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ABSTRACT

The thermodynamic fundamentals relating phase equi-
libria in binary and ternary systems to the thermodynamic
properties of the phases are reviewed and discussed. Considered

in detail are partition equilibria in ternary systems and the role of
the three-phaee cquilibrium in the determination of the relative
stabilities of stable as well as hypothetical phases.

Sample calculations carried out on selected ternary
metal-carbon and a metal silicate system demonstrate the applica-

tion of the equations for extracting thermodynamic data from phase
diagrams and also for the prediction of phase equilibria.
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I. INTRODUCTION

The purpose of a constitution, or phase, diagram is to depict in con-

densed form the phases and their interrelationships in the given alloy system

under chosen external conditions, such as temperature, pressure, etc. The

information derived from the phase diagram is quantitative in respect to nature

and composition of the coexisting phases at equilibrium and thus will also tell

us, whether or not, or to what extent, given alloy mixtures will undergo reac-

tions when heated to temperatures, and for times sufficient to allow equilibra-

tion.

The equilibrium state of a substance, which may consist of one or more

phases, is characterized by a minimum of the free enthalpy G. Using this

principle, the general relationships for the coexistence of phases under equi-

librium conditions were formulated by W. Gibbs now almost a century ago

and provided the basis for the interpretation of complex heterogeneous equilibria.

The value of the thermodynamic ak )roach in the interpretation of phase
(1)equilibria was demonstrated by van Laar , who calculated binary phase

diagrams using the regular solution approximation. These calculations were
(2)

later extend J to terns ry solution systems ,particularly by J. L. Meijering

The law of mass action was applied to equilibria formed between liquid alloys

and certain slags ( 3 ) , but a clear formulation relating the thermodynamic

propel ties of boundary phases to the tie line distribution in a two-phase field

was given only recently by Scheil 4 ) . Comparatively little effort was made in

the past to establish explicit relationships for the calculation of ternary phase
(2,5)

equilibria involving participation of crystallographically nonequivalent phases.

The following discussion is an attempt to summarize recent work in this field.

Ii



Although, owing mainly to the lack of adequate expt -imental data in

other alloy classes, the sample calculations given in this report mostly refer

to systems based on interstitial-type phases, the thermodynamic expressions

have general validity and can be quite readily adapted for the description of

systems o; other phase types.

Before entering the discussion of ternary phase equilibria, let us

consider a few essential points concerning the thermodynamics of binary

systems.

Figure (Ib) shows the principal course of the free energy in a binary

system of isustructural components forming a miscibility gap. It is seen,

that the phase relationships in such a system are solely governed by the

thermodynamic behavior of the solution. The solubility limits are determined

by the condition that the partial free ene-gies of the individual components are

the same at the boundary a and a', i.e,
0 0

G (a) G (a') (la)
A o A o,

G (a) G (a') (lb)
Bo0 B o

These conditions implicitly contain the requirement for a common tangent to

the free energy curve. The conditions for an eventually existing critical

solution point xc , T (p = const) are:

.2mrix 1  a I amix1  g84 Gi- 8" 0 x 0; 1 3 TI > 0

c c c c

L T.Xc= Ox' c.Xc TcX



AG(

+ AGP+

a. 0.

z

a-Boundary- Bunayaoudra'Bndy

A -Xe8-.0 B A -Xe-B B

(a) (b)

Figure 1. Free Enthalpy - Concentration Relationships in a Binary System
of Non-isomorphous (a) and Isomorphous (b) Components, the
L.atter System Having a Miscibility Gap.

Of greater interest than the preceding type is a system formed by

two components which differ in their crystal frameworks, Figure (Ia). For

such a system, in general, temperature-dependent mutual solubilties will

be observed, but the two solutions will always be separated by a two-phase

field of finite width. Such cases are exemplified, for instance, by the systems

Mo-Ru (6) (bcc-hcp), W.Pd (7 ) (beecfcc). and in the systems Ti-Mo and Ti-V (8 )

(hcp-bcc) below the transition point of titanium. The principal question which

arises concerns the relationships between the magnitude of the atom exchanges

in the two structurally nonequivaltnt lattices and the thormodynamic param-

eters of the system.

Let A and B be the constituents of such a binary, or pseudobinary

system. The stable crystal modification of A may be designated by a and
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thz,, of B with 13. (A,B) a is then the solid solution having the structure a, and

(A, 3) that of P. Without affecting the generality of the conclusions to be drawn,

we -iay assume that no further intermediate phases are formed, i.e.,the free

entl alpies of other lattice type phases shall be more positive than those of

(A, Y) (AB), or any mechanical mixture of both.

We expect from the free enthalpy relationships shown in Figure (la),

thai. apart from the effect of temperature, the adaptability of the lattice of

eacil component to that of the partner will, in addition to the solution behavior,

influence the widths of the homogeneous ranges, i.e. we expect the atom

excianges in both lattices to be linked to, and dependent on, the transforma-

tion energies AG and AG

T o obtain a mathematical relationship between the composi -

tions and the free enthalpies, we use as a starting point the well-known rela-

tion that at equilibrium the thermodynamic potentials of A and B must be the

same at the homogeneity limits of both phases, i.e.

AG AG (2a)
A(c' A(P)

andl

AG ~AG (Zb)B(ci) EI(f3) (b

mix
Deri,ting the integral free enthalpy cf mixing of the a-phase with G and

that of B with G , and using the stable modifications of A and B as the

reference states, we obtain

AG ~ G (3a)
A A(a)

-_ mix (b

A(P3) (a-.) A(P)
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or, combining equations (3) and (3a) with the aid of equilibrium condition ( ):

-mix -mix
GA(a) GA(P) A(a- P)

Analogous considerations for the component B yield:

- mix -mix
G - BG = AGB (4b)

It is seen from equations -(4a) and (4b) the extent of mutual solubility is not

only controlled by the solution behavior, but also by the energy necessary to

transform the lattice of one component into that of the partner. As an example,
-mix mix

it follows from equation (4a), that G. must be more negative than G
A()A(a)

in order to counterbalance the positive term _A.G on the right hand side

of the equation, i.e. the component A is present in higher dilution

[xA() > x in the P- than in the a-phase.

We may demonstrate the principally exhibiting relationships by assuming

that both solutioits a and P behave ideally. Under these circumstances,

-mixA(a) RTnXA()

- mix
A(P) RT InxA(P)

or x

RT In--A(P) AG A(a-P)

and, analogously, for the component B:

RT In X = AGB(. a) (5)XB (a)

5r x~. x irm w s ~ etl ( m (i . ( _ ;. . . :

• wmr B-I



It is thus possible, from a knowledge of the transformation energies AGA(a)

and AGB(P_-a ) and the solution behavior, to calculate the phase diagram; or

to derive from experimentally established solubility data the quantities
AGA(a_ ) and AG B(P.a), i.e. the lattice stabilities of the components in modi-

fications other than the stable ones.

For the case that AG >> AG the homogeneity range of
A(a- B c3)

the P-solution is negilgibly small. Under these circumstances,

z mix = 0,
B ()

and equation (4b) reduces to

- mix
B(Q) B(P- o (6)

For ideal solutions, this results in the simple relation

RT In xB(a) = GB(P

or, since

8A GB (P c )

T I B( -,a )
BT T OT

in the familiar Clausium-Clapeyron-type of equation

In xB(a) M'B(-- a)
T RT Z
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This relation, in the integrated form

,N
Inx= A -

T

is commonly used to derive the enthalpy change AN from experimental solu-

bility curves ("heats of solution").

In practice, ideal solution behavior is rarely found and the partial

quantities have to be derived either from independently obtained thermochemi-

cal data, or deviations from ideality are accounted for by fitting suitable

mathematical expressions to experimental phase dtiagram data. In many

instances the regular solution approach
('' 910)

G C ..x x + RT ox nx.

is found satisfactory to approximate the actual behavior with sufficient accuracy.

Using the formulas discussed above and using the regular solution

approach to account for deviations from ideal solutions behavior, the free

enthalpy differences between the hexagonal close-packed (A3), the face-centered

cubic (A2) modifications of molybdenum and tungsten have been derived from

their binary systems with platinum metals and rhenium and are listed in Table 1.

A compilation of the lattice stabilities of selected metals is provided in the work

referenced under (11), and stabilities of high temperature carbide phases calcu-

lated from pseudobinary systems may be found in a previous publication. (9)
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Table 1

Stabilities of Molybdenum and Tungsten in Different Crystal
Modifications

AGbc c - hcp(cal/gr.-At) AG bc c - fcc(Cal/gr.-At)
Ref. 1 Ref. 1C Ref. 11

Mo + 2,000 + 1,500 2500+ 0.15.T (°K)

W + 2,000 + 2,800 2500+ 0.J5"T (°K)

II. THERMOCHEMISTRY OF PHASE REACTIONS IN TERNARY SYSTEMS

According to Gibb's phase rule, the maximum number of phases which

can coexist in a three component system is five, or, with temperature and

pressure fixed, three. A temperature section of a ternary system willthere-

fore, ordinarily consist of an arrangement of one-, two-, and three-phase

equilibria. Four-phase equilibria (four-phase temperature planes) are

important in the melting ranges, but seldomly occur in the solid state. Never-

theless, the existence of four-phase temperature planes can be derived by con-

sidering the temperature of an additional variable, i.e., by analyzing a series

of temperaure sections. The mathematical approach thus concentrates on

the establishment of the conditional equations for the two- and three-phase equi-

libria at constant temperature and pressure.

A. TWO-PHASE EQUILIBRIUM IN A TERNARY SYSTEM BETWEEN

PHASES [Ax ,By jCu, - [Ax,,B y,,Cu, '

A variation of the free energy in such a system is possible by

exchanges of A and B on the (A,B) sublattices, and also by changing the overall
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content of the component C (u' and u") in. the solid solution. For such a

system, it is advantageous to base the calculations on one mole (A + B) instead

on a gram atom as is conventionally done.

The free enthalpies of the two ternary phase solutions will then be

expressible as (T,p = const)

GI = x'f, (u') + y'42.I (u') + R, (x',y' (8a)

and

G2 = x"fz (u") * y",0(u") + RZ (x" ,y") (8b)

f, (u') and 01 (u') are the integral free enthalpies for phase 1 in the binary

systems A-C and B-C, respectively, and f 2 (u") and 02 (u") for phase 2. R,

(x',y') and R2 (x",y") are the free enthalpies of mixing on the sublattices (A,B)

in both phases.

The equilibrium state, after Gibbs, is characterizt d by the condi-

tion that the thermodynamic potentials (partial free enthalpies) of each com-

ponent are the same in both phases, i.e.

G G (9a)A() A(z)

GB(-) = GB(z) (9b)

GC(I) z c( ) (9c)

whereby (T,p const)

Y OG IQ I[ aOIGAy- G-u i (10a)A B8y OU

9



zi a G G u a GIu( b
B x U u -

zixBuluu (l0b)

Together with the fret- enthalpy expressions (8a) and (8b) we obtain,

" x 11 [a)
GA -mix ( fu') +Gm-I + 4zu)i (ha

G' (u + 'X u[Iau) (Ilb)

BB(i) I~z L X, x

and analogously,

f ( )+ G (1x 71 i ( " ~ 1 ~ ( " .a)
GA(,) (u Z)U1 ,114( X,+Y .x

-mix - , [f(U'~B() *(u") GB() -ux 8"JXII~ t L u 11 (I (Zb)

C(I) XIII + y X11 (1 Zc)

with

-j ix (1(ly)+y' OIxl'03&)
GAM (x.')+y

rmi xO(,Y) , R&IXI(1bo B (II') (lyb
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-mix 8R(x" #1 ) (13c)
G = R2 (x",y") + y" 8x"

A(z) ei

- 2 (x"y) + x" 8R 2(x",y") (13d)8 y',

Equations (10) and (11) uniquely define the equilibrium state and permit evalua-

tion of the equilibrium compositions of the phases. One concentration variable

(either the gross composition, x t or x") is chosen as a free parameter.

Although the resulting equations appear quite involved, they do

allow a fairly straight-forward evaluation of the base points of the tie lines

for the unrestricted case.( 12 )

In many instances, however, considerable simplifications can

be achieved by taking advantage of certain characteristics of the boundary

systems and by substituting suitable expressions for the free enthalpies of

the partaking phases. Thus, as found frequently, if u' and n" can be con-

sidered as constants, it follows from (9) that a valid partial solution is also

given by:

G -G :G G(4A(l) B(i) A(z) B(z) (4

Inserting the partial quantities from equations (11) and (12) into (14), we

obtain:

-mix -mix -mix -mix
G G + 0B : f (u") -(u") + 4 1 (u") -f (u') (15)

AWa) B(1)' A(z) + B(A)

or

A(1)
Topfu pout0"C 8GX



G1 ,G 2 = Integral free energies of formation of phase solutions 1 and 2.

Taking, as an illustration of the applicatiorn of equation (15), the phase

diagram example shown in Figure 2, we have (u' 0, u" 1, T,p const.)

f I(u') = G fA = 0

f?.(u') = Af,B =0

01 (u") = AG fJAC

02 (u") = Gf, BC

AC/

Figure 2. Appearance of Extended Two-Phase Fields in
a System with Solid Solution Formation Between
the Components and the Intermediate Phases.



AGf'i = Free enthalpy of formation of phase i.

With -mix = RT In a

I 1

a ...... activity of i f.x.
I 1

we obtain from equation (15)

a' all
RT ln - " = fAC "AGfBC (17)

B A

For ideal solutions (ai = xi)

RT In K = f,AC" &GfBC (18)

XA A
l-x' x'f

A A

From the known solution behavior, the differences of the free enthalpies of

formation of the binary phases AC and BC can be determined from the experi-

mental tie line distribution or, conversely, the tie line distribution in the two.

phase field can be calculated from known free energy data.

We shall not discuss in any detail the effect of temperature and non-

ideal solution behavio.- upon the tie line distribution in a two-phase field since
(9,10)this has been done elsewhere 0 but instead concentrate on an actual

example.

In the V-Mo-C system, the component metals, the subcarbides V&C

and MoIC. as well as the monocarbides VC 1 ,x and MoCa.x at high tempera-
(13)tures, form complete series of solid solutions ( . The compositions of the

13



coexisting phases (tie lines) were determined by lattice parameter measure-

ments on samples located within the respective two-phase fields.

Figure 3 illustrates the method which was used in smoothing the experi-

mental data. The upper section shows the plot of unit cell volumes of the

Me 2 C phases as determined by lattice parameter measurements on samples

whose locations in the system are depicted in the center section. The lower

section of Figure 3 contains the lattice parameter measured for the bcc metal

phase. As can be seen from the curves drawn through the experimental points,

the apparent lattice dimensions in the two-phased alloys differ from the param-

eter curves for the (V,Mo)zC and the (VMo)-solid solution at the same metal

exchange. The true compositions are obtained by the horizontal intercepts

with the lattice parameters, or unit cell volume, curves for the (V,Mo) and

the (V,Mo)zC solid solution, such as shown for one sample P in Figure 3. The

composition data thus obtained are transferred to the isothermal section

(Figure 3 center) and the coexisting phase compositions connected by a straight

line (tie line). The auxiliary curves (dash-dotted in Figure 3) refer to the locus

of parameters at the bpundaries of the opposite phase solution.

Having established experimentally the coexisting phases across the two-

phase field, the next step involves computation of the "equilibrium constant"

K according to equation (18); departur of K from constancy as the two-phase

field is traversed would be indicative of an appreciable departure of the solu-

tion from ideality. For the two-phase equilibrium (VMo) + (VMo)IC, how-

ever, we find

K * 4.75 *0.40.

the indicated error limits being well within the bounds set by the accuracy of

the experimental data. [Compare the calculated tie lines (dashed curves) in

Figure 3, and the x'-x" plot in Figure 4.1

14
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LS3 Unit cell volume of (V,MO) 2 C

:3 i~oution at the metal-rich
0 boundary (u'-0.4 6)-

35
-J
W

z 34

0. 4 No 4 (VMo~C'

0.2

.4 -

3.12 -
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08Unit cOl volumeof(M)

.0 soluti01 (u-0)

o304

302 __j
0 20 40 60 80 t00
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Figure 3. Determination of the Tie Line Distribution in
the Two-Phase Field (V.Mo) + (V.Mo)xC by
Lattice Parameter Miasurents on an Alloy

Series at -. l5At.% C. Equilibration tempera-
ture 1230C.

Calculated with K z4.75



1.0 I

0 Experimental at 1230 0C

0t - Calculated with K=4.75
0.

0

z
0 0.4

Li
J
o 0.2-

/0

0 .0 0.11I 0l4L-0.6 0.8 1.0
-MOLE FRACTION Mo IN (V,Mo)-.

Figure 4. Plot of the Coexisting Metal and Subcarbide Solid
Solutions in the V -Mo -C System at 12300 C.

Th~e equilibrium constant K is thus related to the free enthalpies of

firmation of- the subcarbide phases in the edge binaries VC and Mo-C by

RT In KZAfO W fV

lwerton, of temperature of -1500*K and the above value for KC yields

AO~ OC W 4640 *400 cal/gr. At. Metal (9
i'OO" f,VC 0 ,. 4

16



Experimental work carried out at 18000 K led to K z 4.04 *-0.40 for the same

equilibrium, or a value for

G - AG .= 5-060 * 400 cal/gr. At. Metal (20)
-MOC 4 5

The analysis of two-phase equilibria only yields differences for the

free enthalpies; to obtain absolute quantities, the free enthalpy of formation

of at least one of the boundary phases has to be known. In the foregoing

example, the free energies of formation of Mo2C appears quite well established,
(14)

while that of V2C is unknown. From the data compiled by Pankratz et al.

AG o can be approximated for the temperature range above 14000K with
f MoCy

sufficient accuracy by the expression

AG fMoc + - 1450 - 1.36.T [cal/gr.-At. Mo] (21)

Together with the free enthalpy difference (20) one obtains for an equilibrium

temperature of 18000K

AG = - 12,260[cal/gr.-At. V]

This value is independently confirmed by experimental studies of the V-W-C

system, where the thermodynamic analysis of the two-phase equilibrium

(V,W) + (V,W)ZC led to an equilibrium constant of K 9.0 at 18000 K and a

free enthalpy difference of

AG - ,AGs= 7850 [cal/gr.-At. Metal] (22)
f' WC 0 4 5  fVO4

Chang in his compilation of thermochemical data on carbides ( , gives

AG - 3150 - 0.62.T [cal/gr.-At. W]

17



which leads to

AGf,VC 0.48 (1800*K)= - 12,120 [cal/gr.-At.V],

which is in excellent agreement with the value derived from the V-Mo-C system.

In conclusion to the discussion of two-phase equilibria, we shall outline

on the already used example- of the V-Mo-C system the reverse case, namely

the calculation of the tie line distribution from known thermodynamic data.

According to equation (18) for the case of ideal solutions, the equi-

librium constant K can be calculated directly IFom the known free enthalpy dif-

ferences of the phases. For nonideal solution behavior, however, the relation-

ships will be less explicit, and thus the equilibrium concentrations more diffi-

cult to obtain; for such cases the graphical method, leaning on reletion (16),

is to be given preference.

For the (V,Mo)-(V,Mo)zC two-phase equilibrium, the free enthalpies

of formation of the two solutions is given by

AGf,(VMo) = RT [x' In x' + (1-x') In (1-x')] (23a)

AG x" AG+ (I-x) + RT[x nx"f, (V,Mo)C. 46  f,MoC o.46 fVCo.46

+ (1-x") In (l-x")] (23b)

x1 = mole fraction of Mo in the (V,Mo) solution

x11 = mole fraction of Mo in the (V,Mo) sublattice of the
(V,Mo)2 C solid solution.

18



The gradients are then (T,p const)

8 AGf, (V,Mo) RT n X(24a)
8x' = TInl-x'(2a

and

8AGf,(,MO)Co'46 
- + RT ln a (24b)

'' 3x = f,MoCo., 6  f,VCo. 46  X11

These gradients, divided by 4.574.T are plotted against the concentration in

Figure 5. As shown in this illustration, the tie lines, for any prechosen value

of x' or x", are obtained as horizontal intercepts between both gradient curves,

(Figure 5).

B. THREE-PHASE EQUILIBRIUM IN A TERNARY SYSTEM

BETWEEN PHASES (Ax By,)Cu-(Ax,,, Byt)Cv-(A x., By.. )Cw

In essence, all types of three-phase equilibria occurring in a

ternary system can be reduced to the two cases shown in Figures 6 and 7. Cases

related to the one shown in Figure 7 are three-phase equilibria resulting from

pseudobinary eutectic (eutectoid) or peritectic (peritectoid) reactions.

The general solution for the three-phase equilibrium represents

the tangent points of all triple tangent planes to the free-enthalpy ,- - of

the three partaking phase@. The multiplicity of solutions is GD', and tft solution

for the equilibrium concentrations of each individual phase is of the form

(p * const)

19



1.5- T 1500"K

1.0-

(V,Mo)2C solid solution

'~0.5

U 0.0

.. 0.5 (V,Mo) oli

o.14

'0.5 Ve

0.0-

+ (,MoMC t 100K

20C



C

/ ll~ffI + 1+l '
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Figure 6. Three-Phase Equilibria Due to Formation of a
Miscibility Gap in One of the Intermediate Phases.
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Figure 7. Termination of Phase 1 in a Three-Phase
Equilibrium in the Ternary Owing to the
Absence of an Isomorphous Counterphase in
the B-C Binary.
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01 (x ,yozT) = 0

02 (X ,y ,z ,T) 0

(x 0*y +z - 1)

With T = const (temperature sections), the concentrations are fixed and cor-

respond to definite phase triplets (x oi,Yoi ,z oi)

For the numerical evaluation of the unrestricted problem, the

general condition equation derived 1rom the minimum condition and the exist-

ing constraints are only of limited use; the arithmetic in obtaining numerical

solutions is quite involved, and, besides, the accuracy to which data concerning

the variation of the free enthalpies across the homogeneity ranges of binary

intermetallic phases are known at present, would not warrant highly detailed

computations.

We thus introduce the same restrictions as done in the treatment

of the ternary two-phase equilibrium, namely narrow, or constant, widths

of the homogeneity ranges of the phases with respect to one of the components,

and no atom interchange between the sublattices. An example representing

theae conditions is shown in Figure 8.

To derive the conditional equation for the three-phase equi-

librium we consider an alloy with the gross composition A B C to be com-
yR

posed of three phases,

vI molesA BC .... (&Gi),x1 y'o

vj moles AxBC ..V(#I) 

vjmoles AX B MC ,.(-N 3)Y .
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At constant temperature and pressure, the free enthalpy of the system is

given by

= vieGI + v2AG Z+ v 3AG 3  (25)

The equilibrium state is found by minimizing AG 2 under the given constraints,

such as the conversation of the mole masses and the relations existing between

the concentration variables. Determination of the extremum in the well known

manner after Lagrange ( 9 ,10) results in the conditional equations (T,p = const)

8 _G_ ac 2  =(26)a8x' _- - (xt )
8xI  exit CIXI

and

(v-w) AG + (w-u) AG BC + (u-v) AGBC Z 0 (27a)
U v w

(v w) AC + (w-u) A -BC + (u-v) ABC = 0 (Z h)
U v w

Equations tZ7), together with the conditional equation (26) for the three adjoin-

ing two-phase equilibria, uniquely define the equilibrium state. 'iquation (26)

admits an infinite number of possible concentration triples of which the cor-

rect one, corresponding to the lowest free enthalpy, is sorted out with the aid

of equation (27).

Separation of the partial free enthalpies in equation (27a) into

base- and concentration dependent terms yields

(,-W) AG~s + (W-u) 4f.0 + (U -v V) W +

f.CU fBCV BCW

(v-w) mix +(w-u) mix +(-v)
BC BC BCu v W

U v w
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The first three terms correspond to the free enthalpy change of the reaction

(w-u) BC -" (w-v) BC + (v-u) BC ..... AG_.,v u w Z,BC
v

and can be interpreted as the relative stability of BC in respect to the neighbor-v

ing phases BC and BC . Analogously, we may regard the sum of the lastU w

three terms, containing the partial free enthalpies of mixing, as the correspond-

ing free enthalpy change due to solid solution formation. Equation (27a) can

therefore be rewritten to

AG + 4- mix 0 (28a)

Z. BC v Z,BCv V

and, due to the reciprocity of the relations, equation (2T) to

W2 + Zmix = 0 (28b)
ZAC Z,ACv v

The three-phase equilibrium in a ternary system is, therefore, characterized

by the condition, that the free enthalpies of disproportionation (relative sta-

bilities) of the binary phases AC and BC are each brought to balance by thev V
free enthalpy changes resulting from solid solution formation of the partaking

phases. Relations (28a) and (28b) give us the means to separately determine

the relative stabilities of AC and BC from experimental phase diagram dataV v

and known solution behavior, irrespective of the sign of AG Z .ACV (&GZ .BCy ) .

i.e. whether or not one of the phases exists as stable binary compound. This

conclusion is important, since it allows us to obtain a definite number signify-

ing how much a given compound in a binary is unstable in respect to the neighbor-

ing phases, and thus to determine its relative stability (Figure 9).

Relations (28a) and (28b) pertain to the equilibrium state. Any

deviation from it will result in the &ppearance of a finite quantity, +Z on the

right-hand side, which, in essence, will be a measure of the imbalance between
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ACA

ACv

\ \\ Z<0

"\ \ AGz,|, 0

\ AG72>O

\, 28h") ACv

iX 
C- xc ----4

Figure 9. Stability Relationships in a Binary System A-C.

I. Phase AC unstable in respect to a mechanical
mixture oY AC u and AC. (AGZ ,AC < 0)

II. Nonvariant equilibrium (stability limit of AC.,,
4GZ,AC - 0)

LU. Phase AC v stable (&GZAC > 0)

the divproportionation terms, AG . for the binary compounds, and the correspond-

ing mixing quantities. We may generalise equations (28) and write

Z.AC z.AC + Z.AC

and
-mix

*Z'BC AG ZBC + GZB'C v (29b)
V V V

and note that, at equilibrium, z 0.
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For positive values of OZ the solution (A,B)C is stable inV

respect to mechanical mixtures of(A,B)C and (A, B)C w whereas for negative

values the solution (A,B)Cv becomes unstable and disproportionates into

mixtures of (A,B)Cu and (A,B)Cv .

So far, our relations have dealt only with partial quantities and

we therefore expect the functions Z to describe the partial disproportionation

quantities oniy, It can now be shown ( 9 ' 16) hcvever, that the function ( ,AC
v

and 0 Z ,BC are identical ai1,, equal to the integral free enthalpy of dispro-

portionation (relative stability) of the solution (A,B)Cv , viz.

V

Z ,(A B)C -= Z AC v Z,BC

We chus oltain the important result, that the integral free enthalpy of dispro-

portionation (relative stability) of the solution (A,B)Cv is equivalent to the sum

of the free enthalpy of disproportionation of either of the binary phases, AC or~V
BC , and the partial free energies of disproportionation for the same component.v

To determine the equilibrium concentrations from given thermo-

dynamic data, we first employ the gradient condition, which yields the vertices

of all coexisting phase triples possible for the entire range of exchanges (A,B).

These "'compatible" concentration triples are then substituted into equations

(29a) or (29b). The correct phase triple is the one for which 0Z,AC.' or

vvOZ,BC V'equals zero.

As outlined in the discussion of two-phase equilibria, the graphical

method offers the most convenient route to evaluate the equations. A closed

solution for Z which often is useful in initial estimates of the gross behavior

of the phase relationships in a system, can only be obtained for the case that
(9)

the solutions behave ideally.
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As an example for the application of the equations derived for

two- and three-phase equilibria we select the 125°C isotherm of the CoO-
(17)MnO-SiOz system recently investigated by Biggers and Muan (Figure 10).

The tie line distribution in the-two-phase fields were determined by lattice

parameter measqrements on two-phased, (Mn,Co)O + (MnCo) iO4 and

(Mn,Co'zSiO4 + (Mn,Co)SiO 3, alloys which were homogenized at the chosen

equilibrium temperature. In addition, activity-composition relations kor the

solid solutions were establiahed by a gas-solid equilibration technique, and the

instability of CuSiO-3 wae derived from measurements of the CO/CO ratios of

a gas phase coexisting with metallic cobalt, silica, and (Mn,zCo)SiO 3 solutions.

Their data showed, that the (Mn, Co)O and the metal silicate solution behave

practically ideally, whereas the orthorsilicate solution shows a slig-ht negative

departure.

With the exception of the monocarbide solid solution series and

SiO, the phases in this system have three sublattices, that of oxygen, silicon,

and of the metal component. Substitution- occurs only in the metal sublattice

and the boundary locations for a given solid solution in respect to SiO2 are

practically independent of the metal exchange.

It is seen from conditional equations (28) and (29) that the rela-

tive stabilities of the phases MnSiO 3 and CoSiO3 are uniquely defined by the

location of the vertices of the three-phase equilibrium

(Mn,Co)zSiO4 + (Mn,Co)SiO3 + SiO2

and the known solution behavior and that no independent experiments appear

necessary for their determination.
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SiO2

fu 1250 0C2

00

+

4v MnSiO3  (CoSiO 3) 0

2'4 k CUS0

(MRI.CO) 2Si 4

(Mn,Co)O + (Mn,Co) SiO4

(Mn,Co)O

MnO -MOLE % CoO- CoO

Figure 10. Isothermal Section of the MnO-COO-Si0 2 System
at 1250*C. (After Biggers and Muan, 1967).

Stability condition (28), rewritten for the three-phase equi-

librium in this system, becomes (T,p = const)

AZ,CoSiO 3 + GZ'CoSiO 3 0(3a

and

AGZ, MnSiO 3 +!_Z,MnSiO 3 = 3b
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where AG CoS1O3 and WG , MnSiO 3 are the free enthalpies of disproportiona-
tion of the respective metasilicates into orthosilicate and SiO2 according to

MeSiO 3 -/ /MezSiO4 + VaSiOz (Me = Mn,Co).... AGZ,MeSiOS

andtheters- mix
and the terms mi include the partial free enthalpies of mixing of the

Z ,MeSiO 3boundary phases partaking in the equilibrium according to the same reaction

scheme.,

In these equations, the stoichiometry factors assume the values

u = v 1, and w = o (negligible solubility of MnO and CoO in SiOz).

Under these circumstances, equations (31) become

a If
" "I

AG Z,MnSi03 RT ln aMn (31a)
ZMn~iO3 Mn

and

AGZ,CoSiO 3 = RT In a I  (31b)
Co

a'Mn(Co' .... Activity of Mn(Co)zSiO in the solid solution

(Mn,Co)zSiO relative to the pure binary ct-rpounds.

a' Activity of Mn(Co)SiO 3 in the solid solution
Mn(Co),***

(Mn, Co)SiO3 relative to the pure binary compounds

With a" 0= .47 (x" = 0.51), and x" = a"' 0.24, and an equilibrium tern-
Co Co Co Co

perature of 1523° K, equations (31a) and (31b) yield values of

AGz ,CoSiO3 = - 2035 [cal/gr.-At. Co]
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and

AGZ'MnSiO = + 1450 [cal/gr.-At. MnI

Considering the uncertainties of the experimental investigation, these values

are only insignificantly different from AG Z, CoSiO3 - 2Z80 and GZ, MnSiO 3

+ 13Z0 cal per gr. -At. metal calculated under the assumption of ideal solution

behavior (a" = x"). The above value of AGZ,CoSiO 3  - Z035 cal per gr. -At. Co

compares favorably with a value of -1900 cal derived by the cited authors ( 1 7 )

from data gained by an independent equilibration experiment.

Using the accepted value of -2800 cal per gr.-At. Co for the free
(17)

erthalpy of formation of Co 2SiO4 from the oxide components , the free

enthalpies of formation of all other phases can be derived from the existing

two- and three-phase equilibria in the system.

Thus, evaluation of the two-phase equilibrium (Mn,Co)O +

+ (Mn,Co) 2 SiO4 yields (1250* C)

AGf,C02SiO 4 - AG fMn2SiO4  7300 cal per gr.-At.Metal,

and the equilibrium (Mn, Co) AiO 4 + (Mn, Co)SiO 3 ,

AGf C oSiO - AG f, MnSiO 3 + '/ (AGf, Mn 2SiO4 - W f Co2SiO4  3820 cal per

gr. -At. Metal

Together with the data for AGZ C o S i O 3 and AG Z , M S iO 3 free enthalpy values

compiled in Table 2 were derived. Although the interconsistency of the thermo-

dynamic data calculated from the phase relationships in the system MnO-CoO-

SiO 2 appears to be very good and are also in good agreement with the quantities

derived from the cobalt precipitation experiments by the cited authors ( 1 7 ) , data

calculated from related systems appear considerably at variance. Thus, taking
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Table 2. Free Enthalpies of Formation of Manganese and
Cobalt Silicates from the Oxide Components. Data
Derived from Experimental Phase Relationships
in the MnO-CoO-SiOz System at 12500 C

Reaction Free Enthalpy Change at 12500 C

2 CoO + SiO - CozSiO AG = - 2800 cal/mole
fCo2SiO4

CoO + SiO2 -* CoSiO 1G + 640 cal/mole

2MnO + SiOz - MnZSiO4  AG ,iO4 ,100 cal/mole

MnO + SiO2 - MnSiO 3  AG f,MnSi3= - 6500 cal/mole

(') Reference value for the calculation of the
thermodynamic quantities for the other silicates.

the activities at the v-rtices of the three-phase equilibrium (Mn,Fe)zSiO4 +

+ (Mn,Fe)SiO3 + SiOz in the FeO-MnO-SiO2 System ( 1 8 ) , one derives for

AG Z,MnSiO3= + 640 cal at 11500C, as opposed to + 1450 cal obtained from

the MnO-CoO-SiO2 system. Since this disagreement is well outside the error

range to be expected from unknown variations in the solid solution behavior,

one is led to believe that the discrepancies very likely are to be attributed to

inaccuracies in the determination of the phase equilibria.

We shall now demonstrate on the example of the MnO-CoO-SiOz

system the use of the previously derived relations in the precalculation of

phase relationships in the system MnO-CoO-SiOz. For the sake of simplicity,

we shall perform the calculations by assuming ideal solution behavior for all

phases in the system. As input data we use the values derived from the experi-

mental phase data which would be obtained if the solutions were treated ideally,

namely:

33



AG fCozSiO=-2800 cal/mole (reference value)

AG f,=nSiO4  -9040 cal/mole

AG f,MnSi 3 = -5850 cal/mole

AG f,CoSi3= + 800 cal/mole

The first step entails the establishment of the free enthalpy-concentration

gradient curves according to conditional equation (16). For the solid solution

(MNi,Co)O we have (T,p = const)

AGf, (MnCo)C RT [x'Co In x 1Co + (1xIco) In (1-x1C),]

and

1 8AGf, (n_ Co
4. 574 7T -ax'Co ] -x'o

and for the (Mn, Co) SiO -phase,

AGf, (Mn,Co)Si.PZ Co o AG fCS +f, MnSi()Ol

+ RT [x" In x" + (1 o In Cx
Co Co o in (l-x" )]

and

I__f, (Mn.Co)S i O, 02 f, €oSio0O2 z f,MnSio.0 OZ + log Co4. 574" T L 8x" 1 4. 574" T l-x"Co

For the solid solution (Mn,Co)SiO3 we obtain in an analogous manner:
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-8AG 1 AG - AG xl1f,(AMn,Co)SiO3  f,Co~iO3  f,MniSiO 3 -+ log C
4.574,T - Ox"'I j 4.574-T 1 xICo

Substitution of the free enthalpy quantities into the last two

expressions and an equilibrium temperature of 15230 K yields the equations

8 AG11 f, (Mn, Co)Si"sO 0 0. 4487 + log 1X"C
4. 574 -T - Ox "o IIX C

and 1F3AG f (M ,GCO)SiO 3.9 6 +lg XCo

4. 574 -T L xill" 1 0.96 +11 o0-~

These gradients are shown in graphical form in Figure 11 and are used to

obtain the compositions of the coexisting phases in the two-phase fields.

To locate the vertices of the terminating three-phase equilibrium

for the metasilicate solid solution we have to determine its relative stability

in regard to mechanical mixtures of orthosilicate solution and SiOz (equation 29),

= AG RT n x'Co
Z,(Mn,Co)SiO3  GZCOSiO3 +R 11 C-

=AG CoX
Z,MnS1O3 + RTln C

According to our definition of the Z-quantitles

WZCOSiO 3 AGfCoZiO4 AG fC Sib
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or,

AG ZCi 3- -1400 - 880 -2280 cal per gr. -At. Co

and

AG ZM~O3 1300 cal per gr. -At. Mvn

1.5 /

05 (Mn,Co)SiO O

0

(Mn, Co) S'04

0 20 40 60 80 100
- COBALT EXCHANGEATOMIC % ---

Figure 11.* Free Enthalpy - Concentration Gradients for the
Phase Solutions in the MnO-CoO-SiOz System
(Ideal Solutions, T = 15230 K)

Dash-Dot Curve: Boundary tie line of the two-phase
equilibrium (Mn,Co)SiO3 + SiOz
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The function 0 Z, (Mn,Co)SiO3 is plotted in Figure 12 against the cobalt exchange

(x"'c) in the metasilicate phase. Per definition, 4Z at X"Co 0 and x"C = I

correspond to the free enthalpies of disproportionation of the pure phases in

the edge systems. We see from the plot , that the relative stability of the

metasilicate solution rapidly decreases with increasing cobalt content until,

at about x"' = 0.23, it crosses the zero line, indicating that the stabilityCo

limit of the (single-phased) solution has been reached. At still higher cobalt

contents, the metasilicate solution is unstable in respect to mixtures of

orthosilicate and SiOz.

The compositions of the coexisting phases are found from the

gradient curves in Figure 11. The horizontal intercept with the gradient curve

of the orthosilicate solution yields the vertex at the (Mn,Co)zSiO4 -phase (x" =
Co

0.51). According to our assumption of very limited solubilities in SiO2 , the

third vertex, of course, lies in the SiOz-corner. The temperature section of

the system, assembled from the calculated composition data is shown in

Figure 13.
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Reaction:

Mesio 3- 1/2 Me2Si 4+I/2 SiO2 (Me -MnCo) .... C, -' K

0Z~x>O:M~i0-ss stable

500 O4(x) 0: MeSiO.- ss unstable

OP,0: Homogeneity limit of
MeSiO.- phase
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mnSIOs - COBALT EXCHANGE,ATOMIC % ---4 CaS1O 3

Figure 1Z. Integral Free Extthalpy of Di>sproportionation
of the Metauilt cute, (Mn,Co)SiO3, phase into
Orthosilicate. (Mn.Co) 2S10 4 , and Si~a.
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Figure 13. Calculated Isothermal Section of the MnO-CO.SiOz
system at 1250C.
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III. DISCUSSION

Although the systems treated in this report represent fairly simple

cases, the approach taken in the computation of more complex ternaries is

analogous and only the arithmetic becomes more laborious. Similarly, non-

ideal solrtion behavior can be taken into account without increasing tie corn-
(10)

plexity of the calculations.

The most serious handicap in predicting phase equilibria concerns the

f a c t t ha t, to c a r r v out the calculations, the free energy of formation

of all phases in all structure types occurring in the particular system must be

known. Since the thermodynamic stability o-' )othetical phases principally

cannot be measured by direct means, a certain amount of experimental phase

studies, or other equilibration experiments, lea 'ing to the required data,

appears indispensable. Once such data have been established for a particular

alloy class from experimental phase studies on selected systems, the phase

behavior in other systems belonging to the same class can be predicted. A

considerable amrount of work in this respect has been performed on ternary

metal-carbon systems in which new, by virtue of a detailed thermodynamic

interpretation carried out simultaneously with the experimental studies, the

occurring phase equilibria and their temperature dependence are well under-

stood. (19)
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