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ABSTRACT

A recurring problem faced by many analysts is that of devising
estimating procedures for predicting some aspect of the future from rather
meager data. This is particularly true for the cost analyst who is con-

cerned with estimating the resource requirements of future military systems.

Historical Simulation is a method of evaluating candidate (cost)
eslimating procedures on the basis of their ability to simulate predictions
using data that would have been available., For example, assume that a
particular data base consists of perhaps 15 data points ordered in time;

a typical simulated prediction would entail using a candidate estimating
procedure to predict point 10 using only the information available in the
first nine data points. All candidate estimativg procedures would then be
evaluated on how well their simulated predictions compare with the actual

data points.

In this fashion, Historical Simulation avoids relying on the central
cvaluation assumption of Regressicn Theory, namely, that which fits the
past data best will predict the future best. This conceptual difference

gives Historical Simulation several unique features, among which are

1. The demonstration of an estimating procedure's capability to
make predictions of those points in the data base which are

extrapolations from the previous data

2. The ability to directly compare a wider class of estimating
procedures than can be compared by the usual regression

techniques

Preceding page blank
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The ability to evaluate estimating procedures derived from
stepwise regression independent of the selection process

utilized in that technique

The use of an easy-to-communicate summary statistic for

describing the accuracy of predictions.

Hence, Historical Simulation provides additional information which,
when used in conjunction with the usual regression techniques, should lead
to a better evaluation of candidate estimating procedures, particularly
when the prediction problem is characterized by extrapolation from a small

data base.

The report is in two volumes. The first, which is unclassified,
completely describes the technique. Included is a discussion of reasons
leading up to the development of Historical Simulation as well as a des-
cription of the technique and of possible ways to summarize and interpret
the output. Volume 2, classified Confidential (Privileged Information),
illustrates the use of Historical Simulation by describing the results of

applying the technique to cost and man-hour estimating procedures for

w
selected aircraft programs.

"The reader interested largely in a nontechnical overview mav prefer

C.A. Graver, Progress Report On The Development of Historical Simulation,
General Research Corp IMR-950, March 1969, which was delivered at the
1969 Dob Cost Research Symposium.
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I. INTRODUCTION

The purpose of this report is to describe the progress made in the
development of Historical Simulation, a procedure for the evaluation of
Cost Estimating Procedures (or Cost Estimating Relationships). The work
is being sponsored by the Director of Economics and Resource Analysis,
Office of the Assistant Secretary of lefense (Systems Analysis) under

contract Number DAHC15-68-C-0364.

As parts of this report are fairly technical, the rcader interested
largely in a nontechnical overview of the Historical Simulation procedure
is referred to the paper deliverad at the recent 1969 DoD Cost Research

Symposium (Ref. 1 of this volume).

A. BACKGROUND

The current emphasis on systems analysis, while it has greatly
enhanced the decision-making capabilities of defense policy makers, has
placed a difficult requirement on cost analysts. Working with functional
cost models which utilize a description of the system in terms of its
most basic physical or performance characteristics, the analyst is asked
to make estimates which often require extrapolations from extremely meager
data. These estimates are used in the evaluation of which candidate

system is to be pursued.

Because the generally sparse nature of the data tends to obscure
genuine functional trends, the analyst must go to great pains to fully
utilize all the information his data base contains. While the cost analyst
has at his disposal a number of tools, e.g., linear regression techniques,
any additional tool that summarizes different information from the data

base, such as Historical Simulation promises to be, is worthwhile.

Traditionally, in the development of a cost estimating relationship

(CER), the cost analyst first postulates a functional relationship that

hopefully will reflect the cost generating relationship underlying the

UNCLASSIFIED 1
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data. The data base is then used to estimate the parameters of the functional

relat ionship and a CER is obtained. Whenever the functional relationship

is linear or can be transformed into a linear form, a least squares curve-
que is generally used to estimate the para
f a number of measures, OT statistics,

s ~f the resulting

fitting techni meters. At this
point the analyst may examine any o
based c¢n lines. regressiou theory to assess the goodnes
R as the basis for

fit. If the fit is judged good the analyst uses the CE

cost prediction, concluding that it represents the cost generating process
of the class of systems being analyzed. The assumption operating here is,

in effect, that which fits the data best predicts best.

wWhile no necessary relationship to the system's cost generating

process is thus established, a good fitting CER can be meaningfully used

to make cost predictions, particularly when the desired prediction is an

interpolation within the framework of the data base. But cost analysts

New systems are generally bigger, or faster,

often deal in extrapolations.

or newer in some combination of physical or per formance characteristics,

and so fall outside existing data. Hence, to predict the cost of a

future procurement, the cost analyst is often required to extrapolate from

the past data base.

al Simulation extracts information from the data base on

Historic
%
has performed similar extrapolations.

how well a cost estimating procedure

Historical S$imulation cannot guarantee (any more than regression

However,
tly valid cost estimating procedure can

techniques can) that an apparen

predict accurately a future procurement, as the cost generating process

underlying this procurement may have drastically changed from the one

milar objects already produced.
n evaluating the candidate cost estimating

underlying si What is unique about

liistorical Simulation is that i

er with the technique fo

“I'he functional form togeth
lar CER which is the fun

as distinct from a particu
with evstimated parameters.

ctional form together
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procedure it directly uses the cost analysts goal--predicting costs of

future objects using past data on similar objects.

The premise underlying Historical Simulation lies in the observation
that, if the hypothesized functional relationship represents the cost
generating process, and if the parameter estimating technique is valid,
then the estimatiug procedure's validity can be demonstrated by simulating
predictions* that might have been made using it throughout the time period
of the data base. The resulting predictions can then be compared with
actual data. Thus an analyst cun test his estimating procedure by using
some of his data to simulate a prediction of a later data point. If such
simulated predictions yield consistently acceptable predictions, his
confidence in the estimating procedure's ability to predict future
procurements is greatly bolstered, even if the future procurement lies

outside the data base.

In contrast to the that-which-fits-~best-predicts-best rationale of
linear regression theory, the assumption implicit in the Historical

Simulation approach is that which simulates its ability to predict best

will continue to predict best. This conceptual difference will provide

the five advantages listed below:

1. The past ability of candidate cost estimating procedures to

extrapolate from historical data can be demonstrated.

2 Evaluations made using Historical Simulation constitute
additional information useful in hypothesizing new cost

estimating procedure candidates.

*The use of the word prediction in the Historical Simulation context, may
or may not have the usual meaning. If the candidate cost estimating proced-
ure is hypothesized independent of the data base, then the simulated
predictions are in fact predictions. But in the most typical case, when
the candidate cost estimating procedure is hypothesized after examining
the entire data base, the simulated predictions cannot be interpreted
as actual predictions, for the candidate estimating procedure undoubtedly
fits the entire sample well.
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3. Historical Simulation can compare a wider class of cost

estimating procedures than the usually employed regression

techniques.

4, CERs derived from stepwise multiple regression techniques can

readily be tested, thus providing an independent evaluation

of them.

5. Evaluations made using Historical Simulation yield an easy-
to-communicate summary statistic that is useful in describing

the accuracy of a prediction.

To summarize, the conceptual differences between Historical Simula-
tion and Regression Theory insure that the former will give the cost analyst
new information from which he can judge the reliability and validity of
hypothesized cost estimating procedures. Hence Historical Simulation is
not a replacement of the traditional Regression Theory techniques; rather

it is another tool which the analyst can use.

B. ORGANIZATION OF THE REPORT
This report is presented in two volumes of which this is the first.

The second, subtitled Scme Examples, presents the results of applying the

Historical Simulation technique to two aircraft samples. While the
author is not sufficiently familiar with the data to draw concrete con-
clusions about which estimating procedure is best, the results are
useful in demonstrating the value of Historical Simulation. Volume II

carries a Confidential classification,

Volume I completely describes the Historical Simulation technique,
and presents related background material about current estimating
techniques. It is in five sections, of which this Introduction is the first,

and has three appendixes.

Section II is in large measure devoted to background material, and

outlines the considerations and problems that have led to the development

“ UNCLASSIFIED
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of Historical Simulatjion. It is concluded by listing some of the properties

that would be desired of any new evaluation procedure.

Section III describes the Historical Simulation procedure in detail,
deronstrating its use with a hypothesized linear cost estimating procedure,
ana uvtiliziug a least squares fitring technique to estimate the parameter
values. It is then generalized to a wider class of estimating procedures

and some of its properties are discussed.

Section IV discusses three of the ways the outputs provided by His-
torical Simulation can be utilized. These three ways, or categories, are
(1) uirect examination of the output, (2) data summarizations that do not
depend on a particular cost estimating procedure, and (3) statistics which

utilize the assumptions of a particular cost estimating procedure.

Section V concludes the body of Volume 1 with a discussion of the
advantages and current limitations of Historical Simulation, and
identifies some of the directions future research in the technique might

take.

The three appendixes contain topics of special interest. Appendix I
describes a computer model written for Historical Simulation; Appendix II
derives the distribution of the lHistorical Simulation predictions and
residuals under the usual regression theory assumptions; and Appendix 1II

compares several varlance estimators.

Before proceeding to the body «f the report, it should be understood
that tlie word simulation, as it is used here, refers to the demonstrating
of a cost estimating procedure's predictive capebility by simulating a
prediction that might have been made using only the data that would have
been available., Thus this procedure does not include generating a random
sample needed for Monte Carlo evaluation--an integral feature of many simu-

lation models.
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In addition, while the present work is tailored to the cost problem,
no limitation is evident that precludes using Historical Simulation to
evaluate any estimating procedure, particularly when the inference to be

made has the characteristics of extrapolation and small sample size.
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II. BACKGROUND TO THE DEVELOPMENT OF HISTORICAL SIMULATION

A. ADVANTAGES OF FUNCTIONAL COST MODELS

In recent years, major procurement and force decisions in the Depart-
ment of Defense have been made with the help of Systems Analysis, a
management tool in which alternative weapon systems capable of accomplishing
the same objective are compared analytically. The alternatives are most
often described in terms of general performance characteristics. Thus a
bomber might be described by its speed (Mach 1.2, say), range (1500
nautical miles), and payload (18,000 pounds).

Before the various alternatives can be compared, estimates of each
system's cost and effectiveness must be made. From these estimates the
"best'' alternative can be selected or new alternatives specified and the

process repeated.

Traditionally, cost estimates have been based on detailed engineering
evaluations of the weapon system alternatives. Indeed this process is still
used, particularly in industry, when the comparisons being made concern

the detailed design decisions necessary to achieve the specified weapon

system characteristics (in the most economical fashion). For example, What

should be the shape of the wing?

However, for making cost estimates to be used in choosing the major
per formance characteristics of the weapon system best suited to a specific
mission, it has been found that functional cos: .odels have several
advantages over the more traditional engineering approach. By including
in a system's functional cost model all significant cost generating
per formance characteristics, the cost estimate will depend as much as
possible upon the same variables used to generate the effectiveness

estimates.

UNCLASSIFIED 7
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In additijon, functional cost models provide the rapid estimating
capability necessary for making timely comparisons between alternate
weapon systems having widely varying performance characteristics. Cost
estimates generated in this manner, when used in conjunction with
effecl iveness estimates, become an integral part of the weapon system
pertormance characteristic specification, rather than remaining the

result of a more detailed evaluation for a particular weapon system

b configuration (which has been chosen without regard to cost).
E Finally, a functional cost estimating procedure guarantees a
consistent evaluation of cost. This is not usually the case in engineering

evaluations where cost definitions and accuracies used in the evaluation
! of a particular alternative may differ from those used in the study of

another alternative.

B. CURVE FITTING AND REGRESSION TECHNIQUES IN FUNCTIONAL COST MODEL
SPECIFICATION
At one time, only curve fitting techniques (such as least squares)
E were used to develop particular cost estimating relationships (CERs) in
] a functional cost model. But, by themselves, the fitting techniques
would not tell the analyst anything about the reliability of cost
estimates made using a particular CLR, nor would they help him choose the

: best from several competing CERs.

Statistical regression techniques which essentially measure the
goodness of fit were introduced to answer these questions. Statements
concerning predictive reliability were derived by using R-scores and
prediction intervals, while choices between CERs with different input
variables but the same functional form (e.g., linear) weve made using

F- and t-tests.

There was, however, a certain amount of trial and error involved in

applying these regression techniques. Candidate CERs had to be specified,

UNCLASSIFIED
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and often the results of applying the regression techniques were such

that none of the CERs were acceptable. A computer routine called Stepwise
Regression2 has been utilized by some to eliminate a great deal of the

trial and error. The analyst has only to specify the candidate independent
variables and desirable variable transformations (e.g., square root, squared,
multiplication of two together, etc.) rather than to hypothesize the !
candidate CERs. The stepwise routine can evaluate various linear b
combinations of candidate variables and their transformations to derive

one of the best* linear combinations (in the sense of fitting the data ]
best) for a specified number of variables. The use of this program will

be discussed further in Sec. II C 3.

C. PROPERTIES DESIRED IN ANY NEW EVALUATION PROCEDURE 4
The application of curve fitting and regression techniques has led

to several problems, four of which are amenable to evaluation using

Historical Simulation. The ability to deal with these problem areas is

highly desirable in any new evaluation procedure; each is discussed below

in terms of the stated requirements that any new evaluation procedure should

have.

ILg Needed: A Simple Measure to Define the Predictive Capability of
O
Candidate Cost Estimating Procedures or CERs

A problem in applying statistical regression techniques is that the
cost analysis application is typically characterized by small sample sizes.
Hence every attempt is made to build up the sample by including all data
that is practically relevant. In so doing, however, the fulfillment of

required assumptions, such as independence of sample observations, becomes

%
There has been some discussion as to whether or not the resulting linear

combination is the best. Step-forward and step-backwards routines do
not always result in the same linear combination for K-variables. For }
further discussion see Ref. 3. v -

Kk
The difference between these terms is given in the discussion of
Property 2.
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%
doubtful. For this and other reasons the usual statistica. interpretation
of the regression statistics (i.e., F- and t-tests, R-score) is open to
question; statements about significance levels and prediction intervals

may be meaningless,

Lven when the cost application does not satisfy the regression theory
assumptions, however, it is possible to use the regression theory machinery
to devise measures that are free from a statistical interpretation and
have a justifiable ''geometric" interpretation. Such a geometrical
interpretation is described in Ref. 4, pages 13-27. This interpreation
has had little use since its presentation, probably because of its

complexity and the lack of exact rules to be applied in its application.

If a simpler, heuristic measure can be defined, one which will
enable the analyst to choose among alternative CERs and to say something
about the reliability of the estimate, there will be no real advantage
in striving for wide understanding of this geometrical interpretation.
Such a measure, called Average Proportional Error, is identified and

discussed in Sec. IV B of this report.

Zq Needed: An Evaluation Procedure That Can Directly Compare a

Broader Class of Candidate CERs (Called Cost Estimating Procedures)

Under (1) above the question of the meaning of the usual statistics
in the cost analysis application was addressed. Here attention is focused
on the comparability of these statistics. How does one choose between

models of different functional form, e.g., Y = a + bX and Y = aX ?

q . 2
One approach is to use the index of determination (or R™ ). But
the values of this statistic can not be directly compared and a model

choice based ou the index value closest to one can be very misleading.

"For a discussion of the regression theory assumptions and the question
of whether they are satisfied in the cost analysis application, see

Ref. 4, pages 3-8.
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To illustrate this point, examine the contents of Table 1. This
1 is the result of running a library computer program which fits six
f: different curve forms (second column) in an attempt to choose the best.
As can be secn by evaluating the indexes of determination (or Rz's——the
column marked Index), curve six appears to be the best choice. A print-
out of the table of residuals quickly dispels this notion, however--the

fit in terms of Y is lousy indeed.

The problem is that the indexes of determination are not comparable.
This is because the index is calculated on a least squares fit. But the
fit is not applied until the candidate curve has been transformed into

a linear form. For example the linear form of Eq. 6 (Table 1) is )

(1)

and A and B are picked to minimize this quantity. The index of
determination is calculated on the linear fit and hence applies 1/Y ,
and not to the quantity of interest VY ., Hence, they should not be

compared.

*
In fact, this particular example is a bad fitting technique, Examples
of data that fit Y = X/(AX + B) well, but do not fit Eq. 1 well, can
be easily constructed.

| UNCLASSIFIED .
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The author is not asserting that valid comparisons for different
functional form: cannot be made. For instance, in Ref. 5 valid comparisons

are made for a linear model and an expounential model, i.e.,

b, b b
_ 1.2 . P
Y—axlxz...xp (2)

But these comparisons are based on either making the statistics comparable
or making the parameter selection technique the same. In the example of
Table 1, however, care is not taken to make the index of determination
comparable even though the paramc er selection techniques are different;
the curve-fitting technique is first a transformation of the equation,

i.e., Y = X/AX + B becomes LEq. 1, and then a least squares curve fit.

TABLE 1
MODEL COMPARISONS

XMEAN: 7.9 YMEAN: 114,79
NUMBER CURVE INDEX A B
1 Y=A+B*X LBT99452 1.57802 15.8.34
& Y=A*EXP (B*X) . 734309 12.9491 .238688
3 Y=A*XtE L 9403805 5.5841 1.46224
" Y=A+(B/X) L644278 164,198 -214.977
i Y=1/(A+B*X) L49971 AU 3564 -8.48198 $-3
H Y=X/(A*X+B) L9807 -1.79869 §-2 206394

FOR WHICH CURVE ARE DETATLS DESIRED (NUMBER) 7 o

(OF FFICTENTS :

EXPECTED VALUE 95PCT CONFIDENCE LIMITS
Al -1, 79804 §=p -2, 38RH2 §-2 -1.2¢886 $-2
B: A GREN] L1888 1Y L223974
X-ACTUAL Y-ACTUAL Y-ESTINM G9PCT CONFIDENCE LIMITS
1 5.0 5. 3765 4.9 3680 5.73871
2 (B 11,7357 14,9222 12,6801
3 RE N 19 . 6rg7 18,0428 21,6457
X av | 2907510 26,3993 34,0879
B s 42,9433 .25 52.638
h o 6d.93¢4 48,0256 83.3188
14l 86.9715 62,3615 143.668
n 159.2 128.0¢2 B, 2055 116,774
9 lbd .t 282,191 143.934 5372.98
11 167.8 376.996 133,284 -455,922
1 1Y 1288,27 175.282 -244,812
L 179.4 -1270.47 237,532 -172.871
13 173.8 -4773,845 339,134 -139.516
| 176.1 ~3d8.221 536.01 -119.696
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To further clarify this distinction it is helpful to make explicit

the often-neglected difference between a CER and what I have called the !
H

Cost Estimating Procedure.

A cost estimating procedure consists of a parametric estimating
relationship (PER) PLUS a technique for estimating the values of the ‘
1 parameters (in the PER) from some sample. Thus an example of an estimatir

procedure might be:

Parametric Estimation Relationship: Y = a + bX

Y is the production cost of
the item to be estimated ]

X is the weight of the item
to be estimated

Least squares curve fit

Technique:

A new estimating procedure results from choosing a new PER, a new

technique, or both Hence the combinations given in Table 2 are all

examples of alternative estimating procedures.

When a cost estimating procedure, with PER Y = a + bX , say, is used in

% conjunction with a particular sample, (i.e., a particular set of observa-
tions) there is .erived an explicit cost estimating relationship (CER), 1
' for example, Y = 10 + 25X . This is a result of estimating the PER
E parameters by applying the estimating technique to the given sample.
1

Thus every CER has identified with it a particular
sample and an estimating procedure consisting of
a PER and a technique.

The relationship of these entities is pictured in Fig. 1.

] The usual regression theory statistics are comparable if the
technique is the same for all candidate estimating procedures. In

F q f q q q .

, particular, this is true if the candidates have the same PER form, as the

same technique can easily be used. For example, one can compare a linear

ciadd
Py
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] TABLE 2

.: COST ESTIMATING PROCEDURES

vy

‘: Procedure

G Number PER Technique

1 1 Y =a+ bV Least squares fit

; 2% Y =a+ bV Line determined by the closest two data points
' in terms of V

3% Y = a+ bX Same as above cxcept closest measured in terms

E of X
E 4 Y = aXb Least squares fit on log Y = log a + b log X

Y = production cost, X = weight, V = volume

%
Procedures 2 and 3 in Table 2 may need some explanation. The technique

proposed is very close to costing by analogy. In effect, the analyst

] assumes that if he forms a line with the two closest data points (in

3 terms of his independent variable) to the point he wishes to predict,
the estimate using this line will be better than an estimate made using
a line that fits all the data.

4 COSsT ;

j ESTIMATING | APPLIED TO SAMPLE | YIELDS CER ;

4 PROCEDURE -
PARAMETRIC TECHNIQUE

ESTIMATING

T TIMA
RELATIONSHIP (TO ESTIMATE PARAMETERS)

Figure 1(U). Relationship of CER and Cost Estimating Procedure
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PER which has two independent variables with one which has three independent

variables.

If the PER forms are different, however, it is not always easy to
choose the same techmnique. Applying least squares directly to a PER form
such as Eq. 2 requires the use of expansions and iterative computer

solutions.S

What is needed, then, is an evaluation procedure which can compare
any cost estimating procedures without regard to whether or not the
techniques are the sam:. As Sec., III D points out, Historical Simulation

is such an evaluation procedure.

3. Needed: A Means of Evaluating Estimating Procedures Derived With

Help of Stepwise Regression

Prior to the introduction of the stepwise regression technique,
candidate CERs had to be hypothesized, with the hypotheses presumably
based on engineering rationales or other criteria. The need for this

specification was operationally removed when the stepwise multiple

regression routine became available. Only the candidate variables and their
allowable transformations had to be specified. lowever, when the stepwise
routine was applied the resulting CER, while fitting the data well, often
had no physical rationale. The applicability of the result then became
questionable, even with a good fit. For example, suppose a hundred
different CER combinations are tried. It is not surprising that one or
two will fit well enough to be judged significant at the 0.05 significance
level. This follows from the fact that the CER hypothesis is not picked

a priori but is the result of finding the one that fits the data best from
a hundred linear combinations; as such, this fit could easily represent
one of the five times out of 100 that such a fit theoretically occurs by

chance (at the 0.05 significance level).
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With such misgivings concerning the results of stepwise regression,
it would be valuable to have an evaluation procedure which could check
estimating procedures derived Ly this t cnniqu~. It will be shown in

Sec. III D that Historical Simulation can make this independent evaluation.

4. Needed: An Evaluation Procedure Free From the That-Which-Fits-Best-

Prelicts-Best Curve-Fitting Assumption

The discussion above of the third desired property throws into
doubt one of the central assumptions of least squares curve fitting--that
which fits the past best will predict the future best--for it is this

criterion that the stepwise regression procedure uses to choose CERs.

A second peculiarity of the cost analysis problem, in addition to
small sample sizes, casts further doubt on the applicability of this
least squares curve-fitting assumption. While using the criterion of
st ownlon s best, predicts best should work reasonably well for cost
predictions that are interpolations on the characteristics present in the
data base, the criterion yields little information concerning cost
predictions of procurements which represent extrapolations from the

characteristics in the data base (see Ref. 6, page 6).

Predicting the cost of procurements that represent extrapolations
from the data base is precisely the problem that the cost analyst usually
faces. It scems like we are always required to estimite the cost of a
bigger or faster plane, or one that is /v 2o in some combination of

characteristics than those procured in the past.

Hence, a fourth desirable property for a new evaluation procedure
is that it be independent of the assumption of trur wiien fits best
s e roers Inoaddition, it will be desirable that the evaluation pro-
cedure depends on how well the candidate cost estimating procedure can
extrapolate from historical data. As will be seen in Sec. 111 D,

historical Simulaticn is such an evaluation procedure.
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IIT. HISTORICAL SIMULATION DESCRIPTION

A. BASIC CONCEPT

The job of a cost analyst is to try to predict the cost (in constant
dollars) of a proposed future procurement. He has at his disposal a
description of the procurement in the form of a set of physical and
performance characteristics. In addition, he has available physical and
performance characteristics as well as cost data on similar past procure-
ments.* Hence, his primary obje_tive is the prediction of a future

procurement using available historical data.

Historical Simulation uses this primary objective in measuring the

value of a cost estimating procedure. This basic tenet can be stated as

follows:
The cost estimating procedure which can best
simulate predictions that would have been made
in the past will actuall, be best able to
predict the future.

B. AN EXAMPLE

To evaluate different cost estimating procedures, using the tenet
just stated, Historical Simulation calls for each candidate cost
estimating procedure to be tested on subsamples of the actual data base.
For each subsample, the candidate cost estimating procedure is used to
predict the cost of procurements built after any of the procurements in

the subsample. These predictions are then compared to the actual costs.

*
It will be assumed that the cost data is in constant dollars and peirtains
to some production quantity, like the hundredth unit.
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To demonstrate this process, consider the following example compris
the thirteen data points listed in Table 3.7.< The data has been ordered
as to date of first delivery (second column), and the actual cost and the
independent variables X, and X, have been collected for each data

1 2

point; Xl and X, are physical or performance characteristics (such

as weight and speed) which we hope will be useful in specifying the cost

of the procurements we are to estimate. We have hypothesized the follow-

ing cost estimating procedure:

Cost = a+ b X +b)X, (3)

where a, bl , and b, are to be estimated through the process of a

least squares curve fit.

TABLE 3
SAMPLE DATA

Procurement First Actual X X

Number bDelivery Unit Cost 1 2
1 1950 95 1,990 153
2 1951 31 967 144
3 1952 60 2,414 149
S 1954 82 4,418 144
5 1956 25 852 107
0 1953 67 2,072 136
7 1960 243 10,408 177
3 1901 54 2,643 160
Y 1962 112 3,786 172
10 1963 100 3,335 203
11 1964 183 6,374 196
12 19065 156 7,092 187
13 1967 177 10, 304 167

“I'his data was used to debug the liistorical Simulation computer program
described in Appendix 1. Values for Tables 3 through 8 were obtained
from the output of this program as reproduced in Table 20 of Appendix I.
lhe data used does not represent any real-world sample but is used only
to illustrate the Historical Simulaticn procedure.
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Now suppose we start with a subsample of five items; that is we will
treat the first five rows of Table 3 as our data base. This is the data
base from which an analyst would have had to make cost predictions in

1957. Using a least squares fit, the derived CER is

i T P

Cost = -73.9 + 0.0104xl +0.792%, (4)

From Table 3, Xl and X2 for procurement number 6 are 2072 and
136. If these values are substituted into the CER of Eq. 4, the predicted
cost is 55.3. From Table 3 the actual cost was 67; thus we have underesti-

mated by 11.7. i

Next, Eq. 4 can be used to predict the remaining data points 7-13.

These predictions can be compared to the actual costs, and residuals

-

calculated, yielding the results given in Table 4. As one can see there

were six underestimates and two overestimates.

The entire process described thus far is now repeated for a subsample
size of six. That is, we add the sixth procurement to our subsample,
taking the six top rows of Table 3 as our data base. This data base is
the one from which a cost analyst would have made his cost prediction in
1959. Making a least squares fit to this data base we obtain the

following CER: 3

Cost = -08.4 + 0.0105X + 0.765X, (5)

Comparing Egqs. (5) and (4) we sec that the parameters have changed,

although not by any great amount. This change is, of course, the result J
of adding procurement number ¢ to the sample. The point to be remembered
is that the explicit CER has changed, but the CER form, i.e., A

Cost = a + le1 + b2X2 , and the parameter estimating technique, namely,
least squares, has not changed. It is the CER form and the parameter
estimating technique that are being evaluated by Historical Simulation,

and not any one explicit CER such as %g. 5.
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TABLE 4

PREDICTED COSTS USLNG FIRST FIVE PROCUPEMENTS

} Procurement Actual Predicted %
| Number Unit Cost Cost Residual
] 6 67 55.3 ~11.7
7 243 174.4 -68.6
8 54 80.2 26.3
] 9 112 101.6 -10.4
’ 10 106 121.5 15.5
J 11 183 147.5 -35.5
d 12 156 147.9 -8.1
;- 13 177 165.4 -11.6

%
Negative numbers are underestimates; positive numbers are overestimates.

Predictions and residual calculations for procurements 7-13 can

{ now be made using kq. 5 yielding the results shown in Table 5. Notice
| that procurem-at number 6 is not included since it was part of the daca
base used to derive Eq. 5.
TABLE 5
1 PREDICTLED COSTS USING FIRST SIX PROCUREMENTS
Procurement Actual Predicted
Number Init Cost Cost Residual
7 243 176.1 -66.9
3 K 8l.7 27.7
Y 112 102.8 -9.2
, 10 106 121.8 15.8
11 183 148.3 -34.7
12 150 149.0 -7.0
13 177 167.4 -9.6
§

BTN
o
(@]

UNCLASSIFIED




UNCLASSIFIED

The procedure described thus far can be repeated using subsample
data base sizes of 7, 8, and on up to 13, In the last case the entire
sample is usec .ud the usual least squares fit is obtained. Of course,
no predictions for which an actual cost exists in the data base can be
made using this final CER. However, this is the CER which will be used
to make future predictions if the PLER and parameter estimating technique

being evaluated by Historical Simulation is chosen as a good method for

predicting cost.

The outputs described can be conveniently summarized in a table of
predictions (Table 6), a table of residuals (Table 7), and a table of

parameter estimates (Table 8). The interpretation of this output will

be discussed in Sec. IV.

A word of caution must be inserted at this point. The results of
this particular example as displayed in Tables 6, 7, and 8 are merely

illustrative. Their purpose is simply to make explicit the Historical

Simulation procedure and the form of the output. Results of a limited

number of Historical Simulation runs (using the computer program described
in Appendix I) are presented in Volume 2 (CONFIDENTIAL) for some airciaft

data. They were excluded from the present volume to avoid the necessity

of classifying it.

Some of the possible ways of analyzing these results are discussed

in Sec. 1V, but it must be remembered that Historical Simulation is

intended primarily as a tool for evaluating an estimating procedure.

topefully, the evaluation will be made in the presence of other candidates.

Only the analyst who understands his data base can make such judgements

as to whether

. The results are reasonable, and the estimating procedure is

valid, or

° The results are not reasonable and a new estimating procedure

should be hypothesized, and/or the sample should be stratified

—-i.e., divided into groups which secem to come from different

populations.
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TABLE 6
PREDICTIONS

For Sample Point Number

Sample
Size Used | © 7 8 9 10 11 12 13
5 55.3 | 174.4 80.2 101.6 | 121.5 147.5 147.9 | 165.4
) 176 .1 81.7 102.8 | 121.8 148.3 | 149.0 167.4
7 85.4 114.3 | 128.1 177.4 183.9 227.0
8 102.1 103.9 161.5 172.6 229.3
9 110.7 166.3 176.1 | 229.2
10 164.5 174.9 229.8
11 179.7 223.7
12 227.1
13
TABLE 7
RESIDUALS
For Sample Point Number
sample
Size Used 6 7 8 9 10 11 12 13
5 -11.7 68,0 26.3 | -10.4 15.5 -35.5 -8.1 -11.6
0 -00.Y 27.7 SURY 15.8 -34.7 ~-7.0 .6
7 31.4 2.3 | 22.1 -5.0 27.9 .0
3 = o2 | -21.5 16.6 .3
9 4.7 -16.7 20.1 o2
o -18.5 18.9 .8
1 23.7 .7
[ odl
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TABLE 8

ESTIMATED PARAMETERS

Sample Size

Ao RN R NS N o ) S A o« I o N A Ve )
c ©o O o O o o o o

SUMMARIZATION OF THE PROCEDURE

This summarization, or generalization of Historical Simulation
is presented in the language of the estimating procedures introduced in
Sec. TI in order to make it apparent that Historical Simulation can be
used on any estimating procedure. (This was the second desirable

property stated in Sec. II.)
Let the estimating procedure being examined have a PER given by

y = £(8, X)

y is the cost
> .
B are the parameters of the function
> I3 ]
and X are independent variables

In the example given in Sec. III B, E represents the parameters a, bl -
and b2 2 ﬁ the independent variables Xl and X2 ;y and f the linear

equation given by Eq. 3. To complete the estimating procedure specification,
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there is a technique T which, when applied to a sample, yields an

estimate of the parameters 4 . 1In the example of Sec. III B the technique

T was least squares curve fit.

The sample consists of N sets of data (yi,ﬁi) ,

[ . . .
; i=1,2, ..., N, where the y; are the actual cost of procurement

i , and the Xi are the values of the independent variables for procure-
ment 1 . It is assumed that the sample has been ordered in time, with

the smaller values of 1 corresponding to the older data points.

The Historical Simulation procedure can then be summarized as an

iterative process which goes through the following four steps at each

iteration.

Step 1. Subsample Specification: Determine data base size n for

E this iteration, where n 1is larger than the subsample size of the
i previous iteration. In particular n,<nc< N where n is some
i minimum sample size which is greater than the number of PER
parameters, i.e., entries in é . In the case of the example,

g - 4 as there are three parameters to estimate: a, bl , and

b,.

Step 2. CER Specification: Apply the estimating procedure technique

T to the subsample of size n identified in Step 1, i.e.,

13

(v.,X,) y i=1,2, . .., n, and obtain the PER parameter
estimates . (In the example of the last section, least squares
n

estimates of a, bl , and b, were made for each iteration.)
Substituting these parameter estimates into the PER yields the CER

for this iteration. 1t can be denoted by

. Y = f(.»’ \>
n

ro
o~
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Step 3. Cost Prediction: Predict the cost of each of the procure- 1

ments not included in the subsample. This is accomplished by
substituting the values of the independent variables (for the
procurement in question) into the CER developed in Step 2. Predictions

& are made of Ytk ? k=1, 2, .. ., N-n . These predictions are

labeled §é:i in the remainder of this report and are given by

-3 n(n) (—; > )

4 = : k=1,2, . . ., N-n

! Yotk £ B ¥ nek ’ ’ 7
where §(n) is the prediction of vy from subsample size n and

. n+k nt+k

the Xn+k are the values of the independent variables for the
ntkth procverement. (For the example these predictions were listed
in Table 6.)

Step 4. Calculation of the Residuals: The actual costs are sub-

tracted from the appropriate predictions (Step 3) and the residuals

b obtained. These residuals, denoted by déii , are given by

i

- (n) _ :(n)

ok ™ Ynrk T Yok $e
Negative values of dﬁ:i represent underestimates while positive

] values are overestimates. (The residuals for the example of the

last section were given in Table 7.)

A A few remarks shoul. pe made concerning Step 1, Subsample Specifica-

tion. For the purposes .. Historical Simulation, several data points
procured in the same time frame can be grouped together. For instance,
if data points--procurements--7, 8, and Y were all delivered in the same

year, one can group this data. Iterations of the Historical Simulation

Grouping will have no effect on the Historical Simulation evaluation with
the exception of those statistics discussed in Sec. IV ¢ 2 which, at

. A
present, are valid only for the one-step residuals dé${.
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would include subsamples 5, 6, 9, 10, 11, 12, and 13. Predictions of

data points 7, 8, and Y would only be made with subsamples of five and

six data points. Information concerning data points 7 and 8 would not have
been available for the prediction of data point 9, so grouping the data

does not invalidate the Historical Simulation procedure.

Another problem in subsample specification is selecting the initial
subsample. A lower bound exists that is dictated by the number of
parameters to be estimated. For the example in this section the lower
bound would be four (one greater than the number of parameters as required
for a finite variance least squares fit). But this selection of four
subsample items would allow only one degree of freedom and one would expect
a great deal of variation in the predictions. Using too large an intial
sample, however, will greatly reduce the amount of new information
contained in Tables 6, 7, and 8. The initial subsample size must thus
be set by the analyst at the smallest number which is necessary for the
estimating procedure, if valid, to have enough information from which to
make reasonable estimates. (In the example n, was arbitrarily chosen

to be 5).

D. SOME PROPERTIES

Several properties of the Historical Simulation procedure can be
established from the development made thus far. For instance, the
procedure evaluates a candidate cost estimating procedure by simulating
how well the latter would have predicted if it had been available and
used to make cost estimates in the past. Hence the name Historical

Simulation,

Historical Simulation does not depend on the usual curve fitting
assumption of goodness /i onien s best, predicts best. (This was
identified as desirable property number 4 for a new evaluation procedure
in scec. 1l ¢), The freedom from the curve fitting assumption is a

consequence of the fact that the output in lables 6 and 7 depends only

. UNCLASSIFIED
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on how well the hypothesized cost estimating procedure predicts. The
entries do not depend on how well a particular CER fits the subsample that

was given to it,

Historical Simulation can be used to evaluate CERs derived with the
help of Stepwise Multiple Regression programs, whose use was discussed
briefly in Sec. II. Using this program, the choice of a CER is determined
by which candidate CER fits the data best (in a lecast squares sense).
Unfortunately, the values of the usual regression statistics depend on this
choice criterion and are thus not independent of the CER selection process.
In contrast, Historical Simulation does not depend on the choice criterion
as its output does not depend on how well the CER fits. In other words,
Historical Simulation, unlike the usual regression statistics, is able

to evaluate the CER independently of the stepwise regression choice criterion.

(This property was identified as desirable property number 3 for a new

evaluation procedure in Sec. 11 C.)

Due to its dependence on predicting from past data, Historical
Simulation is a tool to demonstrate the estimating procedure's ability to
handle extrapolations implicit in the data base. This is in contrast to
the estimating procedure's ability to interpolate, which can be evaluated
by the usual regression theory approach. The extrapolation is in the time
direction as the data is ordered on time. Indeed this is probably the
most universal ordering as it will tend to parallel orderings on physical
characteristics. This is because new procurements usually represent
advancements in the state of the art, as measured by some set of physical
characteristics. Hence ordering on time will also tend to order on these

"®
physical characteristics.,

*It should be noted that there may be applications in which the advancement
implicit in a new procurement is represented by an increase in one physical
characteristic, say bandwidth. The problem then would be to estimate the
cost of this new procurement, from a data base of procurements which all
have smaller bandwidths. The extrapolation then would be in the bandwidth
direction and, in this case, the author sees no reason why the ordering
could not be on bandwidths.
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Another difference between Historical Simulation and the usual curve
fitting techniques is that the former looks at different samples while
the latter concentrates on the entire historical sample. In effect the
Historical Simulation procedure looks at how well the hypothesized CER
form does at varying times and hence how reliable the hypothesized CER
is over time. In contrast, the curve fitting techniques and the associlated
reprecssion statistics evaluate one period in time, the present, and will

*
in general be unable to detect time-trend effects.

Finally, Historical Simulation can be used to directly compare any
candidate cost estimating procedures. (Identified in Sec. II C as
desirable property (2) for a new evaluation procedure.) This is quite
apparent from the fact that the summarization of the procedure in the
last section was carried out in estimating procedure notation. All that

is needed is a PER, Eq. 7, and a parameter estimating technique T.

Having defined the Historical Simulation procedure and some of its
properties and seen how it works for a particular example, attention must
now be focused on the output of Historical Simulation. What is it good

for and how does one interpret it? These questions will be addressed in

the following section.

This stacement is not universal because time has sometimes been included
explicitly in the CER form.

i S e

)
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Iv. OUTPUT INTERPRETATION

In trying to interpret the results of Historical Simulation (or indeed

to make inferences from the usual regression statistics), the analyst is

trying to examine two basic questions about the cost estimating procedure

under study:

1. Is the estimating procedure valid?, i.e., is it a true

representation of the cost generating process under study?

g How reliable is the estimating procedure?, i.e., is the model

variance, and hence the variance in estimates, large or small?

Insights into the answers to these questions are used by the analyst to

choose between different candidate cost estimating procedures (ranking),

to define new candidate cost estimating procedures, and to make statements

about the accuracy of his predictions.

The value of the Historical Simulation procedure must be directly
related to the usefulness of its output as a means of providing insights

into these two basic questions and helping the analyst make the choices

and statements identified above. Ways of using the listorical Simulation

output for these purposes are discussed in this section. The discussion

& has been organized into the following three categories:
1. Direct Examination of the Historical Simulation Output (Sec. IV A)
2. Data Summarizations That do not Depend on a Particular

Estimating Procedure (Sec. IV B)

3. Statistics Which Depend on a Particular Estimating Procedure
:
] (Sec. IV C)
A. DIRECT EXAMINATION OF THE HISTORICAL SIMULATION OUTPUT

A direct examination of the contents of the output tables of Sec. 1II
(Tables 6, 7 and 8), can add insight into the question of model validity,
the identification of questionable sample points, and the identification

of new candidate estimating procedures. In the course of this
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examination several useful questions can be asked; these are discussed
below making use of the form of the residual table (Table 9) which is

patterned after Table 7 of Sec. III.

TABLE 9

FORM OF RESIDUAL TABLE

(X stands for a residual value calculation)

Sample Point

T

e g

Sample

Sizes Used O 7 8 9 10 11 12 13
5 X X X ’ X X X X
6 X X ¢ X X X X
7 X X X X X
8 X X X X X
Y X X X X
10 X X X
11 X X
12 X

L3
l. Fach column of Table 9 gives the residuals for a particular

sample point. Une can ask if these residuals are improving
--petting smaller in an absolute sense--as the sample size
grows (that is, as the analyst looks down the column). One
would cxpect the residuals to improve~-or at least not get

any worse--if the model is valid and the sample consistent.

In lable 7 we saw that this behavior is not true for the test
run sarple. The residuals are erratic or tend to get worse
for sample points 9, 11, 12 and 13.

Are there anv consistent errors? For example, does the
estimating procedure underestimate (have negative residuals)

most sample points consistently? If so, then the cost
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estimating procedure shows signs of bias. Again by examining
any column of Table 9, one might find sample points that are
consistently under- or over-estimated by a substantial amount.
In this case there is reason to suspect that the data point

in question does no: belong to the population, or that errors
have been made in recording its cost or the values of the

independent variables.

For the test run data of Table 7 there appears to be no

indication of bias as the residuals are neither mostly negative

or mostly positive. There are sample points, however, that

show substantial consistent errors, such as points 7 and 1l1.

Residuals along any row of Table 9 are all derived from the
same subsample. Comparing two adjacent rows indicates the
impact on the prediction process of the points added to the
larger subsample. One might therefore ask if there have been
significant changes, in some consistent manner, from one row
to the next. If so, the sample point added is dominating the
estimating procedure and if the changes in residuals are not
for the better (i.e., smaller absolute residuals) then the
question of whether or not the sample point properly belongs

to the population is again raised.

As an example, if rows for subsample sizes of six and seven
data points are compared in Table 7, we see substantial
changes in the residuals. While some residuals have improved
—-sample points 9 and ll--others have definitely become worse

—-—sample points 12 and 13. There is no question that sample

point 7 has had a significant impact, but its impact is mixed.

Finally, the estimates of the parameters (Table 8) can be
examined. Are they reasonably stable, showing signs of
convergence as the sample size grows? If so, then one feels
a greater assurance of the model's validity; the information

concerning the values of the model parameters is essentially
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AR e L

L i



SUEaS e

B e fa ) & b

TP,

UNCLASSIFIED

the same from all the sample points. If not, then there might
be something in the pattern of the estimated coefficients that
would suggest a new candidate cost estimating procedure or

that would identify a questionable sample point.

In Table 8 it can be seen that the desired stability did not
take place for the test run data. The inclusion of sample
points 7 and 8 had a significant impact on the parameter
estimates to the subsample 7 values. Hence, these points ough

to be examined carefully.

In summary, there is a great deal of "look-see'" evidence
concerning the model validity in the output of Historical
Simulation. This output can be used to build confidence in
model validity or, conversely, aid in hypothesizing a new

cost estimating procedure. In addition, it can help to
identify questionable sample points. Furthermore, no informa-
tion concerning the process has been lost. This is in contrast
to the statistics discussed under the remaining two groupings
which depend on summarizations of the data-—-and most data

summarizations imply a loss of some information.

B. DATA SUMMARIZATIONS THAT DO NOT DEPEND ON A PARTICULAR ESTIMATING

PROCEDURE

Data summarizations (or statistics) discussed in this section have

the property that they can be calculated for any candidate cost estimating

procedure.,

Ihese summarizations can thus be used to compare different

candidate estimating procedures.

This lack of dependence, however, introduces uncertainty as to what

data summarizations should be used.

The criteria required for measure

selection, and the theoretical framework necessary for the description of

measure properties, are usually provided by the form of the particular

estimating procedure and the assumption of an underlying statistical model.
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As an example, Multiple Linear Regression theory is based on a statistical

model (assumptions) applicable to linear PERs. Using this model as a

starting point, statistical arguments can be developed to pick the fit

technique (least squares), to provide convenient summary statistics 2

[P

(t-tests, standard error of estimate, etc.), and to describe summary

statistic properties.

Lacking the capability of specifying one '"best' data summarization,
several different summarizations are suggested in this section. Arguments
%b for their use are necessarily heuristic in nature, and the choice of which
particular summarization to use is left up to the analyst. He can exercise {

this choice by picking loss functions and weighting schemes best suited

ZE o1l i

to his application.

S ik~

Before describing the summarizations it will be useful to identify

the portion of the Historical Simulation output that will be used. Only

(n)
dn+k
the errors of prediction that are of interest. Which of these residuals

the values from the residual table--the of Eq. 8--are used as it is

to use is not entirely clear.

Using all of the residuals is appealing in that no information will i
be thrown away. However, there are problems involved in knowing how to
use all of them fairly. The residuals are certainly not independent, a
fact that is proven under the usual regression assumptions in Appendix II.
Hence, use of all of the residuals introduces problems of statistical

interpretation and weighting.

If, however, only one residual is used for each sample point, in

particular the one made from the largest available subsample size--the

} entry in the last column of Table 9, which is déii if there is no grouped

5 * 4

E data--then the problems of weighting and statistical interpretation are ‘

§ ;
(n)

*
In fact, it is shown in Appendix II that the one-step residuals dn
are independent under the usual regression assumptions. ]
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greatly reduced. Furthermore, this selection is not without heuristic
justification. In effect, we are looking at the prediction made from

the largest available subsample size for each procurement. These are

the subsamples that would have been used and predictions that would have
been made if the cost estimating procedure had been used in the past. In
addition, an estimating procedure which predicts the near future well,

*
need not necessarily predict the long term [uture well.

For notational convenience, let us relabel these residuals by

R a o o R 5 o o ¢ where n_ was t ini i
n +1 » R v Ry o s the minimum sample size
(&

used in the Historical Simulation, and N is the size of the entire data

base. The collection of these residuals will be referred to as R.

The question being addressed in this section then is how to summarize

the data in R , so that one can chcose between several estimating procedures.

In addition, it will be useful if these summarizations indicate how well

the estimating procedure will do in the future.

L. some Example Data Summarizations

One such summarization is that of average proportional error. It

is calculated as follows.

N
Ly %,
Average Proportional Frror = £ y (9)
© i=n +1 '
o

are ignored.

predictions of the carlicer data points. But the particular prediction
used will be from the largest data base possible for such a prediction.

- UNCLASSIFIED

“This does not imply that all the predictions of the most recent data points
On the contrary, as will be seen in this section, predictions
of the most recent data points will receive at least as much emphasis as

.
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where Y4 is the actual cost of the procurement indexed by i
n, is the minimum sample size used in the Historical Simulation

and N is the size of the data base

The average proportional error should be used when one is worried
about proportional cost errors rather than absolute cost errors. 1In
addition, this measure is probably the easiest to communicate (and as
such is a good candidate for the desired measure described in Sec. II C).
Every cost analyst has been asked to indicate how reliable his prediction
is; for example, is it within *10 percent? Having calculated the average
proportional error, he can answer this query by saying, "The cost estimating
procedure from which this estimate has been derived has an average
proportional error of, say 15 percent, which implies that if it had been
used to make these types of predictions in the past it would have been
off, on the average, by 15 percent.'" Hence, a reasonable answer to the

query would be that an error of *15 percent should be expected.

Contrast the above answer to one made from the usual regression
e 2 C
theory output utilizing statements of F-tests, t-tests, R, prediction
*
intervals, etc. How aware of the underlying statistical assumptions or
the meaning of these statistics is the recipiznt of the prediction results?
Their meaning is certainly not as universally understandable as is average

proportional error.

There are, of course, drawbacks in using averages associated with
average proportional error, a topic which will be discussed more fully

in Sec. IV B 3, Additional Considerations. In addition to these problems,

however, average proportional error places the same emphasis on predictions

made from a sample of size 5 as predictions made from a sample of size 12.

*®
See Ref. 4 for the interpretation of these statistics in cost analysis.
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For any cost estimating procedure that makes use of every data point in
its subsample, this equality of weighting may seem unjustified. After
all, predictions should be getting better as the sample size increases.

Hence, the following weighted average proportional error is suggested:

N
wi|Ri]
Weighted Average Proportional Error = E v (10)
f=n +1 7
0

and varies proportionally with the sample size. They can be as extreme
as assigning all weight to N , which is a choice that might be made by
an analyst who feels that most information is contained in the one

prediction made from the largest subsample size. My own preference for

a weighting scheme is

W, = S S (11)

where Si is the subsample size used for the particular prediction. This
cquation would give the predictions from subsample size 10 twice as much
weight as the predictions from subsample size 5, and thus is in accordance
with the notion that if the estimating procedure is valid, then predictions
should improve as the sample size gets larger. Furthermore, the use of
this tvpe of weighting scheme does not effectively change the simple

interpretation of the summary statistic discussed for Eq. 9.

. UNCLASSIFIED
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Another alternative to average proportional error is that of squared

average proportional error, i.e.,

N
Squared Average Proportional Error = E%E— E (Ri/yi)2 (12)
© j=n +1
o
One would use this type of summarization when he wishes to penalize

proportional errors in an exponential fashion.

Finally, one might be more concerned with absolute rather than

relative error. A calculation such as

N
A S d E S z (R.)2 (13)
verage Squared Error = o= 1

o
i=n +1
o

could be made. Although this statistic appears to be similar to the
*
calculation of the variance estimate in regression theory, the residuals

in question here are based on predictions, not fits.

2. A General Framework for the Data Summarization

The data summarizations suggested so far can be placed into a general
framework through the use of loss functions and weighting schemes. Let
Q(Ri) denote the loss (or penalty) that will be assigned to the residual
value Ri , and let Wi be the weight assigned to each residual, e.g.,

Eq. 11. Then the average loss for the weighting scheme W and the loss
function & can be defined by
N
A(L,W) = Z W L(R)) (14)

i=n +1
o

¥
Standard error of the estimate squared.
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lf the weight Ni could be interpreted as the probability of Ri
occurring, then the average loss calculation, defined in Eq. 14, is
vquivalent to the calculation of expected loss in statistical decision
theory (Ref. 7, Chapter 5). In this latter context, the decision rule
(estimating procedure) with the smallest expected loss would be chosen.
The analogous rule in the Historical Simulation context is to prefer the

kS

e imating procedure with the lowest average loss.

Lach of the example data summarizations previously specified is a
special case of the generalized average loss identified in Eq. 14.
Weighted Average Proportional Error, kq. 10, is obtained by letting
l(Ri) = IRi]/yi , while average proportional error, Eq. 9 implicitly uses

the weighting scheme defined by
W, = 1/N-n (15)
i o

This latter weighting scheme is used for each of the other averages

previously discussed with the loss function defined by

2
v = (R - d tq. 12
(R,) (hi/yi) for Eq. 1
and by
2
\(Ri) = Ri for kq. 13

Any average loss can be used for ranking alternative estimating
procedures. The analyst need only specify the loss function and weighting
scheme best suited for his particular problem. For example, alternative
loss functions might be devised to give a greater penalty to underestimates

than overestimates. (All of the example loss functions previously

“Additional considerations are identified in Sec. IV B 3.

38
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1 identified give equal penalty to these errors). Such a loss function is

portrayed in Fig. 2 and defined by

i | R if R~ 0
2(R) =

(R if R <0

Furthermore the loss function need not be smooth. 1f one is very concerned
about underestimates, doesn't care about overestimates with residual
values of O to 15, and is only mildly concerned about greater overestimates,

then the loss function given by
R-15 if R > 15
L(R) = 0 if 0 < R <15

R2 if R <0

could be used. This positive side of this loss function is shown as the

] )
: dashed lines in Fig. 2.
There are some properties of specific weight and loss functions
4 which in the author's mind make certain choices more natural than others.

These considerations may help the analyst to choose the weighting scheme

and loss function best suited for his application.

Regarding the weighting scheme, if the candidate estimating
procedure makes use of the entire subsample, then the weights given in
Eq. 11 appear most natural, It implies that the estimating procedure's

predictive capability is directly proportional to the sample size.
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A slight variation to this weighting scheme, but having similar
properties, is one that is based on degrees of freedom. Let k be the
number of parameters to be estimated in the caudidate PER. Define Wi
by

S, -k

W, = L (16)

i~ N
s - w0

i=n +1
o

The weights are all positive since the minimum sample size n_ for

Historical Simulation was defined in such a manner that n, > k . Hence,

Sn 41 k . This particular weighting scheme is analogous to adjusting
o)

for degrees of freedom in the usual regression statistics. It implies

that the estimating procedure's predicitve capability is directly

proportional to degrees of freedom.

A candidate es..mating procedure that does not make full use of the
subsample at each stage of the Historical Simulation requires a different
weighting scheme. For example, if the estimating procedure only makes use
of the most recent four data points in each subsample, then a weighting

scheme such as Eq. 15 would seem reasonable.

Regarding what loss function to select, if one is interested in
relative error, then the loss function used might be that used in Average
Proportional Lrror, Eq. 10 namely R(Ri) = |Ri]/yi . It has the advantage
of being easy to communicate as discussed in the paragraphs following

Eq. 9.

If one is interested in absolute error, then the loss function used
in Eq. 13, namely Q(Ri) = (Ri)2 could be used. It has the advantage
of being the analogous calculation to the square of thc standard error of

the estimate from regression theory. The latter is the quantity minimized

UNCLASSIFIED "
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in least squares (if it were unadjusted for degrees of freedom) and hence

has the advantage of precedent.,

A disadvantage to this loss function i{s that it is not as easy to
communicate as average proportional error. tHowever the closely related
loss tfunction

l(l\i) = lRi'
with average loss defined by

Average Absolute Error = E lJiIRi[ (17)

i=n +1
0

has the same meaning for absolute error as bq. 10 has for relative error.
It represents how much one would have been off (in an absolute sense) on
the average, if he had used this cost estimating procedure consistently

in the past.

The recommendations for loss functions and weighting schemes discussed
in this section are summarized in Table 10. The reader is reminded that
all of these summarizations are averages, and hence the decision rule of
rank ing the candidate estimating procedures and taking the one with the
smallest average loss is an oversimplification of the problem, particularly
when average losses are very close with the result that the difference
may not be significant. Some further considerations that will help in
the estimating procedure selection when the difference in average losses

are small are given in the next subsection.

3. Additional Considerations

Suppose for a particular application average proportional error as
given in Eq. 9 has been selected for the average loss calculation.

Supposc also that estimating procedure A had an average proportional

i~
r-
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TABLE 10

RESIDUAL SUMMARIZATIONS NOT DEPENDENT ON ESTIMATING PROCEDURE

Average Loss =

N

Zwil(Ri)

{=n +1
o

Form Remarks
Si
W, = ——— Predictive capability
i N
of estimating procedure
E S1 directly proportional to
{=n +1 Appropriate for esti- sample size
© mating procedures
S -k which utilize entire
Suggested | _ 1 subsample Predictive capability
Weights i N of estimating procedure
E (S, - k) directly proportional to
i
degrees of freedom
i=n +1
0
Appropriate for estimating procedures which
W = 1 utilize only the last m (any fixed number
1 N-ng < no) subsample data points
Appropriate for applications in which relative
L(R,) = iR I/Y error is most important. Represents the average
i 1771 p 8
proportional error that we would have experienced
if we had used the estimating procedure in the
past.
Suggested Analogous to the residual
Loss 2 calculation {n ordinary
E(Ri) = Ri Appropriate for regression theory
Functions applications iu
which absolute
Represents the average
error is most '
i tant absolute error that we
L(R,) = |R | mportan would have been off if
i i the estimating procedure
were used in the past
NOTATION

N Total data base size

n_ Minimum subsample size for Historical Simulation

R Residual, member of ﬁ

S, Subsample size used for R

{ calculation

k Number of parameters estimated in the candidat PER

Yy Actual cost of procurement i

iy
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crror of 0.2 and estimating procedure B had one of 0.25. Should A

always be preferred to B 7 At least two additional questions are worth

asking.

o I's there any apparent bias in the residuals?

' What tvpe of variability is there about the average loss?

[he tirst ot these considerations can be handled by a different type

of average value calculation.  Comparing the simple arithmetic mean of the

residuals to zero could be used to indicate bias, if this calculation did

not imply a weighting scheme and loss function different from the one
picked by the analyvst for the average loss calculation., Hence, to examine

bias tor our purposes, it is suggested that the following calculation be

made .
N
+
B(o,W) = E Moo (R (18)
i=n +1
0
where Wi is the weighting scheme used in the average loss
calculation of kq. L4
+ . . .
. is a signed form of the loss function used in the
average loss calculation
and B(.,N) is the apparent bias of the estimating procedure using

loss function « and weighting scheme W.

. + .
some explanation of . U\‘i) will be useful. [1f the average

Funct i is i.o. C(R.,) = |R, . then
tunction 1s 0 e, (\1) | 1|/y1 ’

proportional crror loss

+ . e .
C(R) = R./v. . Henee the only difference between the two is that £
i i ’
retains the sign of the residual.  For the squared error loss function
SR, = RT O et
i i
’ -
; C(R,) if R, -0
+ 1 1 —
F {

3 ! -~ (R,) if R, <0
1 i i
i
| “ UNCLASSIFIED
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Note that for any loss function, it will always be true that |l+(Ri)|
= IL(Ri).

The bias, B(2,W) can now be compared to zero. The closer it is
to zero, the better the estimating procedure, if an unbiased estimating

procedure is important.

The second consideration mentioned above is to obtain some measure
of variability around the average loss. The usual procedure would be to

make some sort of a variance calculation. For example,

N
z WLER,) - AL, ]2 (19)
i=n +1
o
where A(L,W) is the Average Loss, Lq. 14

The desirable property would be for 19 to be small. For our purposes,
however, this is not very appropriate. As can be seen in Fig. 3 a small
measure of variance would imply little chance of small losses as well as
large losses. While the latter is to be avoided, the former is clearly

desirable.

*
A measure of skewness would hence be more appropriate than a
measure of variance. Negative values of skewness, close to minus one,
would imply that most residuals had small losses, hence small errors. A

positive value would imply the opposite and would therefore detract from

* 3 .
As defined by Cramér, Ref. 8, page 184, as u3/0 where 1, is the third

central moment and o 1is the standard deviation.
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an otherwise good value of average loss. The skewness calculation for

this application is given by

N
3
E Wole(R) - A(L,W)]
i=no+l
S (LW = N 372 (20)
2
E W [0(R) = AL, W) ]
1 i
i=n +1
o
where A(L,W) is the Average Loss, Lq. 14

wi are the weights used in Average Loss

Q(Ri) is the loss function used in Average Loss

The example given at the start of this section hypothesized two
estimating procedures. Procedure A had A(2,W) = 0.2 , while Procedure B
had A(%,W) = 0.25 . Answering the question of which one is preferable
can be aided by calculating the measures just defined. Suppose that for
Procedure A, B(2,W) = 0.05 and Sk(Q,W) = 0 . Then, if the equivalent
measures for Procedure B were B(L,W) = 0.1 and Sk(Q,W) = 0.5, the case
for selecting A over B would be strengt'iened. If, however, the
measures for B were B(¢,W) = 0.01 and Sk(Q,W) = -0.5 , the case for
choosing A would be weaker. Procedure B 1is less biased and shows a
large negative skewness which implies that losses smaller than the average
were far more plentiful (or had more weight) in the sample (and hence we
would hope more likely in the fu.ure) than were losses larger than the
average. Procedure A, on the other hand, had zero skewness implying that

large and small losses are equally likely.

4, Example Calculations

To familiarize the reader with the summarizations suggested in
Sec. IV B 2 and the additional statistics defined in the last subsection
(IV B 3), example calculations are made and presented for the computer

program test data.

UNCLASSIFIED o
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From the eximple used In the computer test run summarized in

Tables 3 and 7 we have the following data (in the notation of Table 10).

TABLE 11

EXAMPLE DATA

sample Point 6 7 8 Yy 10 11 12 13
Residual Ri -11.7 | -66.9 §31.4 |-9.9 | 4.7 |-18.5{23.7 |50.1
Subsample Size S1 5 ) 7 8 9 10 11 12
Actual Cost Y, 67 243 54 112 | 106 183 | 156 | 177

Lf the proportional error loss function is selected, then the

average loss will be called average proportional error and is given by

13 IRi[ ’
Average Proportional Error = E wi y (after Eq. 10)
i
i=6

The proportional error for each residual is given in Table 12.

TABLE 12
PROPORTIONAL ERROR

Sample Point 6 7 8 9 10 11 12 13

R, -11.7 |1 -66.9 | 31.4 | -9.9 4.7 -18.5| 23.7 | 50.1
i

y. 67 243 54 112 106 183 156 177
i

IR, | 0.174 {0.275 |0.582 [0.088 | 0.044 | 0.101 | 0.152 | 0.283

‘*8 UNGLASSIFIED
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Three welghting schemes have been suggested in Table 10. These can 3

] be used to modifiy Eq. 10 as follows: ;
. Average Proportional Error = I E Si - (21)
! (Weight proportional to (s.) i=06 i

sample size) ¢ 1
i=6
IR,
Average Proportional Error = E (S - k) (22)
(Weight proportional to § :(S B 7i
degrees of freedom)
} . 13 |Ri|

' Average Proportional Error = % (23)
f 3 vy
\ (Equal weight) i=6

All that remains is to substitute the values of Si and k from
Table 11 and IRil/yi from Table 12 and carry out the arithmetic. The

results are given below. In this particular example, the weights

do not greatly affect the average. All average proportional errors are

around 20 percent,

Average

Proportional
Weight Error
Proportional to Sample Size 0.202
Proportional to Degrees of Freedom 0.197
Equal Weight 0.212
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The tendency in this example for larger proportional errors with
predictions from smaller sample sizes can be seen by the fact that the equal
weight measure gives the higiest average proportional error while the
degrees of freedom weighting scheme yields the lowest. These weighting
schemes give the most and least weight to residuals calculated from small

sample size predictions respectively.

Calculations for bias and skewness are made for the weighting

scheme that is proportional to sample size only, i.e.,

This should suffice to indicate how these measures are calculated.

The calculation for bias, Eq. 18, is very similar to those for
average proportional error. All that should be done to Eq. 21, to obtain
the signed loss (proportional error), is to remove the absolute value
sign from Ri . Alternatively, one can use the proportional error from
Table 12 and assign the sign of Ri from the same table. Thus, for data
point 6, we have signed proportional error equals -0.174. The values to
be averaged are given in Table 13 and the modified Eq. 18 for bias is
given as Eq. 24. The value obtained for bias .s 0.078. Note however,
that the numbers of over- and underestimates are the same. The large

error in estimating procurement 8 dominates the bias calculation.

1 c Ri
Bias (2,W) = 13 S, -
o i
§ :S, i=6
1
i=6
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where £ is proportional error

W is the weighting scheme proportional to sample size

TABLE 13
BTIAS CALCULATION VALUES {
Sample Point 6 7 8 9 10 11 12 13
S 5 6 7 8 9 10 11 12 ]

Signed R
Proportional ; — -~0.174 -0.275 0.582 -0.088 0.044 -0.101 0.152 0,283
Error i

By far the hardest measure to calculate is skewness. The modified

version of the skewness equation, Eq. 20, is given below:

s, - 0.20:)
= I\ Y4
Sk(Q,W) = 373 (25)
13 R | 2
Zsi<|y1 - 0.202>
i=6 sl
EN
where yl is the proportional error
i

S, is the sample size
0.202 is the average proportional error for the example
% is proportional error ]

W is the weighting scheme proportional to sample size

The necessary data for the calculation can be obtained from Tables 11 ]
and 12. A measure of skewness equal to 0.166 is obtained. Hence, the

distribution shows some positive skewness, the large overestimate of i
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sample point 8 outwelghing the fact that 5 of the 8 proportional errors

are less than the average.

[t is hoped that the example calculations carried out in this section
scrve das a guide to help the reader make calculations of average loss,
bias, and skewness for the loss function and weighting scheme best suiced
for his problem. It will be useful now to consider the possille directions

of future work that might improve these measures.

5F Future Work

As pointed out at the beginning of this section, the argument:
presented for the various residual summarizations and other measures have
been heuristic in nature. This was due to the lack of an assumed under-
lying statistical model. The arguments are hence analogous to those that

are used for various curve fitting schemes when a statistical model has

not been assumed.

Several possible courses of action might be taken to either make
the arguments for these statistics more rigorous or to derive better
measures. Formal methods of nonparametric statistics might be useful in
making more rigorous the comparison between estimating procedures A and B
at the end of Sec. IV B 3. Another possibility is to explore the use of
average loss for a ranking technique for several classes of candidate
estimating procedures and their implied statistical models. This could
be accomplished with the aid of Monte Carlo techniques. The probability
of selecting the wrong estimating procedure, i.e., making an incorrect

ranking, could be estimated.

The effort required to investigate these possibilities is certainly not

trivial. In the meantime, the statistics suggested appear to be reasonable
and should help the analyst to make choices between any candidate estimat-
ing procedures. In addition, several of the statistics icentified, i.e.,

Average Proportional Error, Eq. 10, and Average Absolute Error, Eq. 17,

& UNCLASSIFIED
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have interpretations that are easy to communicate and caa be used to give
one a feeling of the estimating procedure's validity. They summarize
the error which would have been present (on the average) if the candidate
estimating procedure had been used to predict the cost in the past. Thus,
these measures are good candidates for the desired measures identified

in Sec. I1 C 1.

C. STATISTICS WHICH DEPEND ON A PARTICULAR ESTIMATING PROCEDURE

A final set of statistics can be calculated from the llistorical
Simulation output by making use of any statistical model assumptions that
are usually associated with the particular cost estimating procedure
under examination. An example is the multiple linear regression model,
which 1s usually assumed when the cost estimating procedure of interest
comprises a linear PER and a least squares technique* for estimating the

parameters. Another example is the use of a multiplicative error term

*k
§ with a log-normal distribution  when the PER is given by

b, b b
s ax Iy 2. .. xP
Y = aXl X2 Xp
where Y stands for cost, Xl’ X2 s v+ e e Xp are the independent

variables, and the technique is a least squares curve fit performed on

log Y = loga+ b, log X, + « + «+ +b 1log X
g g g 1 p g p

1

In fact, the choice of the least squares technique can be viewed as a
consequence ot the multiple linear regression model assumption (for a
linear PER) as the estimators obtained have some optimal properties.
These properties are stated in the Gauss-Markov theorem. According to
Ref. 7, page 387, this theorem statec cnat ‘the least squares estimate

in the class of unbiased, linear ¢stimates, has a minimum variance
property: the variances of Zts components are (simultaneously) smallest.
In addition, they are maximum likelihood estimates.

T

*,‘( . 1.0 : . :
For additional information concerning this distribution see Ref. 7,
page 89.
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The statistical mode!l in this case is

l)l b

I O
Yy = aky B

wvhere  log ‘1 is distributed normally with zero mean, variance equal to
)
, «and zero covariances.

From an operational point of view, statistics based on an assumed
distribution are less versatile than the general data summarizations
discussed in Sec. IV B. They are valid only if the assumed statistical

model is valid.

llowever, these statistics are still worth examining. Since they
are valid for any estimating procedures which utilize the same statistical
assumptions, for example, the class of linear PERs (with least squares curve
fit), they can be used to compare candidate estimating procedures in the
class. lowever, thesc comparisons can also be made with the usual
evaluation procedures, i.e., the usual regression statistics, and, hence,
benefits gained using Historical Simulation do not include a comparison

that cannot otherwise be directly made (Sec. II C, Property 2).

Another use for these statistics is to ascertain whether the
statistical model and/or estimating procedure is valid. Does the Historical
simulation output fit in with the output that should be theoretically
expected, assuming that the statistical model and estimating procedure
assumptions are valid? If the output does not fit, then some of these

assumptions must have been violated and hence the model should not be

accepted.

Finally, statistics that are usually calculated (on the entire sample
for the estimating procedure, can be derived for each of the Uistorical
2
Simulation subsamples. For example, R™ and standard error of the

estimate can be calculated for each subsample, if the estimating procedure

o UNCLASSIFIED
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assumes a linear PER and a least squares curve fitting technique. These
statistics can be used, in the traditional manner, to evaluate how well

the estimating procedure is performing on the particular subsample. Would
the model have been acceptable for the particular subsample? Would it have

been rejected for a larger subsample?

Work accomplished to date on the development of these statistics
has been confined to linear PLERs, least squares estimating techniques,
and the usual multiple linear regression model. This class of estimating
procedures have been labeled Linear PER-Least Squares Procedures. The
development of these statistics for this class of estimating procedures
will have the added benefit that their study will more clearly define
the relationship between the Historical Simulation output and the usual

multiple linear regression evaluations.

Tc date the theoretical distribution of the Historical Simulation
output--the predictions and residuals--have been determined. A goodness-
of-fit test and a test to determine if there is bias present have been
defined for a subset of the Historical Simulation output. Finally, several
statistics have been identified that are useful in describing subsample
fits. Each of these topics will be discussed in subsequent paragraphs,
but first it will be useful (for clarity's sake) to define the Historical
Simulation procedure (for multiple linear regression models) in matrix

notation.

We are given a sample which consists of N P+l-tuples
(yi s Xip s Xyg s v e e xip) for i=1,2, . . ., N . These P+l-tuples
have been ordered in time.

The usual multiple linear regressi:n hypothesis is given by
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is a N x 1 column vector of

l Ll 3 = L]
where Y . observed y values
N
1 X Xpg + v o xlp
1 X X o 0 o 3 is a N x p+l matrix of
2
X = . ?l 2 ?p independent variable values
’ (and a 1 for the constant
. . multiplier)
Loy Mo Np
i
By
; é - _L is the ptl x 1 column vector
/ . of model coefficients
P
1 and
3 ;
4 1
v o7 isa N x 1 column vector
N of error terms
‘N

-

o UNCLASSIFIED




UNCLASSIFIED

14

»
The matrix X and the vector i are assumed to be nonrendom; .

on the other hand, is a normally distributed random vector wi.h zero means,

pa
a constant variance o , and zero covarfances. That Is
I = ()
‘1
_ 2 ,
eriancc(Li) = g f=1,2,...,N
Covariance(ci,cj) =0 5 143/

Let ng be the minimum sample size that is greater than or equal
to the smallest sample size necessary to carry out a linear regression
analysis. Hence, ng >p+ 2 . For any n, n,osm< N , define the

following partition of the X matrix by

Xin) n rows
X == "= = =
Xén) N-n rows

=
Also partition Y in a similar manner obtaining

§(n) n entries
> 1
Y_- _____

§§n) N-n entries

If time batches are ignored, the Historical Simulation Procedure

can be defined as follows:

For each n, no<mn=< N

. . J(n) (n) |
1. Make a least squares fit using Yl and Xl as the data
base.
2 Obtain an estimating vector of E . Denote this vector
>(n
5 ()
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3. Use the resulting fit to make predictions of the remaining

N-n data points. This can be denoted by

(1)
yn+l

O IR BN

;(n)
“n+k
size 1.

where is the prediction of arrived at using a sample of

yn+ k

Calculate the residuals by

L~

(n) *(n)
dn+l yn+l N yn+l
L -(n)

n+2 n+2 yn+2

(M -

) - : EEICOIETCY
- - . Y Y2
g -(n) _

n+k IN MY

n . . ,
where di+i denotes the difference (residual) between the predicted
(n)
7 and the observed .
Y nt+k ¢ yn-i-k

l. Distribution of the Historical Simulation Predictions and Residuals

The form and distribution of this output has been summarized in
Table 14, with derivations given in Appendix II. Several interesting

results which can ie observed from this table are discussed below.
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TABLE 14

FORM AND DISTRIBUTION OF PKEDICTIONS AND RESIDUALS

(Assuming the usu

al multiple linear regression model assumptions)

Prediction Residual
Notatlon - (n) d(n)
Yk ntk
Sample point for which ntk ;3 0 <k < N-n ntk ;3 0+ k < N-n
the prediction (residual)
pertains
Subsample size used n n
n
. n+k (n)
Calculation Lj yJ York T Yotk
j=1
Distribution Normal Normal
. )
Expected value xn+k[ 0
2 _.ntk 12 n+k
Variance o Ln+k (l + Cn+k
c(m) (m)
C ia d
ovariances (with) ] e
m<n
- A
*
mj <n———————=—--- - ——————— ] ——0
i 2 .ntk
mtj > n o C
ort 2 n*k
mjf otk ————— 1L B8 e S S !
and ot
. 2 n+k
= otk ek 4 < ( + 0 )
= 3 PTG
Rin ] n+k
> 3 3 hoC acing €
m n (same as above with (n+k replacing (m+i>
where x' is a row vector equal to the »th row of the matrix A
;x {s a column vector equal to the .th row of the matris &
yj is the jth component of the vector ¥
n+k . (n)_l
R =00
Li xn+kS xi
)
S(n) = x{(”)x:") where .\(;n 1s the tirst n rows ot X\
and Ki(n) 15 1S transpose
¢ are the unknown parameters
5
and *“ {s the varlance of the error terms

UNCLASSIFIED
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The distribution of the prediction and residuals is normal. The

) o g =

C o ~(n
redictions are unbiased iu the sense that E = E .
b Yotk otk Yotk

Hence, the expected value of the residuals is zero.

residuals is related to the variance of the predictions in the

(n), _ 2 - (n)
VARG ) = 0T+ VAR(y )

This is a consequence of the fact that Y ot
k

o <(n) . o (n)
of Ytk and hence is independent of A

The residual covariances are related to the pr

in fact they are equal unless one of the points being predicted is not

predicted from both subsamples,

for both subsamples. In the first of these exceptions, i.e., when

(n) (m)

y d %
n+k mrtj
In the second exception, i.e., when comparing dn+k’ i

comparing d s mtj <n  or ntk <m, the covariance is

Zevro.
1 . . . .

' the calculation is similar
2

ance is obtained by adding 5" to the prediction covariance.

then, we have for m s n

Gt s

. 0 ; mbj < n

4

/ (n) ,(m) .

d : 2 = ~

\ (Uv<én+k’dm+j> =9 F COV(yﬁii,yé$§> ; mhj = otk
. -{(n) ~(m) . omkj > n and
OV(yn+k’ym+j S omti # otk

Another observation that can be made

they depend on the two subsample sizes m and n only through which

matrix to use. [If m = n, then S(n) is used. (This is the only
_ - . ntk mtj
3 ' difference between the coefficients ¢, and C in Table 14).
y mt j ntk
‘ rule to follow is /woes woe The O matrixz corresponding to the larger

v e L ’r
U e T s w0 et

" UNCLASSIFIED

The variance of the

sense that

is not used in the calculation

ediction covariances;

or the point being predicted is the same

@ M = ok

to a variance calculation. The residual covari-

To summarize,

about the covariances is that

e . B
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(n) (n)

I1f it is noted that S is a function of X (the data base i

used for the subsample size n fit) then the above result is not surpris-

. n . . .
ing. If m < n then X( ) contains all the information that X(m)
. .(n . . . ’
contains plus the extra rows. Hence S( ) will contain all the information
. m : - .
available in S( ) plus more. lHence in deriving the covariance of two

predictions or residuals, the information available in the larger subsample
fit is required and includes the information available in the smaller

subsample.

A final observation is that although the predictions and residuals

a o

are generally correlated (among themselves), there are some vesiduals
which have zero covariance. In particular, if m+j < n , then

cov d(n),d(m? = 0 . In words this implies that the residual calculation
ntk’ mtj

for a particular sample point has zero covariance with any residual calcla-

tion based on a subsample which includes the specified sample point. The

importance of this result lies in the fact that zero covariance implies
%*

independence when the random variables are normally distributed. Hence
n m . . . 1
d§+i and d;+§ are independent if m+j < n . In particular then, the

one-step residuals, i.e.,

+
(n,) d(“o L) NeS) L(N-1)
no+1’ n0+2 O = 0 R

d
are mutually independent. This fact will enable several statistical tests

to be applied to the one-step residuals.

Before discussing these tests it is notationally convenient to

redefine the one-step residuals as follows:

Let
(n)
dn+l

n+l
1+ Cn+l

*
Zero covariance does not usually imply independence. The fact that the

added condition of normalcy implies independence is discussed in Appendix 11.

UNCLASSIFIED .
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-1
where Cn+l = x! S(n) X as defi i '
o] Xl . s defined in Table 14
Since the variance of d(n) = v"(l + Cn+l this transformati
o il ation has the
effect of giving the residuals vo= (r r a common

5 0 o r

n_’ on +1’ ’ N-l)
) o 0 R

vartance o . Hence, we have that the residuals r are independent and

normally distributed, with zero mean, and common variance 02
r constitutes a random sample I'vom a normal population with zero mean,
2

and variance equal to o

. g N (3 7‘(
2. lests on the OUne-Step Residuals

Two types of tests have been constructed for the one-step residuars.
The first is a goodness-of-fit test which asks the question: Do the one-
srep residucls appear to fave been derived from a multiple linear
rogrossion mode! witn the wsewned Linear PER?  The second addresses the
question of bias and asks the question: [o the one-step residuals appear

Save Sero oo (e thoy thworetically should)?

The question of whether the model assumptions are satisfied has
not been one of the central questions for theoretical statisticians. To
be sure, a great body of knowledge has been built up around the closely
related subject of hypothesis testing, but these tests are concerned with
chousing between two states of nature, the null hypothesis and a specified
alternative hypothesis. The question we are asking can be placed in the
hypothesis testing context. The null hypothesis H is that r is a

0

random sample from « normal population with zero (0) mean, and variance
R
. Notationally this is given by:

noer 9N, UL
0if T N(O, )

It should be pointed out that zero covariances were the requirements for
these tests. Hence, the tests would appear to be equally applicable to
all residuals if these residuals were orthogonalized. Pursuit of this
topic is beyond the scope of the present work, however.

““Ihe alternative hypothesis can be a class of alternative hypotheses such
as, "The random vector ¢ is from a normal distribution."

UNCLASSIFIED
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where I 1is the identity matrix of order N—no.

The alternative hypothesis is not specific, however. It is that r
. 2 . .
is not N(0,0"1) . Hence the usual techniques for hypothesis testing,
e.g., maximum likelihood, are not applicable. Fortunately, a few tests,

called goodness-of-fit tests, have been devised to handle this question,

®
but they are unfortunately not very powerful against specific alternatives.

Hence, if the question is to choose between two specified alternatives, a
test built around these alternatives should be developed.

The two main types of goodness—of-fit—tests** are the Chi-Square
test and tests that compare distribution functions. The Chi-Square test
requires a partition of the sample and a comparison of the frequency of
observations to the theoretical frequency. This test in general requires
a large sample size and is therefore not very useable for the cost

, . Kk
application,

There are two types of errors that can be made in a hypothesis testing

problen. A type 1 error is made when “0 is rejected and it was true.

A Type II error is made when Hl is rejected and it was true. Denote

the probability for these two types of error by PH (Reject H,) and

0

PH (Reject Hl) , respectively. The statement that goodness-of-fit tests
1

are not very powerful against specific alternatives implies that in
general there exists a hypothesis test for the specific alternative such

that for a given PH (Reject H
0

is less than PH (Reject Hl) using the goodness-of-fit test. For a
1
further discussion of this concept see Ref. 7, Chapter 7.

&*¥ .
" See Ref. 7 Section 9.1 for a complete discussion.

Kk

See Ref. 9, page 46.
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Of the tests that compare distribution functions, the Kolmogorov-
3 Smirnov (K-8) test is perhaps the most widely known. Its advantage over
the Chi-Square test is that it appears to be more powerful and it is
applicable for small sample sizcs.K The test is also relatively simple.
Tatlored for our present application, it is outlined below.

IS

E Order the residual vector r from smallest to largest to obtain
‘ L (@) (N-no) (D)

, R ¢ where is the jth order statistic.

1 Calculate the sample distribution function FN n (r) by letting
4 0

i S G) (D) _ |

3 FN—n (r) - for r s r<r ; =0, 1, .. ., N—no (26)
4 0

¥ where

3 (N-n_+1)

4

1 r(o) = - and r © = w

This sample distribution function is then compared to the theoretical

distribution function under “O , i.e., F(r) = N(O,oz) . The test

statistic is defined by

i D - SWP

N-n all r
o

Neg (£) = F(D)|
o]

E that is, 1 is the largest absolute difference between the two

)
N-1
0

distribution functions. It can be shown that the distribution of DN—n
o

*k
is not dependent on the distribution of F(r) . Values of the

distribution of UV N are tabulated in most statistics books (see
o

F Ref. 7, Table V1) aund rejection values are given based on the significance
level of the test desired (i.e., the probability of a Type I error

allowable). Thus all that remains is to determine DN—n
o]

) See Ref. 9, page 51.

Ref. 7, page 300.
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For our application, this constitutes nothing more than comparing

FN—n (r) to F(r) at the end points of the steps in FN_n (r) . Thus
)

D n will be the maximum of the numbers

Iﬁfﬁ— - F(r(j))| and N%;*-— F(r(j))l s 3=1, ..., Neng (27)
(e}

(o}

The quantities F(r(J)) are easy to determine for a given 02 . By

using any table of the normal distribution, one merely looks up the value
r(J)/o . A
problem arises however by what value to use for 02.

Three candidates are presented and discussed in Appendix III and

the square oi the Standard Error of the Estimate which is obtained in the

usual regression analysis~-from the fit on the entire sample N--is selected.

The choice was based on the fact that it was the most efficient estimator
and that unlike the other candidates, it does not depend directly on the
residuals in ? . Furthermore, it is the estimate of the variance that
is normally used in a regression analysis. The estimator is denoted 82

and tle equation for calculating it is given by:

N
K )
E (y; = vy
~2 i=1

S (P+1) (28)

where y, is the actual cost of the ith procurement

y. 1s the estimated cost of the ith procurement (obtained

from a regression analvsis of the entire sample)

and P is the number of independent variables in the PER

The K-S test is then valid as long as we define the null hypothesis,

N 2 . .
H., , as "r is a random sample from a N(0,0") distribution." The test

0

is not ncessarily valid for the wider null hypothesis of “O defined as

UNCLASSIFIED 02
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2]
"

_ ) ) &
“"r is a random sample from N(O,0”) with o7 estimated by o ." There

are indications, however, that if rejection takes place then rejection
"

would also take place if 7 were known (Ref. 9, page 60). In addition,

Darling, in Ret. 10, has described some conditions under which variations

of the K-S test are valid for the wider hypotheses. low the present
application fits into his work has yet to be determined. Further resea

will have to be done on extending the current application to this wider

hypothesis.

The second test proposed in this section addresses the question o

bias in the vector of residuals r . In particular it is a hypothesis

given by

l.: r is a random sample from a N(O,oz) population

>

2 ,
il : r is a random sample from a N(u,0” ) population

where Ho# 0.

The test statistic is derived by the use of a likelihood ratio test.
test statistic has a  t-distribution

is given by

1/2
N-e =1
o bgo
S
r
where r is the sample mean of r , i.e.,
N-1
r,
i
i=n
- o
r N-n

“For derivation sce Ref. 7, page 320.
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2
and Sr is the sample variance given by

N-1
2
E (ri - r)
i=n
2 _ o
Sr - N-n (31)

The test is conducted as follows:

ig Determine the significance level o , i.e., what probability
is the analyst willing to withstand of rejecting HO when
it is true?
%
2, From a t-table, obtain the value of the /2 and 1 - /2

percentiles of the t~distribution with N—nO - 1 degrees of

freedom. Label these tu/2 and tl—a/Z Note that only one
value need be obtained, as ta/? = _tl—a/Z'

3. Calculate t from Eq. 29.

4. If ta/Z <t < tl—a/Z , then Hl is rejected and no apparent

bias is present (at the a-significance level).

5. If t < ¢t or if t > then H, 1is rejected and

t
a/2 l-a/2 ? 0
there is significant hias present (at the « significance

level).

Another way of stating this test is to ask the question: is r
significantly different from zero? If so, ”0 should he rejected and bias

is present.

An example of the use of these tests is given below. Again, the
data base used will be the one that was used in the computer test run.
->

Values of r are obtained from output block 7, Table 20, Appendix I.

These are given in Table 15.

7CAvailable in any statistics book, such as Ref. 7.
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TABLE 15

*
ONE=STEP ADJUSTED RESIDUALS FROM TEST RUN

Adjusted
Sample Point Sample Predicted From Residual

0O 5 -10.63
7 6 -21.71
8 7 25.95
9 8 -8.038
10 9 2,889
L1 10 -15.67
12 11 21.02
13 12 37.721

%

Source, STAT 1, Output Block 7, Table 20, Appendix I.

To apply the K-S test, we must first order the adjusted residuals
from smallest to largest. Then the residuals are divided by o , i.e.,
the standard error of the estimate from sample size 13. From the computer
test run, last output block 5 (Table 20, Appendix 1) o = 21.6 . By
using tables of the Standard Normal Distribution, these latter quantities

are converted to percentiles of the Standard Normal distribution (equivalent

to obtaining their cummulative distribution function value). These
] operations are summarized in Table 16, columns 2-4.
;
é These percentiles are to be compared to the endpoint values of the

steps in the sample distribution function given in Eq. 27. Since there
are eight sample puints, the values of the sample distribution function
will jump by one-eighth. The appropriate endpoint values are given in

columns 5 and 6 of Table 15.

¥ The maximum differences between the percentiles (in column 4) and

the endpoints (in columns 5 and 6) are calculated for each sample point.
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TABLE 16
K-S TEST CALCULATIONS
Divided by
Ordered Standard Percentile Max imum
Sample Ad justed Lrror of or Normal Compare to knd Pvinls of Difference
Point Residuals Estimate Populat fon Sample Distribution Function For Point
7 -21.71 -1.005 0.157 0 0.125 0.157
11 -15.67 -0.725 0.2734 0.12) .250 125
6 -10.63 -0.492 .311 250 .375 125
9 -8.038 -0.372 355 375 . 500 145
10 2.88Y 0.134 5573 500 625 125
12 21.02 0.973 835 625 .750 210
8 25.95 1,201 .885 750 .875 135
13 37.721 1.746 .960 .375 1.000 .125
UNCLASSIFIED &
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These are shown in column 7. The K-S statistic for sample size (number

g is then the maximum value in column 7. In the
1S

example under discussion DS = (.21 , This value is within acceptable

limits, as DS would have to be greater than 0.358 for rejection at as

high a significance level (probability of making a Type I error) as 0.2.

of residuals) 8, D

Hence the regression model and linear PER cannot be rejected.

The calculation for bias is performed by first calculating the
sample mean, bq. 30, and sample variance, Eq. 31, for the residuals ; s

(column 3, Table 15). These calculations resulted in values of r = 3.94

for the sanmple mean and Sr = 20.7 for the standard deviation.

The t-statistic is then given by Eq. 29 as
1/2~
(N-n -1) / r

0

S
r

(29)

Hence, in our case

1/2
7)
= —(",————,0 ?'9“ = 0.504

This is not a significant t-value (7 degrees of freedom) for any

reasonable significance level. As an example, if o = 0.2 , i.e., the

0.2 significance level, then the rejection limits would be +1.42. The value

of t obtained above is not even close to being outside of this range.

llence the Historical Simulation results do not indicate bias in the model.

Even though the values of these two statistics are insignificant
for the test run data, there will be times when they are significant, and
vet the usual regression statistics would seem reasonable. To illustrate

this point consider the theoretical example portrayed in Fig. 4.

" UNCLASSIFIED
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Figure 4(U). Theoretical Example

In the example, the candidate estimating procedure is
Cost = a + bX

and a least squares curve-fitting technique is used to pick the parameters.
The time sequencing of the data is the same as an ordering on the values

of X, i.e., larger values came later.

At the first stage of Historical Simulation the first three data

oints (P., P, , and P,) are used to fit a line £, . The estimate of
P 1’ 72 3 1

4 would be low by the amount Rl . At the next stage of Historical

Simulation, line 22 would be derived using as the data base points

P

Pl’ P2’ P and P, . The estimate of P derived from 22 would be

3 4 5
low by R2 . The process is continued deriving lines £3 from data
points Pl through P5 , and Q& from Pl through P6 . The estimates
of P6 (from 23) and P7 (from 24) are low by R3 and RA ,

UNCLASSIFIED .
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respectively. Thus all the predictions obtained were low. This implies
. . . . . . v I3 *
that the K-5 statistic and t statistic will most likely be significant,

L e

and hence the estimating procedure would not be accepted by Historical

Simulation.

Looking at each of the lines, however, it does not seem that the
fit (to the data they vere derived from) is too bad In fact, Ra would
probably be accepted as a good nodel for the first six data points, using
statistics based on regression theory.** Hence the model would be
accepted using the regression theory statistics while it would be rejected

using Historical Simulation.

Of course, in this case, a simple plot of the data would convince an
analyst that he has the vrong model (it should be exponential rather than 5

linear). This, however, is a consequence of a two-dimensional problem

(Cost and X) in which plots can be made and our illustration could be
drawn. The analyst will not have the luxury of such plots when working
with more than one independent variable, and an extension of this example

to a multiple independent variable model can readily be made (without a

figure, however).

While the significance of the t-statistic depends on the magnitude of the
residuals and how close tog=ther they are, the fact that all residuals
are negative will usually lead to rejection of the zero mean hypothesis.
In regard to the K-S test, all negative residuals implies a K-S

statistic value greater than 0.5. This is significant for four residuals
3 at the 0.2 significance level and if the process in the example continues
‘ for seven residuals. The results will be significant at the 0.05 level

W

Alt should be noted that there is another technique, called Time Sequence
Plot of the residuals (Ref. 6, page £3), which for the example being
discussed weculd result in a sequencing of residuals from the usual
regression analysis that would indicate a lack of fit. However, the
consequences of retaining the model (in this example), i.e., the like.i-
hood of underestimates, are more apparent when processed by Historical

i Simulation. Furthermore, even though residual plots should be analyzed

1 i whenever a least squares curve fit is made, the fact is that such

examinations of residuals are often forgotten.

T
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It should be noted that the two tests discussed in this section are
very different. The test for bias assumes that the underlying model is
normal and all that is ‘teing tested is if the mean is zero. The Kolmogorov-
Smirnov test, on the other hand, asks whether or not the distribution is
normal, with mean 0 and variance %2 . Both tests address the question

of model validity, however, as the residuals should theoretically come

from an N(0,02) population.

It is expected that other tests can be constructed for the one-step
residuals. In addition to the above and extensions of them to tests applied
to all the residuals (after some orthogonalization), it will be worthwhile
to develop two hypothesis tests where Hl is some other candidate
estimating procedure. If this alternative is also a linear PER, with the
assumed multiple linear regression model, then such tests shouid be
relatively easy to construct. If the alternative is a nonlinear PER, then
the appropriate statistical distribution will have to be identified and
the distribution of the Historical Simulation predictions and residuals will

have to be derived. Then the question of devising tests can be addressed.

Needless to sav, this last group of tests will take considerable effort.

Jc Comparison Statistics

The last set of statistics that have been identified7l< are some of
the uvsual regression statistics for each of the subsample fits in Historical
Simulation. (They have nothing to do with the prediction and residual
output of Historical Simulation.) These can be used in the usual manner
to see how well the estimating procedure is doing on each of the subsamples.

They also can be directly compared to like statistics on the entire sample.

%
Example values for the test run can be seen in output blocks 5, Table 20,

Appendix I.
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The first set of measures are best summarized as Measures of Fit.

Two cuch measures are calculated on each subsample for which parameters

are estimated. These measures are given below:
m 1/2 3
standard bkrror e L 1 E : s 2
of the Estimate = SEEb = m-k (Ai B Pi) (32)
i=1

ro

m
E : . -2

(Fi - A)
i=1

_ 1 (33)

m
=
S, - b
i=1 ' i

&7 or Coefficient
of Determination

where m = subsample size
A, = actual cost of the ith object 2
ﬁi = estimate of the ith object (Fit) ' ,

k = number of parameters to be estimated in the PER 3

and A is the average of the Ai's, i.e.,

These measures are not at all related to the predictions calculated

et

from the CER that is derived by fitting the curve to the subsample. They
merely describe how good the fit was. In theory, if the process
satisfies the statistical assumptious, SEL-‘.2 should be converging to the

2 2 . ‘
true variance o , and R” should be converging to .

S
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2
o

1

- m
1 -2
m-1 Z(Ai -
i=1

Therefore, as the sample size increases through the Historical Simulation
evaluation, we should see this convergence (although for most cost applica-
tions the number of samples fitted will probably be too small). In
practice it is desirable for WZ to be small, and therefore a good fit

q - 2
is represented by a SEE close to zero and an R close to one.

Another set of fit statistics are the t-statistics for each estimated
coefficient of the linear model. Thesc are the statistics that are
usually used to see if a coefficient is significantly different from

zero.

Given that these coefficients are all different from zero in a
usual regression run (i.e., for the entire sample), it may turn out that
they are not significant for all of the subsample fits processed in
Historical Simulation. It seems reasonable that once the subsample size
was large enough for all to be significant, then they should remain
significant. If not, one might begin to question the value of retaining
the independent variable that corresponds to the occasionally significant :l

coefficient. i -

Note also that the fact that a particular coefficient is not
significant for early data bases brings into question the relevance of
that data base to the current prediction problem. It may be useful to
try estimating procedures which ignore this early data. Such a procedure
would be one that estimates the parameters using, say, only the last 6 g

data points in time.
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In summary, these statistics are useful in seeing how the fit is
improving as the sample size grows. They do not, however, pertain to
the main output of Historical Simulation, i.e., the predictions and
residuals. They should shed some light on any anomalies present in this
latter output, however, and may be useful in suggesting new candidate

estimating procedures.

This concludes the discussion of the uses of the output from
Historical Simulation and the work to date on its development. Next i.
seems appropriate to summarize the advantages and current limitations
of Historical Simulation and indicate the direction of possible future

research. These topics are discussed in the next section.
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V. CONCLUSION AND RECOMMENDATIONS FOR FUTURE EFFORT

In concluding this report, it will be useful to summarize the
limitations and advantages of Historical Simulation as it is currently
envisioned. This section will be itself concluded with some recommendations
for future work which would hopefully shed further light on some of the

limitations noted and expand on the work already completed.

A. CURREAT LIMITATIONS

That limitations exist is not always bad, as the following
discussion will show. However, there are areas where the development of
Historical Simulation is far from complete and the attendant limitations
are a real problem. These limitations, as the author currently sees them,

are discussed below.

g Lack of a Single Way to Interpret the Output

Whether this is really a limitation or not is open to question. It
would certainly be more convenient if one summarization could answer all
our questions about a cost estimating procedure's reliability and
validity. But this type of convenience is not even present in the use
of regression theory, as can be seen from the several statistics that
must be calculated (e.g., R2 , standard error of estimate, and prediction
intervals). Furthermore, the lack of such a convenient data summarization
has the effect of forcing the analyst to examine the residuals (Table 9),

something that should be done anyway.

2o Lack of Ability to Uniquely Specify the Minimum Sample Size, n, o

for Historical Simulation

As discussed in Sec. III C, the specification of a minimum sample
size is not a trivial problem. To be sure, there is a lcwer bound
(depending on the number of PER parameters) below which the value of ng
cannot be defined, but this lower bound is just a starting point in the

specification of ng
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If too low a value is specified, there may not be enough degrees of
freedom for initial predictions to be very meaningful. On the other hand,
too large a value of ng greatly diminishes the Historical Simulation
output. Each additional sample point included in the initial subsample
deletes a row from the prediction and residual output matrices. Hence
the analyst must specify n to be the smallest number for which the
estimating procedure, if valid, will have enough information from which

to make reasonable predictions.

3. Loss of Information in the Data Summarizations and Statistics

Derived in Sec. IV

Due to a lack of independence, summarizations suggested in
Secs. IV B and LV C have only made use of one residual calculation for
each sample point, usually the one-step residuals di:i . Hence a great
deal of information goes unused. Further research should be initiated
to try to incorporate the unused information in the recommended summariza-
tions and tests. Some nonparametric statistical techniques might prove
useful for the summarizations that do not depend on a particular estimating
procedure while orthogonalization techniques could be applied to the

residuals that are based on the Linear PER-Least Squares procedures.

b, Lengthy Output Time Requirements for the Time Share Computer Model

The output time requirements for operation of the computer model on
the GE time sharing service seem undesirably long. Thirty-one minutes
of terminal time was required for the test run, Table 20, Appendix I.
There are no inherent reasons for this. It is probably possible to
write the program or program output format more efficiently. Another
possibility is to convert the program to a non-time-sharing machine with
more efficient output. Since the program has been written in FORTRAN,

this latter course should pose few problems.

78
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5. Lack of Application in the Development of Actual CERs

The usefulness of llistorical Simulation will ultimately be decided
by the analyst. Several ways of using the output have been suggested in
Sec. IV. Their value in selecting between several candidate cost
estimating procedures and in hypothesizing new cost estimating procedure
candidates can only be evaluated through their attempted application.
From this process, it is expected that new uses of the output will be

created and perhaps some of the suggested uses discarded.

Some examples of the application of Historical Simulation are given
in Volume 2 of this report. They, however, do not serve to remove this
limitation, as a much greater exposure is required to fully understand
the practical worth of Historical Simulation. Furthermore the author
lacks the necessary understanding of either the data base or the example

aircraft programs to fully utilize the Historical Simulation output.

6. Lack of a Precise Understanding as to the Situations for Which

Historical Simulation Will be More Valuable Than Regression

Techniques

Insights into the relationship between these two techniques have

been achieved in Sec. IV C and Appendixes II and III. The fact that

there are situations in which Historical Simulation will be more valuable

is clear (see Fig. 4, pg. 71). Also it seems clear that Historical
Simulation provides a greater visibility (e.g., the identification of
questionable sample points or the demonstration of successful extrapolations)
than the usual regression techniques, even when the conclusions reached

by the two techniques are the same.
However, a precise understanding of all the possible situations for

which one of the techniques is more valuable will probably never be

reached. This fact leads to the final limitation.
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/P liistorical Simulation is Not the Ultimate Answer, Merely Another

Used in conjunction with such traditional methods as regression
theory, Historical Simulation should improve the quality of our CERs.
Furthermore, no technique, including Historical Simulation, will ever
remove the necessity for the analyst. He is, in fact, an integral part
of the evaluation procedure. He must choose candidate estimating proced-

ures, examine the output tables, choose loss functions and weighting

schemes, etc. Hence the best that can be done is to provide him with as

many useful tools as possible to best perform his analysis.,

B. ADVANTAGLES
Several unique advantages of the listorical Simulation procedure have

been identified throughout this report. These are summarized below.

1. Historical Simulation Can Compare a Wider Class of Cost Estimating

Procedures Than the Usual Regression Techniques

Section 111 demonstrated the ability of Historical Simulation to

evaluate any cost estimating procedure.

2 Historical Simulation Provides an Easy-to-Communicate Summary Statistic

k Useful for Describing the Accuracy of a Prediction

This summary statistic is average proportional (or absolute) error

or one of its weighted forms. While it does not summarize all of the His-
torical Simulation output it does describe how well the cost estimating
procedure would have predicted if it had been used in the past to make

J predictions of the now historical data.

3. Historical Simulation Provides a View Independent of the Usual

Regression Theory Approach

This independent view is a consequence of the fact that Historical
Simulation evaluates the ability of a candidate cost estimating procedure

to predict the future from the past. llistorical Simulation does not
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depend on how well the candidate cost estimating procedure fits the data.

Consequences of this are
1. An independent view of CERs derived from stepwise regression

2. Additional information to help hypothesize a new cost estimat-

ing procedure candidate

3. Exposure of questionable sample points which do not fit in
with the prior data base in terms of information content for

parameter estimation and in terms of simulated predictions.

4, A demonstration of the candidate estimating procedure's

ability to extrapolate from historical data to make predictions.

5. The possibility of uncovering errors in an estimating
procedure’'s formulation which would not be uncovered by the

usual regression statistics, e.g., Fig. 4, page 71.

C. RE.COMMENDATIONS FOR FUTURE EFFORT

This report has described the work accomplished to date on the
development of Historical Simulation. It is the author's opinion that
the procedure has been developed sufficiently and offers enough advantages
for it to be usefully applied by those analysts in industry and government

involved in the development of CERs.

However, as we have pointed cut in this section, there are limita-
tions that should be examined so that the Historical Simulation procedure
can be more fully developed and hence more meaningfully applied. The
future effort required should proceed along two distinct paths, one

theoretical, the other applied.

On the theoretical side, three classes of problems can be identified

for future investigation.

1. Incorporation of more of the residual output into the suggested

statistics and tests: Examples were discussed in limitation 3.
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Determination of the probability of selecting the wrong

estimating procedure when using the Sec. IV B summary statistics

(e.p., average loss) for ranking: Monte Carlo techniques

applied to the usually assumed statistical models for the
candidate estimating procedures might be used for this

investigation.

3. Determination of the theoretical distribution of the Historical

Simulation residuals for estimating procedures other than

Linear PLER-Least Srnares Procedures: Exponential PERs,

Eq. 2, utilizing a log-linear curve fitting technique are
examples of alternative estimating procedures that should be

explored.

On the applied side, the use of Historical Simulation in the
development of CERs should be encouraged. This work should be carried
out by individual analysts engaged in the development of CERs, for only
they will have the knowledge of their data base and of the pnysical
makeup of the class of procurements under investigation necessary to
interpret the Historical Simulation output and to hypothesize new cost
estimating procedure candidates. Of course, reporting of the successes,
failures, or extensions of the Historical bimulation procedure which are

discovered in specific applications should also be encouraged.
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APPENDIX I

COMPUTER PROGRAM DLESCRIPTION--LINEAR
PER-LEAST SQUARES CLASS EXAMPLFE

A, GENERAL REMARKS

In this appendix the relationship of the Historical Simulation
procedure to an estimating procedure is described in detail by examining
a computer program developed for Historical Simulation. This prog:am
has been written in FORTRAN for the G.E. Time Sharing Service, MARK I;
the main program is listed in Table 17. 1In describing this program the
flow diagram of Fig., 5 will be followed. The figure is divided into two
parts. On the left, under the title of Main Program, are those calcula-
tions which are not dependent upon a particular estimating procedure.
To these operations the calculations peculiar to a given estimating pro-
cedure are added, as portrayed in the right side of Fig. 5, under the

heading Fstimation Procedure,

In theory, a set of operations should be supplied for each estimating

procedure being tested, but fortunately it appears that these operations

can be more ger -rally written around classes of estimating procedures. As

an example, a set of operations written for estimating procedures which
use the least squares fit technique and a (multivariate) lincar PER will
be discussed. The multiple linear regression model is usually assumed

for this class of estimating procedures and the class has been referred

to as the Linear PER-Least Square Procedures.

In writing the program the operations under kstimation Procedure
were organized into four subroutines. Since this organization will
probably be useful for any estimating procedure (that can be automated),
it will be useful to document it here. The subroutine names, appropriate

box numbers from Fig. 5, and table numbers for a complete listing of the

programs are listed in the following table.
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MAIN PROGRAM ESTIMATION PROCEDURE

PROGRAM PASSES TO
NEXT STAGE

INFORMATION ONLY IS
PASSED

~——em. | TERATION ONE SAMPLE
POINT AT A TIME UNIT

1 [nput |
DATA
BASE |
_ 2 ESTIMATION
ab 3 gt | PROCEOURE 2
SET UP up DESCRIPTION -
NEXT e~ USABLE | =
HISTORI CAL DATA it
SAMPLE BASY | =
<
' I
: 43
| e | 5
I HNIQUE T
[ ?}‘STOEICAL USE TECHNI 0
I PL — —~ — —{ CALCULATE PARAMETERS
BASED ON | | OFPER?
[ MINTMUM | f
| SAMPLE SIZE I |
] | [ }
| ! i |
; @ |
e e | CALCULATE ANY [
I I DESIRED ITERATION |
| | OUTPUT STATISTICS I
| | VALID FOR TECHNIQUE I
1 ’ | T |
I [ ]
HAS ENTIRE | | | |
| SAMPLE BEEM ; | |
| USED? L3 r 1 : |
i:',.st ! I o ‘ ‘
MAKE -t LR . 8b
P EDICTIONS | CALCULATE
gA?AslggE | T PREDICTIVE
{ STATISTICS
SUMMARY | | PECULIAR TO
STATISTICS e TECHNIQUR
L —— l l
3 |
CALCULATE l
SUMMAR T |
STATISTICY |
1.. St
/ NEN s |
pER? -~ I

Figure 5(U). Relationship of Historical Simulation and the Estimation
Procedure
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Subroutine Operation Number Program Listing,
Name (from Figure 5) Table Number
DESCP 2, 10 18
TECH 5, 6a 19
EST 6b 18
SST 8b 18

In Table 20, an example is given of the Historical Simulation out-
put (using a Linear PER-Least Squares procedure). The data do not rep-
resent any real data base and the reader is therefore cautioned about
drawing conclusions. Examples with aircraft and helicopter data are

given in Vol, 2 of this report.

As the program is being discussed, reference will frequently be
made to Tables 17 through 20. The contents of Tables 17 through 19
will be referred to by line number. The contents of Table 20 will he

reterenced by output group (numbers 1-7 in the left margin).
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TABLE 17
MAIN PROGRAM

HISS

#  SFILE RUNDAT,TOTDAT

1 COMMON 1DV(6) ,NIV,EMU(7) ,RDATA(42,7) ,VAL(6),
2 +AINV(7,7),AVG(7),SSE

3 DIMENSION DATA(42,7),REST(42,7),ITBAT(42) ,NORDE(42) ,NW(42)
4 EQULVALENCE (DATA,REST)

9C  SAMPLE INPUT AND TIME BATCHES

12 READ(1),NUMV,NUMS,OUT,NUMT

13 NUMVI=NUMV + 1

14  READ(1),(1TBAT(L), I=1,NUMT)

15 15 READ (1),(NW(L),I=1,NUMS)

17 17 READ(2),((DATA(I,J),J=1,NUMV1), I=1,NUMS)
18 READ (2),NORD

19  IF(NORD - 1) 29

2 READ(2) , (NORDE (1) ,I=1,NUMS)

21 REWIND 2

22 READ(2),((RDATA(I,J),J=1,NUMV1),I1=1,NUMS)

25 DO 25, I=1,NUMS

26 DO 25, J=1,NUMV]

27 DATA(NORDE(1),J) = RDATA(I,J)

28 25 RDATA(L,J)=0

29 29 REWIND 2

3 39 I[F (3-0UT) 49
31 PRINT,
33 PRINT," SAMPLE DATA"

37 PRINT 28,
41 28 FORMAT (4HSMP.,9X,9HACT. VAL.,25X,l19HVAL., OF INDEP, VAR.,
42 +/3HNO.,27X,8HX1,(4,7),9X%,8HX2,(5,8),9X,8HX3,(6,9))
53 DO 32, 1=1,NUMs
57 32 PRINT 33, I,DATA(T ,NUMV+L),(DATA(I,J),J=1,NUMV)
6l 33 FORMAT(I3,1X,4F17,2,F36.2,2F17.2,F36.2,2F17.2)
2 OUT=0UT+)
65C OBTAIN TECHNIQUE DESCRIPTION
69 49 CALL DESCP(MSAMS,NUMV)
70 NIVI=NIVH]
73C  REDUUCE DATA FOR THIS TECHNIQUE
B5 DO 6@, 1=1,NUMS
86 RDATA(CI,NIVIY=DATA(I,NUMV])
3 87 DO b@,J=1,NIV
' B8 K=1DV(J)
89 6@ RDATA(I,J) = DATA(I,K)
181C SET UP FIRST SAMPLE
185 1F(MSAMS-NUMS)85,85
109 PRINT,” SAMPLE TOO SMALL"
113 SsTOP
117 8BS NUMS: = @
121 DO 9@, 1=1,NUMT
125 ORCSS-NUMST+ITBAT(I)
e I[F (ORGSS-MSAMS)90,100, 169
' 133 9@ NUMS1=NUMS.+ITBAT(!)
137C SET UP SAMPLES

e hri e

o ———
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141
143
145
149
153
157
161
177
181
188
189
193
197¢
201
289C
216
217
220
221
225
226
233
239
240
259

936
9138
949
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TABLE 17 (cont'd)
MAIN PROGRAM

CONTINUED

1908 DO 4303,JA=1 ,NUMT
PRINT; PRINT; PRINT,
NUMS1 = NUMS1+ITBAT(.JA)
IF(NUMT-1A)110,12¢,130

11¢ PRINT," SAMPLE SET JP WRONG"
sToP
12¢ PRINT," ENTIRE SAMPLE USED"

13@ PRINT 136 ,NUMS]

136 FORMAT(14HSAMPLE SIZE = ,13)

X=1.

CALL TECH(OUT ,NUMS1)

PRINT,

TEST TO SEE IF DONE

IF(NUMT-JA) 110,410

SET UP PREDICTION OUTPUT; CALC. STAT.
NUMS11=NUMS1+]

DO 2@@,1=NUMS11 ,NUMS
REST(I,5)=RDATA(I ,NIV])

DO 167,J=1 ,NIV

167 VAL(J) = RDATA(1,J)
REST(I,1)=REST(1,5);REST(1,2)=EST(X);REST(!l,h)=REST(1,2)
CALL SST(REST(1,5),REST(1,6) ,NUMS])
REST(1,3)=REST(1,2)-REST(1,1)

200  REST(I1,4)=REST(I,3)/REST(I,1)
IF(5-0UT) 409

PRINT,

PRINT," PREDICIIONS
PRINT,

PRINT 185,

DO 4GB0, 1=NUMS1] NUMS

PRINT 198, (REST(I1,J) ,J=1,8)

4B3  CONTINUF

185 FORMAT(hX,6HACTUAL ,SX,8HESTIMATF, 3X, 1@HDI FFERENCE | 2X,
+9HPROP.ERR. ,4X ,6HSTAT. 1,»X,bHSTAT.2)
199 FORMAT(KFI12.))

FINAL OUTPUT

«19 PRINT,

PRINT," FINAL OUTPUT”

NSW o= @ APE = Q. BIA = @, SKI = @.: SK2 = @,
PRINT 185,

ORGSS1 = ORGSS+]

DO 43Q T=0RGSST NUME

PRINT 199 (RFST(L, 1 [J=1,m)

APE = APE +ABSF(RFST(I w1 )*NW( 1)

435 BIA = BlA + REST(1 ,<))*NW(1)

«3P  NSW = NSW + NW(I1)

PRINT PRINT

APE = APE/NSW; BIA = BIA/NSW

DO 437 1 = ORGSS], NUMS

RED = ABSF(REST(1,4)) - APF

SK1 = SKI + NW(I)*RED**.

437 SK2 = SK2 + NW(I)*RED**}

PRIN ,"AVE. PROPORTIONAL ERROR =" APF
PRINT,""BIAS =" BlA
PRINT,"SKEWNESS =" SK2/SKIA%] LS
G0 TO 17

END

SUSE HISST

SUSE HISS)

SUSE HISS!

SOPT SIZF
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TABLE 18

HISS 3
THREE SUBROUTINES

H15S3

335 SUBROUTINE DESCP(MSAMS,NUMV)

339 COMMON IDV(b),NIV,EMU(7),RDATA(42,7),VAL(6),

340 + AINV(7,7),AVG(7),SSE

347C SPECIFY MINIMUM SAMPLE SIZE AND INDEP. VARIABLE

351 READ(1), NIV

359 MSAMS=NIV4+2

363 DO 518 J=1,NIV

366 READ (1),IDV(J)

367 518 IF(NUMV-IDV(J)) 545

375C OUTPUT TECHNIQUE

379 PRINT; PRINT,

387 PRINT," LINEAR PER - LEAST SQUARES"
391 PRINT 535,NIV,(IDV(J),J=1,NIV)

395 535 FORMAT (2@HNO. OF INDEP. VAR.= ,I1,3X,18HVARIABLE
399 + NOS. ARE ,913)

403 RETURN

407 545 PRINT," UNDEFINED VARIABLE CALL IN DESCP"
411 sTop

415 END

420 FUNCTION EST(X)

424 COMMON  1DV(6),NIV,EMU(7) ,RDATA(42,7),VAL(6),

425 4+ AINV(7,7),AVG(7),SSE

432 EST=EMU(NIVHL)

430 DO 555, J=1,N1V

G0 5955 EST=ESTHEMU(J)*VAL(J)

4%% RETURN

443 END

58 SUBROUTINE  SST(S1,S2, NUMSL)

S8l COMMON IDV(6),NIV,EMU(7),RDATA(42,7),VAL(6),
952+ ALINV(7,7),AVG(7),SSE

584C TTEST OF NEW POINTS

585 SID= (l.+1./FLOATF(NIMS1))#*SSE%*2

o DO HIY, 1=1 NIV

a7 DU S59, S=1,N1V

59 59¢ STD=STDH(VAL(L)=AVG(L) ) ®AINV(I,J)*(VAL(J)-AVG(J))
591  S1 = SSL*(S2-51)/S1Db*¥% .5

5050 NO SECOND STATISTIC

o 82 o= 4,

a8 RETURN

HUapND
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TABLE 19

HISST
SUBROUTINE TECH

HISST

60¢Y SUBROUTINE TECH(OUT,NUMS1)

6@1 COMMON 1IDV(6),NIV,EMU(7),RDATA(42,7),VAL(6),
602 + AINV(7,7),AVG(7),SSE

608 NIVI=NIV+1

61fHC CALCULATE ARITHMETIC MEANS

615 DO 63p,I=1,NIVl

620 AVG(1)=p.

621 DO 625,J=1,NUMS1

625 625 AVG(I)=AVG(I)+RDATA(J,I)

630 639 AVG(I)=AVG(I)/NUMS1

65@¢C CLEAR CROSS PRODUCT MATRIX AND VECTOR

651 DO 655 I=1,NIV1

652 EMU(1)=0.

653 DO 655 J=1,NIVl

655 655 AINV(1,J)=0.

670C FORM CROSS PRODUCT MATRIX AND VECTOR

671 DO 68p I=1,NIV

673 DO 677 J=1,NUMS1

674 EMU(I)=EMU(I)+(RDATA(J,NIV1)-AVG(NIVL))*(RDATA(J,1)-AVG(1))
676 DO 677, K=I,NIV

677 677 AINV(I,K)=AINV(I,K)+(RDATA(J,I)~AVG(I))* (RDATA(J,K)-AVG(K))
678 DO 68p,K=I,NIV

68 68¢ AINV(K,I) = AINV (1,K)

7¢@C INVERT MATRIX

72 CALL MTINV(D,ID)

763 IF (ABSF(D)-.4@¢p1)863

7¢5C SET UP ESTIMATOR VECTOR

710 EMU(NIVI)=AVG(NIVL)

712 DO 728,1=1,NIV

724 720 EMU(NIVD)=EMU(NIV1) ~AVG(L)*EMU(1)

721 EVAR = ¢.; EBAR = §.; EEX = 9.

722 1F(-XABSF(OUT-4)) 741

725C LESTIMATE VARIANCE:; OUTPUT ESTIMATES

727 PRINT," SAMPLE"
728 PRINT 730,

73¢ 730 FORMAT (5X,CHACTUAL,12X,8HESTIMATE, 1AX, 1®HD I FFERENCE, 5%,
731 +131PROPOR. ERROR)

749 74 FORMAT(E13.5,2E19.5,E17.5)

741 741 DO 755,I=1,NUMSI

743 DO 745,J=1,NIV
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TABLE 19 (cont'd)

HISST
SUBPOUTINE TECH

HLSST CONTINUED

745 745 VAL (J)=RDATA(1,J)

747 E=EST(D); A=RDATA(1,NIV1) ;B=E-A;C=B/A

748 LF(=XABSF(OUT-4))75¢

749 PRINT 749, A, E, B, C

75¢ 750 LEBAR = EBAR + (A - AVG(NIV1))#*%*2

751 EVAR = EVAR 4B%%2

755 755EEX=LEX+(E-AVG(NIVL))#*2

76¥C CALCULATE OUTPUT STATISTICS

780 780 PRINT,

790 SSE=(EVAR/ (NUMS1-NIV1))** . 5

80¢ SPYFORMAT (241STD. ERROR OF EST. =,E15.5,19X,

801 +12HR SQUARED = ,E15.5)

8P5C SET UP VAR - COV MATRIX

8¥0 DO 81¥, K=1,NIV

S1¢ 819 VAL(K) = ¢.

82¢ DL 825, K=1,NIVI

824 DO 825,J=1, NIV

825 825 VAL(K) = VAL(K)=-AINV(K,J)*AVGQ)

827 VAL(NLVLI)=1/NUMSI

828 DO 830, K=1,NLV

$30 830 VAL(MIVD)=VAL(NIVL)=VAL(K)*AVG(K)

335 DU 34¥, K=1,NLV

30 DO 837, J=1,NIV

37 837 AINV(K,J) = AINV(K,J)®SSE"#2

Sal 849 ALNV(NIVLL,K)=VAL(K) *SEif*2 3 AINV(K,NIVL)=AINV(NIV],K)

S AINVINIVI, NIV =VAL(NIVD) *58E®%2

a6 PRINT,

847 PRINT," SUB SAMPLE STATISTICS"

S48 PRINT,

Sat PRINT 8P, SSELLEX/LBAR

n9¢ PRINT,

SH1 PRLIDT S, NUMST-NIVI

ahs DO 853, 1=, NIV

a8 3 PRINT 860, i, tMUCH) EMUCTH) /AINV(L, 1) *%.5
v PRINE S0 EMUVIVD)

5o/ RETURN

SOy SUPFORMAT (SEVARTABLL, LIX 9 HPARAMETER, 15X, 6HT TEST,14X,6HD.F. =,13)

Aol Sol FORMATCIXN 12,38, 3F29.5)
S0 a0l FORMAT(SHCONSTANT , F28.5)
dod oA 3 PRI, UDETERM=ZEROY

At RETURSN

N I
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TABLE 20 ]

EXAMPLE OUTPUT

SAMPLE DATA

SMP. ACT. VAL. VAL. OF INDEP. VAR.
NO. X1,(4,7) X2,(5,8) X3,(6,9)
1 95.9¢ 1996, 08¢ 178.00 153.00
2 31.06¢ 967,90 204,00 14490
3 60.00 2414.00 217.09 149,00
4 82.00 4418.0¢ 201.06 144,00
5 25.0¢ 852.00 172.06 107.00
1< 6 67.00 2072.00 215.9¢ 136.90
7 243.09 10408.00 221.00 177. 06
8 54,00 2643.00 258.p0 160.00
9 112.00 3786.40 211.99 172.09 }
19 106.99 3335.90 280.00 293.90
11 183.00 6174.00 385.00 196.98 3
12 156.08 7¢92.0¢ 294 .¢0 187.¢0 4
L 13 177.00 1930400 280.00 167.08
)
2 { LINEAR PER-LEAST SQUARES k|
NO. OF INDEP. VAR. = 2 VARIABLE NOS. ARE 1 3

3 { SAMPLE SIZE = 5

SAMPLE
( ACTUAL ESTIMATE DIFFERENCE PROPOR. FRROR
.9500QE+@2 .67981E+0@2 -.27Q19E+@2 -, 2844 1E+RQ
.31000E+02 .5@156E+@2 .19156E+@2 .61793E+00
49 .600Q0E+p2 . 691681+02 .91599F+0 L1526 7F 400
.82Q00QE+02 .86@383+02 L4V IBRE+Q] LL920 -0
L .25@00E+02 L 19h60E+D -, 53344F+0] -, 1318E+00
( SUB SAMPLE STATISTICS i
STD. ERROR OF EST. = L 24 755E+02 R SOUARED = WL LEE R0
> { var1ABLE PARAMETER T TEST nF. =
I LAY 1. @BLYS
D RIRE 1.05986
CONSTANT -73.9994. 3
L) |

PREDICTIONS

ACTUAL ESTIMATE DIFYERESCE PROP .1 RK. B 8 STAl.?
67.000 59.311 Sl 0K -1 SigLe NI
243.000 174,447 -hH, 551 - LM 000
54.900 80.259 PRI LTS R [2t10)
h 112.009 181.636 ST e -. 89 - g
106. 000 121.490 15 g St .@ge
183.000 147,948 =% & - 194 ERURY .00 s
156.900 147,886 -B.114 B AN B .00
L 177.000 165,448 -11.552 B I -4 T Sd0d {
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TABLE 20 (cont.)

EXAMPLE OUTPUT

SAMPLE
ESTIMATE DIFFERENCE
LBYS IE+PL -.25465E+02
L5186 3E+YL L2986 3E+¢2
L 70859E+4. . 19859E+@2
LBROLGBE+GD L6B4T9E+BI
L22364E+DL -.26364E+01
L9731 32E+P2 -.96682E+@]

SUB SAMPLE STATISTICS

= RN T R SQUARED = L6499 3E+09
ARAMETER D.F, =
NI 1.
L0479
-b#, 39237
PREDICTTONS
ESTIMATE DIFFERENCF  PROP.ERR. STAT. 1 STAT. 2
176,990 -t ulp -.275 -21.719 .09
R, 672 2o I 22,608 L300
190,433 -9, 167 -.a82 6,474 NIl
121,844 15, 899 Llaw 7.621 000
1A, 421 —dan -. 190 -16.695 L0ep
18,967 B AR - ERPEN'} R
1o, 40 EERIY -.¥oH -3.125 L4008
SAMPLE
P TIMATE DIFFTRENCE PROPOR. ERROR
RERETTIRAN BT B TR - 2781 +09
FEPTPRAL T IR RERLIRRTON I LA27541 + 00
MR RIS N BEERRIEY.N IS Y R[]
CTRSRIE el RARE RIS N LT PR Y 1]
Cloga ey TR IR B | TS B Y1)
ORI N S NS el
JAhunt +Bd FRURRET I} I B - JRUBTE-YI

SEAMELY TATINT S

. ol e KoL ARED G int s
VARAME 1 n ol DuF. =
AL e BN
G [T I
S NS
SRED IO N
1 R DIFFERENCE TROPLERK L STAL. STALL Y
ML el BECY, "."w“ Lded
IR AL | AR 1, 7wl N
NI I RPN Pt RN R 9. S
ERRET) BENIDN R BTN} A
[N RS R JBL TRl Sl
- B LN AL} o onan LI

UNCLASSIFIED

PROPOR. ERROR
-, 26806E+(0
.67300E+09
. 18@98E+A9
L 73754E-81
~. 19546F+09
- 144 IPEHY
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3 { SAMPLE SIZE =

250@PE+P2
67¢@RE+P2
263PPE+@ 3
S4PIPE+D2

8
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TABLE 20 (cont.)

EXAMPLE OUTPUT

ACTUAL
.950PPE+P?2
31P0PE+B2
.60BPQE+B2

4 .820PPE+P2
| ‘

|

-

3¢

res

i

\

STD. ERROR OF EST. =

VARIABLE
1
2
CONSTANT

ACTUAL ESTIMATE

112.900¢ 102
196 .090 193
183.000 161
156 .009 172
177.000 229

SAMPLE SIZE = 9

ACTUAL
L950PBF+D2
. 31900E+R2
.6PPPOE+D2
.B2Q0QE+92
L25000E+92
LL7QPPE+D2
L24300E+93
.SLPQPE+D2
L 11200E+03

STD. ERROR OF EST.

VARIABLE
t

5
CONSTANT

ACTUAL
106 .000
183.000
156 .000
177.000

SAMPLE
ESTIMATE DII'FERENCE PROPOR. ERROR
L6P224E+H2 -.34776E+92 -.366@6E+00
. 36792E+(2 .57921E+§1 . 1B6B4EHDP
L67113E+§2 L71127E+@1 ,11855E+0¢
L19581E+93 L23QPBE+P2 . 28059E+09
. 218@8E+P2 ~.31915E+¢1 -, 12766E+08
. 55887E+@2 . 11113E+@2 ~. 1658 7E+09
L 23475E+93 -.825@5F+01 -.13953E-91
.75418E+H)2 L21418E+§2 L3966 IE+BG
SUB SAMPLE STATISTICS
L22286E+92 R SQUARED = L9257 2E+99
PARAMETER T TEST D.F. = 5
91977 5.16064
. 34353 58173
-31.79835
PREDICT IONS
DIFFERENCE  PROP. ERR. STAT.1 STAT.2
.134 -9.866 -.p88 -8.938 N
. 869 -2.131 -.920 -1.165 o089
.536 -21.464 -.117 -14.648 . 900
637 16.637 .197 12.691 900
.258 52.258 .295 37.294 P00
SAMPLE
ESTIMATE DIFFERENCE PROPOR. ERROR
L62293E+@2 -.32797F+92 -, 344 29F+09
L 36348E+02 L 7348QE+P1 L23T7BIE+HPD
LhB574E+D2 L85741E+01 .1429QFE+09
L1B5A7E+9) L2IB69E+B2 L28133E+00
L1947 3492 -.55266E+01 -.22106E+00
R0+ — . 1P8BBE+02 -.16251E+00
L23RTIEH) -, 72719L40) -.29920E-wl
LT7952L+02 L23952E+@2 LAl 395F+Q0
CIPE5LSE+0 ) — L h9493F+P] - 58L 70 -0
SUH SAMPLE STATISTICNS
- LR ARTIN R OSQUARED = L9.2955E+00
PARAMFTER Iorest D.F. = n
L9193} 5, nR]1
500 AR
“45.15223
PRED LCT IONS
ESTIMATE  DIFFERENCE  PROP ERR. STAT. STAT .2
119.682 v bH2 Lphs L 8RO )
166.287 -16.713 -.9091 -12.465 000
176.119 20119 129 16,260 NN
229,218 52,218 L29¢ 37.266 . 009
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TABLE 20 (cont.)

EXAMPLE OUTPUT

3 {SAMPLE SIZE = 19

SAMPLE

UNCLASSIFIED

ACTUAL ESTIMATE DLFFERENCE PROPOR. ERROR
[ 9spppE+p2 .61592E+P2 -. 334P8E+P2 -.35166E+00
. 31PPPE+D2 .37856E+P2 .68557E+@1 .22115E+p9
.6PPPPE+P2 .68175E+p2 .81745E+p1 .13624E+09
.8203PE+P2 L 1B54QE+D3 .23398E+(2 .28534E+Q0
4 4 . 25@PPE+2 L2081 TE+92 - .4183PE+P1 -.16732E+90
.67 PPPE+D2 .5628SE+p2 -.1Q9715E+@2 -.15992E+p9
26 3PPEHD) .23582E+03 -.71777E+§1 -.29538E-p1
L SUPPPE+D. . 77@853E+@2 .230S3E+P2 L4269 1E+PP
LL1209E+93 L1PL22E+93 -.778Q4E+P1 -.69468E-p1
L .19600E+03 .1P778E+p3 .17826E+@1 .16817E-¢1
SUB SAMPLE STATISTICS
STD. ERROR OF EST. L1911QE+@2 R SQUARED = L9261 3E+P9
| variasLE PARAMETER T TEST D.F. 7
K 1 .#1957 7.27017
2 .39968 1.49131
CONSTANT -18.62356
PREDICTIONS
ACTUAL EST IMATE DIFFERENCE  PROP.ERR. STAT.1 STAT.2
183.000 164,464 -18.536 -.1¢1 -15.67¢ .00
@ 156,009 174.919 18.919 121 16.232 .00
177.000 229,799 52.79¢ .298 38.956 .0pp
J
1
3
b
1
r,
T
4
;'.
3
E a4
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TABLE 20 (cont.)
EXAMPLE OUTPUT

3 { SAMPLE SIZE = 11

SAMPLE
ACTUAL ESTIMATE DIFFERENCE PROPOR. ERROR
( .950PRE+2 -625¢BE+p2 -.32492E+92 -.34202E+09
. 31P0PE+02 .37831E+92 L68314E+91 L22937E+00
.6PPPPE~P2 .68869E+02 .88691E+p1 L14782E+9P
.82pPPE+D2 L1P615E+93 L24148E+02 L29449E+0P0
. 25@PPE+D2 L17849E .92 -.71508E+@1 -.286@3E+0
4 < .67PRPE+P2 .55878E+82 - 11122E+92 - . 166PPE+RB
L243PPE+R3 . 24P52E+83 -.24813E+81 -.19211E-@1
.54000E+@2 .78666E+§2 .24L666E+(2 455 70E+@R
L11200E+9) J1B704E+R3 -.4964 3E+01 - 4432401
. 1P6PRE+D) L11294E+93 L69421E+p1 L65492E-@1
L . 1830PE+93 .16975E+83 =, 13247E+p2 -.72388E-01
SUR SAMPLE STATISTICS
STD. ERROR OF EST. = .18715E+92 R SOUARED = .9 3468E+P9
5 VARTABLE PARAMETER T TEST D.F. = 8
1 NJCED) 7.54797
2 47853 1.81979
CONSTANT -5¢.22pp¢
PREDICTIONS
ACTUAL ESTIMATE DIFFERENCE PROP.ERR. STAT. 1 STAT.2
6 156.008 179.668 23.660 .152 21.920 900
177.000 233,675 56.675 .329 41.525 . P09
3 { SAMPLE SIZE = 12
SAMPLE
| ACTUAL ESTIMATE DI1FFERENCE PROPOR. ERROR
[ .95P0PE+D2 L62PL6EHD2 -.32954F+92 -. 346895400
. 31900E+D2 .38348E+(2 L7734 T9E+P] L237@3E+99
.6PPPBE+D2 .68246E+02 .B2456E+@1 L1374 3E+¢9
.82900E+D2 194 32E493 L22315F+@2 L2721 3E+98
. 2500PE+B2 .1959QE+92 -.54P95F+@1 - 210 38E+90
4 4 .6 79DPE+D2 .5589PE+92 - 11119E+92 -.16582E+00
.24 30QE+Q) .23358E+93 ~.9415@E+P1 -.38745E-9]
. S4PPPE+D2 L77546E+92 L23546E+@2 L4 36BLE+DP
L1120PE+D3 L19477E4+83 - . 72346E+0] -.64595E-p1
. 1Q60GE+HI 1002E+83 LLP182E+91 . 37908F -91
.1830QE+®3 .16498E+§3 -.1602 jE+92 -.48486F -91
L .156@PE+D3 17467E4+8) IB6TLE+PY 1979E+00
SUB SAMPLE STATISTICS
STD. ERROR OF EST. = L 18985E+(2 R SOUARED = 92976 +00
. VARTABLE PARAMETER T TEST D.F. = 9
’ 1 P1912 7.38479
2 L4475 1.68706
CONSTANT ~44.58316
PREDICTIONS
ACTUAL ESTIMATE DIFFERENCE PROP .ERR. STAT. STAL.L.
b 177.009 227122 50.122 283 37,721 )
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TABLE 20 (cont.)

EXAMPLE OUTPUT

ENTIRE 3AMPLE USED S
3~{ SAMPLE SIZE = 13 ]
SAMPLE ;
ACTUAL ESTIMATE DIFFERENCE PROPOR. ERROR
( L95Q00PE+E2 . 64234E+02 -.30766E+(2 ~.32386E+(¢
. 31000E+Q2 L4217 7E4+¢2 L11177E+(@2 . 36@55E+3 @
L6BPPBE+R2 .68374E+(2 LC3743E+01 . 1395 7E+(§
LB2000E+02 .9715@E+¢2 .1515@E+@2 . 18475E+((
L 25BUQE+P? . 17¢356E+@2 -.79442E+(1 -.31777E+0¢
LO70PREHD .54 744402 -.12256E+02 -.18293E+¢¢
4 < 24 3PQE+D .21334E+(3 ~.29661E+¢2 -.12206E+00
LS4Q00E+B2 . 78946E+¢2 W24946F+@2 L46196E+00
CL200E+@3 L1Q4T71E+03 ~.72932E+¢1 -.65118E-¢1 1
C1B6R0E+R3 L117Q4E+@3 L11@35E+¢2 194 11E+G0 3
. 18300E+¢3 .161Q4E+03 -.21961E+¢2 - 120¢1E+00 )
L 1S6PPE+G] . 16681E+03 L1@811E+@2 .693@4E-B1 ;
L 77003 L2@539E+03 .28388E+32 .16@38E+3Q 3
SUB SAMPLE STATISTICS E
STD. ERROR OF EST. = C21602E+02 R SQUARED = . 9P936E+0( 3
. ) VARIABLE PARAMETER T TEST D.F. = 1¢ E
| .91593 6.889@4 ;
2 62944 2.22171
CONSTANT -03.86653
FINAL OUTPUT
- ACTUAL ESTIMATE  DIFFERENCE PROP.ERR. STAT. 1 STAT.2
67 . B 55.311 -11.689 -.174 -1¢.631 011
243,400 176.49¢ -66.91¢ -.275 -21.71¢ .00¢
54, P 85.441 31.441 .582 25.95¢ Rlo11)
12, g 12,134 -9.866 -.088 -8.038 .008
146 did 119,682 4.682 N 2.889 . 909 -
7 4 183, 0¢y L4, 464 ~18.536 -. 191 -15.67¢ .99 3
156, ¢$y¢ 179.66¢ 23,660 .152 21.02¢ .ge0 i
177,044 T | 2D 5¢.122 .283 37.721 P00 i
' AVE. PROPORTIONAL ERROR = L2027
BIAS = LB779

N SKEWNESS = ek
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B. PROGRAM INPUT

Data for the program are stored in two data files (for purposes of
compilation economy) called RUNDAT and TOTDAT. TOTDAT consists of the
data base, i.e., the physical and performance characteristics and cost
of the historical procurements. Each row of the data matrix corresponds
to one procurement (Table 21). Each of the procurements, NUMS in number,
has associated with it a cost and a value for each physical and performance
characteristic. If there are NUMV characteristics, then there will be
NUMV+1 entries for each procurement, and hence there will be NUMV+1l times

NUMS numbers in the procurement data base.

TABLE 21

DATA BASE ARRANGEMENT IN TOTDAT

Procurement Physical or Performance Characteristic Number

Number 1 2 3 4 e NUMV Cost
Oldest 1
2
3
4 DATA ENTRIES

Newest NUMS

NUMV: number of Physical and Performance
Characteristics

NUMS: number of Procurements

UNCLASSIFIED 7
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For Historical Simulation, the procurements must be ordered in
time, with the oldest in the first line of data. If this is the order of
the data in TOTDAT, then enter a zero after the data for the last pro-
curement. This value is used by an indicator variabtle NORD which leaves

the data base alone when it equals zero.

If, however, the data base has a different order, let the value of
NORD equal one., Follow this by NUMS numbe:rs, one for each procurement

indicating the transformation necessary to order the data in time.

The data used in the test run are given in Table 22, The data
base is contained in the first 13 lines, 101-113, one for each procure-
ment, There are four entries in each line, as there are values for
three independent variables and the cost for each procurement. Hence,
NUMS = 13 and NUMV = 3 for the test run. The next entry, line 120,
gives NORD a value of one, hence the data will be reordered. The new
ordering is given in line 121, The first row of data, line 101, will
become row 2, the second line will become row 4 and the fourth line will

become row 1. All other rows will remain the same.

RUNDAT contains the remaining data arranged as shown in Table 23,
The first entries describe the amount of data in TOTDAT. They are the 1
number of physical and performance characteristics, NUMV, and the number

of procurements, NUMS. 1

The next entry is an output designator called OUT. The value
chosen will dictate the output option for the run., The options, together

with the applicable value of OUT, will be described under data output.

The next entries describe the time groupings of the data in TOTDAT.
The first entry, NUMT, defines the number of time groupings. It is 4
followed by NUMT numbers (stored in a vector called ITBAT) which tell

how many procurements are in each grouping. The effect of these numbers

AL TR
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TOTDAT 13:19 LA "T"  @4/20/69

191
1¢2
103
104
1¢5
196
197
108
109
11¢
111
112
113
12¢
121

UNCLASSIFIED

TABLE 22
TEST RUN DATA

967,204,144, 31
4418,201,144,82
2414,217,149 60
1996,178,153,95
852,172,107,25
2072,215,136,67
10498,221,177,243
2643,258,168,54
3786,211,172,112
3335,280,203,1¢6
6374,30¢5,196,183
792,294 ,187,156
10304 280,167,177
:
2,4,3,1,5,6,7,8,9,1¢,11,12,13

RUNDAT 13:18 LA"T"  @4/20/69
16¢  3,13,1,9

192 5,1,1,1,1,1,1,1,1

l¢3 @,¢,@,Q,@,5,6,7,8,9,l@,l],12,
104 2,1,3

UNCLASSIFIED
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100
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TABLE 23

RUNDAT DATA

Data File Values

NUMV, NUMS, OUT, NUMT
Vector ITBAT (NUMT entries)

Vector NW (NUMS entries)

NIV, NIV numbers (characteristic identifiers)

Repeat of line 4 for new PER

Repeat of line 4 for final PER

NUMV number of characteristics to be considered.
Must have every characteristic called for
by the PERs.

NUMS: number of procurements in sample
ot output designator
NUHT: number of time batches

ITEAT:  wvector for time grouping observations

N vector for final output weights
K: nunber of PERs
NIV nunber of independent variables for a

particular PER

UNCLASSIFIED
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is to tell the program how many new procurements to include in the next
sample that is to be given to the evaluation procedure. If the sample
previously used contained the first n, procurements (from TOTDAT) and

1

the next number in ITBAT is n, , then the next sample to be processed

2
will consist of the first n,+n procurements {(from TOTDAT).

1 2
The next entries are elements of the vector NW. There is one
entry for each procurement. These are the weights that will be assigned
to each residual fcr the calculation of Average Proportional Error and
the other summary measures of bias and skewness (see Sec. IV B). They

can be integer weights as the computer will divide by their sum.

The final entries in RUNDAT describe the PER to be used. The
first entry corresponds to the number of physical and performance
characteristics, NIV, and is followed by NIV numbers identifying the
specific characteristics. For example, 2, 1, 3 would indicate that the
PER consists of two characteristics and they are numbers 1 and 3, These

latter numbers will tell the program which columns of TOTDAT to consider.

Provision in the program has been made to evaluate more than one
PER in each computer run. Each PER must have the line of data just dis-
cussed (i.e., NIV and NIV characteristic identifiers). This is the only
additional data needed, provided that all the independent variables are

included in TOTDAT.

Test run values for RUNDAT are given in Table 22. In line
100, NUMV = 3, NUMS = 13, OUT = 1, NUMT = 9, The time groupings (vector
ITBAT) are given in line 102. The first subsample will be 5 with one

data point being added for each subsequent subsample.

The third line of data contains the weipghts for each of the residuals.
No weight is given to the first 5, as no prediction of them will be made.

Weights for the remaining points are the subsample size from which the

UNCLASSIFIED 101
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prediction was made., Thus sample point 6 will have a weight of 5,

point 7 will have a weight of 6, and so forth,

The final line of output indicates that the PER has two independent

variables and they are variables 1 and 3. g

Most of the data are entered into the program in Step 1 (Fig. 5),

lnput Data Base (lines 12-18, Table 17). This includes all the data

with the exception of NIV and the characteristic designators. Ordering
of the data base, if necessary, takes place in lines 19-28 of Table 17,
In addition, the option to print the sample data from TOTDAT has been
provided in lines 30-62, Table 17. The form of this output can be seen
in Table 20 [output (1)]. If there are more than three independent
variables, their values will be printed under the values for X1, X2 and

X3 (e.g., X4 and X7 would appear under X1, etc.).

N1V and the characteristic designators are read in Step 2, Fig. 5,

Fstimation Procedure Description (lines 351-367, Table 18). The Step 2

data define the particular PER to be used. New PERs are also defined in

Step 2 at the end of a loop from Step 10.

There are no limits on the number of PERs that can be evaluated
in a given run. There are, however, upper limits on the number of pro-
curements, NUMS, and number of characteristics, NUMV, These are
; current lv programmed at 42 and 6; however, there is a tradeoff between
them. From what I have been able to gather about the MARK T G.E,

Time Sharing System, for which Historical Simulation has been programmed,

all admissible combinations of upper limit values for NUMS and NUMV, for
which anv of the possible "ER specifications (combinations of any subset

of the NUMV variables) can be run, are given in Table 24, The table is

E stopped at MMV = 12 for the reason that NUMV = 13 would yield an

1 ’

E NUYS = 1aoand thus not all 13 variables could be used as NUMS > NUMV+1
in order to tit the curves with a finite variance estimate. No

n: UNCLASSIFIED
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advantage would be gained over the case when NUMV = 12 and it is possible

to compile a larger sample (i.e., value of NUMS).

TABLE 24

POSSIBLE UPPER LIMIT VALUES FOR HISTORICAL SIMULATION
USING LINEAR PER-LEAST SQUARES

If  NUMV = 1 3 3 4 5 6 7 8
Then NUMS < | 183 115 83 63 51 42 35 30
If  NUMV = 9 10 11 12
Then NUMS < 26 22 19 16

C. CALCULATIONS AND PREPARATION FOR OUTPUT
The actual program calculations are initiated in Step 2, Estimation

Procedure Description (Fig. 5). In addition to the PER specification,

discussed in the last section, the minimum sample size is calculated in

this step (line 359, Table 18). The minimum sample size required depends
on the PER and the technique being tested. For Linear PER-Least Square
procedures the minimum sample size equals the number of independent
variables in the PER (NIV) plus two (i.e., one larger than the number of
parameters being estimated including the constant), so that escimates of

variance are not infinite.

The final task performed in Step 2 is to print out a description
of the estimating procedure being used (lines 375-399, Table 18). The
output block (2), in Table 20, is printed out for Linear PER-Least

Square procedures. In addition to the name, "LINFAR PFR-LEAST SQUARES,™

UNCLASSIFIED 03
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the PER description consisting of number of independent variables

(NIV = 2 in the example) and the characteristic numbers (1 and 3 in

the example) are displayed. This block of output is repeated for each

PER evaluated in the run, 1t a second PER were evaluated in the test

run, this block of output for the new PER would appear after output

block (7) in Table 20.

The next operation performed by the computer is to Set Up the

Usable Data Base (Step 3, Fig. 5). The data matrix entered in Step 1

for TOTDAT is reduced in size by excluding characteristics not included
in the PER defined in Step 2 (lines 73-89, Table 17). For the test run

(Table 20) characteristic 2 is excluded from the rest of the PER

vvaluation,

Control is now passed to Step 4a (Fig. 5), in which the Initial

listorical Sample Setup takes place. In lines 101-133, Table 17, data

groupings, defined bv the vector ITBAT, are added until the sample size

is greater than or equal to the minimum sample size defined in Step 2.

There may be situations in which the analyst wishes to specify a larger

minimum sample size than the one automatically calculated, This can be

done by making the first entry in ITBAT (see Table 23) the size of the

minimum sample desired,

: [n the test run, NIV = 2 (line 106, RUNDAT Data, Table 22) and the

tirst entry in ITBENT was 5 (first entry, line 102, same table). If

PrRAT(L) oy, then the first subsample would have been equal to the
cindrur, sample sice, NIVE2 = 4, With ITBAT(1) = 5, however, the first

[Tirst output block (3), Table 20]. Hence the

subsample sice Is

sample piven to the estimation procedure consists of the first five pro-
curcments ot FOTHAT with values for characteristic 1, characteristic 3,
and the actual cost ter cach procurement.  The sample size obtained is

printed out as the tirst data block (3), Table 20.
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The final operation in Step 4a is a housekeeping chore. A loop
is set up for the remaining samples (lines 137-257, Table 17). The loop
initiates with the number of entries in ITBAT used up to achieve the
minimum sample size and is entered as many times as there are entries
left in ITBAT. 1In the test case, the number of time groupings in ITBAT,
NUMT, equaled 9. The values were 5, 1, 1, 1, 1, 1, 1, 1, 1. One entry
was used in setting up the initial sample. The loop will therefore go

from 2 to 9, resulting in eight more samples.

The new samples are defined in Step 4b (Fig. 5), Set Up Next
Historical Sample, as the loop is reentered (lines 143-181, Table 17).

Observations are added to the sample being passed to the evaluation
procedure by adding the next n observations from the data base (Step '),
n being defined by ITBAT. For the test run this process results in
sample sizes of 6 through 13 (the total sample for TOTDAT). As each
sample is set up its size is printed out [output block (3), Table 20] to

indicate that the next iteration is being started.

The sample defined in Step 4a or 4b is now passed to Step 5

(Fig. 5), where the computer Uses the Technique to Calculate the Param-—

eters of the PER., In the test run, the technique is least squares, and

the following operations are accomplished.

° Calculate arithmetic means of sample characteristics

and costs (lines 610-630, Table 19)

© Calculate sample cross product matrix, i,e.,

— i - ) *
%;(Xij - Xj)()\ik - Xk) (lines 650-680, Table 19)

ok
° Invert cross product matrix (line 702, Table 20)

This is analogous to the S matrix referred to in Appendix I1II. The
calculation is different in that the characteristic data are centered.
The difference in the matrices is to prevent round-off{ errors from

occurring in the computer (see Ref. 6, page 144).

Nk
The program uses a matrix inversion routine that can be obtained from
Ref. 11, program 9.6.
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Un the first fteration the sample being worked on is of size 5
(in our test run). At each succeeding iteration the sample expands to
obtain new PiR parameter estimates. These parameter estimates (calculated
in lines 795-720, Table 1Y) are passed to Step 6b (by use of the common
package) and define the CER for that iteration. 1In addition, the arith-
mefic means (lines 610-630, Table 19) are retaiicd for use in Step 8b

(by the common package).

Control is now passed to Step 6a (Fig. 5), where the machine

Calculates Any Destred Tteration Output Statistics Valid for the Technique.

A minimum output for any technique would be the PER parameter values. For

some techniques this may be all that is desired.

For the Linear PER-Least Squares example being considered, the

tollowing operations are performed:

° Using the CER detined in 6b (lines 420-448, Table 18), calculate
Fit Data for the sample (lines 721-801, Table 19). This includes
an estimate for each procurement in the sample (5 for the first
iteration), the standard error of the estimate, and an unadjusted

)
R™  (square of the multiple correlation coefficient).

° Print out (if desired) for each procurement the actual cost,
estimated cost, cost difference, and proportional cost differ-
ences.  This is shown as output block (4) in Table 20 and

executed in lines 728 and 749 of Table 19,

L Calculate the variance-covariance matrix for the parameters
(lines 806-845, Table 19). Deliver through the common package

to Step 8b for use,.

° U'se diagonal elements of variance-covariance matrix to calculate
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