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ABSTRACT

The computer program CHIEF was designed bySchenckand Barach
of the Naval Undersea Research and Development Center to obtain ap-
proximate solutions to exterior steady-state acoustic radiation problems
for surfaces of arbitrary shape vibiating with a prescribed normal
velocity. To test its capabilities as a i-esearch tool, CHIEF was applied
to several problems for which accurate answers have been obtained
using harmonic expansions. The accuracy and computation time of the
results using CHIEF are discussed in terms of the surface subdivision
scheme and the number of Gaussian quadrature points used to evaluate
the Helmholtz integrals. In addition, new input subroutines to CHIEF
which provide numert.us geometrical options are also discussed.
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A TEST OF THE CAPABILITIES OF CHIEF
IN THE NUMERICAL CALCULATION OF ACOUSTIC

RADIATION FROM ARBITRARY SURFACES

INTRODUCTION

The computer program CHIEF as developed by Schenck (1) and Barach (2) is
designed to obtain approximate solutions to exterior steady-state acoustic radiation
problems for surfaces of arbitrary shape vibrating with a prescribed normal velocity.
To test its capabilities as a research tool, CHIFF was applied to several problems for
which accurate answers have been obtained using harmonic expansions.

The first examples involve the acoustic radiation from an oblate spheroid whose top
half is vibrating with unit normal velocity and whose bottom half is rigid. The acoustic
radiation impedance of the top half and the mutual radiation impedance coefficient between
the two halves of the spheroid obtained using CHIEF are compared with results obtainpd
using a harmonic expansion in oblate spheroidal harmonic functions. A Fortran com-
puter program called OBRAD (3) was used to accurately evaluate the necessary sphe-.
roidal functions.

An example designed to test CHIEF's ability to handle a multiple surface is that of
the radiation of a uniformly pulsating sphere in the presence of a similar stationary
snhere. Here the results from CHIEF are compared with those of New (4), who has
obtained accurate values for both the near-field and the far-field pressures using a
harmonic expansion in terms of spherical functions.

The accuracy and computation time of the results using CHIEF are discussed in
terms of the surface subdivision scheme and the number of Gaussian quadrature points
used to evaluate the non-self Helmholtz integrals. In addition, new input subroutines to
CHIEF which provide numerous geometrical options are discussed. A computer print-
out of these subroutines is given in the appendix.

REVIEW OF THE COMBINED HELMHOLTZ INTEGRAL
EQUATION FORMULATION (CHIEF)

Consider a finite region bounded by the regular, closed surface S, as shown in
Fig. 1. Let an arbitrary point on the surface be denoted by i. The region exterior to
S is assumed to be filled with an ideal, homogeneous fluid of dtnsity, and sound speed
c. Let an arbitrary point in this exterior region be denoted by i. The surface S is
vibrating at an angular frequency - with a known normal velocity distribution . The
steady-state pressure p(i) may be obtained by solving the Helmholtz scalar ,ave equa-
tion,

(V2+ k2) (i- 0t b ,

where k .~ The time dependence e ithas been suppressed.
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0 ) Fig. 1.- An arbitrary surface S

The solution to Eq. (1) must be finite and must satisfy the radiation condition at
infinity,

urn 2R-. ZO + ikp(i) dS = 0, (2)
SR

where SR is the surface of a sphere of radius R surrounding the surface S. In addition,
the pressure p(i) must satisfy the boundary condition on S,

ap -- (3)

where Z/Zn denotes the outward normal derivative evaluated at the surface point . The
solution toEq. (1) which satisfies the boundary conditions, Eq. (2) and Eq. (3), is given
by

I - r~-kd(i,~) -ikd(;~
p O) P( ) L d ) J+ iejpv() ed(i, y) dS(j), (4)

where d(i, t) is the distance between the exterior point i and the surface point .

This expression allows p(i) to be evaluated when the pressure on the surface p(j)
is known. In order to obtain p( ), the point of observation i is allowed to approach the
surface. When the limiting process is properly performed, one obtains the suriace
Helmholtz integral formulation,

I z re - i kd(jJ)] - eikd(j' ))
P~j M =~ Z + kcpv(f) 2.' IdS(t). (5)

If the field point is taken interior to the surface s, one obtains the interior Heli holtz
integral formulation,

( khe'3.§! + iiPv(i) dS(),

where i is the interior point.
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The CHIEF program solves for the surface pressure p(j) using Eq. (5) and, if

necessary, Eq. (6).

In order to solve Eq. (5), the surface is subdivided into small areas. The normal
particle velocity is chosen to be constant over each subdivision, and it is assumed that
the pressure io constant over each subdivision. The latter assumption is an approxima-
tion that will be good only if the true pressure does not vary much over each subdivisi.n.
The approximation can be improved, if necessary, by further subdivision of the surf. ce.

The surface integrals in Eq. (5) can now be broken up into integrations over each
subdivision Sp, giving

[ - ikd(C tA
)

277p( ) P'- dd' )

f . ik d W . ts )ioWP .V16 d(, dS( /o), (7)

where p,, and vo are the pressure and normal particle velocity for the subdivision S'S.

If the observation point j' is chosen to be on S,, one obtains a set of simultaneous
equations in the unknown pressures,

~A1 6 p13  B. A3 1, (8)
13 /6

where A,, and Ba13 are given by

Aa, 3 = 27lSa13 - [jid(~~ 3  (9)
S'

3 
Znf

where S.. is the Kronecker delta,

and

f e- ikd d o., ic)

B A3  J d ( d s d ( t ) . (1 0 )

The Helmholtz integrals given in Eqs. (9) and (10) are numerically evaluated in
CHIEF using a Gaussian quadrature over both surface coordinates. For the so called
non-self Helmholtz integrals, when a 3, the user of CHIEF must input the number of
quadrature points used to evaluate the integral. The self integrals, i.e., when a =3,
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are automatically evaluated by first subdividing the integrals into four pieces and then
evaluating each piece using 16-point Gaussian quadratures over both surface coordinates.
Obviously, the choice of the number of quadrature points to be used for the non-sclf
integrals is influenced by the surface subdivision scheme.

If the frequency is near one of the characteristic frequencies for the interior homo-
geneous Dirichiet problem, the simultaneous equations, Eq. (8), will not yield the cor-
re,' surface pre!:sures. In this case additional equations are obtained using the interior
Helmholtz integral formulation for car(iully chosen inter.or points. These equations
add no more unknowns but provide au ' , ional equations of constraint for the surface
pressures leading to an overdetermined system. Since only the correct set of surface
pressures satisfies these additional equations, their addition tends to force the solution
to the desired one. The choice of the number and the location of the interior points is a
difficult problem. The examples discussed in this paper'will not require any interior
points. This will allow an uncluttered examination of the more basic question confronting
the user of CHIEF: how do both the accuracy and the computation time depend on the
surface subdivision scheme and the number of quadrature points?

COMPARISON OF RESULTS

Example I. Oblate Spheroid

The first example is that of radiation from an oblate spheroid, as shown in Fig. 2.
Here , the radial coordinate specifying the oblate spheroidal surface, is chosen equal
to 0.2. The ratio of major to minor axes is then given by 1'eTi)/- 5.o. The param-
eter h, defined to be v times the ratio of the distance between the foci of the elliptical
cross section to the wavelength, is a measure of the acoustical size. Here h is chosen
equal to unity to insure that the frequency is well below the lowest characteristic fre-
quency for the interior homogeneous Dirichlet problem. For this example the top half
of the surface is specified to be vibrating with unit normal velocity. Of interest are the
self acoustic r'.diation impedance coefficient of the top half and the mutual acoustic
radiation impedance coefficient between the two halves. These were first calculated
analytically using a harmonic expansion in oblate spheroidal wave functions. Sufficient
spheroidal functions were generated to achieve convergence of the series to at least four
places of accuracy in both the resistive and the reactive parts of the impedance.

Fig. 2. - Subdivided oblate spheroid

The problem was then input to CHIEF for various subdivision schemes. CHIEF is
designed to take advantage of rotational and reflective symmetry in the geometry, greatly

reducing the computation time in these cases. In order to use rotational symmetry, the

spheroid was first subdivided into strips resembling orange sections. Each strip was
then further subdivided into b'knds. The number of Gaussian quadrature points for the

non-self Helmholtz integrals was selected for both surface coordinates. The normal
particle velocity was input as unity for the top half and zero for the bottom half of the

spheroid.

CHIEF was used to obtain the surface pressures p, for each subdivison. The nor-
malized self radiation impedance coefficient for the top half of the spheroid, Z,,If, was

then calculated using
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in

ZSelf -- Rself + iself = P s (11)
pcv a

a=1

where S, is the area of the ath subdivision, and a- i to n includes only the subdivisions
on the top half of the spheroid. Rself and X,,1 f are the resistive and reactive compo-
nents of the impedance. Here v I m/sea is the normai particle velocity. The nor-
realization factor

PC ES
al

makes Zself dimensionless.

Similarly, the normalized mutual radiation impedance coefficient between the two
halves, Zmut,, was calculated using

Ny s
IPa Sa

Zmutual = Rmutual + iXmutual - a 1 (12)

PCV 2: S.
a~n+l

where a= n + I to N includes only the subdivisions on the bottom half of the spheroid.

The results for this case are summarized in Table 1. The impedances calculated
using the harmonic expansion are given in the last line. The column labeled "time in
"econds" indicates the computation time required to determine the surface pressures
using the CDC 3800 computer at NRL.

The first CHIEF model had 12 strips, 6 bands, used a 2-point Gaussian quadrature
for both surface coordinates (denoted 2 x 2), and required 36 sec of computation time.
The results are good ex--ept for the mutual reactance. As the quadrature is increased,
the accuracy improves, with the 8 x 8 quadrature giving surprisingly good results for
76 sec of computer time.

If 24 strips and 12 bands are ustd, a 2 x 2 quadrature again gives a poor value for
the mutual reactance. As the quadrature increases, the accuracy again improves. In
general, the accuracy should be better for increased subdivision for the same quadrature.
However, possible random errors may cancel, yielding significantly greater accuracy
for the coarser subdivision scheme. This is apparently the case for the model using 12
strips, 6 bands, and an 8 x 8 quadrature.

Apparently good results can be obtained for this oblate spheroid using rather crude
surface subdivision and a small number ef quadrature points. It is important to note
that the far-field pressure pattern does not depend on the radiation reactance and will be
extremely accurate for all of the models except those using a 2 x 2 quadrature. Because
of the smallness of the mutual reactance, the near-field pressures should also be accu-
rate for all but the 2 x 2 quadrature.
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Table 1
Results for the Spheroid with 0.2. h 1.0

Number of INumber Number Quadrature Time R X R Xof Strips of Bands Points (sec) self self mutual mutual

12 6 2 2 36 0.2364 0.5063 0.1830 0.06148
12 6 4 x 4 49 0.2371 0.5254 0.1760 0.03996
12 6 8 x 8 76 0.2369 0.5285 0.1743 0.03508
24 12 2 x 2 106 0.2361 0.5172 0.1767 0.04543
24 i2 4 x 4 154 0.2360 0.5234 0.1751 0.03936
24 12 6 x 6 227 0.2361 0.5246 0.1748 0.03823
24 12 8 x 8 338 I 0.2361 0.5249 0.1748 0.03791

Harmonic expansion 20 J 0.2369 0.5287 0.1739 0.03481

Example II. Thin Oblate Spheroid

Next consider the radiation from a thin oblate spheroid whose top half is vibrating
with unit velocity and whose bottom hatf is rigid. Here h = 1.0, and 0.02 so that
the ratio of major to minor axes is very nearly equal to 50. The radiation impedance of
the top half of the spheroid and the mutual radiation impedance coefficients between the
two halves of the spheroid were calculated using a harmonic expansion in spheroidal
wave functions and using CHIEF with various subdivision schemes. The results are
given in Table 2.

Table 2
Results for the Spheroid with 0.02, h = 1.0

Number of T T f
Nube Nmbr Quadrature (se sl sl mtual I utual

of Strips of Bands Points (sec)

12 6 4 x 4 42 0.2906 0.4643 0.2900 0.3897
12 6 8 X 8 65 0.2513 0.4247 0.2494 0.3160
24 12 4 x 4 148 0.2460 0.4241 0.2436 0. 3048
24 12 8 x 8 334 0.2284 0.4678 0.2163 0. 1983
24 18 8 x 8 678 0.2267 0.4726 0.2135 0.1917
48 24 4 x 4 770 0.2235 0.4714 0.1969 0.1890
48 I 24 8 x 8 2204 0.2288 0.5464 0.1950 0.09471

Harmonic expansion 20 0.2302 0.5732 0.1874 0.06135

The results using a model with 12 strips, 6 bands, and a 4 x 4 quadrature arL very
poor. Increasing the quadrature to 8 x 8 does not improve the results much. Increased
subdivision gradually improves the results, However, even with 48 strips, 24 bands,
and an 8 x 8 quadrature, considerable error occurs in th. ..rutual reactance. A good
far-field pattern should be obtained for this model, but more subdivisions and increased
computer time would be required to obtain very accurate impedances.

3a
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Example III. Tvo Spheres

To determine the capability of CHIEF regarding multiple surfaces, the two-sphere
problem, whose geometry is shown in Fig. 3, was considered. The ipheres were chosen
to have ka = 1.o, where a is the radius of each sphere, and were separated by a distance
equal to their radii. One sphere was pulsating uniformly, while the other one was rigid.
The two-sphere problem has been solved analytically by New (4) using expansions in
spherical wave functions.

PULSATIkG SPHERE

Fig. 3 - Two-sphere geometry

a

RIGID SPHERE

Consider the near-field pressure magnitude on the axis of the system, as shown in
Fig. 4. The dashed line represents the 1/r dependence to be expected if the rigid
sphere were not present. The results of New are represented by the solid line, while
the dots represent the results of CHIEF using 6 strips, 6 bands, and a 4 x 4 quadrature
on each sphere. The pressures are normalized to the pressure magnitude that would
exist on the surface of the pulsating sphere if the rigid sphere were not present. The
maximum error was less than 6%. When 10 strips, 10 bands, and a 4 x 4 quadrature
vere used, the maximum error was xeduced to less than 1%.

The far-field pressure pattern in the plane bisecting the spheres was also calculated
using the CHIEF model with 6 strips, 6 bands, and a 4 x 4 quadrature on each sphere.
Figure 5 gives the pattern as a function of the polar angle o. Again the solid line repre-.,
sents the results of New, while the CHIEF results are represented by dots. As expected,
considering the good accuracy of the near-field results, the far-field is extremely
accurate. The total computation time for the two-sphere problem using the coarser
subdivision scheme was 126 see.

GEOMETRICAL OPTIONS

CHIEF is not restcicted to a specific coordinate geometry. Any convenient coor-
linate representation may be used to deacribe the surface. However, the free-space
Green's function and its normal derivative are described internally in CHIEF in terms
o" a Cartesian coordinate system. Therefore, input subroutines are required which con-
tain conversion formulas giving the Cartesian coordinates of an arbitrary surface point
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Fig. 4 - Near-field pressure distribution on the
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Fig. 5 - ne far-field pressure distribution for
two spheres, one pulsating and one rigid

as well as the Cartesian components of the normal vector to the surface at that point.
The area element associated with the surface coordinates is also required. The entire
closed surface is separated into regions such that each region is describable in terms of
a single geometry. Each region is assigned an integer index that corresponds to the
appropriate conversion formulas in the input subroutines.

In an effort to increase the utility of CHIEF, conversion formulas have been added
to the input subroutines so that a wide range of geometrical options is available. These
options, which are listed in Table 3, are discussed below. Included are formulas giving
the Cartesian coordinates (x, y, z), the Cartesian components of the unit normal ^On)
and the magnitude of the area element dS for any surface point (u, v) (Ref. 5). The
notation 01. v) a (a. b) means that a and b are the two surface coordinate,3. Any of
the surfaces can be translated or rotated by modifying the formulas giving the Cartesian
coordinates. For example, option 15 describes the outside surface of a sphere centered

.. 3
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at (x, y, z) = (0, o, 0). To describe a sphere centered at (x, y, z) (c, 0, 0), change
the equation for x in terms of the surface coordinates (u, v) - (0, 0) to
x CC(33) sinu cos v + c.

1. yz plane with Cartesian coordinates, (u, v) z (y, z), normal in ix direction.

x = Constant = CC(1)

y =u

Z =V

n = Cx

dS = du dv

1. yz plane with Cartesian coordinates, (u, v) E (y, z), normal in -x direction.

x Constant = CC(2)

y =u

z =v

On 
= 
-6x

dS = du dv

3. xz plane with Cartesian coordinates, (u, v) n (x, z), normal in + y direction.

x =U

y Constant = CC(3)

Table 3
Geometrical Options Added to CHIEF

[irection of Direction of
Surface Normal to Surface Normal to

Surface Surface

1. yz plane I +x 11. Outside of circular Outward
2. yz plane -x cylinder
3. xz plane +y 12. Inside of circular Inward
4. xz plane -y cylinder
5. xy plane i z 13, Outside of elliptical Outward
6. xy plane -Z cylinder
7. xy plane, polar + 14. Inside of elliptical Inward

coordinates cylinder
8. xy plane, polar -z 15. Sphere Outward

coordinates 16. Oblate spheroid Outward
9. xy plane, elliptical 1 17. Prolate spheroid Outward

coordinates 18. Toroid Outward
10. xy plane, elliptical

coordinates
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z ~V

C. =y

ds= du dv

4. xz plane with Cartesian coordinates, (u, v) (x. z), normal in -y diertion.

x -U

y -Conlstant = CC(4)

2 =V

t~ a y

dS= du dv

5. xy plane with Cartesian coordinates, (u, v) a (x, y), normal in + z direction.

x U

y =v

z Constant = CC(5)

dS du dv

6. xy plane with Cartesian coordinates, (u, v) a (x, y), normal in -z direction.

x ts

y =v

z Constant = CC(6)

dS du dv

7. xy plane with polar coordinates (r, 6), 0< r < co, 0< 0 < 27, (u, v) a (r, 6), normal
in +z direction.

In the xy plane the curve of constant ris a circle of radius r centered at (x, y)
- (o, o), and the curve of constant 0 is a semi-infinite line originating at (x, y)
=(0, 0).

X tI COS V

y Li Sill V

z Colstnnt CC(7)

dS : du dv
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8. xy plane with polar coordinates (r, 0), 0 < r < c, 0 0 < 2r., Ct, v) i (r, 0)
normal in -z direction.

In the xy plane the curve of constant r is a circle of radius r centered at
(x, y) = (0. 0), and the curve of constant 0 is a semi-infinite line originating at
(x, y) (0, 0).

x U COS V

y =u sin v

z Constant CC(8)

an = z

dS = u du dv

9. xy plane with elliptical coordinates ( , ), 1 .< < 0; 0 4 ' < 277, (u, ) A. ,),

normal in + z direction.

In the xy plane the curve of constant p is an ellipse of interfocal distance
2 CC(9) centered at (x, y) = (0, 0), and the curve of constant ' is a hyperbola which
is orthogonal to the family of ellipses for the same value of CC(9).

x = CC(9) u cos v

y = CC(9) (u
2 -1)' sin v

z = Constant = CC(16)

gn = a

dS = CC(9) 2 (u2  ) u2 -cos 2 v) du dv

10. xy plane with elliptical coordinates , <) < <o, 0< 'P < 27, (u, v) z ( P, t),
normal in -z direction.

In the xy plane the curve of constant p is an ellipse of interfocal distance
2 CC(12) centered at (x, y) = (o, 0), and the curve of constant P is a hyperbola

which is orthogonal to the family of ellipses for the same value of CC(12).

x = CC(12) u cos v

y = CC(12) (u 2 - 1) sin v

z = Constant = CC(13)

11 = - 2

dS =CC(12) 2 Cu2 _'j) -'Cu2 -cos 2 v) du dv
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11. Outside surface of a circular cylinder along the z axis, (u, v) 2 (z . B) -W < z <w,
0 <10 < 2w:, normal outward from the cylinder. Theradius of the cylinder is -a con-
stant given by cc(15).

On the cylindrical surface the curve of constant z is a circle of radius CC(1S)
centered at (x, y, z) (0, 0. z), and the curve of constant 0 is a line parallel-to
the z axis.

= CC(15) cos v

y CC(15) sin v

z =U

n =x cos v + y sin v

dS CC(15) du dv

12. Inside surface of a circular cylinder along the z axis, (u, v) (z, B), -w < z < C, 0 <B < 277,
normal inward. The radius of the cylinder is a constant given by CC(lb).

On the cylindrical surface the curve of constant z is a circle of radius CC( 16)
centered at (x, y, z) = (0, 0. z), and the curve of constant B is a line parallel to the
z axis.

x = CC(16) cos v

y = CC(16) siz v

z 11

6. cos v -ey sin v

dS CC(16) di dv

13. Outside surface of an elliptic cylinder along the z axis,(u, v) (z, co), - w < z < co,
0 :5 q, < 21r, normal outward from the cylinder. The interfocal distance of the ellip-
tic cross section is given by 2C C (17). The surface is one of constant A = CC(18),
where 1 _ I < wo.

On the cylindrical surface the curve of constant z is an ellipse of interfocal
distance 2cc(17) centered at (x, y, z) =(o, 0, z), and the curve of constant tp is a
line parallel to the z axis, one of the two lines prouuced by the intersection of a
hyperbolic cylinder and the elliptic cylinder.

x = CC(17) CC(18) cos v

y = CC(17) (CC(18)2 - ]4 sin v

z =U

[a CC(18)2- I C V + CC(18)8.=8x Lc~S 2 c s2 v o v C' 18+ C s2 V vCC1 2 vCC(18) 2 -cos 2 v

(IS= CC(17) [CC(18)2 -cos 2 v} du dv
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14. Inside siirface of an elliptic cylinder along the z axis, (u, v) a (z, i), - a) < z < c,
0 < 0 < 2, -'normal inward. The interfocal distance of the elliptic cross section f s
given by 2 CC(25). The surface is one of constant pi = CC(26), where 1 <,a < W.

On the cylindrical surface the curve of constant e is an ellipse of interfocal
distance 2CC(25) centered at(x, y. z) = (0, 0. z), and the curve of constait q, is a line
parallel to the z axis, one of the two lines produced by the intersection )I a hyper-
bolic cylinder and the elliptic cylinder.

x = CC(25) CC(26) cos v

y = CC(25) [CC(26) 2 - ii sin v

Z U

ax - _cc(26)2 I CosvJ V, -6 C,,)_ i
X [CC26) 2  [CC(26) 2 -cos 2 v]

dS CC(25) [CC(26) 2 -cos2v]M dii dv

15. Outside surface of a sphere, (u, v) (. (, q5), 0 0 ' <71, 0 < 0 < 27y, normal outward
from the sphere. The radius of the sphere is a constant given by CC(33).

On the spherical surface the curve of cunstant 0 is a circle of radius
CC(33) sin8 centered at (x, y, ) (0, 0, CC(33) cose), and the curve of constant 0
is a half circle between the poles of the sphere.

x = CC(33) sin u cos v

y = CC(33) sin u sin v

z = CC(33) cos u
en = ex sin u cos v + sin u sin v + 8z cos u

dS = CC(33) sin u du dv

16. Outside surface of an oblate spheroid, (u, v) r (7, 4)), 0 _< 7 _< 77, 0 < 0 < 27, normal
outward from the spheroid. The interfocal length of the spheroid is a constant
given by 2 CC(34). The surface is one of constant f CC(35), where o < c < C.

On the spheroidal surface the curve of constant @ is a half ellipse containing
the poles of the spheroid, and the curve of constant 71 is a circle of radius
CC(34) [2 + IJ sin -q centered at (x, y, z) (0, 0, CC(34) CC(35) cos 77). The z axis is

the axis of symmetry.

x = CC(34) [CC(35) 2 + 1J]H sin t, cos v

y = CC(34) [CC(35) 2 + 1)% sin u sin v

z = CC(34) CC(35) cos u
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6, = 6, CC(35) (CC(35) 2  Cos 2 u]- sin u cos v

+ CY CC(35) (CC(35) 2 + cos 2 u]- % sin u-sin v

+ 6Z [CC(35) 2 + ] [CC(35) 2 + cos 2 u] - H cos u

(IS= CC(34) 2 (CC(35)2 + I] HCC(35)2 + cos 2 u]H sin u du dv

17. Outside surface of a 1rolate spheroid, (u, v) m (7, q), 0 < 7) S 7Y, 0 Sp < 21, normal
outward from the spheroid. The interfocal length of the spheroid is a ronstant
given by 2CC(42). The surfaece is one of constant = CC(43), where 1 < a < a).

On the spheroidal surface the curve of constant 0 is a haif ellipse containing
the poles of the spheroid, and the curve of constant - i., a circle of radius
CC(42) [2 _ 115 sin -q centered at (x, v. z) = (0, 0, Cc(42) CC(43) cos 7)). The z
axis is the axis of symmetry.

x = CC(42) (CC(43) 2 -1) H sin u cos v

y = CC(42) [CC(43) 2 -1] sin u sin v

z = CC(42) CC(43) cos u

6n = ax CC(43) (CC(43) 2 - cos 2 u] -' sin u cos v

+ gy CC(43) (CC(43) 2 _ co- 2 I]- H sin u sin v

+ 6, (CC(43)2 
- 1]1 [CC(43) 2 - cos 2 u] - % cos u

dS = CC(42) 2 [CC(43) 2 - 1" (CC(43) 2 -cos 2 u]H sin u du dv

18. Outside surface of a toroid, (u, v) La (71, 0), -71 < < 7r, 0 < 0 < 27T, normal outward
from the toroid. The toroid is characterized by Iwo radii CC(49) and CC(50). The
ratio of these two radii CC(51), I < CC(51) < co, forms an orthogonal system with 71
and 0 and is a constant over the toroidal surface. To completely characterize the
surface, a second constant CC(52) = (CC(50) 2 - CC(49)2 ] is defined.

Thus the surface may be defined by giving either the constants CC(49) and
cc(50) or the constants Cc(51) and CC(52). Because the two radii are easier to
visualize, CC(49) and CC(50) will be the input for CHIEF.

On the toroidal surface the curve of constant 0 is a circle produced by the inter-
section of a half plane containing the z axis and the toroid, and the curve of constant
7 is a circle p'oduced by the intersection of a spherical bowl and the toroid. The
z axis is the symmetry axis for the toroid.

x (CC(50) 2 -CC(49) 2] cos v/(CC(50) -CC(49) cos u)

y = (CC(50) 2 -CC(49) 2) sin v/[CC(50) -CC(49) cos ul

z = CC(49) (CC(50) 2 - 'C(49) 2] sin u/[CC(50) -CC(49) cos u)
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6, = , [CC(49) -CC(50) cos u] cos v/[CC(S0) - CC(49) cos u)

-8 y (CC(49) - CC(50) cos ul sin v/(CC(50) - CC(49) cos uJ

+ 6z (CC(50) 2 -CC(40) 2] sin u/(CC(50) -CC(49) cos u]

dS CC(49) (CC(50)2 -CC(49)2f"/(CC(50)-CC(49) cos u]2 du dv

The input subroutines providing for these geometrical options are listed in the
appendix. Note that the two subroutines CCOORD and CCUNMD already exist in CHIEF.
CCOORD (U, V, NEQN, Al, A2, A3) is called in CHIEF whenever only the Cartesian
coordinates (Al, A2, A3) are desired for a surface point (U, V). The index NEQN refers
to the particular geometrical option. The subroutine CCUNMD (U, V, NEQN, AX1,
AX2, AX3, AN1, AN2, AN3, RMAGD) is called whenever all of the surface information
is desired; i.e., it provides the Cartesian coordinates (AX1, AX2, AX3), the Cartesian
components of the unit normal to the surface (ANI, AN2, AN3), and the magnitude of
the surface area element RMAGD.

Note that the set of constants Cl, C2, C3,... in CHIEF have been replaced by an
array of constants CC(100). The declaration COMMON/ALLC/CC(100) must be sub-
stituted in the main program and in CCOORD and CCUNMD for the declaration
COMMON/ALLC/Cl, C2, C3, ... These constants are quantities that do not vary over
the surface and must be input or calculated in the main program. Every combination
of constants appearing in the conversion formulas is calculated and stored in CC(100).
This reduces the computation time considerably, since the calculation is only performed
once instead of every time the subroutines CCCoORD and CCUNMD are called.

Most of the input constants refer to a distance and are described in terms of a unit
of length called WAVE= 1A = /2,7 = c/c. However, some of the input constants in
options 13, 14, 16, and 17 are pure numbers and represent ratios of distances. Refer-
ence to the previous aescription of the geometrical options will indicate which parameters
the input constants represent.

Option 19 in subroutine CCOORD provides interior points and should be modified to
fit the specific geometry whenever interior points are required.

SUMMARY

The following observations may aid the potential user of CHIEF.

1. CHIEF evaluates the solution to a boundary-value problem. This will be a realistic
transducer model when the velocities are known; for example, when velocity control
exists.

2. CHIEF is a very flexible program, allowing the user a wide range of options.
Reducing it to a production program, capable of being used by casual acquaintances,
would remove this flexibility. If only a specific geometry is of interest, the user is
advised to write a CHIEF-like program taking advantage of the peculiarities of that
geometry. This will be more economical in the long run, if the program is to be used
extensively. If the frequencies of interest are well below the lowest critical frequenc.',
a simple source method, where the pressure is obtainable in terms of a single integral,
might be considered.

3. If rotational or reflective symmetry is not present, the computation times increase
significantly. The possibility of using rotational or reflective symmetry should be ex-
amined carefully. If both are applicable, it is usually best to use rotational symmetry.
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4. The results obtained using CHIEF approach the correct solution as the subdivision is
increased. Surprisingly gcod results can be obtained, especially for the far field, using
a relatively crude subdivision scheme. However, objects that are thin may require an
unusuall.y.fine subdivision. Also, as the acoubtic size is increased, the number of sub-
divisions required to give accurate results will also increase. However, this limitation,
which is fundamental to the finite-element method, will be less restrictive in the future
as computers are improved.

5. This -report describes new input subroutines to CHIEF that provide for a wide range
of geometrical options. Most of the standard geometries have been included. Surfaces
of complex objects such as a free-flooded ring can be eescribed by combining two or
more of the options. The user can easily add additional geometries that are desired.
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Appendix

LISTING OF THE SUBROUTINES CCOORD
AND CCUNMD AND) THEIR REQUIRED INPUT

SUBROUTINE CCOORD(U*V*NEQN, *AA.A3)
COMMON/ALLC/CC 100)
GO TO (l'2e344567.e9,1O~z1,2.34516*17 

18419 NEUN
I AI=CCCl)

A3=V
RETURN

2 A1lCC( )
A2=U
A3=V
RETURN

3 Al.rU
A2=CC(3)
A3=V
RETURN

4 A1=U
A2PzCC(4)
A3::V
R4ETURN

9 A1=U
A2=V
A3=CCC5)
RETURN

A2'%V
A3=CC (6)
RETURN

7 AI=U*COS(V)
A2=U* SIN C
A3zCC (7)
PFTURN

8 A1ItJ*COS(V)
A2=U4*SINCV)
A3=CC (8)
RETURN

9 AI=CC(9)*U*COS(V)
A2=CC9)*SRT(U*U.I * )*SJN(V)
A3=CC(I 0)
RETUPN

10 A1=CC(12)*U*COS(V)
A2=CC( 12)*SORT(U*U-1 *)*SJN(V)
A3=CCc 13)
RE TURN

11 A1=CC(15)*COS(V)
A2=CC( 15)*StN(V)

PFTUPN

1A1=CC(2I)*COS(V)
A2=CC(12)*SN(V)
A3=U
RETURN 1
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14 AI=CCC29V*COS(V)
A2=CC (30 *SIN(V)
A3=U
RETURN

15 PSINU=CC C33)*SIN(U)
Al =RSINU*COS(V)
42 =RS INU*SIN( V
A3=CC(33)*COS(U)
RETUPN

16 CCSINU=CC(39)*SIINCU,

A1=CCSINU*COS(V)
A2=CCStINU*S INC V)
A3=CCC37)*COS(U)
RETURN

17 CCSINU=CC(47)*SIN(U)
A1=CCSINU*COS(V)
A2=CCSINU*SIN(V,
A3=CC(45)*COS(U)
RETURN

18 FAC=CC(54)/(CC(5l )-COS(U))
Al =FAC*COS(V)
A2=FAC*S INC V)
A3=FAC*S IN(U)*CC( 55)
RETURN

19 Al=0.
A2=U
A3=CC(60)
RETURN
ENO

SUBRPOUTINE CCUNMDCUVNEONAXI 'AX2.AX3.ANI ,AN2,AN3,RMAGD)
COMMON/ALLC/CC (100)
GO TO (1.2.3'4.5,6.7,899lO,11.12.13,14,15,16,17,18) NEON

I ANI=1.
A AN?=O.

AN31=0*
RMAGD= I.
AXI=CC( 1)
AX2=U
AX3=V
RETURN

P ANI=-1.
AN2=0.
AN3=0.
PMAGn)~ 1
AXhnCC(?)
AX2=U
AX3=V
RETURN

3 ANI=Oo
AN2=1I.
AN3=0.
PMAGD= 1.
AX I U
AX2=CC (3)
AX3=V
RETURN

4 ANI=O.

AN?=-I.
AN3=0.
PMAGD= 1.
AX I =U
AX2=CC (4)
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AX3=V
RETURN

'5 ANI =,
AN2=0*
AN3= I.

AXI=U
AXR=V
AX3=CC 5)
RETURN

6 ANt=O.
AN2=O.
AN3=-1.
PMAGD= I
AXI=U
AX2=V
AX3=CC (6)
RETUR~N

7 AN1=O.
AN2=O.
AN3= I e
PMAGD=U
AX! =U*COS(V)
AX2=U*SIN(V)
AX3=CC(7)
RETURN

8 ANI=O.
AN2=O.
AN3=-l.
PMAGn= U
AX I =t*COS (V)
AX22LJ*S NC VI
AX3=CC(8)
RETURN

9 COSV=COS(V)
COSVS=COSV*COSV
UUtU*U
SO=SOPT(UU-t *)
ANI=O).
AN2=Oo
AN3= 1.
PMAGO=CC(1II)*(UU-COSVS)/SQ
AX1=CCq9)*U*COSV
AX2=CC(9)*SQ*SORT( I -COSVS)
AX3=CC(2O)
RETUPN

10 COSV~COStV)
UU=U*U
COSVS= COSV*COSV

AN) 0.
AN2=0.
AN3-I.
RMAGD)=CC 14) *eUU-COSVS I/SO
AXI=CC( 12)*U*COSV
AX2=CC( !2)*SO*SORT( I -COSVS)
AX3=CC( 13)
RETURN

11 ANI=COS(V)
AN2=SIN(V)
AN3=O.
PMAGn=CC(IS)6
AXI=CC 15I*ANI
AX2=CC( 15)*AN2
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AX3=U
RETURN

12 ANI=-COS(V)

AN2=-S1NCV)
AN3-0.
PMAGD=CC( 16)
AX2=-CC( !6)*ANI
AX2=-CC( 16)*AN2
AX3=U
RETURN

13 COSV=COS(V)
COSVS= CoSv*Cosv
SINV=S01PT( I -COSVS)
DENI,= *O/SGRT(CC( 19)-COSVS)
AN! =CC 20) *DFNS*COSV
AN2=CC( 18)*DENS*SINV
AN3=0*

p RPMAGD=CCC 17)/DENS
AXI=CCC21 )*COSV
AX2=CC( 22)*SINV
AX3=kU
PFTURN

14 COSV=COSCV)
COSVS=COSV*COSV
SINV-SC)PT(19--COSVS)
DENS I ./SORT(CC( 27)-COSVS)

AN! =-CC(283)*DFNS*COSV
AN?=-CC (P6) *DFNS*S INV
AN3=0.
PMAGD=CC (25)/DENS
AX? =CC(C29)*COSV

AX3=U
IPFTUPN

19 S1NU=SIN(U)
AN? =SIN(#COS(V)
AN2=S INU*S! NCV)
AN3=COS'J)
RMAGD=CC(33)*SINU
AX! =CC(33)*ANI
AX2=CCC 33) *AN2
AXS=CC (33) *AN3
R~ETURN

16 COSV=C05CV)
SINV=StNCV)
COSU=COS CU)
cOsUS=c0SU*coSU
SINU=SORT( I.-COSUS)
FAC=1 ./SORT(CC(36)+COSUS)
CCSINU=CC (.9) *StNU
GAC=FAC*CCC 35)*STNU
AN! =GAC*COSV
ANP=cAC*S INV
AN3=FAC*CC C3S ) COSU
PMAGD=CC (40) *51NU/FAC
AX! =CCSINU*C0SV
A X2=C C SINU*S INV
AX3=CC(C37)*COSU
PFTUPN

17 COSV=COSCV)

SINV=STNCV)
COStJ=COS CU)
COSUS=COSU*COSU
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SINU=SORT I .-COSUS)
FAC=1 ,/SOPT( CC(44 )-COSUS)
CCSINU=CC (47) *SINU
CAC=FAC*CC( 43)*S7NU
ANt =GAC*COSV
AN = GA C* SINV
AN:3=FAC*CC (46) *COSU
PMAGO=CC (48) *S1 NU/FAC
AX! =CCSINU*COSV
AX2=CCSINtU*SINV
AX3=CC C45)*COSU
REFTUPN

18 COSV=Cos(V)
SI NV=S NC V

SI NU=S INC U)
BAC-1 ./(CCC5I -COSU)
CAC=SAC*( I.-CCC9I )*COSU)
FA6C=SAC*CCC945
ANt =-CAC*COSV
ANZ=-CAC*SINV
AN3= CCCS3)*SINU*BAC
PMAGD=CC (56) *BAC*BAC
AX 1 FAC*COSV
AX2=FAC*S!NV
AX3=FAC*S INU*CC (59)
PETUPN
FNfl

I CCC I)=1.*WAVE

2 CC(2)=1.*WAVE

3 CCC3)1I.*WAVE

4 CC(4)1.**WAVfi

5 CC(5)=I**WAVE

6 CCC6)=I**WAVE

7 CC(7)=.575*WAVE

8 CC(S)=-*579*WAVF

9 CC(9:=1.*WAVC
CC( 10)=1.
CC( II)=CC(9)*CC (9)

10 CC(12)rt**WAVE
CC C I3)= I.
CC( 14 )CC( 12)*CC( 12)

11 CCCIS)=1*0*WAVE

12 CC(16)=1*8S*WAVE

13 CCC 17)=I.*WAVE
CC C18) =1.
CC( 19)=CC( I8)*CC( 18)
CC(20)=SQPT(CCC 19)-l.)
CC C21) =CC(C17 )*CCC 18)
CC(22)=CCC 17flICC(20)
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14 CC(25)=1.*WAVE
CC(26)=lo
CC(27)=CC (26) *CC( 26)

ccc29),CC(2I5)*CC(26!
CC(30) =CC(25) *CC(28)

*15 CC(33)=1.*WAVF

16 CC(341=1.*WAVE

CC (36) CC(35 *CC(35)

CC(37) zCC(34 )*CC(C35)
CC (38) =SOPT( CCC 36)41.1
CC C39)=CCC34 )*CC( 38)

CC(40)=CC(39) *CC(34)

17 CCC42)=1.*WAVE
CCC 43) =1

CC(44 )=CC(43)*CC(43)
CC (45)=CC(42)*CC(43)
CC(46) =SOPT(CC(44) -1e)

CC(47) =CC(42!*CC(46)
CC(48)=CC(47)*CCC 42)

IS CC(49)=*18*WAVE
CCC 50 )=I*.86* WA yE
CC(51 )=CC(50)/CCC49)
CC(52) =S0RT CCC 601 *CC(50)-CC(49)*CC(4

9 )I

CC i53) =CC(52)/CC(49)
CC(54 )=CCC52)*CCg5-3)
CC(55)=1 ./CCC53;
CC(56)=CC(54 )*CC(52)
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