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ABSTRACT 

dioxide to bwn íÍ ? < transP°rt oxygen and carbon 
PnnHiÍ! Í1 d flowing xn semipermeable tubes under steady-flow 
nln* is Presented, llie model considers the membrane resistance 

(Dro?eiirHnSP0^/nd a:i?W8 f0r an addltlonal interfacial resistance 
(protein deposition, etc). The possibility of gas transport auemen- 

incîude2Uintthr0taHi!>n ^ erythrocytes ln the velocity field is 
fouíd in ÍL ÎÎ m ® ; h?WeVer> no evidence of this augmentation was 

im^nLÎ ™ range WhlCh the m0del was comPared with exper- 
was «oí T Partlal differential equation for the gas transport 

solut^ns ^ ally HSlng & dl8rltal comPuter- Simultaneous solutions for oxygen and carbon dioxide were obtained, and the pH 

”t. SSd £ tT "’ÏV ln the tUbe- °‘ «P.rïLS.1 
Dredioïen h f r and °ther lnv®stigators with the curves 

soîuUon oïytÎeetm SîOWS eXcellent gréement. The numerical 
olution of the transport equation yields the bulk average values of 

as'thr?°? l0flde Partial pressure, and oxygen saturation, as well 

length înîern0î ValUe °f theSe Parameters as a function of tube 
length and radius. A simple steady flow design equation, which is a 
reasonable approximation of the computer results 5or a wide raLe of 
venous blood conditions, is presented. ^ 
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1. INTRODUCTION 

The use oí extracorporeal gas exchangers for the oxygenation of 

blood and removal of carbon dioxide during surgical lung bypass is an 

established practice today (ref 1). The early devices were simple in 
concept and operation—the exchange of gases was generally made through 

a direct gas-blood interface, either through bubbles or thin films. 

This exchange mechanism has a high efficiency, and these devices proved 

the feasibility of the extracorporeal exchange of respiratory gases. 

The major limitations to their use for long term perfusion are imposed 

by the irreversible damage to various blood constituents caused by 

mechanical trauma and direct blood-gas interfacing. 

Recent efforts attempt to reduce mechanical shear stress by using 

better materials and fewer moving parts, and to reduce the liquid 
surface stress. The introduction of a semipermeable membrane between 

the gas and liquid faces appears to accomplish both objectives. This 

report presents a mathematical model of the gas transport in a semi¬ 

permeable capillary-tube gas exchanger through which the blood is 
flowing steadily. This problem has been analyzed by other investigators— 

particularly, by Buckles (ref 2) and Weissman and Mockros (ref 3). 
The theories developed by these investigators do not fully agree with 

existing data or do not consider all the parameters involved in the 
gas transport. The solution proposed in this report is more general or 

complete than those previously developed. The solutions of the 
differential equations for oxygen and carbon dioxide are obtained 

simultaneously, and the pH is computed for any point of the tube. 
Internal concentration profiles for both gases and pH internal profile 

are obtained as a function of the radius and length ot the tube. 
Comparison of the solution with the data obtained by other investigators 

(ref 2,3) and the data compiled herein shows excellent agreement. 

2. LITERATURE SURVEY 

The mathematical analysis and modeling of the steady-state flow 

capillary tube blood gas exchangers, normally called oxygenators, has 
been attempted by earlier investigators with varying degrees of success. 

Mar: et al (ref 4) developed a zcdel describing the transient phenomenon 
of oxygenation of blood films, where the oxygen path is several times 

the order of magnitude of che diameter of the red cells. Bradley and 

Pike (ref 5) studied the gas transport in capillary tubes. But the 

work of Buckles (ref 2)—later published by Buckles, Merrill, and 

Gilliland(ref fi), -nnd the papers published by Weissman and Mockros 
(ref 3) and Thews (ref 7) are indeed the most important papers published 

in this field. 

The model developed by Weissman and Mockros is very similar to 

the model developed earlier by Buckles. Buckles' steady-state oxygen 
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transport differential equation, properly transformed to the symbols 
used elsewhere in this paper, is given below 

d0 a 0 r äc-, |dC ds 1 

dr^’dr-' " Vz L"d7 + dT 1 * 
ÖC ds 

Z ’“dZ + dZ 
(D* 

where the oxygen content of the sinks (RBC), s, is a function of the 

gas concentration C, The term ds/dZ at constant pH can be written as 

ds ds dC 
— --. (2) 
dZ dC dZ 

Substituting equation (2) into (1)> the following equation is obtained 

I>0 d r dC'i r ds -idC 

—rr; = vz i1+ -/- • 
r dr òrJ L dC JdZ 

(3) 

This differential equation is the same equation obtained by Weissman 

and Mockros (ref 3), using the substantial derivative to describe the 

rate at which the oxygen is delivered or absorbed by the sinks. 

The numerical solutions to equation 3 obtained by these investigators 

differ mainly in the boundary conditions and in the numerical method 

used. Buckles did a full analysis of the gas transport through the 

wall and considered the wall flux as one of the boundary conditions. 

He numerically solved the transport differential equation (3), using 

the Crank-Nlcolson method. Weissman and Mockros Ignored the effect of 

the wall or. the overall gas transport and assumed that the partial 

pressure of the gas at the wall-blood Interface was constant and equal 

to the partial pressure of the gas outside the wall. The gas transport 

differential equation was solved numerically by Weissman and Mockros, 

using straightforward finite differences techniques rather than the 

Crank-Nlcolson method. Diese researchers obtained the value of the 

diffusivity D0 by fitting their numerical results to their own experi¬ 

mental data and using D0 as an Independent parameter. The value of 

the diffusivity determined in this way is inaccurate, since it is 

affected by the wall characteristics not considered by the model. 

Another, perhaps less Important, difference between the two models 

is the shape of the velocity profile. Buckles used the Casson (ref 8) 

model, whereas Weissman and Mockros used a simple Newtonian parabolic 

model. However, the Casson model approximates a parabolic profile in 

the flow range of the data taken by these investigators. The theoretical 
curve developed by Buckles (ref 2) and experimental data he obtained 

using whole fresh human blood are shown in figure 1. The graph shows 

that the theoretical prediction is reasonable at high flows, tut it is 

"■Nomenclature of symbols listed on pp. 69- 72. 
10 



too low in the low-flow region. For example, at flows of the order of 

0.1 cc/min, the theoretical curve is 30 to 45 percent lower than that 

for the actual laboratory data. 

Buckles’ (ref 2) work, in this author's opinion, is an excellent 

analysis of the oxygenation phenomenon in flowing blood under steady- 

flow conditions. However, the comparison between his data obtained 

under carefully controlled conditions and his theoretical prediction 

shows a considerable discrepancy. Preliminary explanations for this 

discrepancy include facilitated oxygen transport either by hemoglobin 

diffusion and/or rotation of the red calls in the velocity field. 
Ihe mechanism of facilitated oxygen transport by hemoglobin diffusion 

was first shown by Schollander (ref 9). Houghton (ref 10) suggested, 

however, that this phenomenon doe» not occur in the red cells because 
of the high concentration of hemoglobin. When the concentration of 

hemoglobin is high, the molecules act as closely packed spheres 
(ref 11,12) and diffusion of the molecules is not likely to occur. 

Klug, et al (ref 13) measured the diffusivity of oxygen in hemoglobin 

solutions and found that at concentrations similar to those of the 

human red cells (about 35-g percent),Ue augmentation effect was 

negligible. Diffusion augmentation due to rotation of the red cells 

(ref 14) has been included in the model developed in this paper and found 

to be unimportant. A reasonable explanation lies in the numerical 

solution employed. The solution to the equations employing a finite 

difference algorithm used in this study greatly improves the fit of 
the model's prediction with Buckles' data, as described and illustrated 

in section 4.2. 

A different modeling of the gas transport in whole blood is the 

moving front concept of Thews (ref 7). The blood is considered as two 

concentric regions separated by a moving front. The region next to t e 

tube wall is assumed to be saturated while the one close to the tube 

axis is reduced. Diffusion takes place through the saturated annular 

region to the interface between the two regions where the oxygen reacts 

with the hemoglobin. This model is simpler but does not accurately 

(iescribe the actual physical phenomènon of gas transport in flowing 

nlood. Theoretical internal profile curves, presented later in this 

paper, will show perhaps a more realistic picture of the blood behavior. 

Buckles (ref 2) compared Thew'« model with experimental data and with 

his own model, and showed that the advanciisg front theory is not 
conservative but, instead, predicts saturations higher than either the 

experimentally measured ones or the saturations computed using his 

theory. 

Several other investigators studied systems that are closely 

related to the system described in the report. Among them are Keller 

and Friedlander (ref 15) who studied the steady-state transport of 
oxygen through hemoglobin solutions; Spaeth and Friedlander (ref 16) 

who studied gas transfer in a rotating disk boundary layer flow; and 

11 



8tudlad ,he ^o^V^LiZi ijxz s 
3• MATHEMATICAL MODEL 

3.1 Basic Assumptions 

^s^ß^iBsr 
At the saue time the ervthrocvtb°n dJ°Xide follows the opposite path. 

oxygen and giving up carbon dioxid^0 Th& reverslble ^as sinks absorbing 
the model are: dioxide. I*e assumptions used in describing 

is negligible. 

<d) 

(e) 

(f) 

1. 
2. 
3. 

/kn rü?6 diffusion through the wall 
W The system is isothermal. 

<C> fíí,Hdl0Kd 18 a h0mogeneous^ incompressible, non-Newtonian 
fíríd îhe Velocity Profile is described by an integrated 

that :°f 6 CaSSOn (ref 8) equation- assumptionimplies' 

The^velocity vector is parallel to the tube 

The velocity of the blood at the wall is zero, and 
^nere is no red cell migration» 

wîthanLPOln\îhe ?aS contalned ln the sinks is in equilibrium 
with the gas dissolved in the adjacent plasma- 

;* *Je 8as-sink reaction is instantaneous, and 

Axill ilnkS ar! îom°Seneously distributed in the fluid. 
Axial gas transport by diffusion in the blood is negligibû 
compared with the gas transport due to blood flow. 

The oxygen consumetí by metabolic process during oxygenation 
of the test blood is negligible. xsenarion 

3.2 Gas Mass Balance 

distribuM^ew?nf^enîîal equation describing the gas concentration 

Gas in by dliiuslon at r 

Gas out by diffusion at r+Ar 

r nplj, 2TT AZ 

r nr I r+Ar 2tt AZ 
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Gas in by flowing fluid at Z 

Gas out by flowing fluid at Z+AZ 

Apparent gas reaction rate of 
■the fluid element 

clz 2tt r Ar 

C|z+Az Vz 2TT r Ar 

S Zrrr Ar AZ 

where S is the apparent gas reaction rate per unit volume. The aooarent 

bvStheae8s°nir£te Í9.d®flned as the mole8 Kas delivered or absorbed 
by the gas sinks contained in the element of fluid, per unit time due 
to the displacement of this element from one coordinate to the next 

For steady-state conditions, 
following relation. 

the mass balance is described by the 

frate of mags] 

l_ out ! 
[rate of mass] 

L in J 
+ 

rate of mass 

disappearance 
by reaction 

0 

Substituting each variable by its mathematical expression yields 

CUz - cl 
z 

r n».L. “ r n 
-r-.r+^r r'r , _ „ -'z+Az 'z 

+ r V ---- + S r = 0 Ar AZ 
(4) 

Taking the limit of equation (4) as Ar -• 0 and AZ -• 0 yields 

S(r nr) ac ~nr~*rv* U***-o- (5) 

The molar flux is related to the concentration gradient by Pick's law 

(6) r hr f 

l‘the ■llffu.ivlti considering th. augmentation 

(6) ÎÎ'csrî.” ”* <llffer•,,tll,1 «I“»“»'» “fter subatltutlng equation 

i à (r D . y 
r âr lr ü hr J " Vz ÖZ + S (7) 

This equation can be solved if the values of S V 

The following sections are devoted to the definition 
and D are defined, 

of these parameters 

3.3 Apparent Reaction Rate 

The oxygen or carbon dioxide stored in the 
equilibrium with the gas dissolved i.. the plasma but 

sinks, s, is in 

does not contribute 
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ío the gas partial pressure. Under steady-state conditions, the rate 

at which the gas Is stored or delivered by the sinks per unit volume 

of blood, S, is given by the substantial derivative of s, 

Rearranging equation (8) yields 

s d» DC 
dC Dt * (9) 

where the substantial derivative of the concentration is given by 

DC 

Dt at + 
V ¿c ^ ac 
r àr r a© + V, 

ac 
* az 

(10) 

However, at steady state 

ac 
= 0 and by previous assumption Vr = 0; Vq = 0 (11) 

thus, the substantial derivative becomes 

25 « V ^ 
Dt z az • (12) 

Substituting equation (12) into (9) yields 

= Êã. v àC 
dc vz az (13) 

Equation (13) describes the reaction rate S per unit volume of blood. 

The total oxygen content of a unit volume of blood is given by the 

oxygen dissociation curve shown in figure 3 (ref 21) and described in 

detail in appendix A. This curve closely represents the oxygen stored 

in the red cells since the oxygen dissolved in the plasma is compar- 

a v® y very small. Defining T as the g-moles of oxygen stored in the 

red cells per liter of blood when the red cells are fully saturated, 

the oxygen dissociation curve gives the percent, PS, of the maximum 

saturation, T, versus the partial pressure of oxygen in mm Hg. For 

normal blood, assuming a hemoglobin concentration of 15-g percent 

(g/100 cc of blood), T is 9.1 10-3 g-moie/liter. TTius, the oxygen 

stored per unit volume of blood in g-mole/liter, s, is 

s = 
100 

PS 
(14) 

The relationship between the carbon dioxide stored in the sinks 

per unit volume of blood and the carbon dioxide partial pressure 

considering the Haldane effect is given by the following equation(-ef 22), 

14 



which Is a good »pprcocimation for nost of the partial pressure range 

s - 1,14 KT2 + 2.51 HT4 pC02 , (15) 

where the pC02 ie given la nun Hg and the stored carbon dioxide in 
g-mole/llter. 

The carbon dioxide partial pressure in nun Hg is related to the 
concentration of carbon dioxide in the plasma in g-mole/liter by the 
following relationship (ref 22) 

pCOg = 3,59 104 C, (16) 

Substituting equation (16) into equation (15) yields 

s a 1.14 10 2 + 9,0 C . (17) 

From equations (14) and (17), the value of ds/dC is 

ds 

dC 
T 4 /«ox 

100 dC<PS) 
for oxygen, and (18) 

ds n n 

dC"9*0 for carbon dioxide 

The function PS is given in appendix A. 

(19) 

3,4 Velocity Profile 

Pia non-Newtonian behavior of blood has been extensively 
Investigated under steady-flow conditions. The constitutive relation 
used in this paper is that obtained by Casson (ref 8) for the flow of 

printing ink, Merrill, et al (ref 19), showed that the Casson relation 
represents the non-Newtonian behavior of blood within reasonable 
accuracy. The Casson equation is expressed as 

Substituting the Casson relation into the equation of motion 
for the shear stress and using the boundary conditions, 

V = 0 at r s R 
z 

dV 

IT = 0 at r = r0 . 

Where r0 is the radius of the plug flow region, the following relation¬ 
ships for the axial velocity are obtained. 

15 



Por r* > y 
T 

VZ = zY^-1 " (r*)2 ■ (8/3) yl/2 ■ (r*)3/23 + 2Y(1 -r*)} (21) 

and for r* < y 

vz - f-^t1 + 2 Y - Y2/3 - (8/3) Y1/2] (22) 

where r* ss r/R and y = r0/R. 

The volumetric flow, Q, is given by 

3 
Q = 411^^1 ’ (ie/7) Y1/2 + (4/3) Y - (1/21) Y4} (23) 

The details of the solution are given in appendix B. The 

parameters n and t0 were determined, using the data obtained by Dorson 
and Hershey (ref 20). 

Figure 4 is a plot of these data for three tube diameters, and 
the theoretical relation obtained from equation 23 using t = 0.07 

dynes/cm2 and r| = 0.0283 poises. The dimensionless velocity profile 

as a function of the dimensionless radius for Y = 0 and y = 0.5 is 
shown in figure 5. 

3.5 Diffusivity 

The flux of a chemical species from a region of high concen¬ 

tration to a region of low concentration is described by Pick's law, 

which essentially establishes that the flux is proportional to the 

concentration gradient. The proportionality parameter, called 

diffusivity, may be either a constant or a function of other variables. 
In the case of the transport of gases in blood, the flux may be described 

by the sum of two terms: the ordinary diffusion flux and a flux 

Introduced by the rotation of the erythrocytes in the velocity field. 

If the second flux is somehow proportional to the concentration gradient, 
the total effective diffusivity becomes the sum of the ordinary 

diffusivity D0 and the proportionality term between the rotation-induced 
flux (or augmented flux) and the concentration gradient which may be 

called rotation-induced diffusivity Drof effective diffusivity 
becomes then 

D * D0 + Drot (24) 

The following two sections will be devoted to the definition 
of Dq and DpQt• 
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3.5.1 Augmented Diffusion 

The possibility of augmented diffusion in flowing 
blood has been reported in the literature (ref 14). Particles suspended 
in shear flow rotate as they move along with the fluid. Their velocity 

of rotation is a function of the shear rate of the fli^d and of the 

particle shape and rigidity (ref 23). The rotating particles intro¬ 

duce a local radial component of velocity with a resulting mixing effect 

that can be expressed as an augmented diffusion. The actual complex!- ' 

ties of this phenomenon prevent its exact mathemàtical description; 
however, the problem can be approched using an analysis similar to that 

used in developing the Prandtl mixing-length theory. Keller and Leonard 

(ref 14), based on the theory presented by Goldsmith and Mason (ref 23), 

obtained an expression for the rotation-induced flux around rotating 

spheres and assumed that the resulting relation also predicts the flux 
around tumbling red cells 

rot 
Í JÎÜï 1 

“la dr / 
ÔC 
57 (25) 

where 6 is the diameter of the red cell. However, if this flux is to 

be used in conjunction with the ordinary flux, it should be averaged 

over the whole volume occupied by the red cell and its corresponding 

surrounding fluid. The average rotation-induced gas flux is then 

j- 6a dV . ÒC 

"rot ~ 8 dr / àr * 

where is an unknown factor generally dependent on hematocrit, eryth¬ 

rocyte volume, and boundary layer thickness around the erythrocyte. 

Expressing this flux as the result of augmented diffusion, the rota¬ 
tion-induced diffusivity is 

D 
rot (27) 

2 

where ß = cp Ö /8 is called the blood-mixing coefficient in analogy to 

the mixing length in Prandtl theory, ß is unknown and should be experi¬ 
mentally determined. 

17 



3.5.2 Ordinary Dlffuslvlty in Whole Blood 

U 1,4 , Ordinary dlffuslvlty of oxygen In whole blood and In 
hemogiobln soiutions have been reported by several investigators—amona 
them, Hurshey and Karhan (ref 24) who measured oxygen dlffuslvlty in 

í i L.“T*ted ;h”p blood ov«r 8 «nge ol horaatocrlti ¡Keller 
and Priedlander (ref 15) who studied the steady-state transport of 

t^“S íhTn°bÍn sclutlon8; and Klu« (ret 13) who Investigated 
the oxygen dlffuslvlty in hemoglobin solutions. 

< Assuming that the red cell membrane does not offer 
! resistance to the oxygen transport as suggested by Thews 

(ref 25)and Kreuzer and Yahr (ref 26), the blood can be ideaHzed H 

interfacial WÍtí JÍ8Crete °* red cell cytoplasms with no 
interfacial i-esistance. The red cell cytoplasms may be considered as 

* 0 35e?0-6 2/°1Utî0n 0f hemoelobln with a dlffuslvlty of D_h 

i Fp - _ {1¾}^ - 1} 
(28) 

where X is a parameter dependent on the ratio d *_ A) and the 

geometrical characteristics of the erythrocyte. r^icL (ref 27) 
developed thle equatlcn ,„r ellipsoid^ perilous ao as uLd ha, the 
behavior ot the red celle could be repreaented by hie „odeü He 

etormlaed that the ratio of the aies of the ellipsoidal particles 
representing the red cells Is 0.235. Using this ratio and the ratio 

SoC r " Vi?' to*ether with the chart developed by Pricke (ref 27) 
e value of the parameter X becomes 1.22. Substituting the numerical 
lues into equation (28) and rearranging yields 

D0 = 1.99 10-5 ~° ~ °«727 » 
100 + 0.591 H (29) 

Equation (29) is plotted in figure 6. 

was ^ th® dií£uslvity carbon dioxide in blood 
s estimated, using an analogy with pure water. For pure water (ref 28) 
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Carbon dioxide diffusivlty 

Oxygen diffusivlty 
0.9833 . 

This ratio was assumed to be the same for whole blood. 

3.6 Transport Equation 

Equation (7) is the general transport equation in which the 

apparent reaction rate S, the fluid velocity Vz, and the diffusivlty D 

are unknowns. The reaction rate is given by equations (13), (18) and 

(19); the fluid velocity is described by equations (21) and (22) ; and 

the diffusivlty is given by equations (24), (27), and (29). Substituting 

these equations into equation (7), the following differential equation 

is obtained. 

*2 + »r rj r hp pi ÒC a2r -, 
lF2+^T¥p-^-Ji^ + r*¡^} r* P F, 

ÒC 

5Z* 

where 

To ß 

V T! D0 

(30) 

r* = r/R 

V = r0/R 

Por r* > y , 

Fl = (r^)1/2 - yl/2 

F = 1 - (r*)2 - (8/3) Y1/2 [1 -(r*)3/2] + 2y (1-r*) . 

For r* < y. 

F! = 0 

F=l+2Y-Y2/3- (8/3) Y1/2 • 

For oxygen. 

1 + 
T dPS 

100 dC 

F2 = 1.0 
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T P 

For carbon dioxide, 

10.0 

P2 => 0.9833 

3.7 Boundary Condition« 

a set of bountiar^condltions—that‘is^ stàt*10“/* e'|Uatl0" (30> requires 
specified vaine, of the in^peïtot viriÎhîr Ph:'31cal ^ » 
used In this paper for solving the transnort ’ boundary conditions 

ng Tfte transport equation are: 
(a) 

and constant at the°entrance ofar6 UnlforM 

C(r*, 0) = co , 

dioxide? haS a dlfferent ValUe for oxygen and for carbon 

(31) 

vb) Hie radial mass flux at ts« _ . 

oxygen and for carbon dioxide0" 6r ° th6 tUbe ÍS 201:0 for 

J^{C(0, Z*)] = o 
(32) 

the wal 1. b°(Detaïls°of^the"derivati th®fgaS transP°rt through 
given in appendix C.) n of this equation are 

ar»1 D V—jic(l oa , z*)] (33) 

ïïnh.P4.snp“tB.“edi“:ïtfia:ial.t"?lstance «o»3 
equivalent concentration defined’as Ji. and C" t* the “onstant 
tratlon in plasma côrr^sn™«^ ,! .! "mthetlcl gas concen- 
« : the gas. Ih, dSïS S ÍÍ. WrtU1 P«58“™ 
aapreased as equivalent lltL.luy '1 . D ^'‘V* 
and cp are the gas solubiliti«« ~ D®^n/cP^ where cm 
plasma, and D L th? ?»¡ ÎÎÎ! the membrane and in thS 

. Dm is the gas diffusivity in the membrane. 

«elation Betwen Carbon PioriH, --,ratlon n„ 

tratlon cf^rïon'dloriS'is“^!1.0" oí/‘P“P°»«‘e to th. oonoen- 

^ “a - 

3.8 
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(34) 

the existence of these species in solution in the plasma is 

C02 + 2H2O 2 H3O+ + HCO3 

and the equilibrium among the species is given by 

[H3ot3 Tacoa“] ^ io_6#11 (35) 

[C02] 

Considering that -log[H30+] « pH, equation (35) can be rearranged to 

pH = 6.11 + log 
[HCOa"] (36) 

the equation known as the Henderson-Hasselbach relation. From equation 

(35) it is also possible to show that 

[HCO3-] = 1opH_6*11[co2] . 

tutlug equation (16) into equation (37) yields 

(37) 

[HCO3"] 0002 ■■ lOPH-6-11 . 
3.59 104 

(38) 

The stoichiometry of equation (34) shows that any change in 

oncentration of bicarbonate must bt equal to the change in the 

mtration of hydronium, 

a[hco3"] = ACHaO4! = 10 pHi - 10 pH (39) 

•e pHj^ is the initial value of the pH. 

The percent of change in the bicarbonate concentration is 

given by 

100 a[HC03~3 _ 3.59 10"(2 P11 ” 12.11) (10PH " PHi -1), (40) 

[hco3”] pC02 

For the extreme conditions pCOg = 1 mm Hg, P^ = 5 and pH = 9, the 
percent of change in the bicarbonate concentration computed by using 

eauation (40) is only 0.046 percent. This numerical value shows that 
the bicarbonate concentration can be assumed constant for computation 

of pH inside the gas exchanger tube; then 

pH = 6.11 + 
fconstant! 

logi rroo'f”) 
(41) 

where the constant can be computed from the initial conditions at the 

entrance of the tube. 
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3.9 Numerical Solution 

A computer program (appendix D) was developed for a simul¬ 

taneous solution of the oxygen and carbon dioxide differential equations. 

For a given set of boundary conditions, the program computes the concen¬ 

tration of oxygen and carbon dioxide, and the pH for points distributed 

in both the axial and the radial direction. The program also computes 

the cross-sectional average value of these parameters and the percent, 

of oxygen saturation for points along the tube. 

To execute the numerical solution on the digital computer, 

equation (30) was approximated by a finite difference equation in which 

the first derivative was replaced by the first forward difference, and 

the second derivative was replaced by the second forward difference. 

The oxygen dissociation curve, shown in figure 2, was curve fitted in 

three sections. The curve-fitting equations are given in appendix A. 

The oxygen percent of saturation PS and the apparent reaction rate S 

were computed, using these equations in the subroutine COSA. Hie 

dimensionless radius Y of the plug-flow region was computed in the 

subroutine GAMM using equation (23). 

4. RESULTS AND DISCUSSION 

4.1 Effect of Velocity Rroflle 

Equation (23) may be rearranged to the following forms: 

“(16/7) y1/2 + (4/3) Y “(1/21) y4} (42) 

and 

y = - (16/7) Y1/2 + (4/3) Y - (1/21) Y4} 1 (43) 

Substituting equation (43) into (21) yields 

V a 2-3. Cl - (r»)23 - (8/3) Y172 [l ~ (r*)3/2l + 2Y (1 - r») (44) 

z " R i - (16/7) Y1^2 + 0/3) Y - (1/21) Y4 

On the other hand, for a Newtonian fluid, the velocity profile is given 

by 

V = 2-3- [1 - (r*)2] . (43) 
Z TT R2 
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w „__ Table 1 Bhows a comparison between the velocity profile eiven 
y a Newtonian fluid and that given by equation (44), taking an arbitrary 

tubli'radlusT ^ ^ PlU*-no* ^ 

«V,«» v*Jues1of the din“»nflionless velocities given in table II 
show that when the plug-flow region becomes 1 percent or less of th-î 
tube radius, the velocity profile can be safely assumed to be parabolic. 

Substitution of the numerical values of t . n. and v - n i 
equation (42) ,lve. «/*3 = 192 »o-l. Thl. reault Shoî’. “« i« 
iarger than 192 sec l, the velocity profile can be assumed to be 
parabolic and the blood can be treated as Newtonian fluid. 

Substitution of the value of t0/Y from equation (43) into the 

slinïîr «V ° f ^ e±Van e<*uatlon (3°) Kives the following simpler expressions for theJe parameters ^ 

Nb 

z* 

-4Q,ß 
TT R3 dc< 

n Dp Z 
2 Q 

(46) 

(47) 

When the velocity profile is parabolic (Q/R3>192 sec"1) the 

(47) 3sh^ tdhlf:enn!ïftl equation (30> toSether with equations (46)^4 
(47y show that if the dimensionless blood mixing coefficient N„ is 
assumed zero, the equation becomes explicit in R. Hence, the radially 
averaged concentration over r* can be expressed as a function of Z* 
alone. 

Table I. Comparison between ruraoolic Velocity Profile and Casson 
_ Velocity Profile for y » 0.1 

Vz/(2Q/ttR2) 

T 

Parabolic Casson 

Percent error 

0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.0000 

0.9600 

0.8400 

0.6400 

0.3600 

0 

1.0000 

0.9609 

0.8402 

0.6398 

0.3599 

0 

0 

40.09 

40.02 

-0.03 

-0.03 

0 
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4,2 Comparlsou with Buckles' Experimental Data and Theoretical Results 

The experimental results obtained by Buckles (ref 2,6) using 
fresh human blood are tabulated In table II. He carefully determined 

the oxygen dissociation curve of the blood donated for his experiment. 
The curve determined by Buckles at a pH of 7.14 coincides with the 

standard curve for a pH of 7.20; this curve (pH = 7.2) was used for the 

computation. The permeability of oxygen in medical grade silicone 

rubber was obtained from reference 29. Buckles'experiment was conducted 
to measure only the oxygen transport. The partial pressure of carbon 

dioxide in the blood and the pH were maintained constant along the tube. 

The diffusivity of oxygen in whole blood for H = 26 was 
computed using equation (29), D0 = 1.38 10-5 cm2/sec. Figure 7 is a 

plot of Buckles’ experimental data and theoretical curve. The 

numerical agreement between Buckles’ data and the theoretical prediction 

for ß=0, suggests that in this case the rotation-induced diffusion is 

insignificant when compared with the ordinary diffusion due to concen¬ 
tration gradients. 

Table II. Buckles' Experimental Data with Human Whole Blood 

L ■ 39-5 cm 

0D = 0.0636 cm 

ID = 0.0305 cm 

Input pC>2 = 0-mm Hg 

Outside p02 = 686-mm Hg 

Hb. cone. = 

Temp. = 

pH 

Input PCO2 = 

Outside PCO2 = 

9.1 gn$(H=26) 

38°C 

7.14 

36-mm Hg 

36-mm Hg 

No. Q cc/min 

1 

2 

3 

4 

5 

6 

7 

0.521 

0.521 

0.1054 

0.0521 

0.521 

0.210 

0.1054 

pOo mm Hg PS 

13.8 16.0 

11.8 12.5 

56.1 81.0 

544.0 100.0 

18.7 25.8 

32.1 51.9 

47.7 74.2 

24 



4.3 Comparison with Welseman and Mockros1 Experimental Data 
and Theoretical Results 

These Investigators (ref 3) used freshly collected c . tie 

blood In their experiments. Unfortunately, they did not measure the 

hemoglobin concentration in most of their experiments and the pH was 

not reported. The data plotted in figure 8 are for an Initial satura¬ 
tion of 75 percent. Hie tube geometrical characteristics are L = 182.9 

cm, ID = 0.08 in., 0D = 0.09 in. The tube was made of silicone rubber 

(medical grade). Weissman and Mockros fitted their theoretical result 
to the data, using a dlffusivity D0 = 0.883 x 10"5 cm2/sec. Their 
result Is shown in figure 8, 

A pH of 7.4 was assumed for the effects of our computation. 

As before, the carbon dioxide partial pressure was in equilibrium with 

the gas outside the tube and no carbon dioxide transfer was allowed. 

Table III shows a comparison between cattle and human blood dissociation 

curves at pH = 7.4, Since both curves are quite close in the 75-to 

100-percent range, the already known parameters of the human dissociation 
curve were used in our computation. 

Hie ordinary dlffusivity was computed using equation (29), 

assuming a hematocrit of 40 and a hemoglobin concentration of 14,5-g 

percent inside the red cells. These values are in the normal range of 

cattle blood. The computed value is DQ = 1.15 x 10-5 cm2/sec. As 

before, the agreement between predicted value and laboratory data is 

excellent for ßsO. Hie reader should be cautioned not to compare the 

D0 values and conclude that figure 8 shows it as an unimportant 
parameter. It must be reemphasized that the model of Weissman and 

Mockros assumes a boundary condition of no membrane resistance to the 

gas transport. Hence, their lower value of Dq, obtained by a curve 

fit, is merely implicitly including the added resistance due to the 
membrane. 

Table III. Comparison between Cattle and Human Blood Oxygen 

Dissociation Curve at pH = 7.4 and T = 37°C. 

PS 

75 

80 

85 

90 

95 

P02_ mm 

Cattle 

43 

47 

52 

60 

75 

Human 

40.9 

45.7 

51.7 

61.4 

81.4 

25 



4,4 Internal Profiles and Bulk Average Values of pH, Carbon 

Dioxide, and Oxygen In Oxygenation of Standard Venous 
Human Blood. -- 

The application of the model Introduced in this paper to the 
gas transport in standard venous human blood (ref 30) Is Illustrated 

in the example presented below. Since no indication of significant 

augmented diffusion has been found in the data obtained by Buckles 
(ref 2) or those obtained by Welssman and Mockros (ref 3), It was 

assumed that this phenomenon is insignificant in the normal oxygenation 
flow range, it was also assumed that the velocity profile is parabolic, 
which is a good approximation for Q/R3 > 192 sec"1. The tube charac¬ 

teristics, as well as the initial and boundary conditions are given in 

The radially averaged or bulk average oxygen percent of 
saturation, carbon dioxide partial pressure, and pH versus the dimen¬ 
sionless length are shown in figure 9. The graph shows that 95- 
percent saturation, which is the normal arterial level, is reached at 

about Z* = 0.4. On the other hand, the normal arterial level of the 

carbon dioxide partial pressure is about 40-mm Hg. This value is 

reached at Z* = 0.23. These results indicate that in this case the 

limiting design phenomenon is the oxygen transport and not the carbon 

dioxide removal. The pH curve slowly Increases from 7.4 to a value 

of 7.55 at 55* »0.4, which is the dimensionless length corresponding 
to arterial conditions. 

Figure 10 shows the internal (unmeasured) profiles of carbon 
dioxide partial pressure and pH function of the dimensionless length, 
Z*, and the dimensionless radius, r*. The carbon dioxide family of 

curves shows that the carbon dioxide depletion occurs mainly in the 

outer layers of blood. The partial pressure of this gas at the center 

of the tube stays almost constant in the neighborhood of 50-mm Hg 

(initial value). The partial pressure at the wall (r* = 1) is between 
15- and 9-mm Hg for most of the tube length. This result indicates 

an overall carbon dioxide transport driving force of 50-mm Hg (0-mm Hg 

outside of the wall and 50-mm Hg at the center of the tube), the average 

»all loss is about 25 percent (12-mm Hg). The pH curves show that the 

value close to the wall may be considerably higher than the average 

bulk pH value. This enhances the oxygen bonding capability of the red 
cells by displacing the oxygen dissociation curve, 

Figure 11 shows the internal oxygen profile as a function of 
r* and Z*. At Z* = 0.5, which is the dimensionless length corresponding 
to about 100-percent saturation (fig. 9), the advancing oxygen front 

has not yet reached the center of the tube which is still at the initial 
condition, 30-mm Hg, but the blood in the outer layers is fully saturated 

(p02 > 315-mm Hg). The partial pressure of oxygen at the wall (r* = 1) 

is about 700-mm Hg. This is a reduction of 8 percent in the overall 
oxygen transport driving force (730-mm Hg). 

26 



Table IV. Input Parameters for the Computerized Solution of the 

Oxygenation of Standa'rd Venous (ref 30) Hum^n Blood 

Blood: 

Hematocrit 

Hemoglobin cone. 

Do 

PH 

P02 

PCO2 

Oxygenator Atmosphere: 

PO2 outside tube 

PCO2 outside tube 

42 

lL~g percent 

1.11 X 10"5 cm2/sec 

7.4 

31-mm Hg (60-percent 
saturation) 

50-mm Hg 

760-mm Hg 

0 

Tube: 

Materlil 

O2 permeability (ref 29) 

Silicone Rubber (medical 

grade) 

1210 
cc (STP) mil 

min m2 atm 

CO2 permeability (ref 29) 6310 
cc (STD) mil 

min mz atm 

R 0.01524 cm 

OR 0.031' Z cm 

27 



It Is concluded from this that the wall effect is more signif¬ 
icant in the carbon dioxide than in the oxygen transport. However, 

'n designing an oxygenator for the conditions described in table I, the 
oxygenation is of primary importance, slice the carbon dioxide removal 

to standard arterial level is accomplished before the standard oxygen 
saturation arterial level is reached. 

4*5 Parametric Analysis and Design Equation 

A parametric analysis was conducted to determine the effect 
of hemoglobin concentration, hematocrit, pH, initial conditions, 
diffusivity, flow rate, and the tube characteristics (thickness, 

permeability, radius, and length) on the blood oxygon saturation. For 

this parametric analysis, the augmentation effect on diffusion due to 

the rotating erythrocytes was assumed insignificant. Also, the blood 
was considered a Newtonian fluid with a parabolic velocity profile. 

These are reasonable simplifications for the range within which most 

oxygenators of this type would be designed. The hemoglobin concentration 
Hm related to the hematocrit H by Hm = 35.5/H, where 35.5 is the concen¬ 
tration of hemoglobin inside the red cells in g percent (ref 31). 

nieoretical results were obtained for a wide range of initial 
and boundary conditions. An analysis of these results showed that the 

increment in oxygen percent of saturation from the initial venous blood 

saturation APS could ,je represented by an exponential function of the 

dimensionless length Z*. In order to use one function for any initial 

and boundary conditions within a limited range, the form of this function 
was chosen as APS = A(B Z*)c where C in a constant, and A and B are 

parameters dependent on the other dimensionless parameters that affect 

the gas transport (wall characteristics, hematocrit, and initial oxygen 

saturation). The particular function chosen was the simplest form that 
represented the computer results with reasonable accuracy. This 

expression allows the design of steady-flow capillary tube oxygenators 
without the use of a computer. 

The computer results were plotted on logarithmic paper, and 
it was found that the average value of the exponent C was 0.537. It 

was also found that the value of the parameter B was independent of the 

hematocrit and wall characteristics and could be simply described by 
B ss 1 - PSV/100. Figure 12a shows the increment in oxygen percent of 

saturation predicted by the computer for several initial values of 

venous oxygen pe-cent saturation and for certain given hematocrit and 

wall characteristics shown in the figure where the tube material is 

silicone rubber (medical grade). In the figure, APS is plotted against 
(B 25*), Figure 12a shows that the majority of the points predicted by 
the computer are in a single straight line with a slope of 0.537. 

The points farthest from the average straight line are those corre¬ 

sponding to the lower initial venous blood saturations (0 and 30 percent). 
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These points have the least practical value, since most oxygenators are 

designed for initial saturations above 45 percent. In any case, these 

points are only 2 or 3 units of saturatioi: from the strain line 

representing the majority cf the computer results. Figure 12a a?.so 

shows that the pH effect on APS for pH between 7.3 and /.5 is insig- 
nificant. Figures 12b through 12e are similar to figure 12a but for 

different hematocrits and/or tube characteristics. 

After plotting the intercept of these lines at B Z* =1 versus 

the hematocrit and tube characteristics as given in the third boundary 

condition for equation (30) for F^ =1 (no interfacial resistance), it 

was found that A could be approximately described by A = [155.4 - 1.3 H 

- 1.5 In 0R*/Pm 10"4]. Substituting the values of A, B, and C into 

the empirical equation describing the change in oxygen percent of 

saturation yields 

APS = [155.4 - 1.3 H - 1.5 In 0R*/Pm10"4] APS* (48) 

A PC* = [(1 - PSvAOO) Z*]0,537 . (49) 

The factor 1.5 includes an average oxygen diffusivity and the oxygen 

solubility in blood so that the last jerm is dimensionless. In equation 

(48) the permeability oi the wall Pm must be used in cc (STP) mil/m2 

atm min. 

Figure 13 is a plot of equation (49). Hie data obtained by 

the author using rejuvenated 21-day-old human blood and the data 

obtained by other investigators (ref 2,3) are also shown in the figure. 

Hie experimental venous and arterial data obtained by tha author and 

the arterial values predicted by the model are given in table V. 

Figure 13 implies that the transport characteristics of 

rejuvenated 21-day-old blood are close to the transport characteristics 

of fresh blood, although some other physiological properties may be 

changed. 

5. SUMMARY AND CONCLUSIONS 

A mathematical model for the transport of oxygen and carbon 

dioxide in semipermeable tubes under steady-flow conditions has been 

developed. Hie model considers the blood as a non-Newtonian fluid, 

and assumes the sink reaction rate with the gases to be negligible 

compared with the gas diffusion time through the plasma. The model 

considers the membrane resistance to the gas transport, including 

the possibility of an additional mass transport resistance due to 

interfacial phenomena (protein deposition, etc). Hie possibility of 

gas transport augmentation due to the rotation of the erythrocytes 
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in the velocity field is also included. The ordinary diffusivity of 

the gases in whole blood was determined by using an equation developed 
by Fricke (ref 27), together with the data obtained by several other 

investigators (ref 13,24). The numerical solution of the transport 
partial differential equation was obtained by approximating these 

equations by finite difference equations and using a digital computer. 
The oxygen and the carbon dioxide differential equations were simul¬ 

taneously solved and the pH computed for any point in the tube. The 

model's prediction showed excellent agreement with the data obtained 
by other investigators (ref 2,3) and that obtained by this author. 

Although explicitly included in the model, in processing the solution, 
the interfacial resistance and augmentive diffusion effects were 

considered negligibly small. The agreement between model predictions 
and experimental data was used in Justifying this assumption. A 

simple design equation and generalized chart were developed using the 

computer results and curve-fitting techniques. The oxygen saturation 

computed from this equation agrees with the computer solution within 

two percent. Experimental data obtained using fresh blood and exper¬ 

imental data obtained using rejuvenated 21-day-old blood are plotted 
in the chart (fig. 13), The agreement among these groups of data 

suggests that the gas transport characteristics of rejuvenated 21- 

day-old blood is the same as that of fresh blood, although other 
physiologic characteristics may be changed. 

The numerical solution of the steady-flow differential equation 
was obtained for standard venous blood initial conditions (ref 30). 

Charts showing the predicted pH, carbon dioxide, and oxygen profiles 

as functions of the dimensionless length and radius, and their bulk 
average values are included. 

The steady-flow dimensionless differential equation shows that if 
the velocity profile is assumed parabolic (Q/R3 > 200 sec“1), and if 

the rotation-induced diffusivity is assumed insignificant, the arterial 
saturation is independent of the tube diameter. In practice, the 
entrance effect on the velocity profile should be considered. 

The design equation shows that for silicone rubber tubes a change 
in the ratio of the outside diameter to the Inside diameter (OR*) of 
2 to 1 produces a change of less than 5 percent in the oxygen 
saturation. 

The model predicts that the carbon dioxide removal to standard 
arterial level (ref 30) is accomplished before the standard oxygen 

saturation arterial level is reached. Ihis result suggests that the 

blood oxygenation is the limiting phenomenon in designing tubular 
oxygenators. 
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Figure 4. Data obtained by Dorson and Hershey (ref 20) and equation (B-24). 

38 



Figure 5. Dimensionless velocity for y = 0 and y = 0.5. 
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Figure 6. Diffusivity of oocygen in blood. 
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Figure 11. Internai oxygen profile function of the dimensionless 

length and the dimensionless radius. 
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APPENDIX A 

OXYGEN DISSOCIATION CURVE 

The equilibrium of the oxygen-hemoglobin reaction is described, 
empirically, by the blood oxygen dissociation curve. This curve is 

a plot of the percentage of oxygen saturation of the blood as a 

function of the plasma oxygen partial pressure. One hundred percent 

saturation is defined as the saturation at which the red cells reach 

their maximum oxygen content. Figure 3 (body of report) shows the 

standard blood oxygen saturation curve for three values pH. tt\ble A-I 

shows he oxygen percent of saturation versus the oxygen partial pressure 

for three different pH. The figure also shows the ratio, K between 

the partial pressure at pH = 7.4 and the partial pressure at pH j 7.2 
and 7.6 for all percent of saturation, PS, 

p02(PS,7.4) 

PH ~ p02(PS,pH) (A-l) 

Table A-I shows that the ratio between the oxygen partial pressures is 
quite independent of the oxygen percent of saturation. For example, 

^7,2 ^-8 0«814 and Ky>0 is 1.259 for all percent of saturation; the 
departure of the individual values of this ratio with respect to the 

average is well within the experimental error of the partial pressure 
given in the table. Figure 14 (body of report) is a plot of the 

partial pressure ratios KpH versus the pH. The figure also shows a 

simple polynomial fit to the points. The relation representing the 
polynomial fit is 

KpH = 41.367 - 12.0225 (pH) + 0.8875 (pH)2 (A-2) 

where Kph superimposes the oxygen dissociation curve at any pH within 
the experimental range to that at pH = 7.4. In other words, the 

oxygen percent of saturation PS becomes a function f of the product 

(KpH P ®2)f and the function is given by the oxygen dissociation 
curve at pH = 7.4 

PS = f(KpH pOjj) . (A-3) 

The oxygen partial pressure in mm Hg and the plasma oxygen concen¬ 
tration are related by1 

p02 = 7.0 105 C . 

From equations (A-3) and (A-4) , 

(A-4) 

(A-5) 

1Roughton, F. J. W., Oxygen in the Animal Organism, Dickens, F. and 
E. Neil editors, pp. 5-27, IUB Symp. Series, 31 (1963c). 
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where 

w = C 

and C is in g-moleAiter. 

(A-6) 

The oxygen dissociation curve at pH = 7.4 
three parts: * * 

f, was curve fitted in 

(1) w > 4.282 10 5 g-mole/liter, or pC^ > 30-mm Hg at pH = 7.4 

PS = 99.48 exp{^2 10'« - ^ l0-9 + 2^709 „.„J (A.7) 

(2) 2.141 10 5 < w < 4.282 10 5 , or 15 < p02 < 30-mm Hg at pH = 7.4 

PS = 1.628 106 w - 11.2 (A_8) 

(3) ' < w <2.141 10-5 g-moleAiter, or 0 < p02 < 15-mm Hg 

PS = 5.95 105 w + 2.352 108 w2 . (A_o\ 
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APPENDIX B 

velocity profile 

Newton^:; ¿TI* °f bl00d~a ^ 
area—iba solution must satisfy the equati^n^f00^?“1* cross-sectional 
tutive relations and boundaiy condition« ? m0tl°n plus anV co^tl~ 
following assumptions will be uselí Previously stated, the 

Steady-flow conditions: 

Laminar flow: 
(B-l) 

Vr = 0 

Ve o o . (E“2) 

The fluid is incompressible: 

The equation of 

directions are 
motion in cylindrical 

coordinates for the 

(B-3) 

r- and z- 

where 

0 . àe 
ÒZ 

4. A 0 , V 
+ ï ÔÏ<PT>- (B-4) 

T = T rz 

From aquation (B-4), we see thoi- .-u 
eviol-^ " See that the pressure is a function of the axial coordinate Z only Reor^ni I pre88ure is a function 
Z, we obtain y ReorEanizing and integrating with 

r Ä<r7> 

and integrating with respect to r. 

- Û2 
L ' 

respect to 

(B-5) 

- £ 
L 2 (B-6) 
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rearranging equation (B-6), 

-2 _ R_ 

APA e Tn 

'Rien, from equations (B-6) and (B-7) 

and 
r = 7“ T } 

TR 

(B-7) 

(B-8) 

dr = ~ dr . 

llie Casson relation is expressed' as 

^ * [-n£]1/S , 

or 

dVz (t1/2 - T 1/2n2 „ 
- = Tn ^ for t > 

dr ^ 

dVz n - 77 = ° for t < t 

(B-9) 

(B-10) 

(B-ll) 

In general, equation^B-ll) can be expressed by the following relation, 

- dT = ^ - 

equation (B-Í2), the »eloclty ie give„ hy the inteqr.l 

Jdvz = - Jí(t) dr 

(B-12) 

(B-13) 

VJR-vz = .Jf(T) dr 
(B-14) 

Vz = VzIr + Jf(,r) dr 

Substituting the value of dr from 

IR 

(B-15) 

equation (B-9) into equation (B-15)# 

VZ ■ VtU +/«T) dT (B-16) 
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The volume rate of flow is given by 

R 

Q = 2tt Jvz r dr . (B-17) 

Substituting equation (B-15) into equation (B-17) yields 

R R 

« ■=2" JIv-Ih+K* t 

or 

tR 

R R 

r dr 

o r 

Integrating by parts, equation (B-19) becomes 

R3 R 

s vJr - ^ f2 tM dT] 
Using equations (B-8) and (B-9) we get, finally, 

R 

Q = nR‘ 
tVzl|> - f(t) di . 

(B-19) 

Q = 2tÍt vzIr dr- 

(B-20) 

(B-21) 

Equations (B-15) and (B-21) give expressions for the velocity and flow 

for any function í(t) and using as boundary conditions 

and 

Vz = 0 at r = R 

dVz 
— = 0 at r = r , 
òr o' 

(B-22) 

whexe r0 is the radius of the plug-flow region, and is given by (from 
equation B-6 ) 

ro “ ApA To * (B-23) 

Using these boundary conditions and substituting equations (B12) and 

(B-ll) into (B-21) and (B-8), the following relation is found. 

= 1 - (16/7) y1/2 + (4/3) y - (1/21) y4 (B-24) 
TT R T0 
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where 

y s T /t = r /H 

—i-iil riSS 
o = (T„ / 8H)[1 + (4/3) V - (16/7) Yl/2 - (1/21) y«] , <B.j5) 

where 

Ü = Q/2n R3 . 
(B-26) 

^-12)1°°¾ ÏTf“' "ay be ‘>btalnod tro” equations (B-16), (B-ll) an4 

Vz = - <r*)2 - (8/3) Y1/2 [1 - (r.)2/2] + 2Y(1 - r.)]} (B-2V) 

and for r* < y 

vz = Í1 + 2Y - rVs - (8/3) Y*/2} . (B_28) 

^^Dorson, W. J. and D. Hershey, Blood Plow 
62nd N&tional Meeting, AIChE. (1967). 

Through Long Capillary Tubes. 
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APPENDIX C 

FLUX THROUGH THE WALL 

The third boundary condition can be obtained using the equation 

of continuity for constant diffusivity to describe the gas flux through 
tne walle 

(C-l) 

where C* is the equivalent plasma gas concentration for a given gas 

partial pressure at any point of the wall. Neglecting the second term, 

which becomes unimportant far from the tube entrance, equation (C-l) 
becomes 

9_ r 0Cv\ 
ör lr Sr j * 0 (C-2) 

and B.C. 

= Ca, at r = OR 

àCw i i 

"“w STIr = Vr at r = R 

where nr|R is the radial gas flux at r = R. 

Integration of equation (C-2) gives 

aÇw 
r dr = C1 * CC-3) 

SCw 
“w r = C2 . (C-4) 

Using the second boundary condition to obtain C2, equation (C-4) becomes 

5Cw . 
“r Dw ãiT = R arlg f (C-5) 

and the solution of this equation is 

R n J 
Gw I R ~ Coo = ~ij" R^n(OR/R) (C-6) 

On the other hand, if there is any additional interfacial resistance 
jetween the membrane and the blood, the flux through the interfacial 
film is given by 
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“A "11 <c!r - CJR> < <°-7> 

where c|r and C | are the equivalent gas concentration at the blood 

face and at the wall,respectively, and k Is the mass-transfer coefficient 

of the additional resistance at the intei ace between the blood and the 
membrane (protein deposition, etc). 

In the blood face, the flux at the wall is also described by 

-D^l ar^ (C-8) 

Adding equations (C-6) and (C-7), the following expression is obtained, 

CIR • Cod = nrlR[1/k + (R/V ln<0R/R>] <c-9> 

and substituting equation (C-9) into equation (C-8) yields 

C - cl °° R_ 
R = 1 ^ + (R/D ) ln(OR/R) ’ 

w 
or 

[C- ' 

where 

P4 = [l + Dw / k R ln(OR+)]_1 

(C-10) 

(C-ll) 

(C-12) 
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APPENDIX D 

COMPUTER PROGRAM 

r«L;b.*,‘í«:c"™or)T„ ÄMr ««•««!« 
iollowlnt fini». aiff.;.¡L .ÍmÍ»”1“" "* •pp™-»««« b, th. 

AS. *3* «T I? n / ». r. (r.)1/s , 
»» L? (¾ • ) AS. t 

«•««»on Cb-1, ... rwr.wd and Pro.r_d ln .b. loU-ln. fo„. 

C(r*+:,Z*+1) « C(r*+i.z*i 4. f pw r~, 
8 LTK |_cir*+2, Z*) - C(r*+l#z*)J 

* [C(r*W'z’> - 2 «r*«,») + c(r*, z*)l } 

.v«u.ted ™nc«ntr.tlon 1. b.l„» 

coordinates (r*,Z*), and where AZ ^ead °f the polnt wlth 

p = AZ*/(ûr*)2 

8 “ p P3/(P2 + Np pfj 

^ = P2 + Np F! (r*)^2/(1 + Np p2} 

TK s r*/Ar* 

zones. Computation^done^ith^es^axial^" 1000 “lal and 10 radial 
.Ignlflc»»1, aff<lct the comp:t'rr8“îta (5~ »P» ’00) aid not 
20 or 10 radial zones did not differ Tt,* AJso' the vaults using 
is executed in the main program and th solution of equation (D-2) 
saturation, and v are neríoí!^ ? he uon,ryt«tion of F„ percent 

COSA and GAMM. The FORTRAN source comout1111™1* SUbroutlnes called 
The input parameters to the program are ®r PJogra,n ls ^iven below, 

source program with a short description oî îh ** the beginnln« of the 
program, when INDX is set to 1 the í-i ! varlable- In the 
the other pertinent variables and the °fd.Np Wl11 be comPuted from 
the non-Newtonian model. in this case ® °Clty proflle computed using 

or ANF in the NAMELIST. If INdÍ sei t T Î! n° need to llat INDXI 
ANF and the velocity will ho * 6t t0 tbe computer will read 

I»« determine.0»^. k“ P™'"« 
Will repeat the program for each value of ^ thS computer# which 
should be entered as the largest Z* d / In thls case 
TAUO, ETA, NPG, ERG, need "t £ UbÍZ TI, ^ ValUe8 OÍ ^ B^A, 
computer will operate, using the i hAMELIST Fince the 
The value of D should be lifted hf^ ? 688 varlables directly, 

of the wall effect (see boundary conditions)! ^ computation 
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*JÜB 171603-Bf 10(2000^ VILLAH BLDG83 
SEXECUTE IBJOB 
*10JOB. MAP 
SIBFTC SSOTP 

REAL NF 
COMMON MPf 0, Dt ETA» Rf.GAMMA*TAUO 
COMMON 7»C»CM» EfCFfFCfPSfMPl,Bl»B2»B3»CBlfCB2»CB3fCBA»ALlfAL2»PH 
DIMENSION C4(52,6),Z(1005),RS(52),CF(6),E(10),C(52,6),A11(12), 
DIMENSION PS( )2»6)»fH(52,6)»PHA( 1005J»C4VF(1005)»ZD{ 1005 ) 
DIMENSION P02X<52»6),PC02X(52,6),ANF(10) 
DIMENSION P02{1005),PC02(1005),E1{15i,FE1(15),DFE1(I5),W(12) 
DOUBLE PRECISION CA,C 
NAMELIST/DATA/IMR,IMZ,ZMAX,PHUCAS,D,0,R,BEI A,CS,CI,CAI,CF,FHSR, 

1TAU0,ETA,0R,DSR,RDSR,NPG,ERG,T,NP,INOX, INDX1,FHSRO,ANF, 
2INDX2,Bl,32,B3,CBl,CB2,CB3,CB4,ALl,AL2 

IMZ IS THE NO. OF POINTS IN Z DIRECTION 
IHR IS THE NO. OF POINTS-1 IN R DIRECTION 
NPG IS THE MAXIMUM NUMBER OF ITERATIONS TO FIND GAMMA 
ER3 IS THE PERCENT ERROR ALLOWED IN GAMMA 
CI IS THE AVERAGE OXYGEN INPUT PARTIAL PRESSURE IN MMHG 
CAI IS THE AVERAGE C02 INPUT PARTIAL PRESSURE IN MMHG 
CS IS THP: 02 PARTIAL PRESSURE AT R«OR IN MMHG 
PHI IS THE INITIAL VALUE OF PH AT Z-0 
ZMAX IS THE MAXIMUM VALUE OF Z IN CM 
OR IS THE OUTSIDE RADIUS IN CM 
R IS THE INSIDE RADIUS IN CM 
0 IS THE FLOW PER TUBE IN CC/SEC 
FHSRO CORREC.FAC. FOR 02 ADDITIONAL INTERFACE RESISTANCE 
FHSR CORREC.FAC. FOR C02 ADDITIONAL INTEFACE RESISTANCE 
C ! S THE 02 0! FFUS ?V! TY IN AL300 IN r.M?/SFr. 

BETA IS THE BLOOD MIXING COEFF. IN CM2 
ANF IS NF THE DIMENSIONLESS BLOOD MIXING GOEFF. 
INDX*1 COMPUTE NF, =2 READ NF NF=ANF(N), N»l,INDXl 
DSR IS THE EQUIVALENT OXYGEN Dl’FFUSlVITY IN THE WALL IN CM2 /SEC 
RUSR EQUALS DSR(C02)/DSR 
T IS THE OXYGEN CONCENTRATION AT 100 PERCENT SATURATION IN M/L 
TAJO IS THE BL000 YIELD SHEAR STRESS IN DY/CM2 
ETA IS THE BLOOD ASYMTOTIC VISCOSITY IN POISES 
INDX2*2 WRITE PQ2,PC02,PH PROFILES 
MP IS THE ORDER OF THE POLYNOMIAL REPRESENTING PS UPPER RANGE 
CF(I) ARE THE COEFF. FOR POLYNOMIAL REPRESENTING PS UPPER RANGE 
AL1 UPPER LIMIT OF PS MIDDLE RANGE 
CB1»CB2, COEFF. FOR PS MIDDLE RANGE 
AL2 UPPER LIMIT OF PS LOWER RANGE 
CB3, CB4, COEFF. FOR PS LOWER RANGE 

FlC A,B,C)»A/2.+l.-B**2-I8./3.)*SQRT(C)*(1.-B**1.5)*2.*C*(1.-B) 
F2(A,B)»A/2. + 1.4'2.*B-B**2/3.-(8./3. )*SQRT ( B ) 

9 READ(5,DATA) 
IFIIMR.EQ.O) GO TO 5555 
IEA-IMR/10 
INC«0 
KK* I 
NF=ANF(l) 
MP1»KP♦1 
P02(1)*£I 
PC02I1 )»CAI 
WRITE!6,204) 

204 FORMAT !5IH10XYGEN TRANSFER TO BLOOD FLOWING STEADILY IN TUBES//5 
• WRITE!6,205) 

205 FORMAT t/17X3HIMR,17X3HIMZ,18X2HMP,17X3HNPG,16X4HINDX,15X5HINDX1//) 
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WRITE(6,?06) IHR, I MZ , MP, NPG-, I NOX , INDX1 
WR ITE(6,207) 

207 F0RMAT(//18X2HCS,18X2HCI,16X4HZMAX,17X3HPHI,17X3HCAS,17X3HCAI//) 
WRITE«6,208) CS,C!,ZMAX,PH1,CAS,CAI 
WRITE(6,2I2) 

212 FORMAT!//19X1H0, 19X1H0,19X1H* , 16X4HRDSR , 19XHT, I6X4H3E T A//) 
WR ITE(6, 208) D,Q,R,RDSR,T, BETA 
WRITE!6,213) 

213 FORMAT t//16X4HTAU0,17X3HETA,17X3HERG,18X2HOR,17X3HDSR//) 
WRITE!6,2 08) TAJO, ETA,, ERG,OR ,DSR 
WRITE!6,2090) 

>090 FORMATI//15X5HIMDX2,16X4HFHSR,15X5HFHSRO,17X3HDMF,1BX2HNF//) 
WRITE!6,2210) INDX2,FHSR, FHSR0,DNF, NF 

>210 F0RMAT!I20,4F20.4) 
WRITE!6,2091) 

>091 FORMAT !//l9X2HBl,18X2HB2,18X2HB3,17X3HCm,17X3HC32,17X3HCB3//) 
WRITE!6,209) B1,B2,B3,CB1, CB2,CB3 
WR ITC(6,2092 ) 

2092 FORMAT (//17X3HCB4,17X3HAL1.17X3HAL2//) 
WRITE(6,208) CB4,ALl,AL2 
WRITE!6,209) 
WR ITE(6,208) (CF< I ), I*1, MPI ) 

209 FORMAT (///,17X3HCF1,17X3HCF2,17X3HCF3,17X3HCF4,17X3HCF5, 17X3HCF6/) 
206 FORMAT(6120) 
208 FORMAT(8E20«8 ) 
221 FORMAT(SE20.8) 

CM*.4643E-3 
CS-CS/7.E*5 
CAS*CAS/3.59E4 
r.A I *ta 1/3 . S9E4 
CI*CI/7.E+5 

444 CONST»4. 
Ir’C INDX.E0.1) GO TO 33 
GAMMA»0.0 
ZSMAX=ZMAX 
GO TO 34 

33 CALL GAMMINPG,ERG»I ERR) 
IF (IERR.NE.O) GO TO 400 
C0NST»3.l4159*R*«3*TAU0/( Q*GAMMA*ETA) 
NF»TAUO*BETA/(GAMMA*ETA*D) 
ZSMAX«ZMAX/(TAU0*R**3/(GAMMA*2.*ETA*D)) 

34 CPH*CAI*10.**(PHI-6.11) 
MR*IMR+l 
OR*l./FLOAT!IMR) 
0Z*ZSMAX/FL0AT(IMZ-1) 
P«0Z/0R**2 
Rsm*o 
DO 3 1*2,MR 

3 RS( I )*RS( I-l)♦DR 
zm-o 
ZDI1I-0 
DO 10 J*2,IMZ 
Z(J)*Z(J-l)ADZ 

10 ZDIJ)»ZMAX*Z(J)/ZSMAX 
SET ALL CONCENTRATIONS AT Z*ZO FOR ALL R TO INITIAL VALUE 

IK*3 
1MZI-IMZ 
DW*D*(1.♦NF) * (1.-SORT!GAMMA))**2 
G*DW*AL03(OR/R )*FHSRO/!DSR*DR) 
GA*0.9833*G*FHSR/(RDSR*FHSR0) 
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DO ) 1=1,MR 
CU,1)=CI 
CA(Itl)>C4I 

1 PH(!tl)>RHl 
PHA C1)=PH1 
MT*IMA-1 
1M1*IMZ-1 

C SOLVE PARTIAL DIFFERENTIAL EQUATION FOR CONCENTRATION 
JJ»0 

111 IFUNDX2.NE.2) SO TO 1111 
IK*IK«-1 
DO 1122 1=1,MP 
P02XII,ll«C(I,l)*T.E5 

1122 PC02X( I,1)>:A(1,1)*3.59E4 
IF(IK.NE.I) GO TO 1113 
WRITE!6,1112) 

1112 FORMAT(IH1,45X2HR*//6X2H2*,10X3HO.O,4X3H0.1,4X3H0.2,4X3H0.3»4X3HO. 
24,4X3H0.5,4x3H0.6,4X3H0.7,4K3H0.8,4X3H0.9,4a3M1.0//) 

1113 WRI TE(6,1114) Z(JJ),(P02X(IN,1), IN-l.MR,IEA I 
1114 FORMAT C2X,F6.3,2X4HP02 = ,11F7.2) 

WRITF.(6,1115) (PC02XI IN,1),IN«1,MR,IEA) 
1115 FORMAT (9X5HPCC2* , 1 IF7.2) 

WRITE(6,1116) (PH(IN,1),IN*1,MF,IEA) 
1116 FORMAT(11X3HPH«,11F7.3//) 
1111 DO 5 J*l, 5 

JJ=JJ«1 
DO 4 X=1,MT 
TK«K 
TK*K 
RPl=K»i 
CALL COSA(KP1, J) 
IF-tRSI K»1 ) .GE.GAMMA) GO TO 7‘* 
F«F2(ALPHA,GAMMA) 
S*(FC+1*)*F 
SA*10.*F/0.9833 
GO TO 83 

79 F=F1(ALPH4,RSIK+l),GAMMA) 
S=(FC^1.)*F/(1.4-NF*I SORT! RSI <♦!) ) »SORT! GAMMA ) ) **2 ) 
SA=10.+F/I0.9 8 33 + NF*ISORT(RS( K + l))-SORT I GAMMA ))**2) 

80 FNF»1.*(NF*IRSI<«-1)-SORTI RSU + 1) ) «SORT I G AMMA ) ) ) / ( 1 . ♦ jF*< SORTIR SI K* 
1 1))-SORT I GAMMA) )**2) 
FNFA0.9333*INF*IRSIK«-1)-SQKTIRS<K*1) )*SQRTI3AMMA) ) )/(0. 9833^NF* 

1 I SORT US I K+1 ) J-SORT (GAMMA))''*?) 
C(K*1,J*1)«C(K*1,J)*(P/S)*((CIK*2,J)-2.*C(K*1,J)+C(K, J))♦ 

1 (CCK*2,J)-C(K*1, J) )*FNF/U ) 
IF(C!X*i,J+l).LT.C(K*1,J)) C(K*1,J*1)=C(K*1,J) 
IFCC(K*1,J*l).LE.CS) GO TO 4 
CIK*1VJ*1)>CS 

4 CAIK*1,Ja1»=CA(K-+? , J)+(P/SA)*( (CA(K + 2,J)-2.*CA(K*1, J)*CA (,K,J) )<• 
1 (CA(K»2,J)-CA(K*1,J))*FNFA/TK) 

C BOUNDARY CONDITI0N-DC/DZ=0 FOR R*0 
Cli»J*l)-C(2,J*l) 
CA(l,J*l)>CA(2,J*l) 

C COMPUTE CONCENTRATION AT THE WALL 
Cl1MR*1,J*l)>(CS*G*C(IMR, Jfl))/(l.+G) 
lF(CtIMR*l,J+lT.L£.CS) GO TO 85 * 
ClIMR*1,J*1)*&S 

85 CA(IMR*1,J + l)»(CAS*GA*CA(IMR, J*U)/(l.*GA) 
C PS AT THE BOUNDARIES 

PS(1,J )"PS 12,J ) 
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IMRlslK^l 
CALL COSA( IMR1.J) 
DO 6 K=1tMR 

6 PH ( K t J♦1)*6.11+ALOG10(CPH/CA( K, J + l)) 
CAAVF1=0 
CAVFUO 
DO 35D I * 1 » I MR 
RI=(RS{1)♦RSi1+1))/2. 
IF ( R I . Gc.GAMMA ) F = F1(ALPHA»RI,GAMMA) 
I F ( R I . LE . GAMMA ) F*F2(ALPHA,GAMMA) 
CAR I = (CA( I, J ) +CA( I♦ 1,J ) )/2. 
CRI-(PS( I ,J)+PS( I+l,J))/2. 
CAAVF1*GA AVF1 + RI *F*CAi<l 

350 CAVF1sCAVF 1 + RI *F*CRI 
CAAVF1=LAAVF1*CDNST*DR 
PHA(JJ> = b. 11 + AL0G10(CPH/CAAVF1) 
CA VF ( J J ) * C AVF 1 -»CONS F *DR 
IF(ING.EO.l) GO TO 96 
IF(CAVF(JJ ) .GF.1000. ) INC = 1 
IF(CAVF(JJ ) .GE.100.) GO TO 3500 
I F(CAVF(JJ ) .LT.58.5 ) GO TO 3512 
IF (CAVF(JJ ) ,LE.95.0 ) GO TO 245 
W(l)=SOi<T I0.076415E-8/AI.CiGI100.4/CAVF(JJ) ) ) 
GO TU 35 

345 W ( l)=SüRT ( 0.10409E-CI/ALOG( 102.57/CAVFIJJ ) ) ) 
35 1 = 1 
37 E ( 1 ) =1 . /«I ( I ) 

DO 460 L = 2, MP 1 
460 E(L)«E(L-1)4E(1) 

A) 1 ( 11 =GF ( ? )*F 11 ) 
DO 430 L = 2 , MP 

430 All ( I ) = 411( I )+CF( L + l)*0(L) 
Alim=EXP(Alim ) vCF ( 1 ) 
DA1=(CAVF (JJ)-All( I ) ) /CAVFIJJ) 
IF (AHS( DA 1 ) .LE.0.002 ) GO TO 450 
IFd.GT.l ) GO TO 482 
SIG= A11( i )-;avF( JJ) 
SIG=SIG/A8S(SIG) 
W(I+l)=W(I)+SIG*1.43E-6 
GO TO 431 

482 V2 = AL0G( 411( I-D/All ( J)) 
V2 = V2/(W( 1-1)++(-2)-W( I )**(-2)) 
V1 = A11(|)/EXP(V2 + W( I )+ + (- 2)) 
W(1 + 1) =S0RT(-V2/AL0G(Vl/CAVFI JJ) )) 
IF<I.GT.10) GO TO Md 

481 1=1+1 
GO TO 37 

3512 IFJCAVFCJJ).LT.23.5) GO TO 3513 
W(1) = (C4VF(JJ)+H.2)/081 
GO TO 450 

3513 SQ=SORT( C33 + + 2+4.+C84+CAVF1JJ)) 
W(1)=(S3-CB3)/(2.*C84) 

450 P02( JJ) = W(I )+7.E+5/(D1-B2*PHA(JJ)+B 3+PHA ( JJ)+ + 2) 
GO TO 39 

38 P02UJ )--1000. 
39 PC02IJJ)=CAAVFl*3.59E+4 

IF(JJ.GT. IMZ) GO TO 3500 
5 CONTINUE 

DO 2 1=1,MR 
C(1,1)=0( I,J + 1) 
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CM 1,1 )«CMI, J+l ) 
2 PH(lfl)*PH(I,J+l) 

50 TO 111 
00 IMZl*JJ-i 
60 WR I TE(6* 420) NF 
20 FORMAT(1H1»3HNF*»E20.8//) 

IF(INDX.E0.2) GO TO 93 
WRITE(6.A23) 

23 FORMAT (14X6HLEN3THt TXISHDIME'JS I ONlESS »13X7HPERGEBT |13X7H AVERAGE t 
l 17X3riP32»16X4HPC02) 
WRITE(6.424) 

24 FORMAT (13X2HCM,14X6HLENGTH, 10X10HSATURATI ON,18X2HPH, 
1 l6X4HMMHGf16X4HMMHG) 

WRITE (6,2 08) (ZDUJ) ,Z(JJ),CAVF( JJt.PHAI JJ) ,P02(JJ) , 
1 PC02(JJ) fJJsliIMZl«10) 

GO TO 95 
93 WR ITE(6•421) 
21 FORMAT(7X13H0IMENSIüNLESSi 13X7HPERCENT, 13X7HAVER4GE , 

1 17X3HPD2,16X4HPC02) 
WRITE!6,422) 

22 FORMAT(l4X6HLENGTH,10X10HSATURA T I ON,18X2HPH,16X4HMMH3,16X4HMMHG/) 
WRITE!6,221) (Z(JJ),CAVF( JJ), PHA( JJ),P02 ( JJ),PC02( JJ), 

1JJal* I HZ 1,10) 
IF!INDX.EO.l) GO TO 96 
GO TO 95 

' jOO WRITE! 6,233) 
233 FORMAT (39H GAMMA DID NOT CONVERGE TO PROPER VALUE//) 

GO TO 96 
95 IF!INDXl.EO.O) GO TO 96 

IF ! KK, GE, INOXl ) T,n rn 94 
KK*KK+1 
NF *ANF(XK) 
ZMAX=l./Nr+0.07 
IF (ZMAX.GT,0,14) ZMAX*0.14 
GO TO 444 

96 CS«CS*7.E*5 
CAS = CAS*3 • 59E4 
CA I = CA I *3.59E4 
CI«CI*7.E*5 
GO TO 9 

5555 3T0P 
END 

$1BFTC GAMM1 
SUBROUTINE GAMM! NPG,ERG,I ERR ) 
COMMON HP,0,0,ETA,R,GAMMA,TAUO 
DIMENSION GAM!50) 
IE RRO 
A»4.*Q*ETA/(3.14159*R**3*TAUO) 
GAMm»l./!2.*A) 
I«1 

10 FG*1.-C16./7.)*SORT 1 GAM!I ))♦( (4./3.)-A)*GAM!I)-GAM( I )*44/21. 
0FG*-!ö./7.)/S0RT!GAM! I) )+4./3.-A-!4./21. )*GAMU)**3 
GAM!I+1)«GAM!I)-FG/DFG 
IF(ABS!iGAM(I + l)-GAM( I))/GAMII + 1)).LE.ERG) GO TO 100 
IF ( GAM ( I + 1).LT.0.) GO TO 30 
IFII.GE.NPG) GO TO 200 

15 I-I+l 
GO TO ID 

100 IF I GAM(I + l).LT.D.O)GAM(I+ 1)*0.0 
IFIGAM! I + 1).GT.1.0)GAM( I+D*1.0 
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GAMMA>GAM(I+l) 
mou** 

30 J-l 
31 GAM( I«-1)»GAM( I )-( FG/DFG)*.5**J 

IF(GAM(I + 1).GE«0* ) GO TO 15 
J»J«-1 
GO TO 31 

200 IÊRR*1 
RETURN 
END 

»IBFTC COSA1 

16 

13 

14 

77 

88 

46 

78 

SUBROUTINE COSAUO.JU) 
COMMON MP,0,0,ETA,R,GAMMA,TAJO 
COMMON TtC,CM,E,CF,FC,PS,MPl,Bl,B2,B3,CBl,CB2,CB3 
DIMENSION C(52,5),E(10),CF(6),PS(52,6I,PH(52,6) 
DOUBLE PRECISION C 
FPH»B1-B2*PH( JO,JU) + B3*PH( JO,JU)**2 
W»FPH*C(JO,JU) 
IF(W.LT.AL1) GO TO 88 
IF (W.GE.CM) GO TO 77 
E(l)ai./M 
DO 16 L*2, MPI 
E ( L)=E (L-l )*E( l) 
A1«CF(2)*E(1) 
DO 13 L*2,MP 
AI«A1»CF(L*1)*E(L) 
A1*EXP( Ali 
A2*CF(2)*E(2) 
DO 14 L* 3, MPI 
01-»L-1 
A2«A2+’CF( L)*Q1*E ( L ) 
FC«-(T/100.)*CF{1)*A2*A1*FPH 
PS(JO,JJ)«CF( 1)*A1 
GO TO 78 
FC«D.O 
CM1«CM/FPH 
PS ( JO,JJ)*100.*(1.♦(Cl JO, JU)-CM1)/T) 
GO TO 78 
IF(W.LT.A12) GO TO 46 
PS ( JO,JJ)*C31*W-CB2 
FC»T*CB1*FPH/100. 
GO TO 78 
PS ( JO,JJ)»C33*W+CB4*W**2 
FC«T*(CB3+CB4*2«*W) *FPH/100. 
RETURN 
END 

CB4, AL 1,AL2•PH 
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NOMENCLATURE 

Drbc 

Drot ' 

Dw - 

P 

F 

F1 - 

F1 - 

F2 - 

H 

Gas solubility in the membrane 

Gas solubility in the plasma 

Concentration of the gas in the plasma 

Initial concentration of the ga in the plasma 

Equivalent concentration of the gas in the wall 

Equivalent concentration of the gas in the atmosphere 

outside the tube 

Effective diffusivity of the gas in whole blood 

Diffusivity of the gas in the membrane 

Ordinary diffusivity of the gas in whole blood 

Ordinary diffusivity of the gas in plasma 

Diffusivity of the gas in the red cells 

Rotation-induced diffusivity of the gas in whole blood 

Equivalent diffusivity of the gas in the wall 

1 - Y2 - (8/3) y1/2 [l - (r*)3/2] + 2 Y (1 - ***) , for r* > y 

1 - 2 Y “ (1/3) Y2 - (8/3) Y1/2 » for r* < Y 

(r*)l/2 _ yl/2 f for r* > Y 

0 , for r* < Y 

1.0 f for oxygen 

0.9833 , for carbon dioxide 

1 + ds/dC 

(1 + !)„ / k R InOR* )_1 

Grams per 100 cc of blood 

Hematocrit, volumetric percent of red cells in whole blood 
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NOMENCLATURE (CoP.t'd) 

nrot 

NP * 

OD 

OR 

OR* - 

P 

PCO2 • 

PH - 

PO2 - 

PS 

PSV ” 

Q 

r 

r* 

R 

s 

S 

T 

70 

Inside diameter 

pH mapping factor, equation (A-ll) 

Length of the tube 

Radial flux 

Rotation-induced flux 

Dimensionless blood mixing coefficient 

Outside diameter 

Outside radius 

Dimensionless outside radius 

Pressure 

Partial pressure of carbon dioxide 

- log [H3O+] 

Partial pressure of oxygen 

Permeability of the «rail 

Oxygen percent of saturation 

Oxygen percent of saturation of the vemnu blood 

Blood flow 

Radial distance 

Dimensionless radial distance 

Radius of the plug-flow region 

Inside radius 

Concentration of the gas stored in the sinks 

Apparent reaction rate 

Oxygen concentration in blood at 100-percent saturation 



X 

Z 

Z* 

z** 

Greek 

P 

Y 

6 

AC 

AP 

APS - 

APS* - 

Ar 

AZ 

Tl 

TT 

P 

T 

ÎO 

0 

Axial velocity 

Tangential velocity 

Pricke's geometrical parameter 

Axial distance 

Dimensionless axial distance 

(1 - PSvAOO) (tt Do z/ 2 Q) 

Blood mixing coefficient 

Dimensionless radius of the plug-flow region 

Erythrocyte diameter 

Concentration increment 

Differential pressure across the tube 

Increment In the omyten percent ef saturation from the 

venous saturation value 

Generalized Increment In the careen percent of saturation 

from the venous saturation value 

Increment in the radial direction 

Increment in the axial direction 

Viscosity of the blood 

3.1416 

Density of the blood 

Shear stress 

Yield shear stress 

jhear stress at the wall 

Correction factor, equation (26) 
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Special NOMENCLATURE (Cent’d) 

1 r 

^r+ûr 

I» 

Chemical 

co2 - 

HCO3- - 

H20 - 

H30+ - 

¾ - 

At position r 

At position r + Ar 

At r = R 

At position Z 

At position Z + AZ 

Concentration of a chemical specie 

Carbon dioxide 

Bicarbonate ion 

Water 

Hydronium ion 

Oxygen 
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