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I.  Introduction 

In many algorithms, a Euclidean inner product of two vectors must 

be computed with greater precision than the rest of the calculations. 

An example is the calculation of the residual vector 

r = b-Ax i1) 

used in an algorithm for improving an   approximate solution   x   of 

the lineP1- system 

Ax = b    . 

When the inner product occurs in an algorithm coded in short 

precision,  it is usually sufficient to accumulate it in long precision 

(double precision).   Long-precision arithmetic is a hardware feature of 

many machines; if so, the inner product is easily coded and quickly 

executed.    However, when long^precision arithmetic is not available, or 

when the entire algorithm is coded in long precision, the inner product 

routine becomes more difficult to code and execution time may become 

excessive. 

This report is primarily ccncerned with existing routines for 

evaluating inner products using more precision than long, for use within 

long-precision programs for the IBM System/560. Several such subroutines 

can be called from Fortran H programs; one is available for Watfor (or 

Watfiv) Fortran programs and one for Algol W. 
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II.    Algol W 

The double precision inner product routine available for Algol W 

programs is the 

long real procedure ip2  (integer i; integer value i,   B, U; 

long real a, b; long real value c); 

comment   This procedure computes the sum of products    a/b   and 

adds it to the extra term   c.     The bound variable i is used 

to indicate the subscript in the components of the vectors 

a and b over which the scalarproduct is foimed.    Although the 

procedure body is more complicated,  it can be illustrated as 

follows: 

begin long real sum,  sum  := 0.0L, 

for i  : = i step s until u do sura : = sum + a*b, 

sum + c 

end; 

Jensei's device is used through the bound variable    i  .    For example, 

ip2    could be used to compute the vector   r    in Equation (l) as follows: 

for i := 1 step 1 until n do 

r(i)   := -ip2(k,l,l,n,A(i,k),x(k),-b(i)) 

Since each product has 28 significant hex digits and a double word has 

only 1^ digits, a technique related to that suggested by Miller [I965] 

is used to retain full significance. For illustrative purposes, consider 

the following segment of an Algol W program: 

real tj long real a, al, a2, b, bl, b2, bj; 

comment a and b have been assigned double precision values; 

t 

t 

t 

= a; al := t; a2 := a -al; 

= b; bl := t; b5 := b -bl; 

= b5; b2 := t; b5 := b5-b2; 

A 
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The above program segment splits the numbers   a   and   b    so that 

a = al+a2 

b = bl + b2 + b3    • 

Thus 

axb = (al+a2) x (bl+b2 + b3) 

= al*bl + al*(b2 + b5) + a2*bl + a2*b2 + a2*b5 (2) 

where   *   indicates double-precision floating-point multiplication and 

the symbols   x , +   and   =   have the usual mathematical interpretation. 

The terms of Equation (2) are accumulated using a technique 

suggested by Malcolm [1970].    It follows directly from Theorem 2 in 

Malcolm [1970] that provided   n < 1510?   , the result    (|)    calculated by 

ip2    satisfies 

1=1(1+0 (5) 

where 

|e| <U.l6 •12 

and   I    is the exact result.    The procedure can be easily modified to 

accommodate   n > 13107   and still satisfy Equation (5) • 

The parameters   i , a   and   b   are passed by name to give maximum 

generality.    One may wish to modify this to economize on execution time. 

1 
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III. Wat for (or Watfiv) Fortran 

The same techniques used in    ip2    are implemented in two Fortran 

subroutines:    D:PPUT(A,B)    and   IPTOTL(S)   .    The call: 

CALL    DPFUT(A,B) 

adds the product A x B (A and B are double precision) to the 

accumulators. The call: 

CALL IPTOTL(S) 

sums the accumulators and assigns the long precision result to    S  .    The 

subroutine IPTOTL leaves the accumulators in their initial state (all 

zero). 

The result    S    (= l)    satisfies  (5) provided DPIUT has not been 

called more than 13,107 times since the accumulators were last initialized. 

DPHJT and IPTOTL use a named common area called DPACCC for storing 

the accumulators. A BLOCK DATA subprogram is used for initializing the 

named common data area. 

Following is an example using DPHJT and IPTOTL to calculate the 

r   vector in Equation (l). 

D0 10 I = 1,N 
D0    5 J = 1,N 

5    CALL DPRJT(-A(I,J),X(J)) 
CALL DPRJT(B(I),1.0D0) 

10    CALL IPT0TL(R(I)) 

IV. Fortran H 

Several efficient subroutines can be called by a Fortran H program 

for computing double-plus inner products. 

; U- 
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A.      VPR2 

VP1R2 is a subroutine written by Ehrman [I967] that forms the 

double-long product of two double precision arguments and adds it to a 

double-long sum.    For example, VPR2   could be used for conputing the   r 

vector of Equation (l) as follows: 

REALMS R1(2),A(N),B(N),X(N),R(N) 
INTEGER IEXP 

i 
D0 10 I = 1,N 
IEXP = 0 
Rl(l) = 0.0D0 
Rl(2) = 0.0D0 
D0 5 J = l^N 

5 CALL VPR2(-A(I,J),X(J),R1(1),IEXP) 
GAIL VPR2(1.(2D0,B(I),R1(1),IEXP) 
IF (IEXP NE.O) G0 T0 100 

10 R(I) = Rl(l) 

9 

100    {write error message and/or terminate) 

In the above example,    Rl    is an accumulator with 50 hex digits (two double 

words with the exponent) and IEXP is used as an indication of underflow or 

overflow. 

Although VPR2 uses a 50 hex digit accumulator,  it can still result 

in a large relati/e error.    Examples can be constructed that result in no 

significant digits.   However, practical algorithms in which this phenomenon 

causes an unacceptable loss of precision are probably rare. 

All calculations in VPR2 are perfomed in the "general registers". 

Although   ^2 requires a subroutine linkage for each term of the inner 

product,  execution times compare favorably with the fastest routines. 

■/'■ 
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B. DPHJT and IPTOTL 

The routines described in Part III for use in Watfor are available 

in more efficient versions coded in PL560 for use with Fortran H. The 

PL360 versions of DHUT and IPTOTL differ from the Fortran versions in 

that full precision accuracy is obtained and the result is correctly- 

rounded. This is achieved by a technique described in Section V of 

Malcolm [1970]. Also, the result has full precision accuracy and is 

correctly rounded. 

C. DPDOTP 

DEDOTP is a PL360 function subroutine which uses the same techniques 

as DPHJT and IPTOTL described above.   The function call for DPDOTP has a 

variable length parameter list.    The full formal parameter list is: 

DPDOTP( A, B, N, XTERM, INCA, INCB, PVA, PVB) 

where 

A,B     — The locations of the first components of the long-precision 

vectors to be multiplied 

N — The number of terms entering the inner product 

XTEKM -- An extra double precision term to be added to the inner 

product (optional) 

INCA   — Number of (double) words separating successive elements of 

the vector' A   (optional) 

INCB   — Number of (double) words separating successive elements of 

the vector   B    (optional) 

fei 1 
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PVA 

PVB 

Integer vector specifying a permutation of the elements 

of the vector   A   (optional) 

Integer vector specifying a permutation of the elements 

of the vector   B    (optional) 

In the actual parameter list, only the first three parameters    (A , B 

and   N)    are required.   Default values of the remaining parameters are: 

XTEBM    = 0. 0D0 

INCA     = 1 

INCB      = 1 

FVA(I)  = I (I = 1,2,...) 

FVB(I)  = I (I = 1,2,...) 

For illustrative purposes assume the following declarations 

3EAL*8 DH)OTP,A(N,N),B(N),C(N),SUM,R(N),X(N) 
mTEGERH PA(N) 

Note that DPDOTP must be declared as a long-precision floating-point 

variable.   A statement Trtiich sets SUM to the inner product of the vectors 

B   and   C    is 

SUM = DEDOTP(B,C,K) 

Another example Is the calculation of the residual vector in Equation (l); 

D0 10 I = 1,N 
10   R(I)  = -DPD|ÖTP(A,X,N,-B(I),N) 

In this example, INCA must be   N   because Fortran stores the array   A 

in column order (see the Fortran IV(H) Programmer's Guide) which means 

neighboring elements In a given row of   A   are separated by   N   double 

words.   If the columns of   A , in the above example, were pennuted as 

* .; ■ 
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specified by the integer vector   PA , the calculation of the residual 

vector would then be as follows: 

D0 10 I = 1,N 
10    R(I)  = -DH)|!5TP(A,X,N,-B(I),N,1,PA) 

A EL560 single precision function subroutine for calculating the exact 

rounded inner product of single precision vectors is also available.    This 

routine, called SIDOTP, has the same calling sequence as DH)0TP. 

D.      DOTP 

DOTP is cm Assembler Language function subroutine written at 

Argonne National Laboratories (see Jordan [1967]). The formal parameter 

list is 

D0TP(A,B,N) 

where 

A, B     — The locations of the first components of the vectors to 

be multiplied 

N — The number of terms entering the inner product 

For example, the residual vector in Equation (1) could be calculated as 

follows: 

REAL*8 D0TP,A(N,N),X(N),B(N),R(N),TIMP(N) 

• 
D0 10 I = 1,N   • 
D0    5 J = 1;N 

5    TIMP(J)   = A(I,J) 
10    R(I)  = B(I) -D0TP(TEMP,X,N) 

Note that DOTP must be declared as a long-precision variable. 

8 
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DOTP uses the same techniques as DH)OTF (i.e.,  splitting the 

operands and 52 accumulators); however, DOTP does a number of internal 

subroutine linkages (proportional to   N)    to code that is In line in 

DEDOTP. 

V.     Comparison of Execution Times 

Each of the routines described abrve has undergone extensive 

tests to insure accuracy.    In additlun to these tests,  each routine 

was timed on the 560/67 with the following two calculations: 

Test No. 1: 

Test No. 2: 

N t 
k=l 

N 

aik X bk 

X b. 

■ ■'■ 
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Each factor   a..   > *}, * ^v   entering the Inner product for these tests 

was equal to   3.1^15926535897932 . 

The experimental results are tabulated in Table I in terms of values 

of   K   for determining execution time according to 

execution time = K x N 

in milliseconds. 

The people who programmed the various routines are acknowledged 

in Table I. 

A 
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TABLE I 

Values of K for 

execution time = KXno. of terms in inner product (ms) 1/ 

Calling 
Language 

Inner 
Product 
Routine 

Inner 
Product 

Conrpiler Programmer 

K 
for 

K 
for 

Algol W IPS Algol W 
(w/o $N0CHECK) 

Michael 
Saunders 

0.710 0.705 

Algol W ip2 Algol W 
(with $N0CHECK) 

Michael 
Saunders 

0.5UU 0.526 

Fortran DPIUT 
IPTOTL 

Watfiv 
(w/o NCTHBCK) 

Gordon 
Gullahorn 

2.12 2.05 

Fortraji DPHJT 
IPTOTL 

Watfiv 
(with NOCHECK) 

Gordon 
Gullahorn 

2.11 2.06 

Fortran DPHJT 
IPTOTL 

Fortran H 
opt = 0 

Gordon 
Gullahorn 

0.h2k 0.h21 

Fortran DPHJT 
IPTOTL 

Fortran H 
opt - 2 

Gordon 
Gullahorn 

0.352 0.332 

Fortran DPHJT 
IPTOTL 

PL560 Michael 
Malcolm 

0.212 0.210 

Fortran DPDOTP PL560 Michael 
Malcolm 

O.lQk 0.18U 

Fortran VPR2 OS/Assembler John Ehrman O.I96 0.196 

Fortran DOTP OS/Assembler 
* 

D. Jordan 0.2^2 0.218 

-'  All tests were performed on an IBM 560/67, 

10, 
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VI.   ConeluBIons 

Many long-precision routines requiring accurate inner products 

can be coded in either Fortran or Algol W.    For Fortran, DPPUT and IFTOTL 

are probably the most useful for three reasons:    (l)   they are easy to use 

and fast;    (2)    accuracy of the result is guaranteed; and   (?)   programs 

using them can be debugged and run with the Watfor (or Watflv) compiler. 

For programs which are to be debugged and run with the Fortran H compiler, 

DIDOTF is probably the best because it is easy to use, execution time is 

minimal and the result is guaranteed. 

11 
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