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Suﬁhé%x

The ductile-brittle transition temperature for a coarse grained recrystallized
e
molybdenum material was found to be lower than for the original fine grained

metal from which it was produced. The coarse grain size resulted from a
critical straining and subsequent annealing treatment at a low rec: -"tallization
temperature. It is concluded from an analysis of variour strength pargmeters
which are either measured or estimated for this material that an imprdved

grain boundary strength and a considerabie influance of the dislocation sub-

structure are responsible for the less brittle behavior of the coarse grained

molybdenum,

Zusamnenfassung

Der Sprdd - Duktil - Ubergang eines grobkdrnigen Molybddns liegt, entgege:n
herkdmmlichen Ansichten, bei einer tieferen Temperatur als der des feinkdrnigen
Ausgargsmaterials, wenn das Grobkorn durch kritische Verformung und nachfolgende
Rekristallisation bei einer niederen Temperatur geziichtet worden ist. Eine
Analy<e der Festigkcitskenngropen zeigt, dap eine erhBhte Korngrenzenfestigkeit
und Kleinwinkelkorngrenzen verantwortiich flir die erhdhte Duktilitdt des

grobk3rnigen Molybdins sind.
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JOTAL MATERIAL VARIABLES INFLUENCING A DUCTILE-BRITTLE

TRANSITION TEMPERATURE FOR MOLYBDENUM

Introduction

The grain size dependence of a ductile-brittle transition temperature
(DBTT) which is observed for steel and similar metals has been described in

(1)

some detail by Armstrong. For recrystallized polycrystals having varying
average grain diameters,{, a piot of the DBTT, determined for instance by
tensile or by Charpy-v~notch tests, versus L-'/Zshould be represented by a

smooth curve of gradually changing negative slope. The dependence is such

- that a coarsening of the grain size should result in an increased DBTT. How-

(2)

ever, it was pointed out in a previous study on sintered molybdenum

(of chemical analysis given in Table 1) that an increase in the polycrystal
grain size did not necessarily result in an increaged DBTT. Depending on the
way of producing the coarse grain size, a deterioration of the transition
behavior as well as an improvement could be expected. Figure 1 shows that
coarse grained molybdenum, produced by critical straining to approximately 25%
and by subsequent recrystallization at low temperatures, exhibits a lower DBTT
than the original fine grained metal. Similar results haQe been reported by

(3)

other investigators who have used the same method for increasing the grain

_size, but a completely satisfactory explanation for these results has not yet

been given.

There have been several attempts to describe the complete ductile~brittle

N0

behavior and its dependence on grain size. According to Cottrel , the

condition for the transition is given by

1/2
+ k) k =¢C
(ot y) y = OHY

or

1/2
o k4 = 1
yy4 wy (1)

Pm TN R rmas e rds m e ke s ) Bl PR Ke T AR s it S 1o E I e npe n e




. —— R
 arae fons” ecrian R Uain, S ord b Arn, W Sehinet ettt

o oy
S REN L
ST

2

St pad iGN

s

oy

oo T T g 1o

MR Lo T

43 N
TEa ‘G‘ -

by
S

<.“
HRTRAR e

3

353 R AlE

A

s
AW

3 ‘7"5{!, L

S ot e
ATy :
o ‘?,'- eI

S
)#u

3

%

‘:k;‘!‘,é?,,‘;,«‘ Riis

RO A

TR ke X o Wl L a3 ke R B e TR RS D w W e o,

where 5 and kyare defined as experimental constants from the dependence of
the yield stress, "y’ on L-‘/z at constant temperature ard strain rate in the
Hall=Petch relation:

- -1/2
oy =0+ kyL . (2)

Y is the effective surface energy of a crack, p is the shear modulus, and

C is a numerical constant. ODue to the temperature dependence of the yield
stress, Gy, with all the other terms assumed to be temperature independent,
it is possible to calculate a '"transition temperature' for a given grain size

4, For example, the temperature dependence of Gy may be written in one form as

O, = B exp (-BT). (3)
If, Gc is regarded to be composed of a thermal ( 60“) and an athermal stress

componernt g
pone ( Ou)’

o o o’ (3a)
then o, =8 exp { B'T). ()

A relation similar to the Hall-Petch equation applies also for the fracture

~

stresc ", i.e,

g =0 k4 -1/2. (5)
€ c¢co ¢

Fracture occurs usually be cleavage (therefore the index '¢'' ). As the mode of
brittle fracture is normally intercrystalline in recrystallized molybdenum, we
should rather write

- -1/2 (5a)
%= %o * kbL,

for this fracture strength. It is normally considered that
> > > 0.
kc kb > ky 0 (6)

This means that in coarse grains, at the same applied stress, -higher local

stress concentrations can be expected, which are gheréfore able to nucleate

cracks, or, in other words, the fracture stress in coarse grained metals is

lower.

3
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@ .c is a disadvantage involved in using equation (1): it containes Y,
whick = nct well-defined. This was avoided in two formulae given by
Armstire 5} which contain only the above derived and measurable quantities for

the (e’ tion that TC obtains at °y = Uc; thus

-t
it
t

tnB - 4in {( k, - ky) ) 1/2}_ mL-l/z] o

T “-"' . inp' - 4n { (kc B ky) * (oco ) cou) Ll/z} -{‘n{'-l/zj (8)

C ) -

Resu't~ and Discussion

Fi~ure 2 shows the temperature dependence of the main parameter, the -
yield strength Gy, for molybdenum having two of the three different grain sizes
shown '+ Figure 1. If we use the experimentally determined DBTT from Figure
1 (the L3TT obtained from bend tests and tensile tests are comparable (2)) and
estimate the brittle fracture stresses for intercryStalliné fracture by taking
them ecqg:'al to the yield stresses which apply for these temperatures, following

(5)

Armstrena , then it may be seen for the coarse and fine grain-size material

that
Ob(coarse) > o (fine) (9)
which 1ay mean that

b (fine) (10)

, (coarse) >0
o (>

in'ana\oay ‘o conditions given by the Hali-Patch relation if it is assumed that
k is constant and >C. However, the inequality (9) may also be directly taken

H

to show that

k, <O, (1)
even tiough this is not directly meaningful in terms of the theory underlying
(1)

the Hall-Petch relation.
A. equation (11) is not realistic in terms of cther grain size effects.
and t": theory for them, something more has to be considered. The Petch
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5
theor -1 the size effect emphasizes the variation of stress concentrations
acti -+ = front of slip planes impinging on grain boundaries, assuming that
there . no-difference in grain boundary structures of various grain size
materi: is. On this basis, it could be argued that the conditions (9) to (11)
simplv 'mply that an increased grain boundary strength exists (iarger k_ value)

b
for the narticular large grained material, caused by the previous treatment, which

together with the experimentally obtained lower values of the yield strength
can explain the lower DBTT.

However, some other findings suggest an additionail effect. One could
take into account the role of newly originafed subboundaries in the coarse
graine molybdenum because these boundaries could also act as obstacles to slip
bands. Actually, a tendency to transcrystalline fracture has been reported by

(2,6)

severaz! investigators not only in cold-worked but also in recrystallized
material and this appears consistent with the concept of obstacles being generated
within the coarse grain volumes, or the elimination, perhaps, of an exceptional
arain houndary susceptibility to intercrystalline fracture. On the other hand,

there seems to be no effective obstacles within the fine grained molybdenum

materials as indicated by a predominantly intercrystalline fracture. Also, sub-

boundaries have not been observed in fine grained material. at least, not so

far as etch pitting techniques have been applied.(7)
It should be pointed out that, although the data in Figures | and 2 indicate

R AR AR AR

that k, 0, ky remains positive, i.e. oy (coarse) ‘<oy (fire). Plastic deformation

Wb

is at least not strikingly affected by any subboundaries which may be present.
Analyzing the stress-strain curves by the extrapolation method(s), it is
also possible to determine ky and its variation with straining. Figure 3 shows
according to this method that ky is proportional to the amount of strain which
occurred before the recrystaliization process. The nature of ky was explained

by Cottrell(h) in terms of the creation of new dislocations in front of pile-ups.




There a:~ other models to explain the detailed character of ky. According to
9)

Wasilewski y is directly dependent on the substructure (increasing with
decreasirq distance between dislocations) and this could explain the results
shown in Figure 3 because a finer dislocation substructure is expected for
increasing strains, .

This consideration leads to the same explanation as before: a2 different
substructure exists in the metal of larger grain size, which is obtained by
straining and annealing. From Figure 3 it iﬁ obvious that the‘straining has
had a first order effect on the increase of ky. If we made the assumption
which is supported by metallographic evidence that the subgrain size is not
smaller than the original grain size. then it turns out that kys value for the
substructure in the coarse grained material is approximately the same as the
ky obtained for the fine grain sized molybdenum by the extrapolation method.

With this information, it is now possible to-estimate the DBTT for these
materials by using equations (2) and (3) in equation (7). One important factor
which may immediately be visualized to lead to a lower DBTT seems to be the
empirical term 5 in equation (3) because it has a direct influence on 1c in
equation (7). Indeed we obtained within the experiméntal scatter of the data
a value of 8 = 3.18 x 1073 °%¢ °! for the fine grained molybdenum and 5.5 xlo'3°Kf]
for the coarse grained material. This would’indicate a lower DBTT for the
coarse material but a larger difference in the DBTT values than is experimentally
observed, if changes of the oti.er parameters are assumed to be of minor influence.
However, 3 is a very complicated term; -it contains an athermal contribution

(10)

and it is not easy to give B a direct physical interpretation.

A similar term, B', is obtained by analyzing the stress intercept, %oy

in “erms of athermal and thermal components. 06 of the Hall-Petch relatiornship

T a1 T ek SV R 4 A e AR ALy JEE B2 R~ o




is temperature dependent through the thermally activated 06* (equation 3a) and

B' is derived from the exponential equation (L) for 0 % In our material p!
has been obtained as 7.9 x 10'3 % “1 for the original fin= grained molybdenum
and as 10.7 x 10-3;for the prestiained and annealed coarse molybdenum. This
variation inr B' is in more reasonable agreement with the change in DBTT which
was measured., These values agree with previou§ values of B reported by
Armstrong (5). This should be expected because B = pB' a5 T = (0 and the values
of B reported by Armstrong were determinedfor temperatures near to -200°C.. How~
ever it is reported () for steel that ky is athermal, and only the athermal
component, Ubu, of the yield stress is influenced by different impurities. On
the otherhand, B' and B' are taken as measures of the temperature dependence of
the thermal component; 96*, which on the basis of thermal activation analysis,
too, should not change due to the production of different grain sizes. There-
fore, it is not clear, why there should be any difference in the B' values. B'
and 3' (as well as B inde) are probably prone to changes due to variations in
interstitial impdrity content. A pronounced stress-induced Snoek effect would
decrease the temperature dependence of the yield stress, but this is not likely
to be expected in molybdenum with its low solubility for interstitials.

It may also be that the different va.ues for B' are due to experimental
uncertainty because of the limited temperature range able to be covered and the
limited data points in it. This also appiies for the variations that were

-3 oy -1

measured for B'. Substituting an average ' = 9.3 x 10 and B' = 705 kg/'mm2

for boti grain sizes in equation (8) and replacing k. and S by k, and %o’
then, any decr=ase in the DBTT can be formally discussed as a consequence of
any one of the following factors, all of which have been included in the fore-

going description:

A. ®bo (coarse) > %o (fine) according to equation (10). The effect
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of decreasing the DBTT due to increasing %o should become more pronounced at
large grain sizes due to the factor 4 1/2 in equation (8):

8. kb ( coarse) > ky, (fine) according to enuation (6) due to increasing
kq because ky(coarse) > ky (fine) as in Figure 3. The decrease in the DBTT

in equation (8) should be less pronounced at large grain sizes.
1/2

C. Ky < 0; eguation (11). This condition implies a large o ot L% 0
and a decreasing o, as L-I/Z increases. The DBTT increases at an increasing rate
-1/2 ,
as 1 increases.

~

Table 2 gives the changes in DBTT when certain parameters of equation (8)
are varied while the others remain constant. ‘

A calculated C3TT at 96°C for the original fine grained molybdenum agrees
well with the result from the bend test. A number of cases are given for the
coarse gr .ined material. Considering the three conditions mentioned above, we
can first exclude condition (C). In (Ca) of Table 2 the assumption that %o
remains as low as in the original fine material, is not in accordance‘with the
HallePetch relation. The result is an increase of the DBTT, anyway, and this is

clearly incorrect. Using a larger Gpo? 35 estimated from Figure 2 (assuming that

0b0~ Gb)

high., Condition (B) could explain a low DBTT, but it rests solely on the

, results, as shown in (Cb), in a decreased 0BTT, but it is still too

assumptions involved in choosing kb and again %o is too low.

The only reasonable result seems to come from condition (A), where the
large 7b°taken together with the assumption of subgrain boundaries responsible
for blocking slip bands, gives a calculated low DBPTT which is comparable with
the experimental results. Of course, a combination of two conditions, as shown
in Table 2 for condition (D) = (A + B), could possibly explain the same result,
but there are similar restrictions as for (B) alone.

Again we have seen the necessity for the concept of subgrain boundaries
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(’if we neglect the substructure, we end up basically with condition (Cb{) as
obstacles for dislocation arrays, which has been already discussed, but only
when taken together with the possibility of an increased grain boundary strength
can the result of Figure 1 be fully verified. The possible importance of sub-
structure inm contributing to A has already been discussed for other refractory
metals, particularly, niobium.(lz)

The results of the present study suggest that another distribution of im-
purities may also be involved in the enhancement of the ductility of coarse
grained molybdenum (produced by prestrain and recrystallizing) because the
impurities may be segregating tu some degree at the subgrain boundaries.

Figure 4 shows several DBTT curves versus L-l/z which might apply for a
given material under varying conditions. For example, a severe change may occur
in the material properties which corresponds to moving from one DBTT curve, say,
I to II. Any variation of grain size alone, with no change of the grain boundary
strength would have only resulted in a shift along curve I(X - X'). Curve II stands
for a material with an increased grain boundary strength. Thus, X - Y' is
the change in Tc when grain growth also occurs. X = Y'' is valid when the effect
of increased grain boundary strength is combined with a newly created sub-
structure, the effective grain size of which is the size of thesubgrains them-
selves. The subgrains in molybdenum are apparently never much smaller than the
original grains with high angle grain boundaries. High temperature annealing migﬁt
yield curve II1 for which the material is distinctly more brittle. X = Z' might
result from the cormbined effect of an increase in grain size and a lower grain
boundary strength. This effect can be mitigated somewhat when subboundaries be-
come effective (X = 2').

To fully understand the nature of the DBTT, it should be necessary tc take

into account the role of impurities “n determining the mechanism of embrittie-
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(2)proposed7 The Hall-

ment at various grain sizes, as has already been earlier
Petch relationship, as usually given for b.c.c. metals with low solubility for
interstitials, depends not only on the grain size but on the effect of impurities
at the grain boundaries, too. This could be the reason for the argument that

ky values in b.c.c. metals prone to brittle behavior are larger than those for
materials not prone to brittleness, as has been stated.("3’l3) However, the

fact that ky can be large for a coarse grained material with a low DBTT, reduces
the credibility of that general explanation. The fact that an increase in grain
size can also cause a lowering of the DBTT makes it necessary to emphasize

that, apart from the grain size and even the subgrain size, it is necessary to
consider the history of previous treatments to which a material has been subjected.
The negative L-‘/Z dependence of the DBTT is only generally valid; when the same
method, which does not alteryor at least does not severely alter the sub-
structure and the distribution of the impurities, has been involved in creating

a spectrum of grain sizes,

Conclusion:

The preceeding discussion shows that the ductile=brittle transition temp-
erature can be changed by altering a number of the parameters involved in specifyihg
the yield and fracture stress of a material susceptible to becoming brittle;

Using equations (7) and (8) for computing the transition one has to be aware

that a number of material parameters may be altered when a material has been

_treated in any way. However, it should be possible to evaluate these parameters

and the changes they produce by performing specific quanitiative measurements.
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Figure Captions

Fig. 1.

Fig. 2.

Fig. 3.
Fig. 4.

The ductile~brittle transition for recrystallizéd molybdenum
of different grain sizes as observed in a bend test.(z)
The temperature dependence of the yield stress for recrystallized

(2)

molybdenum of different grain size.
The influence of deformation before recrystallization on ky.(z)
The effect of grain size and grain boundary properties on the
ductile~brittle transition. Curve I shows the dependence for the

original material. Curve II represents a material with higher,

curve 111 one with lower grain boundary strength.

Table Captions

Table 1I.

Average chemical analysis of sintered molybdenum

Table II. cCalculation of the DBTT by means of equation (8)
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Table 1

Average Chemical Analysis of Sintered Molybdenum (in wt. ppm)

Oxygen Carbon Nitrogen Hydrogen Tungsten Iron
50 30 Lo 10 1000 100
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responsible for the less brittle behavior of the coarse grained

molybdenum,
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