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ABSTRACT 

A recurring problem faced by many analysts is that of devising 

estimating procedures for predicting some aspect of the future from rather 

meager data.  This is particularly true for the cost analyst who is con- 

cerned with estimating the resource requirements of future military systems. 

Historical Simulation is a method of evaluating candidate (cost) 

estimating procedures on the basis of their ability to simulate predictions 

using data that would have been available.  For example, assume that a 

particular data base consists of perhaps 15 data points ordered in time; 

a typical simulated prediction would entail using a candidate estimating 

procedure to predict point 10 using only the information available in the 

first nine data points.  All candidate estimating procedurer, would then be 

evaluated on how well their simulated predictions compare with the actual 

data points. 

In this fashion, Historical Simulation avoids relying on the central 

evaluation assumption of Regression Theory, namely, that which fits the 

past data best will predict the future best.  This conceptual difference 

gives Historical. Simulation several, unique features, among which are 

1 The  demonstration  of  an  estimating   procedure's   capability   to 

make  predictions   of   those   points   in   the   data  base  which   are 

extrapolations   from  the  previous   data 

The   ability   to   directly  compare   a  wider   class  of  estimating 

procedures   than   can  be   compared   by   the   usual   regression 

techniques 
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4. 

The ability to evaluate estimating procedures derived from 

stepwise regression independent of the selection process 

utilized in that technique 

The use of an easy-to-comniunicate summary statistic fcr 

describing the accuracy of predictions. 

Hence, Historical Simulation provides additional information which, 

when used in conjunction with the usual regression techniques, should lead 

to a better evaluation of candidate estimating procedures, particularly 

when the prediction problem is characterized by extrapolation from a small 

data base. 

The report is in two volumes.  The first, which is unclassified, 

completely describes the technique.  Included is a discussion of reasons 

leading up to the development of Historical Simulation as well as a des- 

cription of the technique and of possible ways to summarize and interpret 

the output.  Volume 2, classified Confidential (Privileged Information), 

illustrates the use of Historical Simulation by describing the results of 

applying the technique to cost and man-hour estimating procedures for 

selected aircraft programs. 

The reader interested largely in a nontechnical overview may prefer 
C.A. Graver, Progress Report On The Development of Historical Slmu1 .iLion, 
General Research Corp  IMR-950, March 1969, which was delivered at the 
1969 DoD Cost Researcli Symposium, 
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I. INTRODUCTION 

The purpose of  this  report  is  to  describe   the  progress made in  the 

development of Historical  Simulation,   a procedure   for  the  evaluation of 

Cost Estimating Procedures   (or Cost Estimating  Relationships).     The work 

is being  sponsored by  the Director of Economics   and  Resource Analysis, 

Office of  the Assistant   Secretary of Defense   (Systems Analysis)   under 

Contract Number DAHCx5-68-C-0364. 

As parts of  this   report  are   fairly  technical,   the reader  interested 

largely in a nontechnical overview of  the Historical  Simulation procedure 

is  referred  to  the paper  delivered  at   the  recent   1969 DoD Cost  Research 

Symposium   (Ref.   1  of  this volume). 

A. BACKGROUND 

The current emphasis on systems  analysis,  while  it has greatly 

enhanced  the decision-making  capabilities of  defense  policy makers,  has 

placed  a difficult   requirement on  cost  analysts.     Working with   functional 

cost models which utilize a description of the  system in  terms  of its 

most basic physical or performance  characteristics,   the analyst  is asked 

to make  estimates which  often require  extrapolations  from extremely meager 

data.     These  estimates  are used in  the evaluation of which  candidate 

system is  to be pursued. 

Because the  generally  sparse  nature of   the data tends  to  obscure 

genuine  functional   trends,   the analyst must  go   to  great  pains   to   fully 

utilize all  the information his data base contains.     While   the  cost  analyst 

has  at his disposal  a number of  tools,   e.g.,   linear regression  techniques, 

any additional  too]   that   summarizes  different   information   from  the data 

base,   such  as Historical  Simulation promises   to be,   is worthwhile. 

Traditionally,   in   the development  of a  cost  estimating relationship 

(CER),   the  cost  analyst   first  postulates  a  functional relationship  that 

hopefully will  reflect   the  cost generating relationship  underlying  the 

UNCLASSIFIED 
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data.     The  data base  is   then   used  to  estimate  the parameters of  the  functional 

relationship  and  a CER  is  obtained.     Whenever   the  functional  relationship 

is   linear or  can be   transformed   into  a  linear   form,   a  least  squares curve- 

fitting   technique   is  generally   used  to  estimate  the  parameters.     At  this 

point   thn  analyst may  examine   any of  a number of measures,   or statistics, 

based  en  line;...   regretjsioi;   theory   to  assess   the  goodness  "■f   the  rpsulting 

fit.      If   the   fit   is judged  good   the analyst   uses   the  CER as   the basis   for 

cost   prediction,   concluding   that   it   represents   the  cost   generating process 

of   the  class of  systems being  analyzed.     The  assumption operating here  is, 

in  effect,   that  which   fits   the   data best  predicts  best. 

While  no  necessary  relationship  to   the  system's   cost  generating 

process   is   thus established,   a  good   fitting CER can be meaningfully  used 

to  make  cost  predictions,   particularly when  the  desired prediction is  an 

interpolation within   the   framework  of   the  data  base.      Buf   cost   analysts 

often  deal   in  extrapolations.     New  systems are  generally biggei,   or   faster, 

or  newer   in  some   combination  of physical  or performance  characteristics, 

and   so   fall   outside  existing  data.     Hence,   to   predict   the   cost  of  a 

future  procurement,   the  cost   analyst   is  often  required  to   extrapolate   from 

the  past  data base. 

Historical   Simulation  extracts  information   from the  data base on 

how well  a  cost  estimating procedure    has performed   similar extrapolations. 

However,   Historical  Simulation  cannot  guarantee   (any more   than regression 

techniques   can)   that  an  apparently valid  cost  estimating procedure  can 

predict   accurately  a   future  procurement,  as   the cost  generating process 

underlying  this  procurement  may have  drastically  changed   from the one 

underlying  similar objects  already produced.     What   is  unique about 

Historical   Simulation  is   that   in  evaluating  the candidate  cost  estimating 

a   for«  to6ether „iC  the  -chni^e^for plc.l„s the pa^er. The   functional   torm  cogeuuci.   »J.....   _.._     
as   distinct   from a particular CER which  is  the  functional  form  together 

with  estimated  parameters. 
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procedure it  directly  uses   the  cost   analysts  goal—predicting  costs  of 

future objects  using past data on similar   objects. 

The premise   underlying Historical   Simulation  lies   in  the observation 

that,   if the hypothesized   functional   relationship  represents   the  cost 

generating process,   and  if   the parameter  estimating  technique  is  valid, 

then  the estimating procedure's  validity   can be  demonstrated by  simulating 
•k 

predictions     that  might have been made  using it   throughout   the   time  period 

of  the data base.     The  resulting predictions  can   then be  compared  with 

actual  data.     Thus   an  analyst  can  test  his  estimating procedure  by   using 

some of his  data   to   simulate  a prediction  of  a  later data point.     If  such 

simulated predictions yield consistently  acceptable  predictions,   his 

confidence  in  the  estimating procedure's  ability   to  predict   future 

procurements  is  greatly  bolstered,   even   if   the  future procurement   lies 

outside  the  data  base. 

In  contrast   to   the   that-which-fits-best-predicts-best  rationale  of 

linear  regression   theory,   the  assumption  implicit   in  the Historical 

Simulation approach  is   that which simulates   its   ability  to  predict  best 

will  continue   to  predict  best.     Thiö  conceptual  difference will  provide 

the  five advantages   listed  below: 

1. The past  ability of candidate   cost estimating procedures   to 

extrapolate   from historical  data  can be demonstrated. 

2. Evaluations made using Historical Simulation constitute 

additional information useful in hypothesizing new cost 

estimating procedure  candidates. 

The  use of  the word   prediction    in the Historical  Simulation  context,  may 
or may not have   the usual meaning.     If  the  candidate  cost  estimating proced- 
ure is hypothesized  independent of   the  data base,   then  the  simulated 
predictions  are  in  fact predictions.     But   in   the most  typical  case,  when 
the  candidate  cost  estimating procedure   is hypothesized  after  examining 
the entire data base,   the simulated predictions  cannot be  interpreted 
as  actual predictions,   for the  candidate  estimating procedure  undoubtedly 
fits   the entire  sample well. 
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3. 

4. 

Historical   Simulation  can  compare  a wider  class of  cost 

estimating  procedures   than   the   usually  employed  regression 

techniques. 

CERs  derived   from stepwise multiple   regression  techniques  can 

readily  be   tested,   thus   providing   an  independent   evaluation 

of   them. 

Evaluations made  using Historical   Simulation yield  an easy- 

to-communicate  summary  statistic   that   is  useful  in describing 

the  accuracy of  a prediction. 

To   summarise,   the  conceptual  differences  between Historical  Simula- 

tion  and  Regression Theory   insure   that   the   former will give  the cost   analyst 

new  information   from which  he  can  judge   the  reliability  and validity  of 

hypothesised  cost   estimating procedures.     Hence  Historical  Simulation  is 

not  a  replacement  of   the   traditional  Regression Theory  techniques;   rather 

it   is  another  tool  which   the analyst  can  use. 

B. ÜRGANIZATION  OF  THE  REPORT 

This report   is  presented  in  two  volumes  of which  this  is   the  first. 

The  second,   subtitled   Some  Examples,  presents   the  results of  applying   the 

Historical  Simulation   technique   to  two  aircraft  samples.     While  the 

author  is not   sufficiently   familiar with  the  data  to  draw concrete  con- 

clusions  about  which  estimating procedure   is  best,   the  results  are 

useful   in demonstrating  the  value of Historical  Simulation.     Volume   II 

carries a Confidential  classification. 

Volume   I  completely describes  the Historical   Simulation  technique, 

and  presents  related  background material   about  current  estimating 

techniques.     It   is   in   five  sections,   of which   this   Introduction  is  the  first, 

and  has   three  appendixes. 

Section  II   is   in   large measure  devoted   to background material,   and 

outlines   the considerations  and problems  that  have  led  to  the development 
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of Historical   Simulation.     It  is   concluded by  listing some of   the properties 

that  would  be   desired of any new evaluation procedure. 

Section   III  describes   the Historical  Simulation procedure   in detail, 

demonstrating  its  use with a  hypothesized  linear  cost  estimating procedure, 

ana  utilizing  a  least  squares   fitting   technique   to  estimate   the  parameter 

values.     It   is   then  generalized   to   a wider  class of estimating  procedures 

and  some  of  its properties are   discussed. 

Section   IV discusses   three  of  the ways   the outputs  provided by  His- 

torical   Simulation  can  be  utilized.     These  three ways,   or  categories,   are 

(1)   uirect  examination of   the output,   (2)   data summarizations   that  do  not 

depend on  a particular cost estimating procedure,  and   (3)   statistics which 

utilize  the  assumptions of a particular  cost   estimating procedure. 

Section  V concludes  the body  of  Volume   I with a  discussion of   the 

advantages  and  current   limitations  of  Historical   Simulation,   and 

identifies   some of  the directions   future  research  in  the  technique might 

take. 

The   three  appendixes  contain  topics  of  special   interest.     Appendix  I 

describes  a  computer model written   for  Historical  Simulation;   Appendix  II 

derives  the distribution of  the  Historical  Simulation predictions and 

residuals  under   the  usual  regression   theory  assumptions;   and  Appendix  III 

compares  several  variance  estimators. 

Before  proceeding  to   the body  ^f   the   report,   it  should  be   understood 

that   the word   simulation,  as  it  is  used here,   refers   to   the demonstrating 

of a cost  estimating   procedure's   predictive   capability  by  simulating  a 

prediction   that  might  have been made  using  only  the data  that   would  have 

been  available.     Thus   this  procedure  does not   Include  generating  a  random 

sample  needed   for Monte Carlo evaluation—an   integral   feature   of many  simu- 

lation models. 
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In  addition,  while   the present work  is   tailored  to   the cost  problem, 

no  limitation   is  evident  that  precludes   using Historical  Simulation  to 

evaluate  any  estimating procedure,   particularly when the  inference  to  be 

made has   the   characteristics of extrapolation  and  small   sample  size. 
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ii, BACKGROUND TO THE DEVELOPMENT  OF HISTORICAL   SIMULATION 

A. ADVANTAGES OF  FUNCTIONAL  COST  MODELS 

In  recent years,  major procurement and  force  decisions  in the Depart- 

ment  of Defense havfi been made with   the help of  Systems  Analysis,  a 

management   tool in which  alternative weapon systems  capable  of accomplishing 

the  same objective are  compared  analytically.     The  alternatives  are most 

often  described in terms  of  general  performance  characteristics.    Thus  a 

bomber might  be described by   its  speed   (Mach  1.2,   say),   range   (1500 

nautical miles),   and payload   (18,000  pounds). 

Before  the various alternatives can be compared,   estimates of each 

system's  cost and effectiveness must  be made.     From  these estimates  the 

"best"  alternative can be  selected  or new alternatives   specified  and  the 

process repeated. 

Traditionally,   cost  estimates  have been based  on  detailed engineering 

evaluations of the weapon  system alternatives.     Indeed   this process  is  still 

used,   particularly in industry,  when  the comparisons  being made  concern 

the detailed  design decisions  necessary to achieve   the  specified weapon 

system characteristics   (in   the most  economical   fashion) .     For  example.   What 

should be   the shape of   the wing? 

However,   for making  cost   estimates  to be  used   in choosing the major 

performance  characteristics  of   the weapon  system best   suited   to a specific 

mission,   it  has been  found   that   functional  cos;    .odels  have  several 

advantages over the more   traditional  engineering approach.     By  including 

in a  system's  functional  cost  model  all  signific?nt  cost  generating 

performance  characteristics,   the cost estimate will  depend as much as 

possible upon  the same  variables   used   to  generate   the  effectiveness 

estimates. 
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In  addition,   functional  cost models  provide  the  rapid  estimating 

capability necessary  for making  timely comparisons between  alternate 

weapon  systems having widely  varying performance characteristics.     Cost 

estimates  generated  in this manner,   when  used  in conjunction with 

effe.'-'v iveness  estimates,  become  an  integral part of  the weapon system 

performance   characteristic   specification,   rather  than  remaining the 

result   of  a  more  detailed evaluation   for  a  particular weapon  system 

configuration   (which has been  chosen without   regard   to  cost). 

Finally,   a   functional  cost  estimating procedure  guarantees  a 

consistent  evaluation of cost.     This   is  not  usually   the case   in engineering 

evaluations  where  cost  definitions  and  accuracies  used  in  the  evaluation 

of a  particular  alternative  may differ   from those used  in   the study of 

another  alternative. 

B. CURVE  FITTING AND REGRESSION  TECHNIQUES  IN  FUNCTIONAL  COST MODEL 

SPECIFICATION 

At  one   time,   only curve   fitting   techniques   (such as  least  squares) 

were  used   to  develop particular cost  estimating relationships  (CERs)   in 

a  functional  cost model.     But,  by  themselves,   the  fitting  techniques 

would not   tell  the  analyst  anything about   the reliability of  cost 

estimates made  using a particular CER,   nor would  they help  him choose  the 

best   from  several   competing CERs. 

Statistical   regression  techniques which  essentially measure  the 

goodness  of   fit were  introduced  to  answer  these questions.     Statements 

concerning  predictive  reliability were  derived by  using R-scores and 

prediction  intervals,  while  choices   between CERs with different  input 

variables  but   the   same   functional   form  (e.g.,   linear)   we^e made using 

F-  and   t-tests. 

There  was,   however,   a  certain  amount of  trial  and error  involved in 

applying   these  regression   techniques.     Candidate CERs had   to be specified. 

UNCLASSIFIED 
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and often the results  of applying  the regression   techniques were  such 

that none of the CERs were  acceptable.     A computer  routine called  Stepwise 
2 

Regression    has been  utilized  by some  to  eliminate  a  great deal of  the 

trial  and error.     The analyst  has only  to   specify  the  candidate  independent 

variables and desirable  variable  transformations   (e.g.,   square  root,   squared, 

multiplication of  two  together,  etc.)   rather  than  to hypothesize  the 

candidate CERs.     The stepwise  routine can evaluate  various  linear 

combinations of candidate  variables and  their   transformations  to  derive 

one of  the best    linear combinations   (in the  sense  of  fitting  the data 

best)   for  a specified  number  of variables.     The  use  of   this program will 

be  discussed  further  In  Sec.   II C   3. 

C. PROPERTIES  DESIRED   IN ANY  NEW EVALUATION  PROCEDURE 

The application  of  curve   fitting and   regression  techniques has  led 

to   several problems,   four of which are  amenable   to  evaluation using 

Historical  Simulation.     The  ability to  deal with   these  problem areas   is 

highly desirable  in any new evaluation procedure;   each  is discussed below 

in   terms of the stated  requirements  that  any new  evaluation procedure   should 

have. 

1. Needed:    A Simple Measure  to Define  the Predictive Capability of 

Candidate Cost  Estimating Procedures   or CERs 

A problem in  applying  statistical  regression   techniques  is  that   the 

cost  analysis application is  typically characterized by  small  sample  sizes, 

Hence  every attempt   is made   to  build up  the  sample  by including all  data 

that   is  practically  relevant.     In  so doing,   however,   the   fulfillment  of 

required  assumptions,   such  as  independence  of  sample  observations,  becomes 

A A 

There has been  some  discussion  as  to whether or not   the  resulting  linear 
combination is  the best.     Step-forward and   step-backwards routines  do 
not  always result   in  the  same  linear combination   for K-variables.     For 
further discussion  see Ref.   3. 

The  difference between  these  terms  is given  in   the discussion of 
Property 2. 
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doubtful.     FOL-   this  and  other   reasons    the  usual   statistica .   interpretation 

of  the  regression statistics   (i.e.,   F- and  t-tests,  R-score)   is open to 

question;   statements  about  significance levels and  prediction  intervals 

may   be  meaningless. 

liven when  the cost   application does not  satisfy  the regression theory 

assumptions,   however,   it   is  possible   to use  the  regression  theory machinery 

to  devise measures  that  are   free   from a statistical  interpretation and 

have  a  justifiable  "geometric"   interpretation.     Such  a geometrical 

interpretation  is described   in Ref.   4,  pages   13-27.     This  interpreation 

has had  little use  since  its  presentation,   probably because of its 

complexity and  the  lack  of exact  rules  to be  applied  in  its   application. 

If a  simpler,   heuristic measure can be defined,  one which will 

enable   the   analyst  to  choose  among  alternative  CERs  and  to  say  something 

about   the  reliability of   the  estimate,   there will be no  real  advantage 

in  striving   for wide  understanding of  this geometrical  interpretation. 

Such  a measure,  called Average Proportional Error,   is   identified and 

discussed  in Sec.   IV 13 of  this  report. 

2. Needed:    An Evaluation Procedure That Can Directly Compare a 

Broader Class of Candidate CERs   (Called Cost Estimating Procedures) 

Under   (1)   above   the question of  the meaning of   the  usual  statistics 

in  the  cost  analysis application was  addressed.     Here  attention is focused 

on   the  comparability  of   these  statistics.     How does  one choose between 

models  of  different   functional   form,  e.g.,     Y =   a + bX    and    Y = aX ? 

2 
One  approach  is   to   use   the  index of determination   (or    R    ).     But 

the values of  this  statistic   can  not be directly  compared  and a model 

choice  based on  the  index value  closest   to one can be very misleading. 

For  a  discussion of   the  regression   theory  assumptions  and  the question 
of whether   they are  satisfied  in  the cost  analysis  application,   see 
Ref.   4,   pages  3-8. 
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To  Illustrate  this point,  examine   the contents of Table  1.     This 

is   the result   of  running a  library computer program which  fits   six 

different curve   forms   (second  column)   in  an  attempt   to  choose  the best. 
2 

As  can be seen  by evaluating   the indexes   of  determination   (or     R   's—the 

column marked  Index),    curve  six appears   to be   the best choice,     A print- 

out of the  table  of  residuals  quickly dispels   this notion,  however—the 

fit   in  terms of     Y     is lousy  indeed. 

The problem  is  that   the  indexes of  determination are not   comparable. 

This  is because   the  index  is  calculated   on  a least   squares  fit.     But   the 

fit  is not applied  until  the  candidate   curve has been transformed  into 

a  linear  form.     For example   the linear   form of  Eq.   6   (Table  1)   is 

f(",y1WWPW'WWWWRWPI!BJ; 

i-=  A + ^ 
Y       A ^ X 

(1) 

The fit criterion   then  is 

n 

i=l 

A - 

and A and B  are picked to minimize this quantity.  The index of 

determination is calculated on the linear fit and hence applies  1/Y , 

and not to the quantity of interest Y 
* 

compared. 

Hence,   they should  not  be 

In  fact,  this  particular  example  is  a bad  fitting  technique,     Examples 
of data that   fit    Y = X/(AX + B)  well,   but  do  not   fit  Eq.   1 well,   can 
be easily constructed. 
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The   author  is not   asserting   that  vaiid  comparisons   for different 

functional   fornu   cannot  be made.     For  instance,   in Ref.   5  valid  comparisons 

are made   for  a   linear model  and  an  exponential model,   i.e., 

b    b 
aX1  X2 .   X /   P (2) 

But   these   comparisons  are  based  on  either making  the statistics  comparable 

or  making   the parameter   selection   technique   the  same.     In   the  example of 

Table   1,   however,   care  is  not   taken   to  make  the  index of  determination 

comparable  even  though  the  paraim    er  selection  techniques   are  different; 

the  curve-fitting  technique  is   first  a   transformation of  the  equation. 

Y   = X/AX +  B    becomes Eq. 1,   and  then a  least  squares  curve  f 

TABLE  1 

MODEL COMPARISONS 

XMEAN: /.■i YMEAN:     UA 79 

NUMBKK CUKVK INDEX A                                       B 

1 Y = A+li*X .H704-'.J 1.5 7802                         15.0.34 
J Y = A*i;Xl'{B*X) . 7 14 !(i4 12.9491                          .2 38688 

1 Y = A*XMi .').'■ !H,),) 5.584 1                            1.46224 
•» Y=A+(B/X) .faA42 7H 164.1i)8                     -214.977 
', Y=1/(A+B*X) .45971 .UI!J564                     -8.48198   $-3 
(i Y=X/(A*X+B) .482^7 i -1.79869 $-2               .206394 

FOR   WHICH   Cl'RVK   ARK   DKTAI I.S   DESIRKD   (NUMBER)   ?   (> 

aiEKFlCIENTS: 

EXl'iaTEl) VALI'i: 95I'(;T CONFIDENCE   LIMITS 

A: -1.79864 3-2 -2. .18852   $ -2              -1.20886   $-2 
11: .206 (44 .1888 14 .22 14 74 

X-At 

1 

Il'AI, Y-ACITA Y-ESriM 

5 . i0 7ii 5 

95PCT   CONFIDENCE 

4.4 1682 

LIMITS 

5.73871 

5 

! 1 
2 1..' 
... 1 
/' i.i. '• 

1 1. 7 15 7 
14.of0 7 
24.7516 
4 2.4i!l 

10.4222 
18.04 28 
26. 149 1 
16.2 5 

12.6801 
2 1.6457 
i4.079 
52.6)8 

h 1 li..'. 60.9304 4 8.02 56 83.3188 
7 141. 1 86.4715 62.3615 14 3.668 
S 139.2 128.002 80.2055 3'6. 7 74 

si 164 .6 202.191 103.034 5372.98 

10 16 7.8 176.446 1 53.284 -455.022 
1 i 169 12 88.27 1 7 5.2 82 -240.812 

170.4 -12 70.07 2 17.5 32 -172.871 

1 1 173.8 -4 7 3.84 5 3 39.34 3 -139.516 
1-. 176. 1 -308.221 5 36.01 -119.696 
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To  further  clarify   this distinction it  is  helpful  to make  explicit 

the often-neglected difference between  a CER and what  I have  called  the 

Cost Estimating Procedure. 

A cost  estimating  procedure  consists of  a parametric estimating 

relationship   (PER)   PLUS a   technique  for estimating  the values of  the 

parameters   (in  the PER)   from some  sample.    Thus  an  example of  an estimatii 

procedure might be: 

Parametric Estimation Relationship:    Y =  a + bX 

^Y   is   the production  cost of 
the  item  to be estimated 

X  is   the weight of  the item 
,to be  estimated 

Technique: Least  squares curve   fit 

A new estimating procedure  results   from  choosing  a new PER,   a new 

technique,  or both       Hence  the combinations  given  in Table 2  are all 

examples of  alternative  estimating procedures. 

When  a cost  estimating   procedure,   with  PER    Y = a + bX   ,   say,   is  used   in 

conjunction with   ^ particular  sample,   (i.e.,   a  particular  set  of observa- 

tions)   there   if    .erived  an  explicit cost  estimating  relationship   (CER) , 

for example,     Y =  10 +  25X   .     This is  a  result   of  estimating  the PER 

parameters by applying   the  estimating   technique   to   the given   sample. 

Thus every CER has  identified with   it   a particular 
sample and  an estimating procedure  consisting of 
a  PER and  a   technique. 

The relationship of  these  entities  is  pictured   in Fig.   1. 

The  usual  regression   theory  statistics  are   comparable   if   the 

technique is   the  same   for  all  candidate  estimating procedures.      In 

particular,   this  is  true   if  the  candidates have   the same PER   form,   as   the 

same  technique  can  easily be  used.     For example,   one  can compare  a   linear 
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TABLE   2 

COST   ESTIMATING  PROCEDURES 

Procedure 
Number PER Technique 

I Y = a + bV Lüast squares fit 

2* Y = a + bV Line determined by the closest two data points 
in terms of V 

3* Y = a + bX Same as above except closest measured in terms 
of  X 

4 Y = aXb Least squares fit on log Y = log a + b log X 

Y  =  production cost,   X = weight,   V =  volume 

Procedures  2  and   3   in Table  2 may need  some explanation.     The  technique 
proposed  is very  close   to  costing by  analogy.     In  effect,   the analyst 
assumes  that  if he   forms  a  line with  the  two closest  data points   (in 
terms of his  independent  variable)   to  the  point  he wishes to predict, 
the  estimate  using  this  line will  be  bttter   than  an estimate made   using 
a   line   that   fits  all   the   data. 

COST 
ESTIMATING 
PROCEDURE 

PARAMETRIC 
ESTIMATING 

RELATIONSHIP 

SAMPLE 

TECHNIQUE 
(TO  ESTIMATE PARAMETERS) 

Figure   1(1').     Relationship  of  CER and  Cost  Estimating Procedure 
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PER which has   two   independent  variables with one which has  three  independent 

variables. 

If   the PER  forms are different,   however,   it  is not  always easy  to 

choose  the  same   technique.     Applying  least  squares  directly  to  a PER  form 

such as Eq.   2  requires  the use of expansions  and  iterative  computer 

solutions. 

What  is needed,   then,   is an  evaluation procedure which can  compare 

any cost  estimating procedures without  regard   to whether or not  the 

techniques  are   the  satu,'.     As  Sec.   Ill D  points out,   Historical  Simulation 

is such an evaluation  procedure. 

3. Needed:     A Means  of Evaluating  Estimating Procedures Derived With 

Help of  Stepwise  Regression 

Prior  to   the   introduction of  the  stepwise  regression  technique, 

candidate  CERs had   to  be  hypothesized,   with  the  hypotheses presumably 

based on  engineering  rationales  or  other  criteria.     The  need   for   this 

specification was operationally  removed when   the  stepwise multiple 

regression  routine  became  available.     Only  the  candidate  variables  and   their 

allowable   transformations  had   to  be  specified.     However,  when   the  stepwise 

routine was  applied   the  resulting  CER,   while   fitting  the  data well,   often 

had no physical   rationale.     The  applicability  of  the  result   then became 

questionable,   even  with   a  good   fit.      For  example,   suppose   a  hundred 

different  CER  combinations  are   tried.     It   is  not   surprising  that  one  or 

two  will   fit  well   enough   to  be  judged   significant   at   the  0.05   significance 

level.     This   follows   from   the   fact   that   the  CER  hypothesis   is  not   picked 

a priori  but   is   the   result   of   finding   the  one   that   fits   the  data  best   frc 

a hundred   linear  combinations;   as  such,   this   fit  could  easily   represent 

one  of  the   five   times   out   of   100   that   such   a   fit   theoretically  occurs  by 

chance   (at   the  0.05   significance   level). 

rom 
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With such misgivings concerning the results of stepwise regression, 

it would be valuable tu have an evaluation procedure which could check 

estimating procedures derived Ly this t ^nniqu".  It will be shown in 

Sec. Ill 1) that Historical Simulation can make this independent evaluation, 

A .   Needed:  An Evaluation Procedure Free From the That-Whiah-Fits-Best- 

Predlct3-Bcst  Curve-Fitting Assumption 

The discussion above of the third desired property throws into 

doubt one of the central assumptions of least squares curve fitting—that 

which fits  the vast  best  will prcdiat   the future best—for it is this 

criterion that the stepwise regression procedure uses to choose CERs. 

A second peculiarity of the cost analysis problem, in addition to 

small sample sizes, casts further doubt on the applicability of this 

least squares curve-fitting assumption.  While using the criterion of 

t'iat  w'nie'r: fits best,   pvediets best   should work reasonably well for cost 

predictions that are interpolations on the characteristics present in the 

data base, the criterion yields little information concerning cost 

predictions of procurements which represent extrapolations from the 

characteristics in the data base (see Ref. 6, page 6). 

Predicting the cost of procurements that represent extrapolations 

from the data base is precisely the problem that the cost analyst usually 

faces.  It seems like we are always required lo estimate the cost of a 

bigger or taster plane, or one that is .'•« ltd-   in some combination of 

characteristics than those procured in the past. 

Hence, a fourth desirable property for a new evaluation procedure 

is thai it be independent of the assumption of that   •Jniah fits  best 

: ;■• ..'.■.■.■ .•■..•:.  In addition, it will be desirable that the evaluation pro- 

cedure depends on how well the candidate cost estimating procedure can 

extrapolate from historical data.  As will be seen in Sec. Ill D, 

historical Simulation is such an evaluation procedure. 

16 UNCLASSIFIED 
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III.     HISTORICAL  SIMULATION  DESCRIPTION 

A. BASIC  CONCEPT 

The job of a cost analyst is to try to predict the cost (in constant 

dollars) of a proposed future procurement.  He has at his disposal a 

description of the procurement in the form of a set of physical and 

performance characteristics.  In addition, he has available physical and 

performance characteristics as well as cost data on similar past procure- 

ments.   Hence, his primary obje.tive is the prediction of a future 

procurement using available historical data. 

Historical Simulation uses this primary objective in measuring the 

value of a cost estimating procedure. This basic tenet can be stated as 

follows: 

The cost estimating procedure which can best 
simulate predictions that would have been made 
in the past will actuall;, be best able to 
predict the future. 

B, AN EXAMPLE 

To evaluate different cost estimating procedures, using the tenet 

just stated, Historical Simulation calls for each candidate cost 

estimating procedure to be tested on subsamples of the actual data base. 

For each subsample, the candidate cost estimating procedure is used to 

predict the cost of procurements built after any of the procurements in 

the subsample.  These predictions are then compared to the actual costs. 

It will be assumed that the cost data is in constant dollars and pertains 
to some production quantity, like the hundredth unit. 
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To  demonstrate   this  process,   consider  the   following  example  comprising 
it 

the thirteen data points listed in Table 3.  The data has been ordered 

as to date of first delivery (second column), and the actual cost and the 

independent variables X  and X„     have been collected for each data 

point;  X  and X«  are physical or performance characteristics (such 

as weight and speed) which we hope will be useful in specifying the cost 

of the procurements we are to estimate.  We have hypothesized the follow- 

ing cost estimating procedure: 

Cost = a + b1X1 + b2X2 (3) 

where     a,   b     ,   and     b9     are   to  be  estimated   through   the  process of  a 

least  squares   curve   fit. 

TABLE   3 

SAMPLE  DATA 

Procurement First Actual 
h Y 

Numbe r lJeliver> Unit  Cost X2 

1 1950 9 5 1,996 153 
) 1951 31 967 144 
3 1953 60 2,414 149 
^ 1954 82 4,418 144 
5 19 50 25 852 107 
(. 19 53 67 2,072 136 
/ 1960 243 10,408 177 
6 1901 54 2,643 160 
9 1962 112 3,786 172 

1U 196 3 106 3,335 203 
11 1964 183 6,374 196 
12 196 5 156 7,092 187 
13 196 7 177 10,304 167 

Ihis   data  was   used   tu  debug   the   Historical   Simulation   computer   program 
described   in  Appendix   1.     Values   for  Tables   3   through  8  were   obtained 
from   the  output   of   this   program  as   reproduced   in Table   20   of  Appendix   I. 
Ihe   data   used   does  not   represent   any   real-world  sample  but   is   used  only 
to   illustrate   the   Historical   Simulation  procedure. 
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Now suppose we  start with a  subsample of  five  items;   that  is we will 

treat   the  first  five rows  of Table  3  as our  data base.     This  is  the data 

base  from which an  analyst would  have had  to make  cost  predictions  in 

1957.     Using  a least   squares   fit,   the derived CER  is 

Cost =  -73.9 + 0.0104X    +  0./92X (A) 

From Table 3,  X,  and X„  for procurement number 6 are 2072 and 

136.  If these values are substituted into the CER of Eq. 4, the predicted 

cost is 55.3.  From Table 3 the actual cost was 67; thus we have underesti- 

mated by 11.7 . 

Next, Eq. 4 can be used to predict the remaining data points 7-13. 

These predictions can be compared to the actual costs, and residuals 

calculated, yielding the results given in Table 4.  As one can see there 

were six underestimates and two overestimates. 

The entire process described thus far is now repeated for a subsample 

size of six.  That is, we add the sixth procurement to our subsample, 

taking the six top rows of Table 3 as our data base.  This data base is 

the one from which a cost analyst would have made his cost prediction in 

1959.  Making a least squares fit to this data base we obtain the 

following CER: 

Cost = -68.4 + 0.Ü105X + ü.7(i5Xn (5) 

Comparing Eqs. (5) and (4) we see that the parameters have changed, 

although not by any great amount.  This change is, of course, the result 

of adding procurement number 6 to the sampie.  The point to be remembered 

is that the explicit CER has changed, but the CER form, i.e., 

Cost = a + b X + b X  , and the parameter estimating technique, namely, 

least squares, has not changed.  It is the CER form and the parameter 

estimating technique that are being evaluated by Historical Simulation, 

and not any one explicit CER such as Eq. 5. 
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TABLE  4 

PREDICTED  COSTS   USING   FIRST  FIVE  PROCUREMENTS 

Procurement 
Number 

Actual 
Unit Cost 

Predicted 
Cost Residual 

6 67 55.3 -11.7 

7 243 174.4 -68.6 

8 54 80.2 26.3 

9 112 101.6 -10.4 

10 106 121.5 15.5 

11 183 147.5 -35.5 

12 156 147.9 -8.1 

13 177 165.4 -11.6 

Negative  numbers  are   underestimates;   positive numbers  are  overestimates. 

Predictions and   residual  calculations   for procurements  7-13 can 

now  be  made   using  Eq.   3  yielding   the   results   shown   in Table   5.     Notice 

that   procurement  numbei   6   is  not   included  since   it was  part  of   the data 

base   used   to   derive   Eq.   5. 

TABLE   5 

PREDICTED  COSTS  USING   FIRST   SIX  PROCUREMENTS 

Procurement Actual Predicted 
N umber Unit Cost Cost Residual 

7 24 3 176.1 -66.9 

Ö b4 81.7 27.7 

9 112 102.8 -9.2 

10 U)() 121.8 15.8 

I 1 183 148.3 -34.7 

i: 156 149.0 -7.0 

i j 177 167.4 -9.6 
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The procedure described  thus   far  can be  repeated   using subsample 

data base  sizes of  7,   8,   and on  up  to 13.     In  the  last  case  the entire 

sample  is  usec   _iiid  the  usual  least  squares   fit   is  obtained.     Of  course, 

no predictions   for which  an  actual  cost   exists   in   the   data base  can be 

made  using  this   final  CER.     However,   this  is   the CER which will be  used 

to make  future predictions   if   the PER and parameter  estimating  technique 

being evaluated by Historical   Simulation  is   chosen  as  a  good method   for 

predicting cost. 

The outputs described  can be  conveniently summarized  in a  table of 

predictions   (Table  6),   a   table  of  residuals   (Table  7),   and  a table of 

parameter estimates   (Table  8) .     The interpretation of   this output will 

be discussed in  Sec.   IV. 

A word of  caution must be  inserted  at   this point.     The results  of 

this particular example  as  displayed  in Tables  6,   7,   and  8 are merely 

illustrative.     Their  purpose  is  simply  to make  explicit   the Historical 

Simulation procedure  and   the   form of the output.     Results of a  limited 

number of Historical  Simulation  runs   (using  the  computer program described 

in Appendix  I)   are presented  in Volume  2   (CONFIDENTIAL)   for some  aircraft 

data.     They were excluded   from the present  volume   to  avoid  the  necessity 

of  classifying  it. 

Some  of   the  possible  ways  of   analyzing   these   results  are   discussed 

in   Sec.   IV,   but   it  must   be   remembered   that   Historical   Simulation   is 

intended  primarily   as   a   tool   for  evaluating   an   estimating  procedure. 

Hopefully,   the  evaluation  will   he  made   in   the   presence   of  other  candidates. 

Only   the  analyst  who   understands   his  data  base   can   make   such   judgements 

as   to  whether 

• The   results   are   reasonable,   and   the   estimating  procedure   is 

va1id,   or 

• The   results   are   not   reasonable   and   a  new   estimating  procedure 

should  be   hypothesized,   and/or   the   sample   should  he   stratified 

--i.e.,   divided   into   groups  which   seem   to   come   from  different 

populations. 
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TABLE 6 

PREDICTIONS 

For Sample Point Number 
Sample 

Size   Used b 7 8 9 10 11 12 13 

5 55.3 174.4 80.2 101.6 121.5 147.5 147.9 165,4 

b 176.1 81.7 102.8 121.8 148.3 149.0 167,4 

7 85.4 114,3 128.1 177.4 183,9 227,0 

8 102.1 103.9 161,5 172.6 229.3 

9 110.7 166.3 176.1 229.2 

11) 164.5 174.9 229.8 

11 179.7 223.7 

12 227.1 

13 

TABLE 7 

RESIDUALS 

For Sample Point Number 

Sample 
Size   Used 6 7 8 9 10 11 12 13 

5 -11.7 -68.6 26.3 -10.4 15.5 -35.5 -8.1 -11.6 

6 -66 .9 27.7 -9.2 15.8 -34.7 -7.0 -9.6 

7 31.4 2.3 22.1 -5.6 27.9 50.0 

8 -9 .9 -2.1 -21.5 16.6 52.3 
ll 4.7 -16.7 20.1 52.2 

lU -18.5 18.9 52.8 

1 1 23.7 56.7 

i.: 50.1 

i i 

1 ) 
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TABLE 8 

ESTIMATED PARAMETERS 

Sample Size a bl b2 

5 -73.9 0.0104 0.792 

6 -68.4 0.0105 0.765 

7 -74.6 0.0178 0.706 

8 -31.8 0.0198 0.344 

9 -45.2 0.0193 0.450 

10 -38.6 0.0196 0.400 

11 -50.2 0.0198 0.478 

12 -44.6 0.0191 0.448 

13 -63.9 0.0159 0.629 

C.    SUMMARIZATION OF THE PROCEDURE 

This summarization, or generalization of Historical Simulation 

is presented in the language of the estimating procedures introduced in 

Sec. T.I in order to make it apparent that Historical Simulation can be 

used on any estimating procedure.  (This was the second desirable 

property stated in Sec. II.) 

Let the estimating procedure being examined have a PER given by 

where 

and 

y = f(ß, x) 

y is the cost 

ß are the parameters of the function 

-> 
X are  independent variables 

(6) 

In the example given in Sec. Ill B, ß represents the parameters a, b , 

and b„ ; X the independent variables X.. and X ; and f the linear 

equation given by Eq. 3.  To complete the estimating procedure specification, 
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there   is  a   technique    T    which,  when applied   to a sample,   yields  an 

estimate  of   the parameters     [•<   .     In  the example of  Sec.   Ill  B the  technique 

T    was   least   squares   curve   fit. 

The  sample   consists of     N     sets of  data     (y.,X.)   , 

i  =   1,   2,   .   .   .   ,   N   ,  where   the     y.     are  the  actual   cost  of procurement 

'.   ,   and   the    X.     are   the values  of  the  independent  variables  for procure- 

ment     1   .     It  is  assumed  that   the  sample has  been ordered  in time,  with 

the   smaller values  of     1    corresponding  to  the older  data points. 

The  Historical   Simulation  procedure  can   then be   summarized as  an 

iterative  process  which goes   through  the  following   four  steps at  each 

iteration. 

Step  1.     Subsample  Specification:     Determine data base size    n     for 

this   iteration,  where     n     is  larger  than  the subsample size of  the 

previous  iteration.     In  particular    n     < n  <  N     where    n       is  some K r o — o 
minimum sample  size which  is  greater   than  the  number of PER 

parameters,   i.e.,   entries   in    B   .     In   the case  of  the example, 

n     ■   4    as   there  are   three  parameters   to estimate:     a,  h,   ,   and 
o — i 

b,. 

Step 2.  CKR Specification:  Apply the estimating procedure technique 

T  to the subsample of size  n  identified in Step 1, i.e., 

(y,.X.) ; i = 1, 2, . . . , n , and obtain the PER parameter 

estimates (In   the  example  of   the   last   section,   least   squares 

estimates   of     a,   b.    ,   and     b„     were  made   for   each   iteration.) 

Substituting   those  parameter estimates   into   the  PER yields   the CER 

for   this   iteration.      It   can  be  denoted  by 

v = 4.<) 
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Step 3.  Cost Prediction:  Predict the cost of each of the procure- 

ments not Included In the subsample.  This Is accomplished by 

substituting the values of the Independent variables (for the 

procurement In question) Into the CER developed In Step 2,  Predictions 

are made of y   , k = 1, 2, . . . , N-n .  These predictions are 

labeled  y    In the remainder of this report and are given by 

t - ii-\+k) n+k 

» 

;  k = 1, 2, , N-n (7) 

nd where y ,,  Is the prediction of y ,,  from subsample size n  a 
n+k        r ■'n+k K 

->- 
the X    are the values of the Independent variables for the 

n+kth procurement.  (For the example these predictions were listed 

In Table 6.) 

Step 4.  Calculation of the Residuals:  The actual costs are sub- 

tracted from the appropriate predictions (Step 3) and the residuals 

obtained.  These residuals, denoted by d    , are given by 
n+k. 

d(n)   =  y(n)   -  y n+k       ^n+k       ^n+k (8) 

Negative  values   of     d   ,,      represent   underestimates while positive 
n+k 

values are overestimates.  (The residuals for the example of the 

last section were given in Table 7.) 

A few remarks shoul .■. oe made concerning Step 1, Subsample Specifica- 

tion.  For the purposes ^.' Historical Simulation, several data points 

procured in the same time frame can be grouped together.   For instance. 

If data points—procurements—7, 8, and 9 were all delivered in the same 

year, one can group this data.  Iterations of the Historical Simulation 

Grouping will have no effect on the Historical Simulation evaluation with 
the exception of those statistics discussed in Sec. IV (.', 1   which, at 
present, are valid only for the one-step residuals  d'r|}. 
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would include subsamples 5, 6, 9, 10, 11, 12, and 13.  Predictions of 

data points 7, 8, and 9 would only be made with subsamples of five and 

six data points.  Information concerning data points 7 and 8 would not have 

been available for the prediction of data point 9, so grouping the data 

does not invalidate the Historical Simulation procedure. 

Another problem in subsample specification is selecting the initial 

subsample.  A lower bound exists that is dictated by the number of 

parameters to be estimated.  For the example in this section the lower 

bound would be four (one greater than the number of parameters as required 

for a finite variance least squares fit).  But this selection of four 

subsample items would allow only one degree of freedom and one would expect 

a great deal of variation in the predictions.  Using too large an intial 

sample, however, will greatly reduce the amount of new information 

contained in Tables 6, 7, and 8.  The initial subsample size must thus 

be set by the analyst at the smallest number which is necessary for the 

estimating procedure, if valid, to have enough information from which to 

make reasonable estimates.  (In the example  n   was arbitrarily chosen 
o 

to be 5) . 

D.    SÜME PROPERTIES 

Several properties of the Historical Simulation procedure can be 

established from the development n.ade thus far.  For instance, the 

procedure evaluates a candidate cost estimating procedure by simulating 

how well the latter would have predicted if it had been available and 

used to make cost estimates in the past.  Hence the name Historical 

S Lmulation. 

Historical Simulation does not depend on the usual curve fitting 

assumption of goodness ■JH fitu best,  predicts best.     (This was 

identified   as   desirable   property  number  4   for  a   new  evaluation  procedure 

in   Sec.    1!   ('.) .      The   freedom   from  the   curve   fitting  assumption   is  a 

consequence  of   the   fact   that   the   output   in 'lables   6   and   7   depends  only 
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on how well  the hypothesized  cost  estimating procedure  predicts.     The 

entries do not   depend on how well  a particular CER  fits  the subsample  that 

was given  to  it. 

Historical   Simulation  can be  used   to  evaluate CERs derived with   the 

help of Stepwise Multiple Regression  programs,  whose  use was  discussed 

briefly in Sec.   II.     Using  this program,   the  choice  of  a CER   is  determined 

by which candidate  CER  fits  the data best   (in  a least   squares   sense) . 

Unfortunately,   the values of   the  usual   regression  statistics depend  on this 

choice criterion   and  are  thus  not  independent  of  the CER  selection  process. 

In contrast.  Historical  Simulation does  not  depend  on  the  choice  criterion 

as  its output  does  not  depend on how well   the CER  fits.     In other words. 

Historical  Simulation,   unlike  the usual   regression  statistics,   is  able 

to evaluate  the CER  independently of  the  stepwise  regression  choice   criterion. 

(This property was   identified  as desirable  property number  3  for  a new 

evaluation procedure  in  Sec.   II C.) 

Due  to  its  dependence  on predicting   from past data,   Historical 

Simulation  is a   tool   to  demonstrate  the  estimating procedure's  ability  to 

handle extrapolations   implicit  in  the data  base.     This  is   in  contrast   to 

the estimating procedure's  ability  to  interpolate,  which  can be  evaluated 

by  the usual  regression  theory approach.     The  extrapolation  is   in  the  time 

direction as  the  data  is ordered on   time.     Indeed   this   is  probably  the 

most  universal  ordering as  it will   tend   to  parallel  orderings on  physical 

characteristics.     This  is because  new procurements  usually  represent 

advancements  in   the  state of   the art,   as  measured  by some  set  of physical 

characteristics.     Hence ordering on  time will  also   tend   to order  on   these 

physical  characteristics. 

It   should be noted   that  there may be  applications   in which  the  advancement 
implicit  in a new  procurement  is  represented  by an  increase  in  one   physical 
characteristic,   say bandwidth.     The   problem   then would  be   to   estimate   the 
cost of  this new procurement,   from a data  base  of procurements  which  all 
have  smaller bandwidths.     The  extrapolation  then would be  in   the bandwidth 
direction and,   in  this case,   the author  sees  no  reason why  the  ordering 
could not  be  on  bandwidths. 
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AnoCher  difference  between Historical   Simulation and  the  usual  curve 

fitting  techniques   is  that   the   former  looks  at  different   samples while 

the   latter  concentrates on   the  entire  historical   sample.     In effect   the 

Historical  Simulation  procedure  looks at  how well   the hypothesized  CER 

form does at  varying  times and hence how reliable   the hypothesized CER 

is  over   time.     In  contrast,   the  curve   fitting   techniques and  the associated 

repression  statistics  evaluate one  period   in   time,   the present,   and will 

in  general    be  unable   to  detect  time-trend  effects. 

Finally,   Historical  Simulation can be  used   to  directly compare any 

candidate  cost  estimating procedures.     (Identified  in Sec.   II C  as 

desirable  property   (2)   for  a new evaluation  procedure.)     This  is  quite 

apparent   from  the   fact   that   the  summarization of   the procedure  in  the 

last  section was  carried out  in estimating  procedure notation.     All   that 

is  needed  is  a PER,   Eq.   7,   and  a parameter  estimating  technique    T. 

Having defined   the  Historical  Simulation procedure and some  of  its 

properties and  seen  how  it works   for a particular  example,   attention must 

now be   focused  on   the  output of Historical   Simulation.     What   is  it  good 

for  and  how does  one   interpret  it?     These  questions will be addressed  in 

the   following  section. 

This  statement   is  not   universal  because   time  has  sometimes  been  included 
explicitly   in   the  CKR   form. 
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IV.       OUTPUT   INTERPRETATION 

In   trying  to   interpret   the  results of Historical  Simulation   (or  indeed 

to make  inferences   from the usual  regression statistics),   the  analyst  is 

trying  to  examine   two basic  questions  about   the cost  estimating procedure 

under  study: 

1. Is  the  estimating procedure valid?,   i.e.,   is   it   a   true 

representation of   the  cost  generating process  under  study? 

2. How reliable is  the  estimating procedure?,   i.e.,   is   the model 

variance,   and hence  the  variance  in estimates,   large  or  small? 

Insights  into   the answers   to   these  questions are  used  by  the  analyst  to 

choose between different  candidate  cost  estimating procedures   (ranking), 

to define new candidate cost  estimating procedures,   and   to  make  statements 

about   the  accuracy of his predictions. 

The  value  of  the Historical   Simulation procedure must  be  directly 

related   to   the  usefulness of   its output  as  a means of providing  insights 

into   these   two basic  questions  and  helping  the analyst make   the  choices 

and  statements  identified above.     Ways of  using  the Historical  Simulation 

output   for   these purposes are  discussed  in  this section.     The  discussion 

has been  organized   into  the   following   three  categories: 

1. Direct  Examination of  the Historical  Simulation  Output   (Sec.   IV A) 

2. Data  Summarizations That   do not  Depend on  a  Particular 

Estimating Procedure   (Sec.   IV  B) 

3. Statistics Which  Depend  on  a Particular  Estimating  Procedure 

(Sec.   IV C) 

A. DIRECT   EXAMINATION  OF THE  HISTORICAL   SIMULATION   OUTPUT 

A direct  examination of   the contents  of  the output   tables of  Sec.   Ill 

(Tables  6,   7   and   8),   can  add   insight   into   the   question  of  model   validity, 

the  identification  of questionable  sample  points,   and   the   identification 

of new candidate  estimating procedures.     In  the  course  of   this 
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examinatiün  several   useful   questions  can  be  asked;   these are  discussed 

below making  use  of   the   form of   the  residual   table   (Table  9)   which  is 

patterned   after  Table   7  of  Sec.   III. 

TABLE   9 

FORM OF  RESIDUAL  TABLE 

(X  stands   for a  residual   value  calculation) 

Sample 
Sizes  Used fa 7 8 

Sample  I 

9 

'oint 

10 11 J2 13 

5 X X X X X X X X 

fa X X X X X X X 

7 X X X X X X 

8 X X X X X 

9 X X X X 

10 X X X 

11 X X 

12 X 

LJ 

Eacli  column  of Table  9  gives  the  residuals   for  a particular 

sample  point.     One  can ask   if  these residuals  are  improving 

--getting  smaller   in  an   absolute   sense—as   the   sample   size 

grows   (that   is,   as   the  analyst   looks  down   the  column).     One 

would   expect   the  residuals   to   improve—or  at   least   not   get 

any  worse—if   the  model   is   valid   and   the  sample   consistent. 

1 u   lalilo   7   we   saw   that   this  behavior   is  not   true   for   the   test 

run   sample.      The   residuals   are  erratic  or   tend   to   get  worse 

for   sample  points  9,   11,   12   and   13. 

Are   there   any  consistent   errors?     For  example,   does   the 

estimating  procedure   underestimate   (have  negative   residuals) 

most   sample   points  consistently?      If   so,   then   the  cost 
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estimating procedure shows  signs of bias.     Again by examining 

any column of Table  9,   one might  find  sample points  that are 

consistently under- or over-estimated by a  substantial amount. 

In  this case  there  is reason to suspect   that   the data point 

in question does no:.: belong   to  the population,   or that errors 

have been made  in recording  its cost  or the  values  of  the 

independent variables. 

For  the test  run  data of Table 7  there appears  to be no 

indication of bias as  the residuals are neither mostly negative 

or mostly positive.     There are sample points,   however,   that 

show substantial  consistent errors,   such as points  7  and 11. 

Residuals along  any row of Table 9  are  all  derived  from the 

same subsample.     Comparing  two adjacent  rows  indicates the 

impact on the prediction process of  the points  added  to  the 

larger  subsample.     One might  therefore  ask  if  there have been 

significant  changes,   in some consistent manner,   from one row 

to  the next.     If  so,   the sample point  added  is dominating the 

estimating procedure and  if  the changes  in  residuals are not 

for the better   (i.e.,   smaller absolute residuals)   then the 

question of whether or not  the sample point  properly belongs 

to  the population is again  raised. 

As an example,   if  rows  for  subsample  sizes  of six and  seven 

data points are  compared  in Table 7,  we  see   substantial 

changes in the residuals.     While some residuals have improved 

— sample points 9   and  11—others have definitely become worse 

—sample points  12  and  13.     There is no  question  that  sample 

point  7 has had a  significant  impact,   but   its  impact  is mixed. 

Finally,   the  estimates of  the parameters   (Table  8)   can be 

examined.     Are   they  reasonably  stable,   showing signs of 

convergence as  the  sample  size grows?     If   so,   then  one   feels 

a greater assurance of  the model's  validity;   the  information 

concerning the values of  the model   parameters  is  essentially 
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the   same  from all   the  sample  points.     If not,   then  there might 

be  something  in  the pattern  of  the estimated   coefficients  that 

would  suggest   a new  candidate  cost  estimating  procedure or 

that  would  identify a  questionable  sample point. 

In Table  8  it  can be  seen  that  the desired  stability did not 

take place   for   the  test  run  data.     The  inclusion of  sample 

points  7  and  8 had  a  significant  impact  on  the parameter 

estimates  to   the  subsample   7   values.     Hence,   these points ough 

to  be  examined  carefully. 

In  summary,   there   is  a  great  deal of   "look-see"  evidence 

concerning   the model  validity in  the output  of Historical 

Simulation.     This  output  can be used  to build   confidence  in 

model validity or,   conversely, aid in hypothesizing a new 

cost  estimating procedure.     In addition,   it   can help  to 

identify questionable  sample  points.     Furthermore,   no  informa- 

tion concerning  the process  has been lost.     This  is  in contrast 

to   the statistics  discussed   under  the remaining  two  groupings 

which depend on  summarizations of  the data—and most  data 

suramarizations  imply a  loss  of some information. 

B.       DATA SUMMARIZATIONS THAT DO NOT DEPEND ON A PARTICULAR ESTIMATING 

PRUCEDURL; 

Data  summarizations   (or  statistics)   discussed  in  this  section have 

the property  that   they  can  be  calculated   for any  candidate  cost estimating 

procedure.     1'hese  s'-immarizations   can  thus be  used  to  compare different 

candidate   estimating  procedures. 

This   lack  of dependence,   however,   introduces   uncertainty as  to what 

data  summarizations  should  be   used.     The  criteria   required   for measure 

selection,   and   the  theoretical   framework necessary  for   the description of 

measure   properties,   are   usually  provided by  the  form of  the particular 

estimating procedure  and   the assumption of an  underlying  statistical model. 
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As  an example, Multiple Linear  Regression  theory  is based on a statistical 

model   (assumptions)   applicable   to linear PERs.     Using  this model  as  a 

starting point,   statistical  arguments can be  developed   to  pick  the  fit 

technique   (least  squares),   to  provide convenient  summary  statistics 

(t-tests,   standard  error  of estimate,   etc.).   and  to  describe  summary 

statistic properties. 

Lacking the  capability of  specifying one   "best"  data  summarization, 

several different  summarizations are suggested  in  this  section.    Arguments 

for  their  use are necessarily heuristic  in nature,   and   the choice of which 

particular summarization  to  use  is left up   to   the analyst.     He  can exercise 

this  choice by picking loss   functions and weighting schemes best  suited 

to his application. 

Before describing  the  summarizations   it will be  useful  to  identify 

the portion of  the Historical   Simulation output  that will be used.     Only 

the values from the  residual table—the    d   ,,    of Eq.   8—are used as  it  is n+k 
the errors of prediction  that  are of interest.     Which of   these residuals 

to  use  is not entirely clear. 

Using all of   the residuals  is appealing  in   that  no   information will 

be  thrown away.     However,   there  are problems   involved  in knowing how  to 

use  all  of  them fairly.     The  residuals are  certainly not   independent,   a 

fact  that  is proven  under   the  usual  regression  assumptions  in Appendix  II. 

Hence,   use of all  of   the  residuals  introduces  problems  of  statistical 

interpretation and  weighting. 

If, however, only one residual is used for each sample point, in 

particular the one made from the largest available subsample size—the 

entry  in the last   column of Table 9,  which  is     d if  there  is no  grouped 

data—then the problems of weighting  and  suatistical  interpretation     are 

In  fact,   it is  shown  in Appendix II  that   the one-step  residuals    d 
are  independent  under  the  usual  regression  assumptions. 
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greatly   reduced.     Furthermore,   this   selection  is  not  without  heuristic 

justification.     In effect,   we  are  looking at   the   prediction made  from 

the   largest  available  subsample  size   for each procurement.     These are 

the   subsampies   thai   would   have   been   used  and   predictions   that  would  have 

been made   if   the cost   estimating  procedure  had been  used  in  the past.     In 

adcition,   an   estimating   procedure which predicts   the  near   future well, 
■h 

need   not   necessarily  predict   the   long  term  future  well. 

For notational   convenience,   let  us   relabel   these   residuals by 

.   .   .   ,   R,,   ,  where    n      was   the minimum sample size n wo y Rn  +1    .....   R 
o 

used   in   the  Historical   Simulation,   and    N     is  the  size  of  the entire data 

base.     The  collection of   these   residuals will  be   referred   to  as    R. 

The  question being  addressed   in  this section   then  is  how  to  summarize 

the  data   in     R  ,   so  that   one  can choose between   several  estimating procedures, 

In   addition,   it  will   be   useful   if   these   summarizations   indicate  how well 

the   estimating procedure  will  do   in   the   future. 

I. Some   Fxample  Data   Summarizations 

One  such  summarization   is   that  of average  proportional  error.     It 

is   calculated  as   follows. 

Average   Proportional   I'.rror 
y. 

i = n +1 
o 

(9) 

This  does   not   imply   that   all   the   predictions  of   the  most   recent  data  points 
are   ignored.     On   the  contrary,   as  will   be   seen   in   this   section,   predictions 
of   the   most   recent   data   points will   receive  at   least   as  much  emphasis  as 
predictions of   the  earlier  data  points.     But   the  particular  prediction 
used   will   he   from   the   largest   data   base  possible   for   such  a  prediction. 
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where 

and 

y.   is the actual  cost of  the  procurement  indexed by     i 

n     is the. minimum sample  size  used  in  the Historical   Simulation o r 

N   is the size  of  the data  base 

The average  proportional  error  should be   used when one  is  worried 

about proportional  cost  errors  rather  than absolute   cost  errors.     In 

addition,   thin measure  is probably the  easiest   to  communicate   (and   as 

such  is a good  candidate   for  the desired  measure described in  Sec.   II  C) . 

Every cost analyst has  been  asked to   indicate  how reliable his prediction 

is;   for example,   is  it  within  ±10 percent?     Having  calculated   the  average 

proportional  error,   he  can  answer this  query by  saying,   "The  cost  estimating 

procedure from which  this  estimate has  been derived  has an average 

proportional  error of,   say  15  percent,   which  implies  that  if  it  had been 

used  to make  these  types of predictions   in the  past   it would have been 

off,  on  the average,   by 15  percent."    Hence,   a  reasonable answer   to  the 

query would be   that  an  error  of  ±15 percent  should  be expected. 

Contrast   the  above answer  to one made   from the usual regression 
2 

theory output   utilizing  statements of  F-tests,   t-tests,     R     ,   prediction 

intervals,  etc.     How aware  of   the underlying  statistical assumptions     or 

the meaning of   these   statistics  is  the   recipient of   the prediction  results? 

Their meaning  is   certainly  not  as universally  understandable  as   is  average 

proportional  error. 

There are,   of course,   drawbacks  in   using  averages associated with 

average proportional  error,   a  topic which will  be discussed more   fully 

in  Sec.   IV B  3,   Additional  Considerations.     In  addition  to  these  problems, 

however,   average  proportional  error places   the  same   emphasis  on  predictions 

made  from a sample of   size  5  as predictions made  from a  sample  of   size   12. 

See Ref.  4   for   the  interpretation of   these  statistics  in cost   analysis. 
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For any cost estimating proctidure that makes use of every data point in 

its subsample, this equality of weighting may seem unjustified.  After 

all, prcdLet ions should be getting better as the sample size increases. 

Hence, the following weighted average proportional error is suggested: 

W.   R. 
Weighted   Average   Proportional   Error S^ (10) 

i=n +1 
o 

The weights, of course, add up to one 

E wi = 

i=n +1 
o 

and  varies  proportionally with   the  sample  size.     They  can  be  as  extreme 

as   assigning  all  weight   to     N   ,   which  is  a  choice   that  might  be made by 

an   analyst   who   feels   that   most   information  is   contained   in   the one 

prediction made   from  the   largest   subsample  size.     My own preference  for 

a  weighting   scheme   is 

S, 

i N (ID 

Eh 
i=n +1 

o 

where     S.      is   the  subsample   size   used   for   the   particular  prediction.     This 

equation   would  give   the   predictions   from  subsample   size   10   twice  as much 

weight   as   the  predictions   from   subsample   size   5,   and   thus   is   in accordance 

with   the   notion   Chat   if   the   estimating  procedure   is  valid,   then  predictions 

should   improve  as   the   sample   size   gets  larger.      Furthermore,   the  use  of 

(.his   type   of  weighting   scheme   does   not   effectively   change   the  simple 

interpretation  of   the   summary   statistic discussed   for   Eq.   9. 
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Another alternative   to  average proportional   error  is   that  of  squared 

average proportional  error,   i.e., 

Squared Average  Proportional  Error = :-     >      (R./y.) (12) 
N-n       /   ■*      11 

0  i=n +1 o 

One would  use   this  type  of   summarization when he wishes  to  penalize 

proportional  errors  in an  exponential   fashion. 

Finally,   one might  be more  concerned with  absolute  rather   than 

relative error.     A calculation such as 

1        V* 2 Average Squared  Error =     >      (R.) (13) N-n      ^rf      i 
0  i=n +1 o 

could be made.     Although   this  statistic  appears   to  be  similar  to   the 
* calculation of   the variance  estimate     in regression   theory,   the  residuals 

in  question here  are based  on predictions,   not   fits. 

2. A General   Framework   for  the Data  Summarization 

The data  summarizations  suggested   so  far  can  be  placed  into  a general 

framework through  the use  of  loss  functions  and weighting schemes.     Let 

2,(R.)     denote  the loss   (or penalty)   that  will  be   assigned  to   the   residual 

value    R,   ,   and  let    W.     be   the weight  assigned  to  each residual,   e.g., 

Eq.   11.     Then  the average   loss  for  the weighting   scheme    W    and   the loss 

function    i    can be defined  by 

N 

A(£,W)   =    2_\ Wi«.(Ri) (14) 

i=n +1 o 

Standard error  of  the  estimate  squared. 
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11   the weight     W       could   be   interpreted   as   the  probability  of     R. 

occurring,   then   the   average   loss   calculation,   defined   in  Eq.   14,   is 

equivalent   to   the   calculation   of  expected   loss   in  statistical  decision 

theory   (Ref.   7,   Chapter   5).      In   this   latter   context,   the  decision   rule 

(estimating  procedure)   with   the   smallest  expected   loss  would  be   chosen. 

The   analogous   rule   in   the   Historical   Simulation  context   is   to  prefer   the 

estimating  procedure  with   the   lowest   average   loss. 

Each of   the  example  data  summarizations  previously   specified  is a 

special   case  of   the  generalized   average   loss   identified   in  Eq.   14. 

Weighted  Average   Proportional   Error,   Eq.   10,   is  obtained  by  letting 

>(K.)   =   |R,|/y,   ,   while  average  proportional   error,   Eq.   9   implicitly  uses 

the  weighting   scheme  defined   by 

W.   =   1/N-n 
i o 

(15) 

This   latter weighting  scheme   is   used   for each of   the  other averages 

previously  discussed  with   the   loss   function  defined   by 

and   by 

^ (R.)   =   (R./yJ for  Eq.   12 
i ii 

(V for   Eq.   1.3 

Any  average   loss   can   be   used   for   ranking   alternative  estimating 

procedures.     The  analyst   need   only  specify   the  loss   function  and  weighting 

scheme  best   suited   for  his  particular problem.     For  example,   alternative 

loss   functions might  be  devised   to  give a  greater penalty   to  underestimates 

than   overestimates.      (All   of   the  example   loss   functions  previously 

Additional   considerations   are   identified   in  Sec.   IV  B   3. 
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identified give equal penalty to these errors).  Such a loss function is 

portrayed in Fig. 2 and defined by 

MR) = 

IR 

if R •• 0 

if R < 0 

Furthermore the loss function need not be smooth.  If one is very concerned 

about underestimates, doesn't care about overestimates with residual 

values of 0 to 15, and is only mildly concerned about greater overestimates, 

then the loss function given by 

UR) = 

' R-15  if R 2: 15 

0    if 0 ^ R < 15 

. R2    i f R < 0 

could be used.  This positive side of this loss function is shown as the 

dashed lines in Fig. 2. 

There are some properties of specific weight and loss functions 

which in the author's mind make certain choices more natural than others, 

These considerations may help the analyst to choose the weighting scheme 

and loss function best suited for his application. 

Regarding the weighting scheme, if the candidate estimating 

procedure makes use of the entire subsample, then the weights given in 

Eq. 11 appear most natural.  It implies that the estimating procedure's 

predictive capability is directly proportional to the sample size. 
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e(R) = R' 

Figure   2(U).     Greater  Underestimate Penalty Loss  Function 
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A slight  variation  to   this  weighting  scheme,   but  having  similar 

properties,   is one   that  is  based  on  degrees  of  freedom.     Let     k  be   the 

number of parameters  to be  estimated   in   the  candidate  PER.     Define     W. 

by 

i N 

S.   -  k 
i 

(16) 

i=n +1 o 

k) 

The weights are all positive since the minimum sample size  n  for 

Historical Simulation was defined in such a manner that  n  > k .  Hence, 
o 

S  .. > k .  This particular weighting scheme is analogous to adjusting 
o 

for degrees of freedom in the usual regression statistics.  It implies 

that the estimating procedure's predicitve capability is directly 

proportional to degrees of freedom. 

A candidate ets.^mating procedure that does not make full use of the 

subsample at each stage of the Historical Simulation requires a different 

weighting scheme.  For example, if the estimating procedure only makes use 

of the most recent four data points in each subsample, then a weighting 

scheme such as Eq. 15 would seem reasonable. 

Regarding what loss function uo select, if one is interested in 

relative error, then the loss function used might be that used in Average 

Proportional Krror, Eq. 10 namely  *. (R.) = |R.|/y. .  It has the advantage 

of being easy to communicate as discussed in the paragraphs following 

Eq. 9. 

If one is interested in absolute error, then the loss function used 
2 

in Eq. 13, namely  £(R.) = (R.)   could be used.  It has the advantage 

of being the analogous calculation to the square of the standard error of 

the estimate from regression theory.  The latter is the quantity minimized 

UNCLASSIFIED Al 

^..J^,..w.1;.^..ai..„.J.i.^...lm..„^...:.iw..J,....ti„^;^il^ .!■,■,,■■-..^...i.;.i... ^/..■.:J,i..,/;.'.V-i.^.jot^.L^;^l^..i^--^M^tia«.i».^..^.^..-L...^....J..a   "-   Ji 



«>-«•» ^WW|Mip;^WB|Biypt|l|i|p|pp|BPI|ppB<>lll|IIU|.lipSJl(|J,lj 

UNCLASSIFIED 

in   least   squares   (if   it  were   unadjusted   for  degrees of   freedom)   and  hence 

lias   the   advantage   of   precedent. 

A disadvantage to this loss function is that it is not as easy to 

communicate as average proportional error. However the closely related 

loss   funct ion 

(R.) 

with   average   loss  defined  by 

Average  Absolute   lirror W. R ! 
i' i' 

(17) 

i=n +1 
o 

has the same meaning for absolute error as Eq. 10 has for relative error. 

It represents how much one would have been off (in an absolute sense) on 

the average, if he had used this cost estimating procedure consistently 

in the past. 

The recommendations for loss functions and weighting schemes discussed 

in this section are summarized in Table 10.  The reader is reminded that 

all of these summarizations are averages, and hence the decision rule of 

ranking the candidate estimating procedures and taking the one with the 

smallest average loss is an oversimplification of the problem, particularly 

when average losses are very close with the result that the difference 

may not be significant.  Some further considerations that will help in 

the estimating procedure selection when the difference in average losses 

are small are given in the next subsection. 

i.    Additional Considerations 

Suppose for a particular application average proportional error as 

^iven in i'.q. lJ has been selected for the average loss calculation. 

Suppose also that estimating procedure A had an average proportional 
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TABLE 10 

RESIDUAL SUMMARIZATIONS NOT DEPENDENT ON ESTIMATING PROCEDURE 

N 

Average  Loss ]Cv(iv 
1-n +1 

o 

Form Remarks 

Suggested 

Weights 

W, = 
1    N 

l=n +1 
o 

Sl-k 

Appropriate for esti- 
mating procedures 
which utilize entire 
subsample 

i    N 

i=n +1 
o 

k) 

Predictive capability 
of estimating procedure 
directly proportional to 
sample size 

Predictive capability 
of estimating procedure 
directly proportional to 
degrees of freedom 

Wi = N-n 

Appropriate for estimating procedures which 
utilize only the last m (any fixed number 
£ n  )   subsample  data points 

UR^ = |R1|/yi 

Appropriate   for applications   In  which  relative 
error  is most   Important.     Represents   the  average 
proportional  error  that  we would  have  experienced 
if we  had   used  the  estimating procedure   in  the 
past. 

Suggested 

Loss 

Functions 
liRj   =  R^ 

UR^ 

Analogous   to   the   residual 
calculation   in  ordinary 

Appropriate   for     regresslon  theory 

applications  in 
which absolute 
error  is most 
important 

Represents   the  average 
absolute  error   that  we 
would  have  been off  if 
the estimating  procedure 
were  used   In   the  past 

NOTATION 

N  Total data base size 

n  Minimum subsample siz« for Historical Simulation 
o r 

-v 
R  Residual, member of  R 

S  Subsample size used for R  calculation 

k Number of parameters estimated In the candldat  PER 

y.  Actual cost of procurement  i 
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orror of 0.^ and uscimaling pre)cedure  B  liad one of Ü.25.  Should A 

always bo preferred to  li .'  At least two additional questions are worth 

ask i nj.',. 

1.    Is there any apparent bias in the residuals? 

-. What type of variability is there about the average loss? 

Hie first ot these considerations cm be handled by a different type 

of average value calculation.  Comparing the simple arithmetic mean of the 

residuals to zero could be used to indicate bias, if this calculation did 

not imply a weighting scheme and loss function different from the one 

picked by the analyst for the average loss calculation.  Hence, to examine 

bias for our purposes, it is suggested that the following calculation be 

made . 

IU .w) =  ^VAR.; (18) 

i = n  +1 
o 

and 

W.    is   the weighting  scheme  used   in   the   average   loss 

calculation  of   hq .   lA 

is  a   signed   form of   the  loss   function   used   in  the 

average   loss   calculation 

B(',W)   is   the   apparent   bias   of   the  estimating   procedure  using 

loss   function     ..      and  weighting  scheme     W. 

Some   explanation   of     ■    (R.)     will   be  useful.      If   the   average 
1 i 

,   i.e.,     . (R.)   =   |R.|/yi   ,   then proportional   error   loss   function   is 

.    (K   )   =   R   /v      .     hence   the   only   difference  between   the   two   is   that     ft 
i i   ' i 

retains   the   s i e,n   of   the   residual.      For   the   squared   error   loss   function 

+ 

U\.)   =  RT     let 

IK.)   = 
L 

(R.) 

(K.) 

if   R.    •   U 
i — 

if  R.   <   U 
: 
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Note that for any loss function, it will always be true that  |£ (R.)| 

= UR.). 

The bias, B(£,W) can now be compared to zero. The closer it is 

to zero, the better the estimating procedure, if an unbiased estimating 

procedure is important. 

The second consideration mentioned above is to obtain some measure 

of variability around the average loss. The usual procedure would be to 

make some sort of a variance calculation.  For example, 

N 

l=n +1 
o 

U(R.) - AU,W)] 
2 

(19) 

where A(£,W) is the Average Loss, Eq. 14 

The desirable property would be for 19 to be small.  For our purposes, 

however, this is not very appropriate.  As can be seen in Fig. 3 a small 

measure of variance would imply little chance of small losses as well as 

large losses.  While the latter is to be avoided, the former is clearly 

desirable. 

A measure of skewness would hence be more appropriate than a 

measure of variance.  Negative values of skewness, close to minus one, 

would imply that most residuals had small losses;, hence small errors.  A 

positive value would imply the opposite and would therefore detract from 

As defined by Cramer, Ref. 8, page 184, as \ija       where v..    is the third 

central moment and  o  is the standard deviation. 
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SHALL 
VARIANCE 

[ (AMPLt AVlRAf.L LAHGE LOSS VALUES 

LiiSS [:{'-)] 

FLgure   3(U).     Variance  Calculations  and Average Loss 
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an otherwise  good  value  of  average  loss.     The  skewness  calculation   for 

this  application   is   given  by 

2^ W.[t(R,)   -  A(£,W)] 

skU,w) = 
i=n +1 

o 
3/2 (20) 

]rvu(R. )   -  A(fc,W) 

U=n +1 
o 

where      A(ll,W) is the Average Loss, Eq. 14 

W. are the weights used in Average Loss 

)l(R.) is the loss function used in Average Loss 

The example given at the start of this section hypothesized two 

estimating procedures.  Procedure A had A(£,W) = 0.2 , while Procedure B 

had A(£,W) = 0.25 .  Answering the question of which one is preferable 

can be aided by calculating the measures just defined.  Suppose that for 

Procedure A, B(£,W) = 0.05 and  S U,W) = 0 .  Then, if the equivalent 
K. 

measures for Procedure B were B(£,,W) = 0.1  and  S (H.W) = 0.5 , the case 
k 

for selecting A  over B would be strengthened.  If, however, the 

measures for B were  B(t,W) = 0.01 and  S (i,W) = -0.5 , the case for 
k 

choosing A would be weaker.  Procedure  B  is less biased and shows a 

large negative skewness which implies that losses smaller than the average 

were far more plentiful (or had more weight) in the sample (and hence we 

would hope more likely in the fu.ure) than were Josses larger than the 

average.  Procedure A, on the other hand, had zero skewness implying that 

large and small losses are equally likely. 

4.   Example Calculations 

To familiarize the reader with the summarizations suggested in 

Sec. IV B 2 and the additional statistics defined in the last subsection 

(IV B 3), example calculations are made and presented for the computer 

program test data. 
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Prom  tlif  i'XJimplo   used   in  the computer  test   run  summarized   in 

Tables   J  and   7   we   have   the   following data   (in   the  notation of Table   10) 

TABLE   11 

EXAMPLE   DATA 

N  =   n;   nu =  5;   k =   3 

Sample   Point 6 7 8 9 10 11 12 

-11.7 -66.9 31.4 -9.9 4.7 -18.5 23.7 

5 6 7 8 9 10 11 

67 243 54 112 106 183 156 

13 

Residual 

Subsample   Size 

Actual  Cost 

50.1 

12 

177 

if the proportional error loss function is selected, then the 

average loss will be called average proportional error and is given by 

13 

W   
1 y,- 

i=6 

(after Eq. 10) 

The proportional error for each residual is given in Table 12. 

TABLE 12 

PROPORTIONAL ERROR 

Sample Point 6 7 8 9 10 11 12 13 

R. 
i 

-11.7 -66 9 31.4 -9.9 4.7 -18 5 23.7 50.1 

yi 
67 243 54 112 106 183 156 177 

Proportional Error 

IRJ 0.174 0.275 0.582 0.088 0.044 0.101 0.152 0.283 

yi 
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Three weighting  schemes have been   suggested  in Table  10.     These  can 

be   used   to modifiy   Eq,   10  as   follows: 

13 
i   \"^   ' i' 

Average Proportional Error = —  > S    

(Weight proportional to 
sample size) 

= 6 

i=6 

Average Proportional Error 

(Weight proportional to 
degrees of freedom) 

13 

E^- k) 
13 

E 
i=6 

(S. - k) ~ 

1=6 

(21) 

(22) 

13 

Average Proportional Error 

(Equal weight) 
3^ y± 

i=6 

(23) 

All that remains is to substitute the values of S,  and k  from 
i 

Table 11 and  R.l/y.  from Table 12 and carry out the arithmetic.  The 

results are given below.  In this particular example, the weights 

do not greatly affect the average.  All average proportional errors are 

around 20 percent. 

Weight 

Average 
Proportional 

Error 

Proportional to Sample Size 

Proportional to Degrees of Freedom 

Equal Weight 

0.202 

0.19 7 

0.212 

UNCLASSIFIED 49 

matummiiittM NtffWitiiüiiyiTHiiiitiinri ^«M&iutfiMttyia*^^ ilälifriffliiBniir     MUM   iii 



wmifmmmmimmmmmmmvmv iwffnw^^iiiiwiijviiiHM'ii'.iu.fywiiiwiMwww *1fpw*1HIIMBfW*inwmmiw*vimni*wmmwmiFi*mwmtimm' 

UNCLASSIFIED 

The   tendency   in   this example   for  larger  proportional  errors with 

predictions   from  smaller  sample  sizes  can  be  seen by  the   fact   that   the  equal 

weight  measure  gives   the highest   average  proportional  error while   the 

degrees of   freedom weighting scheme  yields  the   lowest.    These weighting 

schemes  give   the  most   and   least weight   to   residuals  calculated   from  small 

sample  size   predictions   respectively. 

Calculations   for   bias and  skewness  are made   for  the weighting 

scheme   that   is  proportional   to  sample  size  only,   i.e., 

W.   = 
i       13 

IX 
i=6 

This should suffice to indicate how these measures are calculated. 

The calculation for bias, Eq. 18, is very similar to those for 

average proportional error.  All that should be done to Eq, 21, to obtain 

the signed loss (proportional error), is to remove the absolute value 

sign from R. .  Alternatively, one can use the proportional error from 

Table 12 and assign the sign of R.  from the same table.  Thus, for data 

point 6, we have signed proportional error equals -0.174.  The values to 

be averaged are given in Table 13 and the modified Eq. 18 for bias is 

given as Eq. 24.  The value obtained for bias Js 0.078.  Note however, 

that the numbers of over- and underestimates are the same.  The large 

error in estimating procurement 8 dominates the bias calculation. 

13 

BiasU,W) = —  >S. — (24) 

1=6 

1=6 
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where I   is proportional  error 

W  is  the weighting  scheme   proportional   to  sample  size 

TABLE 13 

BIAS  CALCULA'nON  VALUES 

Sample Point 8 9    10 11    12 13 

S. 
i 

10    11    12 

Signed 
Proportional 
Error 

R 
—    ~0.17A     -0.275    0.582    -0.088     0.04A     -0.101     0.152    0,283 

By   far  the hardest measure   to  calculate is   skewness.     The  modified 

version of  the  skewness  equation,   Eq.   20,   is  given below: 

13 ID  1 3 

skU,w) 

&M 0.202 

i=6 

3/2 (25) 

where is the proportional error 

S. is the sample size 
i 

0.202 is the average proportional error for the example 

i   is proportional error 

W is the weighting scheme proportional to sample size 

The necessary data for the calculation can be obtained from Tables 11 

and 12.  A measure of skewness equal to 0.16b is obtained.  Hence, the 

distribution shows some positive skewness, the large overestimate of 
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sainpie  point   8  outweighing  the   fact   that   5  of   the 8  proportional  errors 

are   less   than   the   average. 

it   is  hoped   that   the  example  calculations carried  out   in  this  section 

serve   as  a  guide   to  help  the  reader  make  calculations of  average  loss, 

bias,   and  skewness   for  the  loss   function  and  weighting scheme best  suiced 

for  his  problem.     It will  be   useful   now   to  consider   the  possible  directions 

of   future work   that might   improve   these measures. 

5. Future  Work 

As pointed out at the beginning of this section, the argumentj 

presented for the various residual summarizations and other measures have 

been heuristic in nature.  This was due to the lack of an assumed under- 

lying statistical model.  The arguments are hence analogous to those that 

are used for various curve fitting schemes when a statistical model has 

not been assumed. 

Several possible courses of action might be taken to either make 

the arguments for these statistics more rigorous or to derive better 

measures.  Formal methods of nonparametric statistics might be useful in 

making more rigorous the comparison between estimating procedures A and B 

at the end of Sec. IV B 3.  Another possibility is to explore the use of 

average loss for a ranking technique for several classes of candidate 

estimating procedures and their implied statistical models.  This could 

be accomplished with the aid of Monte Carlo techniques.  The probability 

of selecting the wrong estimating procedure, i.e., making an incorrect 

ranking, could be estimated. 

The effort required to investigate these possibilities is certainly not 

trivial.  Ln the meantime, the statistics suggested appear to be reasonable 

and should help the analyst to make choices between any candidate estimat- 

ing procedures.  In addition, several of the statistics identified, i.e., 

Average Proportional Error, Eq. 10, and Average Absolute Error, Eq, 17, 
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have   interpretations   that  are  easy   to  communicate  and   can  be  used   to  give 

one  a   feeling of   the  estimating  procedure's  validity.     They  summarize 

the  error  which would   have  been  present   (on   the   average)   if  the candidate 

estimating procedure  had been   used  to  predict   the   cost   In   the  past.     Thus, 

these  measures  are good   candidates   for   the  desired  measures  identified 

in  Sec.   11  C 1. 

C. STATISTICS  WHICH  DEPEND  ON  A  PARTICULAR  ESTIMATING   PROCEDURE 

A  final  set  of  statistics  can be  calculated   from  the Historical 

Simulation output by making  use  of any statistical  model  assumptions  that 

are  usually associated  with   the  particular  cost   estimating  procedure 

under  examina'tion.    An  example  is   the multiple linear regression model, 

which  is usually assumed when  the  cost estimating  procedure  of  interest 

comprises a linear PER and   a least  squares   technique     for estimating  the 

parameters.     Another  example  is   the  use of a multiplicative error   term 

6    with a log-normal  distribution      when  the PER  is  given by 

b    b b 
Y = aX,   X0     •   •   •   X P 

12 p 

where Y stands for cost,  X , X„ , , X  are the independent 
P 

variables, and the technique is a least squares curve fit performed on 

log Y = log a + b  log X + +b  log X 
P     P 

** 

In fact, the choice of the least squares technique can be viewed as a 
consequence ot the multiple linear regression model assumption (for a 
linear PER) as the estimators obtained have some optimal properties. 
These properties are stated in the Gauss-Markov theorem.  According to 
Ref. 7, page 387, this theorem states Lnat '*:he least squares estimate 
in the class of unbiased, linear estimates, has a minimum variance 
property:  the variances of its components are (simultaneously1) smallest." 
In addition, they are maximum likelihood estimates. 

For additional information concerning this distribution see Ref. 7, 

page 89. 
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TIIL'   HLaLlaLical   mudel    in   l.liis   case   is 

aX, .   P. 
Vi'i 

where  log '   is distributed normaLly with zero mean, variance equal 

, and ^ero cuvariances. 

to 

From an  operational   point   of   view,   statistics  based  on  an assumed 

distribution  are  iess   versatile   than  the  general  data   summarizations 

discussed   in   Sec.   IV  B.     They  are   valid  only   if   the   assumed   statistical 

model   is   valid. 

However,   these  statistics  are  still worth  examining.     Since   they 

are   valid   for any estimating procedures which  utilize   the  same statistical 

assumptions,   for example,   the  class  of  linear PERs   (with  least  squares  curve 

fit),   they  can be  used   to  compare  candidate estimating procedures  in  the 

class.     However,   these  comparisons  can also be made with  the  usual 

evaluation  procedures,   i.e.,   the  usual  regression  statistics,   and,  hence, 

benefits  gained  using Historical  Simulation do not  include  a comparison 

that   cannot  otherwise  be  directly made   (Sec.   II C,   Property  2). 

Another  use   for   these   statistics  is  to  ascertain whether  the 

statistical model and/or  estimating procedure  is  valid.     Does  the Historical 

Simulation output   fit   in with  the  output  that   should be  theoretically 

expected,   assuming   that   the   statistical model  and  estimating procedure 

assumptions  are  valid?     If   the  output does not   fit,   then  some of  these 

assumptions  must   have   been   violated   and  hence   the model   should not be 

accepted . 

Finally,   statistics   that   are   usually  calculated   (on  the entire  sample 

for   the  estimating  procedure,   can  be  derived   for  each  of  the Historical 
2 

Simulation  subsamples.     For  example,     R      and  standard  error of  the 

estimate   can  be   calculated   for  eacli  subsample,   if   the  estimating procedure 
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assumes a linear PER and a leasL squares curve fitting technique.  These 

statistics can be used, in the traditional manner, to evaluate how well 

the estimating procedure is performing on the particular subsample.  Would 

the model have been acceptable for the particular subsample?  Would it have 

been rejected for a larger subsample? 

Work accomplished to date on the development of these statistics 

has been confined to linear PERs, least squares estimating techniques, 

and the usual multiple linear regression model.  This class of estimating 

procedures have been labeled Linear PER-Least Squares Procedures.  The 

development of these statistics for this class of estimating procedures 

will have the added benefit that their study will more clearly define 

the relationship between the Historical Simulation output and the usual 

multiple linear regression evaluations. 

To date the theoretical distribution of the Historical Simulation 

output—the predictions and residuals—have been determined. A goodness- 

of-fit test and a test to determine if there is bias present have been 

defined for a subset of the Historical Simulation output.  Finally, several 

statistics have been identified that are useful in describing subsample 

fits.  Each of these topics will be discussed in subsequent paragraphs, 

but first it will be useful (for clarity's sake) to define the Historical 

Simulation procedure (for multiple linear regression models) in matrix 

notation. 

We are given a sample which consists of  N P+1-tuples 

(y.   . x^  , xi2  , ,   x.   )     for    1=1,2,   .   .   .   ,  N   .     These  P+1-tuples 
-L y 

have been ordered  in  time. 

The  usual multiple   linear  regression  hypothesis   is  given by 

Y =  Xß +  E 
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wtu're- 
is  a     N   x   1     column  vector of 
observed  y  values 

1        x11       x12 

1       x21       x22 

1       XN1       XN2 

C2p 

"N, / 

is  a    N   x  p+1    matrix of 
independent variable  values 
(and  a  1   for   the  constant 
multiplier) 

is   the  p+1  x  1  column vector 
of model  coefficients 

is  a    N   x  1    column vector 
of  error  terms 

5b UNCLASSIFIED 
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The matrix X  and the vector  (i  are assumed to be nonrpndom;  u , 

on tlie other hand, is a normally distributed random vector wJ Ji zero means, 

a constant variance  a  , and zero covariances.  Tliat is 

VjrianceO ) = o' ^ i = 1, 2 , . . . , N 

Covariance(ei,c ) =0  ; i t  i  / 

Let n  be the minimum sample size that is greater than or equal 

to the smallest sample size necessary to carry out a linear regression 

analysis.  Hence,  n  > p + 2 .  For any 

following partition of the X matrix by 

analysis.  Hence,  n  >_ p + 2 .  For any n, n ^ n < N , define the 

.(n) 

,(n) 
l_ "2 

n rows 

N-n rows 

Also partition Y  in a similar manner obtaining 

Y = 
1 

2 

n entries 

N-n entries 

If time batcher- are ignored, the Historical Simulation Procedure 

can be defined as follows: 

For each n, n  < n < N 
o — 

1. Make a least squares fit using Y    and X    as the date 

base. 

2. Obtain an estimating vector of  3 .  Denote this vector 

i(n) 
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i. Usu   thu   rusuiting   fit   to make  predictions  of  the  remaining 

N-n   data  points.     This   can   be   denoted   by 

;(n)  _ 

(n) 
Vl 
(n) 

■'n+2 
Y(n) -(n) 

=  X,.     i-' 

.(n) 
yN 

where  y ,  Is the prediction of y ,,  arrived at using a sample of 
■ n+k n+k 

sl^e  n. 

4.    Calculate the residuals by 

^ 

,(n) 

n+i 
(n) 
n+2 

vW 

;(n) 
n+1       yn4- 

•(n) 
n+2       yn+2 

A 
=  Y (n)       rKn) 

(n) J 
where     d   ",      denotes   the  difference   (residual)   between   the  predicted 

n+k   
v     ,      and   the  observed     y   ,,  . 
•n+k ' n+k 

1. Distribution  of  the   Historical  Simulation Predictions  and  Residuals 

The form and distribution of this output has been summarized in 

Table 14, with derivations given in Appendix II. Several interesting 

result;;  which   can   be  observed   from   this   table   are   discussed  below. 
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TABLE  14 

FORM AND  DISTRIBUTION  OF  PREDICTIONS  AND RESIDUALS 

(Assuming  the usual multiple  linear regression model  assumptions) 

Notation 

Sample point for which 
the prediction (residual) 
pertains 

Subsaraple size used 

Calculation 

Distribution 

Expected value 

Variance 

Covarlances (with) 

m+j < n - — 

nrf j > n 

mfj j< n+k- 
and 

m+j = n+k- 

Predict Ion 

yn+k 

n+k  ;  0 ' k ■ N-n 

S 
.1 = 1 

„n+k 

Normal 

n+k 

2,,n+k 
o C ,. 

n+k 

y(m) 

■  2rn+k 
nr+J 

Residual 
,(n) 
dn+k 

n+k     ;     0   •   k   •   N-n 

v(n)   -  y 
■n+k       yn+k 

■20 + CD 
,,(m) 

m+j 

2,.n + k 
C  '„r+j 

-^+ C]) 
I .m+i .    •        ^n+i<N same  as  above  with     C.      '     leplacing     C I 
I n+k nr+   / 

whe re 

and 

x'  is a row vector equal to the ^_th row of the matrix  X 

x   is a column vector equal to the j_th row ol the matrix  X 

y   is the jth component of the vector Y 

n+k 
x' ,, S 

. (n) 
•1 

n+k" J 

(n)   _   v,(n).,(n) .(n) 
Sv'"   =   X X"'     where     Xj'"      is   the   lirst      n     rows  ol      X 

, (n) and  X     is its transpose 

are the unknown pirameters 

is the variance of the error terms 
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.'he  distribuLion of   the  prediction and   residuals  is normal. 
-»   =  i-     ß =  Ey] 

The 

predictions  are   unbiased   in  the  sense  that     Ey'        -  ^   ,, K       - r   ,, ■'n+k n+k n+k 
Hence,   the  expected  value  of  the   residuals  is   zero.     The  variance of   the 

residuals   is   related   to   the   variance  of   the  predictions   in   the  sense   that 

VARCd^)   =   o2 +  VAR(y^) 

This is a consequence of the fact that  y ,,  is not used in the calculation 

of  y ,,  and hence is independent of v^*}} . 7n+k ' yn+k 

The residual covariances are related to the prediction covariances; 

in fact they are equal unless one of the points being predicted is not 

predicted from both subsamples, or the point being predicted is the same 

for both subsamples.  In the first of these exceptions, i.e., when 

comparing d ,. , d    ;  m+j < n  or  n+k < m , the covariance is 
n+k   nrrj —        (   }        (   } 

zero.  In the second exception, i.e., when comparing d   , d  .; m+j = n+k , 

the calculation is similar to a variance calculation.  The residual covari- 
2 ance is obtained by adding o^     to the prediction covariance.  To summarize, 

then, we have for  m ^_ n 

CUV d',d , . n+k  nr+j ;) 
■2  + COv{y^ly (m)N n+k'^m+jy 

-CÜV 
/in)   ;(m)\ 
(yn+k'ymf,i) 

;  m+j <^ n 

;  m+j = n+k 

m+j > n and 
'  m+j ^ n+k 

Another observation that can be made about the covariances is that 

subsample sizes m and n only through which  S 

then S    is used.  (This is the only 
they depend on the two s 

matrix to use.  If m ^_ n 

difference between the coefficients  C ,. m+j 
n+k     __,,     ^mfj     in   Table  14)>    The and     C n+k 

rule   to   follow   is   .iluij.:  uc the natnx a. orresponding to the  larger 
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If  it   is  noted  that     S is a   function of    X (the  data base 

used   for the   subsample   size    n     fit)   then   the above  result   is  not   surpris- 

ing.     If    m  <  n     then    X contains  all   the  information   that     X 

contains plus   the  extra   rows.     Hence     S will  contain all   the   information 

available  in     S           plus mare.     Hence  in  deriving  the  covariance  of  two 

predictions  or  residuals,   the  information  available  in   the  larger  subsample 

fit  is  required  and   includes   the  information available  in  the   smaller 

subsample. 

A  final  observation  is  that   although   the  predictions  and   residuals 

are generally  correlated   (among themselves) ,   there  are  some   residuals 

which have  zero   covariance.     In particular,   if    mfj   <_ n   ,   then 

COVId   ., ,d     .1   =  0   .     In words  this  implies  that   the   residual  calculation 

for  a particular  sample  point  has  zero   covariance with any  residual  calcla- 

tion based  on  a  subsample which  includes   the specified  sample   point.     The 

importance  of  this  result  lies  in  the   fact   that   zero  covariance   implies 
ft 

independence  when   the  random variables  are normally distributed.       Hence 

d   ,,      and    d   ,.     are  independent  if    mfi   <  n   .     In  particular   then,   the n+k mfj K J   _ ^ > 
one-step residuals,   i.e.. 

(n   )      (n +1) 
j     0     J     0 

n +1     n +2 
o o 

,(n) 
n+1 

XN-l) 

are mutually  independent.     This  fact will   enable  several  statistical  tests 

to be  applied   to   the one-step  residuals. 

Before  discussing  these  tests  it   is  notationally convenient   to 

redefine  the  one-step  residuals  as   follows: 

Let 
,(n) 
n+1 

/ 1 +  C 
n+1 
n+1 

Zero covariance does not usually imply independence.  The fact that the 
addeJ condition of normalcy implies independence is discussed in Appendix II, 
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where ,.»+1 >,      .(n)   i- c
n+1   -  x

n+1
b 5<n+i     as  defined  in   Table  14 

Since  the   variance  uf    d^J  =  n2(l + c^J)      this   transformation  has   the 

effect  of  giving   the   residuals      r  =   Cr      ,   r      ,,,...,   rM   . )     a   common 
n n +1 '     N-l i o o 

*- - y 

variance     o     .     Hence,   we  have   that   the   residuals     r    are  independent and 

normally   distributed,  with  zero mean,   and   common  variance    o     .     Alternatively 

r     constitutes   a   random  sample   from  a   normal   population with  zero   mean, 
7 

and   variance   equal   to     o~. 

2 ■ Tests   on   the   Une-Step  Residuals 

Two  types  of   tests have been constructed   for the one-step   residuaxs. 

The   first   is  a  goodness-of-fit   test  which  asks   the question:     Do  the one- 

ctcv residucild appeal'  to  have been derived from a multiple  linear 

iwji'essiün model   uith.   the  assumed  linear' PER?    The  second addresses   the 

question of bias   and  asks   the question:     Do   the  one-step  residuals  appear 

:e  have zero ";.,;'.'   ( ;.;   theu  tiworetioally sJiould) ? 

The  question   of  whether   the model   assumptions   are  satisfied   has 

not   been one  of   the  central  questions   for   theoretical  statisticians.     To 

be   sure,   a   great   body   of  knowledge  has   been  built   up  around   the   closely 

related  subject   of   hypothesis   testing,   but   these   tests  are   concerned with 

choosing between   two   states  of  nature,   the   null  hypothesis  and   a   specified 

alternative   hypothesis.     The  question we   are   asking  can  be  placed   in   the 

hypothesis   testing  context.     The  null   hypothesis     H       is   that     r     is   a 

random  sample   from a  normal   population  with   zero     (0)     mean,   and   variance 

•j"   .     Notationally   this   is   given  by: 

ll^r   =   N(Ü,   A) 

It   should  be  pointed  out   that   zero   covariances were  the requirements  for 
these   tests.     Hence,   the  tests would  appear   to  be equally applicable   to 
all   residuals   if   these   residuals were  orthogonalized.     Pursuit  of  this 
topic   Ls  beyond   the   scope  of   the  present   work,   however. 

The alternative   hypothesis  can be  a  class  of alternative hypotheses  such 
as,   "The   random   vector     f     is   from  a  normal  distribution." 
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where     I     is   the  identity matrix of order     N-n   . 
o 

The  alternative hypothesis  is not  specific,  however.     It  is  that     r 
2 

is not    N(0,o  I)    .     Hence  the   usual   techniques   for  hypothesis   testing, 

e.g.,   maximum  likelihood,  are  not   applicable.     Fortunately,   a   few  tests, 

called  goodness-of-fit  tests,   have  been devised  to handle   this  question, 

but   they  are  unfortunately not  very  powerful     against   specific  alternatives, 

Hence,   if   the  question  is  to  choose  between   two  specified   alternatives,   a 

test  built  around   these alternatives   should be developed. 

The   two  main  types of  goodness-of-fit-tests       are   the  Chi-Square 

test  and   tests   that  compare distribution   functions.     The Chi-Square   test 

requires  a partition of  the sample  and  a comparison of   the   frequency of 

observations  to   the  theoretical   frequency.     This test   in  general  requires 

a large  sample  size  and  is  therefore  not very   useable  for  the  cost 
•k >'< A 

application. 

A* 

ÄÄsV 

There  are  two   types of errors   that   can be made in a hypothesis   testing 

problen.     A  type  1 error  is made when     11       is  rejected and   it was  true. 

A Type   II error  is made when     H       is rejected  and   it  was   true.     Denote 

the probability   for   these   two   types  of  error  by    P     (Reject   H  )     and 

P     (Reject  H )    ,   respectively.     The statement  that   goodness-of-fit   tests 
1 

are not  very powerful against   specific  alternatives  implies   that   in 

general   there  exists a hypothesis   test   for  the specific  alternative  such 

that   for  a  given    P     (Reject   H   )    ,     P     (Reject 11  )   ,   using  this  other   test. 
0 1 

is   less   than     P     (Reject  1L )      using   the  goodness-of-fit   test.     For  a 
1 

further  discussion of  this concept   see  Ref.   7,  Chapter  7. 

See  Ref.   7   Section 9.1  for  a  complete  discussion. 

c 

See  Ref.   9,   page  46. 
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Of the tests that compare distributiün functions, the Kolmogorov- 

Smirnov (K-S) test Is perhaps the most widely known.  Its advantage over 

the Chi-Square test is that it appears to be more powerful and it is 

applicable for small sample sizes.   The test is also relatively simple. 

Tailored for our present application, it is outlined below. 

Order the residual vector  r  from smallest to largest to obtain 
.(1)  „CO _(N-n0)   i       (j) 

,   r where     rXJ/     is  the jth order  statistic. 

Calculate   the   sample  distribution   function     R,       (r)     by   lettint r N-n c 

o 

Fv       (r)   =  -J     for     r 
N-n N'-n 

o o 

{i) ^^ r
C3+1,    ;   J - o, i N-%     (26, 

where 

(Ü) 
and     r 

(N-n  +1) 
o 

Tliis  sample distribution   function   is  then  compared   to   the   theoretical 
2 

distribution   function   under     11     ,   i.e.,      F(r)   = N(0,o   )    .      The   test 

statistic   is  defined  by 

D =     SupiF (r)-F(r) 
N-n all   r1   N-n   ^ K   J 

o o 

that is,  Ü      is the largest absolute difference between the two 
o 

distribution functions.  It can be shown that the distribution of D 
N-n 

Is  not   dependent   on   the  distribution  of     F(r) 
*A 

Values  of  the 

listribution  of     U N-n 
are tabulated in most statistics books (see 

Ref. 7, Table VI) and rejection values are given based on the significance 

level of the test desired (i.e., the probability of a Type I error 

allowable).  Thus all that remains is to determine D,, 
N-n 

See Ref. 9, page 51, 

'Ref. 7, page 300. 
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For  our application,   this constitutes nothing more  than comparing 

us F   (r)  co F(r)  at the end points of the steps in  F   (r) .  Th 
o o 

D     will be the maximum of the numbers N-n 
o 

N-n 
F(r^) and 

N-n 
FCr^) j = 1 , • . , N-n (27) 

The  quantities     F(r       )     are  easy  to  determine   for a  given    a     .     By 

using any   table of  the normal  distribution,  one merely  looks up  the value 

jf   the  percentile  of  the Normal distribution  function   for     r      /a   .    A 
2 

problem arises however  by what   value  to  use  for     a   . 

Three candidates  are  presented and  discussed  in Appendix III and 

the  square  oi  the  Standard  Error of  the Estimate  which   is obtained  in  the 

usual  regression analysis—from the  fit on  the  entire  sample N—is  selected. 

The   choice  was based  on  the  fact  that  it was   the  most  efficient  estimator 

and  that   unlike  the other   candidates,   it does not   depend directly on  the 

residuals  in    r   .     Furthermore,   it   is the estimate  of   the variance  that 

is normally used  in a  regression analysis.     The  estimator  is denoted    o 

and   the equation  for  calculating  it   is given by: 

-2 

E 
i=l 

(y, - y±y 

N   -   (P+l) (28) 

where 

and 

y. is the actual cost of the ith  procurement 

y. is the estimated cost of the i^th procurement (obtained 

from a regression analysis of the entire sample) 

P is the number of independent variables in the PER 

The  K-S  test is then valid as long as we define the null hypothesis, 

Hn , as "r  is a random s'ample from a N(0,o ) distribution." The test 

is not ncessarily valid for the wider null hypothesis of 11  defined as 
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2 2 ~2 
"r     is   a   random  sample   from     N(U,o   )     with     o       estimated  by     o   ."    There 

are   indications,   however,   that   if   rejection   takes   place   then   rejection 

would   also   take   place   if      '"     were  known   (Ref.   9,   page   60).      In  addition, 

Darling,    in   Ref.   10,   has  described   some  conditions   under  which  variations 

of   the   R-S   test   are   valid   for   the  wider  hypotheses.     How   the   present 

application   fits   into his work  has  yet   to be  determined.     Further  research 

will   have   to   be  done  on   extending   the   current   application   to   this  wider 

hypothesis. 

The   second   test  proposed   in  this   section  addresses   the  question  of 

bias   in   the   vector  of   residuals     r   .      In  particular   it   is  a  hypothesis   test 

given   by 

0 
:  r  is a random sample from a N(0,a )  population 

2 
:  r  is a random sample from a N(p,a )  population 

where M ^ 0. 

'he test statistic is derived  by the use of a likelihood ratio test.  The 

;est statist 

is given by 

test statistic has a  t-distribution with N-n -1 degrees of freedom and 

t  = 
(N-n   -l)1/2r 

o (29) 

where r   is   the  sample  mean  of     r   ,   i.e. 

N-l 

I>. 
i=n 

N-n 
(30) 

For   derivation   see   Ref.   7,   page   320. 
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and     S      is   the  sample  variance given by 

N-l 

.(r.   - r)' 

0       i=n ,/ o 
N-n (31) 

The  test  is  conducted  as   follows; 

3. 

4. 

Determine  the significance level     a   ,   i.e.,  what probability 

is  the  analyst willing  to withstand  of rejecting    H       when 

it   is   true? 

From a   t-table,     obtain  the value  of   the    a/2    and     1  - a/2 

percentiles  of  the  t-distribution with    N-n    - 1    degrees of 

freedor Label   these     t   ,„     and a/2 t        /n   .     Note  that   only one l-a/2 ■' 
value  need be obtained,   as     t -t. 

"a/2 ~      "1-0/2' 

Calculate  t  from Eq. 29. 

If  t ,„ < t < t..  ,„ , then  H,  is rejected and no apparent 
a/2 —  — l-a/2 1      J rr 

bias is present (at the a-significance level) . 

If t < t ,„  or if t 
a/2 

t.,  ,„ , then Hn is rejected and 
L-a./1 U 

there is significant bias present (at the  a significance 

level). 

Another way of stating this test is to ask the question:  is r 

significan 

is present 

significantly different from zero?  If so,  11   should be rejected and bias 

An example of the use of these tests is given below. Again, the 

data base used will be the one that was used in the computer test run. 
->■ 

Values of r are obtained from output block 7, Table 20, Appendix I. 

These are given in Table 15. 

Available in any statistics book, such as Ref. 7. 
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TABLE 15 

DNK-STi;!' /VDJL'STEÜ RESIDUALS FRÜM TEST RUN 

Adjusted 
Sample   Point Sample   Predicted   From Residual 

(> 5 -10.63 

7 h -21.71 

8 7 25.95 

9 8 -8.038 

10 9 2.889 

11 10 -15.67 

12 11 21.02 

13 12 37.721 

Source, STAT 1, Output Block 7, Table 20, Appendix I. 

To apply the K-S test, we must first order the adjusted residuals 

from smallest to largest.  Then the residuals are divided by  o , i.e., 

the standard error of the estimate from sample size 13.  From the computer 

test run, last output block 5 (Table 20, Appendix 1)  a = 21.6 .  By 

using tables of the Standard Normal Distribution, these latter quantities 

are converted to percentiles of the Standard Normal distribution (equivalent 

to obtaining their cummulative distribution function value).  These 

operations are summarized in Table lb, columns 2-4. 

These percentiles are to be compared to the endpoint values of the 

steps in the sample distribution function given in Eq. 27.  Since there 

are eight sample points, the values of the sample distribution function 

will jump by one-eighth.  The appropriate endpoint values are given in 

columns 5 and 6 of Table 15. 

The maximum differences between the percentiles (in column 4) and 

the endpoints (in columns 5 and 6) are calculated for each sample point. 
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TABLE  16 

K- S  TEST   CALCULATIONS 

Dlvldud by 1 
Samp It' 
Point 

OiVurud 
Ad j usted 
Residual s 

Standard 
Urror of 
Estimate 

PercenLi le 
or Normal 
'"npulat ion 

Compare   to   Kiul  PointH   of 
Sample  Distribution  Function 

Maximum 
1)1 f ference 
For   Point 

7 -21.71 -1.005 0.157 0 0 .1 2r. 0.157 

11 -15.67 -0.725 0.2 3A 0.125 .2 50 • .125 

b -10.63 -0.492 .31 1 .250 .375 .125 

9 -8.0 38 -0.372 .35 5 .375 . 500 .1-15 

1Ü 2.889 0.1 3A .553 .500 .62 5 • .125 

12 21.02 0.973 .8 35 .(.2 5 .7 50 .210 

8 25.95 J .201 .8f5 .750 .875 .135 

13 3/.721 1 . 74(> .960 .375 1 .000 ■ .125 
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llifSf,   are   shown   in column   7.     The  R-S  statistic   for  sample   size   (number 

of   residuals)     8,   l)     ,   is   then   the  maximum value   in  column  7.     In  the 
o 

example   under  discussion     D,,  =0.21   .     This  value   is within acceptable 
o 

limits,   as     1)      would   have   to  be   greater   than  0.358   for  rejection at   as 

high  a   significance   level   (probability  of making  a Type   I   error)   as  0.2. 

Hence   the   regression  model  and   linear  PKR cannot   be   rejected. 

The  calculation   for  bias   is  performed by   first   calculating  the 
■y 

sample  mean,   V.q.   30,   and   sample   variance,   Eq.   31,   for   the  residuals     r   , 

(column   3,  Table  15).     These  calculations  resulted   in  values of    r =   3.94 

for   the   sample  mean   and     S^  =   20.7      for   the  standard  deviation. 

The   t-statistic   is   then   given  by  Eq.   29   as 

t  = 

1/2- 
(N-n -1)       r 
 o  

S 
(29) 

ience,   in  our   case 

t   = 

l/9 

(7)   /-3.9^ 
20.7 

0.504 

This is not a significant t-value (7 degrees of freedom) for any 

reasonable significance level.  As an example, if a = 0.2 , i.e., the 

0.2 significance level, then the rejection limits would be +1.42.  The value 

of  t  obtained above is not even close to being outside of this range. 

Hence the Historical Simulation results do not indicate bias in the model. 

Liven though the values of these two statistics are insignificant. 

for the test run data, there will be times when they are significant, and 

vet the usual regression statistics would seem reasonable.  To illustrate 

this point consider the theoretical example portrayed in Fig. 4. 
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Figure  4(U).     Theoretical  Example 

In  the  example,   the  candidate  estimating procedure  is 

Cost a + bX 

and a least squares curve-fitting technique is used to pick the parameters. 

The time sequencing of the data is the same as an ordering on the values 

of X , i.e., larger values came later. 

At the first stage of Historical Simulation the first three data 

points  (P., ?2   ,  and  P„)  are used to fit a line £  .  The estimate of 

P,  would be low by the amount  R  .  At the next stage of Historical 

Simulation, line £„  would be derived using as the data base points 

Pl' ^ P3 an^ PA *  The est:i-mate 0f P
R  derived from i       would be 

low by R„ .  The process is continued deriving lines I       from data 

points P^.  through P,. , and  «,.  from P  through P, . The estimates 

of P,  (from  5,.)  and P.,  (from 2..) are low by R0 and R, , 
0 3        /        A 3       A 
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respectively.      I'hus   all    the   predictions   obtained  were   low.     This   implies 

that   the K-S   statistic   and     t     statistic  will  most   likely be  significant, 

and   hence   the   estimating   procedure  would   not   be   accepted  by  Historical 

Simulat ion. 

Looking  at   eacli  of   the   lines,   however,   it   does   not   seem  that   the 

fit   (to   the  data   they  were  derived   from)   is   too   bac"        In   fact,     £,     would 

probably  be   accepted  as   a   good  nodel   for   the   first   six  data  points,   using 

statistics  based   on   regression   theory. Hence   the  model would   be 

accepted   using   the   regression   theory  statistics  while   it would  be   rejected 

using  Historical   Simulation. 

Uf  course,   in   tills   case,   a   simple   plot   of   the   data would  convince   an 

analyst   that   lie   has   the  wrong  model   (it   should   be  exponential   rather   than 

linear).     This,   however,    is   a   consequence  of  a   two-dimensional  problem 

(Cost   and     X)   in  which   plots   can  be  made   and   our   illustration  could  be 

drawn.      The  analyst   will   not   have   the  luxury  of  such   plots  when working 

with  more   than  one   independent   variable,   and   an   extension  of   this   example 

to   a  multiple   independent   variable  model   can   readily be  made   (without  3 

figure,   however). 

V^iile   tlie   significance   of   the   t-statistic  depends   on   the magnitude  of   the 
residuals  and  how  close   together   they  are,   the   fact   that  all  residuals 
are   negative  will   usually   lead   to   rejection  of   the   zero  mean hypothesis. 
In   regard   to   the   K-S   test,   all   negative   residuals   Implies  a  K-S 
statistic   value   greater   than   0.5.     This   is   significant   for   four   residuals 
at   the  0.2   significance   level  and   if   the   process   in   the  example   continues 
for   seven   residuals.     The   results  will   be   significant  at  the  0.05  level 

It   should   be  noted   that   tiiere   is   another   technique,   called Time   Sequence 
Plot  of  the  residuals   (Ref.   6,  page brf),  which   for   the example being 
discussed  would   result   in   a   sequencing  of  residuals   from the  usual 
regression analysis  that  would   indicate  a lack of   fit.     However,   the 
consequences  of   retaining   the model   (in   this   example),   i.e.,   the   like^i- 
hood  of underestimates,   are  more  apparent when processed by Historical 
Simulation.     Furthermore,   even  though   residual  plots  should he  analyzed 
whenever  a   least   squares   curve   fit   is   made,   the   fact   is   that   such 
examinations  of   residuals  are  often   forgotten. 

72 UNCLASSIFIED 

wiA^yfcM^^^uujat,iltMfcätateMigUiaM>^tKJiliiMfc^^ 



• iif nm ■»gwwipwij|^|i|];4||iiii|iij|i|,i>];iJiiMiW"W»l|li|lll>.'.i'.lllll|ltliW!WilW'1 K'>>mm»m'rimm:iniJ*»mrmimnmt U,IIIIJ..HII JI HUUIU W, B>j.pr>i^p|iapaW8pHWPiPWI 

UNCLASSIFIED 

It should be noted that the two tests discussed in this section are 

very different.  The test for bias assumes that the underlying model is 

normal and all that is Veing tested is if the mean is zero.  The Kolmogorov- 

Srairnov test, on the other hand, asks whether or not the distribution is 

normal, with mean  0  and variance  o 
■2 

Both tests address the question 

of model validity, however, as the residuals should theoretically come 
2 

from an N(0,o )  population. 

It is expected that other tests can be constructed for the one-step 

residuals.  In addition to the above and extensions of them to tests applied 

to all the residuals (after some orthogonalization), it will be worthwhile 

to develop two hypothesis tests where  H  is some other candidate 

estimating procedure.  If this alternative is also a linear PER, with the 

assumed multiple linear regrpssion model, then such tests should be 

relatively easy to construct.  If the alternative is a nonlinear PER, then 

the appropriate statistical distribution will have to be identified and 

the distribution of the Historical Simulation predictions and residuals will 

have to be derived.  Then the question of devising tests can be addressed. 

Needless to say, this last group of tests will take considerable effort. 

3.   Comparison Statistics 

The last set of statistics that have been identified  are some of 

the usual regression statistics for each of the subsample fits in Historical 

Simulation.  (They have nothing to do with the prediction and residual 

output of Historical Simulation.)  These can be used in the usual manner 

to see how well the estimating procedure is doing on each of the subsamples. 

They also can be directly compared to like statistics on the entire sample. 

Example values for the test run can be seen in output blocks 5, Table 20, 
Appendix I. 

UNCLASSIFIED 73 

!,>..,....„..j.^.- - ..-,. ^■■■■.■.■.■,^,,-^.;...w,^.^^-,,..:^.^^^.;.;-^.:...^wJ.;.li...wJ^...^l^iri^^ 



,„,^,„[m,m,m,.vammm„,„t..,^^ i   i   .iiJiHjmmiitf.tj.i.,.  -ii BUBiwmBipiijgiHBBpw f|J»««liA'M^U"mM"»»|iH-li|«!IIMil«il.H" I.HMimiim^l'.HiflHmqi.l»P|mJ!l|]liJHH 

UNCLASSIFIED 

The first set of measures are best summarized as Measures of Fit. 

Two such measures are calculated on each subsample for which parameters 

are estimated.  These measures are given below: 

Standard Krror 
of the Estimate 

SLE = 

1/2 
in 

^ry^CA. - P.) 
n-k / j    i   i 

1 = 1 

(32) 

X"  or  Coefficient! 
of Determination 

in 

A)' 

1=1 
111 

E 
i=l 

(A. - Sr 

(33) 

where 

A. 
i 

subsample size 

actual cost of the ijih object 

estimate of the i^th object (FiO 

number of parameters to be estimated in the PER 

and A is the average of the A.'s, i.e., 

m S   J 
A = - > A . 

i=l 

These measures are not at all related to the predictions calculated 

from the CER that is derived by fitting the curve to the subsample.  They 

merely describe how good the fit was.  In theory, if the process 
2 

satisfies the statistical assumptions, SEE should be converging to the 
2        2 

true variance  o  , and  R  should be converging to 
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Therefore, as the sample size increases through the Historical Simulation 

evaluation, we should see this convergence (although for most cost applica- 

tions the number of samples fitted will probably be too small).  In 
2 

practice it is desirable for  o   to be small, and therefore a good fit 
■i 

is represented by a SEE close to zero and an  R   close to one. 

Another set of fit statistics are the t-statistics for each estimated 

coefficient of the linear model.  Thes^ are the statistics that are 

usually used to see if a coefficient is significantly different from 

zero. 

Given that these coefficients are all different from zero in a 

usual regression run (i.e., for the entire sample), it may turn out that 

they are not significant for all of the subsample fits processed in 

Historical Simulation.  It seems reasonable that once the subsample size 

was large enough for a] 1 to be significant, then they should remain 

significant.  If not, one might begin to question the value of retaining 

the independent variable that corresponds to the occasionally significant 

coefficient. 

Note also that the fact that a particular coefficient is not 

significant for early data bases brings into question the relevance of 

that data base to the current prediction problem.  It may be useful to 

try estimating procedures which ignore this early data.  Such a procedure 

would be one that estimates the parameters using, say, only the last 6 

data points in time. 
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In summary, these statistics are useful in seeing how the fit is 

improving as the sample size grows.  They do not, however, pertain to 

the main output of Historical Simulation, i.e., the predictions and 

residuals.  They should shed some light on any anomalies present in this 

latter output, however, and may be useful in suggesting new candidate 

estimating procedures. 

This concludes the discussion of the uses of the output from 

Historical Simulation and the work to date on its development.  Next i. 

seems appropriate to summarize the advantages and current limitations 

of Historical Simulation and indicate the direction of possible future 

research.  These topics are discussed in the next section. 
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V.    CONCLUSION AND RECOMMENDATIONS FOR FUTURE EFFORT 

In concluding this report, it will be useful to summarize the 

limitations and advantages of Historical Simulation as it is currently 

envisioned.  This section will be itself concluded with some recommendations 

for future work which would hopefully shed further light on some of the 

limitations noted and expand on the work already completed. 

A.    CURRENT LIMITATIONS 

That limitations exist is not always bad, as the following 

discussion will show.  However, there are areas where the development of 

Historical Simulation is far from complete and the attendant limitations 

are a real problem.  These limitations, as the author currently sees them, 

are discussed below. 

1, Lack of a Single Way to Interpret the Output 

Whether this is really a limitation or not is open to question.  It 

would certainly be more convenient if one summarization could answer all 

our questions about a cost estimating procedure's reliability and 

validity.  But this type of convenience is not even present in the use 

of regression theory, as can be seen from the several statistics that 
2 

must be calculated (e.g.,  R  , standard error of estimate, and prediction 

intervals).  Furthermore, the lack of such a convenient data summarization 

has the effect of forcing the analyst to examine the residuals (Table 9), 

something that should be done anyway. 

2. Lack of Ability to Uniquely Specify the Minimum Sample Size,  n  , 

for Historical Simulation 

As discussed in Sec. Ill C, the specification of a minimum sample 

size is not a trivial problem.  To be sure, there is a lower bound 

(depending on the number of PER parameters) below which the value of n 

cannot be defined, but this lower bound is just a starting point in the 

specification of n . 
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If too low a value is specified, there may not be enough degrees of 

freedom for initial predictions to be very meaningful.  On the other hand, 

too large a value of n  greatly diminishes the Historical Simulation 

output.  Each additional sample point included in the initial subsample 

deletes a row from the prediction and residual output matrices. Hence 

the analyst must specify n   to be the smallest number for which the 

estimating procedure, if valid, will have enough information from which 

to make reasonable predictions. 

3. Loss of Information in the Data Summarizations and Statistics 

Derived in Sec. IV 

Due to a lack of independence, summarizations suggested in 

Sees. IV B and IV C have only made use of one residual calculation for 

each sample point, usually the one-step residuals d  . .  Hence a great 
n+i 

deal of information goes unused.  Further research should be initiated 

to try to incorporate the unused information in the recommended summariza- 

tions and tests.  Some nonparametric statistical techniques might prove 

useful for the summarizations that do not depend on a particular estimating 

procedure while orthogonalization techniques could be applied to the 

residuals that are based on the Linear PER-Least Squares procedures. 

4. Lengthy Output Time Requirements for the Time Share Computer Model 

The output time requirements for operation of the computer model on 

the GE time sharing service seem undesirably long.  Thirty-one minutes 

of terminal time was required for the test run. Table 20, Appendix I. 

There are no inherent reasons for this.  It is probably possible to 

write the program or program output format more efficiently.  Another 

possibility is to convert the program to a non-time-sharing machine with 

more efficient output.  Since the program has been written in FORTRAN, 

this latter course should pose few problems. 
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5. Lack of Application in the Development of Actual CERs 

The usefulness of Historical Simulation will ultimately be decided 

by the analyst.  Several ways of using the output have been suggested in 

Sec. IV. Their value in selecting between several candidate cost 

estimating procedures and in hypothesizing new cost estimating procedure 

candidates can only be evaluated through their attempted application. 

From this process, it is expected that new uses of the output will be 

created and perhaps some of the suggested uses discarded. 

Some examples of the application of Historical Simulation are given 

in Volume 2 of this report.  They, however, do not serve to remove this 

limitation, as a much greater exposure is required to fully understand 

the practical worth of Historical Simulation.  Furthermore the author 

lacks the necessary understanding of either the data base or the example 

aircraft programs to fully utilize the Historical Simulation output. 

6. Lack of a Precise Understanding as to the Situations for Which 

Historical Simulation Will be More Valuable Than Regression 

Techniques 

Insights into the relationship between these two techniques have 

been achieved in Sec. IV C and Appendixes II and III.  The fact that 

there are situations in which Historical Simulation will be more valuable 

is clear (see Fig. 4, pg. 7l).  Also it seems clear that Historical 

Simulation provides a greater visibility (e.g., the identification of 

questionable sample points or the demonstration of successful extrapolations) 

than the usual regression techniques, even when the conclusions reached 

by the two techniques are the same. 

However, a precise understanding of all the possible situations for 

which one of the techniques is more valuable will probably never be 

reached. This fact leads to the final limitation. 
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7• llisturical   Simulation  is  Not   the  Ultimate  Answer,   Merely Another 

Tool 

Used in conjunction with such traditional methods as regression 

theory. Historical Simulation should improve the quality of our CERs. 

Furthermore, no technique, including Historical Simulation, will ever 

remove the necessity for the analyst,  lie is, in fact, an integral part 

of the evaluation procedure.  He must choose candidate estimating proced- 

ures, examine the output tables, choose loss functions and weighting 

schemes, etc.  Hence the best that can be done is to provide him with as 

many useful tools as possible to best perform his analysis. 

B.    ADVANTAGES 

Several unique advantages of the Historical Simulation procedure have 

been identified throughout this report.  These are summarized below. 

1. Historical Simulation Can Compare a Wider Class of Cost Estimating 

Procedures Than the Usual Regression Techniques 

Section 111 demonstrated the ability of Historical Simulation to 

evaluate any cost estimating procedure. 

2. Historical Simulation Provides an Easy-to-Communicate Summary Statistic 

Useful for Describing the Accuracy of a Prediction 

This summary statistic is average proportional (or absolute) error 

ur one of its weighted forms.  While it does not summarize all of the His- 

torical Simulation output it does describe how well the cost estimating 

procedure would nave predicted if it had been used in the past to make 

predictions of the now historical data. 

3. Historical Simulation Provides a View Independent of the Usual 

Regression Theory Approach 

This independent view is a consequence of the fact that Historical 

Simulation evaluates the ability of a candidate cost estimating procedure 

to predict the future from the past.  Historical Simulation does not 
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depend on how well   the candidate  cost  estimating procedure  fits   the  data. 

Consequences  of  this  are 

1. An  independent view of CERs  derived   from stepwise   regrassion 

2. Additional  information  to  help  hypothesize  a  new   cost   estimat- 

ing procedure candidate 

3. Exposure  of questionable  sample  points which  do  not   fit   in 

with  the  prior  data base  in  terms of information   content   for 

parameter  estimation and  in   terms  of  simulated  predictions. 

4. A demonstration of  the candidate  estimating procedure's 

ability   to extrapolate  from historical data  to make predictions, 

5. The possibility of uncovering  errors  in an  estimating 

procedure's  formulation which would not be  uncovered by   the 

usual  regression statistics,   e.g.,   Fig.   4,  page   71. 

C. RECOMMENDATIONS   FOR  FUTURE  EFFORT 

This   report  has  described   the work accomplished  to  date on   the 

development  of Historical  Simulation.     It   is  the author's opinion   that 

the procedure  has been developed  sufficiently  and offers  enough  advantages 

for it  to be  usefully applied by  those  analysts  in  industry and  government 

involved  in   the development of CERs. 

However,   as we have pointed  out   in  this  section,   there  are  limita- 

tions  that   should be  examined  so   that   the Historical  Simulation procedure 

can be more   fully developed  and hence more meaningfully  applied.     The 

future effort  required  should proceed  along   two  distinct  paths,   one 

theoretical,   the  other applied. 

On  the  theoretical side,   three  classes  of problems  can be  identified 

for  future  investigation, 

1. Incorporation of more of  the   residual output   into  the   suggested 

statistics  and tests:     Examples were discussed  in limitation  3. 
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2■ UeterminatLon  of the probability of selecting the wrong 

üstimatiqg procedure when using the Sec. IV B summary statistics 

(e.g., average loss) for ranking:  Monte Carlo techniques 

applied to the usually assumed statistical models for the 

candidate estimating procedures might be used for this 

investigation. 

3.   Determination of the theoretical distribution of the Historical 

Simulation residuals for estimating procedures other than 

Linear PER-Least Sf \ares Procedures:  Exponential PERs, 

Eq. 2,   utilizing a log-linear curve fitting technique are 

examples of alternative estimating procedures that should be 

exp Lored. 

On the applied side, the use of Historical Simulation in the 

development of CERs should be encouraged.  This work should be carried 

out by individual analysts engaged in the development of CERs, for only 

they will have the knowledge of their data base and of the pnysical 

makeup of the class of procurements under investigation necessary to 

Interpret the Historical Simulation output and to hypothesize new cost 

estimating procedure candidates.  Of course, reporting of the successes, 

failures, or extensions of the Historical Simulation procedure which are 

discovered in specific applications should also be encouraged. 
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APPENDIX I 

COMPUTER PROGRAM DESCRIPTION—LINEAR 
PER-LEAST SQUARES CLASS EXAMPLE 

A.    GENERAL REMARKS 

In this appendix the relationship of the Historical Simulation 

procedure to an estimating procedure is described in detail by examining 

a computer program developed for Historical Simulation.  This program 

has been written in FORTRAN for the G.E. Time Sharing Service, MARK I; 

the main program is listed in Table 17.  In describing this program the 

flow diagram of Fig. 5 will be followed.  The figure is divided into two 

parts.  On the left, under the title of Main Program, are those calcula- 

tions which are not dependent upon a particular estimating procedure. 

To these operations the calculations peculiar to a given estimating pro- 

cedure are added, as portrayed in the right side of Fig. 5, under the 

heading Estimation Procedure, 

In theory, a set of operations should be supplied for each estimating 

procedure being tested, but fortunately ic appears that these operations 

can be more get ^rally written around classes of estimating procedures.  As 

an example, a set of operations written for estimating procedures which 

use the least squares fit technique and a (multivariate) linear PER will 

be discussed.  The multiple linear regression model is usually assumed 

for this class of estimating procedures and the class has been referred 

to as the Linear PER-Least Square Procedures. 

In writing the program the operations under Estimation Procedure 

were organized into four subroutines.  Since this organization will 

probably be useful for any estimating procedure (that can be automated), 

it will be useful to document it here.  The subroutine names, appropriate 

box numbers from Fig. 5, and table numbers for a complete listing of the 

programs are listed in the following table. 
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MAIN PROGRAM 

4b 
SET UP 
NEXT 
HISTORICAL 
SAMPLE 

INPUT 
DATA 
BASE 

SET 
UP 
USABLE 
DAT/. 
BASL 

4a 
SET UP 
INITIAL 
HISTORICAL 
SAMPLE 
BASED ON 
MINIMUM 
SAMPLE  SIZE 

CALCULATE ANY 
DESIRED ITERATION 
OUTPUT STATISTICS 
VALID FOR TECHNIQUE 

MAKE 
P-EDICTIONS 
A ,D STORE 
DATA FOR 
SUMMARY 
STATISTICS 

YES 

ESTIMATION PROCEDURE 

ESTIMATION 
PROCEDURE 
DESCRIPTION 

USE TECHNIQUE TO 
CALCULATE PARAMETERS 
OF P E R ? 

6a 

8b 
i_L 
CALCULATE 
PREDICTIVE 
STATISTICS 
PECULIAR TO 
TECHNIQUE 

PROGRAM PASSES TP 
NEXT STAGE 

INFORMATION ONLY IS 
PASSED 

ITERATION ONE SAMPLE 
POINT AT A TIME UNIT 

Igure 5(1').  Relationship of Historical Simulation and the Estimation 
Procedure 
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Subroutine Operation Number Program Listing, 
Name (from Figure  5) Table Number 

DESCP 2,   10 18 

TECH 5,   6a 19 

EST 6b 18 

SST 8b 18 

In Table 20, an example is given of the Historical Simulation out- 

put (using a Linear PER-Least Squares procedure).  The data do not rep- 

resent any real data base and the reader is therefore cautioned about 

drawing conclusions.  Examples with aircraft and helicopter data are 

given in Vol. 2 of this report. 

As the program is being discussed, reference will frequently be 

made to Tables 17 through 20.  The contents of Tables 17 through 19 

will be referred to by line number.  The contents of Table 20 will be 

reterenced by output group (numbers 1-7 in the left margin). 
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TABLE  17 

MAIN PROGRAM 

HISS 

,I = 1,NUMS) 

,.1) ,J-1,NUMV1) ,1 = 1,NUMB) 

0 SFILE   RUNDAT.TOTDAT 
1 COMMON   [DV(6),N1V,EMU(7),RDATA(42,7),VAL(6), 
2 +AINV(7,7) ,AVG(7),SSE 
3 DIMENSION  DATA(42,7),REST(^2,7) ,ITBAT('i2) ,NORDE(A2) >NW(42) 
4 EQUIVALENCE   {DATA,REST) 
9C SAMPLE INPUT AND TIME BATCHES 
12 READ(l),NUMV,SUMS,OUT,NUMT 
13 NUMV1=NUMV +   1 
U READ(l),(ITBAT(I) ,1 = 1,NUMT) 
15 15     READ   (1) ,(NW(I),I=1,NUMS) 
17 17     READC) ,((DATA(I,J) ,J=1,NUMV1) ,I = 1,NUMS) 
18 READ   (2),NORD 
19 1F(N0RD -   1)   29 
20 READ(2),(NORDE(I) 
21 REWIND  2 
2 2 READ(2),((RDATA(I 
25 DO   25,   I=1,NUMS 
2b DO  25,   J=1,NUMV1 
27 DATA(NÜRDE(1),J)   =   RDATA(I,J) 
28 25     RDATA(I,J)=0 
29 29      REWIND   2 
J0 IF   (3-OUT)40 
31 PRINT, 
33 PRINT," 
37 PRINT   28, 
Ul 28   FORMAT(iHSMP. 
4 2 +/3HNO.,2 7X,8HX1 
5 3 DO   J2,I»1,NUMS 
57 32   PRINT    33,   1 ,DATA(I 
hi 3 3   FORMAT ( I 3, IX , .'.Fl 7. 
62 OUT-ÜUT+3 
65C OBTAIN  TECHNIQUE   DESCRIPTION 
h9 40     CALL   DESCP(MSAMS,NUMV) 
70 MVUS1V+1 
73C REDUCE   DATA   FOR  THIS  TECHNIQUE 
85 DO   h0,1=1 .SUMS 
8b RDAlAd ,NIV1)=DATA(I ,NUMV1) 
87 DO   h0,J= I ,NIV 
88 K-IDVCJ) 
84 60   RDAIAC 1 ,,1)   =   DATA(I 
101C SET   UP   FIRST  SAMPLE 
105 IFCMSAMS-NUMS)85,85 
109 PRINT," 
1 1 3 STOP 
117 85   NUMSl   =   « 
12 1 DO  90,   1 = 1 ,NUMT 
125 ORCSS-NUMSl + lTBATd) 
129 IF   (ORC.SS-MS,\MS)90, 100 
133 90   NUMSl=NlMS.-dTBAT(l) 
1 5 7C SET   UP   SAMPLES 

SAMPLE  DATA" 

9X,9HACT.   VAL.,25X,I9HVAL.   OF  INDEP. 
(4,7) ,9X,8HX2,(5,8) ,9X ,811X3 , (6,9) ) 

VAR. 

NUMV+1) ,(DATA(1 ,J) ,J = 
,F36.2,2F17.2,F36.2,: 

1,NUMV) 
F17.2) 

,K) 

SAMPLE   TOO  SMALL" 

100 
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TABLE   17  (cont'd) 

MAIN  PROGRAM 

HISS CONTINUED 

141 
U3 
145 
149 
153 
157 
161 
177 
181 
188 
189 
193 
197C 
201 
209C 
216 
217 
220 
221 
225 
226 
233 
2 39 
2 40 
2 50 
251 
252 
251 
254 
255 
25h 
25 7 
2 60 
26 1 
265 
277f 
281 
285 
289 
2 9 ) 
;c)»i 

24 7 
101 
103 
304 
104 
110 
118 
119 
120 
122 
32 1 
325 
126 
12 7 
150 
151 
900 
9 16 
4 3H 
440 

100 DO 430,JA=I ,NUMT 
PRINT; PRINT; PRINT, 
NUMS1 - NUMS1 + ITBAT(.IA) 
lF(NUKr-.IA)lI0,I2fl,130 
110 PRINT," P\MPLE  SET   JP WRONG" 
STOP 
120  PRINT," ENTIRE  SAMPLE USED" 
130 PRINT  I36,NUMS1 
136     FORMAT(I4HSAMPLE   SIZE -   ,13) 

X-l. 
CALL  TECH(OUT,NUMSI) 
PRINT, 
TEST TO SEE IF DONE 
IF(NUMT-JA) 110,410 
SET UP  PREDICTION  OUTPUT;   CALC.   STAT. 
NUMS11-NUMSI + 1 
DO 200,1-NUMSll ,NUMS 
REST(I,5)-RDATA(I,NIVI) 
DO   I67,J-I,NIV 
167  VAL(J)   '   RDATA{I,J) 
REST(I,1).R£ST(I,5);REST(I,2)-EST(X);RE5T(I,6)-RF.ST(I,2) 
CALL  SST(REST(I,5),R£ST(I,6),NUMSI) 
REST (I ,3)-REST (1,2)-REST (1,1) 
200     REST(I,4)»R£ST(I ,3)/REST(I ,1) 
IF(5-OLrr)   400 
PRINT, 
PRINT," 
PRINT, 
PRINT   185, 
DO  40O,I.NUMS11 ,NUMS 
PRINT     190,(REST(I,J) , 
400     CONTINUE 
185     FORHAT(6X.6HACTUAL,5X,aHF.STIMATE,3X,10HDIFFERENCE,2X, 

+9HPROP.ERR. ,4X,6HSTAT. 1 .'.X, 6HSTAT. 2) 
190     FORMAT (6FI 2. 1) 
FINAL  OUTPUT 
■.10   PRIST, 
PRINT," 
NSW   •   0;   APE   •   0. ;    HI A 

PRINT   185, 
ORGSSl    -   ORCSS+l 
DO   4 10   l-ORC.SSl ,NUM': 

PRINT   190,(REST(I,I    ,J- 
APE   -   APE  +ABSF(RFST( I , 
-35     HIA -   BIA  *   REST( 1 
- 10     NSW   -   NSW   +   NW( 1 ) 
PRINT;PR1'.T; 
APE   ■   APE'NSW;      RIA   -    BIA   NSW 
DO   4 17   I   -   ORC.SSl ,NUMS 

RED  -   ABSFUESTd ,4)1   -   APF 
SKI   =   SKI   +   NW(I1*RED**2 
UV     SK2  -   SK2  +  NW(I )*RED** I 

P.IEDICriONS' 

.J-l,6) 

FINAL 
J. ;    SK 

OITPUT" 
I   -  «.; 

1 ,10 
i))*NW( I I 
,4)l*NW( 1 ) 

PRK. 
PRINT 
PRINT 
CO  TO 

END 
SUSE HISS! 
SUSE HISS1 
SUSE HI5SI 
SOFT   SIZE 

"AVE.    PROPORTIONAI    ERROR 
"BIAS 
"SKEWNESS 

17 

,APF 
,B1A 
.SK2/SK1* ■1.5 
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TABLE 18 

HISS   3 

THREE   SUBROUTINES 

11SS3 

335     SUBROUTINE  DESCP(MSAMS.NUMV) 

339 COMMON   IDV(fa),NIV,EMU(7) ,RDATA(42,7),VAL(6) , 
340 +    AINV(7,7),AVG(7),SSE 
347C   SPECIFY MINIMUM  SAMPLE   SIZE  AND   INDEP.   VARIABLE 
351   REAU(l) ,   NIV 
359 MSAMS=NIV+2 
363  DO  518  J=1,NIV 
366 READ (1),IDV(J) 
367 518 IF(NUMV-1DV(J)) 545 
375C OUTPUT TECHNIQUE 
379 PRINT; PRINT, 
387  PRINT," LINEAR PER - LEAST SQUARES" 
391 PRINT 535>NIV,(IDV(J),J=1,NIV) 
395   535   FORMAT(20HNO.   OF  INDEP.   VAR,=   , 11,3X)18HVARIABLE 
399  +  NOS.   ARE   ,913) 
403 
407 
411 
415 

RETURN 
545   PRINT," 
STOP 
END 

UNDEFINED   VARIABLE  CALL   IN  DESCP" 

4 3.! 

4 3o 

.0 

420   FUNCTION   EST(X) 
424     COMMON     IDV(6) ,NIV,EMU(7),RDATA(42,7),VAL(6) , 

+ AINV(7,7),AVG(7),SSE 
EST=EMU(NiV+l) 
DO   555,   J=1,N1V 
55 5   EST=KST+ EMU(J)* VAL (J) 

444   RETURN 
44 8   END 
j80   SUBROUTINE     SST(S1,S2,   NUMS1) 

COMMON   11)V(6) )NIV,EMU(7) ,RDATA(42,7) .VALCb) , 
+  AINV(7,7) ,AVG(7).SSE 
TTEST   OF  NEW  POINIS 

rvSL 
5bJ 
584C 
585     SID=   (L.+l./FL0ATF(NUMS1))*SSE*A2 
)ri(.   DO   J1

'0,    1 = 1 ,N1V 
587   DO   590,   .;=1,N1V 
5li0   590   SI D=S I D+ (VAL (1) -AVG (I)) *A1NV( I, J) * (VAL (J) -AVG (J)) 
5in      SI   =   SSE*CS2-S1)/S1D*''C .5 

■MJC     NO   SECOND   STA1 I STIC 
i9ti     S.'   =   0. 
.WS   RETURN 

'.l<w   END 

88 UNCLASSIFIED 
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I 
TABLE   19 

11ISST I 

SUBROUTINE  TECH I 

11 ISST 

600 SUBROUTINE TECH(OUT,NUMS1) 
601 COMMON     IDV(6)>NIV,EMU(7) ,RDATA(42)7),VAL(6) , 
602 + AINVC?,?),AVG(7) .SSE 
608  NIV1=NIV+1 
610C  CALCULATE ARITHMETIC MEANS 
615 DO 630,I=1,NIV1 
620 AVG(I)=0. 
621 DO 625,J=1)NUMS1 
625 625 AVG(I)=AVG(I)+RDATA(J,I) 
6 30 630 AVG(I)=AVG(I)/NUMS1 
650C CLEAR CROSS PRODUCT MATRIX AND VECTOR 
651 DO 655 I=1,NIV1 
652 EMU(I)=0, 
653 DO 655 J=1,NIV1 
655 655 AINV(I,J)=0, 
670C FORM CROSS PRODUCT MATRIX AND VECTOR 
671 DO 680 1=1,NIV 
673 DO 677 J=1,NUMS1 
674 EMU(I)=EMU(I) + (RDATA(J,NIV1)-AVG(NIV1))*(RDATA(J,I)-AVG(I)) 
676 DO 677, K=I.NIV 
67 7 677 AINV(I,K)=AINV(I,K)+(RDATA(J,I)-AVG(I))'-(RDATA(J,K)-AVG(K)) 
678 DO 680,K=I,NIV 
680  680  AINV(K,I) = AINV (I,K) 
700C INVERT MATRIX 
702 CALL MTINV(D,ID) 
703 IF (ABSF(D)-.00001)863 
705C SET UP ESTIMATOR VECTOR 
710  EMU(NIV1)=AVG(NIV1) 
712 DO 720, 1=1,NIV 
720 720 EMU(NIV1)=EMU(NIV1)-AVG(I)*EMU(1) 
721 EVAK = 0.; KBAR =0.; EEX = 0. 
722 IF(-XABSF(OUT-4)) 741 
725C   ESTIMATE  VARLMsCK;   OUTPUT   ESTIMATES 
727 PRINT," SAMPLE" 
728 PRINT   730, 
7 30   7 30   FORMAT (5X,(:HACTUAL, I 2X,8HESTIMATE,10X>10ilDlFFERENCE,5X, 
7 31   +13MPROPÜR.   ERROR) 
740 740     FORM/Vi'(El3.5,2El9.5,E17.5) 
741 741     DO  755,1=1,NUMS1 
743 DO   745,J=1,NIV 

UNCLASSIFIED 89 
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TABLE  19   (cont'd) 

HISST 

SUBROUTINE TECH 

ilSST CONTINUED 

74^   745   VAL(J)=RDATA(L,J) 
747 E=EST(D);A=RDATA(1,NIV1) ;B=E-A;C=B/A 
748 IF(-XABSF(üUT-4))750 
74lJ   PRINT   740,   A,   E,   B,   C 
750 750     EBAR =  EBAR +   (A -   AVG(NIVl))**2 
751 EVAR  =   EVAR +B^2 
755   755EEX=EEX+(E-AVG(N1V1))^2 
760C   CALCULATE  ÜUTPUl   STATISTICS 
780   780 PRINT, 
790   SSE=(EVAR/(NUMSl-NlVl))',>-',= .5 
800 800FORMAT(2011STD.   ERROR  OF EST.   =,E15.5,10X, 
801 +12HR  SQUARED =   ,E15,5) 
805C   SET   UP  VAK  - COV  MATRIX 
800   DO  810,   K=1,NIV 
810   810  VAL(K)   =  0. 
820   DO  825,   K=1,N1V1 
824 DO  825,J=l,   N1V 
825 825   VAL(K)   =  VAL (K)-ArNV(K , J) ÄAVC;(J) 
827 VAL(N1V1)=1/NUMSJ 
828 DO   8J0,   K=1,NLV 
8J0   830   VAL(V'1V1) = VAL(N1V1)-VAL(K)'<AVG(K) 
8J5   DO  840,   K=l,NIV 
8 Jo   DO   8J7 ,   J=l ,N1V 
.^J7   837   AINV(K,J)   =   A1NV(R, J)'■>SSE-*2 
840     840     A1NV(MV1 ,K)=VAL(K)''--SSE'-'^ ; A1NV(K,N IV1)=AINV(NIV1 ,K) 
845  A1NV(N IV1 ,N1V1 )=VAL(N IV I)''>-'_,SE'tA2 
8-4()     PRINT, 
84 7      PRINT," SUB   SAMPLE  STATISTICS" 
8-8 PRINT, 
.-v.'i PRINT     800,   SSI .LEX/EBAR 
,s50 PRINT, 
85 1 PRIM   8(>0,NL'MS1-N1V1 
o >.' DO   8 5 i, 1-1 ,N IV 
o.i   8;i   PRINi   SM , i .i.Ml'i, 1) .TiML'C 1)/A1NV(1 , l)";t,'c.5 
^ i .     PRINT   M-j.l.MiV.lVl ) 
8 )/      Rl 1 PRN 
M.vl   M.0P()RM\I (8ÜVAR1ABI.T., I1X /JUPAR.-VMETER, 15X ,(iliT TEST , 14X ,6110 . F. 
SM   8hl    KOR>L\T( JA .12, iX , iF20.5) 
,-,i>2      hh2      FORMAT (SliCON ST/VN T, F20. 5) 
.,.. i --i j pRiN'i ,"1)1-.TI.RM=ZI:RO" 

MI i      RE IL'PN 
:-.;I/I   1 Nl) 

= ,13) 

9Ü UNCLASSIFIED 
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i ■ 

TABLE 20 

EXAMPLE DUTPUT 

SAMPLE  DATA 

SMP. ACT.   VAL. VAL.   OF   INDEP. VAR. 

NO. XI,(4,7) X2,(5,8) X3,(6,9) 

1 95.00 1996.00 178.00 153.00 

2 31.00 96 7.00 204.00 144.00 

3 60.00 24U.00 217.00 149.00 

4 82.00 4418.00 201.00 144.00 

5 25.00 852.00 172.00 107.00 

d 6 7.00 2072.00 215.00 136.00 

7 243.00 10408.00 221.00 177.00 

8 54.00 2643.00 258.00 160.00 

9 112.00 3786.00 211.00 172.00 

10 106.00 3335.00 2 80.00 203.00 

11 183.00 6374.00 305.00 196.00 

12 156.00 7092.00 294.00 187.00 

13 177.00 

LINEAR  PER- 

10304.00 

■LEAST  SQUARES 

280.00 167.00 

NO.   OF INDEP.   VAR.   =  2 VARIABLE  NOS, ARE        1 3 

SAMPLE   SIZE 

ACTUAL 
.95090E+02 
.3100aE+02 
.60aa0E+02 
.82000E+02 
.25a0aE+02 

ESTIMATE 
.67981E+02 
.50156F+02 
.69160i:+a: 
.86038-+02 
.19666E+02 

DIFFERENCE 
2 7019E+02 
19156E+a2 
91599E+91 
40 380E+ai 
5 i344E+01 

PROPOR.   ERROR 
-.28441£+00 

.6179iE+00 
,15267F+00 
.49243E-ai 

- ..' 1 I 18E+00 

STD.   ERROR  OF   EST. 

SL'B   SAMPLE   STA! 1ST1CS 

. 2..755F.+9: R   SOI, 

5   • 
VARIABLE PARAMETER T   TEST 

1 01040 1 .08495 
2 711 7 5 1 .l)5<)Hh 

CONSTANT -1 ) 489') ■. 

PREDICT I UNS 

ACTUAL ESTI MAT! 1)1 FIT KIM 1 PROP . i KK 

6 7.008 55. 31 1 - 1 ;. f.HM - . 1 7. 

24 3.008 174.447 -(iH.55 1 - .: H ; 

54.098 80.2 50 26.2 50 . 4SI. 

112.008 101.6)6 -10.  U- - .09 ) 

106.880 12 1.490 15    .40 . Ul 

183.088 14 7.54h - 15   4 5M - . 1').. 

156,080 14 7.886 -8.114 - .052 

17 7.080 165.448 -11.552 - .OhS 

.4H1 +00 

I A .;           si Al.; 

.0 M:             .000 

.000 

..0                       000 

.000 

.000 

1  " 05*                    .000 
-  1 .000 
-  1 'I.                     .000 
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TABLE 20 (cont.) 

EXAMPLE OUTPUT 

SAMl'l.K   SI/.K   =        1) 
SAMPLE 

ACTIAI. ESI IMA IE DIFFERENCE PROPOR.   ERROR 

4')U(i)Dl-.+(|)- . h')S i'.E+UJ -.25'.fe5E+(J2 -. 2fa80(,E+i)(J 

U^yKK+KJ .') 18(i 1E+1)J . 2(JH(>1E+(J2 (>7 30(JE+(J0 

hdHJ^^l-'.+WJ . ma^sE+u: .H)H5')E+(J2 18098F+00 

HJ(J(J«l>l3J .HH(i).'.HE+tf.' .6(J479E+(ai 73754E-01 

j'j0yyE+(jj .11 ihAE+BJ -.2(>364E+(3I -. 1054f,E+00 

^ 
b;onyK+a'j . 57 3iJE+«2 -.%h82E+01 

- 
U4S0E+00 

SUH   SAMPLE   STATISTICS 

r  STD KRROR OF  EST = .211J4E+MJ R  SQUARED  = .(,499 JE+00 

1   VARIAU1.K ARAMETER T   TEST' O.K.   =     3 

1 .»ItfA« 1.28JM7 

j . 71,^7» i.jnim 

[   CON ;TANT -hH. I')J 17 

PREDICTIONS 

f 
Al'Tl'Al. ESTIMATE        U1FFERKSCE PROP,ERR. STA' .1 STAT.2 

Jt J.0(J0 1 ,'(. tJia            -im .'IIP -.2 7b -21 710 .000 

s-.tf(W SI (i 7 J               J 7 .'i?.' .■,12 
1 , f>00 .000 

1 1J . iJOfl in: H)J                -4 . it,; -.(JH2 -(, klU .000 

10h.(J(J9 i: i M»                 1 =) .Htt'l . l-.'i 7 621 .000 

1 M 1. MU l-.S )J 1              - 1.. . h 7'' -. 19(1 -Ih (,95 .000 

IS" .flHl3 UH .i) h; .(3H -.n; . - \ 32» .000 

w:.«yn lii ,' . i'>.'           -'i . I'-.h -.J-,, - 1 125 .000 

\i ;IAI ! - I 1 ".A 11 1)1 FFI Rl SCI PROPOR.    ERROR 

' .0001 •0.' , '.^',11011^; - ..,'.0..0I-'-0.' -.2;4I0|-.+00 

1100JI •*: . .-.■■,.1 n'.' .   1   1.    Wl   *-0.' 42 7541<00 

0000^.«. ■ IS'tSI .0. . i i.-' -i »j: .'.'1,5hi «-00 

■,.000^0.' . I0SH2I .0 1 .: H • 7i -i-n.' 2904 5E+00 

' '000' •0.' 11.0"-i ".y - .,S.,0.'.! »Jl - r.t.i.'i •■00 

■000H-0. .  ,M l.'.'l »-0.' - .H'. 'M .K+0; - I ."15 IE+00 

.   i0JI   »0   1 ..' r.-'hi »0 i -. ;0 .-.oi »0; - .'H9H7K-0I 

KKi'K   ■■'    1 

AY    ■ AM!'I I       ! M I - 1 ! i ■■ 

| .■ , .1 «i ' V     ■■ '1 AKI 1) 

\R,\M1 

.01 

i   : i -1 
, , ■ M ^. 

.   10-'.. 

,')... Ihl .00 

D.K.   ■      . 

000 
,011J 
000 

. 000 
, 000 
, 000 

Kl Oil 1 IONS 

.A 1 \ 

1 H 

'.11 KFKRI M ! 

.' . 7,'H 

"KO '.IHR. 

.02 1 

.20" 

si A; 

10 

I 

950 

s I A r. ' 

.000 

. 00V' 

2 2',' 

,   , .0.0- 

i I '' i 

..'-11 

-  1 

7 0 
1 . 

5 .'H 

181 

2Y0 

.0M2 

.000 
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TABLE 20 (cont.) 

EXAMPLE OUTPUT 

SAMPLE SIZE -       8 
SAMPLE 

ACT1IAI ESTIMATE DIFFERENCE PROPOR.  ERROR 

.95000E+02 

.31000E+02 

.60000E+02 

.60224E+02 

.36792E+02 

.671I3E+02 

-.34776E+02 
.57921E+01 
.71127E+01 

-.36606E+00 

.18684F.+00 

. 11855E+00 

J .82000E+02 .1050IE+03 .2 300BE+02 .28059E+00 

.25000E+02 .21808E+02 -.319I5E+01 -. 12766E+00 

.67000E+02 .55887E+02 -.I1I13E+02 -.165R7E+00 

.2'i300E+03 .23475E+03 -.82505F,+01 -.33953E-01 

.54000E+02 .75418E+02 .21418E+02 . 3966 3E+00 

SUB   SAMPLE  STATISTICS 

STD.   ERROR OF  EST.   = .22286E+02 R  SQUARED  = .92572E+00 

VARIABLE PARAMETER T TEST D.F.   =     5 

i 1 .01977 5.16064 

2 .3A353 .58173 

. CONSTANT 31.79035 

PREDICTIONS 

ACTUAL         ESTIMATE DIFFERENCE      PROP .   ERR.            STAT.l STAT.2 

112.00a          102 134 -9.866 .088                  -8.038 .000 

106.000         103 869 -2.131 .020                  -1.165 .000 

* 183.000          161 536 -21.464 .117                -14.648 .000 

156.000          172 637 16.637 .107                   12.691 .000 

177.000          229 258 52.258 .295                   37.294 .000 

i ■ SAMPLE SIZE  -       9 3 1 SAMPLE 

ACTUAL ESTIMATE DIFFERENCE PROPOR.   ERROR 

.95000E+02 .62293E+02 -.32707E+02 - 344 29E+00 

. 31000E+02 .38348E+02 . 7 3480E+01 2 3703E+00 

,6a00aE+02 .68574E+02 .85741E+0I I4 290F.+a0 

.820a0E+02 . 10507E+03 . 2 3069F.+a2 28133E+00 

' 2 5(8BaF+02 .1947 iE+02 -.55266E+01 - 22106E+00 
>   •-   ** V f V *■-  '  f *~ 

.f)70a0E+02 .'>hll21>0: -.10888F+Ü2 - U.2 51E+00 

.2A3aaE+03 .2 )' ; !E+0 1 -.727101.+01 - 2M92 2K-H1 

.5i000E+02 . 77952L+02 . 23952E+02 ^415 5F+00 

^                    .11200E+03 . 10545F.+0 1 -.I)'IH') !F.+01 - . -IM.. /I,t .l/l\ 

SUB  SAMI'l.l   STAI I ST III 

f   STD.   ERROR  OF  LSI . • .J0h0 7l -H 12                                 K   Si.UAKlI '   '                          .l»;5 5Sl+00 

|   VARIABLE PARAMETER 1    ! 1 S I D.F.   =     'i 
b 

1             I .0193) 5 . ," ■. H 8 1 

1            2 500) .')' 1 ;0 

[ CONSTANT -«. 52 2 i 

PREDICTIONS 

|                           ACTUAL ESTIMATE       DIFFERENCE PROP   ERR.             STAI.1 STAT . 2 

106.000 110 .682                  4.hH2 .04 4                    2.881 .000 

b \                       18 3.000 166 .287           -16.71) -.091              -12.4h5 .000 

156.000 176 .119             20.119 .129                16.260 .0.0 

|                       17 7.000 229 .218             52.218 .29r-                 17.26h .0 00 

UNCLASSIFIED 93 
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TABLE  20   (cont.) 

EXAMPLE  OUTPUT 

{ 

i.   . 

SAMPLE   SIZE  = 

ACTUAL 
.9 5000E+02 
. 31.000E+02 
.60000E+02 
.82000E+02 
.25000E+02 
.h7000E+02 
.24 300E+03 
.5A000E+02 
.11200E+03 
.10b00E+03 

10 

ESTIMATE 
.61592E+02 
.37856E+02 
.6O175E+02 
. 10540E+03 
.20817E+02 
.56285E+02 
.23582E+03 
.77053E+02 
.10'i22E+03 
.10778E+03 

SAMPLE 
niFFERENCE 

-.33408E+02 
.68557E+01 
.81745E+01 
.23398E+02 

-.41830E+01 
-.10715E+02 
-.71777E+01 

.23053E+02 
-.77804E+01 

.17826E+01 

PROPOR.   ERROR 
-.35166E+00 

.22115E+00 

.13624E+00 

.28534E+00 
-.16732E+00 
-.15992E+00 
-.29538E-01 

.42691E+00 
-.69468E-01 

.16817E-01 

STD.   ERROR OF  EST. 

VARIABLE 
1 

CONSTANT 

SUB  SAMPLE   STATISTICS 

.19110E+02 

PARAMETER 
.01957 
.39968 

-38.62356 

R SQUARED 

T TEST 
7.27017 
1.A013I 

.926i3E+00 

D.F.   =     7 

PREDICTIONS 

ACTUAL 
18 3.000 
156.000 
17 7.000 

ESTIMATE 
164.46A 
174.919 
229.790 

DIFFERENCE 
-18.536 

18.919 
52.790 

PROP.ERR. 
-.101 

.121 

.298 

STAT.1 
-15.670 

16.232 
38.056 

STAT.2 

.000 

u-, UNCLASSIFIED 
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TABLE 20 (cont.) 

EXAMPLE OUTPUT 

SAMPLE  SIZE -     11 

ACTUAL 
.95000E+02 
.31?00E+02 
.60000Et-02 
.82000E+02 
.2 5900E+02 

i,  < .67000E+02 
.24 300E+03 
.5A000E+02 
.n200E+03 
.10600E+03 
.18300E+03 

'   STD.   ERROR OF  EST.   - 

VARIABLE 
1 
2 

CONSTANT 

SAMPLE 

ACTUAL 
156.000 
177.000 

ESTIMATE DIFFERENCE PROPOR.   ERROR 
.62508E+02 -.32A92E+02 -.34202E+00 
.37831E+02 .683UE+0I .22037E+00 
.68B69E+02 .88691E+0I .U782E^00 
.10615E+03 .2AU8E+02 .29449E+00 
.17849E.02 -.71508E+01 -.28603E+00 
.55878E+02 -.11122E+02 -.lhf>00E+00 
.24052E+03 -.24813E+01 -.I0211E-01 
.78666E+a2 .24666E+02 .45J/OE+00 

.10704E+03 -.496A3E+01 -.44 124E-01 

.11294E+03 .69421E+01 .65492E-0I 

.16975E+03 -.13247E+02 -.72388E-01 

SUB  SAMPLE STATISTICS 

.18715E+02 R   SOUARKD .9 34b8E+00 

PARAMETER T  TEST D.F.   ■=   8 
.01980 7.54797 
.47853 1.81979 

-50.22009 

PREDICTIONS 

ESTIMATE           DIFFERENCE PROP.ERR. STAT.l                   STAT.2 
179.bb0                 23 660 .152 21.020                       .000 
233.675                 56 6 75 .320 4 1,525                       .000 

SAMPLE   SIZE -     12 

ACTUAL 
.9 5000E+02 
.31000E+02 
.60000E+02 
.82000E+02 
.25000E+02 

t,  < .6 7000E+02 
.24 3fl0E+03 
.54000E+02 
.11200E+03 
.10600E+03 
.18300E+03 
.15600E+03 

STD.   ERROR OK  EST. 

VARIABLE 
1 
2 

CONSTANT 

SAMPLE 

ACTUAL 
177.000 

ESTIMATE DIFFERENCE PROPOR.    ERROR 
.62046E+02 -.32954E+02 -.34689E+00 
.38348E+02 .7 34 79E+01 .2 3703E+00 
.68246E+02 .82456E+01 . I374 3E+00 
.104 32E+03 .22315E-r02 .272I3E+00 
.19590E+02 -.5409 51+01 -.21638E+00 
.55890E+02 -.11110E+02 -.16582E+00 
.23358E+03 -.94150E+0I -.38745E-01 
.77546E+02 .23546E+0: .43604E+00 
.10477E+03 -.72346E+01 -.64595F.-01 
.11002E+«3 .401H2E+01 . i790aE-01 
.16498E+03 -.1802 iE+02 -.98486E-01 
.17467E+03 .1P674E+02 . 11970E+00 

SUB SAMPLE  STATISTICS 

.I8985E+02 R   SOl'ARl.D «                         . 4 Jl) 7 

PARAMETER T   TEST D.E. 
.01912 7. 18470 
.44755 1.68706 

-44.58316 

PREDICTIONS 

ESTIMATE           DIFFERENCE PROP.ERR. S TA I , 1                      SI 
227.122                 50.122 .28 ) 17.721 .000 

UNCLASSIFIED 9 5 
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TABLE 20 (cont.) 

EXAMPLE OUTPUT 

r                           ENTIRE SAMPLE   USED 
3  -    SAMPLE  SIZE  =     13 

^ SAMPLE 
r             ACTUAL ESTIMATE DIFFERENCE PROPOR.   ERROR 

.95000E+02 .bA23AE+02 -.30766E+02 -.32386E+00 

.31000E+02 ,42177E+02 .11177E+02 ,36055E+00 

.(10000E+02 .68374E+02 .C3743E+01 .13957E+00 

.82000E+02 .97150E+02 .15150E+02 .18475E+00 

.25000E+02 .17056E+02 -.79442E+01 -.317 77E+00 

.Ö7000E+02 .54744E+02 -.12256E+02 -.18293E+00 
A   < . 24 300E+03 .21334E+03 -.29661E+(32 -.12206E+00 

.5A000E+02 .78946E+02 .24946E+02 .46196E+00 

. 11200E+03 .10471E+03 -.72932E+01 -.65118E-01 

. 10(i00E+03 .11704E+03 .11035E+02 .10411E+00 

. 18 300E+03 .16104E+03 -.21961E+02 -.12001E+00 

. 15600E+03 .I6681E+03 .10811E+02 .69304E-01 

.17700EI-03 .20539E+03 .28388E+02 .16038E+00 

5 - 

ST1).   ERROR  OF   ES1 

VARIABLE 
I 
) 

L  CONSTANT 

SUB   SAMPLE  STATISTICS 

. 21602E+02 R   SQUARED 

PARAMETER 
.01593 
.62944 

-d3. 866 5 3 

T  TEST 
6.88904 
2.22171 

90936E+00 

D.F.   =   10 

FINAL  OUTPUT 

7   < 

ACTL'Al. 
(>7.( 

243. 
54.000 

112.000 
10(..000 
183.000 
15(i.000 

177.000 

ESTIMATE 
55. 31 1 

17b.090 
85.44 1 

102.1 J4 
110.682 
1 64.464 
179.660 
227. 122 

DIFFERENCE     PROP.ERR. 

U'K.   PROPORTIONAL 
K I AS 

v  SKKWNKSS 

ERROR = 

-11 
-66 

31, 
-9, 

4, 
■18. 
23, 
50, 

6 89 
910 
441 
866 
682 
5 36 
660 
122 

.2027 

.0779 

. 1662 

-.174 
-.275 

.582 
-.088 

.044 
-.101 

.152 

.283 

STAT.1 
-10.631 
-21.710 

25.950 
-8.038 
2.889 

-15.670 
21.020 
37.721 

STAT.2 
.000 
.000 
000 
000 
000 
000 
000 
000 
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B. PROGRAM  INPUT 

Data  for   the  program are  stored   in  two   data  files   (for purposes  of 

compilation economy)   called  RUNDAT and  TOTDAT,     TOTDAT  consists  of   the 

data base,   i.e.,   the physical  and  performance   characteristics  and  cost 

of  the historical  procurements.     Each  row  of  the  data matrix  corresponds 

to one  procurement   (Table  21).     Each  of  the  procurements,   NUMS   in number, 

has associated with  it  a  cost  and  a  value   for  each  physical  and  performance 

characteristic.     If   there are  NUMV  characteristics,   then   there will  be 

NUMV+l  entries   for  each procurement,   and  hence   there will  be  NUMV+1   times 

NUMS numbers  in  the  procurement  data base. 

TABLE  21 

DATA  BASE ARRANGEMENT   IN TOTDAT 

Oldest 

Procurement 
Number 

1 

2 

3 

A 

Newest       NUMS 

Physical  or  Performance  Characteristic  Number 
1 2 3 4   NUMV Cost 

DATA ENTRIES 

NUMV:  number of Physical and Performance 
Characteristics 

NUMS: number of Procurements 
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For Historical Simulation, the procurements must be ordered in 

time, with the oldest in the first line of data.  If this is the order of 

the data in TOTDAT, then enter a zero after the data for the last pro- 

curement.  This value is used by an indicator variable NORD which leaves 

the data base alone when it equals zero. 

If, however, the data base has a different order, let the value of 

NORD equal one.  Follow this by NUMS numbers, one for each procurement 

indicating the transformation necessary to order the data in time. 

The data used in the test run are given in Table 22.  The data 

base is contained in the first 13 lines, 101-113, one for each procure- 

ment.  There are four entries in each line, as there are values for 

three independent variables and the cost for each procurement.  Hence, 

NUMS = 13 and NUMV = 3  for the test run.  The next entry, line 120, 

gives NORD a value of one, hence the data will be reordered.  The new 

ordering is given in line 121,  The first row of data, line 101, will 

become row 2, the second line will become row A and the fourth line will 

become row 1.  All other rows will remain the same. 

RUNDAT contains the remaining data arranged as shown in Table 23. 

The first entries describe the amount of data in TOTDAT.  They are the 

number of physical and performance characteristics, NUMV, and the number 

of procurements, NUMS. 

The next entry is an output designator called OUT.  The value 

chosen will dictate the output option for the run.  The options, together 

with the applicable value of OUT, will be described under data output. 

The next entries describe the time groupings of the data in TOTDAT. 

The first entry, NUMT, defines the number of time groupings.  It is 

followed bv Xl'MT numbers (stored in a vector called ITBAT) which tell 

how many procurements are in each grouping.  The effect of these numbers 
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TABLE   22 

TEST  RUN   DATA 

TOTDAT 13:19 LA "T"     0A/20/69 

101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
120 
121    2,4,3,1,5,6,7,8,9,10,11,12,13 

967,204,144,31 
4418,201,144,82 
2414,217,149,60 
1996,178,153,95 
852,172,107,25 
2072,215,136,67 
10408,221,177,243 
2643,258,160,54 
3786,211,172,112 
3335,280,203,106 
6374,305,196,183 
7092,294,187,156 
10304,280,167,177 

RUNDAT 13:lf LA"T"     04/20/69 

100 3,13,1,9 
102 5,1,1,1,1,1,1,1,1 
103 0,0,0,0,0,5,6,7,8,9,10,11,12, 
104 2,1,3 
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.ine   Number 

1 

2 

J 

4 

5 

4-i-K 
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TABLE 2 3 

RUNDAT DATA 

Data File Values 

NT'MV, NL'MS, OUT, NUMT 

Vector ITBAT (NUMT entries) 

Vector NW (NUMS entries) 

NIV, NIV numbers (characteristic identifiers) 

Repeat of line 4 for new PER 

Repeat of line 4 for final PER 

NUMV:   number of ciiaracteristics to be considered. 
Must have every characteristic called for 
by the PERs. 

NUMS: number of procurements in sample 

OUT: output designator 

NUMT: number of time batches 

ITBAT: vector for time grouping observations 

NW: vector for final output weights 

K: number of PERs 

NIV:    number of independent variables for a 
part i cu 1 ar PER 
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is to tell the program how many new procurements to include in the next 

sample that is to be given to the evaluation procedure.  If the sample 

previously used contained the first  n  procurements (from TOTDAT) and 

the next number in ITBAT is n„ , then the next sample to be processed 

will consist of the first  n1
+n9  procurements (from TOTDAT). 

The next entries are elements of the vector NW.  There is one 

entry for each procurement.  These are the weights that will be assigned 

to each residual for the calculation of Average Proportional Error and 

the other summary measures of bias and skewness (see Sec. IV B).  They 

can be integer weights as the computer will divide by their sum. 

The final entries in RUNDAT describe the PER to be used.  The 

first entry corresponds to the number of physical and performance 

characteristics, NIV, and is followed by NIV numbers identifying the 

specific characteristics.  For example, 2, 1, 3 would indicate that the 

PER consists of two characteristics and they are numbers 1 and 3.  These 

latter numbers will tell the program which columns of TUTDAT to consider. 

Provision in the program lias been made to evaluate more than one 

PER in each computer run.  Each PER must have the line of data just dis- 

cussed (i.e., NIV and NIV characteristic identifiers).  Tills is the only 

additional data needed, provided that nil the independent variables are 

included in TOTDAT. 

Test run values for RUNDAT are given in Table 22.  In line 

100, NUMV = 3, NUMS = 13, OUT = 1, Nl'MT = 9.  The time groupings (vector 

ITBAT) are given in line 102.  The first subsample will be 5 with one 

data point being added for each subsequent subsample. 

The third line of data contains the weights for each of the residuals 

No weight is given to the f-'rst 5, as no prediction o! then will be made. 

Weights for the remaining points are the subsample size from which the 
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prediction was made.  Thus sample point 6 will have a weight of 5, 

point 7 will have a weight of 6, and so forth. 

The final line of output indicates that the PER has two independent 

variables and they are variables 1 and 3. 

Most of the data are entered into the program in Step 1 (Fig. 5), 

Input Data Hase (lines 12-18, Table 17).  This includes all the data 

with the exception of NIV and the characteristic designators.  Ordering 

of the data base, if necessary, takes place in lines 19-28 of Table 17. 

In addition, the option to print the sample data from TOTDAT has been 

provided in lines 30-62, Table 17.  The form of this output can be seen 

in Table 20 [output (1)].  If there are more than three independent 

variables, their values will be printed under the values for XI, X2 and 

X3 (e.g., X4 and X7 would appear under XI, etc.). 

NIV and the characteristic designators are read in Step 2, Fig. 5, 

Kstimation Procedure Description (lines 351-367, Table 18).  The Step 2 

data define the particular PER to be used.  New PERs are also defined in 

Step 2 at the end of a loop from Step 10. 

There are no limits on the number of PERs that can be evaluated 

in a given run.  There are, however, upper limits on the number of pro- 

curements, NL'MS, and number of characteristics, NUMV.  These are 

currently programmed at A2 and 6; however, there is a tradeoff between 

them.  From what I have been able to gather about the MARK I G.E. 

Time Sharing System, for which Historical Simulation has been programmed, 

all admissible combinations of upper limit values for NUMS and NUMV, for 

which any of the possible "I'.R specifications (combinations of any subset 

ot" the NT'MV variables) can he run, are given in Table 24.  The table is 

stopped at NT'MV = 12 for the reason that NUMV = 13 would yield an 

NTMS = 1» and thus not all 13 variables could be used as NUMS > NUMV+1 

in order to lit the curves with a finite variance estimate.  No 
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advantage would be gained over the case when NUMV = 12 and it is possible 

to compile a larger sample (i.e., value of NUMS). 

TABLE 2A 

POSSIBLE UPPER LIMIT VALUES FOR HISTORICAL SIMULATION 
USING LINEAR PER-LEAST SQUARES 

If   NUMV = 

Then NUMS <_ 

If   NUMV = 

Then NUMS  < 

1 1 3 4 5 6 7 8 

183 115 83 63 51 42 35 30 

9 10 11 12 

26 22 19 16 

C.    CALCULATIONS AND PREPARATION FOR OUTPUT 

The actual program calculations are initiated in Step 2, Estimation 

Procedure Description (Fig. 5).  In addition to the PER specification, 

discussed in the last section, the minimum sample size is calculated in 

this step (line 359, Table 18).  The minimum sample size required depends 

on the PER and the technique being tested.  For Linear PER-Least Square 

procedures the minimum sample size equals the number of Independent 

variables in the PER (NIV) plus two (i.e., one larger than the number of 

parameters being estimated including the constant), so that escimates of 

variance are not infinite. 

The final task performed in Step 2 is to print out a description 

of the estimating procedure being used (lines 375-399, Table 18).  The 

output block (2), in Table 20, is printed out for Linear PER-Least 

Square procedures.  In addition to the name, "LINEAR PER-LEAST SQUARES," 
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thu l'l-'.K düscription consisting of number of independent variables 

(N1V = 2   in  the example) and the characteristic numbers (1 and 3 in 

the example) are displayed.  This block of output is repeated for each 

I'l'.lv evaluated in the run.  If a second PKK were evaluated in the test 

run, this block of output for the new PKR would appear after output 

block (7) in Table 20. 

The next operation performed by the computer is to Set Up the 

Usable Data Base (Step 5, Fig. 5).  The data matrix  entered in Step 1 

for TOTDAT is reduced in size  by excluding characteristics not included 

In the PKR defined in Step 2 (lines 73-89, Table 17).  For the test run 

(Table 2U) characteristic 2 is excluded from the rest of the PER 

eva1uation. 

Control is now passed to Step 4a (Fig. 5), in which the Initial 

Historical Sample Setup takes place.  In lines 101-133, Table 17, data 

groupings, defined by the vector ITBAT, are added until the sample size 

is greater than or equal to the minimum sample size defined in Step 2. 

The re may be situations in which the analyst wishes to specify a larger 

minimum sample size than the one automatically calculated.  This can be 

done by making the first entry in ITBAT (see Table 23) the size of the 

minimum sample desired. 

In the test run, NIV = 2 (line 106, RUNDAT Data, Table 22) and the 

lirst entry in ITKAT was 5 (first entry, line 102, same table).  If 

i'T,AT(l)   -'i, then the first subsample would have been equal to the 

minimum sample si/,e, N1V+2 = 4.  With ITBAT (1) = 5, however, the first 

.•,ii:-s,i".p 1 e si.-e is > [first output block (i). Table 20].  Hence the 

sample given to the estimation procedure consists of the first five pro- 

curements ol TOTliAT with values for characteristic 1, characteristic 3, 

and the actual cesl tor each procurement.  The sample size obtained is 

printed .Mil as the first data block (3), Table 20, 

in. UNCLASSIFIED 
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The final operation in Step 4a is a housekeeping chore.  A loop 

is set up for the remaining samples (lines 137-257, Table 17).  The loop 

initiates with the number of entries in ITBAT used up to achieve the 

minimum sample size and is entered as many times as there are entries 

left in ITBAT.  In the test case, the nu mber of time groupings in ITBAT, 

NUMT, equaled 9.  The values were 5, 1, 1, 1, 1, 1, 1, 1, 1.  One entry 

was used in setting up the initial sample.  The loop will therefore go 

from 2 to 9, resulting in eight more samples. 

The new samples are defined in Step 4b (Fig. 5), Set Up Next 

Historical Sample, as the loop is reentered (lines 143-181, Table 17). 

Observations are added to the sample being passed to the evaluation 

procedure by adding the next n observations from the data base (Step '■), 

n being defined by ITBAT.  For the test run this process results in 

sample sizes of 6 through 13 (the total sample for TOTDAT).  As each 

sample is set up its size is printed out [output block (3), Table 20] to 

indicate that the next iteration is being started. 

The sample defined in Step 4a or 4b is now passed to Step 5 

(Fig. 5), where the computer Uses the Technique to Calculate, the Param- 

eters of the PER.  In the test run, the technique is least squares, and 

the following operations are accomplished. 

•   Calculate arithmetic means of sample characteristics 

and costs (lines 610-630, Table 19) 

«   Calculate sample cross product matrix, i.e.. 

E(x 
ij - Xj)(xik - \)   (lines 650-680, Table 19)' 

Invert cross product matrix (Jine 702, Table 20) 
!'< jV 

it* 

This is analogous to the S matrix referred to in Appendix II.  The 
calculation is different in that the characteristic data are centered. 
The difference in the matrices is to prevent round-off errors from 
occurring in the computer (see Ref. 6, page 144). 

The program uses a matrix inversion routine that can be obtained fron: 
Ref. 11, program 9.6. 
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On  tlie   first   itertition   the  sample  being worked  on  is of  size  5 

(in  our   test   run).     At  each  succeeding  iteration  the  sample  expands   to 

obtain   new  PKR  parameter   estimates.     These  parameter   estimates   (calculated 

in   lines  705-720,   Table   19)   are  passed   to  Step   6b   (by  use  of  the  common 

package)   and  define   the   CKR  for   that  iteration.     In  addition,   the arith- 

metic   means   (lines   610-6(0,   Table   19)   are   retailed   for  use  in  Step   8b 

(by   the   common  package). 

Control   is  now passed   to  Step  6a   (Fig.   5),   where   the machine 

Calculates  Any  Desired  Iteration Output  Statistics  Valid  for  the Technique. 

A minimum output   for any   technique would be  the  PER parameter values.     For 

some   techniques   this  may   be   all   that   is   desired. 

For   the   Linear PER-Least   Squares example  being  considered,   the 

lollowing  operations  are   performed: 

• Using   the  CER defined  in 6b   (lines  420-4A8,   Table  18),   calculate 

Fit  Data   for   the  sample   (lines  721-801,   Table  19).     This   includes 

an estimate   for  each  procurement   in  the  sample   (5  for  the  first 

iteration),   the  standard error of  the  estimate,   and an  unadjusted 

R"     (square  of   the  multiple  correlation  coefficient). 

• Print  out   (if   desired)   for  each  procurement   the actual  cost, 

estimated  cost,   cost   difference,   and  proportional  cost  differ- 

ences.     This   is   shown as output block   (4)   in Table   20 and 

executed   in   lines   728  and   749  of  Table   19. 

• Calculate   the  variance-covariance  matrix   for  the parameters 

(lines   806-845,   Table   19).     Deliver   through   the common package 

to   Step   8b   for   use. 

• Use  diagonal   elements  of  variance-covariance  matrix   to  calculate 

t-statistics   for  each of  the  parameters   (line  853,   Table  19). 

• In   lines   846-855,   Table   19,   print   subsample   statistics,   data 

block   (5)   in   Table   20.     These   include   the   standard  error of 

the   estimate,      R"   ,   the   parameter  values,   the   t-statistics, 

and   the   degrees   of   freedom. 
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Control is now passed to Step 7 (Fig. 5) where, in line 201 of 

Table 17, it is decided whether a new subsample must be processed.  If 

the entire sample has been used, then control is passed to Step 9 

(line 281),  If not, there are procurements in the data base (Step 3) 

which were not used in estimating the parameters.  Control is passed to 

Step 8a where the machine Makes Predictions for these procurements and 

Stores Data for Summary Statistics.  For each procurement the following 

steps occur (lines 209-265, Table 17): 

• Predict the cost of the procurement using the CER in 6b 

and characteristics from the data base in Step 3. 

• Record actual cost, cost difference (from predicted), 

and proportional cost difference. 

• Calculate any special statistics (line 233) from the 

technique using 8b (described below). 

• Print prediction statistics, if desired.  This is output 

block (6) in Table 20. 

• Check to see if procurements will be included in next 

sample. If they will be, store the values calculated 

above for the summary output, data block (7). 

The special statistics referred to above are calculated in Step 8b, 

Fig. 5 (lines 580-598, Table 18), Calculate Predictive Statistics 

Peculiar to Technique.  For the Linear PER-Least Square Procedures, 

STAT 1 is the value of the t-distribution for the difference between the 

actual and predicted procurement cost times the standard deviation of 

the process, o .  Space has been left for a STAT 2 which is not presently 

used.  The arithmetic means of the characteristics, calculated in Step 5, 

and the parameter variance-covariance matrix, calculated in Step 6a, are 

used to calculate the t-statistic for each procurement, together with 
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cht.'   procurement   information   from  Step  8a   listed  below: 

The   predicted   cost 

The   actual   cost 

The   characteristic   values 

The  mathematical   equations   used   to   calculate   these   statistics   are 

similar   to   those   used   to   calculate   prediction   intervals.     Given  a  new 

procurement,   with   characteristics      (x,,   .   .    .    ,   x   )   ,   an  actual   cost     A   , 
1 n 

a   sample  with     m    observations,      (X.,,   X.9,    .    .    .   ,   X.   )   ,     i  =   1,   2, 

.    .    .    ,   m   ,   and  a   1'KK which   contains     n     independent   variables     (X   , 

.    .    .    ,    X  )   ,   then 
n 

-   A 
(34) 

^ SKI-        V !   + - +  Dq     L) 
m     V m 

has the t-distribution with in - (n+1)  degrees of freedom.  In the above 

expression we have the following definitions; 

S  = n-n inverse of the covariance matrix of the sample 

values of X.. - X,  and  X,, - X. 

1) = n-dimensional column vector of terms  x. - x_ 

X. = the arithmetic mean of the sample values of  X. 
i i 

x. = value of it_h independent variable for the new procurement 

SKI'. = the standard error of the estimate for sample size m 
in 

P = predicted value for the new procurement. 

The quantity calculated in the computer program is Eq. 34 times 

SKK  .  This is the output that is used to calculate the statistics 
m 

discussed in Sec. IV C. 

Reference 5, page 20. 
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At this point (lint 257, Table 17), control passes to Step 4b 

where the next historical sample is set up (as previously discussed). 

Steps 5-7 are then repeated for the new sample.  This process is con- 

tinued until the entire data base (Step 3) is used.  Since there are 

then no procurements to predict, control is passed to Step 9 (line 277, 

Table 17), Calculate Summary Statistics. 

One value of each of the prediction outputs (data block 6, 

Table 20) has been saved for each procurement predicted.  In the test 

run this would exclude procurements 1-5, as they were included in all 

the subsaraples and hence never predicted.  The values retained are those 

generated by the largest subsample used in the prediction of the partic- 

ular procurement.  These data are printed out in output block 7, 

Table 20 (line 301, Table 17).  In the test run the procurements printed 

out were 6-13.  Object 6 was estimated with five procurements in the 

sample, object 7 with six in the sample, and so forth. 

These data are also used to calculate summary statistics (line 

289-327, Table 17).  At present these include the average proportional 

error, a measure of bias, and a measure of skewness.  The weights in 

NW(I) from RUNDAT are used in these calculations.  In the test cases, 

weights equal to the subsample size are used.  Thus procurement 6 receives 

a weight of 5, procurement 7 a weight of 6, and so forth.  For a discus- 

sion of these calculations, see Sec. IV B. 

Control now passes to the final step of the program. Step 10, where 

it is determined whether a new PER is to be evaluated.  If not, the run 

ends.  If there is a new PER, as given by a new value for NIV and new 

characteristic numbers (Table 23), control is passed to Step 2 for new 

PER definition.  In the test run there was no new PER defined, so the 

program terminated. 

UNCLASSIFIED 109 

m-   iniiiwMiMiiniiMawiMrtiiliiilMit ■^■miiiiiwui-"  '-triiMtffiiiitiMliiiiriiniiili^iritiiitliaiiiiitiiMiMiMliiiiniMii  ■— M*Mt»mL5W.JM^>a>;...i^Mt.-t>-t 



MtWWB^iWW^WN.a^wjjww^   
igUPlHIMMItHLiltlMWJjW IHU iLWUWIJMmiMUIH.lln I.IU I. n 

UNCLASSIFIED 

1).    P RUG RAM OUTPUT 

The preceding paragraphs have described the complete output avail- 

able for the program.  This output, Table 20, can be divided into two 

classes:  those printed in steps listed under the Estimation Procedure 

(Fig. 5) and those printed in the Main Program.  Output data blocks (1), 

(3), (b), and (7) fall into this latcer category.  These blocks can be 

printed out no matter what estimation procedure is being tested.  Their 

form will not change with different estimating procedures. 

Data blocks (2), (4), and (5) are printed out in steps listed under 

the estimation procedure.  Their form and content will change depending 

on the estimation procedure (or class of procedures) being tested. 

The output of some of the data blocks is optional.  The output 

designator, called OUT, is used to tell the machine what output to print. 

The following options are available: 

Value 
of 

01T 

OuLput   Opiions   (Fxi'luded   IUOL-KS   Checked) 
Valid   for  Particular  Estimating  Procedures Independent   of   Kst iui.it. ln>;  Procedures 

(1) U) (6) (7) (2) (4) (5) 

Deleting the output of data blocks when they are not needed saves 

machine time and reduces the complexity of the output.  The amount of 

output is greatly reduced when OUT = 6, as can be seen by visualizing 

Table 20 without data blocks (1), (4), and (6). 
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It should be aoted Chat in any run with more than one PER, and a 

V£.lue of OUT 1 to 3, the sample  [data block (1)] will be printed out 

only one time.  The number 3 will be added to the value of OUT to pre- 

vent useless repetition of data block (1), which docs not change with 

new PERs in a given run. 

This concludes the presentation of the program currently available 

for Linear PER-Least Square Procedures.  It should again be pointed out 

that operations on the left side of Fig. 5 are not dependent on the 

estimating procedure being evaluated.  As subroutines for other classes 

of estimating procedures are developed, such as log-linear PERs, they 

will be tied into the operations on the left, the main program. 

The program described in this appendix is operational on the G.E. 

Time-Sharing Service, MARK I.  It therefore can be run on any terminal 

having that service.  This flexibility tends to be offset by the slowness 

of the output vifl the teletype.  Thirty-one minutes of console time was 

required for th^. ^st run. 

Another drawback of working with the time-sharing service is the 

space limitation.  As can be seen in Table 24, the size of the possible 

data base is not large, although for the cost application it seems 

adequate.  Additions to the program cannot be made, however, without 

seriously diminishing this data base. 

No attempt has been made to clean up the program to obtain greater 

efficiency.  It is to be expected that improvements in operation time 

and space can be made by making the program or its output more efficient. 

An alternative to this approach is to convert the program to a 

non-time-sharing machine; the program lias been written in FORTRAN which 

should make conversion reasonably easy.  There would certainly be savings 

in terminal time, although turn-around time will probably be longer 

(i.e., overnight service). 
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llu'Si' suggostions lor prugram improvement have not been implemerted 

to date as the program without any changes is adequate Cor demonstrating 

the Historical Simulation procedure and tins was the purpose for which 

it was written. 
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APPENDIX  II 

DISTRIBUTION  OF  HISTORICAL  SIMULATION   PREDICTORS 
AND  RESIDUALS   UNDER THE  USUAL 

MULTIPLE  LINEAR  RECRESSION MODEL  ASSUMPTIONS 

In   this  appendix   it   is   assumed  that   the  usual   multiple   linear 

regression model holds.     From  this  assumption   the  distributions  of  the 

predictions  and  residuals     obtained   from Historical   Simulation  can be 

develope-'       The  reader  is   cautioned   to keep  in mind   that   these  results 

are  only   valid when  the multiple  linear  regression  model  assumptions 

are  valid. 

This  appendix  is  divided  into   five parts  or  sections:     The  first 

establishes  the multiple   linear  regression model   assumptions;   the 

second develops  the Historical  Simulation procedure   (in  the  required 

notation);   the  third derives   the  distribution of predictions  and  residuals 

when only  one subsample   is   used;   the   fourth  derives   similar  distributions 

from  two  subsamples;   and   the   last  section summarizes   the  results. 

In  general,   the  predictions   (residuals)   are  normally  distributed 

and  correlated.     There  are,   however,   some  residuals  which have  zero 

covariance   and  this   fact,   together with normalcy,   implies   that   they  are 

independent.     These  are   the  one-step  residuals,   i.e.,   those  residuals 

obtained  from making  the  prediction of  the next   data  point   in  time. 

Before  describing  the  multiple   linear  regression assumptions,   it 

will  be  useful  to  discuss   some  of  the mechanics  of   the  statistical 

operators     E    for expected  value  and    M    for  covariance matrix.       An 

understanding of  their  use   in ..latrix  operations   is   a  prerequisite  to   the 

understanding of  this  appendix. 

For a more  complete  discussion  see  Ref.   12,   Sec 
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The expected value operator  H  is the easier of the two.  Let 

U , V , and W be random vectors;  A and  B nonrandom transformation 

matrices; and  C .1 vector oi constants.  Then the following relationship 

defines a set of linear equations 

T =  AV + BW + C 

In this situation the expected value of  U  is defined by 

K(L')  = AF.(V) + BK(W) + C 

The   covariance  operator   is  a   little harder  to  understand.     Notation- 

ally   it  will   be  used   in   the   three  ways  defined  below: 

1.        Let     U    be  a  random vector   (column);   then   its covariance 

matrix   is   given   by 

M 
U 

K[U-E(U)Jl U-L(U)]' 

where 

[ I' stands for the transpose of [ ] 

Let  U and  V  be two random vectors; then the covariance 

matrix between  U  and  V  is given by 

Ml; (,  =  KlL-K(L)l[V-K(V)r 

Note:  M^ = M^ 

i.       Let  I and V  be two random vectors; then their joint 

covari 1 r matrix is given by 

I 

VJ 

M M, U    "U.V 

n; UNCLASSIFIED 
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From these definitions it can be shown that if  R ,  U ,  V , and 
--► 

W are random vectors, and  A is a nonrandoni transformation matrix, and 

if 

U = AV 

and 
-> 
R = V - w 

we   have 

M-> = A M^ A' 

and 

In addition,  we  have 

.v. , 
M,-^ 

and 

Mr- 

LV. 

R 
-> 

.WJ 

+ 
v,w ^1  ^;- 

With  an  understanding  of  these operations   in  hand,  we  are   ready 

to  set out  the multiple  linear regression model  assumptions. 

MULTIPLE  LINEAR  REGRESSION ASSUMPTIONS 

The assumed  sample  consists  of    N    P+1-tuples  given by   (y.,  x     , 

.   .   .   ,   x     )     for     i  =   1,   2,   .   .    .    ,   N   .      For   the   Hi 

tion  application,   the     P+1-tuples  have  been  time  ordered, 

x  „,   .   .   .   ,   x     )     for     i  =   1,   2,   .   .   .   ,   N   .     For  the  Historical   Simula- 

See  pages  384-388  in  Ref.   7   for a more   complete  discussion of   these 
assumptions. 
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I.r   usu.il   rultipli-    linear   regress ion   liypotheses   .ire   given 

(35) 

v    is ,i    :, . ui;in   vei'tiT  whose   transpose   is   given  by 

V      =      U^ ,   v ,,    .    .    .    ,   y^) (3b) 

X  is an  N • O'+l)  matrix given by 

x     x   ... x 

XJ1   ^ 

1   XM   XNJ NP 

(37) 

is   .i     (P+I)    ■    1      column  vector  given   by 

(38) 

is   an     N   ■    1      column   vector   given   by 

(39) 
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The  matrix     X     and   the  vector   r   are   assumed   to  he  nonrandom  while 

has  a  multivariate   normal   distribution,   with  mean  vector   equal   to 

zero,   a  constant   variance   c"   ,   and   zero   covariances.     Hence 

d 9 

,      =     N(0,   o   IN) (40) 

wliere 

1       is   an     N-dimensional  identity  matrix 

(The above   notation  is   shorthand  for     "f.     is  normally distributed with 

E(e)  - 0 and     M    =  o2IK,   .") 
e N 

Note   that  the  ith  row of  the     X    matrix is made up of   the  i_t\\ 

P+1-tuple  of   the  sample with a    1     replacinp,    y.   .     The    1     is  used  as 

the multiplier of   the  constant  term     H       in  the   regression  equation. 

Defining 

(1,   xil,   x.2,   .   .    .    ,   xip) ;     i =  1,   2,   .    .   ,    ,   N 

we have  for     i  =  1,   2,   .   .   .   ,  N 

P 

y .     =     £ .  +  3„ +   >     I' . x . . 
i i 0      Z^J    J   1J 

(41) 

X:P -, , (42) 

Hence     Y     is   a  linear   combination  of   the   normal  random   variables 

in    c,    and   therefore   it   follows   that     Y     is  also  a normally   distributed 

random vector.     The   distribution  can   be   derived   from  Kq.   40   and   is   given 

by 

->     d       ,    ->       2     x Y     =    N(X  ß,   a   ■':.N) (43) 

i.e.,   E(Y)   =   Xß,   and 

Mi:     =     o   L M- 
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B     HISTÜ1UCAL SIMULATION PROCEDURE 

The regression assumptions fit into Historical Simulation as 

described in the following paragraphs. 

Let n  be the minimum sample size for Historical Simulation.  It 
o 

is necessary that  n  be greater than or equal to the smallest sample 

si^e necessary to carry out a linear regression analysis.  Hence, 

n  ■-• P+l .  For any  n ,  n  ^ n < N , define the following partition 
o o — 

of the X matrix (defined in Eq. 37) by 

(n) 

X 
n rows 

N-n rows 
(44) 

Also partition Y  (defined in Eq. 35) in a similar manner obtaining 

:(n) 
n entries 

N-n entries 
(45) 

Note that for this partition we have that Y 
(n) 

and Y^ are 

independent, a consequence of Eq. 43.  Furthermore, the joint covariance 

matrix breaks up as follows. 

Since 

o2I 

M-t  =  M 
^ (n) 

(n) 

n cols.  N-n cols. 

2T      0 o I 
n 

n rows 

2 0         ö x N-n 
Y>(n) 
1 

M •> 
Y 

HM +(n) 
2 ,1 

^■(n) 

2 

^(n)^(n) 
1 .2 
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we have 

2T 
M  , ,  =  o I 

->   (n)       n 
1 

M.(n)   =  ^^-n 
2 

(A 6) 

and M
vKn)-(n)  

=  M-YKn)-(n) 
Yl ,2       Y2 ,Y1 

= 0 

If time batches are ignored, the Historical Simulation procedure 

(for the multiple linear regression model) can be defined as follows: 

For each n ,  n  <_ n < N 

1.  Make a least squares fit using 

L(n)   and X (n) 

2.  Obtain an estimating vector of  3 .  Denote this vector ß 
(n) 

where 

Use the resulting fit to make predictions of the remaining 

N-n  data points.  This can be denoted by 

yn+l 

^(n) 

(n) 
yn+2 

x(n)t(n) (47) 

(n) 

y  "j*     is   the  prediction  of    yn+k using a  sample  of  size     n 
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Calculate   the   residuals  by 

, (n) 

!) 
(n) 

"n+l 

,(n) 
n+2 

.(n) 

(n) 
- y. n+l       'n+l 

n+2       yn+2 

(n) 

ftCn)       „(n) 
x i2 

(A8) 

,in) where    d    ,      denotes tlie   difference   (residual)   between  the predicted 
,   \         n t K 

y   ,.     and   the  actual y   ,,    . Jn+k Jn+k 

After   the  Historical  Simulation  procedure   is  completed, 

N-l 

E 
n=n 

(N-n) 

predictions and the same number of residuals will have been calculated. 

These are denoted by the random vectors 

and 

.(%)     >„«) 

(n )     (n +1) 
o    „  o 

D    ,  D 

HN-1) 
>  1 

D (N-l) 

respectively.     The  problem is   to  find  the  distribution of  these  random 

vectors. 

C. DISTRIBUTION  OF    Y(n)     AND    D(n)   ,   i.e.,   THE  PREDICTIONS 
AND  THE  RESIDUALS,   FROM ONE  SAMPLE   SIZE     n 

^(n) 
From \'.q.   47 it can be seen that the form and distribution of  ü 

must be established before the distribution of  Y    and  D    can be 
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^ (n) * 
developed.  The distribution of i' Is well known,  nnd hence only 

the results and a sketch of the reoaonlnp, will be presented here.  Let 

s(n)  = x,(n)x(n) (Ay; 

where  X'     is the transpose of  X 

solution for the parameter vector  ,•  is given by 

hen the least squares 

Kn)    .(n)"1 Y,(n)-(n) (,    - S     XJ  Y1 (50) 

where  S 
(n) 

is the inverse of  S 
(n) 

Now,   the  only random variables   in  Eq.   50 are    Y 
(n) 
1 

Hence  h 

is a linear combination of the normal random variables  y, , y„, . . . , y J1       2 r 
and hence are normally distributed.  The expected value and the variance- 

covariance matrix are given as follows. 

Et(n) R 

and 
|(n) 

-1 

Hence, we have that 

t(n)  d N(|.a2S(n) ') (51) 

Furthermore, since S 

it is symmetric; therefore 

(n) 
is essentially a covariance matrix. 

(n) -1 .(n) -1 
(52) 

Mn) Mn)    (n) *(n) 
Now, from Eq, A7 the predictions  Y    are given by Y   = X^   ß 

^(n) 
Hence,  Y    are lin ^r combinations of the normal random variables 

For further details see p. 386 in Ref. 7. 
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;■    and art- therefore normally dlBtrlbuted.  Tl'.' mean vector and 

covarlance matrix are cnlrulnted below. 

^(n) m    x(n)].; ^(n) 

(n); 
from Kq. 51 

I:Y 
(n) 

from Kqs. 43, A4, and 4 5 

=  x(n)     .(n) 
:(n)    A2 ^(n)A2 

from Kq. 51 

Hence, we have chat 

-?(n)  =d  N EY (n) £(n) (53) 

where 

EY (n) = X^n)ß = F.Y^n) 

and 

^■(n)     2        2 

■>(n) 

Finally, the distribution of the residuals D    can now be found. 

From Eq, 48 it will be recalled that 

g(n)  = ^(n) _ -(n) 

which is the difference of two normally distributed random vectors. 
->-(n) 

Hence,  D    is normal.  The mean vector and covariance matrix are 
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calculated below. 

:(n) 
I-; i) 

^(n) 

(n) 

;(ii) 

v.(„)- Iroiv. Kq. Vi 

and 

;(n) •>n) + MY'(n) ' M^n)Y(n) " MY(n)Y(n) 

Now 

(3^) 

^(n) = x(n)s(n)-
1 x,(n)-(n) from Eqs. ^7 and A8 

Hence 

f(n)-(n) 
x(n) (n)-1 .(n) 
X2  S     Xl  M-(n)-(n) 

Yl ,2 

But from Eq. 46 we have that 

>¥n)  = 0 

1 .2 

as Y^     and Y^   are independent.  Hence, 

.2 
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l'.y   H1III1I.II    n-iitionliiK   il   can  he   uhown   that 

'•I "     0 
Y'(iO   Y'(n) 

liMui-   wr   liiivu   1 rinn  Iq.   ')•'.   lli.it 

•   '-i + :•! 
^H) Mo) ^(n) 

x(n)s(n)-  ,,(.,)   +   ^ 
.«-il 

from  Ktis.   ^J   and   5 3 

Tu   aummarlze,   dien,   wt    have   that 

uM    ä    S O.M 
:(n) (55) 

where 

.(n)     =    H*M  + Vn) 
„(n)   (n)"1     .(n) 
X2    S X2 ^'-n 

D.    DISTRIBUTION OF PREDICTIONS AND RESIDUALS FROM TWO SUBSAMPLES 

So far we have been addressing the distribution of the predictions 

and the residuals from one subsample.  The problem now is to find the 

joint distributions of 

^(n )  ;(n„) 
Y    , Y 

and   the  joint   distribution of 

Jn  )     Jn  ) 
D ,   D 

where  n  < n  < n < N .  That they are normal has been determined in 
o — 1   2 

Sec. C, ai   has the value of their expected values.  In addition, we have 
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determined piirt of their covariance matrlceB In Sec, C, namely 

M-.  .  and  M ■   . 
! (" i )       Y (n 2 ^ y'^l- 

( roiu Kq . ii 

and 
M M 
'(nj)  and   i'/"^ 

< roin l.q , 'J'J 

Scill to be determined art-  M-.  .  .  ,  and  M ,  ,  /  ,  (and their 

t ranHpoHcH). ' 

At this point It 1H necessary to Introduce some additional notation. 

Let the  X matrix and the  Y  vector be partitioned as follows: 

and 

(n^ 

(n2) 

n  rows 

n„-n1 rows 

N-n„ rows 

(56) 

M^ 

>2> 
LY2  . 

n entries 

n„-n1 entries 

N-n. entries 
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Ilic   rt-l.a luiioliip  ul   ililb  new pai tit ion  t u   ihc  partition jui-viuucly 

i! 1 11 ua oi-il    la    ,IM    !,'lli/Wa: 

(....) 

attil 

■ 1 "1 

>:',"'' 
1-     -     - 

¥ 
2 

(n.) 
V'l 

(n  ) 
Y'2 

Y 

. Y2   " 

V 
"1 

(..,) 

(n.) 
Vl   ' 

,(n2) 

>     (37) 

lli'iuo  X  and  Y  arc Llie rt'Klons of shift In the partition when 

the Historical Simulation procedure passes from a subsample of size  n 

to one of size  n, .  X  is not used in the fit routine when the snb- 

s.unple size is  n  , hut it is used when the subsample size is  n  . 

Similarly, predictions are made of Y  when the subsample size is  n, , 

but they are not made when the subsample size is  n» . 

By anaioRous reasoning to thai: used to establish Eq. 46 and the 

mutual independence of Y 1 , Y, Y ^ , which is a corijequence of 

Eq. 43, it can be shown that 

1J6 UNCLASSIFIED 

tmiaaitmmu 'liwnrnaiitrtftti^ff^rtfriiiti^^ f-.r...tjaiiaiM|iiiy ...    f 



inmmnmtmmmmK BHIHPIIIWMIiliUH..Il I'll'l '"Wl'  ' '"M www 

UNCLASSIFIED 

«uu! 

!lY 
".■-"l 

:0H) 

1       .Y 1        .''■, '     ' 

>      ( ,« 

(rti\cl  their   cranaposcs  <ill  c-<('u<«i   xcro, 

We  now  turn  back   tu   the  problem of   calculating 

M   /     s      ,      ,        and       !■'.   , 

Y ,Y     ^ D .U     ' 

These are calculated below: 

From (^7) and (50) wo have that 

^(O     (n ) (nJ"1  (n.) (n ) 
Y  1  =  X2 

J S  1  X]  1 Y, 1 

and 

Hence 

A(n )      (n ) (nJ"1  (n,,) (n,) 
Y     =  X2  .S  ^  X|  - Yj ^ 

(n^ (n^ ]      (n^ 

VV ^(n2) 
= X2   S     X{   ^(n,)  (n,JXl " S 

Y
    .Y Yj 1 ,Y]   ' 

(nj (n )    (n,) 
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(".,) 
Y:   1 I r 

HLMU 

'    (n   )      (n.,) 
Y, .Y.   - 

(n   )      (n   ) 
Y, Y ,Y 

2, I 
a   I       | 0 

"l   I 
by   Eq.   58 

iiciiL't'   wt.'   havi 

(n,)    (n,)   1     (nj 

\(n,)   ,. (n,,)   "   N2        S 

I 
o2I       1 0 

"l1 

(n   )   (n  ) (n   ) 
x1 ^ S    ^      X'    z 

iut 

(n„) 

(n,) 

from Eq.   57 

lll'IlCl' 

•I        10 
(n,,) „ (n   ) (n   ) 

:,   -       =     o   I    X, + Ü    =     a  Xn 1 n     1 1 

llv   subs L i tut i on  wu   then   huvc 

,,   (n   )   (n   ) (n   )   (n   )   (n   ) (n  ) 
M   ,    ,     ,       = ,rx0  '  s    '      x;    1 X.   '  S    ^     Xl    z 

, (n   )   . (n,,) 1 11 / 
Y ,Y     - 

„   (n,)    (n,)"     (n   )      (n)""       (n   )   fromEq.   49 
=   ^x,,   's S    J  S'    "^      x^    z 

.,   (n   )   (n   )   J     (n   ) 
=   ■-x,,   '   S    ^      X' from Eq.   52 

(n„) 

(n   ) (n   ) 
S X2 

from Eq.   57 
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But   from  Kq.   53 we   have 

■1 

2Y
(n2)

q
(n2)     v/

n2) 

M>?)     =     n   X2       S X2 
Y 

Hence 

M 
^(n   )   ^(n   ) 
Y ,Y 

.,      (n, ) (n   ) 
oZXS     l       X'      l 

M 

Y 

(59) 

^(n1)  ^(n2) 
The  joint   distribution  of     Y ,Y can  now  he   summarized   from 

Eqs.   53  and  59 as   follows: 

^v 

^n
?) 

i N 

where 

EY 

EY 

(nl) 

(n2) 

,   M 
^(n   )' 
Y 

^(n   ) 
(60) 

N-n     Cols N-n„   Cols 

Y 

,(nj 

A 

YKn2) 

A 

i 

1   N   ^     ^ 
,     .>(n2) ^(n,,) 

Y     " 
_ 
n?-n N-n„ 

Cols Cols 

(n )   '       (n   ) 
A    =     oZXS X' 

n9-n     rows 

N-n.,   rows 

N-n9   rows 

and   the   other  entries   are   defined   by   Eq.   53 

UNCLASSIFIED 
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It is rather interesting to note that the covariances defined 

in (59) are not dependent on 

(nj) 
■1 

The implications of this are that the eovariance of predictions made 

from different subsampie sizes are dependent only on the data matrix 

used in the larger subsampie size fit.  In particular 

COV 
\ (i-^)  ^ (n2) 

V+k ' yn9+,1 COV 
'.>2)  .(n2)' 
yn1+k ' Yn9+j 

(61) 

for  n +k s n., ;  i.e., y  ,  was predicted from both subsamples. 

Turning to the last, task, 

'"'>,) v(n.,) 
D   ,D  " 

must   be   calculated.     From  Eq.   A8 we   have   that 

>,) ^(n   )       „(n  ) 
D     i       =    Y     i     - Y2  i 

and 

lence 

(nj a(n   )   _ _y(n2) 
,     ^       =     Y Y2 

M 
(n   )    v(n9) 

D ,D 
VV   -(n2)  + ^  /^   ' V'V  ^(n2) 

,Y Y     "     Y Y2       '2 
Y2   ^   ,Y 

M 
.(n   )    ^n   ) 
Y Y Y '2 
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Taking this expression term by term we have that 

„  (n )    (n ) 
CJ XS  Z  X^  / 

M 
^(n ) -(n ) 
Y x ,Y M 

4(n ) 
Y 

by Eq, 59 

^(n ) ^(n ) 
Y    Y 
2  '2 :(n2) 

>2)   2 
Y 

Y)?(n2) 

M 

Y 
2 

from Eq. 57 

ah 
N-n _, 

from Eq. 58 

Hence 

_> ) ^(n ) 
Y    Y l2   ,i2 

9 
0 I 

N-n, 

From Eqs. 4 7 and 50 we have that 

(n   )               (n   )   (n   ) (n   )    (n   ) 
Y2 =X2S2 V'

2
Y
2 

i                     A2       b 11 

Hence 

(n0)    (n   ) (n7) 
M =    M X     "   S X'     " 
.(n^   _,(n2) ^(n  )   ^(n   )     1 2 

Y2       'Y Y2       'Yl 

But by  Eq.   57 

(tO 
1 

,(n  ) 

2     J 

and       Y 
(n2) 
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„(n  )   ^(n   ) 
Y Y l2       '1 

M 
Y  Y^^ 
^   1 

.(n2)   J^) 
Y Y Y2       '   1 

M 
Y,Y 

M 

Y Y 
2 

o2I 
n2-nl 

by Eq.   58 

Hence 

M 

But 

_>  )  ^(n   ) 
Y Y 12 

(n2) 

oh n2-n1 (n„)   (n  ) (n„) 
x1 

2 s   ?-     x^   2 

xi 

L   x 

by Eq.   57 

Hence 

M 
^(n   )   ^(n   ) 
Y ,Y 

0      a  I n2-n1 X 
(n^ 

0 0 

Performing  the  multiplication we   then have 

-1 

(n9)   1     (n  ) 
S    2      X^ 

M (n   )   ^(n   ) 
Y Y l2 

The   final   term  is 

9     (nj (n   ) 
ö2XS    z      X^ 

M >   )   ^(n   ) 
Y Y X '2 
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From Eqs. 47 and .'30 we have that 

^(n ) 
Y 

Hence 

(n ) (n ) 1  (n.) (n.) 
X2 ' S  i  Xj  1 Y1 

1 

-1 
(n^ (n )    (n ) 

\^  .(n2) -    X2      S Xl   ^(n^ >2) 
Yl   'Y2 Yl   'Y2 

But 

M 
^(n^ ^(n ) 
Yl   'Y2 

= 0 from Eq, 58 

Hence 

4(n ) ^(n ) 
Y    .Y2 

/ 

Collecting underlined terms we therefore have that 

M 

D    ,0 

n  (O    (n0) 
o'xS     X'  ^ 

.(n2) X-n, 

Hence 

n  (n9)    (n,,) 
oZXS    x:    z 

M 
(IO  (n0) 

D 1 ,D  ^ 

0 

,(n )     N-n 
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and   by   Kq.   'i>5  we   have 

M 
(n   )      (n   ) 

D     -^   ,D     Z .(n2) 

(62) 

This   result  has  some   rather   interesting  consequences.     As   in  the 

case  of   the   predictions,   covariance   between  residuals  depends  only  on 

the   information  used   in  the   fit   performed on  the larger of   the   two  sub- 

samplec   used   to   generate   the   residuals.     Hence,  we  have  an   analogous 

result   to   Kq.   60,   namely 

COV 
(n.) 

n.+k 

(n„) (n2) 

^^k 

(n2) 
dn2+j 

=     COV 

_ 

(63) 

for     n +k   •   n,.   ;   i.e.,   residual   calculations were made   for     y from 

both   subsamples. 

An   even  more   interesting  consequence   is   that   the  covariance 

between   residuals,   one  of which  is   not  calculated  for both   subsamples, 

is   zero.      Hence 

COV 
(■y (n7) 

dn1+k   '   dn2+j 
=     0 (6A) 

if     n  +k   <    n,;   .      In   particular,   the   one-step   residuals 

(n   ) .   , 
d„ :,■••• • ^ • 

o 
,   d 

(N-l) 

ave .•'.erci covariances.  This fact, coupled with a  normal distribution. 
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implies Independence.   Hence, the one-step residuals are mutually 

independent. 

The proof of this assertion is not too difficult.  Consider two normally 
distributed random variables  U and  V .  Let 

and 

Then 

and 

H u 

rl 

N 

V N 

E(U),o 

E(V),o 

COV(UV)  =  0 

u 

V 

fu(u) 

fv(v) 

V^ o2, 

V^j 

exp 
(u - EU) 

2 

exp 

2o 

(v - F.V)' 

2:;; 

fu,v(u'v) 2',c 
exp 

\]JV 

(u - EU)    (v - EV) 

where  f  and  f  are the density functions of  U  and  V  and  f 

is the joint density function of  U  and  V . 

Now, according to Rcf. 7, page 131, V     and  V  arc independent if 

fu.v = (V ^v) 

This is clearlv the case for the densities defined above. 
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'I'liL'  joint  tlisiribuL ion  of     U and    D can  now  be  summarized 

usinj;,   l,(|s.   ;)3   anil   (i2.     UV   have   that 

who re 

1) 

(n,,) 
0    ,        M 

L 

(nJ 

(65) 

N- 
"l 

Co I s N-n  Co Is 

~~ 
0 

— 
n-n  rows 

V"!)   

- (n,r = .(n2) 
D 

N-n,, rows 

Ü   ' 

_(n,) 
0 

i 

1 M 
,  ./n2) 

i  D 

M (     ^ (n ) 
D 

N-n,, rows 

— —1 
n l -n 1   X-n2 

X-n? 

Co Is Cols Cols 

I.. SCMMAKY 

'.■'i t h   tiu-   lu-lp  of   some   additloaal   notation,    it   is   possible   to 

TUI r.a r i .:e   and   ^ir'plifv   the   results   of   the   preceding   sections   and   combine 

ill   '.iii    i n I IT. .i M fa  about    the   form and  distribution  of   the  predictions 

md   re-.iduils    into  em'   table.      Recall   from   I'n.   •'» 1   that      x 1      is   a   row 
i 

vii t cr   e(;ual    [^   the   it!;   row   of   the     X     matrix.      Now,   define   a   set   of 

iMistaiUs   bv 

nt-1 ,.(") 
1 

n+ i 

; i • r i u  r,   veit'T   i u r ri'spond i nc   to   the     ,tli   column  of     \ 

:      ■,   i . 
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Then by examining the results of sections B, C, and D of this 

appendix, one can obtain the form and distribution of the Predictions 

and Residuals given in Table 25.  Reference numbers of the equations 

and facts derived in sections B, C, and D are given in parentheses. 

Some of the conclusions that can be drawn from this table are 

given below. 

1.  The residual covariances are very similar to the prediction 

covariances.  In fact, they are equal unless one of the points 

being predicted is not predicted from both subsamples, or the 

point being predicted is the same for both subsamples.  In the 

first of these exceptions the residual covariance is zero. 

In the second exception, the calculation is similar to a 

variance calculation.  The residual variance is obtained by adding 
2 

ü   to the prediction variance.  In like manner, the residual 

covariance is obtained by adding to the prediction covariance. 

2.   The covariances depend on the two subsample sizes  m and  n 
(n) 

only insofar as which  S-matrlx to use.  If n  then  S i s 

used.  If  m > n  then  S 
.(m) 

is used.  This is the onlv difference 

rnt+j 
between  the   coefficients     C ' r1     and 

n+k 
.n+k 
'm-f i 

riic   rule   to   foil ow   is 

always  use   the     S-matrix  corresponding   to   the   larger  sample   size. 

3.        In  general   the  predictions   and   residuals   are   correlated 

(among  themselves).      However, 

COV 
,(n) .(m) 

d      ,     ,    d 
n+k   '     m+j 

if     n+k  _ m     or     m+i   _ n   .     Tills  means    in   particular   tii.it   the   one- 

step   residuals     d   ,.    ,      n     •   n   •   X,   are   unrcrre 1 at i-d.     .V.   discussed 
n+1    '        o  — 

in   section   I),   tins   zero   covarlame,   loi'.etlier   with  a  normal   distribu- 

tion,   implies   Independence. 
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TABLE   25 

FORM AND  DISTRIBUTION  OF PREDICTIONS  AND   RESIDUALS 

(Assuming  the   usual multiple   linear regression model  assumptions) 

..impli-   p>'Iiil    Iitr   whUh 

I In-   I'tf.l l ■ I l l i-s IJu.ll 1 

[u-1 t .11 us 

ur> -..imii 11-   -.1 .'■■   u-itil 

11 -»I I Unit i .'Ii 

I'rudli. I Ion 

n+K 

(1   •    k   ■    N-n 

Z'T 
s, rn..l 

KeuIdual 
,(n) 

''n-fk 

n+k      ;     Ok 

I'll!) 

Vnn C-tl) 

C'-'J.) Nurnu (5i) 

OJ) u (») 

oil 

( ir.) 
d 

- 

';;:■) 
IV'J 

1 

11 ; i 

^•o 
[ r ji 1 .i i  : ; 

i I .»-r '. t- 1 i 

■ ! UK--    I:     i   I. 
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AI'PHNDIX   I I 1 

PK0PKKT1KS  DF VAKIANCK   i.SI IMA'I URS 

In   this appendix,   as   in  Appoiullx   II,   L lie  mulilplf   liiu-.u   icgrL-ss 1 on 

iiiüdcl   will   1)L'  assumed.     Thin   model   has   been   described   in  Appendix   II, 

KCJS.   J5   Lhrough  43. 

In   Sec.   IV  C   of   die  hody  of   llu    report,   modified   residuals   wi-ri' 

derived  which are   theoretically  a   random   sample   from   a  normal   population 

with   mean     0    and   variance        "--the   variance   of   the  error   terms in 

the   regression  model,   Kq.   'lü.     These modifi'-d   reHlduals  are   denoted   by 

r =   (r     ,r     ,,,••.,   r,    ,)     where     n        is   the mininiun!  satmle   size 
n       n +1 !.-l o 

lor  Historical   Simulation  and     !.     is  the   sii'.e  o(   the  data  base. 

A  Kolraugorov-Srai rnov   (K-S)   Coodness-u 1-Ki t    list   has  been   suggesteti, 

in   Sec.   IV  C.      In   order   to  apply   this   lest,   however,   an  estimate   of   t he 

variance      •"     must   be  made.      Three   possible   candidates   have   been   considered, 

In   this  appendix   these   candidates   are described;   distributions  are   derived 

for   the   case when   the  multiple   linear   regressioi  model   holds   (which   is 

the   null   hypothesis   in   the  K-S   test),  and   relative  efficiencies  are 

discussed.     A   selectlcn   is   then  made   for   use   in   the  ! -S   lest. 

I wo csiinuiies  of   the  variance can  be   calculated   directly   fron   i he 

output     r   .     Ihese   are   the   sample   variance      S~     and   the   /ero-mean   sumpl 

var 1 am e The   respective   equal ions   are   given  by 

Sr   "   N-~ln-TT,   ZjX I i (».'>; 

1 -n 

UNCLASSIFIED 1 v> 



2 = ^E^ (66) 

The only  difference between  the  two  equations   is   that     S       is  calculated 

around   the   sample mean, 

= N-n    2-/ ^ (67) 

while    o        assumes  the mean  is  zero. 

It   is  a  known   fact   (Ref.   7,   pages  315-316)   that 

[N  -   (no+l)]S^ 

has  a  chi-square distribution with     N  -  (n +1)     degrees of   freedom while 

(N   - n   )■■ o 

has  a  chi-square distribution with    N-n      degrees  of  freedom.     (One 

degree  of   freedom is  lost  by    S       because of  the   use of     r     in its 

calculation.) 
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Now the  chi-square   distribution with    K    degrees of  freedom nas an 

expected value  of    K    and   a  variance equal   to     2K   .     Hence   the  expe < ted 

value    E    and  variance  of 
~2 

can be  derived as   follows: 

and 

(N-no)        2 /(N-no);i2X 

2— Ea     =   E( f  |=  N-no 

(N-n   )2 /(N-n   )O2N 

 ^— VAR  a     =  VAR     ^  |=  2(N-no) 
a \    a 

Therefore 

~2 2 
Eo     =o 

and 

VAR   ~a2 =  2G 

N-n 

(68) 

Similarly  it  can be  shown   that 

2 2 
ES     =  a 

r 
and 

VAR  S    = 
2o 

r      N  -   (n +1) 
o 

(69) 

The  final  candidate   for a variance  estimator  is    a     ,   the  square of 

the  standard error of  the   estimate obtained  from a   regression  analysis  on 
-2 

the  entire data base   (i.e.,   sample size     N).     The  equation for    o       is 

given by 

N 
"2 
a    = -^WZK - yi) 

i=l 

(70) 
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where 

and 

y     is   the  actual   cost  of  the _ith  procurement 

y     is   the  estimated  cost  of   the  ijih procurement   (obtained 

from a   regression  analysis  of  the  entire  sample) 

P   is   the  number  of  independent  variables   in  the linear model 

(PER) 

It   is  known   under   the   regression  model   assumptions   (Ref.   7,   page 

364)    that 

[N   -   (P+DJo^ 

has   a  chi-square   distribution with    N  -   (P+l)     degrees  of  freedom.     Follow- 

ing   the   derivations  of   Kqs.   fa8   and   69  we   then  have 

EJ 
•2 

(71) 

VAR 
N   -   (P+l) 

The   facts obtained  to   this  point  are  summarized  in Table 26.     We 

now  address   the question of which  of  these  estimators   is best  to  use  in 

the   K-S   test. 

As  can be  seen   from  the   table,   the  candidate  estimators  are  all 
2 

unbiased,i.e.,   their  expected  value  is    a     ,   the quantity  that  is being 

estimated.     In  addition,   the}'  are  all  consistent since   the variance 

converges   to  zero   as   the  sample size    N     gets  large. 

Difference   in  the  estimators  can,   however,   be  seen when their 

relative   efficiencies   are   examined.     According   to   Ref.   7,   page  216,   if 

the   estimators  are   unbiased,   then   the  one  with   the  smallest  variance  is 
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TABLE 26 

CANDIDATE  VARIANCE  ESTIMATORS 

Notation Description Equation 
Expected 
Value Variance 

s2 Sample variance of r 

Zero mean sample 
variance of r 

Square of standard 
error of the esti- 
mate obtained from 
regression analysis 
of entire sample 

64 

65 

69 

2 
0 

2 
0 

2 
0 

2aZ, 

r 

~1 
0 

-2 

N - (n +1) 

2o4 

N-n 
o 

2a4 

N - (P+l) 

more efficient.     From  Sec.   Ill  C,   it  was  pointed  out   that   the minimum 

sample  size   for  Historical  Simulation must  be   larger   than   the  number  of 

parameters   to  be  estimated.     In  the  case  being   considered,     P+l     paraniieters 

are   to be  estimated,   one   for  each  independent   variable  and  one   for   the 

constant  term.     Hence     n     >  P+l   .     This   implies   that   for  any  sample  size 
-2 -2 0       2 -2 

N   ,     VAR o     <  VAR a     <   VAR S     .     Hence,     o       is   the most  efficient  of 

the  three  candidates. 

~2 
Using efficiency as the criterion, 

2 
It will be noted, however, that as 

o  would then be selected as 

the estimator of the variance o' 

N gets large, the differences in the variance of the estimators gets 

small, for example 

VAR o' 

VAR o' 

N - (P+l) 
N-n 
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converges   to     1     as     N     gets  large.     Hence,   the  advantage  in efficiency 

for    c"     is  only  significant   for  small    N   .     This  is of course precisely 

the  situation  usually  faced by  the  cost  analyst. 

-2 ~2 2 "2 
Another advantage   for choosing    a       over     a '    or    S       is  that    o 

is  a   function of   the   fit   residuals   from a   regression analysis on   the 

entire sample,   rather   than   the prediction  residuals   from Historical 

Simulation.     Hence   it   is more  Independent   (in  the non-statistical   sense) 
^2 

of   the prediction  residuals  than  the other estimators ,  since a     does not 

depend directly on   the  values  in the Historical  Simulation residual 

vector     r.     Therefore,     o       more  closely  represents  the given  value   (as 
2 

compared  to   an  estimate)   of    o       that   is  called   for  in the K-S  test. 

For   the  reasons  discussed above, has  been selected  as   the esti- 

mate of    o for   the  K-S   test. 
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