Initial Time PRMT(I) DNT

c/t -L .0762 M Final Time PRM(2) DNT

v BM 3.242 KG Upper Time Incr. PRMT(3) DNT

I- THOI .0617 KG M2 Upper Error Bd. PRMT(4) J

SMOI .0247 rG m2 ..

INITIAL CONDITIONS ERROR WEIGHTS
'$GSS -42.3 D IG - - -- - - , -

GS -42.3 DEG SM. CO.S. VALUE' DIM. SY. , VAL, DIM.
(1) Vi I(1) H/Sc CV, .05 DNL/DNT

C (3) T,, P (2) DEG An.049 RD~d.. c(3)
Lof P(3) RPM h ] .001 RAD/DNT

CMA 0(4)
"I P~ (4) DEG .2 A

Idl ~C 3)
H 4 P(5) DEG 4 .2 RAD

dips C0(6) 9
-4 P (6) DEG/SE C4, .05 ,AD/DNT

A C(7) Ad
di C(8) + P (7) DEG 1.2 RAD

() i P(8) DG/SE A+ .05 RAD/DNT

1) z P( (9) ... DNLdLA3 C(10) ~Pt j I N

A (11) L. - - -

., ,, 'r__ __

C (13) H CYL. MR 3 was flight tested only. It is

similar to CYL. MR I with small changes
enA C(14) in mass distribution.

C (15)

A3 C(16)

d.,j IL (18)
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S J, ADlSTRqAC

'A Magnus rotor is an autorotating flight vehicle, designed to develop
a Magnus force efficiently and to employ it as the major lift force in
free flight. In this report the equations of motion of Magnus rotors are
derived and their performance and stability analyzed and correlated with
free flight tests. Tensor concepts are used extensively in formulating the
flight dynamical problem. In particular., the ordinary time derivative is
replaced by the Rotational Derivative, thus permitting an invariant formu-
lation of the equations of motion, even under time-dependent coordinate
transformations. Tho perturbation equations are non1intar nonqtLonomots
ordinary differential equations of fifth-order with three degrees-of-
freedom: rolling, yawing, and sideslipping. Their stability is analyzed.
A reduction to one degree-of-freedom is achieved by combining the roll and
yaw angles to form the nutation angle and by employing the method of aver-
aging. The stability of the resulting first-order equation is discussed.
Necessary and sufficient conditions for limit cycles are derived, and it
is shown how limit cycles can be avoided by proper design of the Magnus
rotor. Thirty models were flight tested. Their trajectories and attitude

motions are correlated with computer simulations whose aerodynamic input
data are solely based on wind tunnel tests. The agreement is sati~factory.
Two different Magnus shapes were tested for limit cycles. The test
results agree well with predictions.
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