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SECTION I
INTRODUCTION

The determination of molecular weight distribution (MWD) from
equilibrium sedimentation was investigated in 1928 bvainde (Reference 1).
Fujita (Reference 2) expressed the relationship between the frequency
function, f(m), of MWD and an experimental curve u(€ ), obtained from
ultracentrifugal sedimentation in the form of the two following

equations:

-)un{
C€) _ [MOX \me
u(§) = — = ———— f(m)dm (1)
Co '{)‘ |- g"Am
m 2 2 -Amé
u(€) = _'__9_(:(_6) - mOX_Lme)\_ f(m) dm (2)
Co d§ 0 [-¢ M

where C is concentration; Co, initial concentration; m, molecular weight,
r, distance from the center of rotation; Fgsfp~r to the meniscus and
bottom respectively; p , density of solution; V; partial specific volume
of polymer; w , angular viscosity; R, universal gas constant; and

T, temperature in °K; and

2 2

_ (I-Vp)wz( r:—raz) £ - Nl ¢

- ZRT ? = -2_?
"» "'a

The determination of MWD can now be defined as a solution of Equation |

or 2.
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In recent years the need to know the MWD of polymers has significantly
increased and spurred many new attempts to develop a good computational |
technique for this purpose (References 3 through 17). The determination
of MWD was also an objective of this laboratory (References 18 through 21).
Unfortunately, the efforts to develop a good method for MWD determination
were, in general, not very successful and the results proved to be
disappointing. In some cases such results lacked precision and
reproducibility and they did not seem to provide a routine whiéh wou ld
work in all circumstances. Elucidation of this enigmatic behavior of
Fujita's equations, and the difficulties arising during theEr‘sciatEen

is a subject of investigation in this laboratory.

Lee (Reference 21) first recognized that Equations 1 and 2 constitute
an Improperly Posed Problem (IPP) in the Hadamard sense (Réference 22)
and, therefore, a conventional mathematical approach cannot provide
satisfactory solutions. There is, however, the possibility of finding
an approximate solution to IPP in general and to Fujita's equations in
particular by applying Tikhonov's regularizing functions. Application
of this method and solution of Fujita's equations is the objective of

th%s Technical Report.
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SECTION II

IMPROPERLY POSED PROBLEM

The notion of a mathematical IPP (Improperly Posed Problem, also
known as an |11 Posed Problem or Incorrectly Formulated Problem) goes
back to Hadamard (Reference 22) in conjunction with the Cauchy problem
for the Laplace equation. At that time Hadamard believed an IPP is
evidence that the expression under consideration does not have any real
physical meaning, and therefore, it cannot express any physical rule or
situation. This belief proved to be wrong, and the existence of IPP was
established in many other ''physical'' expressions such as the heat
equation for negative time and Cauchy data on the boundary, the non-
hyperbolic Cauchy problem for the wave equation, the inverse problem of
potential, and a number of inverse problems for differential and integral

equations.

In the recent decade IPP was intensively investigated. The following
considerations are based upon the works of C. Pucci (References 23
through 28); F. John (References 29 through 32); M. M. Lavrentiev
(References 33 through 43); A.N. Tikhonov (References 4k through 61);
V.K. lvanov (References 62 through 66); V.A. Morozov (References 67

through 70); and others (Referenées 71 through 83).

Consider the equation:

u(€) = af(m) = a[&,(m)]
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where A is an operator, uel, fe F, U, and F are some complete metric
spaces, and Af is a function with the domain of definition F and the

range of values U.

The solution of Equation 2 is a properly posed problem if the
following conditions are satisfied:
(2a.) The solution of (2) exists for an? u(€) eu.
(2b.) The solution of (2) is unique in F(m).
(2c.) The solution of (2) depends continuously on u(€) in the
metrics of F and U.
In such a case there exists a function Bu({), deféned and continuous

over all U, and B is an inverse operator of A, where:
A'u(€) = fim) = R[m,u(&)] (3)

If even one of the conditions 2a, 2b, or 2c is not satisfied [u(§) =
Af(m)] is an IPP. In such a case due to the unboundedness of the
operator A-1 the solution does not exist for all u(€) and is unstable.
To arbitrarily small variations of u(€) may correspond arbitrarily

large changes in f(m).

As an example consider a Fredholm Integral Equation of the First

Kind.

b
ué) = Alg,tm] = [ k(& m)ftmdm; csE<d (4)
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lf can be shown that the inverse problem of Equation 4, e.g.,
computation of f(m) on the basis of a given function u(§ ), is improper.
Indeed, to the functions f ](m) and fz(m) = fl(m) 4+ p cos wm, f](m),
fz(m) eF, where p is an arbitrarily large given number, there will
correspond functions u](g) and uz(f) for which the norm || u](g) -
upg () Il is arbitrarily small if w is sufficiently large. However,
if the class of admissible solutions is the compact class ?, the inverse
mapping U — " F will be stable (Reference U48). In other words, for
every € >0, there will exist a 3 (e, F) such that the inequality
I u]-u2||< 8(6,?':) implies I f]-fz l<eif uy and u, €U = {U(E) =

Al £,f(m)], feF }, where F is a compact class of functions.

An IPP will be called a Regularizable Problem in Tikhonov's sense
if it has at least one regularizing algorithm defined in the following.

Such regularizing algorithms are practical aids for solving an IPP.

Let an IPP, f = R[m, u] be given, where, to a special function u(§),
there corresponds a solution ?km) = R[m, u(€)]. Let also an approximating
function (&) for u(&) be given, such that I 3-g ll< S, where dis
known. It is required to find f(m), an approximation to f(m), with an

assigned precision N¥- 1l <e if O is sufficiently small.

RIm, u(§ )] will be called a regularizing operator if the following
conditions are fulfilled:
(1.) Rglm, u(€)] is defined for every UeU and 3 > 0.
(2.) If for u(&) there exists a'?(m) = R[m, u(&)]1, then for
every positive € , there exists a O ( €,f) such that if

IS5 It <8, then Il F-F Il . < e where ~s= R[m, G1.

5
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Consider a Fredholm Integral £quat%on of the First Kind as expressed

0, and d = 1.

by Equation 4, with the boundaries a = 0, b = mmax’ c

If the kernel K(§& ,m) is continuous, and if for U(§) = 0 there exists

just one solution f(m) = 0, the Integral Equation can be solved in the
following way by applying variational calculus and Tikhonov's regularizing

algorithm.

instead of dealing with the conventional functional:

N[f(m); 3 (£)] = (f} [a[¢, 1m]-ace)] at (5)

Tikhonov suggests applying another smoothing functional:

My [m); 5] = N[ (m); 58] + a @™ [1im)] (6)
where Sl{a) is the regularizing functional. Then,

M .
gy = [ m{?f; ki m [ m)]"} am, (7)
0 i=

where the Ki(m)*s are positive continuous functions, and g is an

arbitrary parameter, which minimizes the functional H;%

The application of the variational Euler Equation and boundary

conditions transform Equation 6 into a new expression:

a+i

HUBCIPNG 0’ i*'Hm?“} { f "R(m, )€1 -Bm}=0 (8)
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with the boundary conditions

nt+l i-0- : i-2-1
rtm = {T 't '[K.(m)f'(m)](' Moo coite=n2, 040 (9)
i=2+| '
o'mMOX
where
|
K(m&) = [ K(E,mK(EEdE (10-a)
0
and
|
bm) = [ K(&,mu(&)dé (10-b)
6

Equation 8 will lead to an approximate computation of the function f(m).
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SECTION III
COMPUTATION

Consider a Fredholm integral Equation of the First Kind:
b .
) = [ K& m)f(m)dm )

a

where K( &,m) is a continuous kernel within a range a<€&<b and c<m<d.

The distribution function, f{m), fulfills the following boundary conditions:

f(d) =0 ' (12-a)

f(c) =
and
() = (am) =0 e
m=¢ m=d

The function f(m) can be mapped to generate the fanctiea'J(E ). If
an inverse operation will be applied on (&), a functiaa‘?(m) can be
calculated. §¥na¥¥y,‘F(m} can be mapped‘aga§n to geﬁerate a function
U(E). The norms N U(&)-T(E) N and HF(m)-F(m) Il will show the
quality of the transformation. >Such a quality is influenced by the

following factors:

(a.) The nature of f(m) function;

(b.) The nature of the kernel;

(c.) The way of obtaining u(&);

(d.) The type of regularizing function applied;

(e.) The type of matrix used for approximate calculations.
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To examine these factors, various distributions, kernels, methods of
integration, regularizing functions, and approximate matrices have been

considered.

The following f(m) distributions have been examined:

(a=1.) A mono-modal distribution:

f(s) = 852(I—s)2; O<s<lI (13)

(a-2.) A bi-modal distribution:

f(s) =f(s) + f,(s); O<s<| (14)
where N
f(s) =78.125s°(s-0.6) 0<s<06 (14-q)
f(s) = 0;06<s<I (14-b)
f,(s) = 0; 0<s<0.5 (14-¢)
f,(s) = 162(s-0.5)%(1-5)3 05655 <| , (14-d)

The following kernels have been applied:
(b=1.) The kernel appearing in Fujita's Equation for concentration

gradient, (Equation 2) is

)\zmze-)‘m€
K (,m) = o kmi OSmEm g 0<{s| (15)
s; A=/ M asx u(€) = u(f)/mmax, and f(s) =

Letting m= m
max

f(sm___), Equation 15 can be transformed:
stze-BsE )
—g. 0<ssl; 0<é<I (15-a)

|l ~-e
and Equation 2 will be replaced by Equation 16:

max

K(&,s) =

| dcd)

0o = - T {) K,(&,8)F(s)ds ~ (1)

max-o
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(b-2.) The kernel appearing in the Fujita's Equation for con-

centration (Equation 1) is

-Amé
K3(§,m) = l\_"‘_e_.im_; GSmSmmax; 0<€<l (17)

l-e
Using a previous setting, we will obtain:

Bse-ﬁsf

K (,8) = ——— (17-4)
? ‘ !-e-‘ss
and ‘
- ey . CE) -
ﬂif}-m -Gf i(z(f,s)f(s}ds (18)

Two methods of numerical integration have been applied:

(c-1.) The integration was achieved by applying the trapezoidal

rule.
(c-2.) The Simpson formula was applied in integration.
Various types of regularizing functions § have been used:

(@10 = neM g 2

and

(d-2.) aQ =a(ll £ 124 5 11 £ 2

To examine weighting of elements of a matrix used in an approximation

the variable of the function u was defined in the two different ways:

rbz-rz r? -,

et = —— * - '-——-—----—3

(e-1) &= 55— and  e-2-§,= ——
r ~-r r—r
b a b a

10
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SECTION 1V
RESULTS OF COMPUTATION

To emphasize the importance of regularization: 1) a mono-modal
distribution (Equation 13) was assumed, 2) U(¢&) was computed by
Equation 19 with the aid of Simpson's formula for integration, and
3) variational calculus (see Equation 5) without Tikhonov's regularizing
function was applied so as to obtain a '"best fit' computed distribution.
The result of this computation is shown by Figure 1. Note that although
the results are very erratic the error analysis Il T(&) -u(&) I was

a minimum. The‘behavior is typical for an IPP.

Upon including a regularizing function ) (see Equation 7) and
applying Euler's equation from variational calculus to the functional
M?[f;ﬂ] (see Equation~6) a distribution ?‘a(s) was obtained for each
value of the parameter @ . The objective of the search is to find the
value of @ which will produce a minimum error analysis. Using inf | Mal
as the error criterion, Figure 2 shows a typical example of how the |
appropriate value of @ is determined. This tells the experimenter
that for the error he has in the experimental values u(&), this is the
best initial épproximate distribution. From this starting approximation
the experimenter can then apply‘some algorithm to infer a distribution
which will produce a still smaller error énalysis. He is now in a

position to do this because he has an admissible solution to his

originally improperly posed problem.

11
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Using the concentration kernel! (Equation 17-a) and the gradient kérnel
(Equation 15-a) with the mono-modal distribution (Equation 13) and the
regularizing function fl{i)(f}, the results obtained are shown in
Figures 3 and 4 respectively. For both cases the integration involved
in obtaining u(€) was performed by the trapezoidal rule. Since the
concentration kernel provided a better solution to the problem, especially
for low molecular weights, this kernel was used for all further
investigations. it can easily be shown that the gradient kernel
(Equation 15) degenerates for very low molecular weights, thus

lim { a\zmee-}\mﬁ

me—eog —
;__e—km

=0

and the concentration kernel (Equation 17) does not degenerate under

identical circumstances:

lim kmgkmf B}
m——’oii_e-}\m ] g

Therefore, computationally the concentration kernel is preferred when
considering low molecular weights., For Figures 3 and 4 the error
criterion minimized was |l w(€)-ux(€) Il . Here u*(&) was computed

by using the calculated function ?1I(s}, To demonstrate the numerical
agreement between U(& ) and u*(€) Figure 5 presents the curves for u(€)
and [T(&)-u*(&)] x 103 associated with Figure 3. If U(&) and u*(£)
had been piotted on the same gréph, for the ordinate scale used the

two curves would have coalesced. The numerical values of G(&) and

u*(€ ) agreed to three significant figures.

The computation of a bi-modal distribution proved to be more complex.

At first Equation 18 was applied using the trapezoidal rule for integration.

12
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The resulting Ta (s) obtained by minimizing || :(g)-u*(g) Il was the
three-peaked curve shown in Figure 6. Upon using Simpson's formula for
integration and varying @ so as to minimize Il T(&)-ux(&) Hl a good

"fit" to the initial distribution (Equation 14) was obtained (see Figure 6).

To study the effect of the error analysis on choosing the appropriéte

value for a, three criteria were applied:

(1. intIM” [T(e), T (&)1
(2). inf {maxl?(s)-?a(s )l}
(3). NE(€)-ux(&) Il

The results are shown in Figure 7. In a true experimental situation the

. by ~a . .
error analysis inf {max | F(s)-f ~ (s) | } would not be available. Choosing
between the other two criteria it would qualitatively appear from

Figure 7 that || UW(&)-u*x(€) |l is better than one could expect to

derive deductively from Tikhonov's theory.

For all computations mentioned above [3 = L.25. Recall that
B = )‘mmax’ where 3 is proportional to the square of the rotor speed

(see Equation 1). If A 1.02 x 10_]0012, and w2 = 4.1693 x 10°

sec 2 (6,166 RPM), then A = 4.25 x 10~5 (mol wt) 1. Assuming moax =
10°, the value of B (=Am__.) is B = 4.25. The following values
for moax Were chosen: 4.706 x ]04; 4,706 x 105; 7.059 x 105; and
1.8824 x ]06. The corresponding values for [3 are respective]y,Z.OO,
20.00, 30.00, and 80.00. The results obtained by varying a so as to

minimize the error criterion I Tl'(f)-U*(g) Il are shown in Figure 8.

No attempt was made to determine the exact optimum value for 3

13
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To express the integral operation (Equations 17-a and 18) of the
concentration kernel in matrix form, the matrix is weighted by large
numerical values in the upper right-hand corner. Since use of the
regularizing functions tends to enhance the diaggnaf and near-diagonal
elements, aad%ficatien4of the concentration kernel so as to have the
large numerical values of the matrix near the diagonal should greatly

improve the computations. This was easily performed by redefining §

to be
2
g_ F —Iqg
) fz‘fz
b a
Previously & was defined as
2 _ 2
£ - h —r
r? - r?
b a

In using the same bi-modal distribution applied previously and the
modified concentration kernel it was found that the computed distribution
f @(s) was in poorer agreement with the assumed f(s) than when the

unmodified concentration kernel was applied (see Figure 9).

14
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SECTION V
CONCLUSIONS

Tikhonov's regularizing functions have proved excellent as a tool to
solve the inverse problem associated with the Fredholm Integral Equation
of the First Kind which correlates the ultracentrifugal data obtained by
sedimentation-diffusion equilibrium and the desired molecular weight
distribution (MWD). This technique is especially desirable since a MWD
can be obtained from data at only one rotor speed. Computationally this
technique has provided excellent results when the MWD is a mono-modal
distribution and good results for a bi-modal distribution. However, for
a multi-modal distribution (fine structure) an additional algorithm has

to be applied.

15
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Figure 2. Minimizing the smoothing functlonal M2 [F(s),T (&)1. A plot

of log a versus M
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s$18J08

MAF

$IBFTC RECGLAR

C

OO0

41

42

DIM

DIM

REA
WRI
WR1
WR1
cLX
CLS
XCl
XCc2
AXX

A2
Z(1

REA
£e

xXK(
IF(
IfF(
KNU
JNU
IF(
SIG
GC

SIG
GC

SIG

CCMNON/ZYT/X19X2y Uy A

CIMENSICN FCR COMMCN
ENSICN U(E0)4A{6C,60)

ENSION XK{£0+6C)sS{60)sX{16C)2Z{60)+BK(EC,60)4BL60)+ZP(E0)ALPHA

1(10),LF(€0)

CCCED NOVEMBER 1969 BY DoRs WIFF AND MeT, GEHATIA

TC CHANGE INITIAL DISTRIBUTION, THE SECTION SC LABELED

MUST BE MCCIFIED,

THIS PROCRAM IS CODED TO RUN ON A 41 POINT MESHe IF ANOTHER
VESH (EVEN A V/RIABLE) IS L[ESIRED THE APPROPRIATE CHANGES

VUST BE MACE. PROGRAM SE2ZRCHES FOR ALPHA WHICH MINUMIZES THE
CIVEN ERRCR CRITERION (SG INDICATED), IT BEGINS WITH
1,CE-LPHAL ANC SEARCHES TO 140FE~LPHA2 , THEN THE

MINIMUM REGICN IS AGAIN SUEDIVIDED.

£(5,200)
TE(£,100C)
TE(6,200)
TE(£,10C01)

4105

4105
Ce78125000E 02
Cel62CCO00E 02
le

# 0w oun

EVALUATE INITIZL DISTRIBUTION
= 1s41

21/8LS
Al/0LX

= 1,41

= S(I)**Z

= (S({T)-1,)%%2
) = 8o%Al*A2

-~
L N L (O

XSIC = LAMBDA®MAXIMUM MOLECULAR WEIGHT
C{5,103) XSIG
4 1 = 1441
F = Co
J = 14941
XSIG*S(J)
Al
EXP{-A1%X(1))
EXP(~-Al)
le - A4
AZ*A3/AE
I.J) = A¢
JoECeleCReJeEC041l) GO TC 41
JoECo2e0RoJeECe4C) GO TO 42
VM = J/2
Vo= (J+1) /72
JNLNFQoKANUM) €O TO 42
= 2o
TC 43
= 1o
TC 43
= 44

(T T TR B T X% )
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[}

(e X a N NaNuNeNaNaNalel

43
3

4

CCEF = CCEF + SIGHEXK{I+JI*Z(J)1/(3.%DLS)
CONTIMUE

CALCULATIEN COF UIZ1} 8Y SIFPSON'S FORMULA
U{I} = CCEF
CALL REG2{XKBsBK,DLX)

PRCCRAM READS ALPHA(NLAST) AS DATA FROM NFIRST THROUGH

ACCCE. THEN FRCGRAM CONTINUES FROM NCODE+41 THROUGH

NUPP SEARCHING FCOR MINIMUM FOR EACH DERIVATIVE RETAINING
PREVICUS VALUESE, IF NCODE = 0 , SEARCH BEGINS WITH NFIRST.
IF NFLAG.GT.U PROGRAM REALS ONE VALUE OF ALPHA AND

CCMPUTES FOR OALY THIS ONE VALUE

REAC(5,101) NCODE,NFIRST,NUPP,NFLAG

OC 20 ALAST = NFIRST,NUPP

IF(INFLAGGGT4C) GC TC 40

IF(NLASTLLE.NCOBE)} €0 TO 31

REAC(5,100) LPHAL,LPHA2

LXP = IABS(LPHA2 - LPHAL) + 1

NUM = C

DO 20 II = 1,LXP

IXP = LPFALl + II -1

DO 21 KL = 1,9

ALPFA(NLAST) = FLCATIKL)*10o%41XP
CBTAIN MCCIFIED MATRIX

_ CALL REG3(NFIRST,NLAST,ALPHA,EK,B+DLX,DLS}

22

28
21
20
23

CETAIN INVERSE SCLUTION
CALL ECS(41)
EVALUATE ERROR
CALL REG4(Z,ZP,XK,DLS,UP,UAVG,NFIRST,NLAST,ALPHA,DLX)
IF(KLeEQeleANDeIIeECe1l) GO TO 22
IF(LAVCoeGT4AVGL) €O TO 28
AVG1l = UAVG
STCRE MINIMUM ERROR ANC CORRESPONDING ALPHA
XV = ALPHA(ALAST)
NX = IXP
NUM. =
GC TC 21
AVGl = UAVG
STCRE FIRST ALFHA USED AND ASSOCIATED ERROR
XV = ALPEAINLAST)
NX = IXP
60 12 21
CONTINUE
CCNTINLE
CONTINLE
CCNTINUE
XVMM = XM - 1Co**NX
NUM = C
DC 25 1 = 1,20
ALPFAINLAST) = XMP + FLOAT(I~1)1%*104%%{NX~1)
CBTAIN MCCIFIE[ MATRIX .
CALL REG3(NFIRST,NLAST,ALPHA,BK,B,DLX,DLS)
CBTAIN INVERSE SCLUTION
CALL ECS(41)
EVALUATE ERROR
CALL REG4(ZyZPyXKsDLS,UP,UAVGNFIRSToNLASTsALPHA ,DLX)
IF(I.ECel) GC TO 26
IF({LAVG.GT.AVG1l) (O TO 29
AVG1 = UAVG
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c STCRE MINIMUM ERROR ANC CORRESPONDING ALPHA
YV = ALPHA(NLAST)
GC 1C 25
26 AVGl = UAVG
C STCRE FIRST ALPHA USED AND ASSOCIATED ERROR
YV = ALPHA(MLAST)
GC TC z5
29 NUM = NUVM 4+ 1
IF(NUMoEQe4) GO TC 27
25 CCNTINLE

C START EVALUATICN FOR ALPHA WITH MINIMUM ERROR
27 ALPFA(NLAST) = YM
GC TC 51

40 REAT(%,102) ALPHA(NLAST)
IF CCVPUTATION PROCEEDS FOR ONLY ONE ALPHA BECIN HERE
51 CCNTIMLE
CBTAIN MCLCIFIED MATRIX
CALL REG3(NFIRSToNLAST,ALPHA,EK,B,DLX,DLS)
CBTAIN INVERSE SCLUTION
EVALUATE ERRCR
CALL ECS(41)
CALL REGG(ZyZP XK DLS,UP,ULAVGyNFIRST,NLAST,ALPHA,DLX)
DC 24 I = 1,41
Z{1) = CORIGINAL CISTRIBUTICN
ZP(I) = BACK SCLUTION
L(I) = CCRRESPCNCS TGO INPUY DATA, COMPUTED USING Z(1)
LP(I) = BACK SCLUTION COMPLTATION
S(I) = VARIABLE FOR Z(1), CORRESPONDING TO
FCLECULAR WEIGHT
WRITE(E+2001) ToZPUI)sT9Z(I)aloUP(I)IoL(I)yI,S(1)
24 CCNTINLE
WRITE(£4+200C) (I14ALPHA{I),I = NFIRST,NLAST)
WRITE(E,2002) UAVGC '
WRITE(&,104) XSIG
104 FCRNMAT(1H ,7EXSIG = 21PE1Ce3)
WRITE(&,100C)
GC TC 30
31 REAC(5,102) ALPHA(NLAST)
30 CCNTINMLE
WRITE(£,1001)
WRITE(£,700C)
STCF
100 FCRMAT(213)
101 FCRMAT(412)
102 FCRNAT(1PE9.2)
103 FCRMAT(EL1Q0.2)
200 FCRMAT(T72H
1 }
1000 FCRMAT(1F1/1FA)
1001 FCRMAT(1FA/1FA)
2000 FORNAT(1k JE6FALPRA2{,1244H) = ,1PE9,2)
2001 FCRNMAT(1H ,7FZ-CALCU(,1244F) = 4E120592XsTHZ-TRUE(412,4H) = 4E12,5,
12Xy THCALC U(312¢4F) = 4E12e592X92HU(91244H) = 4E12e592X92HS{412+4H
2) = 3E12.5)
2002 FCRMAT(LF ,11HM(ALPEA) = ,EL1245)
T000 FCRMAT(1F 4ZCXs86(EX910HENC CF RUN)I/Z1H1)
END
$IBFTC RRR% DECK
SUBRCUTINE REG4(Z +ZP¢XKyDLS UFyUAVGyNFIRSTyNLAST ;ALPHA,DLX)

[a X n N o] (o’

SaSOOOMNO

¢ THIS SUBRRCUTINE PROCESSES THE COMPUTED ZP(1l)
C CALCULATES UP{I) AND THE ERROR
C ERRCR CRITERIC?H
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COMFOR/ZYT/X1:X25UsA
c DIMENSICNS FCR CCMMCN
DIMERSICN U(60)A1560,60)
DIMENSION ZP{60),2K{60,60),UuP(60)
DIMENSION Z{60),ALPEA{10}
DC 14 1 = 1,41
IP{1) = 8{1+421}
14 CONTIMUE
UAVG = Q.
0C 40 1 = 1,41
COEF = Q.
COEFL = Q.
DC 41 J = 1441
IF{JeECelaUReJoaEQe4l} GO TO 42
IF{JaECaZ20RsJeECL4C) GO TO 42
KKUF = J72
JNUN = {(J+1)/2
IF{JRUNGEQL.KNUM} €0 TO 43
531G = 2.
GC TC 44
42 516G = 1.
GC TC 44
43 SIGC = 4, . )
44 CCEF s CCEF + SIGHXK(I,J)1#ZP{J)/(3.%DLS}
IF{IaLT441) GC TC 41
IF{JeECL1} €CC TO 1
KL = J-1
GG 10 2
1 KL =1
2 IF{JeECe41) GO TC 3
KJ = J+1
GC TC 4
3 Kd = 41
4 CCEF1 = COEFl + SIGH{{ZP(KJ}-Z2PIKL} 1 *22)13DL5/3,
41 CONTIME )
UP{I = COEF
IF{I.EC.1e0ReIeEQ 441} GO TO 3(C
IF{IoECa24CRoIeEC4T) GO TO 31
KRU¥ = 72
JNUN = (I+1})/2
IFUJINLNGEQeKNUMY €0 TO 31
SIG = 2.
GC 1€ 23
30 516G = 1.
GO 1C 23
31 S1IG = 4.
33 UAVE = UAVG + SIGH{{UP{I}-ULT %22}/ {3,%DLX}
40 CCOHNTIMUE
UAVEC = UAVG + ALPHRA{1)#*COEF1
RETLRN
END
$IBFTC RRRZ DECK |
SUBRCOLTINE REGZ{XKsB,BK,DLX}

c THIS SUBRCUTINE INTEGRATES XK{I,J¥#XK{I,J} OVER ZI-VALUES
€ TC CBTAIM NEW FMATRIX EBK{I,J}

COMFOAZZIVT/X14X22 s )
C DIMENSIONS FCR COMMIN

DIMENSION U(EC}21(6C,50)
DIMENSICKN XK{60,6C)4BK{60,6C)+BI60])

SIMPSOM RULE

[sXaNal
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CC 5 1 = 1,41
CC & J = 1,41
CCEF1l = Qo
CCEF = Qo

BC 2C K = 1,41
IF(KoECo1aCRaKeECW41) GC TO 21
IF(KoECeZeCReKoEGH4C) GO TO 22
KNUM = K/2
JNUN = (K+1)/2
IF(INUNEQaKNUM) €O TG 22
22 SIG = 2o
GC TC 24
21 SIG = 1l
GC TC 24
23 SIG = 4o
24 Al = SIGHXK(K,I)*XK{(KyJ)/{3:*LLX)
IF(I.CTel) CC TC 7
A2 = SIGAXK(KyJ}*L{K)/(3,#DLX)
CCEFl = CCEF1l + A2
7 CCEF = CCEF + Al
20 CCNTIMLE
IF(1.GTel) GC TO &€
8(J) = CCEF1
8 BK(I,J) = CCEF
5 CCNTIME
RETLRA
ENC
$IBFTC RRR3 DECK
SUBRCLTINE REG3(NFIRST,NLAST, 2LPHA,BK,B,DLX,DLS)
TEIS SUBRCUTINE INTRODULCES THE REGULARIZATION TERMS
IN THE MATRIX EK(I4J)s THE FINAL REGULARIZEC MATRIX
IS Al{I,4J) '
CCVMNCA/ZYT/X19X29 L0 2
CIMENSICNS FCR CCMMCN
DIMENSICN U(€EC),A(6C,60)
CIMENSICN BK(6046C)4B(60)5ALPFA(10)

(@] [aBalal

LE S 1 = 1,41

CC 6 .J = 1,41

A{T,J) = BK(I,J)/ELS
9 CCNTINLE

CC €3 K = NFIRST,NLAST
DC 6C I = 1,41
NUM = 2¥N + 1
CC €C K = 1,AUM
A2 = CALC(N,K,DLS)
Al = ALPHA(N)*A2
LABEL = I + N - K + 1

64 CONTINLE
IF(LABELoLESC) GC TC 61
IF(LABELWGTo41) GO TO 62
A(I,LABEL) = A(I,LABEL) + Al

GC TC ¢&C

61 LABEL = TABS(LABEL) + 1
GO TC ¢4

62 LABEL = 82 - LAEBEL + 1
GC TC €4

60 CCNTIMLE

63 CCONTINLE
pcsol =1

5C A(l,42) = 8
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L3
$IBFTC EEXX DECK
SUBRCLTINE ECS{N}

< STANCARD SUBROLTINE TO OBTAIN THE INVERSION SCLUTION. THE

C SOLLTICN IS IN CCLUMN J+1 IN A{l.J} MATRIX.
COFNMENZIYT/XL9X2,4Us2

C CIMENSICN FOR COMMON

CIMENSION U(£0),A(6C,60)
DIMENSICN B(&0)
53 Nl=n+1
5 M=N1
13 DO 23 K=1,N
Kl=K41 )
IF(A(K,K))2C,14,2C
14 IF{K-N)15,19,15
15 DC 18 L=K1,\
IF(AIL,IK))16,18,1¢
16 CC 17 J=K,¥
B(J)=A(K,J)
AlKsd)=A(Lyd)
17 AlLyd)=-B(J)
GC TC 20
‘18 CCNTINGE
19 WRITE(£,1C1)
6C TC 20
20 DO 23 I=1,A
IF(1-K121,22,21
21 C=A(I,K)/A(K,K)
DC 22 J=1,¥
22 Al1,4)=A(1,d) = CHALK,J)
‘23 CCNTINLE
46 0O 29 J=N1,¥
CC 25 I=1,N ,
25 A(I,J)1=A(T,J)/ACT,1)
29  CONTIMLE
101 FCRMAT(19H MATRIX IS SINGULAR)
30 RETLRA
END
$IBFTC CALF  DECK
FUNCTICN CALCINsK,DLS)
c THIS FUNCTION SUBROUTINE EVALUATES THE
¢ CCEFFICIENTS (BINOMIAL), ETCe
c CALLEC BY REG2
c

= 2%h
=L - K + 1

= K -1

{ CelaURoKeEQoL+1) GO TC 10

1st
1

14¥
H

144

£
i
1
1
1
i1
I
1

i

LIS S )

I
12}
T1/7(12%13)
{=11%%{N4K+1 )
X = FLOAT(I4*1I3)
CALC = X*DLS##%L

GC TC 59

o ]
0
Hom oM mm 00w =
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10 12 (~1)%%\
Al FLCATAIA)
CALC = AL*CLS**L
99 RETLRA
END
$CATA .
CONCENTRATICN KERNELy41PTSae,8¥(VE({V-1))%*2
Ce 425E 01
0111
1le 00E-C7
$EOF

"
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