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SECTION I

INTRODUCTION

The determination of molecular weight distribution (MWD) from

equilibrium sedimentation was investigated in 1928 by Rinde (Reference 1).

Fujita (Reference 2) expressed the relationship between the frequency

function, f(m), of MWD and an experimental curve u(C), obtained from

ultracentrifugal sedimentation in the form of the two following

equations:

U =M =xme-XMC f (m) dm (I)

I dC (X)mma ne•m0 0  I-ee

U(C) = I~ dC(~ rmax ,ým 2e XCf m dm (2)
C0 ~ 1~ieX

where C is concentration; Co, initial concentration; m, molecular weight,

r, distance from the center of rotation; rarb-r to the meniscus and

bottom respectively; p , density of solution; V, partial specific volume

of polymer; w , angular viscosity; R, universal gas constant; and

T, temperature in °K; and

(_rb-ro_) rb-
2RT r b -= rrb -ar

The determination of MWD can now be defined as a solution of Equation 1

or 2.
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In recent years the need to know the MWD of polymers has significantly

increased and spurred many new attempts to develop a good computational

technique for this purpose (References 3 through 17). The determination

of MWD was also an objective of this laboratory (References 18 through 21).

Unfortunately, the efforts to develop a good method for MWD determination

were, in general, not very successful and the results proved to be

disappointing. In some cases such results lacked precision and

reproducibility and they did not seem to provide a routine which would

work in all circumstances. Elucidation of this enigmatic behavior of

Fujita's equations, and the difficulties arising during their solution

is a subject of investigation in this laboratory.

Lee (Reference 21) first recognized that Equations 1 and 2 constitute

an Improperly Posed Problem (IPP) in the Hadamard sense (Reference 22)

and, therefore, a conventional mathematical approach cannot provide

satisfactory solutions. There is, however, the possibility of finding

an approximate solution to IPP in general and to Fujita's equations in

particular by applying Tikhonov's regularizing functions. Application

of this method and solution of Fujita's equations is the objective of

this Technical Report.

2
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SECTION II

IMPROPERLY POSED PROBLEM

The notion of a mathematical IPP (Improperly Posed Problem, also

known as an Ill Posed Problem or Incorrectly Formulated Problem) goes

back to Hadamard (Reference 22) in conjunction with the Cauchy problem

for the Laplace equation. At that time Hadamard believed an IPP is

evidence that the expression under consideration does not have any real

physical meaning, and therefore, it cannot express any physical rule or

situation. This belief proved to be wrong, and the existence of IPP was

established in many other "physical" expressions such as the heat

equation for negative time and Cauchy data on the boundary, the non-

hyperbolic Cauchy problem for the wave equation, the inverse problem of

potential, and a number of inverse problems for differential and integral

equations.

In the recent decade IPP was intensively investigated. The following

considerations are based upon the works of C. Pucci (References 23

through 28); F. John (References 29 through 32); M. M. Lavrentiev

(References 33 through 43); A.N. Tikhonov (References 44 through 61);

V.K. Ivanov (References 62 through 66); V.A. Morozov (References 67

through 70); and others (References 71 through 83).

Consider the equation:

U) Af (m) = [f(M)3
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where A is an operator, uEU, fe F, U, and F are some complete metric

spaces, and Af is a function with the domain of definition F and the

range of values U.

The solution of Equation 2 is a properly posed problem if the

following conditions are satisfied:

(2a.) The solution of (2) exists for any u(C) EU.

(2b.) The solution of (2) is unique in F(m).

(2c.) The solution of (2) depends continuously on u(C) in the

metrics of F and U.

In such a case there exists a function Bu( ), defined and continuous

over all U, and B is an inverse operator of A, where:

A-Iu(C) = f(m) = R m,u(C)I

If even one of the conditions 2a, 2b, or 2c is not satisfied [u(•) =

Af(m)] is an IPP. In such a case due to the unboundedness of the

operator A-] the solution does not exist for all u(C) and is unstable.

To arbitrarily small variations of u(E) may correspond arbitrarily

large changes in f(m).

As an example consider a Fredholm Integral Equation of the First

Kind.

b

)= AICf(m), = J K(C,m)f(m)dm; cS__d (4)

a

4
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It can be shown that the inverse problem of Equation 4, e.g.,

computation of f(m) on the basis of a given function u(C ), is improper.

Indeed, to the functions f I W and f2(m) = fI(m) + p cos Wm, fl(m),

f 2 (m) eF, where p is an arbitrarily large given number, there will

correspond functions ul(C) and u2 (C) for which the norm II ul(C) -

u2( II is arbitrarily small if w is sufficiently large. However,

if the class of admissible solutions is the compact class F, the inverse

mapping U - F will be stable (Reference 48). In other words, for

every 6 > 0, there will exist a 8( c, F) such that the inequality

II U1-u2 11< 8(-E,F') implies II f 1-f 2 II<eif u1 and u2  EU = {u(c) -

A[ C,f(m)], fe F}, where F is a compact class of functions.

An IPP will be called a Regularizable Problem in Tikhonov's sense

if it has at least one regularizing algorithm defined in the following.

Such regularizing algorithms are practical aids for solving an IPP.

Let an IPP, f = R[m, ul be given, where, to a special function Tu(•),

there corresponds a solution f(m) = R[m, i(')]. Let also an approximating

function M'E) for u(C) be given, such that II Z-u 11< 8, where 8 is

known. It is required to find f(m), an approximation to f(m), with an

assigned precision 11 f-f1:l5 e if 8 is sufficiently small.

R[m, u(A)] will be called a regularizing operator if the following

conditions are fulfilled:

(1.) RB[m, u(C)] is defined for every •'EU and 8 > 0.

(2.) If for U(C) there exists a f(m) = Rim, u(C)], then for

every positive e , there exists a S (j,f) such that if

I Z-u II u < 8, then II f-f II e < where f R[m, uM.

5
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Consider a Fredholm Integral Equation of the First Kind as expressed

by Equation 4, with the boundaries a = 0, b - m , c = 0, and d = 1.max

If the kernel K(C,m) is continuous, and if for U(C) = 0 there exists

just one solution f(m) = 0, the Integral Equation can be solved in the

following way by applying variational calculus and Tikhonov's regularizing

algorithm.

Instead of dealing with the conventional functional:

NIf (m); -u(E)I = j' [ A[ECf (m)]J- u(C)] dC (5)

Tikhonov suggests applying another smoothing functional:

Mn[ft(m); u()I N[ f(m); ui(C)l + aQ(n)[f(m)] (6)

where ,(-n) is the regularizing functional. Then,

Mmax {n+I

e) = { Ki(m)[f f)(m)]I} din, (7)
0 = 0

where the Ki(m)'s are positive continuous functions, and a is an

arbitrary parameter, which minimizes the functional Man

The application of the variational Euler Equation and boundary

conditions transform Equation 6 into a new expression:

{GII i+I dit Miox

"<'l a 7-{(-,I K I(m)f1-(.-}i(-{f (8
"-0r 0

6
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with the boundary conditions

I=(in) H) K( ,2,.n+i) (9)

0Q mmax

where
I

K(mC) = f K (C',m) K (C, C) dC€(O

0

and

b"(m) = J K (C, m)u(C) dC (10-b)
0

Equation 8 will lead to an approximate computation of the function f(m).
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SECTION III

COMPUTATION

Consider a Fredholm Integral Equation of the First Kind:

b

u : f K(Cm)f(m)dm

where K( ,m) is a continuous kernel within a range a!_C<b and cSm!_d.

The distribution function, f(m), fulfills the following boundary conditions:

f(c) = f(d) 0 (12-a)
and

m( = \--df\ _df (12-b)

m=c m~d

The function f(m) can be mapped to generate the function-u(C). If

an inverse operation will be applied on-u(C), a function f(m) can be

calculated. Finally, f(m) can be mapped again to generate a function

u(C). The norms II u(1)-u(E) II and lTf(m)-f(m) II will show the

quality of the transformation. Such a quality is influenced by the

following factors:

(a.) The nature of f(m) function;

(b.) The nature of the kernel;

(c.) The way of obtaining u(C);

(d.) The type of regularizing function applied;

(e.) The type of matrix used for approximate calculations.

8
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To examine these factors, various distributions, kernels, methods of

integration, regularizing functions, and approximate matrices have been

considered.

The following f(m) distributions have been examined:

(a-l.) A mono-modal distribution:

2 2
f(s) = 8s (I-s) 0; O~ssl (13)

(a-2.) A bi-modal distribution:

f(s) = f,(s) + fY(s) 05s'51 (14)

where

f,(s) = 78.125s 2(s-0.6)! O5s<0.6 (14-a)

f1 (s) = O;0.6<s<_l (14-b)

f2(s) = 0; OSs<_ 0.5 (14-c)2(s) = (62(s-0.5)2(I-s)l 0.55_s <1 14-d)

The following kernels have been applied:

(b-l.) The kernel appearing in Fujita's Equation for concentration

gradient, (Equation 2) is

) 2 e- XmC
K=•') -X•m;ef O~m~m 0<•<_ (15)

2I -e - max -

Letting m= mmaxS; = mmax; -( u()/m and(s) =

f(Smmax), Equation 15 can be transformed:

K-2 (Cs) O PSsl 0S_1 (15-a)

I-e
and Equation 2 will be replaced by Equation 16:

u(')I d1C(M I

U m f K 2 (C, s )T(s) ds (16)
MmraxCo dc 0

9
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(b-2.) The kernel appearing in the Fujita's Equation for con-

centration (Equation 1) is

K3 (Cm) = eXIm O<mm 0<_C's 1 (17)

* 1-eXm Orm max; 0 ri

Using a previous setting, we will obtain:

K 3(C ,s ) = -ase 
( r-oS)

3/3
l-e

and

c-( C() C
-C ma j K (C,s) ? (s)ds (18)

0
Two methods of numerical integration have been applied:

(c-i.) The integration was achieved by applying the trapezoidal

rule.

(c-2.) The Simpson formula was applied in integration.

Various types of regularizing functions S1 have been used:

(d-l.)Q = Iif(1) 11 2

and

(d-2.) a) =a(11 f(1) 11 2 + YII f(2) 112)

To examine weighting of elements of a matrix used in an approximation

the variable of the function u was defined in the two different ways:

2 2 2 2
(e-I)C, rb -r and e-2 r r

-2r 2 2a 2rb - a rb ra

10
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SECTION IV

RESULTS OF COMPUTATION

To emphasize the importance of regularization: 1) a mono-modal

distribution (Equation 13) was assumed, 2) u( C) was computed by

Equation 19 with the aid of Simpson's formula for integration, and

3) variational calculus (see Equation 5) without Tikhonov's regularizing

function was applied so as to obtain a "best fit" computed distribution.

The result of this computation is shown by Figure 1. Note that although

the results are very erratic the error analysis II C) -( II was

a minimum. The behavior is typical for an IPP.

Upon including a regularizing function S2 (see Equation 7) and

applying Euler's equation from variational calculus to the functional

M c[f;'u] (see Equation 6) a distribution fa(s) was obtained for each

value of the parameter a The objective of the search is to find the

value of a which will produce a minimum error analysis. Using inf I M14

as the error criterion, Figure 2 shows a typical example of how the

appropriate value of a is determined. This tells the experimenter

that for the error he has in the experimental values u(•), this is the

best initial approximate distribution. From this starting approximation

the experimenter can then apply some algorithm to infer a distribution

which will produce a still smaller error analysis. He is now in a

position to do this because he has an admissible solution to his

originally improperly posed problem.

11
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Using the concentration kernel (Equation 17-a) and the gradient kernel

(Equation 15-a) with the mono-modal distribution (Equation 13) and the

regularizing function S2 (l)(f), the results obtained are shown in

Figures 3 and 4 respectively. For both cases the integration involved

in obtaining Z(4) was performed by the trapezoidal rule. Since the

concentration kernel provided a better solution to the problem, especially

for low molecular weights, this kernel was used for all further

investigations. It can easily be shown that the gradient kernel

(Equation 15) degenerates for very low molecular weights, thus

liro X2m eMC

and the concentration kernel (Equation 17) does not degenerate under

identical circumstances:

lim |_m._Xm•
[ I - e7XMIn

Therefore, computationally the concentration kernel is preferred when

considering low molecular weights. For Figures 3 and 4 the error

criterion minimized was II Z(E)-u*(C) II . Here u*($) was computed

by using the calculated function a (s). To demonstrate the numerical

agreement between Z(C) and u*($) Figure 5 presents the curves for u(C)

and [E(C)-u*($)] x 103 associated with Figure 3. If Z(C) and u*(C)

had been plotted on the same graph, for the ordinate scale used the

two curves would have coalesced. The numerical values of MC() and

u*(e) agreed to three significant figures.

The computation of a bi-modal distribution proved to be more complex.

At first Equation 18 was applied using the trapezoidal rule for integration.

12
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The resulting PQ (s) obtained by minimizing II u( )-u*(C) II was the

three-peaked curve shown in Figure 6. Upon using Simpson's formula for

integration and varying a so as to minimize II U( )-u*(C) II a good

"fit" to the initial distribution (Equation 14) was obtained (see Figure 6).

To study the effect of the error analysis on choosing the appropriate

value for a , three criteria were applied:

Il). inf I Ma [T(s ),V(011

(2). inf{moxlT(s)-7a(s )I}
€•) I1(0 - uN(O 1I

The results are shown in Figure 7. In a true experimental situation the

error analysis inf max lf(s)-f a (s) I would not be available. Choosing

between the other two criteria it would qualitatively appear from

Figure 7 that II Z(C )-u*(C) II is better than one could expect to

derive deductively from Tikhonov's theory.

For all computations mentioned above / = 4.25. Recall that

13 = Xmmax, where G is proportional to the square of the rotor speed

(see Equation 1). If X = 1.02 x 10-I0w 2 , and W 2 = 4.1693 x 105

sec -2 (6,166 RPM), then X = 4.25 x 10-5 (mol wt)-. Assuming mx =

lO5, the value of /) (-Xmmax) is 8 = 4.25. The following values

for mmax were chosen: 4.706 x 104; 4.706 x 105; 7.059 x 105; and

1.8824 x lO6. The corresponding values for )9 are respectively'2.00,

20.00, 30.00, and 80.00. The results obtained by varying a so as to

minimize the error criterion II ?(C)-u*(C) II are shown in Figure 8.

No attempt was made to determine the exact optimum value for)/

13
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To express the integral operation (Equations 17-a and 18) of the

concentration kernel in matrix form, the matrix is weighted by large

numerical values in the upper right-hand corner. Since use of the

regularizing functions tends to enhance the diagonal and near-diagonal

elements, modification of the concentration kernel so as to have the

large numerical values of the matrix near the diagonal should greatly

improve the computations. This was easily performed by redefining

to be

2 2

2 2r r.b a

Previously was defined as

2 2
rb -r
2 2
r b- ra

In using the same bi-modal distribution applied previously and the

modified concentration kernel it was found that the computed distribution

f a(s) was in poorer agreement with the assumed f(s) than when the

unmodified concentration kernel was applied (see Figure 9).

14
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SECTION V

CONCLUSIONS

Tikhonov's regularizing functions have proved excellent as a tool to

solve the inverse problem associated with the Fredholm Integral Equation

of the First Kind which correlates the ultracentrifugal data obtained by

sedimentation-diffusion equilibrium and the desired molecular weight

distribution (MWD). This technique is especially desirable since a MWD

can be obtained from data at only one rotor speed. Computationally this

technique has provided excellent results when the MWD is a mono-modal

distribution and good results for a bi-modal distribution. However, for

a multi-modal distribution (fine structure) an additional algorithm has

to be applied.

15
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SIBJOB MAP
$IBFTC REGLAR

CCMPCN/ZYT/X1,X2,UA
C DIMENSICN FOR COMMON

DIMENSION U(60),AI6C,60)

DIMENSION XK(60O6C)*S(60)X(6C)9Zf6O),BK(60960)iB(60OtZPf60)tALPHA
I(IOLFP(60)

C
C
C COCED NOVEMBER 1969 BY DoRm WIFF AND MoTe GEHATIA
C 7C CHANGE INITIAL DISTRIBUTION, THE SECTION SC LABELED
C MUST OE MOCIFIED,
C THIS PROGRAM IS CODED TO RLN ON A 41 POINT MESH. IF ANOTHER
C MESH (EVEN A VIRIABLE) IS CESIRED THE APPROPRIATE CHANCES
C MUST BE MADE. PROGRAM SEARCHES FOR ALPHA WHICH MINUMIZES THE
C GIVEN ERROR CRITERION (SO INDICATED). IT BEGINS WITH
C IoCE-LPHA1 ANC SEARCHES TO 1.OE-LPHA2 * THEN THE
C MINIMUM REGION IS AGAIN SUEDIVIDED.
C
C

REAC(59200)
WRITE(6,100C)
WRITE(6,200)
WRITE(6,1001)
CLX = 41o5
DLS = 41o5
XCI = C,78125000E 02
XC2 = C,162C0000E 03
AXX = 1.

C
C EVALUATE INITIAL DISTRIBUTION

DC I I = 1*41
Al = I
Sil) = AI/DLS

1 X(I) = AI/DLX
CC 2 I = 1,41
Al = S(I)**2
A2 = (S(I)-1,)**2

2 Z(I) = 8o*Al*A2
C
C XSIG = LAMBDA*MAXIMUM MOLECULAR WEIGHT

READ(5,103) XSIG
00 4 I = 1,41
CCEF = Co
DC 3 J = 1941
Al XSIG*S(J)
A2 = Al
A3 = EXP(-AI*X(I))
A4 = EXP(-Al)
A5 = I* - A4
A6 = A2*A3/AS
XK(IJ) = A6
IF(JoEC*1,CPeJ.EC,41) GO TO 41
IF(JoECo2.OReJ.ECs4C) GO TO 4;
KNUM = J/2
JKUM = (J+1)/2
IF(JNLMoEQoKNUM) (0 TO 42
SIG = 2.
GO TC 43

41 SIG = le
GO TC 43

42 SIG = 4.
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43 OCEF = COEF 4 SIG*XK(IIJ)*ZIJ)/(3.*DLS)
3 CONTINUE

C CALCULATION OF U(ZI) BY SIPPSON'S FORMULA
4 U(I) z COEF

CALL REG2(XK,8,BKDLX)
C
C
C PROGRAM READS ALPHA(NLAST) AS DATA FROM NFIRST THROUGH
C NOOCE. THEN PRCGRAM CONTINUES FROM NCODE4I THROUGH
C NUFP SEARCHING FOR MINIMUM FOR EACH DERIVATIVE RETAINING
C PREVIOUS VALUES. IF NOODE = 0 , SEARCH BEGINS WITH NFIRST.
C IF NFLAG.GT.D) PROGRAM REACS ONE VALUE OF ALPHA AND
C COMPUTES FOR ONLY THIS ONE VALUE
C
C

REACI5,1O1) NCODENFIRSTNUPP,NFLAG
CC 30 NLAST = NFIRSTNUPP
IF(NFLAG.GT.O) GO TO 40
IF(NLAST.LE.NCODE) GO TO 31
REAC(!,100) LPHAILPHA2
LXP = IABS(LPHA2 - LPHA1) + 1
NUM = C
DO 20 11 = I,LXP
IXP = LPFI-A 4 It - 1
DO 21 KL -= 1,4
ALPI-A(NLAST) = FLOAT(KL)*10.*SIXP

C OBTAIN MCtIFIED MATRIX
CALL REG3LNFIRSTNLASTALPHAEKBDLXDLS)

C OBTAIN INVERSE SOLUTION
CALL ECS(41)

C EVALUATE ERROR
CALL REG4l ZZPXI ,LSUPUAVGNFIRST,NLASTALPHADLX)
IF(KL.EC.1.AND.II.EC.1I GO TO 22
IF(LAVO.GT.AVGI) CO TO 28
AVGl = UAVG

C_ STORE MINIMUM ERROR AND CORRESPONDING ALPHA
XI' z ALPI"A(NLAST)
NX =IlXP
Num- =C
GO TO 21

22 AVGI = UAVG
C STORE FIRST ALPHA USED AND ASSOCIATED ERROR

XF - ALPIý.A(NLAST)
fIX = IXP
GO TO 21

28 CONTINUE
21 CONTINUE
20 CONTINLE
23 CONTINUE

XMM = XI' - IO**NX
NUM = C
DO 25 1 =1,20
ALPI-A(NLAST) = XMI' * FLOATII-1)*10.**I(NX-1)

C OBTAIN NOCIFIE[ MATRIX
CALL REG3INFIRST,NLAST,ALPI4A,PK,B,DLX,DLS)

C OBTAIN INVERSE SOLUTION
CALL ECSf4II

C EVALUATE ERROR
CALL PEG4(ZZPXKDLS,UP,UAVG,NFIRSTNLASTALPHA,DLX)
IF(I.EC.1) CC TO i6
IF(LAVG.GT.AVG1) (0 TO 29
AVGl UAVG

28



AFML-TR-67- 121
Part IV

C STCRE MINIMUF ERROR ANC CORRESPONDING ALPHA
YP ALPH-A(NLAST)
GC IC 25

26 AVGI = UAVG-
C STERE FIRST ALPHA USED AND ASSOCIATED ERROR

YF zALPHA(NLAST)
GC TC 25

29 NLM N UP + 1
IF(tdJN.EC*4) GO TC 27

25 CCNTINCE
C START EVALUATICN FOR ALPHA WITH MINIFUM ERROR

27 ALPI-ACNLAST) = YM
GC TC 51

40 REAt(5,102) ALPHA(NLAST)
C IF COMPUTATION PROCEEDS FOR ONLY ONE ALPHA BEGIN HERE

51 CCNTIINdE
C C2TAIN MCCIFIED VATRIX

CALL REG3 (NF IRSTNLASTALPHA, EKBOLXDLS)
C CB741N IN'VERSE SOLUTION
C EVALUATE ERROR

CALL ECS(41)
CALL REG4(ZZPXK ,DLSUPtUAVGNFIRST,NLAST,ALPHA,DLX)
DC 24 1I 1,41

C Z(I) =ORIGINAL CISTiRIeUTICN
C ZP(I) = BACK SOLUTION
C L(I) = CCRRESP(NCS TO INPUI DATA, COMPUTED USING Z(I)
C LP(I) = eACK SCLLTION COMPLTATION
C S(I) = VARIABLE FOR Z(II, CORRESPONDING TO
C PCLECULAR WEIGIHT

WRI7E(6t200l) IZP( I),IZ(I), IUP(I) ,IL(I),IS(IJ
24 CCN7INLE

WR17E(6t62O0C) (ItALPHAfIhIj = NFIRST,NLAST)
hRITE(6i2002) UAVG
WRITE(69104) XSIG

104 FCRIVA1(1H ,7HXSIG = l1PElCo3)
WRITE(6 ,IOOC)
GC IC 30

31 RFAC(5,102) ALPHA(NLAST)
30 CCNTIINLE

WRITE (6, 1001)
WRITE(6,700C)
STOP

100 FCRPAT(213)
101 FCORAT(412)
102 FCRPAT(1PE9*2)
103 FORIVAT(E1O.3)
200 FCR1PAT(72H

1
1000 FCRPAtT(1I-1l/IA)
1001 FCRPAT(1IFA/11-4)
2000 FCRIVAT(1H ,6I-ALPh-A(11294H) 1 ,PE9.2)
2001 FCRPAT(1IF ,7FZ-CALCft12t4t-) 9 El2*5t2Xt7HZ-TRUE(,12,4H) = E12.59

12X,7F-CALC U(,12,41-) :, E12*5,2Xv2HU(,12,4H) = ,El2*592Xv2HS(iI2q4H
2) = tE12*5)

2002 FCRP7(1I- ,11HM(ALPI-A) = El2o5)
7000 FCRFPAI(1.- ,2CXt6(!XvlOHENC OF RUN)/1H1)

END
SIBFTC RRR4 DECK

SUORCUTINE REG4(Z ,ZPXKOLSUPUAVG,NFIRST,NLAST,ALPHADLX)
C TFIS SUORCUTINE PROCESSES 'THE COMPUTED ZP(I)
C CALCULATES UP(II AND THE ERROR
C ERROR CRITERICP
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CCYPPENZYTIX1,X2,UA
£ DIMENSIONS FOR CCPMCN

DIMENSION U(60).A(60,60)
DIMENSION ZPt60)0)K(60,60),UP(6O)
DIMENSION Z(6Oh*AIPHA(1O)
DC 14 1 z 1,41
ZP( I) = A(1,42)

14 CONTINUE
UAVG = Co
DO 40 I 1,41
COEF - 0.
COEFI zC.
DO 41 J = 1,41
IF(J.EC.1.OR.J.EQ.41) GO TO 42
IF(J.EC.2.OR.J.EC.4C) GO TO 43
KNUP = J/2
JNLH' v (J+1)12
IFIJNLP.EQ.KNUM) (0 TO 43
SIG = 2.
GO TO 44

42 S16 =1.
GO TO 44

43 SIG 4.
44 CCEF =COEF + SIG4XK(IJ)*ZP(J)I(3.*DLS)

1Ff I.LT.41) GO TO 41
IFIJ.EC.1) GO TO 1
KL = J-1
GO TO 2

I' KU = I
2 IF(J.EC.41) GO TO 3

KJ -141
GC TO 4

3 lKd = 41
4 CCEF1 =COEFI + SIG*((ZP(KJ)-ZP(KLI)**2)*DLS/3.
41 CONTINUE

u~tI = COIEF
IF(I.EC.1.OR.I.EC.41) GO TO 3C
1Ff I.EC.2.ORmI.EC.40) GO TO 31
KNUF = 1/2
JNUP = t1*1)12
IF(JNUP.EQ.KNUM) CC TO 31
SIG = 2.
GC TO 33

30 516 = I*
GO TO 33

31 51G 4.
33 UAVG UAVG + SIG*(fUP(IV-U(I))**2)1(3.*DUX)
40 CONTINUE

UAVO = UAVG + ALPIr-A(1)*COEF1
RETURN
END

SIBFTC RRR2 DECK
SUBROUTINE REG2(XKBBKDLX)

C THIS SUBROUTINE INTEGRATES XK(IJ)*XK(IJ) OVER LI-VALUES
C TO OBTAIN NEW MATRIX BK(IJ)

COMPCN/ZYTIX1,X2, LA
C DIMENSIONS FOR COIMON

DIMENSION U(60),AfbC,60)
DIMENSION XK(60,60,B8K(60,60),B(60)

C
C SIMPSON RULE
C
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CC5 1= 1,41
CC 5 J = 1,41
CCEFI Do
CCEF 0.
CC 2C K = 1,41
IFl(K.EC*1.CF*K.EC*41) GC TO 21
IF(KoECe2sCP*K*EQ44C) GO TO 22
KNUP = K/2
JNUP = (K+1)/2
IF(JMJ'.EQ*1(NUM) CO TO 23

22 SIG = 2.
GO TC 24

21 SIG 1.I
GC TC 24

23 SIG =4o

24 Al =SIG*XK(Ktl)*)K(K,J)/(3o*CLX)

IF(I.CTsI) C-C Ta 7
A2 =SIG*XK(KJ)*L(K)/(3**DLX)
CCEF1 CCEFI + A2

7 CCEF CCEF + Al
20 CCNTIiLE

IF(I.CTo1) C-C TO 8
6(J) = CCEF1

8 EK(IJ) = CCEF
5 CCNTINLE

RETLRIN
END

SIBFTC RRR3 DECK
SLBRCLTINE PEG3(NFIRSTNLAST, iLPHABKBDLXtDLS)

C TI-IS SUORCUTINE INTRODLCES THE REGULARIZATION TERMS
C IN THE MATRIX EK(IJ)* TI-E FINAL REGULARIZED MATRIX
C is A(I,J)

CC?" ICNIZYT/XltX2, L,A
C CIMENSICNS FCR CCIMCN

DIMENSION U(6OhvAI6C,60)
DIMENSICN 09 (60,60)pB(60)#,ALPI-A( 10)
CC S 1 1,41
CC 9 ýJ 1,41
A(IJ) = BK(IJ)/ELS

9 CCN71KLE
CC 63 KN NFIRSTNLAST
DC 6C I = 1,41
KUM =2*N +1
CC eC K = ,NUM
A2 =CALC(N,K(,DLS)
Al = ALPI-A(N)*A2
LABEL z I + N - K +- 1

64 CCNTINLE
IF(LteEL*LEoC) GC TC 61
IF(LAEELoGTo4l) GO TO 62
A(I,LAeFL) 2A(ILABEL) Al
GC TC 60

61 LABEL = IAOS(LABEI.) + 1
GO TC 64

62 LABEL a 82 - LABEL 4 1
GC TC 64

60 CCNTINLE
63 CCNTINLE

CC 50 I 1,41
50 A(1,42) = (I)

RETLRN
ENID
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$IBFTC EEXX DECK
SLBRCLTINE ECS(N)

C STANCARO SUBROLTINE TO OBTAIN THE INVERSION SCLUTIONo THE
C SOILTION IS IN COLUMN J+1 IN A(I#J) MATRIX.

CCPPNC1%ZYTIXIX2 ,UA
C CIMENSICN FOR COMMON

CIMENSION U(t0),A(6C,60)
DIMENSICN B(60)

53 Nl=N41l
5 PuNi

13 DO 23 9=11N
K1=K(4 1
IFlA (KK) )2C,14,2C

14 IF(K-N)15,19,15
15 DC 18 L=K1,N

IF(A(LsK) )16,18,1E
16 CC 17 J=K9 M

B(J)=A (KJ)
A(K,J)=A(LJ)

17 A(LJ)=-B(J)
GO TO 20

18 CCNTI1%UE
19 WRITE(6.101)

GO TC 30
20 DO 23 I=lN

WIFI-K )21#23#21
21 C=A(IK)/A(KK)

DC 22 J1,PY
22 AIIJ)=A(IJ) - C*A(K*J)
23 CONTI1%LE
46 DO 29 J=NI#t'

CC 25 I=1,N
25 A(I,J)=A(I,J)/A(I,I1

29 CONTII\LE
101 FCRPA(19H MATRIX IS SINGULAR)
30 RETIRN

END
$IBFTC CALF DECK

FUNCTION CALC(NK,DLS)
C THIS FUNCTION SUBROUTINE EVALUATES THE
C COEFFICIENTS. (BINOMIAL), ETC*
C CALLEC BY REG3
C

L 2*1%
Y=L-XK+ 1
J K 1
IF(K.EC.1.OR.K.EC.L+1) GO TO 10
11= 1

12 z 1
13 = 1
Dc 1 I 1 111-

11j 1*
CC 2 1I = ,?

2 12 c 12*1
CC 3 I 11.1

3 13 - 13*1
14 a 111(12*13)
IS = (-1)**INK+1)l
X = FLCAT(I4*I5)
CAIC cX*CLS**L
GO TO S99
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10 IA -)*
Al =FICAT-(IA)
CAIC = AI*CLS**L

99 RETLRN
END

$DATA
CONCENTRATICK KERNEL#41PTSo,8*(V*(V-lfl**2

0*425E 01
0 11 1
1. 00E-C7

SEO F
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