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1. TINTRODUCTION

1.1. Object and Scope

The main objective of this study is to develcp a set of numerical
methods suitable for investigating the load-deflection and bifurcation
characteristics of structures for which significant nonlinear bszhavior is
possible. The methods are applicable to a wide variety of structures, but
=7111 be exzmined in detail only with reference to ou2 . f the simplest types
of structures possessing the necessary complications in behavior - the
planar arch under a concentrated load.

The term "planar’, as used in this study, refers to the configu-
ration of the arch during the initial stages of loading (often called the
prebuckling configuration). Both in-plane and out-of-plane buckling be-
havior of the planar configuration are examined. Although it would be
possible to include the effect of certain nonlinear stress~strain laus,
the nonlinear behavior exawined in this study is geometrical in nature
and results from large displacements (arising from large rotations but
small strains).

The numerical methods developed here are capable of determining
limit points on the load-deflection curvs (see Fig. 2, points A and B),
as well as finding bifurcation points and subsegquently tracing the buck-
led configuration. The numerical results given in Chapter 5 illustrate

these capabilities in problems of considerable technical interest.

1.2, General Remarks and Observations

From the errliest work on the buckling of cylindvical shells,

it has been noted that experimentally determined bucklin: loads of various
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In view ¢f this wide variety of possible behavior of structural
members a consideration of postbuckling behavior is an essential part of

the analysis of a giver structure which exhibits a buckling phenomencn.

1.3. Background

As mentioned above, the numerical methods developed in the pre-
sent study are applied to the simplest structures which exhibit the non-
linear behavior necessary to provide an adequate test of the methods. The
mathematical model of the structures studied here is given by Love (1927)
for the equilibrium forms of thim rods. According to Love, Clebsch (1362)
and Kirchloff (1859) arrived independently at the equilibrium equations.
The geometrical relationshaps are attributed to Routh (19C5), and Clebsch
(1862) is given credit for the moment~curvature relationships. These
equations presented by Love are applicable to the three~dimensional be-
hkavior of thin, linearly elastic rods with inextensional centerlines, al-
though 2n indicaticn is given by Love of the necessary modification for an
extensional centerline. Vlasov (1959) indicates, that as a first approxi-
mation, the effect of warping restraint on the behavior of curved beams
may be introduced by using the corresponding reiationship between torque
and rate of twist for a straight red. In Chapter 5, resuits are presented
for ¢
centerline is included and fcr the lateral buckling of ar I-beam where
warping restraint is censidered.

The oldest analysis of buckling, Euler's work on a perfect
elastic column, {see Timoshenko and Gere (1961)) included a postbuckling

analysis. ®However, the perxfect column is one case in which the behavior




results for various rise-to-span ratios. The mathematical mcdel assumed
an inextensional ceaterline. It is not clear whether or not extensicn
of the centerline would complicate tiis computatioral method, which in-

volved ellipcic integrals.

1.4%. Outline of the Method of Analysis

In this study a set of numerical techniques is deve.oped for
impioving an approximation to a bifurcation point or the load-deflection
curve. One method permits a direct computation of an approximate eigen-
vector which is then improved simultaneously with the prebuckling config-~
uration,

The technique reguires a soluticn of a set of nonlinear equations
which indicate how the prebuckling configuration (including the loading)
must be nodified in order to reach the bifurcation point. This part of
the solution is treated in Chapter 2 in a mathematical fashion and in
Chapter 4 for a specific physical problem. The nonlincar equations are
developed with reference to the generzl eigenwvalue problem A X = A B X
and are solved by a modification of the Newton- »>hson method.

As indicated, the solution process predicts how the prebuckling
configuratisn must be changed to reach a hifurcation point. %he process
of modifying the prebuckling confieuration is evamined in Chapter 2. The
standard Mewton~Raphson procedure may he used except when the prebuckling
configuration is near a bifurcation point. As noted by Thurston (1969),
the equations specifying the linear changes in the prebuckling configura-

tion become singular at hifurcation points., A method preposed in this

-
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study actually makes use of this fact to arrive at an improved prebuckling
configuration and a better estimate of the eigeavector in a rapidly con-

vergent computation.

1.5. Nomenclature

The sympsls used in this study are defined in the text when they
first appear. For cocnvenient reference, the more important symbols are
summarized here in alphabetical order. Some symbols are assigned more than

one meaning; however, in the context of their use there are no ambiguities.

a radius of undef rmed circular arch

A, B, C general linearlized operators, may be matrices
differential or integral operators

b constant vector
— ",
c,C, b, D coefficient matrices of linear algebraic equations
det (x) determinant of x
di deflection components at concentrated load, in

global coordinates i =1, 2, 3
e scalar error term

EIi flexural rigidities (includes St.-Venant tor-
sionzl rigidity), 4 =1, 2, 3

E;, SE; the 1" configuiation and its corresponding
- increment in the Newton--Raphsan procedure

Ecw warping rigidity
H rise of undeformed arch
Il for a planar member, moment inertia about an

axis perpendicular to the plane

I2 for a planar member, moment of inertia about
an axis in the plane

13 corresponds to J, the St.-Venant teorsion constant
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2. PROCEDURE FOR FINDING BIFURCATIONS

2.1. General

A study of pcstbuckling behavior requires at least two items of
infermation. These are the buckling load, along with the corresponding
configuration just prior to buckling, and the eigenvector, which gives an
initial estimate of the postbuckling path. 1In the following sections
theoretical considerations are presented which lead to the development of
a set of efficient numerical methods for treating bifurcations from a
nonlineaxv prebuckling state. Detailed descriptions of the numerical pro-

cedures are reserved for Chapters 3 and 4.

2.2, Bifurcation as an Eigervalua Problem

The eigenvalue problems to be treated here are assumed to be

described by

AX=X2BX (2.1)

and appropriate boundary conditions where necessary. Th2 quantities A and
B may be matrices, differential, or integral operators; A is the eigen-
value and X the eigenvector. The operators A and B refer to the prebuck-
ling configuration and are in general dependent on the eigenvalue A but
not on the eigenvector X. It is assumed that the dependence of A and B on
A is known, at least implicitly.

The discrete (algebraic) eigenvalue problem may be represented
by Eq. (2.1) when A and B are interpreted as matrices. Ona technique

that has been used to solve this type of problem is to increment the trial
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!
& non-dimensionalized buckling load (out-of-plamne),
a = PaZ/VEIZGJ
d non-dimensionalized buckling load (in-plane)
B = PaZ/EI1
) increment operator
Eijk alternating tensor
€ strain of certerline
A, X; Acr eigenvalues
j * used to denote eigenvector quantities

i Soer
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eigenvalue A (which in general implies changing A and B) and at each
value of A to compute the determinant of (A - AB). This procedure was
used by Leicester (1968) and in essence is an extension of the so-called
Holzer method, Holzer (1921). A change nf sign of this determinant
between successive values of the trial eigenvalue indicates an eigenvalue
falling in that range. Interpolation may be used to find the value of A
for which det (A - AB) is zero. At this stage, the eigenvector may be
generated in the conventional manner by setting one of the components of
X to unity (say Xl) and solving for the other components on this basis.
It may be appropriate to mention that det (A - AB) equal to zero does
not mnecessarily imply bifurcatiovn. It may mean that there is a limit
point on A, and some other quantity should be jncremented.

The linearized equation governing th: local behavior of the
branch of the equilibrium curve corresponding to the prebuckling config-
uration is of the form (A - AB) Y = b. It is then evident from Eq. (2.1}
that an impending singularity of (A - AB) will cause nvmericul difficulties
associated with changing the prebuckling configuration in the vicinity of
a bifurcation peint. That is, changes in A, B, and Y will not be accurate.
This has been noted previously by Thurston (1969), who presented a compu-
tational device for the solution in that case. This same phenomenon has
been encsuntered in this study and the means of compucation which has been
devised is introduced in the next section. It will be seen to be less in-
volved than that presented by Thurston.

The continuous eigenvalue problem may be solved in a manner
similar to the discrete problem, In this case, however, it is not det

(A - XB) which is examined but rather the determinant corresponding to




12

satisfaction of the boundary conditions. This technique has been used
by Cohen (1965), Kalnins {1964) and Zarghamee and Robinson (1967). As
with the discrete problem, there may be numerical difficulties in deter-

mining accurate changes in the prebuckling configuration near bifurca-

tion points. |

2.3. A New Solution Technique

An essential characteristic of the technique presented here is
the simultaneous improvement of the bifurcation point (load and configura-
tion) and the eigenvector by a n-ocess involving the interantion between
the two,
If the A, B, and A corresponding te a particular prebuckling
configuration and an approxit.ate eigenvector are substituted into Eq. j

(2.1), then

{ax-2Bx}3@ @ (2.2)

where the superscript j indicates the jth approximation and R is a
residual. The object then is to remove the residual from Eq. (2.2). In
the usual eigenvalue problem, } is not treated as an unknown of the same
type as X. However, the method proposed here considers A B X as a non~
linear term. This suggests that some modification of the well-known

Newton-Raphson procedure may be applicable here. Use of the standard

Newton-Raphson technique has been discussed by Kalnins and Lestingi
(1967), Lelcester (1968) and West and Robinson (196%). In order to

extend the Newton—-Raphson t:clmnique to bifurcation problems, it is !

. - hd
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necessary to linearize Eq. (2.1} about some known configuration (say the
jth). In essence, Eq. (2.1) is expanded about the jth configuration and
only the linear terms are kept,

The linearization of Eq. (2.1) yields
{asx - ABGX}(j) = {-~8AX + SABX + AéBX ~ R}(j) (2.3)

Since A and B are in general dependent on A, the linear parts of the

increments of A and B may be formally expressed as

i
v
]

_ A, _ 28,
0A = 5% S s 6B = akiOA (2.4)
| A= &) =2
Substitution of Egs. (2.4) into Eq. (2.3) results in
(asx - xsxy@) = (- Mx+mxea %% x) - 3P (2.5)

Examination of Eq. (2.3) reveals there are two types of incremental quan-
tities to be considered; those corresponding to changes in the eigenvector
68X and those corresponding to changes in the prebuckling configuration 61X,
&B, and 6A, TFrom Eq. (2.4), 8A and 6B are related to 61 so that in fact,
the unknowme are &X and 81, 235 in
Once the quantities w0 Ei-and an approximate eigenvector are
computed, the solution of Eq. (Z.5) may proceed as follows. Since 8) is
an dnknown, there is one more unknown than there are equations to solve,

a situation that does not arise in the usual Newton-Rapnson techknique.

The presence of an extra unknown is to be expected, since the amplitude
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of the eigenvector is indeverwminate. The arbitrariness in the eigenvector

is removed by specifving a scalar side condition
T
X B&=20 12.6)

This side cendition ( or its integral equivalent when apprspriate) allows
a solution for 6X and &A by eliminating the possibility cf large changes
in the eigenvector if the eigenvalue and approximate eigenvector are
nearly correct.

If the computed 6) is not satisfactorily small, the prebuckling
configuration is not one corresponding to an eigenvector and must be modi-
fied. The magnitude of 6A dictates how the procedure continues. In gs-
sence, this method predicts approximately how A and the prebuckling coa~
figuration should be changed to agproach a bifurcation point.

For the above solution process, it has been implicitly assumed
that the quantities %%,-%% could be computed. From Eq. (2.5 it appears
that these quantities could be obtained by computing ¢A and 6B for a unit
value of SA (8A = 1). This is a straightforward application of the
Newton-Raphson procedure. However, as mentioned in Chapter 1, the equa-
tions become singular at bifurcation points. This means that at or near
bifurcation points, a special computational device must be incorporated
into the Newton-Raphson technique in order to compute changes in the pre-
buckling configuration accurai2ly. This spacial romputational device is

discussed in the next section.
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2.4, Numerical Treatment of the Singular Equations

As mentioned above, the direct procedure for changing the pre-
buckling configuration is bound to fail at or near the bifurcation point.
The difficalty is caused by impending singularity of the operator (A - AB)
as the bifurcation point is approached, and is manifested by ill~-cconditioned
equations leading to unreliable values for the changes in the prebuckling
configuration. A technique has been devised which actually uses the fact
that the operator (A - AB) is singular to determine the changas in the pre-
buckling configuration accurately.

As Koiter (1945) pecints out, the eigenvector is orthogonal to
changes in the prebuckling configuration at the bifurcation point. A side

condition is thus available in the form

X"C Y=0 2.7)

or in the form of an equivalent integral expression when X and Y are con-
tinuous quantities. The X and Y refer to the eigenvector and incremental
change of the prebuckling coniiguration, respectively. The quantity C is
a suitable self~adjoint positive~definite operator. This device is employed
only for the deterimination of accurate changes in the prebuckling configura-
tion ne ¢ bifurcatlon point. The actual choice of C as indicated for
a particular example in Chapter 4.

The addition of Eq. (2.7) to the system of equaiions to be solved

for the incremental changes in the prebuckling cenfiguration means there

are now more equations than unknowms. Actually the equations are not all
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independent at the bifurcation point. It appencs to be easiest, from a
computational standpoint, to derive an independent set of eyuations by
pre-multiplying the equations by the transpose of the coefficient matrix.
This is equivzlent to the so-called least-squares technique. Indeed, away
from the bifurcation point, a least-squares interpretation of the com-
putation is appropriate because the equations are independent. Appending

the side condition to the original equations results in
Dy=b (2.8)

where D has one more row than column, The least squares solution of

Eq. (2.8) yieclds

DDy = Db (2.9)

For the algebraic eigenvalue problem, the matrix DrD may be shown to be |

nonsingular (see Appendix B).

2.5, The Initial Eigenvector

The method of generating the initial eigenvector is most easily
explained in the context of a particular problem and solutinn technique. |
However, in Section 2.2 of this chapter, a method of generating the eigen-
vector for the algebraic eigenvalue problem is outlined for the special
case of A, B and A curresnhonding to the onset of buckling. An approximate
eigenvector may be generated in the same way even though A, B and XA do
not correspond to buckling. It has beean found that some care must be taken !
in the process of finding the approximate eigenvecter. This matter will

be discussed in detail in Chajter 4, !
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2.6. (Observations and Comments

Although the technique is examined for the cases when A and B
depend on the eigervalue A, it should be evident that several types of
less complicated rigenvzlue problems are encompassed by this general
theory. For instance, buckling loads of Euler struts and the modes of
small-amplitud: free vibration of elastic systems are examples where A and
B do not depend on the eigenvalue. In fact, the technique was first tested
on these simpler problems.

By restricting A and B tc be self-adjoint and positive-definite,
it is possibtls to place some aspects of the proposed method on a firm
theoretical basis (see Appendices A and B). In addition, physiczl argu-
nents and experience in solving a number of problems provide consideratle
evidence for the wide applicability of the method.

A paper by Rall (1961) proposed an iterative procedure for finding
eigenvalues and eigenvectors of a discrete system. There is a formal
relaticn between Rall's method and the present one, but in Rall's method
tte ecigenvalue is not treated as an unknown the same basis as the components
of the eigenvector. Further, in Rall's method there is no freedom in the
choice of a “side condition" and, in fact, an unfortunate choicze of co-

ottinates can lead to failure of the procedure;
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3. THE PREBUCKLING CONFIGURATION

3.1. Introduction

In Chapter 2, a general techniqua is presented for the simul-
taneous improvement of an approximace bifurcation point and eigenvector.
There the technique is presented gzenerally and, therefore, somewhat ab-
stractly. In Chapters 3 and 4 the solution process for the buckling of a
rod-type member is presented in some detail as an example cof the use of
the general technique of Chapter 2. The nature of the technique requires
a method of determining an equilibrium configuration corresponding tc a
given load level which in general is given by the solution of a system of
nonlinear equations. The procedure for solution of the nonlinear cquations

at some dlstance from a bifurcation point is presented in this chagpter.

3.2, Problem Description

For a detailed analysis of the arch problem, the equations ex-
pressing the three-dimensional behavior of a rod-type member will be pr:-
sented and their method of solution described. Gince the boundary con-
ditions and loading are pertinent to the analysis, a specific choice must
be made, Here the member will be asgumed to be clam
and loaded with a concentrated load (see Fig. 3(b) and Fig. 4).

As mentioned in Chapter 1, the equilibrium, geometric and moment-
curvature relationships are thcse presented by Love (1927). Love also
indicates how these equations must be modified in order to include the ef-
fects of extension of the member centerline Tn this study, extension of

the centerline is neglected for the full threce-dimensional problems, al-

though results will be presented in Chapter 5 for some two-dimensional

I—w} [ o |

& ot
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problems where extension of the centerline is included. The effects of
restraint of warping of the member cross section are not included in the
discussion of this chapter, but results are presented in Chapter 5 for
lateral buckling of an initially straight I~beam under a dead load where
warping restraint is considered. Timoshenko and Gere (1961) and Vliasov
(1959) indicate the formulation of the proper equations relating the
twist of the member to the torsional moment when restraint of warping is

considered.

3.3. Basic Equations for the Behavior of .an Initially Curved Member

3.3.1. Preliminaries

Figure 1 shows the member and global coordinate system. Two of
the member axes are taken as the principal axes of the sectian and the
third is directed along the tangent to the centerline of the member. Tha

member and global coordinate systems are related oy the following matrix

transformation.

’,. (— - -
xlw 4 ] " ( X ‘
{ :

\! x2.) = 1’,2 m, n, 2 Xz ‘) 3.1
SR I IS

where the £i’ m

T and ni's are direction cosines.
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3.3.2. IEgquilibrium Equations

The equations of equilibrium, as presented by Love (1927) may be

written as

(3.2)
T 7 gk K5 M T Caqk M= O

The summation convention will be used throughout, unless the contrary is
specifically stated. Also, the subgeripts i, j, k will always take on the
values 1, 2, 3. The quantities Ni’ Mi’ Ki are internal forces, internal

moments ar curvat re vectors, respectively, in the local coordinate system.

The quam:ity'sijk is the alternating tensor and s is the arc length.

3.3.32. Geometric Equations

Although there are only three independent direction cosines, it
is conveaient to ignore this fact temporarily and to present the entire set

of geometric equations. The nine equations, relating direction cosines to

curvatures are

dli

T " S G 7 0

dmi
FrRiTE s Sl (3.3)

dni
3 " Sy My = O
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3.3.4. Displacement Equations

The equilibrium and geomerric equations do not involve displace-~
ments explicitiy. However, the equations expressing satisfaction of the
boundary conditions do, in general, involve displacements. The displace-
ment quantities required are derivable from the direction cosines by a

simple quadrature.

%) = 1,00 a
J 0
s
X,(s) =j my(E) dE (3.4)
0
8
X4(s) =J LN G
0

where £ is a dummy variable and the Xi(s) are the global coordinates of

the cent.rline of the member as functions of the arc length, s.

3.3.5. Moment-Curvature Relations

The effects of restraint of warping are not considered in the
behavior of the arches studied here. Thus the torsional behavior is
entirely of the St.~Venant type. The torque is given hy the product of the
change of the rate of twist, K3 - KSO’ and the St.-Venant torsional

rigidity, GJ. For tonsistency of notation, GJ is taken equal to EIS'
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Thus the moment-curvature relations become

M, = EL, (Ki - KiO)’ (no summation, i =1, 2, 3) (3.5)

wherelilirefers to the various rigidities and Ki iz the curvature vector

0
in the unloaded state.

3.3.6. -Conditions at a Concentrated Load

The global representation of the concentrated load is taken as

P=P 12 (3.6)

where I, is a unit vector in the global X

2 2 direction and P is the magnitude

of the force, which is assumed to be applied at the centerline of the
member.

Consideration of equilibrium of an element of arch containing
the concentrated ferce yields the following "jump conditions' relating the

internal force resultants on either side of the load.

(+) -) _
Ni + P my - Ni = 0 3.7)

The superscripts +, -, refer to points to the right and left of the load,

positive being in the direction of inc¢reasing arc length.

3.3.7. Boundary Conditions for a Clampnd Arch

For a clamped arch, the boundary co: ditions specify that both

the directicn cosines at the supports and the global coordinates of the

P
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supports remain unchanged. The boundary conditions for an initially planar

clamped arch are

€y = Ly
m, = m
! 10 (at s =0, s = sf) (3.8)
B3 = fA3g
X; = %40

shere the second subscript 0 indicates the original configuration and S¢ is

the arc coordinate of the far boundary.

3.3.8, Complementary Loading Parameter

It hac been noted »ieviously b’ Bueckner, Johnson and Moore (1965)
and Leicester (1768) that a numerical analysis of snap-through buckling of
shallow spherical shells can encounter difficulties associated with the in-
cremantal loading process. A similar difficulty occurs in arches. This
difficulty stems from the fact that so-called limit points (see Fig. 2) may
exist i the force-deflection curve. 1L1f, near point A 2n increment of force
is chesen such that the total force is greater than PA’ obviously there

is no solation. Thisg is a very

]

eal possibility since in general the maximum
value PA is not known in advance. WNear point A, the difficulty may be over-
come by incrementing the deflection instead of the force. A similar situa-
tion occurs near point B except that the force quantity should be incremented
instead of the deflection. In the vicinity of the limit points, convergence
of the Newton-Raphson or successive approximation procedures will be slow

or fail entirely if & poor choice of loading parameter is made. For this
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reason it is advantageous to be able to select either force or deflection
as the independent variable in the loading process.

In order to demonstrate how a loading parameter other than fhe
concentrated force itself is used in the solution process, a complementary
loading parameter corresponding to the deflection under the concentrated
force and in the direction of the force will be used here. The expres-

sion for this component of the deflecticn under the load is

S

Fp
0

where the upper 1limit of integration, sp, refers to the arc-length coor-

dinate of the point of application of the force.

3.4. Solutinn of Nonlinear Equations

3.4.1. General Discussion

There are severai techniques available for solving cwo-point
boundary value problems described by nonlinear ordinary differential equa-
ns. The character of ¢ 2 particular set of equations may limit the
effectiveness of some of these techniques.

One particular technique called the "shooting method" has been
used by Huddleston (1968) to solve the nonlinear equations which describe
the large deflzctions of an arch under a concentrated lnad. The boundary

value problem is converted to an initial value problem and the nonlinear
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equations integrated numerically. Since some of the initial values are
unknown, these are adjusted until the far boundary conditions are satisfied.
Generally a few iterations are required to satisfy the boundary conditions.
This technique will encounier numerical difficulties when the solution of
the nonlinear ordinary differential equation can exhibit a boundary layer
or 2dgz effect. In this case, the initial value solutions wiil grow rapidly
as they are propagated to the far boundary. Since computers carry a finite
number of digits in numerical computations, the quantities required for the
equations which express satisfaction of the far boundary conditions may have
literally no significance because of round-off during the numerical inte-
gration process. In fact, this phenomenon can occur even thoagh the initial
values are quite close to th~ correct ones.

Another technique has been developed by Berezir and Zhidkov (1960)
and by Jordan and Shelley (1966} for solving just the ‘ype of problem where
"growing” solutinus are present. This technique does not require iteration
but a transformation of the equations to a new set of rariables is necessary
hefore the solution may proceed. As with the "shooting method", the trans-
formed set of equations is int<grated numerically since they are in general
norlinear. Jordan and Shelley indicate that if the original problem does
not have a bouidary or eage vifzci, the transformed solution may. In this
case, the transfoxmei problem would encounte. numerical difficulties, It
turns out that even if there 1s a btoundary effect, it is possible that the
method will fail.*

The technique used in this study does not depend on the character

of the nonlinear equations. That is, the presence of a boundary or edge

*
This observation .s due to Professor M. S. Zarghames,
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effect does not present any serious obstacles. The Newton-Raphson tzchnique
is used to solve the nonlinear equations and thus only linearized equations
are integrated. When growing solutions are present in the integration of
the linearized equatioms, the suppression technique used by Zarghamee and
Robinson (1967) and Goldberg, Setlur and Alspaugh (1965) is implemented to

avoid the loss of significant figures due to round-off.

3.4.2. The Newton-Raphson Procedure

The nonlinear equations of this study are solved using the Newton-
Raphson procedure. In the use of this procedure, the loading is applied to
the structure in increments {not necessarily small) by the following com-
putational process. The reason for applying the loading parameter in steps
will become apparent as the discussion proceeds.

Assume that at some stage in the loading process a solution EI
of the nonlinear equaticns is known which corresponds to a loading level LI'
An increment of load ALI is now applied. rhe Newton-Raphscn procedure is
used to find a new equilibrium configuration corresponding tc the total

loading parameter given by LI + AL The equations specifying the linear

I
resnonse of the configuration EI nust then be derived by linearizing the
equations zbout this configuration. T™he linear Ircremental solution GEI
correspernding to an increment of loading ALI is added to the existing con-

figuratiou E_ to produce 2 new configuration E In general the con-

I I+1°

figuration E will not satisfy the nonlinear equations since a iinear

I+}

approximation was used to compute § Ei' Thus there are residuals in

these nonlinear equations.
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The next step is to remove the residuals, without a further increase
in che loading parameter. The equations are agsin linearized, this time

about the new <onfiguration E_,.. The linear response o EI+ at this con-

I+l 1

figuration is calculated. The "loading" in this computation consists of
the negatives of the residuals in the corresponding noniinear equations. A

new configuration E equal to EI+ + 6EI+ is thus derived. At this poiat,

1 1

is substituted into the nonlinear squations and the

I+2
the configuration EI+2
resulting residuals are again examined, I{ the residual: are wumall enough,
a new equilibrium cenfiguration has been found and anothe~ increment of the
loading parameter may be applied. If the residuals are rwt satisf-~tcry,
this process cf remoéing residuals, for a constant value «f loading para-
meter, is repeated until a new equilibrium configuration is obtained.

It is evident from the above discussion that it is necessary to
line2rize the nonlinear equ3tions of Sections 3.3.2. - 3.3.8. about a

general reference configuration in order to use the Newton-Raphsan procedure.

These linearized equations are presented in the next section.

3.4.3. Linearization of the Prebuckling Configuration

In order to avoid the cumbersome notation of Chapter 2 in expres-
sing the linearized equations of the arch problem, the superscript j used
in Chapter 2 to denote the jth configuration will .e dropped and instead
the current configuration will instead be denoted simply by the quantities,
Bio My Ky 1

specifying the prebuckling configuration are of first-order, the lineariza-

£,, m,, n,, etc. without a superscript. Since the equations
i i

tion process is pavticularly straightforward and leads to the following

eguations.
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Linearized Equilibrium Equations:

6 (dN, )
T - Sig KGN+ K SN = 0
8 (du,)
g = Eap Ky M T Ky M) - ey 0N

Linearized Geometzic Equitions:

6(d£i)
3 - eijk (6Kjf.k + Kj &&K) = 0
G(dmi)

IS - eijk (GKj m + K.j Gmk) = 0
G(dni) _

3 ~ eijk (M(.j n + Kj 6nk) = 0

Linearized Displacenent Equations:

S

/
X, = Jo 52, () dg

S
ze =f 6m3 (€) d3
0

[

(3.10)

'
[,

(3.11)

(3.12) |

vt vt © e A e o e = e 3
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S
6, = [ én, () d (3.12)
0

Linearized Moment-Curvature Relations:

GMi = (EI), 6Ki , (no summation) (3.13)

Linearized Condition at the Concentrated Load:
g () -) -
oNi - GNi + P§6 m, + &P m, = 0 (3.14)

Linearized Boundary Conditions:

6[2 =0
Gml =0
(at s=0n,5s = sf) (2.15)
6n3 =0
GXi =0

Linearized Ccmplementary Loading Parameter:

p
A d2 = ‘[. 5n3 (&) d¢ (3.16)

2

The GNi, GMi, axi, Gli, Gmi, Sni, Gdz, etec., are the linearized

quantities where the § is used to denote a linear increment. In general,
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Eqs. (3.10), (3.11), (3.12), (3.14), (3.15), (3.16) when they are applied,
will have on their right hand sides not zeros but the negatives of the

residuals computed from their cerresponding nonlinear equations as explained

in Section 3.4.2,

3.5. Typical Incremental Loading Cycle

The typical incremental loading cycle of this study .ay be sum-—

maried as follows using the notation which has been introduced:

(1) Assume that an equilibrium configuration corresponding

to the quantities M;, N, K, Zi, W, By, d,, etc. is

known;
(2) Appiv an increment & d, of the loading parameter by use
of the linearized equatinns (Eqs. (3.10) - (3.16)) to

obtain 6N, , GMi, GKi, Y4 , etc.;

A
i Gmi, Gni, d

i’ 2

(3) Add the iucremental quantities GNi, GMi,

dni, Adz, etc. determined in the previous step tc the

SKi, 8L, 6mi,
previous values of Ni’ Ki’ Li’ m., n, d2, ete. to

L

d,, ecc.;

obtain a new get of Ni’ M TRIT n, d,

i’ Ki’
{4) Compute the residuals in Egs. (3.2) ~ (3.9) using

the new N, M, Ki, mg, n;, d,, ete. of step 3);

(5) Check the residuals to see if they are acceptable. If
so, the process stops, a new equilibrium configuration
having been determined. If the residuals are not
acceptable, go on to step (6). Note there are, in
general, residuals in the jump condition Eq. (3.7) and

in the complementary loading pazameter expression

- USRS VENC PPV SRR Mg Ly BB £ 2 Ll M
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Eq. (3.9) as well as the differential aquations;

(6) Remove the residuals obtained in step (4) by computing
the linear effect on the new configuration (deter-
mined in step (3)) of the negatives of the residuals

determined in step (4). Go back to step (3).

Although the same equations are used in steps (2) aund (6),
(except for the right hand sides) the increase in the loading paxameter d2

is carried out only once. Note that the Ni’ Mi’ Ki’ Ei, L dz, etc.

i)
are always the latest quancities.

3.6, Details of the Solution of the Linearized Differential Equations

The discussion of a typical incremental loading cycle, Section 3.5,
was based on the assumption that a solution to the two-point boundary value
probiem given by the linearized differential equations, boundary conditionms,
jump condition and incremental loading parameter, could be found. In this
study, the modified two-point boundary value problem defined by the linearized
differential equations, the boundary conditions, jump condition and the in-
cremental loading equation is ccnverted to an initial value problem. The

initial value technique has been used by Kalning (1964}, Goldbe

[~ PYeS
}, & Ciyg,y LELLUT,

" and Alspaugh (1965), and Zarghamee and Robinson (1967) tc solve boundary

value problems described by ordinary differential equations. Since the
method uses one boundary as the origin of the linearized initial value
proolem, the so-called initial values are selected sv as to satisfy the

boundary conditions at the origin automatically. As the method is used here,
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a set of inde, ondent initial value solutions (see Table i) is propagated
from the origin to the far boundary where a linear combination of these
sol' .'ons is formed to satisfy the iincarized boundary conditions and the
conditicn on the incremental loading parameter Eq. (3.16).

The increments in the boundary displace =at~ at the far end and
in the loading parameter are expressed as integrals of the quantities oc-
c-rring in the linearized differential equations. This means that the
equations (incremental boundary conditiors and incremental loading para-
meter) for determining the proper linrear combipation of solutions require
that a quadrature of the quantities in the individual initial value solu-
tions be carried out. This has been done numerically using Simpson's rule.
The condition on the incremental loading parameter is treated the same as
an additional boundary condition when forming the linear combinations neces-
sary to solve for the correct initial values.

The individual initial value solutions are found by n'merical in-
tegration using a trapezoidal integration formula as part of a predictor-
corrector process. Tle numerical integration process has been presented by
Crandall (1956). The character cof these equaticns is such that rapidly
growing solutions are not present in the numerical integration process, For
this reason, the so-czlled suppression technique (see Section 3.4.1.) is
not necescary. In Chapter 5 of this study, an example problem of the
lateral buckling of an I-heam with warping rigidity is solved which requires
suprression during the integration process.

Table 1 shows the init.zl values for each solution., The residual
terms in the particular solution occur in what has been called step 4 of the

incremental loading procedure as given in Section 3.5.

-
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3.7. Direction Cosine Correction

Since the direction cosines are treated as independent quantities
during the numerical integration of the linearized differential equations,
it is possible that "drift" of the direction cosines will take place so that
they will no lenger form an orthonormal set. The computational process
guarantees that the squares and scalar products of the new local coordinate
basis vectors are constant across the arch. However there is no mechanism
in the straightforward procedure to control drift in these constants, which
should, of course, be either one or zero. A technique, outlined in Appendix

C, has been developed to ensure orthonormality.

3.8. Other Boundary Conditions

An arch which is simply supported in the plane presents no added

complications. The geometric boundary condition, n is replaced by

37 M50

the moment condition Ml = 0., See Figs. 3(a) and 3(b).
Other types of Loundary conditions may require considerable care

in their formulation. If it is desirable to allow more than one free

rotation at a support, it is useful to have in mind & physical model (say

a Hooke's joint) of the support in order to avoid the possibility of intro-

ducing a nonconservative force system at the support. This difficulty has

been explained in detail by Zieglex (1956).
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4, DETERMINATION OF POINTS OF BIFURCATION IN THE CASE OF
NONLINEAR PREBUCKLING BEHAVIOR

4.1, Introduction

As mentioned in Chapter 2, a study of postbuckliig brhavior re-
quires the location of the bifurcation poiat. This chapter deals with a
specif<c application of the general technique of Chapter 2 for improving
an approximation to a bifurcation point and the corresponding appreximate
eigenvector. For the specific arch problem, a prebuckling con! iguration
determined by the method of Chapter 3 is used as an approximation to the
bifurcation point in the process described in Chapter 2. The method for
generating the corresponding approximate eigenvector will be given in detail
later in this chapter. Since this technique requires not only a knowledge
of the local behavior of the prebuckling configuration (the Y of Sec. 2.2.)
but also the eigenvector "branching" from a prebuckl:ng curve (the X of
Sec. 2.2.), two different incremental quantities must be studied at the
same time. It is not difficulc to adapt the linearized equations of Chapter
3 for this purpose with a suitabi- change of notation. The new linearized
equations will be solved for the quantities corresponding to the eigenvector,
which is "along" the initizl segment of a new branch. These linearized

equations will be referrzd to as “branch equations'.

4.2, Branch Equations

The following ~quations are the linearizad equations of Chapter 3

with the & replaced by an asterisk. As the discussion proceeds, it will be
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obvious that a new notatjon is necessary for clarity. These equations

play the role of Eq. (2.1) of Chapter 2.

Branch Eyuiiibrium Equations:

%
dNi 'K*N + K N*) = 0
as " fage By N 5 N T
(4.1)
*
dM, * * *
T 7 Cagr KMt Ky M) - oegy Moo= 0
Branch Geometric Equations:
*
' y K, £) = 0
T T Gy Ky &t K ) =
4 %
n
i * L7 (4.2)
T " g Ky My F O Rym) =0
dn
* %
is eijk (Kj n + Kj nk) = 0
Branch Displacement Equations:
s
X: (s) 2 (&) d
1(s 5 (6 d&
0
(46.3)
s
rox
Xz(s) = . Mg &) di
J
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s

* *
Xy(s) = J'n3 (£) dg (4.3)

0

Branch Moment-Curvature Relations:

* *
M. = (EI), K, , (no summation) (4.4)
1 i"i
Branch Ccndition at the Concentrated Load:
* %* (= %
PRSI o P S (4.5)
i i i
Branch Boundary Concitions:
*
£2-—-0
* -0
wo o=
(at s =0, s = sf) (4.6)
%
n3 = 0
X*
i = 0

If the prebuckling configuration given by the quantities Ni’ Mi’
Ki’ Zi, mi, ni, a2tc. is the onz corresponding to bifurcation, the eigenvector
may be generated from Equations 4.1 - 4.6 in a straightforward manner. In
general this fortuitous circumstance will not previil and the prebuckling
configuration must be adjusted in order to reach thke bifurcation point. The
crux of the problem then it to adjust the prebuckling counfiguration so that

a better approximation to the bifurcation point is obtained. The gencral

technique develsped in Chapter 2 is used for this purpose.

e <
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As ,ume that an approximate prebuckling configuration found by
the methoa of Chapter 3 and an approximate eigenvector are substituted into
Eqs. (4.1) - (4.6). There is, in general, a residual Ir. these equations.
The modification of the Nawton-Raphsun technique introduced in Chapter 2
is used to remove the residuals. Here it is necessary tr linearize the sn-
called branch equarions with respect to the prebuckling (unstarred) quan-
tities (Ni’ Mi’ Ki’ Ei’ LIPRE etc.) and the current approximate eigen-

*

* % £ % %
vector (Ni, M Ki, li, m, 0, etc.).

52

-

4.3, Linearized Branch Equations

As noted in Chapter 2, two types of incremental quantities appear

in the linearized branch equations; those corresponding to changes of the

prebuckling configuration (GNi, SMi, 6Ki, 621, Gmi, Gni, etc.) and those
* % % * » %
corresponiing to changes in the eigenvector (GNi, 6Ji, °Ki’ 621, Gmi, Sni,

etc.). The linearized branch equatrions are understood to be valid about

a "hyper-configuratjon" consisting of the current prebuckling configuration
and the approximate eigenvector. Also, in general, Eqs. 4.7, 4.8, 4.9,
4.11, and 4.12 will have non-zere right hand sides equal to the residuals
computed from the corresponding nonlinear branch equation. The linearized

branch equations, as given below, play the role of Eq. (2.3).
Linearized Branch Equilibrium Equatioms:

*
§dN,
i

* *
N N = 4.7
P €45 r K § M) o 4.7

GK'N + K SN + 6K N
© K N 5 My &
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As ,ume that an approximate prebuckling configuration found by
the methoa of Chapter 3 and an approximate eigenvector are substituted into
Eqs. (4.1) - (4.6). There is, in general, a residual In these equations.
The modification of the Nzwtnn-Raphson technique introduced in Chapter 2
is used to remove the residuals. Here it is necessary tr iinearize the so-
called branch equatrions with respect to the prebuckling (unstarred) quan-
tities (Ni’ Mi’ Ki’ Zi’ mi, ni, etc.) and the curreant approximate eigen-

x Kk % & Kk %
vector (Ni, M., Ki, Zi, m, 0, etc.).

4.3. Linearized Branch Equations

As noted in Chapter 2, two types of incremental quantities appear
in the linearized branch equations; those corresponding to changes of the

prebuckling configuration (6Ni, GMi, GKi, (Y4 Gmi, Gni, etc.) and those

i’

* * * %
corresponiing to changes in the eigenvector (GNi, 6Ji, 8K Gﬂi, 6m;, Gni,

52
etc.). The linearized branch equarions are understood to be valid about

a "hyper-configuration" consisting of the current prebuckling configuration
and the approximate eigenvector. Also, in general, Eqs. 4.7, 4.8, 4.9,
4.11, and 4,12 will have non-zero right hand sides equal to the residuals

computed from the corresponding nonlinear branch equation. The linearized

branch equations, as given below, play the role of Eq. (2.3).
Linearized Branch Equilibrium Equations:

*
8dN,
—r _ ¢
ds ij

*

sKF N K* oN
K ¢ + Ky K

+ 8K, N
j ok j

*
M = 4-7
" + Kj § M) o 4.7
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*
6dM, * * 5 * %
3 eijk (s Kj Mk + Kj Mk + Kj Mk + Kj $ Mk)

*
= €ap 6 Nk = 0 4.7)

Linearized Branch Geometric Equations:

*
Saty : KL+ K6k + 8K £ +K €Y = o
ds_eijk(jzk jzk jzk ij‘
sdn
m
i * * & ¥ _
T - eijk (GKj m +1<j Sm, + 51(3, m + Kj Gmk) = 0 (4.8)
&d * * * * *
n N
i € K, 4+ K, 6n, + K. n, + K, én = 0
P sy (K oy + Ky by 5 B T Ky o)
Linearized Branch Displacement Equations:
8 *
5% (s) = f 8L (€) de
L 2
0
s
* *
8X,(s) = J’ m, (€) ag 6.9)
9
N
S
* *
5X,(s) = f on, (£) d&
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Linearized Branch Moment-Curvature Relations:

* *
Mi = (EI)i Ki R (no summaticn) (4.10)

Linearized Branch Condition at the Concentrated Load:

% *(—~ *
cni(J’) 6Ni() + rem, 4+ GPm = O (4.11)

Linearized Branch Boundary Conditions:

*
532 = 0
) * 0
m, =
(a~ s =0, s=s;) (4.12)
* f
5p = 0
P )
*
SXi = 0

Since the linearized branch equations contain incremental terms
asscciated with changes of the prebuckling configuration (the unstarred
quantities) a preliminary ccmputation is necessary before the actual solutiea
proceed. This computation involves the determination of the linearized
response of the prebuckling configuration for 6P = l; i.e., the counterpart
here of the computation in Section 2.4. The method for carrying out this
part of the solution of the linearized branch equations depends cn how
"close™ the current prebuckling configuration is to the bifurcation point.

Section 4.5 is devoted to tl.is topic.
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It is also necessary to compute an initial approximation to the
eigenvector before soiving the linearized branch equations, as it is the
interaction of the approximate eigenvector with the prebuckling configura-
tion that produces the residuals which "drive' the linearized branch
equations., The computation of the approximate eigenvector is discussed
in Section 4.9.

If the approximate prebuckling configuration is far enough from
the bifurcaticn point to permit use of che standard Newton-Raphson technique
for the purpose of obtaining changes in the prcbuckling configuration, then
the process of impr.ving the eigenvalue and eigenvector is straightforward.
The linearized branch equations would form 2 two-point boundary value problem
except for the fact that 6P is unknown also. The increments of the unstar-
red quantities and 8P are the only unknowns. The extra unknown 6P is to
be expected since the amplitude c¢f the eigenvector is indeterminate. 1In
order to solve the system of linearized branch equations, & sralar side

condition is appended to these equations. This side condition is taken as

s

f : M 6K ds = 0 (4.13)
. i 1 s = .
0

This expression ensures that there are not large changes ‘'parallel" to the
eigenvector whea the eigenvector is clese to its true '"direction'.
The solution of these linearlized branch equations (with Eq. (4.13))

is quite similar to the solution of the linearized equations of Chapter 3.

[P
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The scalar side condition introduced here, Eq. (4.13), plays the role of
the complementary loading parameter of Chapter 3. The modified boundary
value problem described by Eqs. (4.7) - (4.12) and (4.13), is converted to
an initial value problem. As in Chapter 3, a set of initial value problems
is propagated from the origin to the far boundary where a linear combination
of these solutions 1is formed to satisfy the boundary conditions and the
scalar side condition. The procedure is similar enough to that of Chapter 3
that, in fact, the same numerical integration routine can be used in both
parts of a computer program to solve the problem. The sets of initial
values given in Table 1 carry over to the solution process here with the
understanding that the incremental branch quantities are now the unknowns.
An essential feature in the solution of the linearized branch equations is
the presence of the incremental terms corresponding to changes of the pre-
buckling configuration. These terms appear only in the initial value solution
corresponding to 6P = 1 (see Table 1). This should be apparent since the
prebuckling configuration can change only when P changes.

Once the value of 6P is ccmputed, the correct linearized change
in the prebuckling configuration is easily found by scaling the changes
caused by 6P = 1, which are found in Section 4.5.

Thus, both the prebuckling configuraticn and the eigenvector are
modified simultaneously.

4.5, Modifying the Prebuckling Configuration in the Vicinity of a
Bifurcation Point

As indicated in Chapters 2 and 3, there are computational dif-

ficulties associated with computing the linearized response of the prebuckling
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configuration accurately in the vicinity of bifurcation points, This
section is devoted to a discussion of the solution to this problem.

The changes in the prebuckling configuration are required to be
orthogonal to the eigenvector (see Section 2.4). For an inextensional

centerline, this orthogonality relation is conveniently expressed as

°f
M, 6K, ds = 0 (4.14)
Fq 0%y 987 :
0
*
The Mi used in Eq. (4.14) are the latest values obtained duriig the process

of improving the bifurcation point and eigenvector. This extra condition is
then appended to the initial value problem described in Chapter 3. There
are now more equations than unknowns, but as mentioned in Chapter 2, all of
these equations are valid at the bifurcation point. A consistent set of
equations is derived using the least-squares technique. |

This technique permits the accurate computation of changes in the
prebuckling configuration near the bifurcation point. Note, however, that
this device is essential only in the vicinity of the bifurcation point. At

other points, the standard Newton-Raphson technique outlined in Chapter 3 is

satisfactory for modifying the prebuckling configuration,

4.6. Generating the Approximate Eigenvector

The process of improving an eigenvalue involves the solution of
a system of non-singular linear algebraic equations. The only difficulty

is in arriving at a suitably "close' initial P and eigenvector. Since the
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P used is only approximate, there will in general not exist a solution of
the branch equations satisfying all the boundary conditions. The computa-
tional device which has been adapted here is to reslease one of the boundary
conditions. 1In the first subsequent improvement of the P and eigenvector,
it is a straightforward matter te reimpose the comstraint which has been
released.

It is obvious that thexre will, in general, be more than one
choice of constraint which can be released for calculation of the initial
approximation of the eigenvector. It has beep found that by an unfortunate
choice of release of constraint, it is possible to "skip" the eigenvalue
being sought and "jump" to a distant one. The technique used to avoid this
problem is to relax what appears to be the "softest" of the constraints.
For iustance, in out-of-plane buckling of an arch, the restraint corresponding
to rotation about the tangent to the centerline at one end of the member is
relaxed.

In general, it might be necessary to run through all choices of
constraint release at one end to fiud the one leading to the smallest $P

on the first cycle of improvement., However, this extra computction is

actually not extensive.

4.7. Summarv of the Typical Computational Cyclie

The first part of the cycle is really a preparatory stage. The
change in the prebuckling configuration fecr 6P = 1 is computed and the
approximate elgzenvector is generated. Computational details are explained

In Sections 4.5 and 4.6. At this point, the current prebuckling configuration
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and the approximate eigenvector are substituted into the branch equations
and residuals are computed. These residuals are used to "drive" the
linearized branch equations.

Because of the way the approximate eigenvector is generated,
during the first iteration step the residuals do not appear in the dif-
fercutial equations but only in the boundary condition which was violated
when the approximate eigenvector was generatid. For subsequent iterations,
there are, in genaral, residuals in both the diffezrertial equations and

Lie boundary conditions.

Eventually, as successive prebuckling configurations are pre-
dicted and examined for the presence of an eigenvector, the value of &P
and the residuals in the branch equations computed during this sequence
+-111 become acceprably small. At this point, the bifurcation load has been
reached and the corresponding eigenvector generated.

The special process for obtaining changes in the prebuckling
configuration when the standard Newton-Raphson technique fzils because of

poorly conditioned equations was never neerded until the latest relative

change in P was less thaa U.1C.

4.8. Postbuckling Paths

Without referring to the question of stability of the paths, it is
a simple matter now to proceed onto the branch given inizially by the
eigenvector. This is done by adding a multiple of the eigenvector te¢ the
prebuckling confipuration and then dr.ermining a new nonlinear configura-

tion using the technique of Chapter 3.

P

.
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Koiter (1945) indicates that if there is a single branch from
the fundamental or prebuckling path, stability of the new path is decermined
by whether the load capacity increasev or decreases. If the loaa in-
creases, the new path is stable and if the load decreases, the new path is
unstable.

If there is a mulriple eigenvalue and multiple branches frem the
fundamental branch, the stability considerations are more complicated.
Koiter (1945) has a discussion of this more difficult problem. In Appen-

dix A of this study, a solution of the computational problem of determining

multiple branches is indicated.



5. NUMERICAL RESULTS OF THY APPLICATION OF THE THEORY
TO ARCHES AND BEAMS

5.1. General Remarks

In this chapter, several sample problems of the buckling of
arches are presented, In addition, a few results are presented for lateral
buckling of a beam. These problems are sclved using the technique intro-
duced in Chapters 2, 3, and 4. The chief object of these examples is to
Jemonstrate some of the possibilities of the technique. Compa~*sons with
previous work are made where such work is available.

The examples given in Sections 5.3.2. and 5.3.3. are planar arches
which may buckle only in the planc of the arch (see Fig. (5(b)). Two sets
of houndary conditions and two sets of rise~to-span ratios are considered.
In Section 5.3.4., threce-dimensional buckling of initially planar arches
is considered. That is, the arches may deform in the plane and buckle out~
of-plane. Two sets of boundary conditions and rise-to-span ratios are
considered. In addition, results are also presented for an arch which first
buckles in its plane, sways to the .ide, and subsaquently buckles out-of-
plane. In Section 5.3.5., lateral buckling of a beam with warping restraint

is considered and twc examples are presented.

5.2, Description of Problems

All the arches in probleme inuvolving three-dimensional behavior

are assumed tc have inextensional centerlines and to be fixed at the
boundaries insofar as out~uf-plane motijon {s concerued. In certain of the

three~dimensional problems selected, rotations are permit+ed at the suprorts
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about an axis perpendicular to the original plane of the arch (see Fig.
3(a)). The two-dimensional problems may involve either extensioual or in-
extensional centerlines and, in addition, the arches may be fixed or simply-
supported at the ends. The cross sectional properties are given in Table 8.
All of the arch members are loaded with a concentrated lo;d at the crown
(see Fig. 5(a)).

In addition, some results are presented for the lateral buckling
of an initially straight I~beam under a uniform dead load. Restraint of
warping of the cross-sections is included in the behavior of these par-
ticular members. One of the mewber is a rolled steel section 16 WF 64 and
the other is a section especially contrived to demonstrate a particular
point. The cross section of this special member is shown in Fig. 6(b).

Unless otherwise noted, all buckling loads are of the bifurcation
type as opposed to limit points. The foilowing notation is used in the

Figures and Tables.

a

non~-1imensionalized load for out-of-plane buckling
problems, . _ Pazlfﬁfgaf

8 = non-dimensionalized load for in-plane buckling
2
preolems, o _ p.2/E1,

=<
"

rise of arch
L = span of arch

I1 = for a planar member, moment of ir rtia about an
axls perpendicular to plane

12 = for a planar member, moment of inertia about the
axis in the plane

J = St.-Venart torsion constant
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O
!}

warping constant

strain of centerline of member

(4]
1]

5.3. Nuwmerical Results

5.3.1., Prediction of Buckling Loads

" Data are given in Table 2 which indicate the rate of convergence
of the process of predicting bifurcations. In general, the change of sign
of the determinant of the equations expressing the boundary conditions is
used to ootaim an initial estimate of the buckling load. Then the predic-
tion process is impiemented to "home in" on the actual value. As may be
seen from the successive values of P and 6P in Table 2, it is necessary to
apply the procedure taking advantage of orthogonality between the eigen-
vector and changes in the prebuckling configuration near the buckling load
in order to guarantee convergence (see Sec. 4.5.). From Table 2, the case
of out~-of-plane buckling is seen to converge quite rapidly even though the
initial estimate of the buckling load is in error by a factor of more than
three., This is to be expected, since the probiem is essentially a clas-
sical eigenvalue problem. That is, the prebuckling deformations are of
relatively slight importance,

The last case given in Table 2 indicates that it 3is possible to
avoid the use of the determinant involving the boundary conditions in
isolating the buckling lvad. In this particular case, an iacrement of
“deflection was introduced and then the prediction process implemented far
from the actual buckling load. Although the process is seen to converge,
it is probably less efi.cient to start the prediction process this far

from the buckling loac.
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There are some apparent minor discrepancies in Table 2. The
errors in the X3 coordinate of the load, as well as tne buckling load it-
self, are somewhat dependent (in the fourth or fifth siguificant figures)
on the number of integration intervals as well as the number of cycles of
the Newton~Raphson technique. Where a direct comparison is made in
Table 2 (cases 1 and 2) the integration intervals and number of cycles of

Newton~Raphson are the same.

5.3.2. Buckling Loads and Deflections of Simply Supported Arches

Results for the buckling loads and deflections of a few typical
simply supported arches are given in Table 3. It is seen that the results
agree well with seom of the previous analytical and experimental work.
Figures 7 and 8 show both the prebuckling and z part of the postbuckling
curve for the simply supported arches. The results plotted are for an
inextensional centerline since the effect of extension is negligible for
the simply supported arches studied here. From Figs. 7 and 8, it is seen
that for H/L equal to 0.50, the load carrying capacity increases after
bifurcation. This has been observed experimentally by Langhaar, Boresi
and Carver (1354) where, under a concentrated gravity load, the arch did
not collapse upon entering the side-sway buckling mode. For H/L = 0.25,
the load carrying capacity of the arch decreases rapidly after buckling
(see Figs. 7(b) and 8(b)). This agrees with the anzlytical result of
Huddleston (1968). Figures 7(b) and 8(b) indicate that the method can be
used to trace as much of the postbuckling configuration as desired.

The data given in Table 3 indicate that the stiffness of a

simply supported arch, H/L = 0,50, is slightly reduced when extension of
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the centerline is permitted in prebuckling and postbuckling behavior.
However, the buckling load for this arch is increased when extension 1is
taken into account. This is not a contradiction of Rayleigh's theorem
(1894) since bifurcations from two different prebuckling configurations

are being compared and there is no way to assess the effect of the internal
constraint (sc = 0). This phenomenon of a more fleaille structure having

a higher buckling load was reported by Masur, Chang and Donnell (1961).

In that study, a gable frame with a concentrated load at the peak was
analyzed both with and without an inextensible tie connecting the tops cf
the columns. Removal of the tie results, of course, in large prebuckling
deformations, but, paradoxically, increases buckling load. Another in-
stance of this same phenomenon occurs in another part of the present study
concerning the out-of-piane buckling of arches which are either simply
supported or clamped in the plare. The simply supported arches given signi~
ficantiy higher buckling loads than the clamped ones for the same H/L even
though they are more flexible than the latter (see Fig. 10).

For in-plane buckliing problems, each cycle of Newton-Raphson re-
quired about one second of computer time on an IBM 360-75 system. Usually
two additional cycles of Newton-Raphson sufficed to decrease the residuals
to less than 0.85 percent of their values computed at the end of the first
cycle. In the computations, only two load increments were needed to arrive
at the viecinxty of the bifurcation point for H/L = 0.25, and three load

increments for H/L = 0.50.
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5.3.3. Two Dimensional Arches with Clamped Ends

Considerable analytical and experimental work has been done on
shallow clamped arches. C(ne of the sample problems in this study was solved
for comparison with the experimental work of Gjelsvik and Bodner (1962) and
the analytical work of Schreyer and Masur (1966) on shallow arches under
concentrated loads. As may be seen from Table 3, the comparison with the
results given by Schreyer and Masur is quite good. The agreement with the
experimental work of Gjelsvik and Bodner is anot as close, but there are
uncertainties in the experiments involving support conditions, modulus of
elasticity, loading and dead weight of the arch. It is appropriate to
point out that Gjelsvik and Bodner recorded the buckling load as a maximum
on the experimental load-deflection curve whereas, the buckling loz’ com~
puted here is of the bifurcation type and occurs after the limit point (see
Fig. 2(a)) on the load-deflection curve. Schreyer and Masur noted that
arches with certain rise-to-span ratios exhibit ihis phenomenon of bifurca-
tion buckling after P falls off from the value at a limit point. As
expected, extension of the centerline is significant for shallow clamped
arches, as may be seen from Table 3.

Results are also presented for a rather steep clamped arch
(H/L = 0,25) which does not buckle but rather maintains a symmetrical

configuration during the loading process (see Fig. G(b)).

5.3.4, Buckling Loads and Displacements for Three-Dimensional Arches

Table 4 gives non~dimensionalized data for the buckling loads of

four s.mple problems of out-of-plane buckling of initially planar arches.
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No results were found in the literature with which to compare these results
directly. However, Timoshenko and Gere (1961) present some results for

the out-of-plane buckling of a uniformly compressed arch which seem con-
sistent with the results obtained here.

For a given H/L, the simply supported arches have a higher buckling
load than the clamped arches, although the clamped arches are initially
stiffer. As may be seen from Figs. 10 and 11, all the arch members examined
in this study had reserve load carrying capacity after the buckling load
was reached.

In Table 5, results are given for an arch with a section devised
so that it first buckles in the plane and, upon continued loading, later
buckles out-of-plane. %o conserve computer time, 40 points on the arch were
used in this problem instead of 100 in the numerical integration process.
This is the reason for the slight discrepancy between the results presented
for this problem and for the two~dimensional problems. Figure 6(a) is a
schematic of what the member cross section might be in order to have the

required relationships among the three rigidities.

5.3.5. Lateral Buckling of I-Beams

Results are given in Table 6 for the lateral buckling load of a
clamped I-beam under a uniform load. As may be seen from Tabie 6, the
result 1is in excellent agreement with the previous work by Austin, Yegian
and Tung (1957). The suppression technique is used here to derive these
results, It appears that the lateral buckiing analysis of most rolled beams

may proceed straightforwardly as an initial value problem without resorting

PR——
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to use of the suppression technique. Allowable stresses and deflections
preclude extremely long members which give rise to numerical difficulties.
When the rolled sections are used as arches, however, the loads can be
partially supported by normal forces. This makes possible a longer member
and increases the effect of unwanted growing solutions during the numerical
integration process.

Thus, there are cases in which some technique like suppression is
required in order to obtain accurate answers, even with double precision
arithmetic., The numerical difficulty arises when the net effect of warping
restraint on the torsional stiffness of the whole member is small. In this
case, the warping restraint is only an edge effect. A long, slender member
is then indicated if a computation is to be carried out to indicate what
the consequences of growing solutions might be. The section of Fig. 6(b)
was used as a long beam and the lateral buckling load sought. Results are
given in Tabie 6 for the buckling load of the nember and are given in
Table 7 for a comparison of the behavior of the soluticn versus the number
of suppressions used. As may be seen from Table 7, ten suppressions are
sufficfecat to ensure satisfaction of the boundary conditions while two sup-
prassions lead to diverging approximations.

Although resuits are not given here, as a matter of curiosity,
the beginning of the postbuckiing curve for lateral buckling of an I-beam
upZer a uniform load was computed. For the particular member, the load
carrying capacity dropped off after buckling. This behavior seems quite
reasonable since the late> 1 buckling is accompanied by rotation of the

cross section, bringing the siraller flexural - igidity into prominence.
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6. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

6.1. Summary of the Computational Procedures

o~

T » methods develcped in this study for the analysis of buckling
and postbuckling behavior can be summarized as follows. A new method is
presented in Chapters 2, 3, and 4 for improving an initial approximation to
a bifurcation point on a nonlinear load-deflection curve. In addition, an
approximation to the eigenvector is generated and improved simultaneously
with the prebuckling confipiration. The initial stages ~f postbuckling

are investigated by adding a multiple of the eigenvector to the prebuckling
configuration at the onset of buckling. Subsequent pestbuckling hehavior
may be examined by the application of the standard Newton-Raphson procedure
as described in Chapter 3.

Tt * numerical methods introduced here for solving tuckling and
postbuckling probiems involve two mod+$“ications of the vesaal Newco.ua-Raphson
technique. The first of these modifications sxtends the Newton-Raphson
technique to the simultaneous improvement of eigenvalues and eigenvectors
when there is no difficulty in computing changes in the prebuckling confiyg-
uration accurately. As indicated in Chapter 2, a difficulty oc.urs, in
general, in the vicinity of bifurcation points where the equations specifying
changes in the prebuckling configuration become iil-conditioned. A second
modification 0f the usual Newron-Raphson technique has been devised to per-
mit calculation of changes in the prebuckling configuration in the neighbor-
hocd of a bifurcation. In this variant of the procedure, the orchogonality
relation between the eigenvector and changes in the prebuckling configura-

tion plays an essentjal role.
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Tt * numerical methods introduced here for solving buckling and
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technique. The first of these modifications sxtends the Newton-Raphson
technique to the simultaneous improvement of eigenvalues and eigenvectors
when there is no difficulty in computing changes in the prebuckling config-
uration accurately. As indicated in Chapter 2, a difficulty occurs, in
general, in the vicinity of bifurcation points where the equations specifying
changes in the prebuckling configuration become iill-conditioned. A second
modification of the usual Newton-Raphson technique has been devised to per-
mit calculation of changes in the prebuckling configuration in the neighbor-
hocd of a bifurcation. In this variant of the procedure, the orchogonality
relation between the eigenvector and changes in the prebuckling configura-

tion plays an essentijal role.
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The suppression technique or some equivalent scheme may be neces-
sary when nunerical Integration procecures are used to solve eigenvalue
problems of plate and shell structures. It is well known tbat the differen-
tial equations expressing the behavior of plate and shell structures have
edge effects as part of their solution. A technique suck as the shooting
methcd would be cspecially difficult to apply to such problems.

Althcugh the numerical examples were chosen primarily te demon-
strate the capabilities of the numerica. technique, scme interesting behavior
of vacious arches has been found. It appears that in some cas2s a more
flexible structure (in so far as prebuckling deformations are concerned) may
have a higher buckling load. This wss observed in the in-plane buckiing of
an initially planar, simply-szupported arch under a concentrated load. When
extension of the centerline was permitted the buckling load was higher than
its counterpart when extension was restrained, Similarly, in the out-of-
plane buckling of an initially planar arch, for a given H/L, the siuply sup-
ported arches had a higher buckling load than the clamped ai~hes. The ef-
fectiveness of the numerical techniques is indicated in A particularly
striking wanner by the somewhat artificial problem of the special arch member
discussed in Chapter 5 which buckled in its alane first and subsequently
cut-ci-plane. No difficuliy was experienced in éoliowing this complex load-

deflection path.

6.3. Recommendations for Further Study

The proposed method mav be applied to many oractical problems of

technical interest. Buckling and vibrations of thin cuxved members where
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initial stresses are present cam be tra2ated with minor changes in the

computer codes develop2d in this gtudy. In addition, nonlinear stress-strain

laws cculd be admitted where the problem precludes significant unloading.

The gethod may zlso be extended to «igenvalue problems in plate
and shell type structures. The gereral procedure is unchanged. However,
the linearized problems must be treaied by a technique for approximate
solution of linear partial differeatlial equations, racher than ordinary
differential equations.

Certain eigenvalue prcblems in ryxoscopic motion may also be
solved, as is obvious from Kirchhoff's kimetic anszlogue and the general
theory developed here (gee Kirchhoff (1859) and Love (1927)).

The probler of deciding which boundary condition to reizy when
generating the spproximate eigenvector nesds ~.re study. A sure, but some-

what fnelegant, solution to this difficulty iec suggested in Section 4.6.
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TABLE 1. INITiAL VALUES AND RESIDUALS FOR CLAAPED ARCH

Homogeneous Sclutions Particular
Quanticy ~ Solution
1 2 3 &4 5 6 17 8
éﬂl 1 0 0 0 6 0 0O 0
6N2 0o 1 0 O 0 o0 O 1]
5H3 0o 2 1 0 ¢ 0O 0O Y
8y 0o 6 o 1* 9 o o 0
&, 9 06 0 ¢ 1 o0 o Y
S 2 ¢ 0 0 0 1 O Y
b
SP n 6 0 0 0 0 1 G
Right-Hand-Sides of
Linearized Equatiens 3 o0 6 0o 0 o0 O R

—

aCorresponding initial incremental curvatures are computed by use of Eq. (3.14)

bNot really aa initial value since it erters the computations at concentrated
load in middle of member (Eq. (3.14))
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TABLE 3. IN-PLANE BUCKLING LOADS OF ARCHES

Boundary Extension of E/L PaZIEI1 d2/L Source
Cenditicns Centerline

Simply yes .25 12.981 06815 present
Supported
Simply no .25 13.006 06727 present
Supported
Jimply no .25 13.65 ————— t
Supported
- imply no .25 13.0 ——— c
upported
Simpiy yes .50 5.8703 .09762 present
Supported
Simply no .50 5.8685 .0974% present
Supported
Simply yesa .50 6.54 ——— c
Supported
Simply yes .50 6.15 —— c
Supporred (experiment)
Simply yes® .50 5.6 — e
Supporzed
Simply no .50 5.86 ——— b
Supported
Clamped yes L0464 71.866 .02565 present
Clamped no 064 77.777 .02296 present
Clamped yes 044 72.2 —— f
Clamped yes 044  63.7 —— g

: (experiment)

3pxtension of the centerline was permitted in deriving the prebuckling
, configuration, but not in the eigenvector.

PScnmidt (1969)
. “Huddleston (1967)

dLanghaar, Boresi, and Carver (1954)
i ®Chen and Boresi (1961)
b fSchreyer and Masur (1956)

8Gielsvik and Bedner (1962)

; e —
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TABLE 4. OUT-07-PLANE BUCKLING LOADS AND DISPLACEMENTS
FOR SIMPLY SUPPOKRTED ANL CLAMPED ARCHES

H/L Clamped 51mply-Supported
2 2,.,
Pa /EI2 GJ d2/a Pa /x:I2 GY d2/a
0.25 3.453 0.0007857 3.952 0.001382
0.50 0.6684 0.0003262 0.7701 0.0006080
TABLX 5. BUCKLING LOADS AND DEFLECTIONS FOR A SIMPLY-
SUPPORTED ARGH WHICH FIRST BUCKLES IN-PLANE
AND UPON INCREASED LOADING BUCKLES OUT-OF-
PLANE, H/L = 0.25, €, = 0
In-plane Buckling Subsequent OQut-~of-Plane Buckling
2 2
Pa /EIl d2/L Pa /EIl dZ/L d3/L
13.042 C.06648 12,70 0.07851 0.3562

-

3This differs from the results for the in-plane buckling of othex
two dimensional arches because fewer points were used here in the
numerical integration process.
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MEMBER SECTION PROPERTIES

Out-of-plane buckling 1

(12WF51) 1

In-plane buckling of I
simply supported arches

In-plane buckling of I
1
clamped arches

4

2

= ,5463 x 10"3 in4, Area

y/
18.0 in4, Area = 6.0 in

238.4 in*, I, = 19.8 in®

2

2,
, J = .5065 in’

.1875 in2
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FIG. 1.

GLCBAIL AND LOCAL CGORDINATE SYSTHINS
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P, Force

——
A, Deflection
FI1G. 2. QUALITATIVE FORCE-DEFLECTION CURVE
/ X
/
(a) Simple Support (b) Clamped Support

FIG. 3. TYPES OF SUPPOXKTS FOR ARCH MEMBERS
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FIG. 4. TYPICAL ARCH MEMBER
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(a) Schematic of Symmetrical
Prebuckling Configuration

{b) Schematic of Anti-Symmetrical
In-plane Buckling Mode

FIG. 5. TYPICAL IN-PLANE BEHAVIOR OF
SIMPLY SUPPORTED ARCH
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3
L=- av t/2
J = 211
12 = 1.44411

(a) Schematic of Cross-Section for
Member Which Buckles In-Plane
and Then Cut-of-Piane

2.92"
0.5" }‘ | J_I_
1
0.878" —ul fa—o 1"
C } i

(b) Schematic cf Cross-Section for Speciul
Member in Lateral Buckling Studv

FIG. 6. SPECIAL CROSS SECTIONS OF MEMBERS USED IN THE ANALYSIS
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10.0 I I ] ]

8.0 -

-

6.0 = -

bifurcation

2.0} 3

s o= Paz/EIl

14.0 1 l T
12.0 ¢ -
10.0 | -
bifurcation

8.0 ¢ -

6.0 - ) -

3 = PaZ/EI

2-0 -

d,/L
(b) H/L = ,25

FIC. 7. LOAD VERSUS VERTICAL DEFLECTION AT CROWN, IN-PLANE
BUCKLING OF STIMPLY SUPPORTED ARCHES, £, = 0
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6.0

4,0 |~

8 = Pa?/EL.

2.0 P

.25

14.0 ] I T ]

12.0

10.0

2
B = Pa /EI1

4.0 L

2.0 3=

0 ] | 1 |

0 .02 .04 .06 .08
(b) H/L = .25 dg/t

FIG. 8. LOAD VF 'US HORIZONTAL DEFLECTION AT CROWN, IN~PLATE
BUCKLING OF SIMPLY SUPPORTED ARCHES, €, = 0

010
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100.0 T T T T
80.0 §—~ o~
Hr-l
N3] 60-0 d ——
~
Nm bifurcation
[+ 9
" 40.0 -]
[s23
2G.0 ]
0 | | | |
0 0.01 0.02 0.63 0.04 0.05
d2/L
(a) B/L = .0446
25.0 .
20.0 —
—~
H 15.0 —
Ld
™~
&
. " 10.0 —
“ nie bifurcation
5.0 ]
o : 1 1 ]
¢ 0.10 0.20 0.30 0.40 0.350

(b) B/L = .25

FIG. 9. LOAD VERSUS VERTICAL DEFLECTIOH AT CROWN,
IN-PLANE BUCKLING OF CLAMPED ARCHES
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] 1
bifurcation
] 4.0 - —
% \\_ Simply
E> Supported
z 3.0 —
o \\\' Clanmped
&
2.0 —
1.0 —
0 | i l 1
0 0.0005 0.0010 0.0015 0.0020 0.0025
d2/H
(a) H/L = .25
bifurcation
0.8— —
|2 - Simply
., Supbported
~
Y 6.6~ Clamped T
=
o~
&
" 0.4 — -]
3
0.2 ]
o E l ! l |
0 0.00905 0.001 0.0015 0.002 0.0025
dZ/H

(b) H/L=.5

FIG. 10. LOAD VERSUS VERTICAL DEFLECTION AT CROWN, OUT-QF-PLANE
BUCKLING OF CLAMPED AND SINMPLY SUI'PORTED ARCHES, e T )
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L 4.0 [ AN g
<& —— — Simply
— \ Supported
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el 3.0 Clamned
o
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o 9
n 2.0 -
3
1.0 ~ -
o | | | |
0 0.01 0.02 0.03 0.04 0.95
d1/H
(a) H/L = .25
1.0 T T ] T
0.8 |~ A—"—<;-Simplv -
3 Supported
>
= 0.6 | .
R Clamped
o~
&
. 0.4 |- -
el
0.2 | -
0 | | £ |
0 0,01 0.02 dl/H 0.03 0.04 0.05

(b) H/L = .5

FIG. 11. LOAD VERSUS OUT-OF~PLANE DEFLECTION AT CROWN, OUT-OF~PLAIE
BUCKLING OF CLAMPED AND SIIPLY SUPPORTED ARCHES, o = 0
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APPENDIX A

SOLVABILITY OF THE BASIC EQUATIONS OF THE METHOD

A.l. Case of a Single Root

Consjder the method proposed in Chapter 2 as applied to the
determination of the bifurcation point and corresponding eigenvector ¢€ the

algebraic system
AX=XBX (a.1)

where for purposes of this discussion, A, B, and A correspond to the onset
of buckling. At buckling, both A and B are assumed to be self-adjoint and
B is taken to be positive definite. The side condition, corresponding to

Eq. (2.6) is taken as

XX Bsx=0 (4.2)

At the buckling point, the coefficient matrix given by thv left-hand-side

of Eq, (2.3) and Eq. A 2) is

[A - AGIB ! - B x;1

c.-.l-. e (A.3)
:— %, B , 0
L.

where Acr is the buckling load and %y is the corresponding eigenvector.
The basic method will fail if the coefficient matrix C of Eq. (A.3),

used in the computstion of the increments of an approximate eigenvalue and

RS
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elgenvector, is singular. It is expected that if this occurs, the singu-
larity will exist at exactly the prebuckling configuration given by A, B,
and Acr‘ If the order of the original problem is of order n, then C in
Eq. A.3 is a symmetrical matrix of order n+l.

The matrix C in Eq. A.3 will now be shown to be nonsingular by

a consideration of the eigenvalues of the auxiliary system

Cy=X Dy (A.4)

where

Y J ' (A.5)

It may be verified by direct substitution that the eigenvectors Ym?

(m=1, ..... n+ 1) of the system given by Eq. A.4 are

7~ -~ (d
Xy X \

-—E-}, ] ’ ,_fE_ , (=2, ......n) vhere the x, and x, are
1 J - L~0 1 k

eigenvectors of Eq. (A.1). The corresponding eigenvalues X of Eq. (A.4)

are 1, +1, and (Ak - X ). The eigenvectors of Eq. (A.1) are found by con-

cr
sidering A and B constant at the prebuckling configuration corresponding to
the cnset of buckling, and are assumed to be normalized with respezt to B.
It is not djfficult to show that the determinant of C is equal to
the product of the A's multiplied by det (D). Since the latter is equal to

det (B) which is positive, then det (C) is nonzero provided none of the %

are zero. Only in the case of a multiple root can a X be zero. Thus, if




—
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there are no multiple eigenvalues of the original system given by Eq. (A.l),

the basic method proposed encounters no numerical difficulties associated

with a singularity of C.

A.2. Case of a Double Root

The existence of a double root of Eq. (A.1) (say )cr = AK) implies
that the matrix C in Eq. (A.3) is singular at the bifurcation point. rhis
singularity may be removed by the following computational sequence. Two
independent eigenvectors are generated by specifying two side conditions for
each eigenvector. The two eigenvectors are denoted here by %y and x,, and

K
their increments by 6x1 and GxK. The side conditions for éxl are

T T
Xg B 6xl =0, x, B dx, =0 (A.6)
and the side conditions for 6xK are

T T _
X B 6xK =0, %Xy B GxK =0 (A.7)
The specification of the two side conditions results in the fol~

lowing coefficient matrix for the equations determining the incremental

changes in the two eigenvectors

_ c IV c | .
o e (4.8)
T

Xy B; 0 {?K D I
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where D is given by Eq. (A.5), C is given by Eg. (A.3), and Yg = {’fg;l .
The coefficient matrix C has one more row than column, bat as indicatéé by
Koiter (1945), the equations which give rise to C are all valid at the
bifurcation point. An independent set of equations with a nonsingular
coefficient matrix may pe derived by premultiplying E'by ET. The resuit

o

of this multiplication, which amounts to an application of a least squares

technique, is

= _ T T

CC=C C+D Yk D (A.9)
The object is to show that the coefficient matrix in Eq. (A.9) is

nonsingular, The eigenvector Yx corresponds to a zero eigenvalue of the

watrix C of Eq. (A.4). As shown in Section A.l, the remaining eigenvalues

of C are nonzero. The matrix CTC in Eq. (A.9) has the same eigenvectors as

C. It foliows that the eigenvalues of CTC are the squares of those of C.

New consider the matrix G = DyKyED in Eq. {A.9). Direct substitution yields -

the result N
G yK =10D yK (A.10)

From Eq. (A.10) it may be seen that the eigenvector Yk is alsn an eigen-
vector of G and the corresponding eigenvalue is unity. The matrix G is
constructed in such a way that its remaining eigenvalues are zero since it

is a symmetric matrix of rank one. The remaining eigenvectors of G may

therefore be taken the same as those of C.
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Thus both matrices CTC and Dyxyip in Eq. {4.9) have the same
eigenvectors. The eigenvalue of the sum of two matrices having the came
eigenvectors is merely the sum of the eigenvalues of the individual matrices.
It follows that the eigenvalues of ETE are those of CTC except for the zero
eigenvalue which becomes + 1 (from the matrix DyxyiD). Since all the

eigenvalues of Ewﬁ are nonzero, it is nonsingular and the method proceeds

without difficulty.
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APPENDIX B

SOLVABILITY OF THE EQUATIONS USED IN DETERMINING ACCURATE CHANGES
IN THE PREBUCKLING CONFIGURATION NEAR A BIFURCATION POINT

.

The linearized operator used to compute changes in the prebuckling
configuration becomes singular at bifurcation points, as has been noted by

Thurston (1968). This singular cperator is denoted here by D where
D = A - 2 B (B.1)

The discussion here will be limited to the algebraic eigenvalue problem su
that A and B are matrices which define the prebuckling configuration at
the onset of "wckling and, Acr is the buckling load. The matrices A and B
are assumed to be self-zdjoint and B is taken to be positive definite.

A technique has been discussed in Chapter 2 for removing the
singularity from D, Tt is the object of this Appendix to show that the
resulting coefficient matrix is indeed nonsingular. As indicated in
Chapters 2, 3, and 4, a side condition is appended to the basic system.
This side condition specifies that changes in the prebuckling configuration

are orthogonal to the eigenvector and may be expressed formally as

x’iBy =0 (8.2)

where %, is the eigenvector corresponding to the singularity of D and y is

1
the change in the prebuckling configuration. This side condition leads

to a new coefficient matrix B given by

.
€ ——
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TA-X_ B
B = o er | (B.3)
xT B ‘
1 ]

which has one more row than column. As mentioned in Chapter 2, all these
equations giving rise to D are valid at the bifurcation point.

A consistent set of equations with a nonsingular coefficient matrix

is derived using the least squarxes technique:

AT T _ T

DD=(A-2_B)" (A=-A_ B)+Bxx B (B.4)
The matrix given in Eq. (B.4) may be shown to be nonsingular by an argument
exactly parallel to that given in Appendix A, Section A.2 for the case of a

double eigenvalue.
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APPENDIX C
ENSURING ORTHCNORMALITY OF THE DIRECTION COSINES

The particular technique used in this study for handling the
geometry treats each of the nine direction cosines as an independent quan-
tity during certain stages of the numerical computations. Since the
direction cosines are required to form an orthonormal set, it is necessary
to enforce this constraint in some manner., The method for ensuring ortho-

rormality of the direction cosines is outlined below.

Orthonormality of a set of direction cosines U requires that
DU =1 (D.1)

where I is the identity matrix, Substitution of an approximately ortho-

normal set of direction cosines, Ua’ into Eq. (D.1) yields

U =T +esS (0.2)
a a

where S is a syvmmetric error matrix whose individual elements are pres.med

to be of order urity and e is small. A correction matrix C is int

oduced

such that

U+cC=10 (D.3)
The matrix C is, of course, not unique. A convenient choice is

C=1/2eSU (D.4)

] + 1 . ¥ ¥ [}
[N—— [ P § P Frestey L e i
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By direct substitution, it may be shown that Eqs. (D.3) and (D.4) satisfy
Eq. (D.2) to terms of order e2. Since the quantity U in Eq. (D.4) is not

known, Ua is used as a first approximation to U. Equation (D.4) becomes
C=1/2 e S Ua (D.5}

Bquation (D.3) may be used to describe an iterative process where
U is interpreted as the latest approximation and Ua as the previous approxi-
mation to the required orthonormal set. Substitution of Eq. (D.5) into

Eq. (D.3) and rearrangement yields

U=(I~1/2e58) Ua (D.6)

At a particular iterative step, the value of U computed in Eq. (D.6) becomes
Ua for the next step. When the ccefficient e becomes small enough, the
correction process is terminated. This correction process is necessary at
each integration point along the member.

The correction process discussed above results in a new set of

direction cosines which is n t derivable from the first derivatives, i.e.,

r

al, .
j(—il) ds f £y5, (1,3 =1,2,3) (D.7)
ds

The following computational scheme was devised to ensure that Eq. (D.7)

is satisfied. The corrected direction cosines are substituted into Egs.
(3.3) and new first derivatives computed. A quadrsture of these first

derivatives yields new direction cosines consistent with Eq. (D.7).
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Residuals are computed from Eqs. (3.3) using the direction cosines from
the quadrature, The residuals are then used to drive the linearized
geometric equations of Chapter 3.

This technique has been implemented as part of the sclution of
the geometric equations of Chapter 3. Before this technique was devised,
it was not nossible to achieve glcbal equilibrism even though the residuals
in the differential equations were small.

The effect of the technique is to transfer the residuals in
Eq. (D.2) back zo the geometric differential equations, those of Chapter 3.
That is, a residual of order e in the algebraic equations results in a
rvesidual cf crder e in the differential equations. The application of
Newton-Raphson to the differential equations gives rise to changes of
order e in the direction uosines leading to new residuals of order e2 in

the direction cosines.

R
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