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FOREWORD 

The dynamics of the upper atmosphere may be of considerable im- 

portance in understanding its neutral and ionized photochemistry, 

insofar as it determines both the mixing (through turbulence) and 

energy transfer (through gravity waves). The present paper addresses 

some general problems in this area, which has not yet received the 

attention it merits. 

Apart from the overall importance from the environmental and 

space aspects of understanding the physics of the upper atmosphere, 

the special problems associated with gravity waves are or may be of 

particular significance, insofar as natural or artificial disturbances 

of the lower and upper atmosphere, such as thunderstorms, hurricanes, 

nuclear explosions and high-altitude rocket plumes, all generate 

gravity waves which may be propagated for very large distances and 

can produce a variety of effects. 

Chapter 1 states the features, problems and results. Chapters 2, 

3, 4 and 5 are independent, each having its own abstract, sections, 

and order of equations. Therefore, they can be considered as separate 

reports and be read independently. All the bibliographical references 

are assembled at the end, and a general table of contents for all 

chapters is given in the beginning. 

Thanks are due to Dr. E. Bauer and Dr. A. J. Grobecker, Institute 

for Defense Analyses, for their constant interest, encouragement, in- 

valuable discussions and communication of materials. On frequent 

occasions, they made useful suggestions for the organization and 

emphasis in this report. 
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GENERAL ABSTRACT 

This report surveys the significance of fluid dynamical motions 

in the terrestrial thermosphere, placing emphasis on important prob- 

lems that are as yet unsolved. When the need of interpreting certain 

important new atmospheric phenomena arises, we attempt to develop new 

theories, using, if possible, the simplest mathematical methods, or 

even dimensional arguments. In this connection, we develop theories 

on: the minimum scales of gravity waves, the spectrum of gravity 

turbulence, the spectrum of shear turbulence, and the turbulent dif- 

fusion and anomalous distribution of oxygen in the atmosphere. Other 

theories will be developed by the author on a separate opportunity. 

The overall problem is defined in Chapter 1, Section 1.1, and the 

overall conclusions are listed in Section 1.2. The interactions be- 

tween gravity waves and turbulence, as well as a statistical theory of 

turbulence under the influence of gravity, are treated in Chapter 2. 

The turbulence with wind shear and a cascade theory of turbulent 

spectrum are investigated in Chapter 3, together with the structure 

functions treated in Chapter 4. As an application, the anomalous 

distribution of oxygen in the atmosphere near 110 km is investigated 

by means of a theory of turbulent diffusion in Chapter 5. 

To all possible extent, the theories are compared with experi- 

ments. But we must keep in mind that the difficulties in the experi- 

ments often lead the various authors to different interpretations, as 

often occurs in problems of turbulence. 

Preceding page blank 
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CENCRAL COHSI DERATIONS 

1.1    INTRODUCTION 

Th« *im of the present work is to survey «nd discuss 

do«in«nt features of fluid «otions in the lower themosphere of the 
earth's etwospherc, i.e., roughly in the «Ititude range of 80-1S0 tun. 
They ere in the font of gravity weves end turbulence. 

The gravity waves end their  intereetions with the turbulent motions 
ere studied in Chapter 2.    One of the interesting features of these 
gravity waves is their dissipation or attenuation, which yields a 
critical wavelength surviving fro« the dissipation as a function of 
altitude.    A laminar theory and a new turbulent theory of dissipations 
are presented.   The experimental data support the turbulent dissipation 
thvury below the turbopause.    Other mechanisms of attenuation such as 
htat conduction, vibrational and chemical relaxation, etc., are men- 
tioned briefly.   A discussion is given on the generation of turbulence 
by the gravity waves, and on the Richardson's criterion of stability. 
If turbulence is generated by gravity waves, we ask what is die spec- 
trum of turbulence under the influence of gravity.    To this end, * new 
theory is advanced, using the cascade method of Trhen (1969), to ana- 
lyse the spectrum.   Comparison with experiment is made. 

Since the atmospheric turbulence is often affected by wind shear, 
the above cascade method is extended to investigate the spectrum of 

-1      -S turbulence in a wind shear.    Various new spectral laws k    , k     and 
k are found in Chapter 3, and comparisons with experiments are 
discussed. 

The structure of turbulence as measured by diffusion of chemical 

clouds is described by a structure function or a spectral function. 

A theory is advanced in Chapter 4, which yields die following results: 



1. The gravity affects the large scale portion of the spectrum, 

i.e., the buoyancy subrange, the inertial transfer of energy 

across the spectrum governs the inertial subrange of the 

spectrum, and finally the viscous drop-off at the smallest 

scale end of the spectrum is controlled by the molecular 

dissipation. The power laws for the different portions of 

the spectrum are determined by the theory, as are the critical 

wave numbers separating the various subranges. 

2. The structure functions for vertical displacements are cate- 

gorically different from those for horizontal displacements. 

This difference is clarified by comparing the energy spectra 

with and without the effects of shear. Experimental evidence 

is presented here and compared with various theoretical inter- 

pretations. 

Finally in Chapter 5, we study the distribution of the density of 

oxygen molecules in the atmosphere under the combined effects of grav- 

ity, turbulent motion and chemistry, including photodissociation, 

transport and recombination. This problem has been attacked by Cole- 

grove, Hanson and Johnson (1965) and also by Shimazaki (1967, 1968). 

They include the effect of the turbulent motions by adding an eddy 

diffusivity to the molecular diffusivity, a practice generally fol- 

lowed in analyses of atmospheric turbulence. Their results indicate 

that the increased diffusivity due to the turbulent motions reduces 

the chemical effects in such a way that, if the chemical reactions 

were absent, the turbulent distribution and the laminar distribution 

of oxygen molecules would be identical, although the turbulent dif- 

fusivity is much larger than the laminar one. This strangely identical 

distribution under two different flow conditions needs careful in- 

vestigation. Therefore in Chapter 5 we introduce a mechanism of 

turbulent mixing and investigate the structure of diffusivity as a 

function of the turbulent correlations of density and temperature 

fluctuations. We find that we can introduce twc diffusion coeffi- 

cients, one effective on the gravity-dependent term, and the other 

on the density gradient term arising, respectively, from the 
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auto-correlation of density fluctuations and from the cross correla- 

tion between the density fluctuations and the temperature fluctuations. 

The former is larger than the latter in many cases of diffusion. This 

new effect causes an anomalous decay in the density of oxygen molecules 

even in the absence of chemical reactions; the investigation also in- 

cludes the effect of chemical reactions. We expect that this special 

effect is most pronounced in the region of strong turbulence, i.e., 

near the altitude of 100-110 km. In fact, some rocket experiments 

by A. Grobecker (1967) seem to show such a decrease in the density 

of oxygen molecules in this altitude range. Whether this observed 

decay is actually related to the above special effect still needs 

further investigation. 

1.2 CONCLUDING REMARKS 

1. The fluid motions consist of wind shear, gravity waves, and 

turbulence. We have not elaborated on the mechanism for the origin 

of the wind shear, nor on the interaction of the wind shear with the 

gravity waves. The dispersion and the attenuation or dissipation of 

the gravity waves permit the determination of their minimum wavelength. 

For this purpose both a laminar and a turbulent theory of dissipation 
1/4 are developed, yielding a minimum wavelength proportional to H '  and 

H, respectively, where H is the atmospheric scale height. The laminar 

theory agrees with the theory of Hines (1960, 1963) which was developed 

on a different basis; the turbulent theory agrees  with the experi- 

mental data (Fig. 2-1 of Chapter 2). 

Both laminar qnd turbulent theories of dissipation are based 

on similarity considerations, and thus a corresponding dynamical 

theory should be developed to give more insight into the detailed 

fluid dynamical mechanisms. 

2. For the study of the turbulent motion, we have formulated two 

mechanisms for the generation and transfer of energy across a turbulent 

spectrum. One mechanism includes the effect of the gravity waves, and 



the other concerns the inertial transfer of energy in the presence or 

absence of a wind shear. The former governs larger wavelengths in the 

turbulent spectrum than does the latter. Experimental support for 

this general picture is found. 

The inertial transfer in the absence of a shear yields a 

spectral law in agreement with Kolmogoroff's law. The spectrum in the 

presence of a shear is much more complicated; a dynamical theory is 

presented here. A theory of turbulence under the influence of the 

gravity is also presented. 

3. The present analysis is concerned with the universal range of 

the spectrum, defined as the range of large wave numbers which are not 

affected by local conditions. However, a theory for the spectrum in 

the small wave number range is important for completeness, and could 

be based on some invariant condition, for example, an invariant cor- 

responding to the Loitsiansky invariant in isotropic and homogeneous 

turbulence. 

4. We have pointed out that wind shear plays a role in the gen- 

eration of turbulence, and can now ask under what conditions the at- 

mosphere becomes turbulent. The regular Richardson's number based 

on the wind shear would predict a very narrow layer of turbulence in 

the atmosphere, near the altitude of 100-105 km, but observations 

show that the turbulent motions extend far beyond this region. It 

appears that the larger scales of gravity waves which serve as a back- 

ground motion for the turbulent fluctuations could be considered as a 

wave shear maintaining the turbulence over a wider range of altitudes. 

A preliminary modification of the concept of Richardson's number leads 

to a new criterion which predicts a much wider region of turbulence in 

the atmosphere. 

Inertial turbulence is also found in the atmosphere. The 

criterion for its existence should be considered differently. Here 

we consider the energy balance including the production of turbulence 

by the wind shear, the molecular dissipation and the turbulent con- 

vection due to an inhomogeneity in the distribution of turbulent 
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intensities. These considerations enable us to determine the altitude 

of the turbopause. 

5. It is generally agreed that the turbulent motions play an 

important role in the diffusion of particles. Therefore, we expect 

that the distribution in height of the concentration of a neutral 

constituent, e.g., oxygen molecules, will be different in a laminar 

than in a turbulent atmosphere. Recently, this problem has attracted 

the attention of several authors (Colegrove, Hansrn, Johnson, 1965; 

Shimazaki, 1967, 1968), who have used a diffusion equation in which 

the coefficient of molecular diffusion has been replaced by a larger 

coefficient of eddy diffusion, a common practice in atmospheric tur- 

bulence. Without chemical reactions, this procedure gives a turbulent 

distribution identical to the laminar distribution, a surprising and 

paradoxical result. To lift this paradox, a mixing theory is developed, 

which enables a detailed investigation of the structure of the eddy 

diffusion process, and explains the difference between the concentra- 

tion distributions in a laminar and a turbulent atmosphere. 

1.3 SUGGESTIONS FOR FURTHER WORK 

1. Gravity waves have been studied most intensively with a linear 

theory. However, many forms of non-linear gravity waves appear in the 

atmosphere, and these should be investigated. In particular, one 

should explore whether a shock wave (cf. Layzer, 1967) or a solitary 

wave may occur as a development of gravity waves. 

2. The attenuation of gravity waves is due to a number of mech- 

anisms, ranging from viscosity through vibrational relaxation, turbu- 

lence in a neutral or an ionized atmosphere. A brief outline of these 

problems is given here, and the overall problem should be studied. 

3. A theory of shear spectrum in a shear turbulence is important, 

especially to clarify the experimental findings of a structure func- 

tion depending on the vertical displacement to the power 4/3. 



4. A theory of turbulence generated by gravity waves should be 

worked out from a dynamical theory for both stable and unstable strat- 

ifications in the atmosphere. 

5. We have found that an anomalous decay of oxygen molecules in 

the atmosphere could be explained in terms of a non-isomeric eddy 

diffusivity. It is necessary to further study the structure of the 

eddy diffusivities and its relation to the spectrum of turbulence, 

and to the wind shear distribution in the atmosphere. 
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Chapter 2 

INTERACTION BETWEEN GRAVITY WAVES AND TURBULENCE 
IN THE ATMOSPHERE 

ABSTRACT 

We investigate the gravity waves in the upper atmosphere and 

their relation to the turbulent motion. More specifically, we ask the 

question whether the turbulence can be generated by gravity waves, and 

whether it is valid to use the Richardson number as a stability cri- 

terion of gravity waves and as a criterion for the onset of turbulence. 

We formulate a simple mathematical model for the propagation of gravity 

waves and the explanation of the amplification with height. The dis- 

sipation of the gravity waves is investigated. A similarity theory of 

molecular dissipation reproduces the Hines (1964) formula for the 

minimum scale of the surviving wave as proportional to the 1/4 power 

of the scale height. 

However, an extension of the similarity theory to the turbulent 

dissipation predicts a minimum scale to be of the order of the scale 

height. The latter result is shown to be in good agreement with ob- 

servations. 

A new theory is presented to analyze the spectrum of turbulence 

under the influence of gravity. The theory is compared with experi- 

mental data. 
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2.1 UPWARD GRCMTH OF GRAVITY WAVES IN THE UPPER ATMOSPHERE 

Satellites and rocket measurements have observed gravity waves in 

the upper atmosphere. They play an important role in the generation 

of turbulence, the heating of the ionospheric E-, F-regions and the 

transfer of energy from the auroral zones to lower latitudes at times 

of magnetic storms. Most commonly, they are found to propagate upward 

at times of quiescent magnetic conditions and  heat the ionosphere, 

thus competing with the solar radiation as the primary sources of 

energy deposition. 

The characteristically upward propagation of the gravity waves 

was investigated by Hines (1960, 1965), with confirmation by other 

authors (Harris and Priester, 1962). Their calculations are based on 

an inviscid atmosphere, i.e., without heat conduction and molecular 

viscosity. The inclusion of the molecular transport properties, which 

appear important because of their increase with height, are found to 

dissipate the waves (Pitteway and Hines, 1963), without altering the 

direction of growth. 

The characteristically upward growth of the gravity wave was ex- 

plained in those theories by the decrease in height of the density in 

the atmosphere. In the following we shall elucidate such a condition. 

We use the following equations: 

! 

•r^ + U_. Vp + pV-U = 0 (2-1) 

Preceding page blank 
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^p - g p Sg 

d£=c2d^ 
dt 

where e is a unit vector of components, e = (0,0,1); C is the speed 

of propagation; P, u, p, g are the density, velocity, pressure, and 

acceleration of gravity, respectively. 

Let us denote the background, or unperturbed quantities by 

p0(x,)» P0(x,), and the perturbations by p', p' and u. The equations 

for the perturbations are linearized, and become, following (2-1): 

öu 
po "at = - vp' - g p' ^ (2-2a) 

W"  "^ypo ■ PoV^ (2-2b) 

^^•^O^O^-^^o) (2-2c) 

The background density p and pressure p are given by their 

empirical expressions: 

V po ~ exp(-x3/H) (2-3) 

where 

10 



H = c^/vg (2-4a) 

I 

u 
I 

0 

I 

is the scale height; y is the ratio of specific heat for an adiabatic 

gas. 

The perturbations are assumed to vary as 

with 

p'Ct.x) = P(X3) e 
iCwt-ic.x) 

p'Ct.x) = R(x3) e 
i(<Dt-K'X) 

u(t,x) = U(x3) e 
i(a)t-K.x) 

K = k,, k2, 0 

a wave number vector in the horizontal plane, while k is a wave number 

vector with components k., k«, k-. When we denote 

r=p/i 

5"= R/pr 

and the derivative d/dX3 by ('), we reduce (2-2) to 

I 
I 
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i"U = (ff lg * 1 K^f - feg - g geg Q 

lo^ = n U3 - (U3 - i£.U) 

I 
i(i£'+ f£ (I-Y"1)^ = C* iaR (2-5) 

With 

Y = (Po/Po0^'1 (2-4b) 

for an adiabatic gas. The system (2-5) governs the variables U, 

R, P". Since the coefficients are constant, we can consider solutions 

of the form 

U, R, P ~ e 

and reduce (2-5) to 

"ik3x3 

iu^+ (ir Sg+ ^ - 3% 

iuR = ^ U3 + %U 

C2 

iuP + -^ (1-Y'1)U3 = C^iuR (2-6) 

The homogeneous system (2-6) yields the following dispersion 

relation 

u)4 - «)2k2C2 + i b1k3u)2g + b2g
2 (k2 + k2) = 0       (2-7a) 
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with 

b2 =  Y-l (2-7b) 

We notice that,  for a stratified atmosphere which is inhomogeneous 
in the vertical direction, 

k3 = k3/ + ikJ 

is complex, reducing the complex dispersion relation (2-7a) to the 

following two relations: 

H «»4 - tt^cffkf + k^ + ki   - ki 

- b1 k»3 w2g + b2 g2 

•) 

kj = b1 g/2C; (2-7c) 

and giving upon substitution of k^: 

4 1 ,2    2 2,n2 u) - ^ b1 u, g /C0 
2
P2 he2 + k2 + k3

/2j + b2g
2(k2 + k2) = 0   (2-7d) 

Relation (2-7c) predicts a wave growing in height. 

Hines (1960) studied the gravity wave in a background atmosphere 

with the prescribed distribution (2-3) for p and p , and their ratio 

satisfying (2-4b). With the coefficients (2-7b), the dispersion rela- 

tions (2-7c) and (2-7d) agree with those obtained by Hines (1960). 

13 



It is to be remarked that the dispersion relation (2-7a) is ob- 

tained from (2-6) under the condition of constant C and H, implying 

an Isothermal atmosphere as consistent with the distributions (2-3) 

for p and p . For an isothermal atmosphere, we have y ■ 1| reducing 
(2-7b) «-o 

b1 * 1, b2 * C (2-8) 

The finite positive b, in both atmospheric conditions (2-7b) and 

(2-8) predicts an upward growth of the gravity wave. 

In order to facilitate the study of the properties of the dis- 

persion relation (2-7d), we introduce the notations: 

•a a bl */2Co 

N2 ■ b2 g2/c' 

(2-9a) 

(2-9b) 

reducing (2-7d) to 

.« - **fc + K» ♦ K,^) . A*$ *  K|) - »l»2 -  0 
a 

(2-10a) 1 
or to 

(1 - N2/»2) (nj ♦ n2) ♦ n2 = (1 - »2/«2) 

with 

a-i* 
The equation can be further rewritten in the form 

14 
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2   2 

nl  n3 

Äl  A3 

= 1 (2-10b) 

with 

A2-' 
- ^Z»2 

h     I - N2/(ij2 

A* = l - a.2/»2 

It is to be remarked that (2-9b) gives the Brunt-VffisSla fre- 

quency N. With the definition of b, from (2-7b), it can be rewritten 

N = -g rdinpo ii (2-9c) 

reduced to the adiabatic expression 

N2 = (Y-i)g2/c2 

while (2-9a) reduces to 

I 
I 

i 
I 
1 

% = ™/2  Co 

The dispersion relation in the formulas (2-7a), (2-7c), (2-7d) 

and (2-10) includes the properties of acoustic waves, internal gravity 

waves, and surface waves. They are discussed separately in the fol- 

lowing lines. 

2       2 a.    Acoustic Wave, A,, A, > 0, corresponding to ou > ou   > N.    The 

dispersion diagram (2-10) becomes an ellipse and is related to the 

15 



acoustic wave -A the extreme case of a circle («) » iO, by de- 

generating (2-7d) to 

UJ • (kl + *2 + k32) 

2      2 
b. Internal Gravity Wave. A, > 0, A3 < 0, corresponding to 

U) < N < (« . The dispersion diagram from (2-l0a) becomes a hyperbola, 

and in the extreme case 

u) « N < w a 

we find 

with 

= a g H 

M2/ 2 a = Y N /u)a 

I 

I 

• 4(Y-1)/Y for a" adiabatic atmosphere 

= 2, for Y = 2, which does not happen in gases. 

The latter value of Y = 2 corresponds to the incompressible water 

wave, yielding 

u»/k = (2 gH)^ 

a well known result of gravity wave in oceans. 

16 
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2     2 
c. Surface Wave, A1 < 0, A, > 0, corresponding to N < ou < UJ . 

The dispersion diagram is a hyperbola, and the vertical wave number 

has only a pure imaginary value. 

2.2 DISSIPATION OF GRAVITY WAVES: MINIMUM VERTICAL SCALE OF 
INTERNAL GRAVITY WAVES 

From the linear analysis of internal gravity waves, including the 

energy dissipation by molecular viscosity, it is possible to find an 

estimate of the minimum vertical scale of the internal gravity wave in 

the atmosphere (Hines, 1960, 1964; Zimmerman, 1964). The analytical 

theory is lengthy, therefore we propose the following similarity con- 

siderations. If x is the wavelength of the minimum vertical scale, 

the energy dissipation is proportional to 

i 7 v7 
where Jg u is the mean kinetic energy of the wave and v is the kinematic 

viscosity. As the lifetime is given by N~ , as defined by (2-9c), we 

find 

7    -? 
const v -*• = N u 

yielding 

X = const (v/N)" 

= const g"^ v^ H^ (2-11) 

where H is the scale height defined by (2-4a). Formula (2-11) is in 

agreement with the expression found by Hines (1964). In Fig. 2-1, we 

compare the experimental data with (2-11). 

17 



VERTICAL 1/2 WAVELENGTH (KM) 

1/4 
FIGURE 2-1.  Minimum Vertical Scale of Internal Gravity Waves.   (The curve H       is 

drawn according to Mines (1964) following Eq. 2-11f and the curve H 
represents the result of the turbulent theory in Eq. 2-13.) 
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We notice that the agreement is not satisfactory in the region 

where the turbulent motions are the most intense, i.e., near 100 km. 

Therefore, a theory of dissipation by turbulent motions is necessary 

for the determination of the scale sizes of unquenched gravity waves. 

2.3 SPECTRUM OF TURBULENCE GENERATED BY GRAVITY WAVES AND THE 
DISSIPATION OF WAVES BY THE TURBULENCE 

We attempt below to formulate a similarity theory of the dissi- 

pation by turbulent diffusion. For this purpose, we suppose that the 

governing parameters are v and N; they determine the scales of the 

smallest eddy 

I = (v/N)^; t = N-1 

where N is the Brunt-Vcfisofla frequency defined by (2-9c). On the 

basis of these parameters we find the turbulent spectrum 

F = -L = (v/N)* N2L(k ^7N) 

where L is a dimensionless function. In the buoyancy subrange of the 

spectrum, as governed by the inertial force and the gravitational 

force, the spectrum should be independent of v, requiring LCK) = 

( v/N)"J k"3, yielding 

2 -3 
F = const N k (2-12) 

corresponding to an energy 

^ u2 = const N2 k'2 

and a turbulent diffusion with a mixing length t' 

u-t' = N k 

19 



Hence the rate of energy dissipation by turbulent diffusion across 

the spectrum, or the turbulent transfer, amounts to 

^7 H! = N3 k"2 

The wave energy as calculated from the potential energy is g-t' 

which is dissipated in time N' . This energy takes place in the low 

wave number end of the spectrum, when the wave is being broken up to 

generate higher harmonics, converted into a turbulent transfer. Hence 

we can write the energy balance of the dissipation of the wave energy 

by the turbulence as 

Ng-t/ = N3*,'2 

I 

giving 

/ _ g/N = const H (2-13) 

where H is the scale height defined by (2-4a). 

In a real atmosphere, turbulent motions, gravity waves and tidal 

waves may all be present. The turbulent motions may also be of scales 

larger or smaller than the gravity waves. The rocket data are often 

difficult to precise or discriminate the various modes of motion. It 

is not excluded that the gravity waves can be dissipated by smaller 

scale turbulent motions of such a type as generated by the gravity 

waves themselves. Under such a circumstance, the mixing length £' 

can be taken as a measure of the minimum scale of the gravity wave to 

be dissipated by the turbulent diffusion; it should be independent of 

v, but dependent on g and N, as found in (2-13). Figure 2-1 shows a 

certain agreement of the formula (2-13) with the experimental data. 

The numerical coefficients in (2-12) and (2-13) are left undetermined 

in the present similarity theory. The problem deserves further careful 

examination. 
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The k  power law of the turbulent spectrum as obtained in (2-12) 

by the similarity theory is in agreement with the cascade theory of 

Tchen (1969), and with the dynamical theory to be described in Sec- 

tion 2.7. 

2.4 FURTHER MECHANISMS OF ATTENUATION OF GRAVITY WAVES 

It should be noted that internal gravity waves, like other elastic 

waves, may also be attenuated by a number of mechanisms other than tur- 

bulence, in particular by: 

(a) Viscous dissipation 

(b) Heat conduction 

(c) Diffusion (in the case of a gas mixture) 

(d) Vibrational relaxation of 0« and N« 

(e) Chemical relaxation, or the shift of the 0« = 2 0 balance 

under the influence of the sound wave 

(f) Various plasma damping effects (v^iich can be significant 

only at F-region altitudes) 

(g) Non-linearities in the propagation of the waves which give 

rise to mode-coupling effects, 

A very simple analysis of mechanisms (a) and (b) has been given 

by Pitteway and Hines (1963) and in fact mechanism (c) is of the same 

general order of magnitude. Crude numerical estimates of mechanisms 

(a - e) have been made by Bauer using the standard formulas for ultra- 

sonic waves. The conclusion is that for frequencies cu^N and high al- 

titudes (h ^ 150 km) the vibrational relaxation of molecular nitrogen 

can indeed give rise to an attenuation of internal gravity waves. 

At altitudes above 200-250 km where plasma effects become im- 

portant, it is possible that the interaction of ionized motions with 

the geomagnetic field—which are coupled with the motion of the neutral 

atmosphere represented by the gravity waves—may lead to a significant 

damping of the waves, see Lin and Yeh (1969). However, none of these 

mechanisms (a - g), nor indeed the detailed mechanism for the produc- 

tion of internal gravity waves in the lower troposphere, have yet been 

investigated adequately. 
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2.5 GENERATION OF TURBULENCE BY THE GRAVITY WAVES 

When a gravity wave moves in an atmosphere of small viscosity, a 

vorticity field can be generated by a straining motion of the wave. 

The vorticity equation for an incompressible turbulent fluid is 

= nj ^T + v ™i ar 

1 
i 

i 

! 

where u^^ is the velocity in the x.-direction, n = 7 x u is the vorticity 

component, v is the kinematic viscosity. By multiplying by fi. we ob- 

tain the power of vorticity. If Q,' = £ * u ' is the vorticity of the 

turbulent velocity u7, then we have I 

dt " fi/ 0/ e. . + 2v 
.2T7? 

If we assume local homogeneity, the dissipation becomes simply 
-2v (öß//öx.)   .    The stretching of vorticity is represented by the 
first term on the right-hand side, where 

au.      Su. 
e,.   £—i+ -J. 
ij     ax. + axi 

is the rate of strain, consisting of three parts 

*« = (ei;j) 
ij shear 

+ (e,,) 
^'wave + ^^ 

where 

13 shear axj ST 
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comes from the wind shear 3U./3x. 

(e.j) 
wave 

wave 

arises from the wave motion, and 

•ij \<SK. 
+ ax. / 

is the rate of strain of the turbulent fluctuations. They produce a 

stretching of the form 

1 -'  ^ shear 
0^' (.y) 

wave 
, or n/fi/e/j, 

respectively. The first two expressions produce the turbulent vorticity resp 

fi. from the strain of the wind shear and of the wave motion; there- 

fore, they are responsible for the production of turbulence. The last 

expression represents a diffusion of vorticity by the turbulence. In 

order for the production terms to be effective, the turbulent field 

must be three-dimensional. 

Since the turbulent motion can be generated by the wind shear and 

the gravity waves in the atmosphere, it is necessary to study their 

spectrum and their effect upon the dissipation of the gravity wave. 

2.6 RICHARDSON NUMBER AS THE STABILITY CRITERION OF GRAVITY WAVES 

In Section 2.5 we have discussed how a turbulent motion can be 

generated by the stretching of the turbulent vorticity from the strain- 

ing motion of the background wind shear or of the gravity wave. In the 

following lines we shall compare the destabilizing effect of such a 

straining motion with the stabilizing effect of the density stratifi- 

cation. 
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For the purpose of studying the onset of turbulence in presence 

of a wind shear, wave shear and buoyancy, we introduce 

w = g P'/PQN 

a scalar buoyancy drift from the density fluctuation p' in an atmo- 

spheric of reference density p0, gravity g, and Brunt-VSisSla frequency 

N defined by (2-9c). We consider the following system describing 

tin« nonlinear coupling between the fluid motion and the buoyancy, see 

Tchen (1968, 1969): 

i 

! 

i 

du 
g^ = - VH N ^W - Nw<» , 

dw 
^=NU3 (2-14) 

eg   =    (0,0,l) 

i 
The terms proportional to N in (2-14) have a stabilizing effect in 

an atmosphere of decreasing density with altitude. The inertial term 

(u^ • V) u_ contains a destabilizing effect. It consists of three 

parts: a wind shear (u • 7) U, a wave inertia (u^ • v) u, and a tur- 

bulent fluctuation (u/ * V) u/. The wind shear is destabilizing, the 

wave inertia generates harmonics, and the turbulent fluctuations 

dissipate the wave. 

Let us introduce a shear frequency 

I 
and compare the stabilizing and destabilizing terms; we find the 

Richardson number 

Ri0 = (N/oüg)2 
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used to serve as the criterion of instability of the gravity wave. 

Thus the condition 

Ri0 < 1 

gives an unstable wave. A critical value of Ri0 a: 0.08 has been de- 

termined by Townsend (1957). 

If Eqs. (2-14) describe the turbulent motions, then the destabi- 

lizing agents become the wave shear as well as the wind shear which 

both serve as the straining background. In Fig, 2-2, Justus (1967) 

has plotted ou , N and Ri0. It shows that Ri0 < 1 in the thin layer 
s 

between 105-109 km, and therefore the turbulent motion could appear 

there only. However, the turbulent motions are observed beyond this 

region. The broadening of the destabilizing region can be explained 

by the wave shear, taking over the role of the disappearing wind shear. 

—7 
If we consider a turbulent field of energy u ' , to be dissipated 

by the buoyancy force for the amount u'^N, and excited not only by the 

wind shear tu , but also by the wave shear 
s 

] %* [<V^^] 
then the Richardson number for the turbulence motion under the com- 

bined shear by wind and wave becomes 

Ri=   N2 

■     2 '       2 
ws +  % 

Ri0 

1+  a 

/Ri0,   a « 1 

^(N/u^)2,   a » 1 
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where 

a = (%/vsy 

We see that the existence of turbulent motion frorr. the new con- 

dition 

Ri 

would broaden the layer considerably beyond 105 to 109 km. 

It has to be remarked that the criterion of instability, as 

characterized by the Richardson number, is necessarily crude, as it 

is simply an intuitive and dimensional representation of the simplest 

instability concept based upon two parameters N and cu . It is obvious 

that many other parameters, such as wave shear as illustrated above, 

may appear in a real atmosphere, and therefore may change the cri- 

terion of instability considerably. 

2.7 SPECTRUM OF TURBULENCE UNDER THE INFLUENCE OF GRAVITY 

The turbulent spectrum of the kinetic energy is controlled by the 

following parameters: the kinematic viscosity v, the rate of energy 

dissipation e, and the effect of gravity represented by a frequency of 

buoyancy N. called the Brunt-Vlfisä'la frequency. If the inertial sub- 

range is required to depend only on e and not on v and N, the dimen- 

sional reasoning enabled Kolmogoroff (1941) to find the spectrum for 

the kinetic energy 

F = const e
2/3 k"5/3 

Several investigators (Lumley 1964; Shur, 1962; Bolgiano, 1962, 1965, 

1966) have attempted the dimensional reasoning and derived a spectral 

law in the buoyancy subrange 

F = const N2 k"3 
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if the said subrange is defined as dependent only on the parameter N 

and not on e and v. But no derivation of both spectra has been made 

using the dynamical equations of the turbulent motion, nor is any 

investigation made on the spectrum of the density fluctuation which 

is responsible for dissipating the kinetic energy to the buoyancy. 

Therefore in the following lines, we propose a dynamical theory, which 

predicts the spectra for the kinetic energy and the potential energy 

arising from the density fluctuations, and also determines the numer- 

ical coefficients. 

-5/3     -3 
It seems that both the k ' and k  laws have been observed in 

the atmosphere, hence it will be worthwhile to discuss those experi- 

ments and look for a criterion distinguishing the separate conditions 

obeying the two laws. 

When the gravity wave is of small amplitude, its motion can be 

described by the equations of momentum and continuity (2-1), whose 

linearization (2-2) leads to a dispersion relation (2-7a) character- 

izing the propagation. However, when the gravity wave is of finite 

amplitude, the nonlinear generation of harmonics has to be considered. 

The transfer, or the sharing of energy may become a dominant mechanism, 

so that a randomization process may be involved in the mechanism to 

provide a continuous spectrum. Under such a circumstance we find a 

turbulent spectrum. The basic dynamical equations are nonlinear, and 

of the type (2-14) discussed in Section 2.6. Since the pressure term 

has the main role of redistributing the energy among the different 

directions, it may be dropped. We shall add the molecular dissipa- 

tions and rewrite (2-14) in the form 

du 

a? = -N w e,+ v V
2u (2-15) 

WE = N~ Sg + X v2w 

Sg = (0, 0, 1) 
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Here u is the velocity fluctuation of turbulence, w represents a 

buoyancy from the density variation and is written in the dimension 

of a drift velocity, see Section 2.6, and N is the Brunt-Vä'isäla fre- 

quency, see (2-9c) Section 2.1. Finally v and \  are the coefficients 

of molecular viscosity and molecular diffusion. 

Instead of studying the behavior of each individual Fourier 

component of velocity 

D 
u(k) = —^ j dx e'^'-uU) 

— 00 

I 

I 

I. 
[       and 

I i'Cl) -/ dk t^'-uCk) 

we group the components into two parts 

•k 

u0(x) = j dk e^'i-uCk) 

thus 

o    / u = u + u 

and similarly for w. 

An average 

<• ' •> 
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over a length k" will eliminate the fluctuation u', but leave intact 

the quasi-stationary velocity u0. This permits the separation of the 

two motions. Thus we obtain from (2-15) 

DU?        0 rs 
j_i = + v v^u° - N w0e 

gi 

^XvV + KuO.e^u.'l^ 

(2-16) 

D  a  o 
St s cE+li-v 

Du/ 9u0 

1 

Dw:=Nu/e . - u/#. (2-17) 
Dt      3     93 3   ox. v    ' 

The Eqs. (2-17) are written in their approximate form, neglecting the 

molecular properties. The Eqs. (2-16) and (2-17) are now called 

cascade equations, as they describe the cascade dynamics of two groups 

of eddies. 

From (2-17) we obtain the energy equations, upon multiplying by 

u_ and w respectively and upon averaging, denoted by a bar over an 

interval of length as large as desirable. Thus the energy equations 

are 

T 

2 5t (^ j = " v [Wj)  - ui ^T <ui uj >-l
0 

(2-18a) 

^fef0) =-(^) -^(w'u/ >+ $c 
3 
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reducing to 

©+^^-o=v(^) + $ 

(2-18b) 

(^)+^^P-0-(%) 

for a turbulence in equilibrium, which is locally homogeneous, and in 

the universal range, i.e., at large wave numbers of the spectrum. 

Here 

X0   M  o  o $ = N w u. 

is a coupling function, representing the exchange between the kinetic 

energy and the potential energy. Further $ = $ (k = "), so that 

$ - $0 = N (w' u'> a ■'[ d-r (w'Co) w'C T)> 

according to (2-17). 

The eddy stresses in (2-18a) are calculated by integrating (2-17), 

involving an eddy viscosity vk . We shall omit the detail of calcula- 

tions, but upon introducing the vorticity functions 

R0
 
= (öu0i

/3xj' ' R = R0 (K = ») 

i j0 = (äw^/äxTr, j = j0 (k =») 
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the eddy viscosity 

\ 
= ^1  dT (U\0)   •   U'(T)) (2-19a) 

and the eddy diffussion 

■f K  = f dx (w'Co) w'( T)) (2-19b) 

we can rewrite the energy balance (2-18b) in the form 

(v+v^)R +$ =e+$ 

or 

(X + v,,) J0 - «0 = Tl - $ 

(v + ^) R0 + N2 Xk = e 

(X + v^) J0 - N2 xk = 71 

(2-20a) 

(2-20b) 

where 

€ = vR, Tl = XJ 

are the rates of energy dissipations for the kinetic and potential 

energies, respectively. 

2   -1 
The eddy viscosity v. has the dimension of (u' > fi' , where Q' 

is a relaxation frequency for the formation of a transport property, 

and can be determined by writing the equation of total energy, as the 
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sum of kinetic and potential energies, in a band dk of the spectrum, 

decaying at a frequency n'. Omitting the details of calculations, and 

denoting the spectra of kinetic and potential energies by F and G, 

respectively, we find: 

H \ = j   I     dk F n'"1 (2-21a) 

'* n' = ^ k2 I /  dk' k'"2 F) , ^ = (4TT/3)^      (2-21b) 

and similarly 

/CO 

dk G fi'-1 Xk = ?   I     dk G fi (2-21c) 

The system of equations (2-20), with the transport functions (2-19), 

determine the spectra of kinetic and potential energies F and G. 

We shall solve the system of energy balance for the following 

two special cases. 

a. Buoyancy Subrange. The buoyancy frequency N is sufficiently 

effective to convert the kinetic energy into the potential energy. 

This requires that F and G are not dissipated by v and X. We write 

the system (2-20) in its differential form, with a differentiation 

with respect to k denoted by ('). We find, neglecting v and x> for 
the inviscid subrange: 

^ R0 + ^ R0 + N2 Xk = 0 

TO  *  TO  M2 .'   ,-> 
\J   + \J    " N ^k = 0 
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to be simplified to 

^ Ro + N2 ;k = 0 

'o  *     2 * 
\ J + \ J - N Xk = 

0 

upon neglecting R in the inertial subrange of F, replacing J0 by J 

in the dissipative subrange of G. The molecular coefficients have 

been neglected in view of the dominant buoyancy. 

The solutions are 

F = AN2k"3, G = BN2k"3 (2-22) 

with 

and 

6 = J/N2 

Since F supplies energy to G, we expect that J is a small fraction of 
2 

N , and therefore ß is a small coefficient. 

b. Inertial Subrange of the F Spectrum. The rate of dissipation 

e dominates over i  and i  , so that (2-20a) reduces to 

^k R
0 = e (2-23) 

With the expression (2-21a) for u , we can solve the integral equation 

(2-23) and find the solution 
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(V/SVVS t2/s k,s/i 

(2-24) 

l 

I 
}. 

i 

I 
I 

■'•cai coeffici 

aSse"*led from '"«• 2-3 and ^/^ ^ "sen ob 

ZT °'äint" *> *. ^ 
nt6grat- -Mltude at c 

i = 
dk p 

If the sPectral law (2. 22) 

I = ^M^ 
which 

N k'1 

can be re^itten as 
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x7E = 6 m/sec 

independent of \ in Fig. 2-4. 
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FIGURE 2-4. Spectrum of Residual Fluctuation Amplitude Versus Wavelength 
of Harmonics Removed (Rosenberg 1968) 

We can conclude that the experimental data of Fig. 2-4 are in a 

good agreement with the predicted spectral law k  of (2-22), although 

it has not been well understood whether turbulence could exist at such 

high altitudes as 160 km. Around such high altitudes, the spectrum 

may well be a superposition of several quasi-random gravity waves of 

finite amplitudes. 

We note that flight data in the atmosphere have shown both spectra 

k '  and k , due to inertia and buoyancy, respectively. We may ask 

whether there is a criterion based on physical conditions which dis- 

criminates between the generation mechanisms of the above two types of 
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F = const T?/S N4/5 k-11/5 

G = const Tl4/5 N-2/5 k-7/5 

A systematic derivation of those laws is not an easy matter.    There 
is a need for a systematic study of the turbulence in stratified media. 

38 

turbulence.    We may contemplate the following two characteristic con- 
ditions of atmosphere: 

a. Neutral Atmosphere.    The wind shear is significant enough to 
dominate over the buoyancy, and to create a high turbulent shear and 
energy, but it is still weak as not to give a shear production sub- 

range or a shear transfer subrange.    This condition will produce a 
spectrum k"        characteristic of the inertial subrange,  see (2-24). 

b. Stable Atmosphere.    Wind shear is absent, and the tempera- 
ture gradient is sufficiently strong to maintain a stable layer with 
a dominant buoyancy frequency N.    This condition calls for a buoyancy 
subrange k 

The above two conditions are exemplified in flight measurement at 

a height of 1000 ft. Two temperature soundings find a neutral at- 

mosphere without a temperature inversion and a stable atmosphere with 

a temperature inversion, see Fig. 2-5. Corresponding to the two at- 

mospheric conditions, the inertial spectrum k~ ' for the neutral 

atmosphere, and the buoyancy spectrum k  for the stable atmosphere 

are found in Fig. 2-6. The high level of turbulent energy in the 

neutral atmosphere of Fig. 2-6 is apparently due to the presence of 

a weak wind shear, as described earlier. 

.'! 

.1 
In the intermediate subrange, i.e., between the thermal inertial 

subrange and the momentum inertial subrange, there seems to exist a 
process dominated by the coupling i   or the parameter N, and by the 
parameter T) = XJ independent of  c.    The following spectra are proposed 
by Bolgiano (1959,  1962): 
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FIGURE 2-6.   Turbulence Spectra for Longitudinal Velocity Fluctuations in Neutral 
and Stable Atmospheres Computed for the 0655 PST and 0910 PST 
Traverses.   The Aircraft was Flown at an Altitude of 1000 feet Above 
a Desert Dry Lake at a Speed of 69 ms'1.   (Myrup, 1969) 
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Chapter 3 

TURHULENCE WITH WIND SHEAR 

ABSTRACT 

Atmospheric turbulence is often accompanied by a wind shear. For 

this purpose we attempt a statistical theory of shear turbulence. By 

means ol a cascade decomposition ol modes, we analyze the spectrum of 

turbulence in a wind sh^ar. New spectral laws k" and k ' are found. 

In the absence of wind shear, the theory degenerates to the k'J J law, 

which was derived by Kolmogorotf (1941) on a dimensional lasis. Com- 

parison wi^h experiments is made. 

41 



1 
I 
D 

i 

1 

i 

I 

3.1 CASCADE METHOD OF ANALYZING TURBULENCE 

For an Isotropie and homogeneous turbulence, the spectrum of 

turbulence in the inertial subrange has been found by Kolmogoroff 

(1941) as 

F = const e
2/3 k-5/3 

where F is the spectral distribution, c is the rate of energy dissipa- 

tion, and k is the wave number. The constant cannot be determined by 

the dimensional considerations only. 

In the presence of wind shear, the 5/3 power law should be 

changed. Tchen (1953, 1954) found the k'1 power with the aid of di- 

mensional considerations. 

In the present section, we propose to derive the spectrum in an 

atmosphere with and without wind shear by means of a cascade method 

(1969). 

Consider an incompressible turbulent fluid in a wind shear. The 

hydrodynamic equations are the equations of momentum and continuity as 

follows: 

■sr + [(U + u).7]u = - =- 7p -  (u.7)U + v\ru + (u.7)u     (3-la) 

7.u = 0 (3-lb) 
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where u_ and p are the velocity and pressure of the turbulent fluid of 

constant density p and kinematic viscosity v. The permanent wind has 

a steady velocity U(x), which is given in our problem. The bar de- 

notes an average. 

Instead of studying the evolution of each individual Fourier 

mode of u and p, we bunch the turbulent modes into two groups, in the 

hope that certain randomization and averaging processes would simplify 

the statistical behavior of the new variables which are: 

Ü0(2L) = ( <%' e1^- u(k') 

(3-2a) 

obviously 

u H u0 + u' = /  dk' e^-'V uCk')        (3-2b) 

As k is an independent variable in u(k), it remains an independent 

variable in u_ and u'. 

In order to derive the equations governing u and u', and to re- 

duce them into an equation explicit in the spectral distribution func- 

tion, it is necessary to introduce some simplifying assumptions. 

a. Assumption of Quasi-stationarity and Local Homogeneity. Both 

u and u/ whose superposition constitutes u are separated from U^ by a 

length scale L. Consequently, an average over the length k~ would 

eliminate the more rapidly varying fluctuation u' and retain its 

quasi-stationary background, or more slow] 

tact. Such an average will be denoted by 

quasi-stationary background, or more slowly varying function u^ in- 

I 
I 
I 
I 
I 
I 

u/Cx) =/ dk' e^-uCk') ü 

I 

i 
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Average over k" H (...) 

and be called a local average, and an average over the length L will 

be denoted by 

Average over L ■ (• • •) 

and be called a global average. 

The condition of local homogeneity on the scale k' implies that 

an eddy transport property arising from the fluctuations u' can be re- 

garded as homogeneous in the realm of variation of u . 

b. Assumption of Gradient Type of Shear Stress Structure. Like 

a molecular shear stress, we assume that an eddy stress also will de- 

pend on the velocity gradient of the immediate background motion of 

larger scale. 

; 

! 

i 

3.2 ENERGY EQUATION IN THE SPECTRAL REPRESENTATION 

By applying the averaging rules under the assumption a to separate 

the two motions (3-2b) in equations (3-1), we drive the equations of 
o   , i 

motion u and u . 

The equation for u^ is written in the form of an energy equation: 

—.  TTo^ 
1 5 no'_ 
7^ ui " •fe)-^ £• <"! u/> 0  0   1 

UT UT -p-i 
i j ^xj 

(3-3) 

with 

V.u" = 0 

Assuming that the pressure and the viscous effects are negligible, 

consistent with assumption b, we write the equation for u_' as 
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It+ (y.+ y.)-7 ü' = - (ü'-^ü0 (3-4) 

with 

V.u' = 0 

The eddy stress <u/ u/) as appearing in (3-3) is calculated by 
integrating (3-4),  and we find 

•5^-<u.' u.') = 
82u° 

-71' 
'sj axp ax. (3-5a) 

with 

Vj =|    dT <us(t"T) uj/(t:)> (3-5b) 

.o ..o  . The eddy stress u. u.  is calculated by integrating the equation of 
o motion for u  , as mentioned earlier, and we obtain an analogous ex- 

pression 

oo      i 
U.   U .   -r— i    3  3x7 

.   au. au. 
jP        i  i 

■sj "S^" axj (3-6a) 

with 

^ =/" dT 3 °(t-T)   U°(t) (3-6b) 
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Hence by introducing the notations 

o 
rsj 

au° au° 
öx„ 9x. 

s  3 

called vorticity tensors, we reduce the energy equation (3-3) to 

7*4 --^tsi + XiK + iiS (3-7) 

According to equation (3-7), the rate of change of kinetic energy, in 

the portion of spectrum between the wave numbers 0 ^ind k, is governed 

by two dissipation functions and a production function. The dissipa- 

tions consist of a molecular dissipation and an eddy dissipation. The 

dissipation and production functions are in the form of a product of 

the vorticity of the background motion by a viscosity, which may be a 

molecular viscosity or an eddy viscosity. 

In (3-7), we have arrived at an equation describing the evolution 

of the spectral function at one point, say x_. On account of the non- 

linear behavior, it depends on the transport functions Tl'. and lr. 

dependent on two points as a matter of their definitions (3-5b) and 

(3-6b). The determination of the dynamics of the latter would involve 

three point functions, etc., yielding the typical problem of solving a 

hierarchy. We shall close the hierarchy by determining the above two 

point functions by an old concept of relaxation frequencies. Such a 

closure is equivalent to replacing the two particle function of the 

BBGKY equation by a kinetic equation of Krook, a device used in the 

kinetic theory of gases. To this end, we regard the eddy viscosities 

T\t.  and TK ., defined by (3-5b) and (3-6b), as having the dimension of 
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(energy/frequency). A more precise calculation gives their expressions 

as dependent on the shear spectrum F..: 

T].'. = J dk' FijCk') CO'Ck', F)] -1 (3-8a) 

Tf?.. = TT/  dk' F.-Ck') n0 
-1 

(3-8b) 

where n' and n   are relaxation frequencies for the formation of the 
respective eddy viscosities T)/. and  if?..    They depend on the parameters 
k',  F for n'Ck', F) and on the parameter 

u)s  H  lau^öxgl 

for n (^g)' The wind shear is assumed to have only one component, by 

ir 

basis, we can write 

considering a wind velocity of the form LLCx«). On the dimensional 

V * <- /t 

= fi'k- 

(3-9) 

where I and t are the scales of length and time respectively. Upon 

solving (3-8a) and (3-9), when the assumption of isotropy F.. 2:»F6^.» 

where F H F.., is made, we find 

and 

n' = Q1 k' r dk ' k /"2 F 
rt   = c2 ^ 
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(3-10b) 
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where c, and c« are numerical coefficients determined as follows 

c1 = (4TT/3)^, c2 = ^ (^22/Fll^ (3-10c) 

i 

from a more precise calculation. Except for the numerical constants 

the results (3-8), (3-10a) and (3-10b) can be obtained on a simple di- 

mensional argument. The equation of energy in the spectral representa- 

tion (3-7), with the expressions (3-10a) and (3-10b) for the eddy 

viscosities, becomes an integral equation explicit in F. 

3.3 SPECTRAL LAWS IN EQUILIBRIUM TURBULENCE 

Equation (3-7) describes the evolution of the spectrum in a non- 

equilibrium shear turbulence. With the present development of theory 

of turbulence, it is not convenient to investigate the spectrum in 

such a general form. Therefore we introduce two simplifications: 

1. Along with Kolmogoroff and Heisenberg, we consider the 

universal range of the spectrum in a statistical equilibrium. This 

range occurs at sufficiently large values of k, larger than in the 

energy containing portion of the spectrum, so that the time rate 

d 
3t IdiF 

on the left hand side of (3-7) will not depend much on k,  and the upper 
limit of integration can be replaced by », reducing (3-7) to the fol- 
lowing equation for the rate of growth of turbulence. 

i 
■2( V 6pr +  1p j     dk'k'k; F +  T£ U,2   = 

2    s 
-  vr +  ^2 cu2 

or rewritten in the form of a rate of dissipation as 
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2(v 6pr 4-  ^r)  j    dk'kV  F + (\2-T%2) ^ =  e (3-lla) 

where 

■f e = vr,      r = 2 I     dk k2 F 

Tl22 =  Tf2(k = ») 

2.    Furthermore,  in the spectral range of large k,  the integrand 
under an integration between the limits (k,  »)  in Tl'    and  TjA of 
(3-lla) can be without much error considered as approximately isotropic, 

implying T^ . = (1/3) r\' 6. . and simplifying (3-10) and (3-lla) further 
to a much more compact form as follows: 

2vl  dk' k'2 F 

and two eddy dissipations, the one describes the mode transfer across 

the spectrum 
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2( v + Tl') ( dk' k'2 F + ^£ u) / dk'F = e (3-llb) 

t 
The equation (3-llb) represents the energy flow in the spectrum 

under a source equal to the total rate of dissipation e, a sink by 

the viscous dissipation 

i»k 
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i 27]' I dk' k"' F 

and the other is a coupling between the turbulent motion and the wind 

shear 

I 

I 
1 

I 

[ 

4 J' dk'  F 

The latter coupling which was a production in the form TLj w   in (3-lla) 

becomes a dissipative coupling in (3-llb).    The dissipation terms are 
proportional to the vorticity function, while the coupling term is a 

product of the turbulent energy with the wind shear.    Therefore these 
three functions are expected to reign in the spectral subranges of 
increasing wave-lengths. 

We shall not enter into the mathematical operations of the solu- 
tions of the integral equation (3-llb), but we summarize the results 
obtained in Table 3-1.    The spectrum in a shear turbulence consists of 
two portions: 

1. A portion where the shear frequency uu   plays a role, char- 
9 

acterized by k <k  ,  see Table 3-1,  subranges (a), (b). 

2. A portion where the shear has no role, characterized by 

k >k  , see Table 3-1,  subranges (c) and (d). 

The subranges (a) and (b) are for wave number k <k .    The sub- 
9 

range (a) is called the subrange of shear production, where the energy 
spectrum is controlled by the shear production alone, without the 
interference of the vorticity function r0.    The subrange (b) is called 
the subrange of shear transfer, where the energy spectrum is obtained 
by a balance between the production and the transfer functions.    There 
the vorticity function r0 plays a role,  in such a way that r    is not 
negligible, while r    is negligible- in view of relatively small k. 
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In the subranges (c) and (d), the shear has no role, with (c) 

characterissed by k < k and (d) by k > k . 

The spectral laws for the subranges (a) - (d) are listed in 

Table 3-1. 

TABLE 3-1.  SPECTRAL OF TURBULENCE WITH AND WITHOUT WIND SHEAR 

The parameters are: 

kv= (€/v3)
k, (i)v= (t/v)

% 

r0 = OuJ/ax^2 

Subranges k r0 F 

Shear a) Shetir 
Production k < k s ro = 0 ^-Lk"1 

^s 

b) Shear 
Transfer k <k s r0 <«,2 14 ^ 

No shear 
ks = o 
uu    = 0 s 

c) Inertial 
Transfer k <k 

V r0<< (32/9n)1/3.2/3k-5/3 

d) Viscous 
Dissipation k    < k 

V 
r»>.» 2 2     -7 J(c/v2)    k 7 

3.4 DISCUSSIONS ON THE SIGNIFICANCE OF EXPERIMENTS 

The investigations by experimental means in the atmosphere have 

often led to different interpretations (Zimmerman, S. P., 1966; 

Justus, C. G., 1966) and even cast doubt to the existence of natural 

turbulence vBedinger and Layzer, 1969). However, controlled measure- 

ments in laboratory by means of hot wire anemometers in turbulent 

flows in boundary layers and in pipes at the National Bureau of 

Standards, Washington, D.C., see Table 3-2, have yielded results worthy 
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I 

of interpretations. Near the wall where the wind shear is dominant, 

the spectral law k' has been observed. Far away from the walls, in 

regions where the effect of shear is negligible, the Kolmogoroff law 

k"   has been verified. See Fig. 3-1. The Heisenberg law k  has 
-1   -5/3 

also been measured, see Fig. 3-2. The above spectral laws k  , k ' 

and k" are predicted by thr present theory, see Table 3-1. The 

spectral law k" has been found earlier by Tchen (1953, 1954), on a 

dimensional basis and has been used by Zimmermai (1966) to derive 

the characteristic parameters of turbulence. 

I 

I 

i 
I 
I 

I 

TABLE 3-2.  DATA FOR THE ENERGY SPECTRUM IN A BOUNDARY LAYCR 
AND IN A PIPE (For discussions of the experiments, 

see Tchon, 1954) 

Experi- 
mental 
points 

Type of 
flow 6; cm u; 

cm/sec 

Distance 
from 

wall; 
6/x2 

Loral 
mean 

velocity 
gradient 

u' 
cm/sec 

c 

+ 

x 

• 

Boundary 
layer 

Pipe 

Boundary 
layer 

Pipe 

7.6 

12.3 

7.6 

12.3 

1524 

3048 

1524 

3048 

0.05 

0.008 

0.8 

0.69 

Large 

Large 

Small 

Small 

119 

256 

32 

113 

1 

3.87 

1 

2.51 

Measurements at 104 km Indicate an energy dissipation rate of 

e = 5 x 10 cgs and a molecular viscosity of v = 10 , yielding an in- 

ternal scale of turbulence 

k;1 = (v3/e)^ 

~ 3 x 10 cm 
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FIGURE 3-1.   Longitudinal Energy Spectrum in a Boundary Layer and in a Pipe 
(For Data See Table 3-2, for discussions on experiments, see 
Tchen 1954) 
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FIGURE3-2.   Energy Spectrum in a Turbulent Boundary Layer.   F.. (k.) is the Spectrum 

of Uj Associated with the Wave Number k..   The Free Stream Velocity is 

15 m/sec.   The Measurements are at a Distance of 300 cm Downstream 
from the Leading Edge of the Flat Plate.   The Thickness of the Boundary 
Layer is 7.6 cm.   The Open Circles are Measurement« ct a Distance of 
6 cm from the Wall and the Closed Circles are Measurements at a 
Distance of 0.4 cm from the Wall.   For Discussions of the Experiments, 
see Tchen 1953. 
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The maximum horizontal scale of turbulent inhomogeneities may be es- 

timated of the order of 3000 km, and the vertical scale of the order 

of the scale height H. This indicates that the spectrum of atmospheric 

turbulence is very broad, compared to spectra in laboratory turbulence, 

suggesting that one ought to find some portions of the spectrum obey- 

ing the Kolmogoroff law (1941a, 1941b) k"5/3. 

Atmospheric turbulence at an altitude of 1500 ft has been measured 

by using hot-wire anemometers mounted on an aircraft. The spectrum 

exhibits a k" ' law, see Figs. 3-3 and 3-4 (Payne and Lumley, 1966). 

The same Kolmogoroff law has been observed in atmospheric turbulence 

at flight altitudes, see Fig. 3-5 (Reiter and Burns, 1966) and at al- 

titudes of 50 km, see Figs. 3-6 and 3-/ (Zinunerman et al., 1969). 

The Kolmogoroff law 

F = A .2/5 k-5/5 

has been derived on a dimensional argument which does not allow the 

determination of the numerical coefficient A. The present theory 

determines the coefficient to be (Table 3-1): 

A = (32/9TT)1/3 ~ 1.04 

i 

The experimental determination of the coefficient A is not an easy 

matter, because it requires the sustentation of a long portion of the 

inertial subrange of the spectrum and the measurement of the Isotropie 

value of the rate of energy dissipation c, the two conditions being 

often mutually exclusive. For example the maintenance of a long in- 

ertial subrange necessitates the measurement in a turbulent boundary 

layer, pipe or jet, for the shear to supply the turbulent energy. 

But then the shear will distort the Isotropy in the turbulence. The 

determination of the spectrum by means of chemical clouds will com- 

plicate the issue even more, by adding a rate of dissipation tor the        I 

motion of the pollutants, as different from c. 
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FIGURE 3-3.   Streomwise and Cross-Stream Spectra 
(Payne and Lumley, 1966) 
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FIGURE 3-4.   Streamwise Spectrum 
(Payne and Lumley, 1966) 
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FIGURE 3-5.   Spectra of Longitudinal Component of Turbulence Measured by 
Project TOPCAT Over Australia (Reiterand Burns, 1966) 
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FIGURE 3-6.   Longitudinal Component of Power Spectrum at h = 50 km 
(Zimmerman et al., 1969) 
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FIGURE 3-7.   Transversal Component of Power Spectrum h = 50 km 
(Zimmerman et al., 1969) 
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Now we come to the spectral law k , which is the last one of the 

spectra in Table 3-1 still to be discussed. In a shear turbulence, 

with the shear frequency «u as the sole parameter characterizing the 

spectrum, the spectral law 

2 -3 
F = const ot k s 

(3-12) 

can be derived on a dimensional ground. The theoretical treatment, 

advanced in Sections 3 and 4, enables the determination of the constant 

coefficient to be 1/3. 

If we contemplate that the turbulent motion can be generated by 

gravity waves (Hodges, 1967), a buoyancy frequency N, also called 

Brunt-Vcfiseila frequency, will be the characteristic parameter, see 

2.1 (2-9b). By a similar dimensional argument, we derive a buoyancy 

spectrum 

F = const N2 k"3 (3-13) 

We note the difficulty for the same k~ law in (3-12) to represent 

two different phenomena: one due to a buoyancy force and the other 

due to a wind shear. A discrimination between the two would be pos- 

sible by a careful normalization of the experimental data to N or w , 

respectively. 
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Chapter 4 

STRUCTURE FUNCTIONS OF TURBULENCE 
AND DIFFUSION OF CHEMICAL CLOUDS 

ABSTRACT 

The observations of turbulence from chemical releases and meteor 

trails reveal that the structure function of turbulence, and there- 

force the velocity correlation function, obeys the Kolmogoroff law of 

turbulence for a horizontal displacement, but violates it for a 

vertical displacement. It is shown that this peculiar behavior can- 

not be explained from the gravity wave spectrum as believed by several 

authors in the past.  A derivation of the new structure function is 

found on the basis of the wind shear prevailing at 100- to 115-km 

altitude. 
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4.1 CHARACTERISTIC FEATURES OF TURBULENCE OBSERVED IN THE 
LOWER THERMOSPHERE 

The thermosphere is a region of positive temperature gradient. 

The region between 80 and 100 km has been studied by radio tracking 

of the ionized trails of meteors, and the region between 70 and 200 

km has been observed by artificial releases of chemical clouds from 

rockets. Such releases have recently been extended to high altitudes 

from satellites. Large-scale turbulent motions have been observed in 

the region between 80 to 120 km. The overall motions consist of a 

mean motion, or wind profile varying with height, and turbulent fluc- 

tuations. The wind profile is predominantly horizontal and has a 

maximum gradient in the vertical direction, called wind shear, near 

105 km (Kochanski, 1954, 1966). 

The observations of chemical releases at 80- to 120-km altitudes 

have been discussed by Blamont and De Jager (1961), Edwards et al., 

(1963), Kochanski (1964), and others. The observations of meteor 

trail drifts find the variations of air motion (Elford, 1959; Elford, 

Murray, 1960; Greenhow and Neufeld, 1954); and the velocity fluctua- 

tions have been measured (Greenhow and Neufeld, 1959). Attempts have 

been made to analyze the gross features of the wind by means of gravity 

wave theories (Hines. 1960, 1964), and the fluctuations by introducing 

a velocity structure function: 

D.jtr) = Fu^x) - ^(x + r)! (4-1) 
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is related to the correlation function 

üTTxFinTTTTT 

and consequently to the spectral function through a Fourier transfor- 

mation. The measured structure functions from both the chemical re- 

leases and the meteor trails exhibit the following striking features, 

namely: 

(a) The structure function varies as the 2/3 power of the 

horizontal displacement r. 

Dll(rl) ~ rl/3 
(4-2a) 

See Figs. 4-la and 4-2a for chemical releases and Fig. 4-3 

for meteor trails. 

(b) It varies as the 4/3 power of the vertical displacement r,, 

D11<V ~r3/3 (4-2b) 

1 

where the indices i and j are not summed. This method has been fol- 

lowed by Blamont and De Jager (1961), Justus (1967), Elford and Roper 

(1966), and Zimmerman (1969b). 

The velocity structure functions, the correlation functions, and 

the spectral functions are, of course, all related; e.g., the struc- 

ture function 

Di:j(r) = fu^x) 
1 + [u;.(x#+ r)]

2 - 2 u^x) u^x + r) 
I 

See Figs. 4-lb and 4-2b for chemical releases and Fig. 4-4 

for meteor trails. 
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FIGURE 4-la.   The Structure Function for Horizontal Displacement 
(Blamont and DeJager, 1961) 
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FIGURE 4-tb.  The Structure Function for Vertical Displacement (Blamont and 
De Jäger, 1961, at Barga, March 1959, sodium release) 
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FIGURE 4-2a.   Structure Function for Horizontal Displacement From 
Chemical Releases (Elford and Roper, 1966) 
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FIGURE 4-2b.   Structure Function for Vertical Displacement at EgUn, 
May 1963, Sodium Release (Elford and Roper, 1966) 
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FIGURE 4-3.   Structure Function for Horizontal Displacement, From Radio 
Meteor Trails at Adelaide (Greenhow and Neufeld, 1959; 
Elford and Roper, 1966) 
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FIGURE 4-4. Structure Function for Vertical Displacement, From Radio 
Meteor Trails at Adelaide (Greenhow and Neufeld, 1959; 
Elford and Roper, 1966) 



(c) The structure function levels off at a distance comparable 

to the duration of the correlation, i.e., a distance beyond 

which the correlation function almost vanishes (Fig. 4-5). 

The scale height is also drawn for comparison. 

(d) The structure function varies as the 2/3 power of the dis- 

tance r,, at small r^, but shifts to the 4/3 power at large 

r,. See Fig. 4-6. 
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i. 
I 10 
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100 

FIGURE 4-5.  Vtrticol Seal« of TurbuUnc«.  Data From »ho Structur« Function (•) 
and From tho Corrolotion Function (o).   Tho Smooth Una it tha Seal« 
Htight Basad Upon tha 1962 U.S. Standard Atmocphar« Variation. 
(Data ara drawn from Elford and fopor, 1966) 
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FIGURE 4-6.   Variation In Velocity and Distance (Zimmerman, 1969b) 
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According to the Kolmogoroff theory (1941) on the inertial range 

of the spectrum of an Isotropie and homogeneous turbulence, the struc- 

ture function is found to be 

D(r) s const (c r) 2/3 (4-3) 

where c is the rate of energy dissipation. Surprisingly enough, tha 

structure function (4-2a) for the horizontal displacement satisfies in- 

deed the Kolmogoroff law (4-3), but the structure function (4-2b) for 

the vertical displacement does not satisfy this law. Clford and Roper 

(1966) suggest that the particular law (4-2b) is due to a special 

property of the gravity wave spectrum. In order to estimate the scales 

at which the large scale gravity wave spectrum may affect the smaller 

scale inertia spectrum, we note that the parameter entering into the 

Kolmogoroff law is «, while the parameter entering into the gravity 

wave spectrum is the Brunt-Vi'isÄla frequency N; thus the transition 
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wave number k separating the gravity wave spectrum (3-13) from the 

Kolmogoroff spectrum (4-3) k > k , must depend on the two parameters 

e and N, yielding the dimensional relation 

ko = e"
1/2 N3/2 • (4-4a) 

or in terms of ^he scale height H, using the definition of N from 

(2-9b), Section 2.1, Chapter 2, 

,- ■ M 

4.2 SPECTRUM OF TURBULENCE AND STRUCTURE FUNCTION IN A WIND SHEAR 

If the peculiar structure function (4-2b) ein neither be explained 

from the gravity wave spectrum nor from the theory of Kolmogoroff for 

an isotropic turbulence which would suggest the formula (4-3), it 

leaves us the problem of clarifying the structural law (4-2b) on the 

more complicated basis of shear turbulence. While a detailed theory 

of shear turbulence is still lacking, we can make a similarity analysis. 

For this purpose, we neglect the gravity wave effect as we investigate 

the spectrum in the range of wave numbers larger than the critical wave 

number k , as defined by (4-4), From the equations of motion we can 

formulate the equation of evolution of the structure function ^,,(0 

in the presence of the wind shear. If the shear is not very strong, it 
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koH . (-i-^)
V4 e-1/2 g3/4 H1/4        (4-4b)        -I 

! 

2   3 
By using the data connected with Fig. 4-1, we have e = 0.fi4 m /sec , 

and hence the wavelength for the gravity wave spectrum to be effective 

is of the order of kilometers or higher. This is larger than the 

scale of inertial turbulence considered. The effect of gravity would 
2 

give a power r, for the dependence of the structure function which is 

too steep in Fig. 4-6. We conclude that the peculiar height dependence 

of the structure function (4-2b) cannot be attributed to the effect of 

the gravity wave spectrum in a simple manner, as was suggested by 

Elford and Roper (1966), I 

I 
11 
I I 
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plays the role of an exciting agent transferring sufficient energy to 
provide a broad inertial range for DniCiO.    The shear stress -u,u,, 

having a much larger scale than that contained in D1T(r;i)> does not 
control the latter structure.    However, the shear stress -u.u,, through 
the randomizing role of the pressure, does control the structure of 
Dll^r3^'    Therefore, we can approximate 

1. 
1 
0 
D 

D11(r3)  ~ -u^ 

and, using the mixing length l~: 

-U1U3 

where 

= Ü3T3 

I. 

i 

D 
i: 

denotes the contribution from the spectrum in the range of wave numbers 

from k to ». It can be assumed that such a spectral range of larger 

wave numbers is still controlled by the Kolmogoroff law (4-3) as the 

shear stress supplies energy and modifies the low wave number end of 

the spectrum only, yielding 

'3 ^3 = e1/3 ^/3 

The latter expression is also called the Richardson (1925) law.    Hence 
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■U1U3 = .1/3 *4/3 Hi 
OX: 

and consequently 

D^Cr,) = const c 1/3 ^1 4/3 
^r3 

(4-5) 

which is the 4/3 power law (4-2b) as measured by chemical releases 

and meteor trails. The formula (4-5) yields the spectrum of shear 
turbulence 

I 

D 

r  - ««,.*. 1/3 ^1 ,-7/3 F13 -const« ^7k (4-6) 

The shear turbulence (4-6) has been obtained by Tchen (1953, 1954), 

and is found in agreement with experimental evidence. 

As mentioned earlier, the problem of the experimental determina- 

tion of the structure function by chemical releases is related to the 

measurement of the eddy diffusion coefficient. We have plotted in 

Pig.  4-7 all the reported measurements with a theoretical curve based 

on the Chapman-Cowling molecular theory. The dotted curve is the 

theoretical kinematic viscosity. We note that the experimental eddy 

diffusion is larger than the molecular diffusion. 

4.3 ENERGY BALANCE OF TURBULENCE IN THE ATMOSPHERE 

In the preceding Sections 4.1 and 4.2, we have discussed the 

characteristic features of turbulence in the upper aimosphere, as re- 

lated to the structure functions, the spectral functions, and the 

correlations, including the effects of the wind shear and the buoyancy. 

These considerations on the structure of turbulence presuppose that the 

atmosphere presents a sufficient amount of wind shear for the produc- 

tion of turbulence to balance the dissipations by molecular motions 
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and by the buoyancy. At certain high altitudes of the atmosphere, the 

wind shear may not be strong enough to maintain a turbulent state, so 

that the turbulent motion may cease there; such a level is called 

turbopause. In order to investigate the location of this level, we 

shall investigate the energy balance of turbulence in the upper 

atmosphere. 
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FIGURE 4-7.   Measured Values of Diffusion Coefficient.   (The molecular 
diffusion and kinematic viscosity are also plotted, as from 
the Chapman-Cowling theory) 

The equation of momentum for the turbulent motion u_ in the pres- 

ence of a mean wind stream of velocity U_ can be written in the ap- 

proximate form 

Du 
po Dt po(lt ♦ a • *) E 

p0 (U • 7) U - (U 7)~I ' Po(~ ' 7) i " 7 P + P 'SL + Pov ^ ~ 
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using the Boussinesq approximation. Here p is the pressure, v is the 

kinematic viscosity, the density p = « + p' consists of a mean density 

p and a fluctuation p', and the term p'c^ represents the buoyancy by 
gravity <£. 

The energy balance follows: 

I 

D    Ui 
poT5t 2- = 

I 
dx. 

^ PU1   fij.   +»S^Ui  U.   +   Q^^TY- 

 m±     /auA" 

We shall denote the production of turbulent energy by the wind 
shear by 

au. 
cs = "Vj 

the molecular dissipation of energy by 

■ •(¥ 
and the buoyancy dissipation by 

•9 ■ £ »S 

-f-TS 

Here T is the adiabatic temperature and T' is the fluctuation in 

temperature. We apply the mixing length hypothesis represented by 
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where a/T/a«- is the gradient of the actual temperature. Further, 

introduce the Brunt-Vifisltla frequency, see 2.1 (2-9c), 

••fc*r 
enabling us to rewrite «   as 

.g = - N2 ü3 

Hence the above energy balance of turbulence can be written in the form 

I? 
ÜT r s «s ' •g _ «d - •D 

where 

«o ' -^ ^ [Pui6ij * 7 «b "i^ * 7 ^ v ^ ^J 

is a turbulent convection of the inhomogeneity in the turbulent energy. 
The production «   by the wind shear, the buoyancy transport e , and 

" g 
the molecular dissipation td are plotted in Figs. 4-8, 4-9, and 4-10. 

The data are from the tracking of chemical releases by Justus 
(1966).    The data giving c. are obtained by Justus from 

«d s v (auj/fr^)2 
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FIGURE 4-8.   Enargy ftoductien by »ha Wind SUor (Justus, 1966) 
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and from the growth of the globule diffusion using the formula 

d' * T «d t 

where d is the diameter of the globule at time t. The power law t 

has been obtained by Tchen (1961). The latter method gives a lower 

value of i*. It has to be remarked that the mechanism of "globule 
d 

diffusion," i.e., for globules formed at the edges of trails, is not 

well understood and that the experimental determination contains many 

uncertainties or even much arbitrariness. Therefore, the energy 

balance in the upper atmosphere remains to be an extremely important 

but difficult subject requiring further studies. 
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Justus (1966) compares the different terms « , c and «d in the 

energy balance in Fig. 4-11. Figure 4-11 indicates that c is not im- 

portant at high altitudes, and that the turbulent motion would cease 

above 110 km. It is to be remarked, however, that this conclusion is 

reached when the high values of «d from Fig. 4-10 are taken. With the 

lower values of c. from Fig. 4-10, the turbulent region could extend 

far above 110 km. 

I 

1 
I 
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FIGURE 4-11. bmrgy Bolonce in »he Upper Atmoiphere (Juttui, 1966) 

The above considerations try to put into evidence th« existence 

of a turbulent layer at 80- to 120-km altitudes induced b/ wind shears 

and gravity waves. The experimental verification has been made by 

chemical releases from rockets and by meteor trails. Unfortunately, 

these probes unquestionably disturb the atmosphere to such an extent 

that some degree of turbulence is generated at the site of the passage 

of the vehicles. These disturbances lead some authors (Bedingen and 
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Layzer, 1969) to suspect that the atmosphere may be rather quiescent 

after all before it is disturbed by the passing vehicles. 

It has to be remarked that the experimental results on the struc- 

ture function and the method determining the growth of the globule 

diffusion are very difficult and often lack precise formulations« 

therefore they have given rise to different interpretations (Zimmer- 

man, 196j, 1968; Justus, 1966, 1968; Blamont and Barat, 1968). Mt 

shall not enter into a further detailed discussion of the above dif- 

ficulties or controversies. 

I 
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Chapter 5 

ANOMALOUS TRANSPORT OF NEUTRAL ATONIC AND MOLECULAR 
CONSTITUENrS IN THE ATMOSPHERE 

ABSTRACT 

It has been observed by rocket probes that the concentration of 

oxygen molecules is drastically reduced at altitudes near 90 to 110 

km. This anomalous transport of oxygen is explained and studied from 

a theory of *non-isomeric" diffusion by turbulent movements* where the 

cross-correlation of density-temperature fluctuations is smaller than 

the auto-correlation of density fluctuations. 
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The height distribution of atomic and molecular oxygen in an 

atmosphere with stationary N- has been the subject of investigation 

by several authors (Colegrove, Hanson and Johnson, 196S; Shimazaki, 

1967, 1968). They analyzed numerically the equations of momentum and 

continuity, by incorporating a chemical reaction, and a turbulent 

transfer proposed by Lettau (1951). 

The equilibrium distribution of neutral constituents in the 

atmosphere is governed by an equation of diffusion, including the ef- 

fect of chemical reactions, of the type 

[" ("l ff S, * D2 I1) ♦ l] = 0 

where n is the number density, ^ is a flux representing the chemical 

reaction, D, and D. are two diffusion coefficients to be discussed 

later. 

Colegrove, Hanson, and Johnson (1965), and Shimazaki (1967, 1968), 

assumed D. ■ D- empirically, and found that the decay of n with height 
is accentuated by the chemical reaction X. From the foregoing equa- 

tion, it is seen that a turbulent diffusion which is of a larger mag- 

nitude than the molecular diffusion, would obscure the chemical effect. 

By a careful inspection of the turbulent mechanism of mixing, it ap- 

pears to us that two diffusion coefficients D^^ and D -. can be found, nn    nT 
based either on an auto-correlation of two density fluctuations, or on 

a cross-correlation between a density fluctuation and a temperature 

fluctuation, in such a way that the two diffusion coefficients become 

different: 

85 fitmän pm Mail 



] 

•l " Dmol * Dnn 

D2 " Dmol + DnT 

with 

H = KT/mg 

86 

h >D2 

Under such a circumstance of nnon-isomericn diffusion, the dif- 

ference D, - D- would play a role in the distribution of n. One would 

expect this effect to occur in a region where the turbulent motion is 

the strongest. In order to elucidate this effect, we shall illustrate 

the mixing mechanism and formulate the equation of turbulent diffusion 

in the following lines. 

We write the equations of continuity and momentum for the neutral 

constituent as follows; 

■|jr + 7 • (nu) = -V (t + A - X) (5-la) 

fjf + u • vju = - (u/ • 7)u/ - v u 

■ vth JIT Sg + r * JT + Tn— + -nT-j    (5-lb> 

vth = <KT/m^ 

is the thermal velocity for temperature T, K is Boltzmann's constant, 

and 

B 
I 

B 
D 
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D 
0 
D 
D 
0 
0 
0 
I- « = - ~' = nD  fit 4 Si 4 Si 

D 
D 

I. 

[ 
[ 
[ 

i: 

is the scale height for an isothermal atmosphere, with e^ = (0,0,1). 

Further 

« = - n 'u ' 

represents a turbulent transfer, and 0 is a molecular transfer. 

Finally X represents the chemical reaction. 

The turbulent stress -n 'u/ is calculated from the dynamical equa- 

tion for the fluctuations, using a method similar to the cascade 

method devised by Tchen (1969). Thus we obtain 

(5-2) 

where 

and 

* =  Dnn/DnT 

D Dnn ■ v?h    dT n 

0 

'(o) n'(T)/n2 

DnT = vlh   I    drn^o) T'(T)/nT 

are eddy diffusivities. The calculations of the expression (5-2) are 

made by retaining all the gradients and the gravity terms only. 

Upon substituting (5-2) into (5-la), we find the following equa- 

tion of diffusion as a result of turbulent fluctuations and molecular 

collisions: 
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f + 7 . (nu) f 1**01 * - ^T) I t, * ?) * (^ol ^ ^T) r] + ^j 
(5-3) 

Consider now the solution of the differential Eq. (5-3) for a 
stationary atmosphere, where the chemical reaction X_is considered 
provisionally to be a given function of z, and written as 

^ = n<Dmol + DnT>I 

U 

so that we find 

n jfmol + • DnT)(if % + f) + ifml * "nl) IT * n (Dmol + \^L ■ = 0 

or 

* JJW+ \$«, * P * 1 * (F) * f'') DnT (* «« + r) = 0 

where 

If 

D _ _Dnn - DrT 
ß " Dmol + ^ 

we can rewrite 

n (Dmol + DnT) |(iT 
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yielding 

d-tnT = 
"(- -) 

which is 

n(z) = N(z) f(z) 

d<nT 

where 

and 

N(z) = n exp [-/ZdJ(Y + HW'1) 

f(z) = exp - /  dz B H*'1 

with the boundary values 

(5-4a) 

(5-4b) 

(5-4c) 

n^ = n^z = zÄ) o o 

If the diffusion is wisomeric,M i.e., all fluctuations have 
identical correlations, 

DnT " Dnn' ^  B = 0 

the solution (5-4a) degenerates to (5-4b) with the reduction factor 
f(z) = 1. The solution (5-4b) is a smooth function decreasing with 
altitude.    However, in most cases of turbulent atmosphere, the 
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DnT - O-55 "nn 

a situation which is not impossible in the turbulent atmosphere. 

We conclude that the height distribution (S~4a) can be expressed 

as the product of an isomeric distribution (S-4b) by a non-lsomerlc 

reduction factor (S-Ac). If the diffusion is isomeric, the decrease 

in height of the concentration is due to the gravity as represented by 

the term containing the scale height, and by the chemical reaction in 

(S-4b). The effect of the latter is decreased by ^n increasing tur- 

bulent diffusion. In the absence of the chemical reaction, the height 

distribution (S-4b) becomes independent of the value of the two dif- 

fusion coefficients, whether they are laminar or turbulent. 

Beside the above discussed anomalous reduction due to the non- 

isomeric diffusion, there is a reduction due to the temperature 

gradient d-tnT/dt involved in N and f of (5-4b) and (5-4c) under H*. 

A reduction of n occurs when d<CnT/ds > 0, and an increase of n occurs 

when dlnT/dz < 0, as happens in a layer with a temperature inversion. 

Such an effect is also amplified by the non-isomeric coefficient 0, 

see CS-4c). 

] 

1 diffusion is not isomeric, and I> - < ^mi» •• that B >0' T^« reduction 

factor (5-4c) exhibits an anomalous decay which is strongest in the 

layer of 105 to US km of strong turbulence. Since the reduction 

factor does not contain the chemical effects, it can be calculated 

independently. A reduction factor of 10 in an interval of the scale 

height of an isothermal atmosphere, requires B ■ 1*7, or 

I 
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