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CHAPTER I 

INTRODUCTION 

The study of two dlnenslonal and axisymmetric converging-diverging nozzles 

has received a great deal of attention by both engineers and mathematicians.  Its 

uses in wind tunnels and rockets make it of practical importance whereas its mixed 

mathematical nature give it theoretical interest. 

A converging-diverging nozzle (see Figure 1) consists of a converging section 

where the flow is subsonic and the mathematical equations are elliptic, a diverging 

section where the flow is supersonic and the equations are hyperbolic, and an 

intermediate transonic section, called the nozzle throat, where the flov passes 

from subsonic to supersonic and both elliptic and hyperbolic behavior are present. 

In wind tunnel applications there is a fourth section, the test section, where the 

flow is uniform. 

There are basically two approaches taken when investigating nozzles - direct 

and indirect. In the direct method a nozzle contour it prescribed and one seeks 

to determine the flow field inside. In the indirect method the flow along the 

axis of symmetry, called the centerline, is prescribed and the nozzle giving rise 

to this flow is sought. In the design of nozzles the natural method to use is 

the indirect method and thus will be what we shall consider here. For information 

on direct methods the reader is referred to [ 3 ] and [ 9 ]. 

The two primary indirect methods in use are the series methods and the method 

of characteristics. In the series methods, originated by Friedrichs [4 ], 

(see also [5]), one assumes that the variables of interest can be expanded in 

series involving the stream variables. These are then substituted into the equa- 

tions to determine the values of the coefficients in the expansions. The series 

are then truncated and the remaining finite number of terms is used to compute 

approximations to the solutions. The method of characteristics ([10], [11]) 

1 



NOLTft 70-131 

N 
N 
o 
z 
y 
I- 
Ul 

3. > 
X 
< 

z 
< 
< z 
g 
z 
UJ 

2 

£ 
2 
O 
UJ 

o 

o 



NOLTR 70-131 

utilizes a change of variables to characteristic coordinates. This transformation 

makes the two independent variables in the original equation additional dependent 

variables. One is thus led to a system of four partial differential equations in 

four unknowns. The simplification occurs in that each of the four new equations 

contains differentiations with respect to only one of the new independent variables. 

This enables one to determine the characteristics and the flow in the nozzle. 

This method, of course, is restricted to the supersonic region where the equations 

are hyperbolic and the characteristics are real. 

The great difficulty in the series methods is the lack of mathematical 

justification. Little, if any, has been accomplished in analyzing the size of the 

terms which are dropped. The method of characteristics on the other hand can be 

used only in the supersonic region. To get around this difficulty different 

methods e      used in each of the different sections and the solutions obtained 

are then "patched" together with a "French curve." Thus, for example, one might 

use the method of characteristics in the supersonic region and patch the solution 

so obtained to the solution obtained in the subsonic and transonic regions by 

the series method or by a quasi-one-dlmensional flow approximation. However, in 

many applications such as very high Mach number wind tunnels where heat transfer 

in the throat of the tunnel is sizable and in short nozzles where the two 

dimensional effects cannot be ignored, the method of patching leaves much to be 

desired. It is thus desirable to investigate further methods for the determination 

of nozzle contours for prescribed centerline conditions. 

In this paper we consider an indirect method which is usable from the 

subsonic region to the supersonic test section of constant state. The procedure 

is to prescribe a Mach number or velocity distribution along the axis of symmetry 

and then to integrate the governing equations of motion using finite differences. 

We do not claim to present here a mathematically rigorous technique but rather 
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offer another method of calculation which has advantages and disadvantages when 

compared with other methods. In fact it will be shown in the next chapter when 

we derive the equations of motion that this procedure is unstable in the 

subsonic region (as one would expect). We shall say more about this in Chapter IV 

where we discuss our results and conclusions. The primary advantage of this type 

of method is that it provides a uniform scheme from the subsonic region to the 

test section, thus eliminating the need for multiple patching. The disadvantages 

will be discussed in Chapter IV. 
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CHAPTER II 

DEVELOPMENT AND STABILITY OF THE DIFFERENTIAL EQUATIONS 

We suppose in the following that we are dealing with a steady, irrotational, 

perfect gas with constant specific heats. We consider both two-dimensional and 

axisymmetric flows. For such flows the equation of continuity takes the form 

(2.1)  V 
\>0) PoL3x       **     * J 

where k « 0 for two-dimensional flow and k - 1 for axisymmetric flow. The equation 

of state is 

(2.2)  J- 
P„ 

fc)' 

and Bernoulli's equation can be written 

(2.3) (f) 1+^ln2 

An explanation of the notation can be found on page 18, and a derivation of the 

above equations from the basic equations of fluid dynamics can be found in any 

standard bock on gasdynamics (see e.g., [i2l)> 

Equation (2.1) implies the existence of a stream function \\>  such that 

/o ,.\      <ty   P   k 3jj   p  k 
(2'4)  3?  p  U? • at" p ^ 

o o 
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and the assumption of irrotationality implies the existence of a velocity potential 

$ such that 

q . V* 

or 

(2.5)    u - |i , v - |i 
3x       3y 

Substituting (2.5) into (2.<0 we obtain the equations 

(2.6)  Ü « .£. yk ü   Ü ßkü 
VZ,o;  3y  po 

y 3x ' 3x    po 
y 3y 

Finally, from (2.2) and (2.3) it follows that 

1 

(2.7)  Ü2. - (i + 1=1 MV"1 

P      z 

We next introduce a set of dimensionless variables according to the following 

definitions: 

(2.8)    ,. .a ,  ,..} ,*..-*£ ,  ♦■--kj ,  P'-^- 
o        a L ro 

fe>re L is some standard length. The previous equations then become (with the 

primes dropped for convenience) 
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(2.9) 

3<]>    k 3d»    3jp     k. 34> 
3y py 3x ' 3x py 3y 

p. (l+l=iM
2) ^ 

Interchanging the role of dependent and Independent variables (which Is 

permissible since the Jacobian of the transformation, 

(2.10) J(|4) -pyk(u2 + v2), 

is nonzero off the axis) and introducing new variables £ and n defined by 

(2.11) $ - / q(r)dT , ip 
0 

1  * * k+1 
P q n k+1 

(2.9) becomes 

(2.12) 

* *   k * *   k 

3n   p? V  3£ *  3n     pq" >  35 

U   2  2 , 2; 
x? + ys 

where q denotes the velocity magnitude along the axis of symmetry and p and q 

are the sonic density and velocity magnitude which are fixed for given stagnation 

conditions. 

It is the system (2.12) which we integrate to find the nozzle contour. We 

view the problem as an initial value problem with information imposed for 
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n - 0, the nozzle centerline, and wish to determine the solution for positive 

n. We require along n • 0 that y - 0 and x ■ g. We furthermore prescribe a 

Nach number distribution or equivalently a velocity distribution along this line. 

This information determines x, y, and p and the derivatives of x and y on the 

centerline using (2.12). This is straightforward except perhaps the determination 

of -^- in the axisymmetric case, k ■ 1? where we must remove the indetermirancy of 

- along the centerline. This is done by replacing ^ by T^ to obtain the 
y Ti • an 

relationship 

a     * * 1/2 

3n K M ' 

As the lines n ■ constant correspond to streamlines, any positive n serves 

as a nozzle boundary. The particular n chosen to terminate the Integration Is 

determined by various design or convenience considerations. The numerical 

procedure used to perform this integration is discussed in the next section. 

We conclude this section with an analysis of stability as suggested by 

Von Neumann and Richtmyer [13]. We suppose that a perturbation 6x, 6y, Sp 

is introduced and attempt to see the effect of this perturbation at points away 

from the centerline. We thus replace x by x + ox, y by y + <5y, and p by p + 6p 

in (2.12) and examine the effects of such a perturbation. 

The equations of first variation are 

pyk-^- (6y) + kpyn6y + y
kyn6p - *-J- n^ (ox) - 0 

(2.13)  Pyk £  <«*> + xny
k6p + kxnp6y + *J- n

k ±  (fly) - 0 

ax^p*"1-«!^««) + 2yc(p
Y"1-l) ±  (6y) + (Y-l)p

Y~2(x* + y*)6p - 0 
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Equations (2.13) are systems of differential equations for unknowns 6x, 6y, 

and 6p. The coefficients in the differential equations depend upon x, y, and 

P and are considered to be smoothly varying with K  and n. As numerical errors 

behave like rapidly varying perturbations we view the coefficients in (2.13) as 

being constant in a small region and seek solutions of the form 

(2.14) 6x ■ fix- e      ' , 6y - 6y. e *      , 5p ■ 6pQ e 

where öxQ, 5yQ, p., a, and ß are constants and p is real and large. Putting 

(2.14) into (2.13) results in 

* * 
(py o + kpy^) 5y0 + y yn5pQ - £-^- n lßP*^ - 0 

(2.15)  (kpxn + 2-±-   nkiß) 6y0 + *tf%0 + p y
k a6xQ  - 0 

2yj,(p
Y~1-l) i66y0 + (Y-D P

Y
~
2
(X

2
 + y2) 6P0 + 2xc(p

1,*1-l)ißöx0 - 0 

We are thus led to two systems of linear homogeneous equations in 6xQ, £y., 

and 5p_. Assuming the perturbations are nontrivlal we must have that the coeffi- 

cient determinants are zero. Evaluating these determinants and setting them equal 

to zero we are led to 

- OV(Y-I) y2k(x2 + y2) + a[2p(p
Y~1-l)ie(yr)y^ + xnx?)y

2k 

***** 
(2.16)  - kynyk(Y-l)p

Y(x2 + y2)] + ß2 *-*- nk l^f- nk(Y-DpY~2(x2 + y2) 

* * 
- 2yk(pY-1-l)(xnyc - x^)] - ikn^^ P^Y-D <x2 + y2)xn - 0 
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Using (2.12) and the fact that 8 Is being assumed large the above reduces to 

i2 P*<Y-D y2k - 62(^)2 n2k [(Y-l) PY'2 + fCp^-D] 

or 

,   * * 2 , n 2k   , 
(2.17) a2 - (^|-) (T (£)  (1-MZ) 

Equations (2.17) indicate what we would expect. In the supersonic (hyperbolic) 

region, M > 1, so a is purely imaginary and snail perturbations will remain small. 

On the other hand in the subsonic (elliptic) region, M < 1, so o can be positive 

indicating that a small perturbation once introduced would grow as n increases. 

10 

■ 
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CHAPTER III 

THE NUMERICAL WORK 

We are Interested here in developing a numerical scheme which could be used 

to determine nozzle contours in a uniform manner throughout the nozzle. Our 

procedure will be to introduce a finite difference method to solve the equations 

(2.12) as an initial value problem with some Mach number or velocity array 

prescribed along the centerline. 

There are many ways in which one could introduce finite differences to 

approximate the differential equations we are considering. The one used here has 

been chosen for its numerical simplicity. We form a rectangular network of points 

^i* nm^ wlth 8Pacin8s AS, An and introduce the notation y.  - y(£., n ), etc. The 

difference equations can then be written 

(3.1) 

LliHti 
.yi^J-li"  ** 

An 
. P Q   I m    j  J+l.m J-l,n 

JL5Ü 
_ Vl^l-Ln 
 2        -2. 

—In pj 

* * /   2n    \k _a_ I        m       j 
.nTJ VJ+l.m+yj-l,Jn/ 

j,m 

_2 
It ^l     

2    ^j+l.m^j-l.m^      yj-fltm~y1-ltm>2 
V    2A5    '   *    2AC 

y1+l,m"y1-l,m 
2AI- 

1 

Y-l 

To solve (2.12) using (3.1) we proceed as follows. We first set x. Q - S. 

and y 0 • 0. The array ~. is either directly prescribed or obtained from a given 

Mach number distribution using the nondimensional form of equation (2.3). With 

this information p. ft can be determined and from this x . and y. .. Using 

these new arrays for x and y, p. . is computed and the procedure continues 

11 
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Inductively. Thus, when all the Information for subscript m and less Is known 

the x and 7 arrays for m + 1 can be computed. In the program actually written 

here, only every other point was calculated at each step. Thus, for example 

(see Figure 2) the point 10 is calculated from 1, 2, and 3, then the points 12 

and 14 would also be calculated but not the points 11, 13, and 15. Similarly, 

going to the next step, the points 10;  11, and 12 would be used in calculating 

19. The point 21 would also be computed, but not the point 20. Note that with 

each step in the n direction 1 point is lost from each side of the £ array. 

More will be said about this in Section IV. 

The only deviation from this procedure occurs on the initial step of the 

process for the axisymmetrlc flow case. Here it is necessary to introduce the 

approximation 

n * 3TI 

to circumvent the difficulty arising from the indeterminancy of ^ along n ■ 0. 

Using this approximation, we obtain for the first step 

(3.2)  ^-f*-3- 
3n  \tfq-/ 

*\.*y/2 

ax (since TT ■ 1 along n - 0) or in the finite difference form 
95 

/ * * \l/2 
An <"> 'M-taO' 

12 
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The iterative procedure outlined above is terminated when a desired stream- 

line, n., is reached. In the work described here this n. was chosen from 

considerations allowing comparison with the results of others. As an example 

of how one might determine n.» we consider the following case. It was desired 

to compute nozzles with nondimensional test section height equal to 1. From (2.4) 

we have 

*y - py
k" 

where pu is constant in the test section. Thus, integrating from the centerline, 

y " 0, to the contour in the test seciton, y ■ 1, one finds 

•   pu 

or from (2.11) 

k+1 
* * nd     pu 

p q -w7 "k+r 

Thus, it follov* that 

0.4)   nd-(-lV) 
\P q / 

l 
k+1 

This quantity can be determined using e.g., [ 1] once the test section Mach 

number ±3  specified. 

14 
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CHAPTER IV 

RESULTS AND CONCLUSIONS 

The procedure outlined In the previous section way programmed and run on an 

IBM 7090. The program consisted of a main program which called upon a subprogram 

to generate the centerline velocity array and then carried out the integration of 

the equations. 

For the two-dimensional equations the cases run were chosen so as to allow a 

comparison with the report of Baron [ 2 ]• In the examples considered there was 

agreement in the contour coordinates to between three and four significant figures. 

These results seemed most encouraging especially when we consider the crude 

differencing we U3ed and the instability we know to be present. 

As we attempted to move further upstream into the subsonic region, the 

instability did become a factor and wild oscillations along the calculated contour 

became apparent. This is the behavior one would expect. If we recall the 

perturbations we made when we considered the differential equations, they were of 

the form 6yoe
ie5 + an where, by (2.17), 

/ * *\2 o / \2k 

'•WOT*-* 
Thus, for fixed n we must move sufficiently upstream from the sonic line for a, 

and consequently e , to become large enough to distort the calculations. We 

point out, however, that as we make our centerline Mach number array pass through 

M = 1 with steeper slope, our calculations will break down closer to the sonic 

line. 

In the axisymmetric case we compared our results in the supersonic region with 

those of Glowacki [ 6 ], who used the method of characteristics, and in the 

15 
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transonic region with those of Hopkins and Kill [7 ], [8 ], who used a series 

method. For the Glowackl cases n was chosen (as described in the previous 

section) so as to provide a nondimensional test section height of 1. The 

coordinates obtained agreed to about three significant firgures. In the tran- 

sonic comparisons n, was chosen so as to have the nondimensional throat height 

equal to 1. These were provided by Hopkins and Hill who determined thsm by 

iteration. Unfortunately, the n.'s were so large here as to cause a divergent, 

oscillatory condition almost everywhere. In an attempt to be able to make some 

type of comparison a very coarse grid was employed (A£, An ^ 0.1 rather than 

^ 0.01 or 0.001 as in the previously discussed cases) and a disagreement in the 

results in the third significant figure was observed, Vhis again was considered 

quite good considering how coarse the grid was. 

The two primary difficulties with the method are the instability in the 

subsonic region and the loss of the end points at each step (see discussion in 

Chapter III). The former prohibits us from obtaining the entire subsonic region 

and always leaves us suspicious as to how accurate are the values we obtain. 

The latter difficulty is particularly important in the design of short nozzles. 

In this case we may not have many mesh points to work with and thus, by the time 

we reach the contour, much of the region of interest is lost. If we attempt to 

decrease the mesh size to provide us with additional points, we must take more 

steps in the n direction and thus are again in the same situation. 

In the introduction we mentioned that an alternate method is desirable to 

avoid patching and for use in short nozzles. The above results indicate 

that such a need still exists. Short nozzles and nozzles with steep Mach number 

gradients do not yield themselves nicely to the method described herein. For 

long nozzles where the Mach number gradient is not large this method does seem to 

16 
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provide a method of getting the transonic and supersonic regions in a uniform 

way. Some pa ;ching must still be done, however, to get the contour further 

upstream in the subsonic region. 

17 
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LIST OF SYMBOLS 

•   - velocity of sound 

k   - dimension parameter (-0 for two-dimensional; "1 for axlsymmetrlc) 

L   - normalizing length 

M   - Mach number («q/a) 

p   - pressure 

q,q - velocity vector, velocity magnitude 

x.y - 

u,v - velocity components in x and y directions, respectively 

Y   - ration of specific heats ("1.4 for air) 

n   - streamline parameter 

£   - potential line parameter 

p   - density 

$   - potential function 

i|>   - stream function 

- stagnation condition 

-j  - design condition 

- throat condition 

- centerline condition 

18 
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