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ABSTRACT
The nrahlam nf ontima)ly aVlgeating svatlable efforis tu searci
I . for an object at sea comprises a major class of problems in naval

warfare, This thesis presents in some detail Koopman's classic two-
region and continuous search models, along with the n-region discrete

mode1 which provides some continuity between the two. Brief summaries J

of four of the more important extensions to the basic theory are also
included. '
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I. INTRODUCTION

A major class of problems in naval warfare consists nf thaca
involving the search for an object at sea, the position of which is
unknown bui 1s distributed 1n accordance with a known law of
probability. The question of interest to this thesis is how to
allocate available resources (or effort) in a search of this type,
as for an enemy submarine or a downed pilot.

Early research was done by B. 0. Koopman who, in 1946, wrote
up the results of studies perform:d by what would later be known as
the Operations Evaluation Group (OEG) of the United States Navy [5].
His models continue to be the basis for further studies into search
theory, and it is, therefore, natural to begin any paper on allocation

of searching effort with a derivation of Koopman's original model.

Preceding page biank




II. KGOPMAN'S TWO-REGION MODEL

Koopman began the study of search effort distribution with the
Siipiesi case: cunsider two areas in eitner one Ot which an object
may be located with a certain probability. The initial assumntion
to be made in this situation 1s that the random search model will
be used to describe the search, regardless of the actual searching
pattern used. This is a conservative yet realistic assumption since,
practically speaking, any search, regardless how systematic, has a
certain amount of randommess fnherent in it due to navigational and
other errors. The results obtained using this model are fairly
simple and require no further assumptions concerning the particular
detection law except for the observer's sweep width.

A review of the development of the random search model is an

essential basis for a full understanding of Koopman's development.

A. DEVELOPMENT OF THE RANDOM SEARCH MODEL
It is assumed that the stationary target is equally as likely

Wi T o

to be ir any one location within the given search region of area A
as in any other (i.e., the target is uniformly distributed in A).
It 1s assumed, further, that the searcher has no set plan for
obse: .. tion.
scveral definitions are necessary at this point:
P(X). . . the lateral ranae for a certain observer and target in
the existing environmental conditions. It is a graph-
{cal representation of the cumulative probability of
detecting a single target passing at some lateral range,

X, from a particular detection device under given
environmental conditions.

L. .. the path length of t' : observer in A, which is divided
into N equal segments each approximating a straight line.




the following:

LM, . . the length of each of the N path segments. By the
random search assumption, each is independent.

W . .. the sweep width of the observer, qual to the area
under the lateral range curve. ({ -FMM)

Rm. . . the maximum lateral range from the observer at which
the target is detectable.

Let: event A be the event that the target is in area A,
event B be the event that the target is detectable
along any segment L/N ({i.e., that it lies within the
area L/Nx2Rm
event C be the event that the target is detected
along the segment L/N. Then T {s the event that it
is not detected along L/N.

event D be the event that the target 1s detected.
Then D 1s the event of non-detection.

It is to be understood that event A is a condition throughout

2R, - BA
P‘B)= A B

]
Plcig)= ELF]) = T f Fid do = o=

Thus,

P(c) = P(c18) *+ P(g) = ﬁ

AR B

And, N N,'L..(\"!'L-'
Py=(1-55) =e e

When (%)) is small, which is most often the case:
NA

- WL A
A(‘ Na) = T NA




So, .
M3
P(®) = e
and finally,
-
Poiay= }-e A [Equation 1]

At this point, the condition on event A has been inserted for
a reason which will soon be evident.

One final assumption which should be noted is that 2Rm<<L/N,
thus permitting the overlap of segments to be disregarded .

HL
The expression A s called the coverage factor, and measures

ti.e amount of effort expended in searching the area A.

It should be noted that by the very nature of the observer's
random path selection, the probability cf detecting a target within
a certain area, A, given that it is in area A, will approach, but
never quite equal, one. In other words, the observer can never be
certain of entirely covering A with the_ 2Rm-wide swath of coverage
he 1s cutting out along his search path L, due to the possibility

of crossing an area already searched.

B. DERIVATION OF THE TWO-REGION MODEL
In Koopman's simplest model it 1s known that:

(1) A target is located within one of two regions of areas
A] and A2 with probabilities Py and Py respectively,

where: Pyt Py 1, p]>0. p2>0.

(2) The target is stationary, which {mplies Py and p, are
constant.




(3) The target has a uniform distribution in whichever
region it is located.

(4) L, which is the observer's total path or track length
is such that: L-L] +L2, where L] and L2 are the track

lengths 1in A5 and A,. }

A good measure of effort available is the length of track along ;
which the observer can search. Since a maximum L exists and is
known, the problem to which this model should provide an answer can
be stated as: What is the best, or optimal, distribution of L
between A] and A2 such that the chance of detecting the target is !
as large as possible?

Using the events A and D defined previously, it is a fact that:

P(p) = P(R) - P(bIR)

In the two region model:

|
py = P(target is in A]) g
Py = P(target is in Az)

and the random search equation tﬁt.:omes: .
P(p1a) = \-€e & f

..y‘\_.‘ .

P(otp)y = | ~€ ™ ‘

Thus, the mathematical statement of the problem is as follows:

maximi ze P(D) =P (l - C.H&') N Fa(\ - e‘%‘)

subject to: v, 4-\__2 =1

L,=0 , L, =0

The objective function may be simplified:

- Wiy . -wh,
P(D): Pt'f'\cﬁ *PA"T*CT,:_
__% —\UL&
= ptPa-pi€ -fa€
9




Thus
W] —~Why
Ly . )
P(D) = |~ piC - P € [Equation 2]
letting L.=x and | =1-1.et-y, for cimplicity, the mximization

of [Equation 2] can be converted to an equivalent minimization
problem, namely: - X ~W(L=-%)
mini?Tize Flx)=pe ™4 P2 LD
subject to: O €% < L
This problem may be solved both graphically and analytically,
the latter of which will be followed in this thesis, though using
a method somewhat different from Koopman's, si .ce graphs soon hecome
useless when the model is extended beyond two regions. Koopman's
graphical solution is useful, however, as an aid to understanding
Just what needs to be done in optimizing the allocation of search
track as a measure of searching effort in this simple case, and may
be found in reference [5].
In order to solve this minimization problem using the Lagranyian
approach, the inequality constraint must first be gotten rid of.

2

This can be accomplished by letting x=u” and adding a slack variable,

s0 that the problem becomes:

R -
minunize + (Ha)= P e b Pa€ Aa

subject to: ur+ st = L

The Lagrangian function is:

L('X,u)s\ = $) + A=)

10




For which the following necessary conditions must hold at a

statfonary point:

3\—- b Y kS
(1) L.‘\=5";:=L'u\-s =0

@ | 2L --2.2a=0 > sk=o

S "3
(3) L. =‘§‘E‘=2u¥!(u") -2u A

2u($(u)-2) =0

From (2), if s¥0, then A=0, and from (3), uf'(u?)=0, This in
turn implies that efther u=0 (x=0), or f'(u2)=f'(x)=0.

Again from (2), it might be that s=0. Then from (1), uz-x=L.

Hence, there are three cases to be examined:

b) x=L¥f'(x=L)&0

Minimum at §a x=0-‘>f'$x=0 20
c) xdf'(x)=0

These cases may be visualized most readily be referring to

- Koopman's graphical approach in [5].

—Wa ~w(L-%)
Since, (.,() =pe R+ P TR
W wil~x
_ - . .
$'(x) = -E?-‘ pie 45*2 Pae D is obtained .

Case (a): 1f 3 a minimum at x=0 f' (0) =0 (the curve depicting
f(x) can slope upward or be level for any x ¢[0, L] as x goes from

0 to L). o
Now, +"@=-"‘-’?.e—ﬁ'—+§re R.




0".

x A M
B B TR
Thus, o WL
P TR ‘.
7\— e P> N [Equation 3]
kS
Case (b):

ifd a minimum at x=L >f' (L)< 0.

By a similar exercise:

\g) E’%

7"‘ > -?3; [Equation 4]
Case (c): if 3 a minimum at x 9 f'(x)=0, this value of x must
be found.
Let

-wix = W(L-7)
) W e
flixy = - & ©e +4, e =0

In this equation
e W{L~%) "%l" B2
L -l A. =¢€ s < *

By transposing,

-wi x w - Wx
\i& e Ao L %; = _ﬁ? e f
A,
or. —wi ? -“‘.lz —wl
P‘L e A, - _L e Ve c A,
A, )
Note that’ A kﬂ\*“\.
—wa - Wa —Wx (‘k’.“’a,) -Wa \ AR
e "-e " =¢

12




Taking the natural log of both sides,
N RrA,
ol v = o B wwa ()
1
Multiplying both sides by W and transposing yields:
AA
( : ) Ll b 1 s
2 A,

In this equation,
Slag-sn]-&E-R)

Therefore, in the case where f'(x)*0, the minimum value of

f(x) is at:
e (BB Y - 1 %)
or,
A=A ﬁg (At R‘ ﬂ"‘:; 2. [Equation 5]

It is obvious from the above equations that there exists one
point, x, in the interval [0, L] which minimizes f(x) and in tumn
maximizes P(D) subject to the constraints on track length.

Perhaps more important, however, note that [Equation 3] and
[Equation 4] set down threshold values for %‘; and {‘: ,» which,
following Koopman's example, will be defined as the probability
densities for the two regions, and labeled ¢, and Ry respectively.
These values, then, are such that unless R, exceeds the value e
all searching effort should be concentrated in Az, and likewise,

if Q‘g e* A2 should be ignored and all effort sent to A.l

13
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At this point, a final simplification of notation is necessary
in order to clarify the preceding argument., Note that a better
measure of searching effort than merely the observer's track length,
Ly,in area Ay, is the area swept within that region, or WL,. Thus

the expressions:
Wi Wi,
¢| - -—A—; and ¢1= A*

are defined by Koopman as the density of search effort in the two
regions. Finally, the total seérching effort will be defined as
follows for the two-region case:

§ = A, A, 2, = V(L\*LA\ = WL
where §,, #,> 0, and the total area is A=Ayt A,.

In summary, then, for the two-region search model, if:

-y ..
e, & Q*e [Equation 3']
then a1l searching effort should be confined to A,. Cie. L,2L).
If: -@,
QA < Qe [Equation 4')

then a1l effort should be concentrated in A,. (ie.L,2L)
If however, -
- ; bl

[Equation 5] holds. So, by replacing x by Ly and by use of the

%,

preceding simpler and more meaningful definitions, the optimal
distribution of search effort between the regions may be obtained as

follows:

\ AR o o L
= gem, (B 55 S e )

14




Substituting,
L= _L(A\L "ﬁeg: n"‘e 1

T e i s o e

A '€,
AL ARy 0o\ ;
= A TTAw vty :
‘ 1

Muitipiying both sides by K']",

wly _ WL A i
il i _Al (D-e‘--.%ex\ =

Noting that AZ-A-A] and substituting,

B e L (AR A, - B Sne,)

Finally,

#,= O e -(Re +A, 2up ), %_
[Equatfon 5')

and stmilarly, Q
S, = B e, ~ (A\-Q\?‘ + A;‘QMQ,)*T

Equations 3', 4', and 5' are the results Koopman obtained in
his study of a simple two-region searching situation, and those
upon which most further work by Koopman and others in search theory

is based.

15
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I1I. AN n-REGION DISCRETE MODEL

The two-region search model can be fairly readily extended to

ad boakd
CAR 1)

an dacaVtida - wandan € o
CNACTEATE AVAR X1 g . -

Ig L}

- A mumnudnne dafind+tinne ~an
-« Giie Prleviwwe wes sise vewie -

be modi fied as follows:

Al. . . area of the ;th region

Li’ . . length of the observer's track in Ai‘

Pi' . . probability that the target {s in Ai'

Sti11 assuming that the search is random, the probability of

detection bacomes:
- NLL - NLL i

e =S eilr-e &) =\-,§ pie AU

iz

and the n-region problem may be stated as:
- —Wii

maximi ze o) = |- :2_-_7 P € "
subject to: 12;‘. Li=L
L, =0 for (=%, ..,

This should be canpan& with the mathematical statement of the
two-region problem.

By an argument analogous to that in the two-region case, it
becomes obvious that either all the available searching effort (%)
{s divided up among all of the n regions, or there exists some sort
of threshold value for each region below which no effort should be
expended in that region. So, Kuhn-Tucker conditions are applied

to the problem:
n —-WAy
mi s imi2e :{. e ™

suwject to: 2‘ L.=L
1=
La. 7,0 "ov- i‘\')l'- ..’V\

16




or, letting Xy = L1 2s before:

n - W
- .o AT
intmize  ¥(%) \Zz.' Pe
'S
subject to: 2. *i= N
i3t
. e~ | =l L.oon
X = O "o =N 3

The technique for solving this problem by using the Kuhn-Tucker
conditions 1s set forth in [13], and it is sufficient to the purpose
of this paper that only a brief mention be made of the method.

A solution ‘o the minimi zaﬂon problem above is obtained by

finding a saddle point of its Lagrangian,
w =W - "
L=, =2 pe w - A (x- :‘_E;"“)
Al

In other words, by finding x* and A* such that,
'y " » bl
Lix ") € LG )%) < Lx',2)
Necessary conditions for the existence of such a point were

found by Kuhn and Tucker to be:
Li>/o )1\-%-;0 x>0

also,
Ly &0© ‘ AlLs=c , X =0
L
where ‘%«'.
ﬂ'('xc Ra 1.\\’5’(')\, "\,‘\ Li =] i
(-1
aL dAn
and >
Ly =|.:
P
dAm

For the problem at hand, with convex objective function and concave

constraints, these conditions are also sufficient,

17
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The solution of these conditions for the problem stated above

gives the following results for the amount of effert to be expended

in any region, 1.
Letting J* = maximum P(D), there exists a dual variabie

«*
I S
ox such that:
Wet
(a)if'ﬁ'<7‘ » then x; = 0
W pi Y Wei
®) if B = A thenx, = 3 & R,

A¢

v p
Note that Ais the threshold value of —A% » which equals We;

to be more consistent with prior notation, below which no effort is

to be expended 1n region {.




IV. A CONTINUOUS MODEL

It s a simple step from the n-region discrete model to a
continuous one; n will be permitted to increase without bound, hence
each I\l approaches zero in the !imit, Again, some modification of
previous notation is necessary:

WL;
P; = i » similar to the two-region search density.

A{ = Qxbdy , since it represents a two-dimensional area.

As a consequence of the breaking down of the notation into one-
dimensional quantities, the subscripts which previously denoted areas
are inconsistent and will be replaced by double subscripts, each
representing a conponent in either the x or y direction of the two-
dimensional Cartesian coordinate system. Hence, each of the following
ldentities 1s defined:

Py = P

B; =21 » as defined above,
where the single subscript, denoting a region, is not to be confused
with the first letter of the double subscript, denoting only the
x direction.

The continuous problem, then, is derived as follows:
R -
‘lm sz‘a’ (\"C ’)A‘%A\J

Ax,0y >0 1 )

TT v (-

where: p(x,y) is the joint probability density, and
#(x,y) is the density of searching effort.

19




A mathematical statement of the continuous problem is:

maximi ze 7) p(xy) (\~ e 3‘) IR c\j

mvw) —ov -
subje ¢ to: f_z é (%9 I dy = [0
b;f x,y) =0 Vx,‘j
This problem was originally treated by Koopman in [5] as a

problem in calculus of variations. Since 946, however, new
mathematical methods have evolved whizi can be used in this case.
In a report by J. Taylor [11], Koopman's problem is solved by the
Pontriagin Maximum Principle.

Consider, for clarity, the one-dimensional continuous problem:
o)

maximize: j ?(ﬂ(\-'e-qﬂ)d«

P(x) -oO

subject to: }‘Rﬂﬂdm =&
T g 20 Vx
Note that the two-dimensional problem which has been considerad

up to this point, may be treated in the same manner, though the
details become complicated, so nothing is lost in consfdering the
latter,

In order to derive a solution to the above problem by the
maximum principle, an equivalent problem must be formulated. Defining
a new state variable, y(x), equal to the cumulative search effort

expended for X & x:
A

G = Y @ (7 dx

-ald

20




the problem becomes:

maximize

T e (1) dn
Pix) e

AY e
subject to: Ax T
where @#(x) =0,
and y(x= -«)=0, y(x= +=)= &
The solution 1s, briefly, as foliows:

the Hamiltonian is: . — g
H(x,qm 20 @) = p o (1-e7) + A e

and J* {s defined as in the n-dimensional case:

T = wanimen § o0 (1-e7"") an

ol )] —0

L]
Thus the dual variable ')(x)’;“;—(',,*( O, since y(x) 1s the cumulative
search effort, and since by expending more than the optimum effort,
the maximum P(D) can only be decreased. Note that A(x) is a constant

Axn _dM - o
since el .

3y
The problem now becomes:
maximize HU=%, “3\')‘ ) @)
BN
subject to: @(x) = O
which 1s simplified by'ietting Ax -u where us0.
By applying the necessary and sufficient conditions:

(a) @(x)=0 when 537:\'40

on - -6
(b) @(x)>0 determined by Hg = TE -~ Mm =

4 - P(x)
when gTé‘ = -fMNe <0 Va,8.
The optimal distribution of searching effort is found to be
dependent upon a threshold value of p(x) called u>0 such that:

(1) for p(x)<u, ¥(x)=0
{(2) for p(x)>u, @(x)= 2 ( t&g) .

21




where u is determined as follows:

Defining 0= { x| pta) = b\} , U is chosen such that:

(L) T
[ 2 (B)ox = | ponan = @
£ e
The three basic models for the allocation of searching effort

have now been described in some detail. The two-dimensional discrete
and the continuous models were originally formulated by Koopman

in 1946, while the n-dimenstonal discrete case simply providas an
easy passage between the two. As stated previously, numerous
extensfons of Koopman's basic models have been derived since his
original paper, and brief descriptions of some of the more important

of these will occupy the remainder of this thesis.

22
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V. SOME EXTENSIONS TO THE BASIC THEORY

A. CHARNES AND COOPER. 1958

T I S .

Chames and Cocper state the nbjective of showing that seavch
theory and mathematical programming ~an be combined to treat
broader classes of operations research problems.

Koopman's discmte_ allocation problem is treated as a problem
in convex programming, f.he solution of which is obtained by
application of the Kuhn-Tucker conditions, and a note is made on
the exten:;ion of this method to the continuous case.

The Charmes and Cooper model is an important contribution to

search theory in that the algorithm is solvable by computer.

B. DE GUENIN, 1961 .'

De Gueriin generalized the Koopman models by developing an j
algorithm in which no assumption is made regarding the detection !
probability function since, as he points out, while the assumption !
of the negative exponential (random search) function is adequate for !
military search problems, there are numerous non-military applica-
| tions of search theory,such as mine prospecting or oil exploration, Y
where this is invalid.

De Guenin, then, expresses the probability of detection as a

function of the density of search effort, that is 9[ ¢(ﬂ] » and the

generalized problem becomes: b
oo
- ) =
maximi ze P= -S.o I ?u . ?(‘b)
. ()
[ o]
subject to: S gt ox = &

i -~

gxy>0 V=%

23
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where: P {s defined to be the overall probability of success of the
search, and g(x) 1s to be fdentified with p(x) in Koopman's continuous
model. Necessary conditions for the optimal distribution of searching
evfort are developed by a finite difference approach, although today
the problem may be solved by a routine application of the Pontriagin

Maximum Principle [11].

C. DOBBIE, 1963

Dobbie developed sufficient conditions for the additive property
of the optimal distribution of search effort noted by Koopman in 1946.
That is, the property that the distribution of effort, call it p*(x),
which maximizes the detection probability with a given amount of
effort, $ » Is in fact the sum of the optimal distribution of some
part of the effort, E]. and of the conditionally optimal distribution
of the remaininu effort, EZ' given that the target has not been
found with E]. The author then derives the optimal distribution
working from this property, which is, in fact, nothing more than the
Principle of Optimality from Dynamic Programming.

D. POLLOCK, 1964

Pollock presents a Bayesian approach to the problem of allocating
search effort, Decisions are made in a sequential manner, depending on
what has been observed up until that time. He has determined the
optimal sequential strategies for a two-region discrete model. In
Koopman's original report, [5], it is interesting to note that he nad
shwon nothing was to be gained by such an approach since, in the two-
regfon search, if additional effort, : '. {s added to ) after the
search has failed to detect the target, and 1f this @ {s distributed

24




optimally between Al and 52. the total effort applied to the two !
regions is ﬂl + u{ and Gz ' G;. respectively, which by use of |

........... -~ ad s bbb 5 2o
ffquation 5') reduce o pracisaly the some values thoy would have haan

had the original effort been d « § with no prior knowledge of

search results,




VI. CONCLUSTONS

The purpose of this thesis has been to bring together under a
I single cover the classic models for determining the optimal aliocation
of searching effort, and to give 2 very brief deccrintion of ceveral
of the more important recent developments in search theory. An

excellent 1isting of further published works dealing with the

allocation of searching effort can be found in reference [3].
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