
BOLT BE R A N E K AND NEWMAN INC

C ,0 uL1 'N G D E V k tO P M E N T R E S E A R C H

AFCRL-70-0505

NATURAL COMMUNICATION WITH COMPUTERS III

Daniel G. Bobrow

Bolt Beranek and Newman Inc.
50 Moulton Street

Cambridge, Massachusetts 02138

Contract No. F19628-70-C-0013

Project No. 8568

Final Report

Period Covered: 31 August 1969 through 30 September 1970

30 September 1970

Contract Monitor: Hans Zschirnt
Data Sciences Laboratory

This C cument has been approved for public release and sale; its
distribution is unlimited

The views and conclusions contained in this document
are those of the authors and should not be interpreted
as necessarily representing the official policies,
either expressed or implied, of the Advanced Research
Projects Agency or the U.S. Government.

Sponsored by
Advanced Research Projects Agency

ARPA Order No. 627
Monitored by

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE

BEDFORD, MASSACHUSETTS 01730

A M R R I P C, E NEW Y 0 KCH ICA G 0OS A N G EIES

1969 1970
Program Code No 9D30 & 0D30
Effective Date of Contract 1 August 1969

Contract Expiration Date 30 September 1970

Principal Investigator and Phone No Dr. Daniel G. Bobrow
617-491-1850

iroject Scientist or Engineer and Phone No..Dr. Hans H. Zschirnt
617-861-3671

Qualified requestors may obtain additional copies from the
Defense Documentation Center. All others should apply to the
Clearinghouse for Federal Scientific and Technical Information.

AFCRL-70-0505

NATURAL COMMUNICATION WITH COMPUTERS III

Daniel G. Bobrow

Bolt Beranek and Newman Inc.
50 Moulton Street

Cambridge, Massachusetts 02138

Contract No. F19628-70-C-0013

Project No. 8668

Final Report

Period Covered: 31 August 1969 through 30 September 1970

30 September 1970

Contract Monitor: Hans Zschirnt
Data Sciences Laboratory

This document has been approved for public release and sale; its
distribution is unlimited

The views and conclusions contained in this document
are those of the authors and should not be interpreted
as necessarily representing the official policies,
either expressed or implied, of the Advanced Research
Projects Agency or the U.S. Government.

Sponsored by
Advanced Research Projects Agency

ARPA Order No. 627
Monitored by

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE

BEDFORD, MASSACHUSETTS 01730

BBN Report No. 2015 Bolt Beranek and Newman Inc.

ABSTRACT

Bolt Beranek and Newman has been engaged in a continuing re-

search program whose goal is to develop techniques to facilitate

natural communication with computers, people, other computers, and

real-time devices. This work has been supported under two sepa-

rate contracts beth funded by the Advanced Research Projects

Agency. The work has been carrLE.d on as an integrated research

program; work on semantic automatic language processing and auto-

matic programming aids was performed under contract F19628-70-C-0013

through Hanscom Field Air Force Cambridge Research Laboratories and

work on the development of time-sharing systems was done under

contract XC-3169(62-7036)70R.

Our work on natural communication with computers has focused

on many levels of the man-machine interface. An important aspect
of the work has been the development of tools to allow English

language interaction between men and machines. Another is the

development of a programming environment and aids to facilitate

construction of the complex programs necessary for English languFge

research. At another level we have developed a time-sharing system

based on the DEC PDP-10, which allows maximum flexibility and ease

of interaction in the development of the programming environment

in which we wish to work.

In accordance with our responsibili-y to report the results of

our investigation we have prepared a number of documents, some of

which have been distributed as scientific reports under the contract,

some of which have been published as technical articles in pro-

fessional journals, and a few of which are internal memoranda which

we have made available to interested outside parties. Following

4 brief summary .f our research we include abstracts of these docu-

ments for further information.

ii

BBN Report No. 2015 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS

I. INTRODUCTION 1

II. LANGUAGE PROCESSING RESEARCH 4

A. Syntactic Analysis Syst n 4

B. Semantic Network Representation 8

III. AN APPLICATION OF LANGUAGE PROCESSING TECHNIQUES..... 12

IV. AUTOMATIC PROGRAMMING AIDS 19

V. TENEX DEVELOPMENT 23

VI. LIST OF PUBLICATIONS 26

Abstracts of Publications 27

iii

BBN Report No. 2015 Bolt Beranek and Newman Inc.

SECTION I

INTRODUCTION

Bolt Beranek and Newman has been engaced in a continuing

research program whose goal is to develop techniques to facilitate

natural communication with computers, people, other computers, and

real-time devices. This work has been supported under two separate

contracts both funded by the Advanced Research Projects Agency.

The work has been carried on as an integrated research program;

work on semantic automatic language processing and automatic pro-

gramming aids was performed under contract F19628-70-C-0013 through

Hanscom Field Air Force Cambridge Research Laboratories and work on

the development of time-sharing systems was done under contract

XC-3169(62-7036)70R.

Our work on natural communication with computers has focused

on many levels of the man-machi:ie interface. An important aspect
of the work has been the development of tools to allow English

]anguage interaction between men and machines. Another is the

development of a programming environment and aids to facilitate

construction of the complex programs necessary for English language

research. At another level we have developed a time-sharing system

based on the DEC PDP-10, which allows maximum flexibility and ease

of interaction in the development of the programming environment

in which we wish to work.

Our research on English language communication betweei, man and

machines has focused on the two general problems - syntax and

semantics - and one major application. Our work in syntax centers

on the development of a natural and efficient syntactic analyzer

for English that allrws easy interfacing to a semantic analysis

-1-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

procedure. In semantics we have been working to develop computer

representations of the meaning of English language statements.

These representations, and procedures to manipulate them, are used,

for example, to test whether paired situations are analogous to

each other and to understand paraphrased versions of previously

known information. We have applied the results of these efforts

to the development of a program which can conduct a dialogue with

a user to review material he has already learned. This program

can also provide instruction where a user wishes to learn only part

of a subject, wants the computer to provide interesting information,

and wishes to guide the course of the conversation. Unlike con-

ventional frame oriented teaching programs this mixed-initiative

diaglogue system is based on an information structure similar to

the one used for semantic representation.

In the design and development of complex programs such as those

described above, the programmer needs an environment which is rich

and fleyible but which is also forgiving of errors and helpful. We

have been continuing work in the development of a LISP system which,

over and above its capability as a programming language, provides

a set of tools to aid the user in the development of complex pr)-

grams. These range from a syntax directed editor to automatic

error correcting facilities which can correct errors in user pro-

grams at run time, and allow computation to continue. The design

philosophy of these tool- is to allow the user tc concentrate on

th problem level he war E.z to work on, only descending to a primi-

tive implementation level when desired.

To facilitate use of this programing environment, Bolt Beranek

and Newman has designed and implemented a time-sharing system,

TENEX, whose human engineering allows easy ccmmunication between

-2-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

man and machine. TENEX also allows each user a very large data

base, and large complex program structures. In general, TENEX is

designed to provide the extended capabilities demanded by very

hard jobs and to adapt at different times to requirements ranging

from real time computation to very large data base manipulation.

Special processors attached to this machine provide added facili-

ties, such es a high speed dynamic display and an intelligent

"hybrid" I/O processor.

In accordance with our responsibility to report the results of

our investigation we have prepared a number of documents, some of

which have been distributed as scientific reports un r the con-

tract, some of which have been published as technical articles in

professional journals, and a few of which are internal memoranda

which we have made available to interested outside parties. Follow-

ing a brief summary of our research we include abstracts of these

documents for further information.

BBN Report Bolt Beranek and Newman Inc.

SECTION II

A::G.AGE PROCESSING RESEARCH

A. S Svsten

We have focused our attention on an analysis system that utilizes

a represui.taticn of granmmar, superficially similar to a finite

state transition network, but augmented to give it the power of a

transformational grammar. This representation, based on an aug-

rented recursive transition network, is integrated with a semantic

analysis proceaure designed to produce interpretations which can

express very general queries of the data base. The procedure has

been used previously only with formally defined fixed structure

data bases, but we plan to integrate it with the semantic memory

processor described below.

One component of the syntactic analysis system, the parser,

simulates the action of a non-deterministic, recursive, augmented

transition network- wnict. represents the grammar for a language.

The :.ew:z.. .s a labe.e directed graph whose nodes represent

tran._n& :rz one st..e to another. Each arc cf the network is

*ui w.t' ar. Lnqlish word, a set of words, a lexical category

tr.-, or trite name of a state in the diagram. An arc from state X

'.! SuatC Y labeled Z reprtsents the fact that the parsing algorithm

in state X may make a transition to state Y if the "next thing" in

inpi t -tring 'satisfies" the label Z. E.g., if the label Z is

w ord, tht- transition is permitted if the next word in the string

i!, equal =. :

Th~,' ~is~ non-detcrministic because it is possible for

svveral :rcA leaving a node to be equally applicable at a given

-4-

PBN Report No. 2015 Bolt Beranek and Newman Inc.

point in a computation. The parser must provide for the possibil-

ity of following any or all of these arcs. The network is recur-

sive because an arc la'eled with the name of a state in the network

causes a pushdown to a lower level computation. This 3orputation

will begin at the indicated state and continue until it reaches a

final state, at which time it will return to the previous level and

enter the state at the end of the arc which caused the pushdown.

Thus, for example, an arc labeled NP in Fig. 1 causes a recursive

call to the transition network to recognize a noun phrase. The

effect of such an arc is to permit the transition if a noun phrase

is the "next thing" in the input string.

Figure 1 is an example of a recursive transition network for

a small subset of English. It accepts such sentences as John

washed the car," "Did the red barn collapse?", etc. It is easy to

visualize the range of acceptable sentences from inspection of the

transition network. To recognize the sentence, "Did the red barn

collapse," the network is started in state S. The first transition

is the aux transition to state q2 permitted by the auxiliary "did".

From state q2 we see that we can get to state q3 if the next "thing"

in the input string is a NP. To ascertain if this is the case, we

call the state NP. From state NP we can follow the arc labeled DET

to state q6 because of the determiner "the". From here, the adject-

ive "red" causes a loop which returns to state q 6 , and the subse-

quent noun "barn" causes a transition to state q7. Since state q7

is a final state, it is possible to "pop up" from the NP computation

and continue the computation of the top level S beginning in state

q which is at the end of the NP arc. From q 3 the verb '-collapse"

permits a transition to the state q4 , and since this state is final

and "collapse" is the last word, the string is accepted as a

sentence.

BBN Report No. 2015 Bolt Beranek and Newman Inc.

qpp

S q q NP q

aux NP

d a d j o PP

S is the start state

q4, q5 ' q7 ' q8, and q10 are the final states

Figure 1: A Sample Transition Network

-6-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

The transition network is augmented because each arc contains

in addition to its label an arbitrary condition and action. The

condition on an arc prevents the transition unless the condition

is satisfied, and the actions are used for building the structural

description if the arc is followed. The conditions on the arcs

can allow complex syntactic tests, e.g. test if this S is embedded

in a higher S; if so, forbid acceptance of a sentence adverbial.

More generally, the conditions can be procedure c-'ls which test

semantic features or context information to be used to restrict

the actions of the parser. They also allow for the special recog-

nition of certain regular classes of "words" such as integers and

times of day which are easily recognizable but cannot reasonably be

represented in the dictionary (e.g., because the class is indefinite).

-7-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

B. Semantic Network Representation

The problem of natural language interaction with a computer

depends heavily on the development of adequate data bases to rep-

resent the meanings of English sentences. We have been developing

a theoretical model which can represent such information, and pro-

cesses which can manipulate information in this data base. The

data base we use is a semantic network, a hierarchically structured

memory in which a unit (representing a concept usually associated

with an English word) is represented by a set of properties which

it satisfies. Within the definition are pointers to other units

representing concepts which are explicitly required in the definit-

ion, with relation labels defining the structure of the concept in

terms of these ingredients. Paths through the network from one

unit to another represent implicit relationships between these two

nodes. This information network provides a base for our semantic

processing.

At the present time we have on hand a number of diverse program

components and capabilities. There are either completed routines,

or at least more or less precise ideas about how to:

1. Structure a data base

2. Answer questions with such a base

3. Generate English from such a base

4, Recognize relationships between items in such a data base

5. Parse English sentences

We are continuing to develop these capabilities and others closely

related, and are attempting to integrate them into a single system.

We will describe in some detail how we have applied some of

these capabilities to the solution of verbal analogy problems given

-8-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

as intelligence tests. Two examples shown here were solved by

the current program:

1. WINDOW:PANE::DOOR(PANELJAMB,KNOB,KEY)

2. RAT:RODENT::WHALE:(MAMMAL,OCEANANIMAL,GIGANTIC)

The problem is defined in terms of path comparison in the network

memory. The first subproblem involves the choice of which paths

to use in comparison, because, for any pair of nodes (words) a

large number of paths is possible. Intelligent selection among
these is necessary to compare one pair of nodes with another. We

use a heuristic measure of similarity between pairs which counts

the number of partially ordered common elements in the two paths
to be compared. Those pairs with more common subsequences are

liable to yield closer analogies. Given a pair of similar paths,

an analogy is formed by matching the forms of the paths, i.e. the

property names; and the corresponding nodes. For example, if one

path makes a superset jump, it is important to search the compari-

son path for such a jump. The form comparison determines which

nodes can be paired for semantic comparison. We are developing a

general node comparison process which appears to have general im-
port for a number of semantic network problems in addition to

analogy solving. Its solution with strong constraint produces a

synonym finder, and also is a basic part of a solution to the para-

phrase problem of determining when one statement is like another.

A major question for a node comparison program is "Can it be

determined if one node is like another without a context for the

comparison?" For example, can we say if a table is like a horse?

The answer to this, like the answer to any possible pair of nodes

compared, is both yes and no. They are alike in some ways and

different in others. Clearly atable and horso are different in

-9-

BBN Report No. 2015 Bolt Beran3k and Newman Inc.

that one is animate, the other not. Yet they are the same in

that each has four legs. One way of answering the question is to

require that the context or at least the relevant dimension be

specified. Along the line of physical properties the table and

horse may be likened to each other.

Rather than specifying a dimension we can rephrase the question

to be: is node A more like node B or node C? This is useful in the

analogy program. It requires a metric on the complexity of the

analogy. Simple metrics fail sometimes; for example, if A is a

common superset of B and C the question is unanswerable unless there

are contravening properties. There is no solution to the question
"is a bird more like a wren or a sparrow?" But if the question is
"is a bird more like a wren or a kiwi," the answer is wren since

kiwi has the property of no wings, which contravenes a general

property of birds. Other important considerations include the
superset relationships and common property comparisons. Common

superset membership determines that sparrow is more like hawk than

bird since sparrow and hawk both belong to the same superset.

Property comparison is both semantic and "positioned"

1. Position. The position of a property on the property list

indicates its importance. This importance is to a certain

extent idiosyncratic to a particular memory in hiuaans. Con-

sider, "Is a cardinal more like a fire engine or a sparrow?"

An adult might hesitate and then say sparrow since the super-

set bird is a most important property. A child's memory

might store red as a more important property of cardinal

than its birdness and thus might answer fire en
ne.

-10-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

2. Semantic property comparison. Two properties are alike if

their attributes and values are equivalent or superset

equivalent, that is, if the attributes ail values are equal

or linearly related and not divergent. Two nodes are
linear if one is on the superset chain of the other. They

are divergent if they share a superset and are not linearly

related.

Two properties are discriminating if either their attributes

are equivalent and their value is not, or vice versa. Thus (color

red) discriminates an object from (color blue), and (nibbles food)

discriminates an object from (devours food) if all other properties

are irrelevant.

When testing to see if node A is more like B or C, we look for

comparable properties, that is, equivalent or discriminating ones

which exist for all three cases. The comparison can be decided if

a property of A is found to be equivalent to a property of B and

discriminating for the node C. If a simple discrimination is not

found after a certain effort limit, the program recurses on proper-
ties using the general comparison routine for attributes and values.

-11-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

SECTION III

AN APPLICATION OF LANGUAGE PROCESSING TECHNIQUES

As an application of our language processing techniques we

have developed a program, SCHOLAR which is capable of conducting

a mixed-initiative dialgoue in English with a user, based upon

information stored in a semantic memory. This work has been ap-

plied to a computer assisted instruction task conducted under

other government sponsorship. We are combining for the first time

semantic network information representation with generative tech-

niques for originating questions and detailed program behavior.

Generative techniques produce program behavior which has not been

anticipated in full detail in advance but which still follows some

ge: aral guidelines. For example, generative techniques can, pro-

duce computer questions related to answers (perhaps with errors)

given by the student in response to prior questions. The reason

for not having full anticipation is the practical impossibility of

thinkin of all the possible variations, especially when an impor-

tant element in producing these variations is the behavior of the

human and the interaction. Although the original subject matter

chosen for the system was the geography of South America, we

believe that the system is readily adaptable to other tasks. We

plan to use it, for example, to build a program which can give

instruction in the use of the LISP system we are now developing

for the PDP-10 computer. We present here a description of the

SCHOLAR program, illustrating its behavior with a sample protocol

for a dialogue between a student and SCHOLAR.

Figure 2 illustrates the operation of the program. As indi-

cated, it transfers information between two semantic information

structures: that of the student, and a structure stored in computer

-12-

BEN Report No. 2015 Bolt Beranek and Newman Inc.

r-

-d --
CL

.4
$

Q ~04 E-

20
4

IL
2

4 044

1W

s Isnoij o Okqv Id 1)iiI SiI l 0 0 1 4 A S1

4L4
-C

4111
.

BBN Report No. 2015 Bolt Beranek and Newman Inc.

memory. The latter is a semantic network of concepts, facts and

procedures. It is organized in a modular way, with a general top

level which is context-independent (commonly used English words,

and simple procedures), a level related to the area of application

(e.g., geography), and a level with the specific context on which

SCHOLAR is going to work (in our case, South Americal. It is ex-

pected that there will be many more pointers from units in a lower

level to units in a higher one than vice versa. Therefore, we

could replace the information on South America by information, on,

say, New England, without substantially affecting general geographic

information; or even replace geography by, say, history or meteor-

ology, and still maintain the general level almost unchanged.

In Figure 2, the main functional packages of SCHOLAR are shown

in the box labeled: "context-independent executive program." This

executive acts on an internal representation (the semantic network),

an intermediate representation mainly used in intarnal function

calls, and a close-to-English input/output representation. The

intermediate representation is based on the well-known object-

attribute-value triples.

Program flow within the executive is highly recursive, since

different function groups call each other in many ways. For example,

the analysis of the student's answer to a question may trigger the

presentation of some explanation to him, or the generation and form-

ulation of a new question, and so on.

Figures 3a through 3c present a fragment of a protocol, taken

on-line, which demonstrates some of the basic capabilities of

SCIHOLA14. In this protocol SCHOLaR starts typing after being called.

The student's turn comes after the asterisk and car, be a response to

-14-

THE POPULATION IN CHILE IS APPROX 951000I0. PEOPLE#

TRUE OR FALSE?

* TRLIE*

YOU ARE CORRECT.

USE ONE OF THE FOLLOWING:

SUCRF
FRENCH
ARGENTI NA
SPANIS4

TO ANSWER THE QUESTION:

WHAT IS THE LANGUAGE IN CHILE?

YOU ARE TAKING TOO MUCH TIME..

* SPANI*4*

YOU SHOULD HAVE WRITTEN "SPANISH".

VERY GOOD.

THE CAPITAL IN CHILE IS SfOTIAGO,

CORRECT nR INCORRECT?

* CORRECT*

THAT'S RIGHT.

APPRAX WHAT IS THE AREA OF BRAZIL?

25S6BB SQUARE MILES

WRONG.
PLEASE INDICATE IF THE FO.LOWING STATEMENT IS CORRECT

OR INCORRECTt

THE AREA OF PARAGUAY IS APPROX 47432 SQUARE MILES.

WHAT IS THE AREA OF SRAZIL?

THE AREA OF BRAZIL IS APPROX 36S000 SQUARE MILES.

NOW MNSWFR THE QUESTION YOU DIDN'T ANSWER BEFORE.

* IFALSE*

REPHRASE YOUR STATFMFNT. I CAN*T UNDERSTAND IT.

* I NCORRECT*

Figure 3a. Fragment of an On-Line Protocol Using SCHOLAR

VERY GOOD.

THE AREA OF PARAGUAY IS APPROX 157000 SQUARE MILES.

THE LANGUAGE IN BRAZIL IS FRENCH*
RIGHT OR WRONG?

* WRONG*

YOU ARE CORRECT.

THE LANGUAGE IN BRAZIL IS PORTUGUESE.
IS IT TRUF THAT THF CAPITAL IN BRAZIL IS BRAZILIA?

* YFS*

THAT'S FINE.

APPROX WHAT IS THE POPULATION IN BRALIL?

*60000. *

APPROXIMATFLY TRUE* BUT A MORE EXACT VALUE IS 7009P00.

WHAT IS BRAZIL?

TFLL ME SOMETHING ABOUT PERU.

WAIT A MINUTE. I'M CHECKING MY FILES.

LET'S PROCEED NOW.

PERU IS A COUNTRY.
IT IS IN SOUTH AMERICA,
THF PnPULATION IS APPROX "p seee. PEOPLE.
THE CAPITAL IS LIMA.

Nnw ANSWFR THE QUESTION YOU DIDN'T ANSWER BEFORE.

*Q/As

("0 Ynu WANT TO CHANGF THE GENEkAL MODE OF TE INTERACTION
In GIA?

Pt FASF ,NSWV'P Y OR N.

Y

no., "R. JInl*4S. LFT'S .;() ANEAD.

PLFASE. TELL MF MORE APOUT PEHU.

NIM ANVA IS APPROX 48000o SQUARE MILES,
7NF CANGUA(I'S SPANISH.

I-iure 3b. Fragment of an On-Line Protocol Uging SCHOLAR

BBN Report No. 2015 Bolt Beranek and Newman Inc.

a question by SCHOLAR, a question to SCHOLAR, or a command (like

halting, or changing the mode of the interaction to either 0/A

for question-answering - or mixinit - for mixed-initiative - or

test - for testing). The student retuzns control to SCHuLAR by

typing another asterisk and a carriage return.

SCHOLAR can also generate questions, and evaluate the student's

answers, deciding whon these are correct, wrong, or only approxi-

mately or partially correct, and then take some conditional actior-.

It keeps track of content, and changes it on the basis of relevanc
and time considerations. SCHOLAR aoes all this without faithfully

following specific and detailed directions, but rather by applynyq

general criteria and procedures to a body cf "knowledge" about the

subject being " "cussed.

BBN Report No. 2015 Bolt Beranek and Newman Inc.

SECTION IV

AUTOMATIC PROGRAMMING AIDS

Our work in this area grows out of techniques we have developed

to facilitate on-line interaction with users within the context of

BBN-LISP. The ultimate goal is to produce programs that write other

programs given very general specifications, while allowing the user

to communicate at whatever level is natural at the moment. An im-

portant aspect of this problem is the development of a data base

which describes programs, and of processes which can manipulate this

data base. If we consider how two programmaers communicate with one

another about a program we can see that there is a great deal that

is unsaid or appeals to induction. There are obvious statements

that are suppressed etc. We are currently concentrating on making

that kind of implicit information available to a program which is

aiding the programmer.

In order to provide a powerful base on which to build such

automatic programming aids we have implemented a new BBN-LISP for

the DEC PDP-10 containing a number of new features. These include

a facility for allowing a user to define new data types based on

techniques developed in the LISP II project. By defining tracing,

marking and relocation functions and special print functions which

are accessed through a data type number the user can create new

data types and have the LISP system take care of problems of

storaqe allocation and maintenance. In this LISP we have developed

an improved representation of the environment using a parameter

1ush down stack. Also, we have extended the types of operations

which can be performed in an arbitrary environment by using capa-

bilities for evaluating arbitrary forms in earlier environments

-18-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

and then returning to these earlier environments with values for

form evaluation.

Recognizing the fact that a user does not work in a static

context but rather in one in which he remembers the types of things

he has done recently we have adopted the concept of saving for the

user information about things he has done in a recent "time slice".

As one result of this, if the user enters a complex expression

for immediate evaluation but mistypes part of it, he is able to re-

trieve the mistyped portion (which will have caused an error), edit

it and have it reevaluated. Similarly, in editing a funct'on, when

the user has deleted a significant portion of his program there is

sufficient information saved so that he can undo his last operation.

Within the LISP environment we continue to embed error correction

features in many of the programming tools. These tools are all

designed with the philosophy that they 6hould be active, have "do

what I mean" (DWIM) features, which make intelligent guesses as to

what the user meant if there are errors, and generally monitor and

participate in the interactive process of program development.

All the DWIM and error-correcting features in this system have

been designed to meet the following criteria, which we feel are

important for such tools in any system:

1. The user must he able to disable the entire program.

2. The user must be able to interrupt and/or abort any attempt-

ed correction.

3. The program must have a measure of how certain it is about

the nature and correction of a mistake, and use this measure

in determining the amount of interaction with the user.

-19-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

4. The program should be able to distinguish between signifi-

cant and trivial corrections, and be more cautious, i.e.,

more interactive, about correcting the former.

5. The user should be able to specify to the program his degree

of confidence in its corrections, as reflected by the amount

of interaction he desires.

The protocol shown in Fig. 4 represents the kind of corrections the

program will handle and indicates the flavor of what we are trying

to achieve. User input is preceded by an arrow (*-).

In this example, the user first defines a function FACT whose

value is to be N factorial, where N is its argument. The function

contains several errors: TIMES and FACT have been misspelled. The

9 in N9 was intended to be a right parentheses but the teletype
shift key was not depressed. Similarly, the 8 in 8SUB1 was intend-

ed to be a left parentheses. Finally, there are two left parenthe-

ses in front of the T that begins the second clause in the condit-

ional, instead of the one required.

-20-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

• -DEFINEO((FACT (LAMBDA (N)
(COND ((ZEROP N9 1) ((T (TIMFSS N (FACCT 8SUE4I NJ
(FACT)
,-PRETTYPRNT((FACCT]
=PRFTTYPRI NT
=FACT

(FACT
[LAMFiDA (N)

(CON D
((ZEROP N9 I)

((T (TIMESS N (FACCT 8SUBI N])
NIL
-FACT(3)
N9(IN FACT) I--> N)
(IN FACT) (COND -- ((T--))) >>--> (COND-- (T--))
TIMF.SS(IN FACT)->'TIMFS
FACCT(0N FACT)->FACT
9SUPI(IN FACT) >--> (SUBI
6
-PRETTYPRI NT((FACTI

(FACT
[LAMBDA (N)
(COND

((ZEROP N)

1)
(T (TIMES N (FACT (SUBI NI)

NIL
a.

Figure 4. Sample of Operation of DWIM

-21-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

SECTION V

TENEX DEVELOPMENT

During the past two years we have completed the design and

implementation of a DEC PDP-10 time-sharing system to support our

work in natural communication with computers. Development of the

system, which we have called "TENEX", has been jointly supported

by Bolt Beranek and Newman and ARPA. The system is currently

operational, providing extended facilities necessary for our re-

search, including the ability to handle large data bases and large

programs, and real-time computation facilities. Its human engineer-

ing and program structure facilitate the development of the complex

artificial intelligence programs necessary to do English language

interaction and development of automatic programming aids. Its

utility has become apparent to a number of other members of the
ARPA community, and we are cooperating to help them obtain the use

of a TENEX system.

TENEX is a system which utilizes paged core memory. In contrast

to the DEC 10/40 or 10/50 monitor, TENEX allows users to write

their programs as if they had a large, (virtual) memory at their

disposal, while at the same time reducing swapping time, since only

the "working set" pages of a user's program need to be in core for
his program to run. BBN designed and built the necessary paging

hardware, which is now being made available to outside research

PDP-10 users.

TENEX has a powerful Executive languaqe, which constitutes the
user's handle on the Time Sharing System. The language is easy to

use; it is based on highly natural, mnemonic commands which allow

-22-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

command recognition, line editing of commands and multiple input

formats to be freely intermingled.

TENEX has a flexible file system. Files are designated by

device, directory name, file name, extension, and version. Names

and extensions may be up to 39 characters long. A carefully plan-

ned set of default values makes it easy to reference commonly used

files. Users can have several directories, and an elaborate

system for file sharing and protection has been developed. The
file system allows both random access and sequential files. Files

can be very large, up to 128 million words.

TENEX allows users to run hierarchically dependent "parallel

processes" that share memory among themselves. A software inter-

rupt system facilitates interprocess communication.

TENEX is compatible with the standard DEC monitors: most stan-

dard user programs and CUSPS that run under a 10/50 operating

system will also run under TENEX.

TENEX was officially put into service on June 15, 1970 with

capabilities co serve LISP and machine language programmers.

TENEX was scheduled to be on the air May 1, 1970. This six week

slippage was the only unanticipated delay in a very tight schedule

held since November, 1969. While the crash rate was very high in

the first week of operation, system's personnel were able to find

and correct many bugs which were provoked by having "real users

on the system. Within a week, the crash rate was 3 or 4 a day,

and a number of subsystems became available on TENEX, among them
FORTRAN IV and TELCOMP III. By the end of the month the crash

rate was further reduced. Reliability has continued to improve,

with only 3 crashes occurring during the period July 1 throuoh 9.

-23-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

The preesent TENEX is running slower than we would like, but
we expect this to be improved. The reasons for tne slowness are:

1. There are only two hardware associative registers in the

current pager.

2. Some software "tune-up" still needs to be performed.

We anticipate that more associative registers will be available

soon. To aid software "tune-up", system performance measurements

are being made. When TENEX first became operational, it was dis-

covered that the I/O routines were quite inefficient. These have
been speeded up by a factor of 5 and have made a noticable improve-

ment in system's response. Another aspect of slow response time
was traced to the scheduling algorithm, which is now being modified.

User reaction to TENEX has been good. In spite of the system's

present slowness, it compares favorably with the 10/50 system, and

the niceties and power of the EXEC language, coupled with the flex-

ibility of the file system and the large "virtual" core, have been

enough to rapidly win over our research time sharing system users

as well as some outside users who have sampled TENEX. Users have

been impressed by the excellent reliability that has been achieved

in a very short time.

-24-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

SECTION VI

LIST OF PUBLICATIONS

Bobrow, R.J., and Bobrow, D.G., "EDMS-An Experimental Data Manage-

ment System", Proceedings of the Third Hawaii Conference oa Systems

Sciences, January 1970.

Collins, Allan M. and Quillian, M. Ross, "Facilitating Retrieval

from Semantic Memory: The Effect of Repeating Part of an Inference",

Acta Pscllogica 33 Attention and Performance III (A.F. Sanders,

ed.) pp. 304-314, North Holland Publi-hing Co., Amsterdam, 1970.

Collins, Allan M. and Quillian, M. Ross, "Retrieval Time from

Semantic Memory", Journal of Verbal Learning and Verbal Behavior 8,

240-247, 1969.

TENEX Design Memos, BBN, January 15, 1970.

The TENEX Executive Manual, BBN, July 1, 1970.

TENEX Monitor Calls Manual, BBN, May 14, 1970.

Woods, William A., "Context-Sensitive Parsing", Communications of

the ACM, Vol. 13, (7), July 1970.

Woods, W.A., "Transition Network Grammars for Natural Language

Analysis", Communications of the ACM, October 1970.

-25-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

ABSTRACTS OF PUBLICATIONS

-26-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

EDMS - AN EXPERIMENTAL DATA MANAGEMENT SYSTEM

Daniel G. Bobrow
Robert J. Bobrow

This paper describes an experimental data-management system

(EDMS) implemented within BBN-LISP, a high-level, time-shared,

interactive list-processing system which allows associative data

structures to be conveniently manipulated in a large virtual

memory. Our purpose in constructing this system was to obtain

both a usefultool for in-house problems such as contract manage-

ment, and a flexible instrument for experimentation. The BBN-LISP

system was selected because of its unique and powerful capabilities

for handling data structures and because of the convenience of

the BBN-LISP environment. The purpose of this paper is two-fold:

to describe EDMS, and in particular those aspects of its data

structure which represent extensions of the structures of previous-

ly available systems and the aspects of its design which make it a

convenient tool for experimental investigation of various problems

in the design of data management systems; and to discuss thk advan-

tages and disadvantages of constructing such a system within a

higher level language and interactive operating system such as

BBN-LISP, both from the point of view of ease of construction and

modification of an experimental system, and from the point of view

of efficiency of the end product as an operational data management

system.

We have implemented in BBN-LISP a data management system which

is both a useful tool and an experimental system; the flexiLility

introduced through the BBN-LISP environment has made the study and

investigation of the following subjects extremely convenient:

-27-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

1. Languages for querying hierarchically and recursively

structured data bases.

2. New data structures, including items whose description

allows arbitrary recursive hierarchial nesting of subitems

(recursive groups) as well as arbitrary repetition of sub-

items on the same level of the hierarchy (Repeating groups

as in SDC/TDMS).

3. New types of elementary data items, (e.g., functions embed-

ded within the data file) allowing improvement in the flexi-

bility and generality of data storage, access and deduction.

4. Search and indexing techniques which make efficient use of

the known hierarchia] and recursive structure of the data

base.

5. Flexible mechanisms for file security - permitting indepen-

dent access keys for different items and classes of data

items, and for the hierarchial relations between items as

well.

6. Techniques for system design to permit the final user to

tailor the system to his own needs in a flexible manner,

without causing system performance to deteriorate drasti-

cally.

The needs o! users and prospective users have suggested several

of the new and experimental features, and feedback from the users

on the performance of the system is providing a useful evaluation

of such features.

-28-

..

BBN Report No. 2015 Bolt Beranek and Newman Inc.

FACILITATING RETRIEVAL FROM SEMANTIC MEMORY:
THE EFFECT OF REPEATING PART OF AN INFERENCE

Allan M. Collins
M. Ross Quillian

In Collins and Quillian (1969) we found evidence that people

decide whether simple sentences are true or false by usinq in-

ferences. For instance, a sentence like 'A canary can fly'

apparently was confirmed by inference from the two facts chat a

canary is a bird and that birds can fly. If so, then this has a
possible implication for reaction time (RT) to such sentences

presented in succession. Prior exposure to one sentence 'hould

reduce RT to a second sentence wh-enever the same fact is involved

in confirming both sentences. For example, prior exposure to

'A canary is a bird' should reduce RT to 'A canary can fly' more

than to 'A canary can sing', since we assume that no inference

is used to confirm the latter sentence. In total eight F'1 dif-

ference predictions were made for various kinds of sentence pairs,

and all eight of these predictions held. Two possible muels

could explain these results.

-29-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

RETRIEVAL TIME FROM SEMANTIC MEMORY

Allan M. Collins
M. Ross Quillian

To ascertain the truth of a sentence such as "A canary can

fly," people utilize long-term memory. Consider two possible
organizations of this memory. First, people might store with

each kind of bird that flies (e.g. canary) the fact that it can

fly. Then they could retrieve this fact directly to decide the

sentence is true. An alternative organization would be to store

only the generalization that birds can fly, and to infer that

"A canary can fly" from the stored information that a canary is

a bird and birds can fly. The latter organization is much more

economical in terms of storage space but should require longer

retrieval times when such inferences are necessary. The results

of a true-false reaction-time task were found to support the

latter hypothesis about memory organization.

-30-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

TENEX DESIGN MEMOS

These TENEX memos contain the detailed design specifications

of the TENEX system. These memos are both for communicating the

TEINEX design goals to PDP-10 users, and provide a coherent design

structure used by the TENEX systems programmers.

The documents first present an overview of TENEX with emphasis

on the need for a time sharing system with extended capabilities

on the PDP-10 computer system. These extended capabilities include

laige progrdms and data bases; large numbers of users, a diverse

user coimunity, real-time capabilities, high system reliability,

etc. Then the coding style for TENEX systems code is specified.

Emphasis is placed on a specified consistent style and modular

code. TENEX is designed to be compatible with existing PDP 10/50

aser programs and CUSPs and is implemented in a sufficiently

modular fashion to permit exportability to other PDP-1Q instal-

lations. The rest of the memos deal with the structure of TENEX

internally and as it appears to the time sharing user.

In TENEX there exists an entitity called a job which is an

hierarchical structure of one or more processes. A process in an

entity which has a 256K address space and is capable of being run

by a processor. Processes may share memory with one or more other

processes. Interprocess communication is made possible by a soft-

ware interrupt system. A "mailbox file' is also available for

inter job communication. All I/O in TENEX is done through an

elaborate file system which has been designed for rapid sequential

and random access to files.

-31-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

A great deal of emphasis was placed on human-engineering at

all levels of the system design. The well human engineered time

sharing EXECUTIVE command language, file name recognition logic,

and terminal service routine features typify the results of this

effort.

-32-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

THE TENEX EXECUTIVE MANUAL

In TENEX the Executive is the primary vehicle through which

users communicate and work with the system. The Executive grants

users access to TENEX and allows them to access and control the

subsystems, virtual computer, and file system that comprise the

major TENEX facilities.

Communication with the Executive takes the form of a dialogue

in which the user gives a command, the Executiv performs the de-

sired action and then awaits a new command. The collection of

available commands, together with special characters and conventions

make up what is known as the Executive Language. Executive commands

are entered through TENEX terminals; in future versions of TENEX

it will also be possible to control operations through Executive

commands stored in Files.

Executive commands are made up of English language words and

abbreviations and have a si.mple but rich structure. Each command

begins with a "keyword" that identifies its main function. Follow-

ing this, there may be arguments, such as file names or user names,

additional keywords to specify options, and/or "noise words" (typed

back by TENEX) to make the command more understandable. with cer-

tain commands, selection among many options is accomplished by

sub commands, having the same structure as suggested above, and

inferred immediately following the main command.

The Executive Language features a flexible abbreviation/

recognition scheme. For any command (or part of it) TENEX will

accept any initial substring of characters, from the minimum

necessary to identify the input up to the full input. Furthermore

-33-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

the user can, if desired, request that TENEX "recognize" any

abbreviated input by typing back the omitted characters. Full,

abbreviated or recognized input can be mixed freely in a session

or even within a command.

The Executive Language includes group of commands for access

and use charge accounting, file manipulation, subsystem control,

and program control and debugging. In addition there are a number

of qucries that provide information about the state of the system

and the user's job, and a group of commands for informing TENEX

about terminal characteristics.

Executive Command arguments specify things such as user names,

account numbers, core locations, and file names. File names, in

particular, possess some unique and powerful features. A file

name can select any file or input/output device (TENEX treats these

as files) in the system. File names contain five identifiers that

select device, directory name, file name, extension, and version.

Through device and directory name, the user can select any input/

output device or disc file directory. File name further narrows

the selection to pinpoint a particular file. Extension allows

the user to name files containing transformed versions of the same

data, while version helps keep track of successive changes to a

single file. In practice, it usually takes much less than the five

designators to specify a file. Often, some designators are ir-

relevant and can be left out. The Executive will perform "recog-

nition" on designators such as directory and file name. Still

other designators can be omitted, in which case, TENEX supplies

"default values. For example, version numbering can, if desired,

be handled entirely automatically by TENEX.

-34-

BBN Report No. 2015 Bol .E-ranek and Newman Inc.

TENEX MONITOR CALLS MALAL

The TENEX JSYS Manual contains the dctaj!-d specifications

of TENEX monitor calls. JSYS (which stands -for Jump to SYStem)

is an instruction designed and implementet. by BBN for rapid

dispatch to monitor subroutines from user -:ograms. (JSYS may

also be used to call user subroutines from user programs). This

manual is for specifying the function of each monitor call to

machine language TENEX users. It also provides a detailed design
specification for the implementation of each monitor call to

TENEX systems programmers.

The set of JSYS monitor calls may be thought of as augmenting

the basic instruction set of the PDP-10 for both user programs

and monitor software, JSYS's may be called within the monitor by

other JSYS's to a limited depth. The 10/50 compatibility software

essentially translates 10/50 monitor calls to TENEX JSYS's.

Certain JSYS's require privilegeC process or user capabilities

for their successful execution. Some JSYS's have options which

require some special capabilities.

JSYS monitor calls exist for logging jobs off/on the system,

accounting functions, file accesses, obtaining information about

the system, transmitting and enabling/disabling special capabilities,

controlling forks, saving and getting address spaces, performing

I/O conversion, creating directory name entries etc.

BBN Report No. 2015 Bolt Beranek and Newman Inc.

CONTEXT-SENSITIVE PARSING

William A. Woods

This paper presents a canonical form for context-sensicive

derivations and a parsing algorithm which finds each context

sensitive analysis once and only once. The amount of memory re-

quired by the algorithm is essentially no more than that required

to store a single complete derivation. In addition, a modified

version of the basic algorithm is presented which blocks infinite

analyses for grammars which contain loops. The algorithm is also

compared with several previous parsers for context-sensitive gram-

mars and general rewriting systems, and the difference between the

two types of analyses is discussed, The algorithm appears to be

complementary to an algorithm by S. Kuno in several respects, in-

cluding the space-time trade-off and the degree of context depen-

dence involved.

-36-

BBN Report No. 2015 Bolt Beranek and Newman Inc.

TRANSITION NETWORK GRAMMARS FOR NATURAL LANGUAGE ANALYSIS

William A. Woods

The use of augmented transition network grammars for the

analysis of natural language sentences is described. Structure-
building actions associated with the arcs of the grammar network

allow for the reordering, restructuring, and copying of constituents
necessary to produce deep-structure representations of the type
normally obtained from a transformational analysis, and conditions
on the arcs allow for a powerful selectivity which can rule out

meaningless analyses and take advantage of semantic information to

guide the parsing. The advantages of this model for natural
language analysis are discussed in detail and illustrated by examples.

An implementation of an experimental parsing system for transition

network grammars is briefly described.

-37-

Unclassified

!'etinlv Ctassilwatton

DOCUMENT CONTROL DATA.- R & D
S. D~y "Ia .ejct.n '.(f (in. 1.0jc 4 ~ .,,, d, s I* .,nde e amu.t be cis ivied when the. Overull report 1, rIbesiiedf

I ONIGINA AI NC. A CT IV ITy (CDofpoafo. oaiheor) 2&. REPO 04T SF cURITY CLASSIFICATIONI

Bolt Beranek and Newman Inc. Unclassified
50 Moulton Street 2b. GROUP

Cambridge, Massachusetts 02138
R LPORi! 11)1 L

NATURAL COMMUNICATION WITH COMPUTERS III

4 0; SC RIP T1VE. N .,TES vpI ,f rputt anid ,nclusv da.feN) - .ApprovedScientfc F inal. 31 hugust 1969 through 30 September 197Q-1 October 197
S AU TmORtIS (fIurs nome. middle onstuAl. lose name)

Daniel G. Bobrow

6 RLPODT DA TE III. TOTAL NO O)F PAGES 7b. NO. I F

30 September 1970 401 aF

0., CON TRAC T , 14 G94AN4 T 40 J.. ORIGINA TOR'S REPORT NUMBERISO

F19628-70-SC-Q013
h. PROjEC T No ARPA Orer No. 627 BBN Report No. 2015

8668 ______________________
1. 9h. OTNER REPORT NO(S) (Any other numbers that may be assi~..d

DoD Element 61101D this report)

d.DoD Subelement n/a AFCRL-70-0505
T5J' _ D T I Q"_ V I SlA VE.IENT -

1-This document has been approved for public release and sale;
its distribution is unlimited.

I IN PP L t M LN T A~d 64V 3 TtS).SPONSORING MILITARY ACTIVITY

This research was supported by the ir Force *Cambridge Research
AdvacedResarc Proect Agncy aboratories (CRE)
AdvacedResarc Proect Agncy .G. Hanscom Field
________edford, Massachusetts 01730

\NLBolt Beranek and Newman has -Iprogram whose goat-is to develop techniques to facilitate natural com-
munication with-computers, people, other computers, and real-time de-
vices. "fhis wo 'rk has been supported under two separate contracts both
funded by the Adva'i icelesearch.oxx j-e;AeneyA1-\,. The work has been
carried on as an integrated research program; work on semantic automatic
language processing and automatic program~uing aids was performed under
contract F19628-70-C-0013-through Hanscom Field-Air Force Cambridge
Research Laboratories-.and work on the development of time-sharing sys-
temns was done, under contract XC-3169(62-7036)70R.

In accordance with our responsibility to report the results of eti-
investigation we have prepared a number of documents, some of which
have been distributed as scientific reports under the contract, some of
which have been published as technical articles i~n professional journal
and a few of which are internal memoranda which.'w!!- have made available
to interested outside parties. Following a brie summnary of 0uri re-
search we include abstracts of these documents f 'r further inkmation.1,

DD ~ON 1473Unclassified
Srcuritv Cloa~aficaihon '.11.

Unclassified
Security Classifiation

14 LINK A LINK B LINK C
KEY WORDS - -

ROLE WT ROLE WT ROLr *T

computer systems

time-sharing

man-computer interaction

linguistic rule testers

linguistics

LISP

list processing

format directed list processing

on-line systems

semantics

syntax

linguistic theory

human engineering

man-machine systems

human factors

natural language

language comprehension

computational linguistics

modeling of computer systems

simulation

semantic network

English language comprehension

memory models

real time systems

room1 73SAK- Unclassified
DD ,.1473,,cucaiid

