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ABSTRACT: This peper is concerned with a method of finite differences for
determining two-dimensional and axisymmetric supersonic 1aozz'z contours. The
approach taken is to specify a Mach number or velocity array along the entire
centerline of the nozzle and then to integrate the equations numerically to
obtain the desired nozzle shape. In spite of the fact that the original problem
is not "well posed" ‘n the subsonic region, reasonable results were found

provided the Mach number gradient was not too steep in a neighborhocd of the sonic
line.
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CHAPTER 1

INTRODUCTION

The study of two dinensional and axisymmetric converging-diverging nozzles
has received a great deal of attention by both engineers and mathematicians. Itg
uses in wind tunnels and rockets make it of practical importance whereas its mixed
mathematical nature give it theoretical interest.

A converging-diverging nozzle (see Figure 1) consists of a converging section
where the flow is subsonic and the mathematical equations are elliptic, a diverging
section where the flow is supcrsonic end the equations are hyperbolic, and an
intermediate transonic section, called the nozzle throat, where the flow passes
from subsonic to supersonic and both elliptic and hyperbolic behavior are present.
In wind tunnel applications there is a fourth section, the test section, where the
flow 1s uniform,

There are basically two approaches taken when investigating nozzles - direct
and indirect. In the direct method a nozzle contour i: prescribed and one seeks
to determine the flow field inside. In the indirect method the flow along the
axis of symmetr&, called the centerline, is prescribed and the nozzle giving rise
to this flow is sought. In the design of nozzles the natural method to use is
the indirect method and thus will be what we shall consider here. For information
on direct methods the reader is referred to [ 3] and [9].

The two primary indirect methods in use are the series methods and the method
of characteristics. In the series methods, originated by Friedrichs {4 ],

(see also [ 5]), one assunes that the variables of interest can be expanded in
series involving the stream variables. These are then substituted into the equa-
tions to determine the values of the coefficients in the expansions. The series
are then truncated and the remaining finite number of terms i1s used to compute
approximations to the solutions. The method of characteristies ([10], [11])

1
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utilizes a change of variables to characteristic coordinates. This transformation
makes the two independent variables in the original equation additional dependent
variables. One is thus led to a system of four partial differential equations in
four unknowns. The simplification occurs in that each of the four new equations
contains differentiations with respect to only one of the new independent variables.
This enables one to determine the characteristics and the flow in the nozzle.

This method, of course, is restricted to the supersonic region where the equations
are hyperbolic and the characteristics are real.

The great difficulty in the series methods is the lack of mathematical
justification. Little, if any, has been accomplished in analyzing the size of the
terms which are dropped. The method of characteristics on the other hand can be
used only in the supersonic region. To get around this difficulty different
methods ¢ used in each of the different sections and the solutions obtained
are then "patched" together with a "French curve." Thus, for example, one might
use the methcd of characteristics in the superson}c region and patch the solution
so obtained to the solution obtained in the subso;lc and transonic regions by
the series methud or by a quasi-one-dimensional flow approximation. However, in
many applications such as very high Mach number wind tunnels where heat transfer
in the throat of the tunnel is sizable and in short nozzles where the two
dimensional effects cannct be ignored, the method of patching leaves much to be
desired. It is thus desirable to investigate further methods for the determination
of nozzle contours for prescribed centerline conditions.

In this paper we consider an indirect method which is usable from the
subsonic region to the supersonic test section of constant state. The procedure
is to presciibe a Mach number or velocity distribution along the axié of symmetry
and then to integrate the governing equations of motion using finite differences.

We do not claim to present here a mathematically rigorous technique but rather

i
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offer another method of calculation which has advantages and disadvantages when
compared with other methods. In fact it will be shown in the next chapter when
we derive the equations of motion that this procedure is unstabie in the
subsonic region (as one wouid expect). We shall say more about this in Chapter IV
where we discuss our results and conclusions. The primary advantage of this type N

of method is that it provides a uniform scheme from the subsonic region to the

test section, thus eliminating the need for multiple patching. The disadvantages

will be digcussed in Chapter IV.
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CHAPTER 11

DEVELOPMENT AND STABILITY OF THE DIFFERENTIAL EQUATIONS
We suppose in the following that we are dealing with a steady, irrotatiomal,
perfect gas with constant specific heats. We consider both two-dimensional and

axisymmetric flows. For such flows the equation of continuity takes the form

EY
(2.1) v-[Ma). L [ngu) % ngvj +kpv]_ 0
pO Do X y y
where k = 0 for two~dimensional flow and k = 1 for axisymmetric flow. The equation

of state is

An explanation of the notation can be found on page 18, and a derivation of the
above equations from the basic equations of fluid dynamics can be found in any
standard bock on gasdynamics (see e.g., [12]).

Equation (2.1) implie. the existence of a stream function y such that

oo kW, Lk
(2.4) By b uy, o b vy

E
3

s

S 2 bk e




NOLTR 70-131

and the assumption of irrotationality implies the existence of a velocity potential

¢ such that

<>

q=Y
or

-al -a
2.5) weazt 53;

Substituting (2.5) into (2.4) we obtain the equations

]
(2.6) _‘P..BE. ykéi 3!’.._;2.},1‘%9.
0 0 y

Finally, from (2.2) and (2.3) it follows that

1
p a——
@n 2=a +3%1-u2)*‘1

We next introduce a set of dimensionless variables according to the following

definitions:

(2.8) X'-E.Y"{'.d“"ft.w"—lm.p‘-sg-
o aoL o

wieve L is some standard length. The previous equations then become (with the

primes dropped for convenience)
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LN ]
X oY By
(2.9) -_1-
o=+ L2uhy 7

Interchanging the role of dependent and independent variables (which is

permissible since the Jacobian of the transformation,
(2.10) J(%‘i) - pyk(u2 it VZ).
'y
is nonzero off the axis) and introducing new variables £ and n defined by

g _ &
@10 4= [ 3@, v gredn

(2.9) becomes

* % k * % k
Y.pgq (ny 3 3= __pg (n 3y
an pT 'y’ 3 ' on pT Ty 93
(2.12) 2 1
p = (1 _f_]:_ﬂ_(s)_)Y'l
P

where T denotes the velocity magnitude along the axis of symmetsy and p* and q*
are the sonic density and velocity magnitude which are fixed for given stagnation
conditions.

It is the system (2.12) which we integrate to find the nozzle contour. We

view the problem as an initial value problem with information imposed for
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n = 0, the nozzle centerline, and wish to determine the solutisn for positive
n. We require along n = 0 that y = 0 and x = &, w? furthermore prescribe a
Mach number distribution or equivalently a velocity 3istribution along this line.
This information determines x, y, and p and the derivatives of x and y on the
centerline using (2.12). This is straightforward except perhaps the determination .

of %% in the axisymmetric case, k = 1, where we must remove the indetermirancy of

% along the centerline. This is done by replacing ﬁ-by %* to obtain the )
relationship :
*x 1/2
L Jal: S
n T

As the lines n = constant correspond to streamlines, any positive n serves
as a nozzle boundary. The particular n chosen to terminate the integration 1s
dete'mined by various design or convenience considerations. The numerical
prucedure used to perform this integration is discussed in the next section.

We conclude this section with an analysis of stability as suggested by
Von Neumann and Richtmyer [13]. We suppose that a perturbation 6x, 8y, &p
is introduced and attempt to see the effect of this perturbation at points away
from the centerline. We thus raplace x by x + 6x, y by y + 6y, and p by p + &p
in (2.12) and examine the effects of such a perturbation.

The equations of first variation are

® %
k k3
oyk—a% (8y) + koy 6y + y'y bp - L%— n3E (6x) = 0

* %
k 9 k pq k 9 -
(2.13) ey 3;-(6x) + X,y Sp + kxnpéy + T n 3 (6y) = 0

| Y=1_148_ Y=1_4y 3 Do 2(x® + v¥)sp =
ZxE(o '1)35(6") + 2yE(p 1) 3 (8y) + (y=1)p (xE + YE)GD 0
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Equations (2.13) are systems of differential equaticns for unknowns dx, Sy,
and §¢c. The coefficients in the differential equatlons depend upon x, y, and
P and are considered to be smoothly varying with £ and n. As numerical errors
behave 1like rapidly varying perturbations we view the coefficients in (2.13) as
being constant in a small region and seek solutions of the form
18 + an

18E + an 1B8E + an

(2.14) éx = §xy € y Sy = Gyo e y Sp = 690 e
where 6x., 6yo, Pos s and 8 are constants and p is real and large. Putting

{(2.19 into (2.13) results in

R

k k _pg ¥ i}
(py o + koyn) 899 + ¥ 7,800 T " 1808y, 0

& *
g Lk k k 5
(2.15) (kpxn + T " 18) 8y, + Xy Spp+ 0y abxy =0

27, (0"71-1) 88y, + (r-1) oY 2} + y) 8oy + 2x, (21T 186, = 0

We are thus led to two systems of linear homogeneous equations in Gxo, Gyo,
and Gpo. Assuming the perturbations are nontrivial we must have that the coeffi-
cient determinants are zero. Evaluating these determinants and setting them equal

to zero we are led to

- %D G2 + 3D +al2e G DBy, + X k)Y

)

(2.16) - kyny (Y-l)pY(x + yE)] +g28 ;L Rk [p L K (y-1)0"" 2(x§ " yz

- Zyk(pY-l-l) (xnyg = xgyn)] = 1knkep—q‘ M l(Y 1)(x + y,)x =
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Using (2,.12) and the fact that B is being assuned large the above reduces to

2 ® k2
o oY1) v = 28R 1P -1 07 4 2V

or .
* k2 2k
2 _ 04 2 me :
[ 1) of = @& 85 a0

Equations (2.17) indicate what we would expect. In the supersonic (hyperbolic)
region, M > 1, so a is purely {maginary and smell perturbations will remain small.
On the other hand in the subsonic (elliptic) region, M < 1, 80 a can be positive

indicating that a small perturbation once introduced would grow as n increases.

10
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CHAPTER III

THE NUMERICAI WORK

We are interested here in developing a numerical scheme which could be used
to determine udzzle contours in a uniform manner throughout the nozzle. Our
procedure will be to introduce a finite difference method to solve the equations
(2.12) a= an initial value problem with some Mach number or velocity array
prescribed along the centerline.

There are many ways in which one could introduce finite differences to
approximate the differential equations we are considering. The one used here has
been chosen for its numerical simplicity. We form a rectangular network of points
(Ei, nm) with spacings Af, An and introduce the notation yj,m - y(EJ, nmL ete. The

difference equations can then be written

y +y
Vymh1” 2 o ( 20y ,,,) 41,m %-1,m
Y441

an P3,m74 mivy-1, 288
x +x k
xj,m-l-l - tl,m2 i-1,m p*q: an ) yj+1,m'yj-1,m
(.1 An ® = Py,mdy \V441,0t73-1,m 288

1
T =
. i K

Pym 1- 'Lz" 4i,m ¥4-1,m2 , J4+1,m V4-1,m,2
( )T+ ¢ )

2AE 2A8

To solve (2.12) using (3.1) we proceed as follows. We first set xj’0 = Ej
and yj,O = 0, The array Zh is either directly prescribed or obtained from a given
Mach number distribution using the nondimensional form of equation (2.3). With
this information pj’0 can be determined and from this xj’1 and yj,l' Using

these new arrays for x and y, o 1 is computed and the procedure continues
?

3

i1
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inductively. Thus, when all the information for subscript m and less is known
the x and y arrays for m + 1 can be computed. In the program actually written
here, only every other point was calculated at each step. Thus, for example
(see Figure 2) the point 10 is calculated from 1, 2, and 3, then the points 12
and 14 would also be calculated but not the points 11, 13, and 15. Similarly, .
going to the next step, the points 10; 11, and 12 would be used in calculating
19. The point 21 would also be computed, but not the point 20. Note that with
i each step in the n direction 1 point is lost from each side of the { array.
More will be said about this in Section IV,
; The only deviation from this procedure occurs on the initial step of the
E process for the axisymmetric flow case. Here it is necessary to introduce the

approximation

¥ a9
n%an

to circumvent the difficulty arising from the indeterminancy of g'along n=20,

Using this approximation, we obtain for the first step

2y » *)1/2
(3.2) = (BE%F-

(since =, 1 along n = 0) or in the finite difference form .

13

® % 1/2
(3.3) vy -(p-;l-;qu) An

12
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The iterative procedure outlined above is terminated when a desired stream-
line, Ng» is reached. In the work described here this ny was chosen from
considerations allowing comparison with the results of others. As an example
of how one might determine Ngs we consider the following case. It was desired

to compute nozzles with nondimensional test section height equal to 1. From (2.4) .

we have

Y
[}

Y, =Py u

where pu is constant in the test section. Thus, integrating from the centerline,

e L g S

y = 0, to the contour in the test seciton, y = 1, one finds

u
Ya = bl

or from (2.11)

k+l
arld _ou
1 K+l

Thus, it follows that

1
“ 1
(3.4) nd -(—g._*_)
b q

This quantity can be deteimined using e.g., [ 1] once the test section Mach

number i3 specified.

14
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CHAPTER IV

RESULTS AND CONCLUSIONS

The procedure outlined in the previous section was programmed and rum on an
IBM 7090. The program consisted of a main program which called upon a subprogram
to generate the centerline velocity array and then carried out the integration of
the equations.

For the two-dimensional equations the cases run were chosen so as to allow a
comparison with the report of Baron [ 2]. In the examples considered there was
agreement in the contour ccordinates to between three and four significant figures.
These results seemed most encouraging especially when we consider the crude
differencing we vused and the instability we know to be present.

As we attempted to move further upstream into the subsonic region, the
instability did become a factor and wild oscillations along the calculated contour
became apparent. This is the behavior one would expect. If we recall the
perturbations we made when we considered the differential equations, they were of

i8E + an

the form Sy e where, by (2.17),

* %\ 2k
2 _[ea ) 2 (n - e
- (oﬁ')s(y) (5 S M)

Thus, for fixed n we must move sufficiently upstream from the sonic line for a,

and consequently "

» to become large enough to distort the calculations. We
point out, however, that as we make our centerline Mach number array pass through
M = 1 with steeper slope, our calculations will break down closer to the scnic
line.

In the axisymmetric case we compared our results in the supersonic region with

those of Glowacki [ 6 ], who used the method of characteristics, and in the

15
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transonic region with those of Hopkins and Hill [ 7 }, [ 8 ], who used a series
method. For the Glowacki cases ny was chosen (as described in the previous
section) so as to provide a nondimensional test section height of 1. The
coordinates obtained agreed to about three significaunt firgures. In the tran-
sonic comparisons ng was chosen so as to have the nondimensional throat height
equal to 1. These were provided by Hopkins and Hill who determined thsem by
iteration. Unfortunately, the nd's were so large here as to cause a divergent,
oscillatory condition almost everywhere. In an attempt to be able tn make some
type of comparison a very coarse grid was employed (Af, An ~ 0.1 rather than
~ 0.01 or 0.001 as in the previously discussed cases) and a disagreement in the
results in the third significant figure wae observed. +‘his again wus considered
quite good considering how coarse the grid was.

The two primary difficulties with the method are the instability in the
subsonic region and the loss of the end points at each step (see discussion in
Chapter III). The former prohibits us from obtaining the entire subsonic region
and always leaves us suspicious as to how accurate are the values we obtain.

The latter difficulty is particularly important in the design of short nozzles.
In this case we may not have many mesh points to work with and thus, by the time
we reach tpe contour, much of the region of interest is lost. If we attempt to
decrease the mesh size to provide us with additional points, we must take more
steps in the n direction and thus are again in the same situation.

In the introduction we mentioned that an alternate method is desirable to
avoid patching and for use in short nozzles. The above results indicate
that such a need still exists. Short nozzles and nozzles with steep Mach number
gradients do not yield themselves nicely to the method described herein. For

long nozzles where the Mach number gradient is not large this method does seem to

16
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o

22 i

provide a method of getting the transonic and supersonic regions in a uniform
way. Some pa:ching must still be done, however, to get the contour further

upstream in the subsonic region.

T

17
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LIST OF SYMBOLS
velocity of sound
dimension parameter (=0 for two-dimensional; =1 for axisymmetric)
normalizing length
Mach number (=q/a)
pressure

velocity vector, velocity magnitude

velocity components in x and y directiong, respectively
ration of specific heats (=1.4 for air)

streamline parameter

potential line parameter

density

potential function

stream function

stagnation condition

design condition

throat condition

centerline condition

18
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