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FOREWORD

The dynamics of the upper atmosphere may be of considerable im-
portance in understanding its neutral and ionized photochemistry,
insofar as it determines both the mixing (through turbulence) and
energy transfer (through gravity waves)., The present paper addresses
some general problems in this area, which has not yet received the
attention it merits.

Apart from the overall importance from the environmental and
space aspects of understanding the physics of the upper atmosphere,
the special problems associated with gravity waves are or may be of
particular significance, insofar as natural or artificial disturbances
of the lower and upper atmosphere, such as thunderstorms, hurricanes,
nuclear explosions and high-altitude rocket plumes, all generate
gravity waves which may be propagated for very large distances and
can produce a variety of effects,

Chapter 1 states the features, problems and results. Chapters 2,
3, 4 and 5 are independent, each having its own abstract, sections,
and order of equations. Therefore, they can be considered as separate
reports and be read independently., All the bibliographical references
are assembled at the end, and a general table of contents for all

chapters is given in the beginning.

Thanks are due to Dr. E. Bauer and Dr. A. J. Grobecker, Institute
for Defense Analyses, for their constant interest, encouragement, in-
valuable discussions and communication of materials. On frequent
occasions, they made useful suggestions for the organization and

emphasis in this report.
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GENERAL ABSTRACT

This report surveys the significance of fluid dynamical motions
in the terrestrial thermosphere, placing emphasis on important prob-
lems that are as yet unsolved. When the need of interpreting certain
important new atmospheric phenomena arises, we attempt to develop new
theories, using, if possible, the simplest mathematical methods, or
even dimensional arguments. In this connection, we develop theories
on: the minimum scales of gravity waves, the spectrum of gravity
turbulence, the spectrum of shear turbulence, and the turbulent dif-
fusion and anomalous distribution of oxygen in the atmosphere., Other
theories will be developed by the author on a separate opportunity.

The overall problem is defined in Chapter 1, Section 1.1, and the
overall conclusions are listed in Section 1.2. The interactions be-
tween gravity waves and turbulence, as well as a statistical theory of
turbulence under the influence of gravity, are treated in Chapter 2.
The turbulence with wind shear and a cascade theory of turbulent
spectrum are investigated in Chapter 3, together with the structure
functions treated in Chapter 4. As an application, the anomalous
distribution'of oxygen in the atmosphere near 110 km is investigated
by means of a theory of turbulent diffusion in Chapter 5.

To all possible extent, the theories are compared with experi-
ments. But we must keep in mind that the difficulties in the experi-
ments often lead the various authors to different interpretations, as

often occurs in problems of turbulence,

v Preceding page blank
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Chapter 1
GENERAL CONSIDERATIONS

1.1 TINTRODUCTION

The aim of the present work is to survey and discuss some
dominant features of fluid motions in the lower thermosphere of the
carth's atmosphere, i.e., roughly in the altitude range of 80-150 km,
They are in the form of gravity waves and turbulence.

The gravity waves and their interactions with the turbulent motions
are studied in Chapter 2, One of the interesting features of these
gravity waves is their dissipation or attenuation, which yields a
critical wavelength surviving from the dissipation as a function of
altitude. A laminar theory and a new turbulent theory of dissipations
are presented. The experimental data support the turbulent dissipation
theory below the turbopause. Other mechanisms of attenuation such as
h2at conduction, vibrational and chemical relaxation, etc., are men-
tioned briefly. A discussion is given on the generation of turbulence
by the gravity waves, and on the Richardson's criterion of stability.
If turbulence is generated by gravity waves, we ask what is the spec-
trum of turbulence under the influence of gravity. To this end, a new
theory is advanced, using the cascade method of Tchen (1969), to ana-
lyze the spectrum, Comparison with experiment is made,

Since the atmospheric turbulence is often affected by wind shear,
the above cascade method is extended to investigate the spectrum of
turbulence in a wind shear. Various new spectral laws k'l. k'3 and
k'5/3 are found in Chapter 3, and comparisons with experiments are
discussed,

The structure of turbulence as measured by diffusion of chemical
clouds is described by a structure function or a spectral function,
A theory is advanced in Chapter 4, which yields the following results:

1



1. The gravity affects the large scale portion of the spectrum,
i.e., the buoyancy subrange, the inertial transfer of energy
across the spectrum governs the inertial subrange of the
spectrum, and finally the viscous drop-off at the smallest
scale end of the spectrum is controlled by the molecular
dissipation. The power laws for the different portions of

the spectrum are determined by the theory, as are the critical

wave numbers separating the various subranges.

2. The structure functions for vertical displacements are cate-
gorically different from those for horizontal displacements.
This difference is clarified by comparing the energy spectra
with and without the effects of shear., Experimental evidence
is presented here and compared with various theoretical inter-
pretations,

Finally in Chapter 5, we study the distribution of the density of
oxygen molecules in the atmosphere under the combined effects of grav-
ity, turbulent motion and chemistry, including photodissociation,
transport and recombination, This problem has been attacked by Cole-
grove, Hanson and Johnson (1965) and also by Shimazaki (1967, 1968).
They include the effect of the turbulent motions by adding an eddy
diffusivity to the molecular diffusivity, a practice generally fol-
lowed in analyses of atmospheric turbulence. Their results indicate
that the increased diffusivity due to the turbulent motions reduces
the chemical effects in such a way that, if the chemical reactions
were absent, the turbulent distribution and the laminar distribution
of oxygen molecules would be identical, although the turbulent dif-
fusivity is much larger than the laminar one. This strangely identical
distribution under two different flow conditions needs careful in-
vestigation, Therefore in Chapter 5 we introduce a mechanism of
turbulent mixing and investigate the structure of diffusivity as a
function of the turbulent correlations of density and temperature
fluctuations. We find that we can introduce twc diffusion coeffi-
cients, one effective on the gravity-dependent term, and the other
on the density gradient term arising, respectively, from the

2
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auto-correlation of density fluctuations and from the cross correla-
tion between the density fluctuations and the temperature fluctuations.
The former is larger than the latter in many cases of diffusion. This
new effect causes an anomalous decay in the density of oxygen molecules
even in the absence of chemical reactions; the investigation also in-
cludes the effect of chemical reactions. We expect that this special
effect is most pronounced in the region of strong turbulence, i.e.,
near the altitude of 100-110 km. In fact, some rocket experiments

by A. Grobecker (1967) seem to show such a decrease in the density

of oxygen molecules in this altitude range. Whether this observed
decay is actually related to the above special effect still needs

further investigation.

1.2 CONCLUDING REMARKS

1. The fluid motions consist of wind shear, gravity waves, and
turbulence. We have not elaborated on the mechanism for the origin
of the wind shear, nor on the interaction of the wind shear with the
gravity waves. The dispersion and the attenuation or dissipation of
the gravity waves permit the determination of their minimum wavelength.
For this purpose both a laminar and a turbulent theory of dissipation
1/4 and
H, respectively, where H is the atmospheric scale height. The laminar
theory agrees with the theory of Hines (1960, 1963) which was developed

are developed, yielding a minimum wavelength proportional to H

on a different basis; the turbulent theory agrecs with the experi-
mental data (Fig., 2-1 of Chapter 2).

Both laminar qnd turbulent theories of dissipation are based
on similarity considerations, and thus a corresponding dynamical
theory should be developed to give more insight into the detailed

fluid dynamical mechanisms.

2. For the study of the turbulent motion, we have formulated two
mechanisms for the generation and transfer of energy across a turbulent

spectrum. One mechanism includes the effect of the gravity waves, and



the other concerns the inertial transfer of energy in the presence or
absence of a wind shear. The former governs larger wavelengths in the
turbulent spectrum than does the latter. Experimental support for
this general picture is found.

The inertial transfer in the absence of a shear yields a
spectral law in agreement with Kolmogoroff's law. The spectrum in the
presence of a shear is much more complicated; a dynamical theory is
presented here. A theory of turbulence under the influence of the
gravity is also presented.

3. The present analysis is concerned with the universal range of
the spectrum, defined as the range of large wave numbers which are not
af fected by local conditions. However, a theory for the spectrum in
the small wave number range is important for completeness, and could
be based on some invariant condition, for example, an invariant cor-
responding to the Loitsiansky invariant in isotropic and homogeneous

turbulence.

4, We have pointed out that wind shear plays a role in the gen-
eration of turbulence, and can now ask under what conditions the at-
mosphere becomes turbulent. The regular Richardson's number based
on the wind shear would predict a very narrow layer of turbulence in
the atmosphere, near the altitude of 100-105 km, but observations
show that the turbulent motions extend far beyond this region. It
appears that the larger scales of gravity waves which serve as a back~-
ground motion for the turbulent fluctuations could be considered as a
wave shear maintaining the turbulence over a wider range of altitudes.
A preliminary modification of the concept of Richardson's number leads
to a new criterion which predicts a much wider region of turbulence in
the atmosphere.

Inertial turbulence is also found in the atmosphere. The
criterion for its existence should be considered differently. Here
we consider the energy balance including the production of turbulence
by the wind shear, the molecular dissipation and the turbulent con-
vection due to an inhomogeneity in the distribution of turbulent

4
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intensities, These considerations enable us to determine the altitude
of the turbopause.

5. It is generally agreed that the turbulent motions play an
important role in the diffusion of particles. Therefore, we expect
that the distribution in height of the concentration of a neutral
constituent, e.g., oxygen molecules, will be different in a laminar
than in a turbulent atmosphere. Recently, this problem has attracted
the attention of several authors (Colegrove, Hansecn, Johnson, 1965;
Shimazaki, 1967, 1968), who have used a diffusion equation in which
the coefficient of molecular diffusion has been replaced by a larger
coefficient of eddy diffusion, a common practice in atmospheric tur-
bulence, Without chemical reactions, this procedure gives a turbulent
distribution identical to the laminar distribution, a surprising and
paradoxical result, To lift this paradox, a mixing theory is developed,
which enables a detailed investigation of the structure of the eddy
diffusion process, and explains the difference between the concentra-
tion distributions in a laminar and a turbulent atmosphere.

1.3 SUGGESTIONS FOR FURTHER WORK

1., Gravity waves have been studied most intensively with a linear
theory. Howaver, many forms of non-linear gravity waves appear in the
atmosphere, and these should be investigated. In particular, one
should explore whether a shock wave (cf. Layzer, 1967) or a solitary
wave may occur as a development of gravity waves,

2. The attenuation of gravity waves is due to a number of mech-
anisms, ranging from viscosity through vibrational relaxation, turbu-
lence in a neutral or an ionized atmosphere. A brief outline of these
problems is given here, and the overall problem should be studied.

3. A theory of shear spectrum in a shear turbulence is important,
especially to clarify the experimental findings of a structure func-
tion depending on the vertical displacement to the power 4/3.



4, A theory of turbulence generated by gravity waves should be
worked out from a dynamical theory for both stable and unstable strat-
ifications in the atmosphere,

5. We have found that an anomalous decay of oxygen molecules in
the atmosphere could be explained in terms of a non-isomeric eddy
diffusivity. It is necessary to further study the structure of the
eddy diffusivities and its relation to the spectrum of turbulence,
and to the wind shear distribution in the atmosphere.
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Chapter 2

INTERACTION BETWEEN GRAVITY WAVES AND TURBULENCE
IN THE ATMOSPHERE

ABSTRACT

We investigate the gravity waves in the upper atmosphere and
their relation to the turbulent motion, More specifically, we ask the
qQuestion whether the turbulence can be generated by gravity waves, and
whether it is valid to use the Richardson number as a stability cri-
terion of gravity waves and as a criterion for the onset of turbulence.
We formulate a simple mathematical model for the propagation of gravity
waves and the explanation of the amplification with height. The dis~
sipation of the gravity waves is investigated. A similarity theory of
molecular dissipation reproduces the Hines (1964) formula for the
minimum scale of the surviving wave as proportional to the 1/4 power
of the scale height.

However, an extension of the similarity theory to the turbulent
dissipation predicts a minimum scale to be of the order of the scale
height. The latter result is shown to be in good agreement with ob-
servations,

A new theory is presented to analyze the spectrum of turbulence
under the influence of gravity. The theory is compared with experi-
mental data.
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2.1 UPWARD GROWTH OF GRAVITY WAVES IN THE UPPER ATMOSPHERE

Satellites and rocket measurements have observed gravity waves in
the upper atmosphere. They play an important role in the generation
of turbulence, the heating of the ionospheric E-, F-regions and the
transfer of energy from the auroral zones to lower latitudes at times
of magnetic storms. Most commonly, they are found to propagate upward
at times of quiescent magnetic conditions and heat the ionosphere,
thus competing with the solar radiation as the primary sources of

energy deposition.

The characteristically upward propagation of the gravity waves
was investigated by Hines (1960, 1965), with confirmation by other
authors (Harris and Priester, 1962), Their calculations are based on
an inviscid atmosphere, i.e., without heat conduction and molecular
viscosity. The inclusion of the molecular transport properties, which
appear important because of their increase with height, are found to
dissipate the waves (Pitteway and Hines, 1963), without altering the

direction of growth,

The characteristically upward growth of the gravity wave was ex-
plained in those theories by the decrease in height of the density in
the atmosphere. 1In the following we shall elucidate such a condition,

We use the following equations:

24 u.vp+ pVu =0 (2-1)

9 Preceding page blank



where gg is a unit vector of components, gg = (0,0,1); C is the speed
of propagation; p, u, p, g are the density, velocity, pressure, and
acceleration of gravity, respectively.

Let us denote the background, or unperturbed quantities by
py(X3) po(xs), and the perturbations by p’, p’ and u. The equations
for the perturbations are linearized, and become, following (2-1):

du
S = On 2 ’ -
b= -9 g (2-2a)
o’
T WU T 7Y B
’ !
Bwmg s (34 o)

The background density % and pressure p, are given by their

empirical expressions:

Pos Po ~ eXP(-Xz/H) (2-3)

where

10



H = Cg/yg (2-4a)

is the scale height; y is the ratio of specific heat for an adiabatic
gas,

The perturbations are assumed to vary as

i(ut-K-x)

P(t)x) = P(x;) e
i(ut-kx)

p’(t)x) = R(xs) e
i(wt-k-x)

u(t,x) = U(xs) e

with
£.= kl, k2) 0

a wave number vector in the horizontal plane, while k is a wave number
vector with components kl, k2, k3. When we denote

and the derivative d/dxz by (°), we reduce (2-2) to

11
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il = (H e_+ 15)P Peg g Rgg
iR = 2 u, - (Ug - ik-U)

H 3 3 ~ =

c2
c o] -1 _R2 .=
id + T (1-y g = cJ ieR (2-5)

with
-1
Y = (pg/p,C2) (2-4b)

for an adiabatic gas. The system (2-5) governs the variables U,

=

R, P, Since the coefficients are constant, we can consider solutions
of the form

and reduce (2-5) to

iud + (% g + ih)?'- gﬁgg
=~ 1
iR = H U3 + ili°~
2
= co -1 2
1 4 7 (1-y")U; = CoiaR (2-6)

The homogeneous system (2-6) yields the following dispersion
relation

4 2,2.2 : 2 2 2 2
w - wk Co + i blk3w g + b2g (k1 + k2) =0 (2-7a)

12
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with

b, = y-1 (2-7b)

We notice that, for a stratified atmosphere which is inhomogeneous
in the vertical direction,

- ¢ ”
k3 -k3+ :lk3

is complex, reducing the complex dispersion relation (2-7a) to the
following two relations:

2
4 2.2f 2 2 W7
W wCo(kl+k2+k3 k3)

v g2 2 2 ,2)_
b1k3wg+b2g (kl+k2)-0

2
4 -7

and giving upon substitution of k;:

o - F 2 P2 - o2 6{ + K2 4 k3'2) + b2g2(k12_ + kg) =0 (2-7d)

Relation (2-7c) predicts a wave growing in height.

Hines (1960) studied the gravity wave in a background atmosphere
with the prescribed distribution (2-3) for P, and fo ? and their ratio
satisfying (2-4b), With the coefficients (2-7b), the dispersion rela-
tions (2-7c) and (2-7d) agree with those obtained by Hines (1960),

13



It is to be remarked that the dispersion relation (2-7a) is ob-
tained from (2-6) under the condition of constant co and H, implying
an isothermal atmosphere as consistent with the distributions (2-3)

for Po and P For an isothermal atmosphere, we have y = 1, reducing
(2-7b) to

b, =1, b, =0 (2-8)

The finite positive l:J in both atmospheric conditions (2-7b) and
(2-8) predicts an upward growth of the gravity wave.

In order to facilitate the study of the properties of the dis-
persion relation (2-7d), we introduce the notations:

@, =by 9/2C° (2-9a)
N =b, g?/c2 (2-9b)
reducing (2-7d) to
m4 - mzcg(ki + kg + k3'2) + Nzcg(ki + kg) - .:.’2 =0 (2-10a)
or to
(1 - Nz/oz) (ni + ng) + n§ = (1 - wi/wz)
with

The equation can be further rewritten in the fom

14
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(2-10b)

¥
+
u:,l\)l u:,l\)
n
[

with
A =—-—ﬂ
1 1 - N“/w
2 = 2, 2
A3 =1 - wh/w

It is to be remarked that (2-9b) gives the Brunt-vVdisila fre-
quency N. With the definition of b3 from (2-7b), it can be rewritten
as

dinp
N2 = =g [dx 2 4 %] (2-9c)

3 CO

reduced to the adiabatic expression
N? = (Y'l)gz/Cg
while (2-9a) reduces to
w, = vg/2 Co

The dispersion relation in the formulas (2-7a), (2-7c), (2-7d)
and (2-10) includes the properties of acoustic waves, internal gravity
waves, and surface waves. They are discussed separately in the fol-
lowing lines.

a. Acoustic Wave, A2 Ag > 0, corresponding to w > w, > N. The

1’
dispersion diagram (2-10) becomes an ellipse and is related to the

15




acoustic wave .1 the extreme case of a circle (w > wa), by de-
generating (2-7d) to

b. Internal Gravity Wave. Ai >0, A§ < 0, corresponding to

w<NK w . The dispersion diagram from (2-10a) becomes a hyperbola,

and in the extreme case

<N <
w << N wy

we find
u?
-5 73 - o9 H
kl + k2
with
_ 2,2
a=yYN /wa

4(y-1)/y for an adiabatic atmosphere

2, for y = 2, which does not happen in gases.

The latter value of y = 2 corresponds to the incompressible water
wave, yielding

w/k = (2 gH);’

a well known result of gravity wave in oceans.

16
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c. Surface Wave, Ai <0, A§ > 0, corresponding to N < w < w, .

The dispersion diagram is a hyperbola, and the vertical wave number
has only a pure imaginary value.

2.2 DISSIPATION OF GRAVITY WAVES: MINIMUM VERTICAL SCALE OF

INTERNAL GRAVITY WAVES

From the linear analysis of internal gravity waves, including the
energy dissipation by molecular viscosity, it is possible to find an
estimate of the minimum vertical scale of the internal gravity wave in
the atmosphere (Hines, 1960, 1964; Zimmerman, 1964)., The analytical
theory is lengthy, therefore we propose the following similarity con-
siderations. If )\ is the wavelength of the minimum vertical scale,
the energy dissipation is proportional to

-

u

"2

where % ;7 is the mean kinetic energy of the wave and v is the kinematic
viscosity, As the lifetime is given by N'l, as defined by (2-9c), we
find

R
const v7=Nu
I\
yielding
A = const (v/N)%

const g-k v12 H% (2-11)

where H is the scale height defined by (2-4a). Formula (2-11) is in
agreement with the expression found by Hines (1964). In Fig. 2-1, we
compare the experimental data with (2-11).

17
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represents the result of the turbulent theory in Eq. 2-13.) |
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We notice that the agreement is not satisfactory in the region
where the turbulent motions are the most intense, i.e., near 100 km,
Therefore, a theory of dissipation by turbulent motions is necessary
for the determination of the scale sizes of unquenched gravity waves.

2.3 SPECTRUM OF TURBULENCE GENERATED BY GRAVITY WAVES AND THE
DISSIPATION OF WAVES BY THE TURBULENCE
We attempt below to formulate a similarity theory of the dissi-
pation by turbulent diffusion. For this purpose, we suppose that the
governing parameters are v and N; they determine the scales of the
smallest eddy

L= (W% £ =n]

where N is the Brunt-Vdisdla frequency defined by (2-9c). On the
basis of these parameters we find the turbulent spectrum
3

F=4 - (v vl M

t
where L is a dimensionless function. In the buoyancy subrange of the
spectrum, as governed by the inertial force and the gravitational
force, the spectrum should be independent of v, requiring L(k) =

(w/N)"2 ™3, yielding

3

F = const N2 k~ (2-12)

corresponding to an energy

X u? = const N2 k72

and a turbulent diffusion with a mixing length 4’

ut! = N k2

19



Hence the rate of energy dissipation by turbulent diffusion across
the spectrum, or the turbulent transfer, amounts to

3

= N> k2

ut’

S5

The wave energy as calculated from the potential energy is g4’
which is dissipated in time N-l. This energy takes place in the low
wave number end of the spectrum, when the wave is being broken up to
generate higher harmonics, converted into a turbulent transfer. Hence
we can write the energy balance of the dissipation of the wave energy

by the turbulence as
Ngt' = N34
giving
L’ = g/N? = const H (2-13)

where H is the scale height defined by (2-4a).

In a real atmosphere, turbulent motions, gravity waves and tidal
waves may all be present. The turbulent motions may also be of scales
larger or smaller than the gravity waves. The rocket data are often
difficult to precise or discriminate the various modes of motion. It
is not excluded that the gravity waves can be dissipated by smaller
scale turbulent motions of such a type as generated by the gravity
waves themselves. Under such a circumstance, the mixing length 4’
can be taken as a measure of the minimum scale of the gravity wave to
be dissipated by the turbulent diffusionj it should be independent of
v, but dependent on g and N, as found in (2-13). Figure 2-1 shows a
certain agreement of the formula (2-13) with the experimental data.
The numerical coefficients in (2-12) and (2-13) are left undetermined
in the present similarity theory. The problem deserves further careful
examination,
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The k> power law of the turbulent spectrum as obtained in (2-12)
by the similarity theory is in agreement with the cascade theory of
Tchen (1969), and with the dynamical theory to be described in Sec-
tion 2.7.

2.4 FURTHER MECHANISMS OF ATTENUATION OF GRAVITY WAVES

It should be noted that internal gravity waves, like other elastic
waves, may also be attenuated by a number of mechanisms other than tur-
bulence, in particular by:

(a) Viscous dissipation

(b) Heat conduction

(c) Diffusion (in the case of a gas mixture)

(d) Vibrational relaxation of 02 and N2

(e) Chemical relaxation, or the shift of the 02 = 2 0 balance
under the influence of the sound wave

(f) Various plasma damping effects (which can be significant
only at F-region altitudes)

(g) Non-linearities in the propagati.on of the waves which give

rise to mode-coupling effects,

A very simple analysis of mechanisms (a) and (b) has been given
by Pitteway and Hines (1963) and in fact mechanism (c¢) is of the same
general order of magnitude. Crude numerical estimates of mechanisms
(a - e) have been made by Bauer using the standard formulas for ultra-
sonic waves. The conclusion is that for frequencies w~N and high al-
titudes (h » 150 km) the vibrational relaxation of molecular nitrogen
can indeed give rise to an attenuation of internal gravity waves.

At altitudes above 200-250 km where plasma effects become im-
portant, it is possible that the interaction of ionized motions with
the geomagnetic field--which are coupled with the motion of the neutral
atmosphere represented by the gravity waves--may lead to a significant
damping of the waves, see Lin and Yeh (1969). However, none of these
mechanisms (a - g), nor indeed the detailed mechanism for the produc-
tion of internal gravity waves in the lower troposphere, have yet been
investigated adequately.
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2.5 GENERATION OF TURBULENCE BY THE GRAVITY WAVES

When a gravity wave moves in an atmosphere of small viscosity, a
vorticity field can be generated by a straining motion of the wave.

The vorticity equation for an incompressible turbulent fluid is

dan, u,
i _ i

where ug is the velocity in the xi-direction, Q= vV xu is the vorticity
component, v is the kinematic viscosity. By multiplying by Qi we ob-
tain the power of vorticity, If Q’= ¥ x u’is the vorticity of the
turbulent velocity u’, then we have

2 2 12
7] i

2 = oinre s 2|t X0 [
‘ijij*"i';r 3;
j

e

If we assume local homogeneity, the dissipation becomes simply

'y 2 . * *
=2v (ani/axj) . The stretching of vorticity is represented by the
first term on the right-hand side, where

. du.,
i J

e L] i +
ij axj axi

is the rate of strain, consisting of three parts

e,. = (e;.) + (e..) + e/

L L shear )" wave Y
where
al al.
(es5) t k.
shear j i
22

P

e et b fe—



comes from the wind shear aui/axj

au du,
i
(e;:) = +
i3 0o T\
) wave
arises from the wave motion, and
[ [
ou.
! = e 15...'.!.
' €45 © axj & xi)

is the rate of strain of the turbulent fluctuations, They produce a
stretching of the form

/ / l
Q (e s Q (e » or Q/N.e/
1J shear Qi wave Ql

Eggpectlvely The first two expressions produce the turbulent vorticity

from the strain of the wind shear and of the wave motion; there-
fore, they are responsible for the production of turbulence. The last
expression represents a diffusion of vorticity by the turbulence. 1In
order for the production terms to be effective, the turbulent field
must be three-dimensional.

Since the turbulent motion can be generated by the wind shear and
the gravity waves in the atmosphere, it is necessary to study their
spectrum and their effect upon the dissipation of the gravity wave.

2.6 RICHARDSON NUMBER AS THE STABILITY CRIT:HRION OF GRAVITY WAVES

In Section 2.5 we have discussed how a turbulent motion can be
generated by the stretching of the turbulent vorticity from the strain-
ing motion of the background wind shear or of the gravity wave. In the
following lines we shall compare the destabilizing effect of such a
straining motion with the stabilizing effect of the density stratifi-
cation.
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For the purpose of studying the onset of turbulence in presence
of a wind shear, wave shear and buoyancy, we introduce

w=g p'/pN

a scalar buoyancy drift from the density fluctuation p’ in an atmo-
spheric of reference density Po? gravity g, and Brunt-Vdisdla frequency
N defined by (2-9c)., We consider the following system describing

*.e nonlinear coupling between the fluid motion and the buoyancy, see
Tchen (1968, 1969): '

(2-14)

&
[}
=
[~

W

(0,0,1)

The terms proportional to N in (2-14) have a stabilizing effect in
an atmosphere of decreasing density with altitude. The inertial term
(u - V) u contains a destabilizing effect. It consists of three
parts: a wind shear (u - V) U, a wave inertia (u - V) u, and a tur-
bulent fluctuation ?§7_7_37127. The wind shear is destabilizing, the
wave inertia generates harmonics, and the turbulent fluctuations
dissipate the wave.

Let us introduce a shear frequency
2 _ 2

and compare the stabilizing and destabilizing terms; we find the
Richardson number

Ri® = (N/w_)
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used to serve as the criterion of instability of the gravity wave.
Thus the condition

Ri°

<l
gives an unstable wave. A critical value of Ri® = 0,08 has been de-
termined by Townsend (1957).

If Eqs. (2-14) describe the turbulent motions, then the destabi-
lizing agents become the wave shear as well as the wind shear which
both serve as the straining background. In Fig. 2-2, Justus (1967)
has plotted w_, N and Ri®. It shows that Ri® <1 in the thin layer
between 105-109 km, and therefore the turbulent motion could appear
there only. However, the turbulent motions are observed beyond this
region. The broadening of the destabilizing region can be explained
by the wave shear, taking over the role of the disappearing wind shear.

If we consider a turbulent field of energy :77, to be dissipated
by the buoyancy force for the amount u ‘2N, and excited not only by the
wind shear W s but also by the wave shear

—
®, = (aui/axj)w]

then the Richardson number for the turbulence motion under the com-
bined shear by wind and wave becomes

Ri= =3

/Rio’ o << 1l

=\(N/u.\”)2, o >>1
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where
_ 2
o = (Qw/ws)

We see that the existence of turbulent motion from the new con-
dition

Ri <1

would broaden the layer considerably beyond 105 to 109 km,

It has to be remarked that the criterion of instability, as
characterized by the Richardson number, is necessarily crude, as it
is simply an intuitive and dimensional representation of the simplest
instability concept based upon two parameters N and wg . It is obvious
that many other parameters, such as wave shear as illustrated above,
may appear in a real atmosphere, and therefore may change the cri-

terion of instability considerably.

2.7 SPECTRUM OF TURBULENCE UNDER THE INFLUENCE OF GRAVITY

The turbulent spectrum of the kinetic energy is controlled by the
following parameters: the kinematic viscosity v, the rate of energy
dissipation ¢, and the effect of gravity represented by a frequency of
buoyancy N, called the Brunt-V&isdla frequency. If the inertial sub-
range is required to depend only on ¢ and not on v and N, the dimen-
sional reasoning enabled Kolmogoroff (194l1) to find the spectrum for
the kinetic energy

F = const e2/3 k's/3

Several investigators (Lumley 1964; Shur, 1962; Bolgiano, 1962, 1965,
1966) have attempted the dimensional reasoning and derived a spectral
law in the buoyancy subrange

F = const N2 k™3
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if the said subrange is defined as dependent only on the parameter N
and not on ¢ and v. But no derivation of both spectra has been made
using the dynamical equations of the turbulent motion, nor is any
investigation made on the spectrum of the density fluctuation which

is responsible for dissipating the kinetic energy to the buoyancy.
Therefore in the following lines, we propose a dynamical theory, which
predicts the spectra for the kinetic energy and the potential energy
arising from the density fluctuations, and also determines the numer-
ical coefficients.

3 3

It seems that both the k™>/> and k™> laws have been observed in
the atmosphere, hence it will be worthwhile to discuss those experi-
ments and look for a criterion distinguishing the separate conditions

obeying the two laws.

When the gravity wave is of small amplitude, its motion can be
described by the equations of momentum and continuity (2-1), whose
linearization (2-2) leads to a dispersion relation (2-7a) character-
izing the propagation. However, when the gravity wave is of finite
amplitude, the nonlinear generation of harmonics has to be considered.
The transfer, or the sharing of energy may become a dominant mechanism,
so that a randomiz«tion process may be involved in the mechanism to
provide a continuous spectrum. Under such a circumstance we find a
turbulent spectrum., The basic dynamical equations are nonlinear, and
of the type (2-14) discussed in Section 2.6. Since the pressure term
has the main role of redistributing the energy among the different
directions, it may be dropped; We shall add the molecular dissipa-
tions and rewrite (2-14) in the form

dy
E:-ngg+vvzt_1~ (2-15)
%% = Ng:gg + A v2w
-e.g f— (0, 0, l)
28
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Here u is the velocity fluctuation of turbulence, w represents a
buoyancy from the density variation and is written in the dimension
of a drift velocity, see Section 2.6, and N is the Brunt-V&is&la fre-
quency, see (2-9c) Section 2.1. Finally v and ) are the coefficients
of molecular viscosity and molecular diffusion.

Instead of studying the behavior of each individual Fourier
component of velocity
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and

thus

o)
w=u +uf

and similarly for w.

An average

29



over a length k™! will eliminate the fluctuation u’, but leave intact

the quasi-stationary velocity E?' This permits the separation of the
two motions, Thus we obtain from (2-15)

0
Du; du/
i_ o _ (o} _ ) i
-+t vVuy N w egi <: j 3;; :>>
(2-16)
o
Dw- _ 2 0 o} _ . "
ot = A VW +N1_1_-e <uj~rx;
D _ 2 0
et LV
Du{ , , aug
T = -N w egi -u 5;;
Dw' _ ' e °
Dt —Nuj egj uj-g)-c-j- (2 17)

The Eqs. (2-17) are written in their approximate form, neglecting the
molecular properties. The Egqs. (2-16) and (2-17) are now called
cascade equations, as they describe the cascade dynamics of two groups
of eddies.

From (2-17) we obtain the energy equations, upon multiplying by

u® and w° respectively and upon averaging, denoted by a bar over an

~

interval of length as large as desirable, Thus the energy equations

are
———-—7 o
qu;
35 () ="’(a—le.') o i) -
(2-18a)
VRV
10 (oY _ . [a° 0 & o Tuh s
75 ¥ = )‘a—xj- -waxj(w uj)+o
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for a turbulence in equilibrium, which is locally homogeneous, and in
the universal range, i.e., at large wave numbers of the spectrum.
Here

is a coupling function, representing the exchange between the kinetic
energy and the potential energy. Further & = Qo(k = ®), so that

$- 8 =N @ ujy=- Nz_[ dr (w'(0) w'(m)
(o]

according to (2-17).

The eddy stresses in (2-18a) are calculated by integrating (2-17),
involving an eddy viscosity Yo We shall omit the detail of calcula-
tions, but upon introducing the vorticity functions

o _ 2 o _ o0 P
R” = (auoi/axj) » R=R (k = =)
J° = (awo/axj)ﬁ, J=J° (k = @)
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the eddy viscosity

W = %f dr (u'(o) - w'(") (2-19a)
(o]

and the eddy diffussion

M =f dr (w'(0) w'( M) (2-19b)
(o}

we can rewrite the energy balance (2-18b) in the form
(v+ yI RO+ 0= ¢+ 8

A+ y) % - =1-3
or

(v+ y) R+ N2 A (2-20a)

2

(A + w) 3% - Ny = (2-20b)

1
=

where
€= W, TN=2\J

are the rates of energy dissipations for the kinetic and potential
energies, respectively,

The eddy viscosity w has the dimension of (u’2) Q’-l, where 0’
is a relaxation frequency for the formation of a transport property,
and can be determined by writing the equation of total energy, as the
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sum of kinetic and potential energies, in a band dk of the spectrum,
decaying at a frequency Q’. Omitting the details of calculations, and
denoting the spectra of kinetic and potential energies by F and G,
respectively, we find:

-]

w =3 | a'L (2-21a)

PIAL L
dk’x"“rF}, ¢ = (4n/3) (2-21b)

and similarly

(- -]
n =
N = 3 f dk 6 o't (2-21c)
k

The system of equations (2-20), with the transport functions (2-19),
determine the spectra of kinetic and potential energies F and G.

We shall solve the system of energy balance for the following
two special cases.

a. Buoyancy Subrange. The buoyancy frequency N is sufficiently

effective to convert the kinetic energy into the potential energy.

This requires that F and G are not dissipated by v and A. We write
the system (2-20) in its differential form, with a differentiation

with respect to k denoted by (°). We find, neglecting v and 1, for
the inviscid subrange:

50 0 2 _
W R™ + W R™ + N N = 0

P4y -8y =0
% % k
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to be simplified to

2

'o L ] _
Ve R" + N lk =0
y 0+ U -N =0

upon neglecting R® in the inertial subrange of F, replacing J° by J
in the dissipative subrange of G. The molecular coefficients have
been neglected in view of the dominant buoyancy.

The solutions are

(2-22)

with

p =
"
o)
n
I

and
g = J/N2

Since F supplies energy to G, we expect that J is a small fraction of
N2, and therefore g is a small coefficient.

b, Inertial Subrange cf the F Spectrum, The rate of dissipation
¢ dominates over % and Qo, so that (2-20a) reduces to

e R = ¢ (2-23)

With the expression (2-2la) for V> We can solve the integral equation
(2-23) and find the solution
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F = (32/9n)1/3 ¢2/3

k™5/3 (2-24)
The numerical coeff1c1ent is approximately 1.04,
The SPectng; law =3 of (2-22) has been Obseryeq in atmospherl
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FIGURE 2-3. Spectrum of Turbulence Generated by Gravity Waves from Flights at
Altitudes 25,000 - 40,000 ft (Kao, Woods 1944, Tchen 1948),

Comp. Eq. (2-22)
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FIGURE 2-4. Spectrum of Residual Fluctuation Amplitude Versus Wavelength
of Harmonics Removed (Rosenberg 1968)

We can conclude that the experimental data of Fig. 2-4 are in a
3 of (2-22), although
it has not been well understood whether turbulence could exist at such

good agreement with the predicted spectral law X

high altitudes as 160 km. Around such high altitudes, the spectrum
may well be a superposition of several quasi-random gravity waves of
finite amplitudes.

We note that flight data in the atmosphere have shown both spectra

3

-5/3 and k~°, due to inertia and buoyancy, respectively. We may ask

k
whether there is a criterion based on physical conditions which dis-
criminates between the generation mechanisms of the above two types of
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turbulence. We may contemplate the following two characteristic con-
ditions of atmosphere:

a. Neutral Atmosphere. The wind shear is significant enough to

dominate over the buoyancy, and to create a high turbulent shear and
energy, but it is still weak as not to give a shear production sub-
range or a shear transfer subrange. This condition will produce a

5/3

spectrum k- characteristic of the inertial subrange, see (2-24).

b. Stable Atmosphere. Wind shear is absent, and the tempera-

ture gradient is sufficiently strong to maintain a stable layer with
a dominant buoyancy frequency N, This condition calls for a buoyancy
subrange k=3,

The above two conditions are exemplified in flight measurement at
a height of 1000 ft. Two temperature soundings find a neutral at-
mosphere without a temperature inversion and a stable atmosphere with
a temperature inversion, see Fig., 2-5. Corresponding to the two at-
mospheric conditions, the inertial spectrum k's/3 for the neutral
atmosphere, and the buoyancy spectrum k'3 for the stable atmosphere
are found in Fig. 2-6. The high level of turbulent energy in the
neutral atmosphere of Fig. 2-6 is apparently due to the presence of
a weak wind shear, as described earlier.

In the intermediate subrange, i.e., between the thermal inertial
subrange and the momentum inertial subrange, there seems to exist a
process dominated by the coupling # or the parameter N, and by the
parameter T = )J independent of ¢. The following spectra are proposed
by Bolgiano (1959, 1962):

const n2/5 N‘VS k11/5

™
il

const na/s N"2/5 7/5

(9]
n

A systematic derivation of those laws is not an easy matter. There
is a need for a systematic study of the turbulence in stratified media.
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