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ABSTRACT

for an object at sea comprises a major class of problems in naval
warfare. This thesis presents in some detail Koopman's classic two-

region and continuous search models, along with the n-region discrete

model which provides some continuity between the two. Brief summaries

of four of the more important extensions to the basic theory are also

included.
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I. INTRODUCTION

A major class of problems in naval warfare cnnqdqtr nf thn"a

involving the search for an object at sea, the position of which is
unknown but is distributed in accordance with a known law of

probability. The question of interest to this thesis is how to

allocate available resources (or effort) in a search of this type,

as for an enenl submarine or a downed pilot.

Early research was done by B. 0. Koopman who, in 1946, wrote

up the results of studies performed by what would later be known as

the Operations Evaluation Group (OEG) of the United States Navy [5].
His models continue to be the basis for further studies into search

theory, and it is, therefore, natural to begin any paper on allocation
of searching effort with a derivation of Koopman's original model.

Preceding page blank
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II. KOOPMAN'S TWO-REGION MODEL

Koopman began the study of search effort distribution with the

simipcbL tiab; �unsider awo areas in either one ot wnlcn an object

may be located with a certain prnhahility. The initial assu..mtion

to be made in this situation is that the random search model will

be used to describe the search, regardless of the actual searching

pattern used. This is a conservative yet realistic assumption since,

practically speaking, any search, regardless how systematic, has a

certain amount of randomness inherent in it due to navigational and

other errors. The results obtained using this model are fairly

simple and require no further assumptions concerning the particular

detection law except for the observer's sweep width.

A review of the development of the random search model is an

essential basis for a full understanding of Koopman's development.

A. DEVELOPMENT OF THE RANDOM SEARCH MODEL

It is assumed that the stationary target is equally as likely

to be in any one location within the given search region of area A

as in any other (i.e., the target is uniformly distributed in A).

It Is assumed, further, that the searcher has no set plan for

obsp; tion.

.- veral definitions are necessary at this point:

X). the lateral ranoe for a certain observer and target in
the existing environmental conditions. It is a graph-
Ical representation of the cumulative probability of
detecting a single target passing at some lateral range,
X, from a particular detection device under given
envi ronmental conditions.

L. .. the path length of t' observer in A, which is divided
into N equal segments each approximating a straight line.
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L/M... the length of each of the N path segments. By the
random search assumption, each is independent.

W . the sweep width of the observer, equal to the area
under the lateral range curve. (J-F u

Rm. . . the maximum lateral range from the observer at which

the target is detectable.

Let: event A be the event that the target is in area A,

event B be the event that the target is detectable
along any segment L/N (i.e., that it lies within the
area L/Nx2 Rm)

event C be the event that the target is detected
along the segment L/N. Then T is the event that it
is not detected along L/N.

event D be the event that the target is detected.
Then 6 is the event of non-detection.

It is to be understood that event A is a condition throughout

the following:2

P(, e) =-'A-

M(-.IB.u = m f w
-M 2Rur

Thus,
WL

Nn ( C) I l wc .P(h) i o n t e

•AL

IL
When ( ) is small, which is most often the case:

N A N A
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So,

PCb)

and finally, 

1
P( I A [Equation 1]

At this point, the condition on event A has been inserted for

a reason which will soon be evident.

One final assumption which should be noted is that 2mn<<L/N,

thus permitting the overlap of segments to be disregarded

IL

The expression T7 is called the coverage factor, and measures

time aipount of effort expended in searching the area A.

It should be noted that by the very nature of the observer's

random path selection, the probability of detecting a target within

a certain area, A, given that it is in area A, will approach, but

never quite equal, one. In other words, the observer can never be

certain of entirely covering A with the 2Rm-wide swath of coverage

he is cutting out along his search path L, due to the possibility

of crossing an area already searched.

B. DERIVATION OF THE TWO-REGION MODEL

In Koopman's simplest model it is known that:

(1) A target is located within one of two regions of areas
A, and A2 with probabilities p1 and P2 respectively,

where: P1 + P2  1, Pl>0, P2 >O.

(2) The target is stationary, which implies P1 and P2 are
constant.
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(3) The target has a uniform distribution in whichever
region it is located.

(4) L, which is the observer's total path or track length
is such that: L-LI +L2 , where L and L2 are the track

iengtns in AI and A2 .j

A good measure of etfort available is the length of track along

which the observer can sedrch. Since a maximum L exists and is

known, the problem to which this model should provide an answer can

be stated as: What is the best, or optimal, distribution of L

between A1 and A2 such that the chance of detecting the target is

as large as possible?

Using the rvents A and D defined previously, it is a fact that:

NO(t = V(FR) -*IA

In the two region model:

P1 - P(target is in A1)

P2 - P(target is in A2 )

and the random search equation becomes:

F(D1A I A) Pe

Thus, the mathematical statement of the problem is as follows:

maximize p)

subject to: L *'-i --

The objective function may be simplified:
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I
Thus

(D) - e - e [Equation 2]

Lettina L =x and I=I-I _t-v + m , ., .,

IIof [Equation 2] can be converted to an equivalent minimization

problem, namely: -Wx(-

minimize + ,

subject to: 0 x -e- L

This problem may be solved both graphically and analytically,

the latter of which will be followed in this thesis, though using

a method somewhat different from Koopman's, si ce graphs soon become

useless when the model is extended beyond two regions. Koopman's

graphical solution is useful, however, as an aid to understanding

Just what needs to be done in optimizing the allocation of search

track as a measure of searching effort in this simple case, and may

be found in reference [5].

In order to solve this minimization problem using the Lagrangian

approach, the inequality constraint must first be gotten rid of.

This can be accomplished by letting x=u 2 and adding a slack variable,

so that the problem becomes:

minimize A (u)= ,e' + -

subject to: u + L L

The Lagrangian function is:

1* 10
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For which the following necessary conditions must hold at a

stationary point:

(2) (1))

(3) L - = 20Lk o(

From (2), if sVO, then X=O, and from (3), uf'(u 2 )=0. This in

turn implies that either u=0 (x=0), or f'(u2 )=f'(x)=0.

Again from (2), it might be that s-0. Then from (1), u2 -x-L.

Hence, there are three cases to be examined:

Minimum at ja' x=0.)f'(x-0 )0
b xL~f' (x=L) c 0
c) x ) f'a(x)=0

These cases may be visualized most readily be referring to

Koopman's graphical approach in [5].
Since, 71, n +

= ~4 le 0 *Le

Case (a): if 3 a minimum at x=O0f'(0) O (the curve depicting

f(x) can slope upward or be level for any x k[0, L] as x goes from

0 to 1). -W-0 -VJ L-0

Now, Vr

Pt11A



or, -t

Thus,

A- , "[Equation 3]

Case (b): ifl a minimum at x=L~f'(L)4O.

By a similar exercise:

>e_ [Equation 4]

Case (c): if-' a minimum at x ) f'(x)=O, this value of x must

be found.

Le t - j- -
e

In this equation

By transposing,
.-L

or,

Note that,

e e
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Taking the natural log of both sides,

1

Multiplying both sides by W and transposing yields:

In this equation,

Therefore, in the case where f'(x)-O, the minimum value of

f(x) is at:

A, A ,, + ' A_ .
or,

Ak-tAA W A,(Equation 5)

It is obvious from the above equations that there exists one

point, x, in the interval [0, 1) which minimizes f(x) and in turn

maximizes P(D) subject to the constraints on track length.

Perhaps more important, however, note that [Equation 3] and

[Equation 4) set down threshold values for and , which,

following Koopman's example, will be defined as the probabili t y

densities for the two regions, and labeled r., and R, respectively.

These values, then, are such that unless exceeds the value P, A,

all searching effort should be concentrated in A2 , and likewise,

if A2 should be ignored and all effort sent to A1 .

13
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I

At this point, a final simplification of notation is necessary

in order to clarify the preceding argument. Note that a better

measure of searching effort than merely the observer's track length.

L1,in area Al, is the area swept within that region, or WL,. Thus

tie expressions:

are defined by Koopman as the density of search effort in the two

regions. Finally, the total searching effort will be defined as

follows for the two-region case:

§=As 0, -+A3,01 W( LjtL.%) = WL

where 9I, 02 >,0, and the total area is A-AI+ A 2.

In sumnary, then, for the two-region search model, if:

?. I •.<-e02 [Equation 31

then all searching effort should be confined to A2. t i.e. L%-L).

If: "0*
* e [Equation 4']

then all effort should be concentrated In A1. (i.e. LaL).

If however,

el> e e
[Equation 51 holds. So, by replacing x by L1 , and by use of the

preceding simpler and more meaningful definitions, the optimal

distribution of search effort between -the regions may be obtained as

follows:

14



Substituting,
ii ~A A, &

- L AJ ' . 1
W

Huitipiying both sides by A1,

A, •A (A e ,

Noting that A2-A-A1 and substituting,

Finally,

[Equation 5']

and similarly,

Equations 3', 4', and 5' are the results Koopman obtained in

his study of a simple bto-region searching situation, and those

upon which most further work by IKoopman and others in search theory

is based.
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III. M1 n-IIEGION DISCIRTE MODEL

The two-region search model can be fatrly readily extended to

a ' tut' z;...I..1. vin ;. On: .. 1_C ;nv :%.m dt.4... n! t! ens nnc gn

be modified as follows: I
A,. . . area of the 1th region

L1. . . length of the observer's track in Ai.

Pi. . . probability that the target Is in A1.

Still assuming that the search is random, the probability of

detection becomes:

and the n-region problem may be stated as:

maxi mi ze TO(!) -? -

subject to: . LL *1

This should be compared with the mathematical statement of the

two-regi on problem.

By an argument analogous to that in the two-region case, it

becomes obvious that either all the available searching effort (•)

is divided up among all of the n reginns, or there exists some sort

of threshold value for each region below which no effort should be

expended In that region. So, Kuhn-Tucker conditions are applied

to the problem:

ml!:imize . sZ e

subject to: j L.-L

16



or, letting xi - L, as before:

minimize ~ ~

subject to: X_ 1v \

U- I A V

The technique for solving this problem by using the Kuhn-Tucker

conditions is set forth in [13], and it is sufficient to the purpose

of this paper that only a brief mention be made of the method.

A solution -o the minimization problem above is obtained by

finding a saddle point of its Lagrangian,

In other words, by finding x* and X* such that,L" (">,-' 4L(-~ ) 4• L • ( X'

Necessary conditions for the existence of such a point were

found by Kuhn and Tucker to be:

also,

where

and b

For the problem at hand, with convex objective function and concave

constraints, these conditions are also sufficient.

17



I
The solution of these conditions for the problem stated above

gives the following results for the amount of effcrt to be expended

In any region, i.

Letting J*- maximum P(D), there exists a dual variable

Obx such that:

w ý
(a) I, then x, - 0

(b) if , then x w- -- - W P

Note that Nis the threshold value of A. , which equals Je,.

to be more consistent with prior notation, below which no effort is

to be expended in region 1.

18



IV. A CONTINUOUS MODEL

It is a simple step from the n-region discrete model to a

continuous one; n will be permitted to increase without bound, hence

each Ai approaches zero in the limit. Again, some modification of

previous notation is necessary:

WLL
W -p- similar to the two-region search density.

Ai = /-xy , since it represents a two-dimensional area.

As a consequence of the breaking down of the notation into one-

dimensional quantities, the subscripts which previously denoted areas

are inconsistent and will be replaced by double subscripts, each

representing a comhponent in either the x or y direction of the two-

dimensional Cartesian coordinate system. Hence, each of the following

identities is defined:

M - , as defined above,

where the single subscript, denoting a region, is not to be confused

with the first letter of the double subscript, denoting only the

x direction.

The continuous problem, then, is derived as follows:

1,,f 7e!:() -%A

where: p(x,y) is the joint probability density, and

U(x,y) is the density of searching effort.

19



A mathenatical statement of the continuous problem is:

maximi ze 1) c ý-
OX --00.-pc

subJe c to: fý r c,•, .

This problem was originally treated by Koopman in [5] as a

problem in calculus of variations. Since 946, however, new

mathematical methods have evolved whi'.i can be used in this case.

In a report by J. Taylor [11-, Koopmnan's problem is solved by the

Pontriagin Maximum Principle.

Consider, for clarity, the one-dimcnsional continuous problem:

maxime X-,,,

subject to: (- AOX

Note that the two-dimensional problem which has been considerad

up to this point, may be treated in the same manner, though the

details become complicated, so nothing is lost in considering the

latter.

In order to derive a solution to the above problem by the

maximum principle, an equivalent problem must be formulated. Defining

a new state variable, y(x), equal to the cumulative search effort

expended for X 4,x:

20



the problem becomes:

maxiii ze I

subject to: '

where O(x) >-O,

and y(xu -- )=O, y(x= +-)=

The solution is, briefly, as follows:

the Hamiltonian is:

and J* Is defined as in the n-dimensional case:

Thus the dual variable <0(-A) O, since y(x) is the cumulative

search effort, and since by expending more than the optimum effort,

the maximum P(D) can only be decreased. Note that X(x) is a constant

since 0 .

The problem now becomes:

maximize 'At "A

subject to. 0 (-A) 0

which is simplified by letting x- -u where u>O.

By applying the necessary and sufficient conditions:

(a) 0(x)=O when '-

(b) P(x)>O determined by • " =

when <0

rhe optimal distribution of searching effort is found to be

dependent upon a threshold value ol p(x) called u>O such that:

(1) for p(x)<u, V(x)-O

(2) for p(x)*u. O(x)- .,% ( )).

21



where u is determined as follows:

Defining n = { -x J V4 ( -A > u is chosen such that:

CP-ý

The three basic models for the allocation of searching effort

have now been described in some detail. The two-dimensional discrete

and the continuous models were originally formulated by Koopman

in 1946, while the n-dimensional discrete case simply providcs an

easy passage between the two. As stated previously, numerous

extensions of Koopman's basic models have been derived since his

original paper, and brief descriptions of some of the more important

of these will occupy the remainder of this thesis.

22F. 4
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V. SOFE EXTENSIONS TO THE BASIC THEORY

A. OMARES AND COOPER. 1958

Oiarnes and Cooper state the objective of showing that sea'ch

theory and mathematical programming can be combined to treat

broadcr classes of operations research problems.

Koopman's discrete allocation problem Is treated as a problem

In convex programming, the solution of which is obtained by

application of the Kuhn-Tucker conditions, and a note is made'on

the exterhion of this method to the continuous case.

The Charnes and Cooper model is an important contribution to

search theory in that the algorithm is solvable by computer.

B. DE GUENIN, 1961

De Guerln generalized the Koopman models by developing an

algorithm in which no assumption is made regarding the detection

probability function since, as he points out, while the assumption

of the negative exponential (random search) function is adequate for

military search problems, there are numerous non-military applica-

tions of search theory,such as mine prospecting or oil exploration,

where this is invalid.

De Guenin. then, expresses the probability of detection as a

function of the density of search effort, that is ett(A)], and the

generalized problem becomes:

maximize -- =

subject to: T d -

23



IJ
where: P is defined to be the overall probability of success of the

search, and g(x) is to be Identified with p(x) in Koopman's continuous

model. Necessary conditions for the optimal distribution of searching

effort are developed by a finite difference approach, although today

the proble,, may be solved by a routine application of the Pontriagin

Maximum Principle [11].

C. DOBBIE, 1963

Dobbie developed sufficient conditions for the additive property

of the optimal distribution of search effort noted by Koopman in 1946.

That is, the property that the distribution of effort, call it 0*(x),

which maximizes the detection probability with a given amount of

effort, I , is in fact the sum of the optimal distribution of some

part of the effort, E,, and of the conditionally optimal distribution

of the remaining effort, E2 , given that the target has not been

found with El. The author then derives the optimal distribution

working from this property, which is, in fact, nothing more than the

Principle of Optimality fron Dynamic Programming.

D. POLLOCK, 1964

Pollock presents a Bayesian approach to the problem of allocatinga

search effort. Decisions are made in a sequential manner, depending on

what has been observed up until that time. He has determined the

optimal sequential strategies for a two-region discrete model. In

Koopman's original report, [5], it is Interesting to note that he had

shwon ,iothing was to be gained by such an approach since, in the two-

region search, if additional effort, ( , is added to ý after the

search has failed to detect the target, and if this is distributed

24



optimally between A1 and A2 , the total effort applied to the two

regions is 0 + V and 02 . q. respectively, which by use of
ar.. . -- 9l _ .1 ... ,_i-J .. l, L•.~ ** Ai~,•- 45.. .t.l w4 ;, h na•~ u* haan

had the original effort been + ÷ with no prior knowledge of

search results.

25



I
VI. CONCLUSIONS

The purpose of this thesis has been to bring together under a

single cover the classic models for determining the optimal allocation

of searching effort, and to give a v'cry brief descrip.t4m of several

of the more important recent developments in search theory. An

excellent listing of further published works dealing with the

allocation of searching effort can be found in reference [3].
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