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1. INTRODUCTION

1.

1.1. Object and Scope

The main objective of this study is to develop a set of numerical

j methods suitable for investigating the load-deflection and bifurcation

characteristics of structures for which significant nonlinear behavior is

possible. The methods are applicable to a wide variety of structures, but

J ill be examined in detail only with reference to one f the simplest types

of struc:ures possessing the necessary complications in behavior - the

J planar arch under a concentrated load.

The term "planar", as used In this study, reiers to the configu-

ration of the arch during the initial stages of loading (often called the

prebuckling configuration). Both in-plane and out-of-plane buckling be-

havior of the planar configuration are examined. Although it would be

F " possible to include the effect of certain nonlinear stress-strain laws,

the nonlinear behavior exaL.ined in this study is geometrical in nature

and results from large displacements (arising from large rotations but

small strains).

The numerical methods developed here are capable of determining

limit points on the load-deflection curve (see Fig. 2, points A and B),

as well as finding bifurcation points and bubsequently tracing the buck-

led configuration. The numerical results given in Chapter 5 illustrate

these capabilities in pioblems of considerable technical interes..

1.2. General Remarks and Observations

From the ecrliest work on the buckling of cylind:Ical shells,

it has been noted that experimentally determi,-nd bucklin, loads of various

I1
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In view of this wide variety of possible behavior of structural

members a consideration of postbuckling behavior is an essential part of

the analysis of a given structure which exhibits a buckling phenomenon.

- 1.3. Background

- As mentioned above, the numerical methods developed in the pre-

sent study are applied to the simplest structures which exhibit the non-

J linear behavior necessary to provide an adequate test of the methods. The

mathematical model of the structures studied here is given by Love (1927)

- for the equilibrium forms of thin rods. According to Love, Clebsch (1862)

and Kirchloff (1859) arrived independently at the equilibrium equations.

The geometrical relationships are attributed to Routh (1905), and Clebsch

(1862) is given credit for the moment-curvature relationships. These

equations presented by Love are applicable to the three-dimensional be-

havior of thin, linearly elastic rods with inextensiona] centerlines, al-

though an indication is given by Love of the necessary modification for an

extensional centerline. Vlasov (1959) indicates, that as a first approxi-

mation, the effect of warping restraint on the behavior of curved beams

may be introduced by using the corresponding relationship between torque

and rate of tidst for a straight rod. In Chapter 5, results are presented

k-ne .A bucin of .-- ------- a.ze 'eefeto extesn o t he .

centerline is included and for the lateral buckling of an I-beam where

warping restraint is considered.

The oldest analysis of buckling, Euler's work on a perfect

elastic column, (see Timoshenko and Gere (1961)) included a postbuckling

analysis. "However, the perfect column is one case in which the behavior
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results for various rise-to-span ratios. The mathenatical mGdel assumed

an inextensional centerline. It is not clear whether or not extension

of the centerline would complicate tihis computational method, which in-

volved elliptic integrals.

1.4. Outline of the Method of Analysis

in this study a set of niumerical techniques is deveLoped for

impioving an approximation to a bifurcation point on the load-deflection

curve. One method permits a direct computation of an approximate eigen-

vector which is then improved simultaneously with the prebuckling config-

uration.

The technique requires a solution of a set of nonlinear equations

which indicate hou the prebuckling configuration (including the loading)

must be modified in order to reach the bifurcation point. This part of

the solution is treated in Chapter 2 in a mathematical fashion and in

Chapter 4 for a specific physical problem. The noqliucar equations are

developed with reference to the general eige-pvalue problem A X = X B X

and are solved by a modification of the Newton- 3hson method.

As indicated, the solution process predicts how the prebuckling

configurati)n must be changed to reach a bifurcation point. The process

of modifying the prebuckling config,,r-9ton is ex-ined 4n Mpter 3. T"c

standard Newtori-Raphson procedure may be used except when the prebuckling

configuration is near a bifurcation point. As noted by Thurston (1969),

the equations specifying the linear changes in the prebuckling configura-

tion become singular at bifurcation points. A method proposed in this

I
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study actually makes use of this fact to arrive at an improved prebuckling

configuration and a better estimate of the eigenvector in a rapidly con-

vergent computation.

1.5. Nomenclature

The symbils used in this study are defined in the text when they

first appear. For convenient reference, tne more important symbols are

sumwarized here in alphabetical order. Some symbols are assigned more than

one meaning; however, in the context of Lheir use there are no ambiguities.

a radius of undef rmed circular arch

A, B, C general liaearlized operators, may be matrices
differential or integral operators

b constant vector

C, C, 1), D coefficient matrices of linear algebraic equations

det(x) determinant of x

ai  deflection components at concentrated load, inglobal coordinates i = 1, 2, 3

e scalar error term

El. flexural rigidities (includes St.-Venant tor-
sional rigidity), i 1 1, 2, 3

E!, SET the Ith configuiation and its corresponding
increment in the Newton,-Raphson procedure

ECW warping rigidity

j H rise of undeformed arch

II  for a planar member, moment inertia about an
axis perpendicular to the plane

12 for a planar member, moment of inertia about
an axis in the plane

13 corresponds to J, the St.-Venant torsion constant

I
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2. PROCEDURE FOR FINDING BIFURCATIONS

2.1. General

A study of pcstbuckling behavior requires at least two items of

information. These are the buckling load, along with the corresponding

configuration just prior to buckling, and the eigenvector, which gives an

initial estimate of the postbuckling path. In the following sections

theoretical considerations are presented which lead to the development of j
a set of efficient numerical methods for treating bifurcations from a

nonlinear prebuckling state. Detailed descriptions of the numerical pro-

cedures are reserved for Chapters 3 and 4. 1
2.2. Bifurcation as an Eigenvalue Problem

The eigenvalue problems to be treated here are assumed to be

described by .1
A X = X B X (2.1) 1

and appropriate boundary conditions where necessary. The quantities A and

B may be matrices, differential, or integral operators; X is the eigen-

value and X the eigenvector. The operators A and B refer to the prebuck-

ling configuration and are in general dependent on the eigenvalue X but

not on the eigenvector X. It is assumed that the dependence of A and B on

A is known, at least implicitly.

The discrete (algebraic) eigenvalue problem may be represented

by Eq. (2.1) when A and Bare interpreted as matrices. Ona technique

that has been used to solve this type of problem is to increment the trial
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noi,-dimensionalized buckling load (out-of-plane),

a = Pa2 MEl-GJ1 2
non-dimensionalized buckling load (in-plane)

B = Pa 2/EI

6 increment operator

Cijk alternating tensor

cstrain of centerline

X, A, r eigenvalues

*used to denote eigenvector quantities

i
I-



eigenvalue A (which in general implies changinE A and B) and at each

value of X to compute the determinant of (A - AB). This procedure was

used by Leice;ter (1968) and in essence is an extension of the so-called

Holzer method, Holzer (1921). A change of sign of this determinant

between successive values of the trial egenvalue indicates an eigenvalue

falling in that range. Interpolation may be used to find the value of A

for which det (A - AB) is zero. At this stage, the eigenvector may be

generated in the conventional manner by setting one of the components of

X to unity (say X1) and solving for the other components on this basis.

It may be appropriate to mention that det (A - XB) equal to zero does

not necessarily imply bifurcation. It may mean that there is a limit

point on A, and some other quantity should be incremented.

The linearized equation governing th4 local behavior of the

branch of the equilibrium curve corresponding to the prebuckling config-

uration is of the form (A - AB) Y = b. It is then evident from Eq. (2.1)

that an impending singularity of (A - AB) will cause numerical difficulties

associated with changing the prebuckling configuration in the vicinity of

a bifurcation polit. That is, changes in A, B, and Y will not be accurate.

This has been noted pieviously by Thurston (1969), who presented a compu-

tational device for the solution in that case. This same phenomenon has

been encountered in this study and the means of compucation which has been

devised is introduced in the next section. It will be seen to be less in-

volved than that presented by Thurston.

The continuous eigenvalue problem may be solved in a manner

similar to the discrete problem. In this case, however, it is not det

(A - XB) which is examined but rather the determinant corresponding to
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satisfaction of the boundary conditions. This technique has been used

by Cohen (1965), Kalnins (1964) and Zarghamee and Robinson (1967). As

with the discrete problem, there may be numerical difficulties in deter-

mining accurate changes in the prebuckling configuration near bifurca-

tion points.

2.3. A New Solution Technique

An essential characteristic of the technique presented here is

the simultaneous improvement of -he bifurcation point (1oad and configura..

tion) and the eigenvector by a n-ocess involving the interaction between

the two.

If the A, B, and A corresponding to a particular prebuckling

configuration and an approxiL.ate eigenvector are substituted into Eq.

(2.1), then

{AX- ABX 10) -R (j)  (2.2)

thj
where the superscript j indicates the j approximation and R is a

residual. The object then is to remove the tesidual from Eq. (2.2). In

the usual eigenvalue problem, is not treated as an unknown of the same

type as X. However, the method proposed here considers A B X as a non-

linear term. This suggests that some nodification of the well-known

Newton-Raphson procedure may be applicable here. Use of the standard

Newton-Raphson technique has been discussad by Kalnins and Lestingi

(1967), Leicester (1968) and West and Robinson (1969). In order to

extend the Newton-Raphson nc.nique to bifurcation problems, it is
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L necessary to linearize Eq. (2.1? about some known configuration (say the

j th). In essence, Eq. (2.1) is expanded about the j th configuration and

I only the linear terms are kept.

vThe linearization of Eq. (2.1) yields

(A6X - B6X} (j ) = {-6AX + 6XBX + N6BX - R}0 )  (2.3)

Since A and B are in general dependent on X, the linear parts of the

J increments of A and B may be formally expressed as

6A= 6B 6 (2.4)

Substitution of Eqs. (2.4) into Eq. (2.3) results in

(A6X - XB6XI (J ) = S(- -X + BX + X BX) - R) (2.5)

Examination of Eq. (2.3) reveals there are two types of incremental quan-

tities to be considered; those corresponding to changes in the eigenvector

I_ 6X and those corresponding to changes in the prebuckling configuration 6X,

6B, and 6A. From Eq. (2.4), 6A and 6B are related to 6X so that in fact,

the unkno..s a_d , as ..... at in Eq. (.5).

-DA 8BI Once the quantities -, -- and an approximate eigenvector are

computed, the solution of Eq. (2.5) may proceed as follows. Since 6X is

an unknotm, there is one more unknown than there are equations to solve,

a situation that does not arise in the usual Newton-Rapnson technique.

The presence of an extra unknown is to be expected, since the amplitude

I'
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of the eigenvector Is indecerminate. The arbitrariness in the eignvector

is removed by specifying a scalar side condition

x BX = 0 (2.6)

This side condition ( or its integral equivalent when appropriate) allows

a solution for 6X and 6X by eliminating the possibility of large changes

in the eigenvector if the eigenvalue and approximate eigenvector are

nearly correct.

If the computed 0A is not satisfactorily small, the prebuckling

configuration is not one cirresponding to an eigenvector and must be modi-

fied. The magnitude of 6A dictates how the procedure continues. In as-

sence, this method predicts approximately how A and the prebuckling --on-

figuration should be changed to aFproach a bifurcation point.

For the above solution process, it has been implicitly assumed
3 A 3313_.

that the quantities -A, -could be computed. Fron. Eq. (2.5) it appears

that these quantities could be obtained by computing 6A and 6B for a unit

value of 6A (6A = 1). This is a stralphtforward application of the

Newton-Raphson pr.ocedure. However, as mentioned in Chapter 1, the equa-

tions become singular at bifurcation points. This means that at or near

bifurcation points, a special computational device must be incorporated

into the ewton-Raphson technique in order to compute changes in the pre-

buckling configuration accurately. This special :omputational device is

discussed in the next section.
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L2.4. Numerical Treatment of the Singular Equations

As mentioned above, the direct procedure for changing the pre-

buckling configuration is bound to fail at or near the bifurcation point.

The difficilty is caused by impending singularity of the operator (A - AB)

as the bifurcation point is approached, and is manifested by ill-conditioned

equations leading to unreliable values for the changes in the prebuckling

configuration. A technique has been devised which actually uses the fact

that the operator (A - XB) is singular to determine the changes in the pre-

I- buckling configuration accurately.

As Koiter (1945) points out, the eigenvector is orthogonal to

f. changes in the prebuckling configuration at the bifurcation point. A side

condition is thus available in the form

X T C Y = 0 (2.7)

or in the form of an equivalent integral expression when X and Y are con-

tinuous quantities. The X and Y refer to the eigenvector and incremental

change of the prebuckling configuration, respectively. The quantity C is

a suitable self-adjoint positive-definite operator. This device is employed

only for the determination of accurate changes in the prebuckling configura-

tion ne.r the bifurcation point. The actual choice of C is indicated for

a particular example in Chapter 4.

The addition of Eq. (2.7) to the system of equations to be solved

for the incremental changes in the prebuckling configuration ineans there

are now more equations than unknowns. Actually the equations are not all

1.

I
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independent at the bifurcation point. It appears to be easiest, from a

computational standpoint, to derive an independent set of e4uations by

pre-multiplying the equations by the transpose of the coefficient matrix.

This is equivalent to the so-called least-squares technique. Indeed, away

from the bifurcation point, a least-squares interpretation of the com-

putation is appropriate because the equations are independent. Appending

the side con-ition to the original equations results in

D y = b (2.8)

where D has one more row than column. The least squares solution of

Eq. (2.8) yields

DTD y = DTb (2.9)

For the algebraic eigenvalue problem, the matrix D TD may be shown to be

nonsingular (see Appendix B).

2.5. The Initial Eigenvector

The method of generating the initial eigenvector is most easily

explained in the context of a particular problem and solution technique.

However, in Section 2.2 of this chapter, a method of generating the eigen-

vector for the algebraic eigenvalue problem is outlined for the special

case of A, B and A curresponding to the onset of buckling. An approximate

eigenvector may be generated in the same way even though A, B and X do

not correspond to buckling. It has been found that some care must be taken

in the process of finding the approximate eigenvector. This matter will

be discussed in detail in Chaiter 4.
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1 2.6. Observations and Comments

1- Although tie technique is examined for the cases when A and B

depend on the eigerviiue A, it should be evident that several types of

less complicated .,igenva.ue problems are encompassed by this general

theory. For instaice, buckling Ijas of Euler struts and the modes of

U small-amplitude free vibration of elastic systems are examples wbere A and

B do not depend on the eigenvalue. In fact, the technique was first tested

on these simpler problems.

By restricting A and B tc be seif-adjoint and positive-definite,

it is possible to place some aspects of the proposed method on a firm

theoretica basis (see Appendices A and B). In addition, physical argu-

nients and experience in solving a number of problems provide considerable

evidence for the wide applicability of the method.

J A paper by Rall (1961) proposed an iterative procedure for finding

eigenvalues and eigenvectors of a discrete system. There is a formal

f relatien between Rail's method and the present one, but in Rall's method

tle eigenvalue is not treated as an unknown the same basis as the components

of the eigenvector. Further, in Rail's method there is no freedom in the

choice of a "side condition" and, in fact, an unfortunate choice of co-

ordinates can lead to failure of the proeduJre,

I_

I
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3. THE PREBUCKLING CONFIGURATION

3.1. Introduction

In Chapter 2, a general technique is presented for the simul-

taneous improvement of an approximace bifurcation point and eigenvector.

There the technique is presented 6enerally and, therefore, somewhat ab-

stractly. In Chapters 3 and 4 the solution process for the buckling of a

rod-type member is presented in some detail as an example of the use of

the general technique of Chapter 2. The nature of the technique requires

a method of determining an equilibrium configuration corresponding to a

given load level which in general is given by the solution of a system of

nonlinear equations. The procedure for solution of the nonlinear equations

at some distance from a bifurcation point is presented in this chapter.

3.2. Problem Description

For a detailed analysis of the arch problem, the equations ex-

pressing the three-dimensional behavior of a rod-type member will be pri-

sented and their method of solution described. Since the boundary con-

ditions and loading are pertinent to the analysis, a specific choice must

be made. Here the member will be assumed to be clamped at the boundaries

and loaded with a concentrated load (see Fig. 3(b) and Fig. 4).

As mentioned in Chapter 1, the equilibrium, geometric and moment-

curvature relationships are those presented by Love (1927). Love also

indicates how these equations must be modified in order to include the ef-

fects of extension of the member centerline In this study, extension of

the centerline is neglected for the full three-dimensional problems, al-

though results will be presented in ChapLer 5 for some two-dimensional
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problemE where extension of the centerline is included. The effects of

restraint of warping of the member cross section are not included in the

discussion of this chapter, but results are presented in Chapter 5 for

lateral buckling of an initially straight I-beam under a dead load where

warping restraint is considered. Timoshenko and Gere (1961) and Vlasov

(1959) indicate the formulation of the troper equations relating the

twist of the member to the torsional moment when restraint of warping is

j considered.

j 3.3. Basic Equations for the Behavior of.an Initially Curved Member

1 3.3.1. Preliminaries

Figure 1 shows the member and global coordinate system. Two of

Ithe member axes are taken as the principal axes of the section and the
third is directed along the tangent to the centerline of the member. The

member and global coordinate systems are related by the following matrix

transformation.

xj £1 m1  n1 X]. 

x2 $ = L2 X2 2  X! (3.1)

3j 3J K '3  3 _I 3 j

where the Z mi, and ni's are direction cosines.
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3.3.2. Equilibrium Equations

The equations of equilibrium, as presented by Love (1927) may be

written as

dNi

ds ijk kj k

(3.2)

dMi N=d- jk K- Mk c31k "k = 0

The summation convention will be used throughout, unless the contrary is

specifically 7tated. Also, the subscripts i, j, k will always take on the

values 1, 2:, 3. The quantities Ni, Mi, Ki are internal forces, internal

moments ar curvat re vectors, respectively, in the local coordinate system.

The quantity c ijk is the alternating tensor and s is the arc length.

3.3.3. Geometric Equations

Although there are only three independent direction cosines, it

is convenient to ignore this fact temporarily and to present the entire set

of geometric equations. The nine equations, relating direction cosines to

curvatures are

dZi
d-- £1j Pvn=

dmi

ds- Ljk mjk. =0 (3.3)

dn i  0
ds - Cjk kj
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3.3.4. Displacement Equations

* -The equilibrium and geometric equations do not involve displace-

ments explicitly. However, the equations expressing satisfaction of the

boundary conditions do, in general, involve displacements. The displace-

ment quantities required are derivable from the direction cosines by a

simple quadrature.

X1 (s) = 3 3( ) dV. JO

0

X2(s) = J m3( ) dE (3.4)

X3 (s) = J n3(E) dE

0

where E is a dummy variable and the X (s) are the global coordinates of

the cent.rline of the member as functions of the arc length, s.

3.3.5. Moment-Curvature Relations

The effects of restraint of warping are not considered in the

behavior of the arches studied here. Thus the torsional behavior is

entirely of the St.-Venant type. The torque is given by the product of the

change of the rate of twist, K3 - K30 , and the St.-Venant torsional

rigidity, GJ. For consistency of notation, GJ is taken equal to El 3
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Thus the moment-curvature relations become

Mi = EIi (K i - KiO), (no summation, i = 1, 2, 3) (3.5)

where E i refers to the various rigidities and K. is the curvature vector

in the unloaded state.

3.3.6. Conditions at a Concentrated Load

The global representation of the concentrated load is taken as

= PT 2  (3.6)

where 12 is a unit vector in the global X2 direction and P is the magnitude

of the force, which is assumed to be applied at the centerline of the

member.

Consideration of equilibrium of an element of arch containing

the concentrated force yields the following "Jump c.onditions" relating the

internal force resultants on either side of the load.

NO.) + p M N(- ) = 0 (3.7)
i i i

The superscripts +, -, refer to points to the right and left of the load,

positive being in the direction of increasing arc length.

3.3.7. Boundary Conditions for a Clampnd Arch

For a clamped arch, the boundary co;dltions specify that both

the direction cosines at the supports and the global coordinates of the
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supports remain unchanged. The boundary conditions for an initially planar

clamped arch are

L Z 2  £20

f
10 (at s = 0, s = sf) (3.8)

n3  n30

I i = 0i

Jhere the second subscript 0 indicates the original configuration and sf is

the arc coordinate of the far boundary.I.
3.3.8. Complementary Loading ParameterI-

It haT been noted iieviously b-, Bueckner, Johnson and Moore (1965)

and Leicester (Ir68) that a numerical analysis of snap-through buckling of

shallow spherical shells can encounter difficulties associated with the in-

cremeintal loading process. A similar difficulty occurs in arches. This

difficulty stems from the fact that so-called limit points (see Fig. 2) may

exist in the force-deflection curve. If, near point A an increment of force

is chosen such that the total force is greater than P obviously there

is no sol-ition. This is a vary real possibility since in general the maximum

- value PA is not known in advance. Near point A, the difficulty may be over-

come by incrementing the deflection instezd of the force. A similar sltua-

tion occurs near point B except that the force qbantity should be incremented

- instead of the deflection. In the vicinity of the limit points, convergencc

of the Newton-Raphson or successive approximation procedures will be slow

or fail entirely if a poor choice of loading parameter is made. For this

I~
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reason it is advantageous to be able to select either force or deflection

as the independent variable in the loading process.

In order to demonstrate how a loading parameter other than the

c:,ncentrated force itself Is used in the solution process, a complementary

loading parameter corresponding to the deflection under the concentrated

force and in the direction of the force will be used here. The expres-

sion for this component of the deflection under the load is

5

d= {m3 () - m30 (9)) d (3,9)
0

where the upper limit of integration, s , refers to the arc-length coor-

dinate of the point of application of the force.

3.4. Solution of Nonlinear Equations

3.4.1. General Discussion

There are several techniques available for solving iwo-point

boundary value problems described by nonlinear ordinary differential equa-

ti.ons. The charaet e of t" . particular set of equations may limit the

effectiveness of some of these techniques.

One particular technique called the "shooting method" has been

used by Huddleston (1968) to solve the nonlintear equations which describe

the large deflections of an arch under a concentrated load. The bouIdary

value problem is converted to an initial value problem and the nonlinear
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I equations integrated numerically. Since some of the initial values are

unknown, these are adjusted until the far boundary conditions are satisfied.

I- Generally a few iterations are required to satisfy the boundary conditions.

This technique will encounLer numerical difficulties when the solution of

the nonlinear ordinary differential equation can exhibit a boundary layer

or edge effect. In this case, the initial value solutions will grow rapidly

as they are propagated to the far boundary. Since computers carry a finite

J number of digits in numerical computations, the quantities required for the

equations which express satisfaction of the far boundary conditions may have

literally no significance because of zound-off during the numerical inte-

p- gration process. In fact, this phenomenon can occur even though the initial

values are quite close to th' correct ones.

- Another technique has been developed by Berezin and Zhidkov (1960)

and by Jordan and Shelley (.966 for solving just the Iype of problem where

"growing" solutinis are present. This technique does not require iteration

but a transformation of the equations to a new set of Yariables is necessary

before the solution may proceed. As with the "shooting method", the trans-

formed set of equations is in:!grated numerically since they are in general

nonlinear. Jordan and bielley indicate that if the original problem does

not have a bouxdary or ecge offect, the transformed solution may. In this

case, the transforrei problemq wculd encrunLe. numerical difficulties. It

turns out that even if there is a boindary effect, it is possible that the

method will fail.

The technique used in Lhis study does not depend on the character

of the nonlinear equations. That is, the presence of a boundary or edge

T~*
This observation s. due to Professor M4. S. Zarghamee.
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effect doej not present any serious obstacles. The Newton-Raphson technique

is used to solve the nonlinear equations and thus only linearized equaLions

are integrated. When growing solutions are present in the integration of

the linearized equations, the suppression technique used by Zarghamee and

Robinson (1967) and Goldberg, Setlur and Alspaugh (1965) is implemented to

avoid the loss of signIficant figures due to round-off.

3.4.2. The Newton-Raphson Procedure

The nonlinear equations of this study are solved using the Newton-

Raphson procedure. In the use of this procedure, the loading is applied to

the structure in increments (not necessarily small) by the following com-

putational process. The reason for applying the loading parameter in steps

will become apparent as the discussion proceeds.

Assume that at some itage in the loading process a solution EI

of the nonlinear equations is known which corresponds to a loading level L1 .

An increment of load AL1 is now applied. fhe Newton-Raphson procedure is

used to find a new equilibrium configuration corresponding to the total

loading parameter given by LI + AL . The equations specifying the linear

response of the configuration E1 must then be derived by linearizing the

equations about this configuration. 'he linear iccremental solution 6EI

corresp'nding to an incement of loading AL1 is added to the existing con-

figuratiou E1 to produce a new configuration EI+ i. In general the con-

figuration Ei+I will not satisfy the nonlinear equations since a linear

approximation was used to compute 6 E V Thus there are residuals in

these nonlinear equations.
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The next step is to remove the residuals, without a further increase

in che loading parameter. The equations are again linearized, this time

about the new :onfiguration E +. The linear response o El+ at this c'n-

figuration is calculated. The "loading" in this computatio! consists of

the negatives of the residuals in the corresponding noninear equations. A

new configuration El- 2 equal to E +l+ 6El+ is thus derived. At this point,

the configuration E1+ 2 is substituted into the nonlinear equations and the

resulting reeiduals are again examined. If the residuals are *mall enough,

a new equilibrium configuration has been found and another, increment of the

loading parameter may be applied. If the residuals are not satisf-ttory,

this process of removing residuals, for a constant value -.f loading para--

meter, is repeated until a new equilibrisra configuration is obtained.

It is evident from the above discussion that it is necessary to

lineerize the nonlinear eq.'itions of Sections 3.3.2. - 3.3.8. about a

general reference configuration in order to use the Newton-Raphsin procedure.

These linearized equations are preaented in the next section.

3.4.3. Linearization of the Prebuckling Configuration

In order to avoid the cumbersome notation of Chapter 2 in expres-

sing the linearized equations of the arch problem, the superscrLipt I used

th
in Chapter 2 to denote the j configuration will e dropped and instead

the current configuration will instead be denoted simply by the quantities,

Ni, M i Ki, Pi, mi, n etc. without a superscript. Since the equations

specifying the prebuckling configuration are of first-order, the lineariza-

tion process is particularly straightforward and leads to the following

equations.
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Linearized Equilibrium Equations:

6 (dN i )
I

ds i) c ijk (6Kj Nk  + K SN) 0

(3.10)

ds Cijk ( I Kj 6Mk)  - 3ik SNk 0

Linearized Geomet:ic Equitions:

6(dt i)
ds c ijk (6K c + Kj 6.) = 0

I
6 (ami)

ds -e) (6 K mk  + K 6mk) = 0 (3.11)
d ijk ( j

Sd i) c (6K a + K 6n) =0
ds ijk j k j k

Linearized DisplaceL.ant Equations:

S

= 6e 3 (9) d9

0

(3.12)

62= 3 (4) dZ

0



29
s

6 6x3  r f 6n3 () d (3.12)
0

Linearized Moment-Curvature Relations:1.
6MMi = (El)i 6K1  , (no summation) (3.13)

{ .Linearized Condition at the Concentrated Load:

6N(+) - 6N ( - )  + P 6 m + 6Pm = 0 (3.14)

Linearized Boundary Conditions:

I 5U2 = 0

6m1 = 0

(at s = 0, s = sf) (1.15)6n3 = 0

6Xi = 0

Linearized Ccmplementary Loading Parameter:

d 2 = s Sn3 (g) d9 (3.16)

0

The 6N., 6M, 6i , 6tZi, 6m,, 6n, 6d2, etc., are the linearized

quantities where tne 6 is used to denote a linear increment. In general,
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Eqs. (3.10), (3.11), (3.12), (3.14), (3.15), (3.16) when they are applied,

will have on their right hand sides not zeros but the negatives of the

residuals computed from their corresponding nonlinear equations as explained

in Section 3.4.2.

3.5. Typical Incremental Loading Cycle

The typical incremental loading cycle of this study azay be sum-

maried as follows using the notation which has been introduced:

(1) Assume that an equilibrium configuration corresponding

to the quantities Mi, Ni, K i m , n,, d2, etc. is

known;

(2) Apply an increment A d2 of the loading parameter by use

of the linearized equations (Eqs. (3.10) - (3.16)) to

obtain 61, 6K, P 6m, 6ni, Ad2$ etc.;

(3) Add the incremental quantities 6N, 6Mi, 6Ki, Sti , 6m i ,

6ni, Ad2, etc. determined in the previous step to the

previous values of Ni, Ki, Li, mi, ni, d2 , etc. to

obtain a new set of Ni M.i, Ki i, m,, n,, d2 ' ecc.;

(4) Compute the residuals in Eqs. (3.2) - (3.9) using

the new Ni, Mi, Zi, mi4 , ni, d2 , etc. of step (3);

(5) Check the residuals to see if they are acceptable. If

so, the process stops, a new equilibrium configuration

having been determined. If the residuals are not

acceptable, go on to step (6). Note there are, in

general, residuals in the jump condition Eq. (3.7) and

in the complementary loading parameter expression
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Eq. (3.9) as well as the differential equations;

(6) Remove the residuals obtained in step (4) by computing

the linear effect on the new configuration (deter-

mined in step (3))of the negatives of the residuals

determined in step (4). Go back to step (3).

Although the same equations are used in steps (2) and (6),

(except for the right hau.d sides) the increase in the loading parameter

is carried out only once. Note that the Ni, Mi, K°i, ti' mi, n,, d2, etc.

are always the latest quanrities.

3.6. Details of the Solution of the Linearized Differential Equations

The discussion of a typical incremental loading cycle, Section 3.5,

was based on the assumption that a solution to the two-point boundary value

- problem given by the linearized differential equationu, boundary conditions,

jump condition and incremental loading parameter, could be found. In this

study, the modified two-point boundary value problem defined by the linearized

differential equations, the boundary conditions, jump condition and the in-

cremental loading equation is converted to an initial value problem. The

initial value technique has been used by K'Anins ( ), Goldbc, Setlur,

and Alspaugh (1965), and Zarghamee and Robinson (1967) to solve boundary

value problems described by ordinary differential equations. Since the

method uses one boundary as the origin of the linearized initial value

problem, the so-called initial values are selected so as to satisfy the

boundary conditions at the origin autonatically. As the method is used here,
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a set of inderendent initial value solutions (see Table 1) is propagated

from the origin to the far boundary where a linear combination of these

sol, .Jons is formed to satisfy the :iinzRrized boundary conditions and the

condition on the incremental loading parameter Eq. (3.16).

The increments in the boundary displace t at the far end and

in the loading parameter are expressed as integrals of the quantities oc-

c-rring in the linearized differential equations. This means that the

equations (incremental boundary conditioes and incremental loading para-

meter) for determining the proper linear c¢mbination of solutions require

that a quadrature of the quantities in the individual initial value solu-

tions be carried out. This has been done numerically using Simpson's rule.

The condition on the incremental loading parameter is treated the same as

an additional boundary condition when forming the linear combinations neces-

sary to solve for the correct initial values.

The individual initial value solutions are found by nanerical in-

tegration using a trapezoidal integration formula as part of a predictor-

corrector process. TLe numerical integration process has been presented by

Crandall (1956). The character of these equations is such that rapidly

growing solutions are not present in the numerical integration process. For

this reason, the so-called suppression technique (see Section 3.4.1.) is

not necessary. In Chapter 5 of this study, an example problem of the

lateral buckling of an I-beam with warping rigidity is solved which requires

supptession during the integration process.

Table 1 shows the init.1al values for each solution. The residual

terms in the particular solution occur in what has been called step 4 of the

incremental loading procedure as given in Section 3.5.
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3.7. Direction Cosine Correction

Since the direction cosines are treated as independent quantities

during the numerical integration of the linearized differential equations,

it is possible that "drift" of the direction cosines will take place so that

they will no longer form an orthonormal set. The computational process

guarantees that the squares and scalar products of the new local coordinate

basis vectors are constant across the arch. However there is no mechanism

in the straightforward procedure to control drift in these constants, which

should, of course, be either one or zero. A technique, outlined in Appendix

C, has been developed to ensure orthonormality.

3.8. Other Boundary Conditions

An arch which is simply supported in the plane presents no added

complications. The geometric boundary condition, n3 = nso is replaced by

the moment condition M1 = 0. See Figs. 3(a) and 3(b).

Other types of boundary conditions may require considerable care

in their formulation. If it is desirable to allow more than one free

rotation at a support, it is useful to have in mind a physical model (say

a Hooke's joint) of the support in order to avoid the possibility of intro-

ducing a nonconservative force system at the support. This difficulty has

been explained in detail by Ziegler (1956).
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4. DETERMINATION OF POINTS OF BIFURCATION IN THE CASE OF
NONLINEAR PREBUCKLING BEHAVIOR

4.1. Introduction

As mentioned in Chapter 2, a study of postbucklirg brhavior re-

quires the location of the bifurcation point. This chapter deals with a

specific application of the general technique of Chapter 2 for improving

an approximation to a bifurcation point and the corresponding approximate

eigenvector. For the specific arch problem, a prebuckling con!iguration

determined by the method of Chapter 3 is used as an approximation to the

bifurcation point in the process described in Chapter 2. The method for

generating the corresponding approximate eigenvector will be given in detail

later in this chapter. Since this technique requires not only a knowledge

of the local behavior of the prebuckling configuration (the Y of Sec. 2.2.)

but also the eigenvector "branching" from a prebuckl:ng curve (the X of

Sec. 2.2.). two different incremental quantities must be studied at the

same time. It is not difficulc to adapt the linearized equations of Chapter

3 for this purpose with a suitabi- change of notation. The new linearized

equations will be solved for the q,-ntities corresponding to the eigenvector,

which is "along" the initial segment of a new branch. These linearized

equations will be referred to as "branch equations".

4.2. Branch Equations

The following equations are the linearized equations of Chapter 3

with the 6 replaced by an asterisk. As the discussion proceeds, it will be
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obvious that a new notation is necessary for clarity. These equations

play the role of Eq. (2.1) of Chapter 2.
I

Branch Equilibrium Equations:

V dNi

ds - Cijk Kj Nk + Kj Nk) 0

(4.1)

dM. *

is- - cijk (Kj Mk + K. JY - c3ik Nk =0

Branch Geometric Equations:

dm i (m+K (4.2)dn i

ds ij k (Kj nk  + K nk  0

Branch'Displacement Equations :

r s

xms +S ) 0)  d2

~(4.3)

x * (S)) =
2j 3a< ) a

0 (4.3) o
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X3 (s) = n 3 (9) d (4.3)

0

Branch Moment-Curvature Relations:

= (EI). K, (no summation) (4.4)

Branch Condition at the Concentrated Load:

N +  -N -  + Pm. =0 (4.5)

Branch Boundary Conditions:

2 0

= 0

(at s 0, s = sf) (4.6)

n = 0

Xi=0

If the prebuckling configuration given by the quantities Ni, M

Ki,3 mi, ni, Lc. is the on corresponding to bifurcation, the eigenvector

may be generated from Equations 4.1 - 4.6 in a straightforward manner. In

general this fortuitous circumstance will not prevdl and the prebuckiing

configuration must be adjusted in order to reach the bifurcation point. The

crux of the problem then ic to adjust the prebuckling configuration so that

a better approximation to the bifurcation point is obtained. The general

technique devel:ped in Chapter 2 is used for thIs purpose.
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As ,ume that an approximate prebuckling configuration found by

the methoa of Chapter 3 and an approximate eigenvector are substituted into

Eqs. (4.1) - (4.6). There is, in general, a residual ir. these equations.

The modification of the Newton-Raphson technique introduced in Chapter 2

is used to remove the residuals. Here it is necessary tr linearize the so-

called branch equations with respect to the prebuckling (unstarred) quan-

tities (Ni, M Ki, ?i, mi., ni , etc.) and the current approximate eigen-

vector (Ni, M, 4, il tll mi, n,, etc.).

4.3. Linearized Branch Equations

V As noted in Chapter 2, two types of incremental quantities appear

in the linearized branch equations; those corresponding to changes of the

prebuckling configuration (6Ni. 6Mi 6K 1 6Z 6m, 6n etc.) and those

correspoviing to changes in the eigenvector (6N, .1., dK, 6, 6M , 6n1 ,

etc.). The linearized branch equations are understood to be valid about

a "hyper-configuration" consisting of the current prebuckling configuration

and the approximate eigenvector. Also, in general, Eqs. 4.7, 4.8, 4.9,

4.11, and 4.12 will have non-zero right hand sides equal to the residuals

computed from the corresponding nonlinear branch equation. The linearized

branch equations, as given below, play the role of Eq. (2.3).

Linearized Branch Equilibrium Equations:

6 d N . ( 4 .7

ds Cijk (6K* Nk + K. 6Nk + 6 K. Nk + Kj'S Nk) = o (4.7)
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Asume that an approximate prebuckling configuration found by

the methoa of Chapter 3 and an approximate eigenvector are substituted into

Eqs. (4.1) - (4.6). There is, in general, a residual in these equations.

The modification of the Newton-Raphson technique introduced in Chapter 2

is used to remove the residuals. Here it is necessary t' linearize the so-

called branch equations with respect to the prebuckling (unstarred) quan-

tities (Ni, Mi, Ki, Z,, mi, n., etc.) and the current approximate eigen-

vector (Ni, M4 , K., .i imi n., etc.).

4.3. Linearized Branch Equations

As noted in Chapter 2, two types of incremental quantities appear1.
in the linearized branch equations; those corresponding to changes of the

- prebuckling configuration (6Ni, 6Mi, 6Ki, Sti 6mi, Sn, etc.) and those

corresponding to changes in the eigenvector (6Ni, 1.&1, SKi, 6ze, 6wi, 6ni,

etc.). The linearized branch equati-r's are understood to be valid about

a "hyper-configuration" consisting of the current prebuckling configuration

and the approximate eigenvector. Also, in general, Eqs. 4.7, 4.8, 4.9,

4.11, and 4.12 will have non-zero right hand sides equal to the residuals

computed from the corresponding nonlinear branch equation. The linearize.

branch equations, as given below, play the role of Eq. (2.3).

Linearized Branch Equilibrium Equations:

6dN. Cj (6K Nk + K. 6Nk + 6 K. Nk + K. 6 Nk  = 0 (4.7)
K.i k
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SdM i ,,,,

-s ij (6 Ki Mk + K 1 6IJ + 6 K 1 Mk + K j6 Mk)

S3ik 6 Nk =0 (4.7)

Linearized Branch Geometric Equations:

6dtZ
K. -P- + jk+6.t

6mi -dmi (6KI + K6 6K k+K63

ds ijk mk  K 6mk + 6K + K. 6mk) = 0 (4.8)

6dni - ( 6 Ki + 6K fk+ =
ds CkK nk  K 6n k n-- LJkk+6 Kj dnk )  = 0

-i
Linearized Branch Displacement Equations:

fx,(s) = f 6* (0)d

0 -

S

6X2 (s) = f& (4.9)

s
'5X 3 (s) =n f * d _.

60 ()o d

0
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Linearized Branch Moment-Curvature Relations:

M (El) K. (no summation) (4.10)
Mi K '

Linearized Branch Condition at the Concentrated Load:

* _)*

6N - 6Ni + Psm. + Pm = 0 (4.11)i 1

I.
Linearized Branch Boundary Conditions:

Vm* = 02

6m =0

* (a s =0, s =sf) (4.12)

6x = 0

6XI = 0

Since the linearized branch equations contain incremental terms

associated with changes of the prebuckling configuration (the unstarred

quantities) a preliminary computation is necessary before the actual solution

can proceed. This computation involves the determination of the linearized

response of the prebuckling configuration for 6P = 1; i.e., the counterpart

here of the computation in Section 2.4. The method for carrying out this

part of the solution of the linearized branch equations depends cn bjw

"close" the current prebuckling configuration is to the bifurcation point.

Section 4.5 is devoted to t.Ls topic.
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It is also necessary to compute an initial approximation to the

eigenvector before solving the linearized branch equations, as it is the

interaction of the approximate eigenvector with the prebuckling configura-

tion that produces the residuals which "drive" the linearized branch

equations. The computation of the approximate eigenvector is discussed

in Section 4.6.

If the approximate prebuckling configuration is far enough frof

the bifurcation point to permit use of the standard Newton-Raphson technique

for the purpose of obtaining changes in the prebuckling configuration, then

the process of improving the eigenvalue and eigenvector is straightforward.

The linearized branch equations would form a two-point boundary value problem

except for the fact that 6P is unknown also. The increments of the unstar-

red quantities and 6P are the only unknowns. The extra unknown 6P is to

be expected since the amplitude of the eigenvector is indeterminate. In

order to solve the system of linearized branch equations, & scalar side

condition is appended to these equations. This side condition is taken as

sf

Mf 6K ds = 0 (4.13)
i i

0

This expression ensures that there are not large changes "parallel" to the

eigenvector when the eigenvector is close to its true "direction".

The solution of these linearlized branch equations (with Eq. (4.13))

is quite similar to the solution of the linearized equations of Chapter 3.
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The scalar side condition introduced here, Eq. (4.13), plays the role of

the complementary loading parameter of Chapter 3. The modified boundary
I

value problem described by Eqs. (4.7) - (4.12) and (4.13), is converted to

an initial value problem. As in Chapter 3, a set of initial value problems

is propagated from the origin to the far boundary where a linear combination

of these solutions is formed to satisfy the boundary conditions and the

scalar side condition. The procedure is similar enough to that of Chapter 3

J- that, in fact, the same numerical integration routine can be used in both

v parts uf a comruter program to solve the problem. The sets of initial

- values given in Table 1 carry over to the solution process here with the

understanding that the incremental branch quantities are now the unknowns.

An essential feature in the solution of the linearized branch equations is

the presence of the incremental terms corresponding to changes of the pre-

buckling configuration. These terms appear only in the initial value solution

corresponding to 6P = 1 (see Table 1). This should be apparent since the

prebuckling configuration can change only when P changes.

Once the value of 6P is computed, the correct linearized change

in the prebuckling configuration is easily found by scaling the changes

caused by 6P = l which are found in Section 4.5.

Thus. both the prebuckling configuration and the eigenvector are

modified simultaneously.

4.5. Modifying the Prebuckling Configuration in the Vicinity of a
Bifurcation Point

As indicated in Chapters 2 and 3, there are computational dif-

ficulties associated with computing the linearized response of the prebuckling
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configuration accurately in the vicinity of bifurcation points. This

section is devoted to a discussion of the solution to this problem.

The changes in the prebuckling configuration are required to be

orthogonal to the eigenvector (see Section 2.4). For an inextensional

centerline, this orthogonality relation is conveniently expressed as

sf

Mi 6Ki ds = 0 (4.14)

0

The Mi used in Eq. (4.14) are the latest values obtained duriv.g the process

of improving the bifurcation point and eigenvector. This extra condition is

then appended to the initial value problem described in Chapter 3. There

are now more equations than unknowns, but as mentioned in Chapter 2, all of

these equations are valid at the bifurcation point. A consistent set of

equations is derived using the least-squares technique.

This technique permits the accurate computation of changes in the 7

prebuckling configuration near the bifurcation point. Note, however, that

this device is essential only in the vicinity of the bifurcation point. At

other points, the standard Newton-Raphson technique outlined in Chapter 3 is

satisfactory for modifying the prebucklfrg configuration.

4.6. Generating the Approximate Eigenvector

The process of improving an eigenvalue involves the solution of

a system of non-singular linear algebraic equations. The only difficulty

is in arriving at a suitably "close" initial P and eigenvector. Since the
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P used is only approximate, there will in general not exist a solution of

the branch equations satisfying all the boundary conditions. The computa-

tional device which has been adapted here is to release one of the boundary

conditions. In the first subsequent improvement of the P and eigenvector,

it is a straightforward matter to reimpose the constraint which has been

:xeleased.

It is obvious that there will, in general, be more than one

choice of constraint which can be released for calculation of the initial

approximation of the eigenvector. It has been found that by an unfortunate

choice of release of constraint, it is possible to "skip" the eigenvalue

being sought and "jump" to a distant one. The technique used to avoid this

problem is to relax what appears to be the "softest' of the constraints.

For instance, in out-of-plane buckling of ar. arch, the restraint corresponding

to rotation about the tangent to the centerline at one end of the member is

relaxed.

In general, it might be necessary to run through all choices of

constraint release at one end to fiud the one leading to the smallest SP

on the first cycle of improvement. However, this extra computa-tion is

actually not extensive.

4.7. Summary of the TY1cac Computational Cycle

The first part of the cycle is really a preparatory stage. The

change in the prebuckling configuration fcr 6P = I is computed and the

approximate ei~envector is generated. Computational details are explained

in Sections 4.5 and 4.6. At this point, the current prebuckling configuration
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and the approximate eigenvector are substituted into the branch equations

and residuals are computed. These residuals are used to "drive" the

linearized branch equations.

Because of the way the approximate eigenvector is generated,

during the first iteration step the residuals do not appear in the dif-

fercntial equatio.ns but only in the boundary condition which was violated

when the approximate eigenvector was generated. For subsequent iterations,

there are, in general, residuals in both the differertial enuations and

he boundary conditions.

Eventually, as successive prebuckling configurations are pre-

dicted and examined for the presence of an eigenvector, the value of 6P

and the residuals in the branch equations computed during this sequence

!ill become accepLably small. At this point, the bifurcation load has been

reached and the corresponding eige-vector generated.

The specia. process for obtaining changes in the prebuckling

configuration when the standard Newton-Raphson technique fails because of

poorly conditioned equations was never needed until the latest relative

change in P was less than 0.IG.

4.8. Postbuckling Paths

Without referring to the question of stability of the paths, it is

a simple matter now to proceed onto the branch given initially by the

eigenvector. This is done by adding a multiple of the eigenvector to the

prebuckling configuration and then drermining a new nonlinear configura-

tion using the technique of Chapter 3.

it
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Koiter (1945) indicates that if there is a single branch from

the fundamental or prebuckling path, stability of the new path is decermined

by whether the load capacity increasev or decreases. If the loaa in-

creases, the new path is stable and if the load decreases, the new path is

unstable.

If there is a multiple eigenvalue and multiple branches frcn the

fundamental branch, the stability considerations are more complicated.

Koiter (1945) has a discussion of this more difficult problem. In Appen-

dix A of this study, a solution of the computational problem of determining

multiple branches is indicated.

I -
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5. NUMERICAL RESULTS OF THI APPLICATION OF THE THEORY
TO ARCHES AND BEAMS

5.1. General Remarks

In this chapter, several sample problems of the buckling of

arches are presented. In addition, a few results are presented for lateral

buckling of a beam. These problems are solved using the technique intro-

duced in Chapters 2, 3, and 4. The chief object of these examples is to

demonstrate some of the possibilities of the technique. Compa- 4sons with

previous work are made where such work is available.

The examples given in Sections 5.3.2. and 5.3.3. are planar arches

which may buckle only in the plane of the arch (see Fig. (5(b)). Two sets

of boundary conditions and two sets of rJse-to-span ratios are considered.

In Section 5.3.4., thrce-dimensional buckling of initially planar arches

is considered. That is, the arches may defoLem in the plane and buckle out-

of-plane. Two sets of boundary conditions and rise-to-span ratios are

considered. In addition, results are also presented for an arch which first

buckles in its plane, sways to the .ide, and subsaquently buckles out-of-

plane. In Section 5.3.5., lateral buckling of a beam with warping restraint

is considered and two examples are presented.

5.2. Description of Problems

All the arches in problems involving three-dimensional behavior

are assumed to have inextensional centerlines and to be fixed at the

boundaries insofar as out-of-plane motion is concernied. In certain of the

three-dimensional problems selected, rotations are permitted at the supports

I
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about an axis perpendicular to the original plane of the arch (see Fig.

3(a)). The two-dimensional problems may involve either extensioial or in-

extensional centerlines and, in addition, the arches may be fixed or simply-

supported at the ends. The cross sectional properties are given in Table 8.

All of the arch members are loaded with a concentrated load at the crown

(see Fig. 5(a)).

In addition, some results are presented for the lateral bucitling

of an initially straight I-beam under a uniform dead load. Restraint of

warping of the cross-sections is included in the behavior of these par-

ticular members. One of the member is a rolled steel section 16 WF 64 and

the other is a section especially contrived to demonstrate a particular

point. The cross section of this special member is shown in Fig. 6(b).

Unless otherwise noted, all buckling loads are of the bifurcation

type as opposed to limit points. The following notation is used in the

Figures and Tables.

a = non-ilmensionalized load for out-of-plane buckling
problems, a = Pa2/2 GJ

8 = non-dimensionalized load for in-plane buckling
prc lems, a = pr.2/EI.

H = rise of arch

L = span of arch

II = for a planar member, moment of ir rtia about an
axis perpendicular to plane

12 = for a planar member, moment of inertia about the
axis in the plane

J = St.-Venart torsion constant
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Cw = warping constant

c = strain of centerline of member

5.3. Nuwirical Results

5.3.1. Prediction of Buckling Loads

Data are given in Table 2 which indicate the rate of convergence

of the process of predicting bifurcations. In general, the change of sign

of the determinant of the equations expressing the boundary conditions is

used to obtain an initial estimate of the buckling load. Then the predic-

tion process is implemented to "home in" on the actual value. As may be

seen from the successive values of P and SP in Table 2, it is necessary to

apply the procedure taking advantage of orthogonality between the eigen-

vector and changes in the prebuckliag configuration near the buckling load

in order to guarantee convergence (see Sec. 4.5.). From Table 2, the case

of out-of-plane buckling is seen to converge quite rapidly even though th=

initial estimate of the buckling load is in error by a factor of more than

three. This is to be expected, since the problem is essentially a clas-

sical eigenvalue problem. That is, the prebuckling deformations are of

relatively slight importance.

The last case given in Table 2 indicates that it is possible to

avoid the use of the 4eterminant involving the boundary conditions in

isolating the buckling load. In this particular case, an increment of

deflection was introduced and then the prediction process implemented far

from the actual buckling load. Although the process is seen to converge,

it is probably less efL.cient to start the prediction process this far

from the buckling load.
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There are some apparent minor discrepancies in Table 2. The

errors in the X3 coordinate of the load, as well as the buckling load it-

self, ate somewhat dependent (in the fourth or fifth sigutificant figures)

on the number of integration intervals as well as the number of cycles of

the Newton-Raphson technique. Where a direct comparison is made in

Table 2 (cases 1 and 2) the integration intervals and number of cycles of

Newton-Raphson are the same.

5.3.2. Buckling Loads and Deflections of Simply Supported Arches

Results for the buckling loads and deflections of a few typical

simply supported arches are given in Table 3. It is seen that the results

agree well with seom of the previous analytical and experimental work.

Figures 7 and 8 show both the prebuckling and a part of the postbuckling

curve for the simply supported arches. The results plotted are for an

inextensional centerline since the effect of extension is negligible for

the simply supported arches studied here. From Figs. 7 and 8, it is seen

that for H/L equal to 0.50, the load carrying capacity increases after

bifurcation. This has been observed experimentally by Langhaar, Boresi

and Carver (1954) where, under a concentrated gravity load, the arch did

not collapse upon entering the side-sway buckling mode. For H/L = 0.25,

the load carrying capacity of the arch decreases rapidly after buckling

(see Figs. 7(b) and 8(b)). This agrees with the analytical result of

Huddleston (1968). Figures 7(b) and 8(b) indicate that the method can be

used to trace as much of the postbuckling configuration as desired.

The data given in Table 3 indicate that the stiffness of a

simply supported arch, H/ = 0.50, is slightly reduced when extension of
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the centerline is permitted in prebuckling and postbuckling behavior.

However, the buckling load for this arch is increased when extension is

taken into account. This is not a contradiction of Rayleigh's theorem

(1894) since bifurcations from two different prebuckling configurations

are being compared and there is no way to assess the effect of the internal

constraint (cc = 0). This phenomenon of a more fleAible structure having

a higher buckling load was reported by Masur, Chang and Donnell (1961).

In that study, a gable frame with a concentrated load at the peak was

analyzed both with and without an inextensible tie connecting the tops of

the columns. Removal of the tie results, of course, in large prebuckling

deformations, but, paradoxically, increases buckling load. Another in-

stance of this same phenomenon occurs in another part of the present study

concerning the out-of-plane buckling of arches which are either simply

supported or clamped in the plane. The simply supported arches given signi-

ficantly higher buckling loads than the clamped ones for the same H/L even

though they are more flexible than the latter (see Fig. 10).

For in-plane buckling problems, each cycle of Newton-Raphson re-

quired about one second of computer time on an IBM 360-75 system. Usually

two additional cycles of Newton-Raphson sufficed to decrease the residuals

to less than 0.05 percenL of their values computed at the end of the first

cycle. In the computations, only two load increments were needed to arrive

at the vicinity of the bifurcation point for H/L = 0.25, and three load

increments for H/L = 0.50.
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5.3.3. Two Dimensional Arches with Clamped Ends

Considerable analytical and experimental work has been done on

shallow clamped arches. Gne of the sample problems in this study was solved

for comparison with the experimental work of Gjelsvik and Bodner (1962) and

the analytical work of Schreyer and Masur (1966) on shallow arches under

concentrated loads. As may be seen from Table 3, the comparison with the

results given by Schreyer and hasur is quite good. The agreement with the

experimental work of Gjelsvik and Bodner is not as close, but there are

uncertainties in the experiments involving support conditions, modulus of

elasticity, loading and dead weight of the arch, It is appropriate to

point out that Gjelsvik and Bodner recorded the buckling load as a maximum

on the experimental load-deflection curve whereas, the buckling loal com-

puted here is of the bifurcation type and occurs after the limit point (see

Fig. 9(a)) on the load-deflection curve. Schreyer and Masur noted that

arches with certain rise-to-span ratios exhibit Lhis phenomenon of bifurca-

tion buckling after P falls off from the value at a limit point. As

expected, extension of the centerline is significant for shallow clamped

arches, as may be seen from Table 3.

Results are also presented for a rather steep clamped arch

(H/L = 0.25) which does not buckle but rather maintains a symmetrical

configuration during the loading process (see Fig. 9(b)).

5.3.4. Buckling Loads and Displacements for Three-Dimensional Arches

Table 4 gives non-dimensionalized data for the buckling loads of

four stmple problems of out-of-plane buckling of initially planar arches.

L
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No resulto were found in the literature with which to compare these results

directly. However, Timoshenko and Gere (1961) present some results for

the out-of-plane buckling of a uniformly compressed arch which seem con-

sistent with the results obtained here.

For a given H/L, the simply supported arches have a higher buckling

load than the clamped arches, although the clamped arches are initially

stiffer. As may be seen from Figs. 10 and 11, all the arch members examined

in this study had reserve load carrying capacity after the buckling load

was reached.

In Table 5, results are given for an arch with a section devised

so that it first buckles in the plane and, upon continued loading, later

buckles out-of-plane. To conserve computer time, 40 points on the arch were

used in this problem instead of 100 in the numerical integration process.

This is the reason for the slight discrepancy between the results presented

for this problem and for the two-dimensional problems. Figure 6(a) is a

schematic of what the member cross section might be in order to have the

required relationships among the three rigidities.

5.3.5. Lateral Buckling of I-Beams

Results are given in Table 6 for the lateral buckling load of a

clamped I-beam under a uniform load. As may be seen from Table 6, the

result is in excellent agreement with the previous work by Austin, Yegian

and Tung (1957). The suppression technique is used here to derive these

results. It appears that the lateral buckling analysis of most rolled beams

may proceed straightforwardly as an initial value problem without resoiting
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to use of the suppression technique. Allowable stresses and deflections

preclude extremely long members which give rise to numerical difficulties.

When the rolled sections are used as arches, however, the loads can be

partially supported by normal forces. This makes possible a longer member

and increases the effect of unwanted growing solutions during the numerical

integration process.

Thus, there are cases in which some technique like suppression is

required in ordet to obtain accurate answers, even with double precision

arithmetic. The numerical difficulty arises when the net effect of warping

restraint on the torsional stiffness of the whole member is small. In this

case, the warping restrainit is only an edge effect. A long, slender member

is then indicated if a computation is to be carried out to indicate what

the consequences of growing solutions might be. The section of Fig. 6(b)

was used as a long beam and the lateral buckling load sought. Results are

given in Table 6 for the buckling load of the taember and are given in

Table 7 for a comparison of the behavior of the solutien versus the number

of suppressions used. As may be seen from Table 7, ten suppressions are

sufficient to ensure satisfaction of the boundary conditions while two sup-

pressions lead to diverging approximations.

Although results are not given here, as a matter of curiosity,

the beginning of the postbuckling curve for lateral buckling of an I-beam

under a uniform load was computed. For the particular member, the load

carrying capacity dropped off after buckling. This behavior seems quite

reasonable since the late- I buckling is accompanied by rotation of the

cross section, bringing thc su.aller flexural igidity into prominence.
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6. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

6.1. Summarv of the Computational Procedures

T - methods developed in this study for the analysis of buckling

and postbuckling behavior can be summarized as follows. A new method is

presented in Chapters 2, 3, and 4 for improving an initial approximation to

a bifurcation point on a nonlinear load-deflection curve. In addition, an

approximation to the eigenvector is generated and improved simultaneously

with the prebuckling confibiration. The initial stages "f postbuckling

are investigated by adding a multiple of the eigenvector to the prebuckling

configuration at thc onset of buckling. Subsequent postbuckling behavior

may be examined by the application of the standard Newton-Raphson procedure

as described in Chapter 3.

TY- numerical methods introduced here for solving buckling and

postbuckling problems involve two mod' ications of the ,,sal Newcoai-Raphson

technique. The first of these modifications extends the Newton-Raphson

technique to Lhe simultaneous improvement of eigenvalues and eigenvectors

when there is no difficulty in computing changes in the prebuckling config-

uration accurately. As indicated in Chapter 2, a difficulty oc'.urs, in

general, in the vicinity of bifurcation points where the equations specifying

changes in the prebuckling configuration become ill-conditioned. A second

modification of the usual Newton-Raphson technique has been devised to per-

mit calculation of changes in the prebuckling configuration in the neighbor-

hood of a bifurcation. In this variant of the procedure, the orchogonality

relation between the elgenvector and changes in the prebuckling configura-

tion plays an essential role.
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The suppression technique or some equivolent scheme may be neces-

sary when numerical integration procedures are used to solve eigenvalue

problems of plate and shell structures. It is well known that !he differen-

tial equations expressing the behavior of plate and shell structures have

edge effects as part of their solution. A technique such as thu shooting

method would be especially difficult to apply to such problems,

Althaugh the numerical examples were chosen primarily to demon-

strate the capabilities of the numerlca. technique, some interesting behavior

of vacious arches has been found. It appears that in some cases a more

flexible structure (in so far as prebuckling deformations are concerned) may

have a higher buckling load. This wsJ observed in the in-plane buckling of

an initially planar, simply-.supported arch under a concentrated load. When

extension of the centerline was permitted the buckling load was higher than

its counterpart when extension was restrained. Similarly, in the out-of-

plane buckling of an initially planar arch, for a given H/L, the si-aply sup-

ported arches had a higher buckling load than the clamped azhes. The ef-

fectiveness of the numerical techniques is indicated in a particularly

striking &anner by the somewhat artificial problem of the special arch member

discussed in Chapter 5 which buckled in its alane first and subsequently

out-of-plane. N3 difficulLy was experienced in following this complex load-

deflection path.

6.3. Recommendations for Further Study

The proposed method may be applied to many practical problems of

technical interest. Buckling and vibrations of thin curved members where
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initial stresses are present can be treated with minor changes in tae

computer coles developed in this study. In addition, nonlinear stress-strain

laws could be admitted where the problem precludes significant unloading.

The aetrod may also be extended to -igenvalue problems in plate

and shell type structures. The ger.eral procedure is unchanged. However,

the linearized problems must be treped by a technique for approximate

iolution of linear partial differential equations, rachcr than ordinary

differential equations.

Certain eigenvalue problems in -y:oscopic motion may also be

solved, as is obvious from Kirchhoff's kinetic analogue and the general

theory developed here (see Kirchhoff (1859) and Love (1927)).

The proble= of deciding which boundary condition to relav. when

generating the npproximate eigenvector needs -.ze study. A sure, but some-

what Inelegant, solution to this difficulty is suggested in Section 4.6.

I

.
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TABLE 1. INITfl.L VALUES AND RESIDUALS FOR CL4PED ARCH

Homogeneous Solutions Particular

Quantity Solution

1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0

S 5N 0 1 0 0 0 0 0 0
2

6N3  0 0 1 0 0 0 0 0

6M 1  0 0 0 i a 0 0 0 0

0 0 0 0 1 0 0 0
2

3M3  3 0 0 0 0 1 0 0

6P Q 0 0 0 0 0 Ib  0

Right-Hand-Sides of

Linearized Equations 0 0 0 0 0 0 0 R

aCorresponding initial incremental curvatures are computed by use of Eq. (3.14)

b--

Not really a.i initial value since it erters the computattons at concentrated
load in middle of member (Eq. (3.14))
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TABLE 3. IN-PLAINE BUCKLING LOADS OF ARCHES

Boundary Exterslon of HIL Pa2/E1I d2 /L Source
Conditions Centerline

Simply yes .25 12.981 .06815 present
Supported

Simply no .25 13.006 .06727 present
Supported

.'imply no .25 13.05 -
Supported

-imply no .25 13.0 c
Stupported

Simply yes .50 5.8703 .0976? present

Supported

Simply no .50 5.8685 .09746 present
Supported

Simply yesa  .50 6.54 ---- c
Supported

Simply yes .50 6.15 c
Supported (experiment)

Simply yesa  .50 5.6 e
Supported

Simply no .50 5.86 b
Supported

Clamped yes .044 71.866 .02565 present

Clamped no .044 77.777 .02206 present

Clamped yes .044 72.2 f

Clamped yes .044 63.7 g
(experiment)

aExtension of the centerline was permitted in deriving the prebuckling

configuration, but not in the elgenvector.

bSchmidt (1969)

CHuddleston (1967)

dLanghaar, Boresi, and Carver (1954)

eChen and Boresi (1961)

f Schreyer and Masur (1966)

8Gjelsvik and Bcdner (1962)
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TABLE 4. OUT-OF-PLANE BUCKLING LOADS AID DISPLACEMENTS
FOR SIMPLY SUPPORTED AND CLAMPED ARCHES

Clamped SImply-Supported

pa2/EI2 GJ d2/a pa2/EI2 GT d2/a

0.25 3.453 0.0007857 3.952 0.001389

0.50 0.6684 0.0003262 0.7701 0.0006080

TABI; 5. BUCKLING LOADS AND DEFLECTIONS FOR A SIMPLY-
SUPPORTED ARCH WHICH FIRST BUCKLES IN-PLANE
AND UPON INCREASED LOADING BUCKLES OUT-OF-
PLANE, H/L = 0.25, c = 0

In-plane Buckling Subsequent Out-of-Plane Buckling

Pa2/EI d2/L pa2/EI1 d2/L d3/L

13.040a 0.06648 12,70 0.07851 0.3562

aThis differs from the results for the in-plone buckling of other

two dimensional arches because fewer points were used here in the
numerical integration process.
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TABLE 8. MEMBER SECTION PROPERTIES

Out-of-plane buckling I 238.4 in 4 , 12 = 19.8 in , J .5065 in4

(12WF',I)
= . 4

In-plane buckling of I1  18.0 in , Area = 6.0 in2

simply supported arches

In-plane buckling of I = .5493 x 10-3 in 4, Area = .1875 in2

clamped arches

T

I
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A, Deflection

FIG. 2. QUALITATIVE FORCE-DEFLECTION CURVE
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(a) Simple Support (b) Clamped SuDport

FIG. 3. TYPES OF SUPPORTS FOR ARCH MENBERS
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FIG. 4. TYPICAL ARCH MiEMBER
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(a) Schematic of Symmetrical
Prebuckling Configuration

P

rb) Schematic of Anti-Symmetrical
In-plane Buckling Mode

FIG. 5. TYPICAL IN-PLNE BEHAVIOR OF
SIMPLY SUPPORTED ARCH
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APPENDIX A

SOLVABILITY OF THE BASIC EQUATIONS OF THE METHOD

I- A.l. Case of a Single Root

Consider the method proposed in Chapter 2 as applied to the

- ~ determination of the bifurcation point and corresponding eigenvector 0 4 the

algebraic systemI-

AX= X BX (A.1)

where for purposes of this discussion, A, B, and X correspond to the onset

K of buckling. At buckling, both A and B are assumed to be self-adjoint and

T- B is taken to be positive definite. The side condition, corresponding to

Eq. (2.6) is taken as

X T B6 X = 0 (A.2)

I At the buckling point, the coefficient matrix given by th,' left-hand-side

of Eq. (2.3) and Eq. (A 2) is

TB

I Cj- . (A,3)

L-x I B_,_0

where X is the buckling load and xI is the corresponding eigenvector.cr

The basic method will fail if the coefficient matrx C of Eq. (A.3),

used in the computE tion of the increments of an approximate eigenvalue and

I-
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egenvector, is singular. It is expected that if this occurs, the singu-

larity will exist at exactly the prebuckling configuration given by A, B,

and Acr* If the order of the original problem is of order n, then C in

Eq. A.3 is a symmetrical matrix of order n+l.

The matrix C in Eq. A.3 will now be shown to be nonsingular by

a consideration of the eigenvalues of the auxiliary system

Cy=A Dy (A.4)

where

D=L. (A.5)

It may be verified by direct substitution that the eigenvectors Ym,

(. = 1 ...... n + 1) of the system given by Eq. A.4 are

I-
0 ,0 ,(k = 2. ...... n) where the xI and xk are

eigenvectors of Eq. (A.l). The 2orresponding eigenvalues 7 of Eq. (A.4)

are 1, +1, and (Ak - X ). The eigenvectors of Eq. (A.1) are found by con-

sidering A and B constant at the prebuckling configuration corresponding to

the onset of buckling, and are assumed to be normalized with respect to B.

It is not difficult to show that the determinant of C is equal to

the product of the A's multiplied by det (D). Since the latter is equal to

det (B) which is positive, then det (C) is nonzero provided none of the X

are zero. Only in the case of a multiple root can a A be zero. Thus, if

J_
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there are no multiple eigenvalues of the original system given by Eq. (A.l),

the basic method proposed encounters no numerical difficulties associated

with a singularity of C.

A.2. Case of a Double Root

The existence of a double root of Eq. (A.l) (say X = A ) implies

that the matrix C in Eq. (A.3) is singular at the bifurcation point. his

singularity may be removed by the following computational sequence. Two

independent eigenvectors are generated by specifying two side conditions for

each eigenvector. The two eigenvectors are denoted here by x1 and xK and

their increments by 6xI and 
6xK. The side conditions for 6x1 are

T T

xK B 6x= 0 x B 6x 0 (A.6)
K 1

and the side conditions for 6xK are

x 6x = 0 , T B 6x = 0 (A.7)
TxKK lBx=

The specification of the two side conditions results in the fol-

lowing coefficient matrix for the equations determining the incremental

changes in the two eigenvectors

1 C 1 -jc (A.8)

[ T

L K :0
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where D is given by Eq. (A.5), C is given by Eq. (A.3), and yK * x-0 -j •
K ,. 0 )

The coefficient matrix C has one more row than column, but as indicated by

Koiter (1945), the equations which give rise to C are all valid at the

bifurcation point. An independent set of equations with a nonsingular

coefficient matrix may be derived by premultiplying C by CT. The result

of this multiplication, which amounts to an application of a least squares

technique, is

-IT- T T
CC= C C + D yKyK D (A.9)

The object is to show that the coefficient matrix in Eq. (A,9) is

nonsingular. The eigenvector YK corresponds to a zero eigenvalue of the

matrix C of Eq. (A.4). As shown in Section A.l, the remaining eigenvalues

of C are nonzero. The matrix C TC in Eq. (A.9) has the same eigenvectors as

C. It follows that the eigenvalues of cTc are the squares of those of C.

T
Now consider the matrix G = DYKYKD in Eq. (A.9). Direct substitution yields

the result

G y K = 1 D yK (A.10)

From Eq. (A.10) it may be seen that the eigenvector K is also an eigen-

vector of G and the corresponding eigenvalue is unity. The matrix G is

constructed in such a way that its remaining eigenvalues are zero since it

is a symmetric matrix of rank one. The remaining eigenvectors of G may

therefore be taken the same as those of C.
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T T
Thus both matrices C C and DyKyKD in Eq. (A.9) have the same

eigenvectors. The eigenvalue of the sum of two matrices having the CsRme

eigenvectors is merely the sum of the eigenvalues of the individual matrices.

It follows that the eigenvalues of TC Care those of CTC except for the zero

eigenvalue which becomes + 1 (from the matrix DYKYTD). Since all the

eigenvalues of C are nonzero, it is nonsingular and the method proceeds

without difficulty.

12

Ii
I
I-

IL

I

V
!
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APPENDIX B

SOLVABILITY OF THE EQUATIONS USED IN DETERMINING ACCURATE CHANGES
IN THE PREBUCKLING CONFIGURATION NEAR A BIFURCATION POINT

The linearized operator used to compute changes in the prebuckling

configuration becomes singular at bifurcation points, as has been noted by

Thurston (1968). This singular operator is denoted here by D where

D=A -AB (B .1)
cr

The discussion here will be limited to the algebraic eigenvalue problem so

that A and B are matrices which define the prebuckling configuration at

the onset of '.uckling and, Xcr is the buckling load. The matrices A and B

are assumed to be self-adjoint and B is taken to be positive definite.

A technique has been discussed in Chapter 2 for removing the

singularity from D. Tt is the object of this Appendix to show that the

resulting coefficient matrix is indeed nonsingular. As indicated in

Chapters 2, 3, and 4, a side condition is appEnded to the basic system.

This side condition specifies that changes in the prebuckling configuration

are orthogonal to the eigenvector and may be expressed formally as

T
xT B y = 0 (B.2)

where x1 is the eigenvector corresponding to the singularity of D and y is

the change in the prebuckling configuration. This side condition leads

to a new coefficient matrix D given by
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= - Ac  (B.3)
x B

which has one more row than column. As mentioned in Chapter 2, all these

equations giving rise to are valid at the bifurcation point.

A consistent set of equations with a nonsingular coefficient matrix

Is derived using the least squares technique:

DD (A - Xcr B) (A - Xcr ) + Bx1x1 B (B.4)

The metrix given in Eq. (B.4) may be shown to be nonsingular by an argument

exactly parallel to that given in Appendix A, Section A.2 for the case of a

double eigenvalue.
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APPENDIX C

ENSURING ORTHONORMALITY OF THE DIRECTION COSINES

The particular technique used in this study for handling the
I

geometry treats each of the nine direction cosines as an independent quan-

tity during certain stages of the numerical computations. Since the j
direction cosines are required to form an orthonormal set, it is necessary

to enforce this constraint in some manner. The method for ensuring ortho-

normality of the direction cosines is outlined below.

Orthonormality of a set of direction cosines U requires that

U UT = I (D.1)

where I is the identity matrix, Substitution of an approximately ortho-

normal set of direction cosines, U a into Eq. (D.1) yields

1i UT = I + e S (D.2)
aa

where S is a symmetric error matrix whose individual elements are presumed

to be of order urity and e is small. A correction matrix C is inf:oduced

such that

U + C = U (D.3)a

The matrix C is, of course, not unique. A convenient choice is

C = 1/2 e S U (D.4)
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I.

Iv By direct substitution, it may be shown that Eqs. (D.3) and (D.A) satisfy

2
Eq. (D.2) to terms of order e . Since the quantity U in Eq. (D.4) is not

known, U is used as a first approximation to U. Equation (D.4) becomes
a

C - 1/2 e S U (D.5)ra
Equation (D.3) may be used to describe an iterative process where

{ U is interpreted as the latest approximation and Ua as the previous approxi-

mation to the required orthonormal set. Substitution of Eq. (D.5) into

S-Eq. (D.3) and rearrangement yields

U = (I - 1/2 e S) U (D.6)
a

At a particular iterative step, the value of U computed in Eq. (D.6) becomes

Ua for the next step. When the coefficient e becomes small enough, the

correction process is terminated. This correction process is necessary at

each integration point along the member.

The correction process discussed above results in a new set of

direction cosines which is n t derivable from the first derivatives, i.e.,

I

ds + ej, (i, j = 1, 2, 3) (D.7)
J ds

The following computational scheme was devised to ensure that Eq. (D.7)

is satisfied. The corrected direction cosines are substituted into Eqs.

1 (3.3) and new first derivatives computed. A quadrature of these first

derivatives yields new direction cosines consistent with Eq. (D.7).

1'
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Residuals are computed from Eqs. (3.3) using the direction cosines from

the quadrature. The residuals are then used to drive the linearized

geometric equations of Chapter 3.

This technique has been implemented as part of the solution of

the geometric equations of Chapter 3. Before this technique was devised,

it was not possible to achieve glcbal equilibrium even though the residuals

in the differential equations were small.

The effect of the technique is to transfer the residuals in

Eq. (D.2) back to the geometric differential equations, those of Chapter 3.

That is, a residual of order e in the algebraic equations results in a

residual of crder e in the differential equations. The application of

Newton-Raphson to the differential equations gives rise to changes of

2order e in the direction -:osines leading to new residuals of order e in

the direction cosines.
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