
United States
Naval Postgraduate School

THE SI S
APPLICATION Or A DATA STRUCTURING CONCEPT

IN A GENERAL- PURPOSE FACT-RETRIEVAL SYSTEM

by

Richard Joseph Petrucci

September 1970

TkZ& documeRnt haa been app'wved joA% pubUc te-
teahe and .6ate; U6 ditibution ia wnimited. /I

Application of a Data Structuring Concept

in a General-Purpose Fact-Retrieval System

by

Richard Joseph Petrucci
Lieutenant Commander, United States Navy

B.S., United States Naval Aca ,emy, 1961

Submitted in partial fulfillment of the
requirements for the degree of

MASTER CF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1970

Author

Approved by:

ChaiA Committee for Computer Science

i / Academic Dean

ABSTRACT

An on-line, general-purpose, fact-retrieval system is presented

which employs a classificatory data structuring technique. The

technique embraces the basic concept of hierarchical classification

of data and provides users with multiple avenues of access to a data

file. Additionally, the data file may be partitioned into unrelated

data sets.

2

TABLE OF CONTENTS

1. INTRODUCTION---------------------------------------9

E, INDEXING -- 1

A. UNIT-TERM INDEXING ---------------------------- 13

B. KEY -WORD-IN- CONTEXT INDEXING ---------------- 16

C. THESAURUS-------------------------------------- 17

D. HIERARCHICAL CLASSIFICATION ------------ ------ 18

E. FACETED INDEXING ------------------------------ 19

F~. AUTOMATIC INDEXING ---------------------------- 21

III. STORAGE --------------------------------- ---------- 23

A. FILE ORGANIZATION ----------------------------- 23

1. Sequential Organization ------------------------- 23

2. Chaining ------------------------------------- 24

a. Branching --------------------------------- 25

3. List Structuring ------------------------------- 28

B. FILE SEQUENCING ------------------------------- 28

IV. RETRIEVAL -------------------------------- --------- 30

A. FULL-FILE SEARCH ------------------------------ 31

B. SEQUENTIAL SEARCH ---------------------------- 32

C. BIINARY SEARCH --------------------------------- 32

D. DIRECT ACCESS SEARCHING ----------------------- 33

E. COMBIN4ED SEARCH PLA'1S ------------------------ 33

V. RETR1IEVAL SYSTEMS -------------------------------- 34

3

A. REFERENCE RETRIEVAL -------------------------- 34

B. DOCUMENT RETRIEVAL--------------------------- 35

C. FACT RETRIEVAL -------------------------------- 35

VI. DATA STRUCTURE FOR A FACT-,IETRIEVAL SYSTEM -- 37

A. DATA STRUCTURE -------------------------------- 38

1. Class Structure Representation ------------------ 38

2. Data Representation ---------------------------- 41

3. System Utility --------------------------------- 41

L. RETRIEVAL PROCESS ---------------------------- 42

1. Query Format --------------------------------- 42

2. Boolean Expressions --------------------------- 43

3. Alphabetic and Numeric Ranges------------------44

VII. SYSTEM STRUCTURE --------------------------------- 45

A. DATA FILES------------------------------------- 45

B. TREE-TYPE DATA STPUCTURES ------------------- 46

1. Data Cells ------------------------------------ 46

2. Structuring Process - - ---------------- 47

C. INDEX FILES-------------------------------------50

1. Characteristics of the Master Index ------------- 5

2. Constructing the Master Index ------------------- 52

3. Data Record Table ----------------------------- 57

D. INFORMATION FILE ------------------------------ 59

E. RETRIEVAL PROCESSOR-------------------------- 61

4

1. Query Types ------------------------------------ 61

a. Determining Data Base Partitions -------------- 61

b. Determining Format and Class Definitions ------- 62

c. Data Element Retrieval ----------------------- 63

d. Data Record Retrieval ------------------------- 65

F. ALTERING THE DATA BASE ------------------------ 67

1. Changes and Deletions --------------------------- 67

2. Addiions --------------------------------------- 67

APPENDIX A A LISTING OF SAMPLE RUNS MADE WITH

THE GENERAL-PURPOSE FACT-RETRIEVAL
SYSTEM -------------------------------------- 70

COMPUTER PROGRAM ------------------------------------- 76

BIBLIOGRAPHY -- 92

INITIAL DISTR ,UTION LIST -------------------------------- 94

FORM DD 1473 --- 95

5

Page blank

LIST OF FIGURES

Fiure

1. BASIC FLOW DIAGRAM OF THE INFORMATh.,N
RETRIEVAL PROCESS ---------------------------- 11

2. CONVERSION OF VARIABLE-LENGTH RECORDS
TO FIXED-LENGTH RECORDS USING THE
BRANCHING TECHNIQUE ------------------------- 26

3. ADDITION OF RECORDS TO AN EXISTING
BRANCHING STRUCTURE ------------------------- 27

4. PARENTHESIZED CLASS EXPRESSIONS AND
ASSOCIATED TREE STRUCTURE FOR THE
HIERARCHICAL CLASSIFICATION OF DATA -------- 40

5. DATA CELL COMPOSITION ----------------------- 48

6. TREE STRUCTURE COMPOSED OF 7DATA CELLS --- 49

7. TREE STRUCTURE FOR THE FORMAT:
"EMPLOYEE RECORD" --------------------------- 51

8. REPRESENTATION OF THE MASTER INDEX ------- 53

9. RESERVED RECORD IN THE MASTER INDEX
FOR FORMAT NAMES WITH ASSOCIATED DATA
CELLS AND FORMAT NAMES IN SEQUENTIAL
STORAGE --------------------------------------- 54

10. REPRESENTATION OF THE DATA RECORD
TABLE -- 58

11. RELATIONSHIP BETWEEN THE MASTER INDEX,
DATA RECO-j TABLE, AND SEQUENTIAL
STORE --- 60

7{

Page blank

I. INTRODUCTION

The term "information retrieval" and the initials "IR" were

coined by the editors of Fortune about ten years ago. However,

Vannevar Bush first formally declared the necessity for an informa-

tion retrieval discipline in his "As We May Think" article which was

written for Atlantic Monthly in 1946. The United States Government

and those people involved in Library Science were truly the first in-

novators of this discipline in the mid-fifties. Tht technological ex-

plosion being felt at that time prompted government agencies and

library scientists to search for more efficient systems for indexing,

etoring, and retrieving documents. Primary concern was the assur-

ance that vital technical information would be available to all possible

users. The discipline of information retrieval as we know it today

emerged as a result of this technological explosion.

Information retrieval has been defined in numerous ways. How-

ever, all definitions share a common point which is beqt stated by

Taube [Ref. 1] as: "The right information made available to the right

person at the right time. " Bourne (Ref. 21 states that "Information

retrieval has become a generic term, firmly established through

common usage, which includes reference, fact, and document retrie-

val. " Bourne also differentiates between data procec sing and informa-

tion retrieval. The former includes the manipulation, replacement,

alteration, or addition to the data on file while the later id concerned

Preceding pae IWk

with the storage of data in unaltered form for later re-use. Use of

the term 'information retrieval" in this paper implies the generic

meaning stated by Bourne.

This paper is devoted to the investigation of a data structuring

concept proposed by Kildall [Ref. 3] for use in a general-purpose

fact-retrieval system. Before investigating Kildall's proposal in

section VI, the techniques of indexing, storage, and retrieval estab-

lished for Library Science purposes will be reviewed. These basic

techniques form a foundation for the design of specific IR systems,

Information retrieval is divided into three major operatives:

1. Indexing (classification, description, and structuring of
information sources).

2. Storage (organization and storage of files).

3. Retrieval (searching and displaying information).

Figure 1 is a simplified diagram which illustrates a typical

infc m ation retrieval process. An index is constructed which de-

scribes the information source (document or record) and is stored in

a file along with the source itself. A request for information (query)

is directed to the index file where the location of the requested docu-

ment within the information file is found. A search of the information

file then results in the retrieval of the document. This process is

analogous to the indexing and storing of new books received in a

library, ane the search for information by a library patron.

10

INFORMATION

SOURCE

INDEXING

PROCESS

Index Record

INDEX Search INFORMATION

FILE FILE
tI

Storage

Query

Information

Figure 1

Basic Flow Diagram of the Information Retrieval Process

11

II. INDEXING

Indexing is the classification, description, and structuring of

iniormation in such a manner that retrieval of the information is

accomplished expeditiously. This task is performed on information

sources such as books, documents, and files and is an integral part

of the information retrieval process. Since retrieval is the counter-

part of indexing, the indexing and retrieval schemes used in an IR

system must be compatible in order for a user to communicate with

the system. Clearly, retrieval efficiency (i.e., ease and speed of

retrieving desired information with a minimum of false drops') is

related to the efficiency and consistency of the indexing process.

As a rule, the information base of an IR system is specialized

and as such requires a professional jargon. Ideally, the indexer and

system user are experts in this professional language. However, this

may not necessarily be true and causes a problem commonly confronted

by IR system designers. The problem is how to structure specialized

data for input to the systern in a manner that is convenient to both the

indexer and user while maintaining data accessibility. An example of

an indexing language is the Dewey Decimal System used for indexing

library books.

Selection of an inde-ing language is based upon the following

considerations:

1Output of irrelevant information as a result of a retrieval
request is called a "false drop. "

12

.1

1. The language should be convenient to use, such as natural
language or a language that could be easily learned.

2. Computerized systems require that the language be rigid
-nough to be usable in the machine but must also remain convenient
for human utility.

3. The vocabulary should be b -oad enough to allow accurate
description of the information.

4. The language should be flexible enough to allow modification
as changes in information occur.

There are numerous indexing languages in use today each

tailored to suit specific usage of the IR system. Therefore, indexing

languages normally refLect the viewpoint of the system designer in

his attempt to organize the system's data base to best suit the needs

of the user. Several indexing techniques which evolved from Library

Science will be reviewed in the sections that follow. These techniques

appear to form the nucleus from which specialized systems are formed.

Although the techniques are primarily oriented toward document in-

dexing, variations are used in all types of IR systems. The techniques

are presented in ascending order of:

1. Effort on the part of the indexer.

2. Difficulty in automating.

3. Indexing power

4. Retrieval efficiency.

A. UNIT-TERM INDEXING

The simplest indexing technique involves the extraction of

descriptive words from the information source. The source is then

13

associated with each of the terms used t("lescribe its content. In

the case of a library book, or other document, descriptive words

may be taker from the title, abstract, or the text itself. This tech-

nique requires a minimum of effort (other than reading the source)

on the part of the indexer. In addition, the indexing is accomplished

rather quickly since the indexer need not be ultimately familiar with

the subject material. Unit-term indexing is particularly advantageous

when no information is available on the spread of subject material.

The addition of new material to the data base is easily accomplished

by expanding the vocabulary (unit-terms) to include new descriptive

words. However, unit-term indexing lacks rules for combining terms

into units which have meaning. This shortcoming causes indexing

problems when synonyms, plural word forms, and generically related

terms are encountered in the source document.

The search device used in such a system is an alphabetical

listing (indexing record) of the key -. ords used by the indexer- In

general, the information source is listed with each key word and

is used as a source descriptor, or the listing may indicate the location

of the source, or both. It is possible that the user will have difficulty

in using this system unless he knows precisely the topic that he is I
searching for. An analogy may be drawn to searching the telephone

book for a name when the spelling of the name is not known. There-

fore, this indexing scheme is often utilized in IR systems where the

user is familiar with the professional jargon contained in the

14

information sources (e. g., technical libraries).

An excellent oample of this subject-indexing 2 technique is the

Uniterm Coordinate Indexing System which dates back to 1952. The

Uniterm ("unit-term") System includes fifteen rules governing the

indexer's operation, rules for determining key words, methods for

processing word meanings, and cross-referencing techniques. Some

agencies using this system hav- drafted standard unit-terms (key

words) to be used by indexers. However, this is unnecessary for an

unstructured language since new unit-terms may be added without

perturbing the existing system. An example of an index that might

be constructed from a Uniterm System is shown below. The numbers

below the unit-terms might represent reference serial numbers, or

library call numbers.

ABLATION

452 573 772

ADSORPTION

137 459 823 1201

ADHESIVE

491

AERODYNAMIC

139 241 242 357 552 1010 1168

2"Subject indexing, " "keyword indexing, " and "coorlinate
indexing" are terms commonly used to describe the technique presented
here.

15

B. KEY-WORD-IN-CONTEXT INDEXING

Another very common subject indexing technique is called "Key-
,,3

Word-In-Context" (KWIC) indexing . The indexing power of KWIC

is very slightly greater than the simplest of subject indexing techniques

since the key word is shown in the context of the entire subject. There

are several variations in KWIC format but essentially it is an alphabet-

ical listing of key words. Whole phrases are extracted from the

source so that a user can easily determine the role of the key word.

The distinguishing feature of KWIC is its display format shown in the

example below. Let us suppose that the title of a source document

is: "Principles of Automated Information Retrieval. " Assuming that

the indexer selects four key words to describe the source, the KWIC

index would appear as:

"5135 Principles of AUTOMATED Information Retrieval

iples of Automated INFORMATION Retrieval 5135 Princ

ion Retrieval 5135 PRINCIPLES of Automated Informat

omated Information RETRIEVAL 5135 Principles of Aut"

Note that "automated", "information", "principles",and "retrieval"

are individual key words. A user desiring this source document

could find it by using any one of the four key words. Note also that a

user may find this system easier to use than the Uniterm System if he

is unfamiliar with the subject material.

3 Also referred to as "permuted" or "permuted title" indexing.

16

C. THESAURUS

Indexing power may be increased further by determining generic

relationships between key words. The Armed Forces Information

Agency (ASTIA) and the Defense Docunentation Center (DDC) have

produced thesauri which are alphabetica lists of indexing terms with

related terms and "see" references. These lists are used by indexers

as means of standardizing their operation. In other words, indexers

describe similar information sources in consistent fashion. These

thesauri define some hierarchy in key words and are useful to the

user as well as indexer since they allow the user to formulate queries

with the exact terms used by the indexer. An example of a thesaurus

borrowed from Meadow [Ref. 4] is exhibited below.

COMPUTERS

(Comput-:'s and Data Systems)

Includes:

Calculating machines

Generic to:

ANALOG COMPUTERS

ANALOG-DIGITAL COMPUTERS

BOMBING COMPUTERS

Also see:

17

DATA PROCESSING SYSTEMS

SIMULATION

Computing gun sights use GUN SIGHTS

D. HIERARCHICAL CLASSIFICATIO

Probably the most widely used indexing technique is that of

hierarchical classification where a universe of information is repeated-

ly divided and sub-divided into a classificatory tree. This index

language has a very tightly controlled but simple vocabulary contaned

in an authority list of key words provided with the classification system.

Each key word in the authority list is assigned a numeric or alphanumeric

code (mnemonic codes could be used but normally are not). As can be

seen i1 the tree structure exhibited below, a key word contains all

those key words generic to it (i. e., above it in the branch of the tree

from which it was derived). Hierarchical schemes allow the indexer

to describe an information source in generic levels so that the user

may formulate his query in more general or more specific terms by

moving up or down the classification tree.

Modification of key wore, neaning is difficult to accomplish

since changi-ag one word in the tree affects all key word- generic to

it. However, changes at the bottom of the tree are easily made since

no perturbation of the tree occurs. Expansion of the vocabulary used

18

in this sytem is readily accomplished by expanding the tree horizon-

tall y.

The most well known hierarchical systems are the Dewey

Decimal Classification System (exhibited below), the Library of

Congress System, and the Universal Decimal Classification System.

50 P

510 Mh a19

519.9 9 r e oD

%%

519..l

Soo Pure Science

510 Mathematic s

519 Probabilities and Statistical Mathematics

519.9 Treatment of Data

519.92 Progranu-ing (linear and dynamic)

E. FACETED INDEXING

In the immediately preceding ection a classification technique

was presented which structures a topic 'universe of information) by

dividing and subdividing it to form a classificatory tree. Faceted

indexing deals with individual key words taken from the data source

19

and grouped into categories with respect to their usage within the

source. Terms within each group are structured into a classificatory

tree. A term extracted from the source is analyzed from several

points of view and a group of indexing terms are synthesized to de-

scribe the key word in context. This techniqu . is referred to as

"facet analysis, " "faceted indexing, " and "relational indexing" where

each key word's point-of-view-analysis is called a facet.

An excellent example of faceted indexing is given by Meadow

[Ref. 4]. Let us suppose that "steel" is a key word taken from a

source document. The document contains information relating to the

manufacture, use, chemical analysis, and properties of steel. By

appending descriptors to the key word "steel" the following in :x

terms are created:

STEEL, manufacture of

STEEL, use in automobiles

These index terms are not predefined in any authority list but

are constructed by the indexer by appending descriptors to the key

word. The terms follow some syntactic rule such as: subject follcwed

by mo,'fier, folluwed by operation modifier. The utility of this

technique is that the indexer, armed with a descriptor list and syn-

tactic rules tailored to suit the particular IR system, may analyze

20

a source from many points of view and cunstruct index terms that

describe the information content in g 'eat detail.

F. AUTOMATIC INDEXING

In the foregoing discussions, it was assumed that the indexer

was human.2 A treatment of automatic (computer) indexing is now in

order.

Automatic indexing is difficult to ,ocomplish for two main rea-

sons. First, the information source must be in machine readable

form. In the case of books or other lengthy documents this is a very

expensive requirement. However, uevelopment of character recog-

nition devices and the production of transcripts ir machine ccde as a

by-product of autcmatic typesetting havr. eased the cost of this require-

ment. The second problem, and the more serious, is the development

of algorithms or heuristics which derive meaning from string of

characters. This is an area of Artificial Intelligence in which a good

deal of research has been expended. However, the results of this

research have been empirical since we lack sophisticated linguistic

and semantic knowledge. References 5, 6, 7, and 8 contain excellenc

treatments of the research conducted and problems involved in machine

translation of natural language while ref. 9 contains a comparison of

nanual and automatic incexi !g techniques.

There is an automatic indexing technique in commercial use

today; however, it is a "brute force" adaptation of KWIC, Basically,

21

the tez-hnique produces index key words by comraring viordE from the

source to words stored in an authority list. There are many limita-

tions to this system such as correct handling of hyphenated words,

plural forms, and proper nouns but the primary limitation is that the

list must contain a sufficient number of appropriate words in order

for a source to be adequately indexed. The size, speed, and complex-

ity of such a system should be obvious.

Referring to figure 1 it is seen that the indexing process produces

index records. The contents of the records vary widely and are de-

pendent upon the type of IR system (e.g., document, fact, or reference).

In addition to subject descriptors, tha index may contain the location

of the information, source, author, reference to another index record,

or other information deemed pertinent by the system designer. It will

also be noted from the figure that the information source, or informa-

tion concerning the source, will also be stored in the IR system. In

the case of a large document such as a book, it pzobably will not be

stored in thc computer but rather a reference or abstract will be

stored as a substitute. In some cases, th,, index record itself will

contain all of the information assoriated with an information source.

For example, an index record for a library book may contain the

book's loca' on within the library, therefore, the system will present

the index record itself in an-wer to a user's que-

2

111. STORAGE

This section of the paper contains descriptions of various

techniques used for organzing index and information files within an

IR System's storage media. There will be no discussion of storage

devices since it is assumed that the reader is already familiar with

computer equipment. The reader is aware, of course, that the

system's capacity, cost, and response time are greatly affected by

the selection of various storage media.

A. FILE ORGANIZATION

Organization of an index file or information file specifies the

positioning of the records in relation to one another within the file

along with the physical position of the file within the storage media.

Choice of a rule which governs file organization is dependent upon

desired response time, peak retrieval loads, system reliability 5 ,

category of users, cost, rate of information change, rate of system

growth, and type of storage media. There are several rules for file

organization which are extensively used in IR systems and they are

presented here. These rules are equally applicable to index and in-

formation files.

1. Sequential Organization

The first method involves the sequential placement of

records within a file. The (i+l)st record follows (physically and/or

5 Ability to retrieve a maximum of information with a minimum of
false drops.

23

logically) the ith record. For example, the alphabetical listing of

subject-indexing key words, alphabetical arrangement of employee

records, etc. This method is very conservative of memory space

since there is no need to supply pointers or links to indicate where

the next record in the file is located. On the other hand, additions or

deletions to the file are difficult to make. Let us suppose that we

desire to add a new name to the telephone book. Then all of the names

which follow the inserted name must be moved. Likewise, the deletion

of a name results in perturbation of the list. This type of organization

is most commonly used with magnetic tape where records are searched

sequentially.

Another technique of file organization is called "chaining"

where addresses (links, chains, or pointers) are stored in one or

more fields of a record to indicate the location of the next record

within the file. Recall from the discussion of indexing that thesauri

contain "see" references. These references are links which convey

the idea of chaining. Chaining is a particularly effective method when

used in a crowded memory since "referred to" records may be placed

in any available space within the memory (unlike the rigid sequential

scheme). Also, the utility of chaining is fully realized in a system

which experiences a high rate of information change. This method

requires more memory space than the sequential scheme since extra

fields must be appended to the records to accommodate the links.

24

a. Branching

An extension of the chaining technique is referred to as a

'%ranching structure. " Branching is used to achieve versatility in

changing record entries, changing file structures, and conversion,

where possible, of variable-length records to fixed-length records.

A trivial example is shown in Figure 2. which exhibits the idea of

branching file structures.

Let us suppose that our file consists of all military flying clubs

in the United States. Each record consists of the club's name, address

(airport, city, state), membership, and type of aircraft. Obviously,

these records are variable-length because the number of aircraft

owned by each club is variable. The main file may be converted to

fixed-length records by replacing the aircraft type fields with a single

address. The aircraft types could then be included in another fixed-

length file. The address in the main record links to an address file

which in turn points to the file containing the aircraft types. Repetition

of aircraft type is .-liminated from the main records, main records

are fixed-length, and changes are made only to the address file not

the main file or aircraft file.

Figure 3 exhibits another feature of this technique which replaces

all field entries in the main file (except the name) with addresses. If

it is later decided to add "county" to "city" and "state" then no changes

are required in the main file but a field must be added to each of the

"icity-state" file records to absorb the new addition.

25

M(AIN FILE

NEXT
NAME AIRPORT ADDRESS AIRCRAFT REC0Ru.

NALF MONTEREY

10 MONTEREY NEE A 100 32

17 MINOR ABC NEEDLES 1
17 AFB INTERN'TL j CA. j 101 28 j

ADDRESS FILE

100 210 211 213 214

101 213 214 215

CESSNA
2lu 150

21 CESSNA
211 172

CESSNA
212 180

AIRCRAFT FILE

213 CHEROKEE
180

214 T-34

215 PT-19

Figure 2

Conversion of Variable-Length Records to Fixed-Length Records
using the Branching Technique.

26

MAIN FILE

* NEXT
NAME AIRPORT ADDRESS AIRCRAFT RECORD

10 NEREi j 310 498 100 32

MINOR 312 513 101 2817 AFB

* CITY/STATE FILE BEFORE ADDITION OF COUNTY

498 [MONTEREY, CA.

513 NEEDLES, CA.

CITY/STATE FILE AFTER ADDITION OF COUNTY

498 MONTEREY CA. [MONTEREv

513 ['EEDLES, CA. XYZ

Figure 3

Addition of Records to an Existing Branching Structure

27

3. List Structuring

Although chaining and branching allow records to be scattered

throughout memory, their membership in a particular file is main-

tained by some order of relative placement (e. g., employee records

logically linked in alphabetical order but physikally scattered through-

out the file). List structuring does not require that records be ordered

in any specific manner within a file. Further, the fields of a record

may be physically separated and then linked to form a logical record.

The advantage of this form of storage is the freedom of changing field

content structure, record content, and file structure. However, this

method requires a great deal more memory space than any other

technique. In addition, the retrieval process is relatively slow since

more time is required to gather the elements of a record together.

The three techniques of file organization described above are all

forms of list structuring and each demonstrates a different degree of

structural freedom. Chaining requires that fields remain contiguous,

but records, while remaining ordered, may be physically separated.

Branching is an extension of chaining allowing fields to contain address

linkages to other fields. The last method allows any ordering and

structuring of fields and records.

B. FILE SEQUENCING

It is important that records be sequenced (sorted) in some

manner for use in IR systems. Sequencing is normally based on

28

some particular attribute of a record (called a sort key) such as the

"name" field of an employee record. Selection of the sort key is

based on many considerations but the objective is to select the same

sort key as may be used in a retrieval request. Subordinate sort keys

may also be chosen when more than one record has the same primary

sort key value (e.g., several employees with the same last name).

Searching records which are ordered on the primary sort key is then

called an "ordered search. "

29

IV. RETRIEVAL J
The retrieval process essentially consists of searching the index

files and information files for information which satisfies a user's

query. If the information is found, it is sent to the user, if not, the

user is so informed. It should be noted that "searching" and "retrieval"

are not synonymous. "Searching" is a file access operation used to

locate records for matching against the query, while "retrieval" is

the actual output of information which satisfies the query. However,

use of the word "retrieval" here will imply the entire operation of

searching and retrieval.

As previously discussed in section II, indexing and retrieval are

counterparts since indexing refers to the structure of information for

input to the files, while retrieval is the process of locating and dis-

playing desired information. Therefore, the query language employed

by the system user must be compatible with the index language em-

ployed by the system designer. It is important that the query and

index languages use the same vocabulary in order for the IR system

to understand the user's requests. The user must also be familiar

with the system's logic in order to formulate an intelligent query. He

must know if the system honors the use of Boolean relationships

("and," "or, " "not") and magnitude comparators ("greater than,

"less than," etc.) as query terms.

30

Once the query is formulated it is input to the system's index

file. A matching process takes place at the index file where the terms

used in the query are matched against the index file records. Index

records which match the terms of the query are employed as locators

to direct the retrieval of data from the information file.

The technique used in searching the index and information files

is governed by the file organization (structure, sequencing, content,

and storage medium). In the ensuing discussion of search techniques

it should be borne in mind that whatever technique is used it is fixed

within the IR system. Also, the interrelationship between search plan

and file organization may limit file accessibility and search flexibility.

A. FULL-FILE SEARCH

One search plan incorporates a full-file search where every

record of the file is matched (e. g. , the value of the query term is

matched against the value of the sort key). This plan is used when

the order of records within a file is unknown (e. g., a file of employee

records that are not alphabetically sorted). In this case, if we were

searching for Doe's record and found Smith's it does not follow that

we have searched too far since the records are not collated. In ad- 3

dition, there may not be any assurance that a single match satisfies

the search (more than one Doe in the file). Therefore, all records

within a file must be searched.

31

B. SEQUENTIAL SEARCH

A sequential search plan mojht be used when the records are not

only sequenced but sequenced on the same term as is used in the query.

Sequential searches are normally used in conjunction with sequential

access type storage devices. The records of a file are matched se-

quentially until a successful match is made or when the value of the

query term exceeds the value of the sort key. In this case, searching

for Doe's record and locating Smith's record indicates that the search

has not only gone too far but no successful retrieval will be made

since there is no Doe in the file.

C. BINARY SEARCH

A binary search plan may also be used with a sequenced file.

The term '%inary" implies " it a two valued decision is made after

every match attempt. The search begins in the middle of the file. If

the first match attempt is unsuccessful then the next attempt is made

one-quarter file length away from the first. The direction of the sub-

sequent search is dependent upon the result of comparing the value of

the query term and the sort key (e. g., if the sort key is greater than

the query term then move one-quarter file toward the beginning of the

file). Each succeseive move is then made ot e-half the length of the

preceding move. If there are n records in the file then there will be

approximately log 2 n moves to exhaust the file.

32

D. DIRECT ACCESS SEARCHING

The last file searching technique relies upon a special type of

index file called an inverted index. This is probably the most common

type of index file used in IR systems. The inverted file records con-

sist of the dtscriptors produced during the indexing process. The

descriptors are %ised as sort keys for sequencing the records within

the index. Appended to each descriptor field are fields which contain

addresses of the associated records in the information file. Some

type of search plan is conducted (usually binary) for matching descrip-

tors (which are sort keys) to the query term. When a successful

match is achieved, the addresses of the appropriate information re-

cords are obtained and the records are directly retrieved.

E. COMBINED SEARCH PLANS

The above treatment of search plans demonstrates that the

techniques are dependent upon file organization but ,nlanb may be com-

bined in one IR system. For example, a binary search may be em-

ployed in the index file to locate the disk and/or track which contains

the desired information while a sequential search is made of the track

for the requested records.

33

V. RETRIEVAL SYSTEMS

This section of the paper contains a discussion of the primary

differences between reference, document, and fact retrieval in order

to provide a frame of reference for the development of a fact-retrieval

system. Reference retrieval is treated first since it is the least

complicated of the three types of information retrieval.

Queries used in a reference-retrieval system contain only the

topic for which information is desired (e.g. , STEEL). The material

provided to the requestor is a list of references pertaining to his topic.

Document retrieval queries are narrower in scope since de-

scriptive terms are u-,ed to modify the topic (eo g., STEFL, chemical

properties of). Docun. .nts are provided to the requestor which contain

the desired information.

Fact-retrieval systems are the most complicated and powerful

of all since they are capable of providing specific answers to specific

questions.

A. REFERENCE RETRIEVAL

Reference retrieval is the first step taken by one in search of

specific information. As explained above, a reference -retrieval

system provides a user with a bibliography pertaining to the topic for

which specific information is sought. The second step in the search

for inforna'ion is totally unrelated to the reference-retrieval system.

The user must examine the documents listed in the bibligraphy in

34

order to obtain the desired information. It is clc r that in the first

step the user's search for infoirnation is narrowed from a search of

the entire "library" to a "shelf" in the library.

B. DOCUMENT RETRIEVAL

The definition of document retrieval is not straight forward.

One point-of-view holds document retrieval as the second step of

reference retrieval. In another point-of-view, it is a special case of

fact retrieval. What this author regards as document retrieval may

be fact retrieval to another. The definition upheld by this author is

the retrieval of unprocessed text word-for-word as it is stored in the

information file. An example would be requesting a specific report

from a technical library.

C. FACT RETRIEVAL

Fact retrieval ranges from the retrieval of processed text

stored in an information file to the retrieval of specific answers to

specific questions. The more powerful end of the spectrum is refer-

red to as "question answering". Reference 10 contains an excellent

treatment of the general characterizations, limitations, capabilities,

and feasibility of the question-answering type of fact-retrieval systems.

Reference 11 contains a practical example of a question-answering

program.

Confusion arises at the low end of the fact-retrieval spectrum

where it is difficult to distinguish the difference between document

35

and fact retrieval. One point should help clarify the difference.

Document-retrieval systems possess only rote memory which means

that their capability is limited to the display of information word-for-

word as it is stored in. the -iata base. Fact-retrieval systems possess

the capability of manipulating data stored in the data base into a form

which best satisfies the user's request.

36

VI. DATA STRUCTURE FOR A FACT-RETRIEVAL SYSTEM

This section contains the description of a data structuring tech-

nique proposed by Kildall [Ref. 3] for use in a general-purpose fact-

retrieval sysLem. Specific useage of the system depends in part upon

the type of information stored in its files. However, the nature of the

system is the processing of data to provide a user with specific answers

to his queries. Therefore, the system approaches "question answering.

The data-structuring technique employs the basic concept of hierarch-

ical classification which divides a topic (also referred to as a universe

of discourse) into its class structure anc. correlates the data elements

of the information file to a tree-type classificatory structure.

A treatment of the retrieval process is also provided here since

the query format is directly related to the data-structuring technique.

This section is expressly devoted to a discussion of the data-

structuring concept while section VII contains the description of the

general-purpose fact-retrieval system which employs the proposed

technique. The system was dfs'igned for the primary prpose of in-

vestigating the potential of the data-structure concept and not for

production purposes.

As previously discussed, fact-retrieval systems range from the

manipulation c processed text to "question answering. " The system

described herein maintains a position in the middle of this continuum.

The term "general purpose" u. ed here does not necessarily mean that

37

the system may be utilized throughout the full range of fact retrieval.

Rather, it means that the system will accommodate files which contain

different types of information.

A, DATA STRUCTURE

The structure employed for indexing data incorporates the con-

cept of hierarchical classification which allows the user to enter the

data base in a number of ways in order to extract desired information.

A universe of discourse is structured in terms of "classes" and a

hierarchy of classes is established onto which the associated data

elements are mapped. For example, assume that a universe of dis-

cour e consists of personnel records. The records consist of names,

address-:s, and telephone numbers which are members of the classes

"INAMF", "ADDRESS, " and "TELEPHONE NUMBER. "NAME" is

further divided into the subclasses "LAST, " "FIRST, " and "MIDDLE"

while "ADDRESS" contains "STREET, " "CITY, " and "STATE. "

The data structure is then represented by a classif,-atory tree with

the data elements related to the classes contained in the tree. The

data element "DOE, " for example, is identified as a member of the

class "LAST, " and the class "LAST" is a member of "PERSONNEL

RECORD. " All data elements of a structure are identified in this

fashion.

1. Class Structure Represt.-itation

Class structures are represented by parenthesized expres-

sions which are used to define the structure of the classificatory tree.

38

The technique of employing parentheses to define structures is similar

to that technique employed in LISP S-expressions [Ref. 12]. Punctua-

tion symbols used in the expressions are the left parenthesis, the

right parenthesis, and the comma. The parentheses are used to en-

close those classes -. hich are directly related to a superclass while

the comma is used to separate the classes within the parenthesized

unit. Units within an expression are separated by commas and the

entire expression itself is enclosed by parentheses. As demonstrated

in the preceding section, "PERSONNEL RECORD" consists of the

classes: "NAME, " "ADDRESS, " and "TELEPHONE NUMBER. " This

definition is called the format definition and is the foundation for the

construction of the classificatory tree. Format definitions are

represented by the parenthesized expression shown below.

PERSONNEL RECORD (NAME, ADDRESS, TELEPHONE NUMBER)

"NAME" and "ADDRESS" were further divided into subclasses

and the expressions below show the parenthesized forms for "class

definitions. "

NAME (LAST, FIRST, MIDDLE)

ADDRESS (STREET, CITY, STATE)

Subclasses may also be subdivided and this process is replicated

to fully define the class structure of the universe of discourse. Figure

4 graphically demonstrates the class structuring process, the fully

parenthesized expression for the class structure, and the associated

classificatory tree. Although the above example does not include a

39

E-44

0

40-

subdivision for the class "STREET" one is shown in the tree structure

to demonstrate a third level of class replication.

2. Data Representation

Once the class structure is defined, the associated data may

be mapped directly onto the structure. Data representation is identical

to the class expression as shown below.

((DOE, JOHN, JAMES), (203 ELM STREET, MONTEREY, CA.), 384-9363)

((LAST, FIRST, MIDDLE), (STREET, CITY, STATE), (TELEPHONE NO.)

NAME, ADDRESS, TELEPHONE NO.

I
EMPLOYEE RECORD

Representation of repeated data elements within the record are

easily handled by properly parenthesizing the record. For example,

two phone numbers for John Doe would be represented by:

((DOE, JOHN, JAMES), (203 ELM STREET, MONTEREY, CAL.),
(384-9363, 384-6214))

The class membership of each data element in the record is

clearly defined by the parenthesized expression.

3. System Utility

The utility of hierarchical classification in association with

parenthesized expressions is realized by the user in three ways:

41

1. The indexing techniques presented in section II require the
user to conform to the language devised by the system designer for
the retrieval of information. The user does not have the option of
defining the indexing language that best suits his particular needs but
must be satisfied with the indexing technique employed to best satisfy
the needs of all users. In contrast, this system allows each user or
user group to define his own indexing language by defining the class
structure associated with the data he is most concerned with. In other
words, the system will accept a mix of data allowing each user or user
group to have his own retrieval system within a retrieval system.
Each user or user group must define the class structure of his data.
For example, a business-oriented system might consist of a datz Xase
partitioned into employee records, pay records, stock inventory, etc.
Such a system would simultaneously serve the needs of many users.

2. The user has the capability of entering the data structure in
several ways to extract desired information. In the personnel record
example, the user n -y retrieve complete records which satisfy cer-
tain search keys, or retrieve only the names of personnel, or retrieve
the phone number of a particular person, and so on.

3. The classification scheme could serve as an intermediate
language between the query processor and the retrieval system.

B. RETRIEVAL PROCESS

1. Query Format

Queries are presented to the system utilizing the same for-

mat as class expressions. The fully parenthesized expression contains

search keys and blank positions which specify the information to be

supplied to the user. The retrieval processor will fill in the blank

positions with all of the information contained in the data base which

satisfies the search keys. The expression must conform identically to

the fully parenthesized expression used to represent thr class structure.

DOE, JOHN, ,

42

In the example above, the system will identify the class member-

ship of each search key and blank position through the classificatory

tree constructed from the class expression. A search is then instituted

for all records wl h contain an occurrence of "DOE" as a member of

the class "LAST" and "JOHN" as a member of the class "FIIRST. "

Information is extracted from those appropriate records to fill the

blank positions of the query. The user may broaden or narrow the

amount of information retrieved by the number and/or class of search

keys used in the query. A query containing only the search key

"CALIFORNIA" could produce a greater amount of information than a

query which has o, 'y one blank position.

2. Boolean Expressions

The ability to use Boolean expressions such as "and, "or,

"not, " etc., is desirable in any information retrieval package. How-

ever, the degree to which Boolean expressions may be used is left to

the perogative of the system designer in satisfying user needs. The

use of Boolean "and" is accepted by the retrieval processor in this

system and is identified by the amphersand:

. .__, (_ , MONTEREY & MARINA, CALIFORNIA),-)

In this case, the names, street addresses, and phone nurilbers

of all personnel who live in Monterey, California and Marina,

California would be produced.

The use of r . "or" is not directly used in this system but

its effect is similar to the use of alphabetic and numeric range requests.

43

3. Alphabetic and Numeric Ranges

Alpha.et.c 'nd numeric range requests are identified by the

colon. Examples of range requests are exhibited below.

f(A : D,-, -), (--, MONTEREY, CALIFORNIA), -)

The retrieval processor identifies an alphabetic range request for all

data elements which are members of the class "LAST" and which have

as a rirst letter A, B, C, or D. The records of all personnel who live

in Monterey, California and whose last names begin with A through D

inclusive would be produced.

As shown immediately above, the system does not restrict the

use if alphabetic or numeric ranges to single letters but any number of

characters may be used and any number of range requests are possible

within a single query.

The above discussion is also true for numeric range requests.

For example, the user desires complete records for dl those personnel

who have specific telephone exchanges:

((-_, __), (_. - . __ 372:394)

44

I

VII. SYSTEM STRUCTURE

This section discusses the internal design of the gener . purpose

fact-retrieval system employing +he data-structure technique previously

explained. The system was i nplemented on the Naval Postgraduate

School's IBM 360 Model 67 Computer and is an interactive system under

control of the Cambridge Monitor System (CP/CMS) [Ref. 13].

A. DATA FILES

Data files are stored on punched cards and consist of the following

three types:

1. Format definition car'. These cards define the class

structure for each universe of discourse to be included in the data

base. An example of a format definition card is:

EMPLOYEE RECORD (NAME, ADDRESS, AGE, CHILDREN)

2. Class definition cards. These cards further define the

structure of the classes contained in the for:nat definition. Examples

of class definition cards are:

NAME (LAST, FIRST)

ADDRESS (STREET, CITY. STATE)

3. Data records. The data records contain the data elements

associated with the universe of discourse and are fully parenthesized

expressions. An example of a data record is:

EMPLOYEE RECORD ((DOE, JOHN), (203 ELM STREET, MONTEREY. CA.),
(48), (MARY, SALLY))

45

Format definitions, class definitions, and data records may also

be entered into the syster via on-line terminal. For a large-scale

data base, the data records could 1e stored in unstructured form on a

back-up storage dcice such as magnetic tape. Structuring of records

would be accomplished under program ontrol according to pre-stored

format and class definiitons.

B. TREE-TYPE DATA STRUCTURES

A tree-type data structure is employed to represent the hierarch-

ical classification of a universe of discourse. The tree-structuring

process described later in this section empl'-ys data cells to represent

nodes within a tre ad the "chaining" technique to order the cells into

tree structure form.

1. Data Cells

Data cells available to the tree-structuring processor consist

of three fields. The description and function of each field is described

below:

a. The identifier field, referred to as "TOP, " contains the

storage addrebs (pointer) of the data or class entity which the data cell

represents.

b. The right link field, referred to as "RIGHT," contains a

pointer which is used to chain the data cell to another data cell on the

same levei of the tree.

c. The down link field, referred to as "DOWN," contains

46

a pointer which is used to chain the data cell to another data cell

located in a lower level of .,ae tree. Figure 5 demonstrates the use

of data cells. A zero in a link field signifies "no link" or a null field.

2. Structuring Process

Empty data cells are constructed in core storage through

list structuring techniques and are stored in an area available to the

tree-structuring routine. The reic:ing of a format definition card

initiates the structuring process. The format name (e. g. , EMPLOYEE

RECORD) and the class names contained on the card are extracted

and moved into storage (a discussion of this process is deferred to a

later section). A number of cells equal to tle format name plus the

number of class names contained on the card are retrieved and tree

structuring commences. The first cell in the tree structure is called

a "header" and serves to identify the format name of the tree. Each

of the clas.es contained in the format definition is assigned to a data

cell and the cells are chained together. Figure 6 shows the structure

renresenting the format definition:

EMPLOYEE RECORD (NAME, ADDRESS, AGE, CHILDREN)

Before completing the discussion of tree structuring it is import-

ant to note that class definitions throughout the various universes of

discourse in the data base must be consistent. That is to say, if the

class called "NAME" is defined as (LAST, FIRST) then every occur-

rence of "NAME" must consist of the classes "LAST" and "FIRST."

If this is not done, confusion arises during the retrieval process when

47

TOP

0 RICHT

DOWN

0 0

NOTE: The numbers in the TOP fields are sequence
numbers.

Figure 5

Data Cell Composition

48

i4

1 "HEADER CELL"

0

0 - 0

EMPLOYEE RECORD (NAME, ADDRESS, AGE, CHILDREN)

The numbers in the TOP fields correspond to:

1 EMPLOYEE RECORD

2 NAME

3 ADDRESS

4 AGE

5 CHILDREN

Figure 6

Tree Structure Composed of Data Cells

49

Fi

the processor attempts to identify the class memberships of data

elements. Therefore, as each format definition is read, a search is

conducted of all previously constructed trees to determine whether or

not each of the classes contained in the definition being processed

have been previously used. If a class has been previously used then

the tree structure representing the class is appe: ied to the tree being

built. If a class has not been previously used then a class definition

card must be submitted to the tree-structuring processor.

After the format definition card has been processed any class

definition cards associated with the structure are processed. Figure 7

contains a completed tree structure for:

EMPLOYEE RECORD (NAME, ADDRESS, AGE, CHILDREN)

NAME (LAST, FIRST)

ADDRESS (STREET, CITY, STATE)

C. INDEX FILES

The system incorporates an index file, called the master index,

which demonstrates many of the characteristics and advantages of an

inverted index. The master index contains format name., class names,

and data elements. Each entry in the index has a pointer associated

with it which links the entry to a tree structure, data record, or

further information concerning the entry. The retrieval process is

always initiated at the master index since it is the agent which directs

the search for information in response to a user's query.

50

1

00

6 7 8 9 10

0

0

J ED

EMPLOYEE RECORD (NAME, ADDRESS, AGE, CHILDREN)

NAME (LAST, FIRST)

ADDRESS (STREET, CITY, STATE)

The numbers in the TOP fields correspond to:

1 EMPLOYEE RECORD 6 LAST
2 NAME 7 FIRST
3 ADDRESS 8 STREET
4 AGE 9 CITY
5 CHILDREN 10 STATE

Figure 7

Tree Structure for the Format: "EMPLOYEE RECORD"

51

1. Characteristics of the Master Index

Conceptually, the master index is a large matrix consisting

of fixed-length records (matrix rows), each containing eight fields

(matrix columns), as shown in Figure 8. The first four characters of

format names, class names, and data elements are stored in the first

four fields of the index. Entries which contain more than four char-

acters are then stored in a sequential storage area reserved for

variable-length records. The remaining four fields of each index

record contain information concerning the type of entry (e. g. , format

name, class name, or data element), the sequential store address of

the full character representation of the entry, if any, pointers to infor-

mation-bearing data cells, and other information useful to the retrieval

processor.

2. Constructing the Master Index

The first record of the master index is reserved as a table

of all format names contained in the data base. The first record con-

tains the address of the first data cell (identical to the data cells used

in tree structuring) in a chain of cells and each cell contains the

address of a format name located in sequential storage. Through this

record a user may quickly determine the partitioning of the data base.

Figure 9 demonstrates the idea.

Format names are entered in the index and linked to their

definitions which are located in sequential storage. Each of the clas-

ses contained in the format definitions are also stored in the index.

52

1 2 3 4 5 6 7 8

1 C L A S 1 1

2 E M P L 1 7 22 1

3 N A M E C 69 106

4 A D D R C 51 88 37

5 A G E L 0 55 10

6 C H I L L 59 61 13

7 L A S T L 0 7 124

8 F I R S L 82 13 127

9 S T R E L 108 19 130

10 C I T Y L 0 25 133

1" S T A T L 115 31 55

12 D 0 E D 0 4

13 1 0 H N D 0 10

14 2 0 3 E D 194 16

COLUMN(S)

1-4 : First 4 characters of the entry
5 : No if the entry is a format name

"C" if the entry is a class name
"L" if the entry is the lowest level class in a

tree structure
"D" if the entry is a data element

6 : Pointer to the full character representation in
sequential s-ULe

7 : Pointer to associated chain of data cells if the
entry is clacsified "L", otherwisepointer to
sequential s: 3re

8 : Pointer to associated data cell in the tree structure
if the entry is a class or format.
Pointer to associated chain of data cells if the entry
is a data element.

Figure 8

Representation of the Master Index

53

00

0 z

UU

-4 (4 U~ 4

Figure 9

Reserved Record in the Master Index for Format Names with
Associated Data Cells and Forma, Names in Sequential Store

54

Associated with each class entry in the index is a string of data cells

which contain two items of in.'rmation concerning the class:

a. The first field contains the number of the data record which,
in turn, contains an occurrence of the class. (This information is
added when the data records are read and is discussed later.)

b. The second field contains a number corresponding to the for-
mat name which contains this class entry.

A class may be used in any number of different format definitions

but its structure must be consistent in every occurrence. Therefore,

regardless of the number of format definitions which contain a given

class, there is only one index record for the class. The data cells

appended to the class entry provide the retrieval processor with data

such as the format definitions in which the class appears. Among

other things, information pertaining to the class entries provides the

retrieval processor with the capability of quickly abandoning a search

when a user requests information through a class which is not a

member of the format being queried.

Class definitions are processed in a manner very similar to for-

mat defirn.tion processing. The class being defined is entered in Il,

index and the definition is stored as read in the sequential store. rhe

system returns the sequential store address and enters it in the index

record. Appropriate data cells are appended to the index and the

class structure is added to the classificatory tree. W!.,cn the tree is

completed, those classes which are end nodes in the classificatory

tree (e.g., LAST, FIRST, STREET, CITY, STATE, AGE, and

55

CHILDREN in EMPLOYEE RECORD) are identified and their index

records are flagged. This is done to ensure that elements in the data

records are xnappod onto the tree structure according to their proper

class membership.

As each data record is read into the system it is assigned a

unique number and placed in the sequential store. Each element within

the record is examined to determine its class membership and the

master index is searched to determine if the element was previously

entered by another data record. The possibility of a data element

appearing in more than one record exists if the data base contains

similar formats such as employee records and pay records. In ad-

dition, a data element may be a member of more than one class such

as the occurrence of "JOHN" as a member of both classes "FIRST"

and "CtlLDREN." It is highly desirable that there be only one entry

in the master index for those elements which occur more than once.

Unique entries in the index guarantees that when an item is located in

the index, the search process is complete and successful. Additionally,

the need for conbiricd search plans is eliminated. Specific record

and class menbership information for each data element entered i:n

the index is re-;lved by appending di'ta cells to the master index entry.

rhe data cells contain the record number(s) from which the element

was extracted and its class membership(s). Assuming that a data

elemen. occurs several times in the data base. the master index would

still contain only one record for the clement. The recc.,d contains all

56

of the information pertinent to the retrieval process. The technique,

relevant to both class and data entries, results in two important

savings:

1. A significant reduction of storage space is realized (if an
element occurs several times) since multiple entries in the master
index require more storage space than a single record and its
associated data cells.

2. A significant reduction in search time is realized since multiple
entries require the retrieval processor to conduct a full-file search
each time it enters the master index.

3. Data Record Table

Cells appended to each data element stored in the master

index do not contain the sequential store addresses of the records

from which the data elements were extracted. This information is

stored separately in a table referred to as a data record table. The

data record table augments the informatl3n contained in the master

index and is composed of fixed-length records as shown in Figure 10.

Each table record consists of three fi,:lds which contain:

z. The unique data record number.

b. Format membership of the data record.

c. Sequential storc address of the data record.

The data record table serves two functions:

a. The retrieval processor bypasses the master index and directly
enters the data record table to satisfy requests for all data records
which arc, members of a particular universe of discourse.

b. The table is also utilized for queries other than those which
request "all data records." The retrieval processor searches the
master index to deterrnine the data records which satisfy a user's

57

DATA RECORD SEQUENTIAL
TABLE STORE
2 3

I 1 ----- ((DOE, JOHN), (80 WHITNEY,...

2 1 --- ((SMITH, BILL), (32 CAPITAL,...

3 4 - wk0 4 1 3054 16), (WRENCH),...

4 3 0--- ((DOE, JOHN), (094-63-3152),...

5 2 0 - ((EA 3733, CONN), (BUICK,...

FORMAT NUMBER FORMAT NAME

1 EMPLOYEE RECORn

2 CAR REGISTRATION

3 PAY RECORD

4 STOCK INVENTORY

COLUMN

1 : Unique record number

2 : Format membership of the data record

3 : Pointer to date record in sequential store

Figure 10

Representation of the Data Record Table

58 .4

request. Then the processor enters the data record table and extracts
the sequential store addresses of the records. The sequential store
addresses are passed to the "output" section of the retrieval processor.

I

The informaion contained in the data recor! table is tabulated

separately from the master index to achieve savings in storage space

and response time. Stc. age savings are realized since the addresses

of data records in the sequential store are contained only in the data

record table and are not replicated in the master index for each class

and data element. System response time is reduced for queries that

request all data records of a particular universe of discourse since

the data record table was designed primarily to expedite this type of

request. The retrieval processor extracts all of the necessary data

record addresses in one access of the table. The amount of searching

within the table is minimal.

D. INFORMATION FILE

The "sequential store" is the system information file, or data

base. It contains the data records, format definitions, class definitions,

and the full character representation of those entries in the master

index consisting of more than four characters. Figure 11 shows the

sequential store and its relationship to the master index and the data

record table.

The information file is resident in main core storage. The

varial-le-length records of this file are sequentially ordered. System

information files are not normally stored in main core unless they are

59

0 •n

-

0 a

r.;

H P

A zJ '

CO - *

Enur II

4N Cl4 C

-4N .-

Figure 11

Relationship between the Master Index, Data Record Table, and

Sequential Store

60

relatively small (which is the case here). However, it is imperative

that such a file be resident on a direct access storage device in order

to provide satisfactory system response time.

E. RETRIEVAL PROCESSOR

The retrieval processor is divided into three operations. The

identification operation determines the type of query posed by the

user; the search operation determines the data record numbers which

satisfy the user's request; the output operation retrieves thc esultant

data records from the sequential store and prints them at the terminal.

Additionally, special messages are output to the user in the form of

error messages to warn him of invalid queries, and messages which

notify him of unsatisfied queries.

1. Query Types

The IR system designer strives to achieve total utility of the

system by providing the user with a powerful retrieval language.

Utility of the data structure used in this system is realized by the

various types of queries available to the user for extracting informa-

tion from the data base. There are four major types of queries avail-

able to the user.

a. Determining Data Base Partitions.

As previously discussed, the data base may be partitioned

to allow a mix of unrelated informatiun by defining the class structure

of each universe of discourse in the data base. A user who is

61

unfamiliar with the dlata base partitions (format names) may easily

determine this information by submitting a special type of query. The

format of the query is simple and consists of the single search key:

"CLASS. " This is translated by the retrieval processo as: 'Output

the names of all formats contained in the data base. " Search of the

master index is then cente ed at the first record of the index and its

associated chain of data cells which contain the sequential store ad-

dresses of the format names. All format names contained in the data

base are output to the user.

QUERY: CLASS

RESPONSE: EMPLOYEE RECORD

PAY RECORD

b. Determining Format and Class Definitions.

In order to extract data from a specific universe of discourse,

the user must be provided with its class structure. The class structure

determines the format for data record requests. Queries of format

and class definitions must contain, as a search key, the format name

or class name to be defined. The search processor enters the nmaster

index to locate the format n-ame or class name, extracts the address

of its definition located in the sequential store, and the definition is

output directly at the terminal.

62

Q'JERY: EMPLOYEE RECORD

AESPONSE: (NY ME, ADDRESS, AGE, CHILDREN)

QUERY: NAME

RESPONSE: (LAST, FIRST)

QUERY: AGE

RESPONSE: NO DESCENDANTS

c. Data Element F r'ieval.

One asset of the data structure concept is that it allows the

user to extract single data elements from the data base which are

members of a particular class and format, or members of a particu-

lar class irrespective of the format membership. Since data elements

are mapped onto the end nodes of their respective tree structures, the

user must use the lowest level classes of the structure as search keys.

Failure to do so prompts the retrieval processor to output corrective

information to the user. The hyphens in the queries below indicate to

the retrieval processor that the expressions are queries and not for-

mat definitions. The processor could identify the expression by

searching the master index for an occurrence of "EMPLOYEE RECORD."

A successful search would indicate that a format definition already

existed in the system. However, use of the hyphen is a simpler and

63

faster method for posit-ely identifying the type of expression submit-

ted to the system.

QUERY: EMPLOYEE RECORD (NAME, -)

RESPONSE: INVALID QUERY:
DETERMINE DESCENDANTS OF: NAME
USE DESCENDANTS AS KEYWORDS

QUERY: EMPLOYEE RECORD (LAST,-)

RESPONSE: BROWN

SMITH

THOMPSON

To answer the above query, a search is conducted in the master

index for all data elements which are members of the class "LAST"

and are members of the format "EMPLOYE. RECORD. " This infor-

mation ir contained in the data cells appended to each data entry in tl.c

index. Elements which satisfy the query are taken directly from the

master index, and output at the terminal.

In the query below, the hyphen is used to differentiate between a

query and a class definition statement. All data elements which are

members of the class "LAST" are output irrespective of format

membership. The format membership fields of the data cells are

ignored during th, search of the master index.

QUERY: LAST (.)

RE, "ONSE: BROWN

CHAMBERS
COTTLE

DOE
SMITH
THOMPSON

64

-4

d. Data Record Retrieval.

Data record retrieval is the most valuable and would be the

most frequently used type of request available to the system user.

Extraction of complete data records which satisfy the search keys

contained in the query is accomplished. To retrieve data records, the

queries contain data elements as search keys and may contain Boolean

"AND, " alphabetic and/or numeric ranges, or any combination thereof.

The query format is a fully parenthesized expression as shown in

previous sections. Search keys are positioned in the expression with

respect to class membership and hyphens inserted in those positions

for which information is requested. Any variation from the properly

parenthesized expression prompts error messages from the retrieval

processor to the user.

The retrieval process for the query listed below is explained in

the following paragraphs:

EMPLOYEE RECORD ((DOE,-), CA. (___)

The mat name appearing at the beginning of the query expres-

sion informs the retrieval processor of the universe of discourse in

which the user is interested. The processor then traverses the tree

structure for "EMPLOYEE RECORD" to determine the lowest level

classes in the tree. This information, in conjunction with the proper

use of parentheses in the query, expression, allows the processor to

identify the class memberships of the search keys contained in the

query. The user is notified whenever the processor is unable to find a

65

search key in the master index. In this case, the processor attempts

to recover data which satisfies the remaining search keys. Similar

action takes place when the processor encounters a search key which

is not a member of the class specified in the query, or if a search key

is not a member of the format specificd in the query. Additionally,

the user is ILotifieq whenever the query is improperly formatted.

Each search key in the query is processed sequentially. The

retrieval processor searc'ies the master index for an occurrence of

each key. Record numbers which contain an occurrence of the search

key are extracted and stored in a list. After all search keys have been

processed, the retrieval processor "ANDS" the record numbers in the

list to detei-mine which records satisfy the query. For example,

assuming ttiat two key wcrds are used and record numbers 5, 12, and

67 satisfy the first key word, and record numbers 32 and 67 satisfy

the second key word, records 32 and 67 -re output to the user. Re-

cord numbers which satisfy the query are pasbtd t, the "output" sec-

tion of the retrievwl processor which retrieves the sequential store

addresscq of the records from the data record table and prin.t - the

records at the terminal.

A user has the ability to immediately examine the results of his

query since the system is interactive. The results of one query xvay

prompt the user to submit another request, either broadening or

narrowing tl.- request through judicious use of search keys. In any

case, the user is guaranteed that if the information that he seeks is

66

contained in the dta base, he will have quick and easy acccss to it.

Appendix A contains a sample run of the fact-retrieval system and

demonstrates all of the queri-s available to a user and thc system

responses.

F. ALTERING THE DATA BASE

1. Changes and Deletions

Due to the experimental nature of the system, no utility

routines have been provided for deleting records or making changes

to existing records. Alterations are accomplished by manually

changing the card images in the data files.

2. Additions

The addition of data records to existing data sets or the sub-

mission of new universes of dir-uurse are accomplished most easily

without special utility routines. This feature is inherently built into

the system through the data structuring technique. Addition of a new

universe of discourse is accomplished by submitting format ar~d class

definitions, and associated data records either on-line through the

terminal (automatically) or off-line with card images (manually). N xw

data records may also be added to existing data files automatically or

manually.

67

VIII. CONCLUSIONS

Characteristics of the data-structuring concept as used in a

general -purpose fact-retrieval system have been discussed throughout

the preceedint, sections, These concepts are summarized here.

The data structuring technique encompasses the concept of

hierarchical classification which is the most widely used method of

indexing. Hierarchical classification of data is a relatively simple

technique to use but possesses the power to divide and subdivide a

universe of discourse into more specific subjects. Additionally,

hierarchical structures may be created to include a domain of subjects.

This is advantageous for use in a fact-retrieval system, as previously

demolstrated, by providing a mix of structures in a single data base.

Therefore, users with differing interests are provided simultar-ous

access to a single system since each is provided a "personal" retrieval

system within a larger retrieval system. In addition, the hierarchical

structure provides a user with multiple avenues of access into his

information file.

Parenthesized expressions serve as an intermediate language

between the query processor and the information retrieval system.

The query processor is able to determine the class membershipb of

elemen, within an expression by examiration of the parenthesized

form. It is apparent, however, that the use of parenthesized expres-

sions is cumbersome and demandin since misplacing parenthcses is

68

easy to do and nanscs loss of meaning of the- expression. On the other

hand, it can be argued that the technique of parenthesizing expressions

is powerful and an equ -Iy powerful substitute is difficult to theorize.

69

APPENDIX A

0 <-

"4. 0L

JJ C

to U
FA4 g n In

0d <

U) t

I 0 : - . -

U- &L : u

C; CC--. r_

0. a.- C--

0 w UL) u. r_

U- LL C U. o c-
.i.ZZ at cc. w01u..I

41 w n 00 -J 0

U) .- aaa- v 0 LL- %.. -nu 0n 9-

0 0 e.& 0 0 *- U

0 Vaa: LL U, LLC U. orC L~ W- 4.11 LL

70

ccc

W4 c

o0 44c

14a

V441 I- LA.c CLCto I
cc 0 c

u cc c
LL C)- LL

4.L.L ix3

41 .

IL~cI 4 LLL

L, LL' - LL U.
43)-- -j - r

m~ -ic IV L;3 LL= TU
-1 1. w .)LL L - _

43 L 9g 0 a.C. - c CL
t~~r Cr. c 4 u~ ~

41 C- LI- c V)
4 1

t 4: L W. - U
&;, 4-A/3 2 0 0.~ U.(1 U -j .J .-

Ixc cU. 4- v L- 4 0 u. cc k LL *C

,- ~ E 00 D- 4 ~ : . C *
>1 it.-U W. - i I. 4L Ow W. c c E. C

I U V) c 6z wIn U. KC < c~.u 00-U cr Cy 4/ -. 1 ~ ~ - E *c

cc IS-~I. ~ 9.. 2. . U) c> .7104! > 4 V 4 ~

co a Do

ko 4D t

* u

C4 4N 4 4

to 4 a4 a Loz
UC %

Jr 41 L T at

N~ C. 4
vi U3 W.L 4O

% I D ly, % %

C. 0 - LA a u-

a U: 4 ca <i U;.
Lo > ~ L' I z Ln %g (n >

V., U I

4 1 cn Ix c -j I. jI. C-

4 C* f -4 W 4 1-4 c

lu a c0 r- S C a

-9 U! V .0 L. LL -e

u W w Lii - & U.. J. WLLA a i r_ UL40. u
I .IL' - - * i 4 Lu CL' 4- . 4- 4 L4 L-j

C -L . U L - L i L i U -r, CL fr .Lc r C M - - cc . ac (-L

4- ~~~ ~ ~ c I. U. U. - q .x . - t C . COX ox~-.z

- - 4) i) C - 1- 0 - c u. to - /

in4 I- 4/) vi/) .. Vi 4 I) I)L 10 5-)V vi ... 5- #
w 1-.2 Iii % -J Li -.. DJ Li cC @ a 5- - Wi %, - I.-

so 00 s-0 0 L. so C:, -- Cc C, 0 0 c
v' -4. U c 61 L) C, &J- Li U b! Q" C.

wS r- SfC . I" ai wI .- 7 7 J~- U. 1 U I
U ' ~ LC ty (0 "1 CA'U~--Li0 c

172

C.-

-. C.14

i .r^?

Ix

C. c IL X~ LL

V, - .,
CL L. ..

A -j ILM~

w~ U.cr
v C.C C. CC -A

LO -.
c %

*. -S U. . mg V %L LL VL.
w. LL U.. LL~ C . ;US wJ IEv.~4 -u oo Go~- U** U - u

&L C c - ix - e C
s I. ~ -CC I~. CaL

'sii 0. -4 o
LL ' C. L46 II.) S -O.VLf J -1 U. T~s.-0. L)I. ie L u uuS cI = u cc xL ;- ScMr

U~ L:
LL L vL ~S.

t :_ a, CCO~
In C I .. L: cn r.

5
C I,:LLL V) L ~ UU = 4.t

Cj D~ - - c c C 0~I .C. a CL V 5 ~ l5s ~ ~ U .l >5 .0 . - - < C s U . cs '
5 - - -~I u- a :- S) &A. '4 ~ I ~ . J. ~ ~ ~ ~ ~ ~ ~ c -i a-St

.. L U - U I

U S A C .s - I C - . .. J I.. s . . J L ~-7 3L

- E
ft

0 cu

41 LL 41 M

LA to C.n

v u %2 0oft

eJ I. V>I tS R V
-. 0) -4;mc

% & 44 ft 'm > 4

-L r- -C c ~ WV

.1L C -4. c c ; L
Of = 0 w C 6j

L, L- - 4 - i

16 i:j L.4 wJ j o

CL 0) m X) ft- C ~ L ~
a~ - ft L. lA~ a W4 C

ky V) 41 c' V vI CV
g ~ 0 ".. I -0 . C''

C: i - . W ~S J -o -
LL V . .- .JC; ''o 4 ~ ~ '

o * . 0 * ~ CC u.W . UW V. W

o a a * 0 Z WV LL74

LA1

o CL.

L& u

C4 C C4

V..

U) LL U

0C U;

% L - - I

0J -VI)

to 1

C.CVI. W In L
4 . cr W ow f

4j I- -h P. F%
L~~ ~ ~ Ii. 91V 0L l L . 1o : - -. t 6i I= >L--

r v -l Ucc Mr - m 4c-.

U) - b C ~ %~ 75

COMPUTER PROGRAM

IMPLICIT INTEGER*2 (A-Z)
DIMENSION FTAB(301
DIMENSION UPRAN(30)
DIMENSION RECTAB(100)
DIMENSICN TOP(603),RIGHT(6O2btDOWN(601)
DIMENSION WORK(241),ACUM(241) ,FRST4(241)
DIMENSION LEVEL(50),DRTAP(50,3),DESTAB(30),N0DTAB(50)
DIMENSION RNO(603) CMEM(602) ,NEXT(601)
DIMENSION SERCH(301,MINDEX(500,8),SEQ(4000)
COMMON/ONE/TOP, AVAIL1, P,QRR,DD,YY
COMMON/TWO/RNO,AVAIL2, S,R,CMRM
rOMMON/THREE/ANS,SERCH,MINDEXACUM,SJSK,NSEQ
COMMON/FOUR/NOOTAB ,FD
COMMON/F IVE/MULT,MKiEK
COMMON/S IX/S2,ATIAE,HCTR,UPRAN
EQUIVALENCE (TOP(3bvRIGHT(2) ,DOWN(1))
EQUIVALENCE (RNO(3),CMEM(2),NEXT(l))
DATA OP/'('/,CP/') '/,BLANK/ ' /,COMMA/','/,STAR/1*1/,

DATA LX/'L'/,AX/'A /,SX/'S'/,COL/' :'/,
Iln'/,' /,HYP/'-'/

C ------INITIALIZE ARRAVS,CERTAIN COUNTERS AND SUBSCRIPTS.
AVAIL 1=1
Q=AVAILl
AVAIL 2= 1
S=AVAIL2
R= S
CALL INITI
CALL INIT2
TERM=O
ER=O
FT=0
MI=1
FNUM=0
RNUM=0
DO 20 1=1,50
DO 21 J-1 3
DRTA8(IJ=BLANK

21 CONTINUE
20 CONTINUE

D0 23 1-1 500
MINDEX(Itl)=BLANK
DO 24 J=1,4
MINDEX(I,J)=BLANK

24 CONTINUE
23 CONTINLUE

DO 26 1=1,30
FTAB(I)=BLANK

26 DESTAB(I)=BLANK
C ----- RESERVE THE FIRST ROW OF THE MASTER INDEX FORICLASS'.
C-----MINDEX(1,8) POINTS TO CELLS WHICH CONTAIN FORMAT
C ----- NUMBERSAND POINTERS TO THE FULL CHARACTER REPRESENTA-
C ----- TION OF THE FORMAT NAME IN SEQUENTIAL STORAGE. CELLS
C ----- ARE ATTACHED AS THE RECORD FORMATS ARE PROCESSED.

MINDEX(191)=CX
MINDEX 11,2)=LX
MINDEX(1, 3)=AX
MINDEX(194)=SX
MINDEX(1, 5)=0
MINDEX(1:6)=l
MINDEX(l 1=0
SEQ(1)=CX
SEQ!21=LX
SEQ(3)=AX
SEQ(4)-SX
SEQ(5) ~X
SEQ(6) ='TAR
SI=6

44 DO 28 1=1,30
28 SERCH(I)=BLANK
45 J=l

Ku 80

76

PCTR=O
DO 27 1=1,241
WORK(1)=BLANK

27 ACUM(I)=BLANK
IF(TERM.EQ.1.OR.ER.EQ.1) GO TO 399

C-- ---READ ONE RECORD TNTO THE 'WORK' ARRAY A. !D DETERMINE
C ------IF THE PARENTHESES ARE BALANCED OR. IF THE RECORD
C-----EXCEEDS 240 CHARACTERS.

46 READ (4,2,END=9OO1 (WORK(IkI1=JK)
2 FORMAT (SOAL)

GO TO 41
399 READ (5,2) (WORK(I),I=JK)

IF(WORK(1).*EQ. DOLS .OR. WORK(2). EQ.DOLS. OR. WORK(3)
I.EQ.DOLS) GO TO 1000

41 DO 30 L-J K
IF(WORK(Li.EQ.OP) PCTR=PCTR+l
IF(WORK(L).EQ.CP) PCTR=PCTR-1
IF(WORK(L+1).EQ.STAR) GO TO 32

30 CONTINUE
J=J+80
K=K+80
IF(K.GT.240) GO TO 950
It-gtKM.EQ.1.OR.ER.EQ.iJ GO TO 399
GO TO 46

32 IF(PCTR) 925,40,925
C-----DEBLANK THE RECORD CONTAINED IN WORK, LOAD IT INTO THE
C ----- ACCUMULATOR, AND DETERMINE ITS LENGTH.

40 ER=O
J= 0
DO 47 1=1,241
IF(WORK(Il.EQ.BLANK) GO TO 47
J=J+1
ACUM(J)=WORK(I)
IF(WORK(I).EQ.STAR) GO TO 48

47 CONTINUE
48 N=J-1

C ----- DETERMINE THE RECORD TYPE AND BRANCH TO THE
C-----APPROPRIATE BLOCK OF CODE FOR PROCESSING.
C
C

CALL IDENT(&600,C800,&700)
C
C
C----THIS BLOCK OF CODE PROCESSES INPUT RECORDS,
C ------I.E,FORMAT DEFINITIONSICLASS DEFINITIONSAND DATA
C ----- RECORDS. FORMAT OR CLASS TREES ARE STRUCTUREr',ENTRIES
C-----MADE IN THE MASTER INOEX,DATA RECORD TABLEsANO
C ----- SEQUENTIAL STORAGE.

IF(ACUM(1k.EQ.EQSI GO TO 251
DO 50 I=1,N
MKa I
IF(ACUM(I).EQ.OP) GO TO 55

50 SERCH(I)=ACUM(I3
55 IF (ACUM(MK+IkoNE.CP) GO TO 56

WRITEM6280)
280 FORMAT(IH ,'INVALID QUERY: MISSING HYPHEN')

GO TO 44
56 NNuN

N= MK- 1
CALL MISRCH
IF(ANSoEO.O) GO TO 57
FNO=MJNDEX(SJ,5)
GO TO 200

C ---- THIS RECORD IS A FORMAT.
C----ADO A CELL TO MINDEX(1,8) FOR THIS FORMAT.

57 FNUM=FNUM+l
IF(R*NE.S) NEXT(R)=0
CALL GET2
NEXT(R)u0
IF(MINOEXlI,8k.NE.O) GO TO 71
MINDEX(1,81*R
CMzR

7?

GO TO 73 ~i
71 CM=MINOEX(l,8)
72 IF(NEXI(CM).EQ.O) GO TO 78

CM=NEXT(CM)
GO TO 72

78 NFXT(CM)=R
CM=NEXT(CM)

73 RNO(CM)=4'NUM
SI=sI+ I
CMEM(CM)=SI

74 MI=MI+l
IF(MINDEX(MI,1).NE.BIANK) GO TOl 74
LK=MK- I
00 77 1=1 1K
IF(I.GT.4i GO TO 60
MINDEX(MI I)=ACUM(I)

60 SEQ(SI)=AMM{I)
SI=SI+l

77 CONTINUE
79 SEQ(SI)=STAR

SI=SI+l
C------SET A POINTER TO THE FORMAT DEFINITION STORED IN #SEQ'

MINDEX(MI,7)=SI
DO 82 L=MK,NN
SEQ(SI)=ACUM(L)
sI=SI+1

82 CONTINUE
SEQ(SI)=STAR

C ------SET A POINTER TO THE FORMAT NAME STORED INISEQ'.
MINDFX(MI ,6)=CMEM(CM)
MINDLX(MI, 5)=FNUM

C------INITIALIZE A HEADER CELL FOR THE FORMAT TREE.
CALL GETI
AVAIL1=P
MINDEX(MI 98)=P
TOP(P) =MI

C-----CHAIN A CELL TO THE HEADER FOR THE FIRST CLASS OF THIS
C ----- FORMAT DEFINITION.

CALL GETI
RR= P
DD= P
DOWN(P)=0

C-----DETERMINE IF EACH CLASS HAS BEEN PREVIOUSLY DEFINrD
C ----- EACH CLASS IS UNIQUELY DEFINEDTHEREFORETHERE WILL BE
C ----- NO DUPLICATE CLASS ENTRIES IN THE MASTER INDEX.
C ------IF A CLASS HAS BEEN PREVIOUSLY DEFINEDt ITS
C-----DESCENDANTS ARE LOCATED AND ADDED TO THE TREE.

01=0
DJ= 0

85 00 80 IK=1930
SERCH(IK)=BLANK

80 FRST4(IK)=BLANK
81 MK=MK+l

IFIACUM(MK).EQ.STAR) GO TO 170
IF(ACUM(MK).EQ.COMMA.OR.ACUM(MK).EQ.OP) GO TO 81
I =MK
J=1

90 SERCH(J)=ACUM(I)
IF(J.GT.4) GO To q5
FRST4(J)=ACUM(I I

95 1=1+1
IF(ACUM(I).EQ.COMMA.OR.ACUM(1).EQ.CP) GO TO 100
J=J, 1
GO TO 90

100 N=J
CALL MISRCH
iF(ANS.EQ.1) GO TO 150
MI=l

105 MI=MI+l
IF(MINDEX(MItl).NE.BLANK) GO TO 105
DO 110 JK=1,4

78

110 MlINDEX(MI JK)-FRST4(JK)
IF(J.GT.41 GO TO 120
MINDEX(Ml ,61=0
GO TO 130

lz0 51=51+1
MINDEX(MI, 6) =S'
DO 125 K=1,J
SEQ(SI)=SERCH(K)

125 S1=S1+l
SEQ(SI)=STAR

130 MINDEX(MI 5)-CX
IF(TOP(RRJ.EQ.O) GO TO 131
CALL GETI
RIGHT(RR)=P
RR=RIGHT(RR)

131 TOP(RR)=MI
MINDEX(MI, 8)=RR
DOWN(RR)=O

C-----PROCESS THE NEXT CLASS IN THE FORMAT DEFINITION.
C------IF NONE THEN READ IN THE NEXT RECORD.

MK= I
GO TO 85

150 IF(MINDEX(SJt5).EQ.LX) GO TO 151
DI=DJ+l
DESTAB(DI)=SJ
MI=SJ

151 IF(TOP(RR).EQ.0) GO TO 155
CALL GETI
RIGHT(RR)=P
RR=RIGHT(RR)

155 TOP(RR)=SJ
MINDEX(SJ, 8)=RR
DOWNCRR)=O
MK= I
GO TO 85

C ----- ADD THE PREVIOUSLY DEFINED CLASSES TO THE TREE.
170 MK=Q

IFIDESTA8(1).NE.BLANK) GO TO 175
171 DO 173 1=1 30

DESTAMdI)=ILANK
173 CONTINUE

GO TO 45
175 DJ=DJ+1

IF(DESTAB(DJI.EQ.BLANK) GO TO 171
180 L=MINDEX(DESTAB(DJbt7)

DO 193 J;1,241
193 ACUM(J)=BL NK

J-1
197 ACUM(J)uSEQ(L)

L=L+1
J;1+1
IF(SEQ(LI.NE.STAR) GO TO 197
ACUM(J)SEQ(1)
RRzMINDEX(OESTAB(0J) ,8)
CALL GETI
DOWN(RA)mP
RR-DOWN(RR)
GO TO 85

C-----THIS BLOCK OF CODE PROCESES CLASS DEFINITIONS
200 IF(MINDEX(SJ,5).NE.CX.AI4D.MINOEX(SJ,5).NE.LXI GO TO 25

sI3SI+1
MINDEX(SJt?)=Sl
00 215 LsMKvNN
SEW St)mACUM(L 1

215 SI=SI+l
SEOt SI)STAR
fRaMINOEX(SJ,8)
CALL GETI
DOWNIRR~mP
RR=DOWN(RR)
DOWN(RR)c0
GO TO 85

79

C ----- THE ACCUMULATOk CONTAINS A DATA RECORD.TRAVERSE THE
C-----TREE AND LOCATE ALL END NODES OF ALL BRA4CHES.DATA
C ----- ELEMENTS ARE MAPPED ONTO THEIR RESPECTIVE CLASSES.
C-----IF THE FIRST CHARACTER, OF THE RECORD IS AN ASTERISK
C ----- THEN THE RECORD IS A DATA RECORD AND A MEMBER OF THE
C ----- SAME FORMAT AS THE LAST DATA RECORD PROCESSED.

250 CALL TRAV
251 NI~l

NN=J-1
RNUM=RNUM+ I

C-----STORE THE RECORD IN SEQUENTIAL STORAGE AND MAKE DATA
C-----RECORD TAB3LE ENTRIES.

SI=SI+I
DRTAB(RNUM, I)=RNUM
DRTAB(RNUM,2)=FNO
DRTAB(RNUM93)=SI
IF(ACUM(l).EO.EQSi MK=2
DO 260 [=MKNN
SEQ(SIlrACUM4I)

260 SI'=Slti
SEQI St)=STAR

C-----PROCESS EACH DATA ELEMENT IN THE RECORD.
SE T=
CALL CH--,4(ACUMFRST4tNN)

C ----- DETERMINE IF A MULTIPLE ENTRY EXISTS,
C-----E.G.,IIJOHN DOE),(ROBERT SMITH))

MK=M(+ 1
255 IF(ACUM(MKi.EQ.OP) CALL MENT

IF(MULT.EQ.1) MM=NI
265 DO 267 1=1,30
267 SERCH(I)=BLANK

J= I
270 SERCH(.J =AC'-M(MK)

J=J+1I MK=MK+l
271 IF(ACUM(MK).EO.STAR) GO TO 44

IF(ACUM(MK).EW.COMMA.OR.ACUM(MK).EQ.CP) GO TO 275
GO TO 270

C ----- DETERMINE IF THE DATA ELEMENT HAS BEEN PREVIOUSLY
C ----- ENTERED IN THE MASTER INDEX. IF NOT MAKE ENTRIES IN
C ----- THE MASTER INDEX,SEQUENTIAL STOREAND INITIALIZE THE C
C ----- MEMBERSHIP CELLS,

275 N=J-I
CALL MISRCH
IF(ANS.EQ.O) GO TO 535
SET=SET+4
DO 455 JJ=1,30

455 SERCH(JJ)=BLANK
CM=M INDEX(Sid 8)

460 IF(NEXT(CM). 0.0) GO TO 465
CM=N EXT CCM)
GO TO 4t-.!

465 NEXT(Rk=
CALL GE12
NE XT(CCM)
RNO(R) =RNUM
CMEM(R)=NODTAB(NI)
SJ=NODTAB(NI)
NI=NI+l
IF(NODTAB(NI).NE.BLANK) GO TO 480
GO TO 45

480 IF(MINDF (SJt7).EQ.BLANK) GO TO 493
CM=MINDE.-(SJ,7)

485 IF(NEXT(EM).EQ.O) GO TO 490
CM=NEXT(CM)
GO TO 485

490 NEXT(Rk=O
CA! L GET2
Nt., TCCM)=R
GO TO 495

493 NEXTUU)O
CALL GET2

80

MINDEX(SJt7l=R
495 RNO(RI=RNUM

CMEM(R =FNO
492 IF(ACUM(MK).NE.COMMA) GO TO 498
497 MK=MK+1

IF(ACUM(MK).EQ.OP) GO TO 255
GO TO 265

498 MK=MK.1
IF(ACUMtMK).EQ.STAR) 6O TO 44
IF(ACUM(MK).EQ.COMMA.OR.ACUM(MK).EQ.CPI GO TO 498
IF(ACUM(MK).EQ.OP) GO TO 500
GO TO 265

500 IF(MULT.NE.1) GO TO 255
MULT=0
NI=MM

505 MK=MK+l
IF(ACUM(MK).EQ.STARl GO TO 44
IF(ACUM(MK).EQ.OP) GO TO 505
GO 10 265

535 DO 540 M=194
SET=SET+l

540 MINDEX(SJIM)=FRST4(SET)
JF(J.LF5 GO TO 555
sI=sI+1
MINDEX(SJ,6)=SI
LL= 1

545 SEQ(SI)=SERCH(LL)
LL=LL+l
IF(LL.EQ.J) GO TO 550
S 1=5141
GO TO 545

550 SI=SI+l
SEW(SI)= STAR

555 IF(J.LE.5) MINDEX(SJ,6)=0
MINDEX(SJ, 51DX
NEXT CRl1=0
CALL GET2
MINDEX(SJ,8)=R
RNO(RI=RNUM
CMEM(RI=NODTAB(NI)
L=NODTAB(NI I
NI=NI+l
lF(MINDEl'(L971.EQ.BLANK) GO TO 580
CM=MINDEX(1,7)

565 IF(NEXT(CM).EQ.0) GO TO 570
CM=NE XT(CCM I
GO TO 565

570 NEXT(R)=0
CALL GET2
NEXT(CCM I=R
RNO(RI=RNUM
CMEM(R)=FNO
GO TO 492

580 NEXT(R)=0
CALL GET2
MINDEX(L97)=R
RNO(RI RNUM
CMEM(RI =FNO
GO TO 492

C-----THIS BLOCK OF CODE PROCESSES FORMAT DEFINITIONCLASS
C-----DEFINITIONAND FORMAT NAME QUERIES.

600 DO 605 Yz- N
605 SERC4(I)=A&M(I)

CALL MISRCH
IF(ANS.EQ.l) GO TO 615

607 WRITEC6,610) (SERCHCMbI=1,30)
610 FORMAT(H ,'REQUEST NOT FULFILLED:',

1 /tT2t30Al,'WAS NOT FOUND')
GO TO044

615 IF(SJ.NE.1) GO TO 645,
C----OUTPUT ALL FORMAT NAMES.

CM=MINDEXC 1,8)

81

618 ST=CMEM(CM)
SE=ST

620 IF(SEQ(SE+1).EQ.STAR) GO TO 625
SE=SE+l

6 GO TO 620
615 RITE(6t630) ROC~(E()ISq~
6 ORMAT(IH 'FORMAT NUMBER'l3v2Xv3OAl)

IF(NEXT(CML.EQ.0) GO TO 635
CM=NEXT(CM)
GO TO 618

635 WRITE (696401
640 FORMAT (/T2,'REQUEST COMPLETE')

FT=0
GO TO 44

645 IF(MINDEX(SJ,5).NE.DX) GO T" 650
646 WRITE(6,647) (SERCH(1),=19-AJ
641 FORMAT(H ,'INVALID QUERY:',

1/,T2,30A1,.IS A DATA ELEMENT')
GO TO 44

650 IF(MINDEX(SJt5).NE.CX.AND.MINDEX(SJ,5).NE.LX)
1 GOTO670
IF(MINDEX(SJ*5).NE.LX) GO TO 652
WRITE(6 653) (SERCH(IhI=1,30)

653 FORMAT(H 130AWHAS NO DESCENDANTS')
GO TO 44

652 ST=MINDEX(SJ,7)
SE=ST

655 IF(SEQ(SE+1).EQ.STAR) GO TO 660
SE=SE+l
GO TO 655

660 WRITE(6,665) (ACUM(IbI=1 NbI(SE(XI=SS)
665 FORMAT(lH 930A1,3(BOA1,/)j E(X,=TS)

60GO TO 44
60DO 673 1=1 N

673 SERCH(I)=ARUM(I)
CALL MISRCH
IF(ANS.NE.1) GO TO 607
GO TU 652

C------IF 7HF KEYWORD SPECIFIED IN THE QUERY IS A FORMAT NAME
C------THEN fCUTPUT ALL DATA RECORDS WHICH ARE MEMBERS OF THAT
C-----FORMAT.IF THE KEYWORD IS A CLASS THEN OUinPUT ALL DATA
C-----ELEMENTS WHICH ARE MEMBERS OF THAT CLASS.

700 00 705 I1130
IF(ACUM(I)*EQ.OP) GO TO 707
N= I
SERCH([I)=ACUM(I)

705 CONTINUE
707 CALL MISPC.H

MFANS.EQ. 1) GO TO 709
WRITE(64 610) (SERCH(I1,I=1,30)
GO TO 44

709 IF(MINDEX(SJ,5).EQ.DX) GO TO 646
710 IF(MINDEX(S0,t5).FT.CX.OR.MINDEX(SJ,5).EQ.LX) GO TO 750
720 J=0
725 J=J*1

IF(DRTAB(J,2).EQ.BLANK) GO TO 635
IF(DRTAB(J,2)*NE.MINDEX(SJ,5)) GO TO 725
ST=DRT B(J 93)
SE::ST

730 IF(SEQ(SE+11.EQ*STAR) GO TO 733
SE=SE+l
GO TO 730

733 WRITE (6,735) (SEQ(I) I-SE
135 FORMAT (2(/vT2,120Al)l SE

GO TO 725
750 IF(MINDEX(SJ,5).EQ.LX) GO TO 760

WRITF(6,753) (SERCH(I),I=1,30)
753 FORM (IN ,'INVALID QUERY.',

1/,T2,JDETERMINE DESCENDANTS OF: '130Alt
2/ T2,'USE DESCENDANTS AS KEYWORDSI
Gb TO 44

760 MI=1

82

765 MI=MI+l
IF(MINDEX(Mi,1I.,EQ.BLANK) GO TO 635
IF(MINDEX(MI,5).NE.DX) GO TO 765
CM=MINDEX(MI ,8)

770 IF(CMEM(CM).EQ.SJ) GO TO 771
773 IF(NEXT(CM).EQ.O) GO TO 765

CM=NEXT(CM)
GO TO 770

C ------IF FT=l THEN OUTPUT ONLY THOSE DATA ELEMENTS WHICH
C ----- ARE -EMBERS OF THE CLASS AND FORMAT SPECIFIED
C-----IN THE QUERY.

771 IF(FT.EQ.0) GO TO 774
IF(DRTAb(RNO(CMI',2).NE.FNO) GO TO 773

774 IF(MINDEX(MI,6).EQ.O) GO TO 785
ST=MINDEX(MI,6)
SE=ST

778 IF(SEQ(SE+1).EQ.STAR) GO TO 780
SE=SE+ 1
GO TO 778

780 WRITE (6,783) (SEQ(IlvI=STiSE)
783 FORMAT (/,T2,30A1)

GO TO 765
785 WRITE (6,788) (MINDEX(MIIhvI=1,4)
788 FORMAT,(/,T2,4A1)

GO TO 765
C ----- THIS BLOCK OF CODE PROCESSES HYPHEN A4'D
C ----- BOOLrAN'ANO' REQUESTS.

800 DO 801 I=1 100
RECTAB(Il= LANK

801 CONTINUE
RI=O
RSMK=l
DO 805 1=1,30
IF(ACUM(I).EQ.OP) GO TO 810
N= I
SERCH(I)=ACUM(I)

805 CONTINUE
810 CALL MISRCH

IF(ANS.EQ.0) GO TO 607
IF(MINDFX(Sj,5).NE.CX.AND.MINDEX(SJ,5) .NE.LX)

1 GOTO820
WRIVE(6,815) (SERCH(IbI=1,30)

815 FORMAT(H ,'INVALID QUERY:',
1/6 T2630AWIS 40T A FORMAT NAME')

820 IF(MINDEX(SJt5).EQ.DX) GO TO 646
FNO=MINDEX(SJ,5)
CALL TRAV
DO 821 1-1 50
IF(NODTAB(I).EQ.BLANK) GO TO 823
NODE=I

821 CONTINUE
823 CLAS=O

D0 824 1=1,241
IF(ACUM(Ik.EQ.COMMA) CLAS=CLAS+1
IF(ACUM(II.EQ.STAR) GO TO 826

824 CONTINUE
826 IF(CLAS.LT.NOOE) GO TO 827

WRITE(69 828) OD
828 FORMAT(H O;INVALID QUERY: NUMBER OF KEV-OR

I/I20PSITONSEXCEEDS THE NUMBER OFCLSE
2/6T6'CNTANEDIN THE SPECIFIED FORMAT')

G 6 T COTANE
8?7 CALL QSCAN(&8229&8559&87O)

C ---- CMNO IS CLASS MEMBERSHIP NO.
822 CMNO=NODTAB(HCTR)

DI=0
CALL MISRCH
IF(ANS.EQ.1) GO TO 831
WRITE(69825) (SERCH I [j 3)

825 FORMAT H ,30A I92X 'WA~ 0O FOUND:'9RSIFAY1
1/,T2,'RECORDS SATIHiYING OTHER KEYWRDFAY'

83

2 'ARE LISTED')
AT=.AE
CALL QSCANI(&822t&855v&8701

830 IF(RECTAB(RI).EQ.BLANK.OR.RECTAB(RI).EQ.STAR)
1 GO TO 893
RI=RI+l
RECTAB(RI)=STAR
RSMK=RI
AT =A E
CALL QSCANL(&822,C855, E870)

831 IF(MINDEX(SJ,5k.EQ.CXi GO TO 834
IF(MINDEX(SJ,5).EQ.DX) GO TO 835
FT= I
GO TO 760

834 WRITE(6,753) (SERCH(IbIl=l,30)
GO TO 44

835 CM=MINDEX(SJ 8)I 840 IF(CMEM(CM).HQ.CMNO) GO TO 842
841 IF(NEXT(CM).EQ.0.AND.DI.EQ.O) GO TO 847

IF(NEXT(CM).EQ.O) GO TO 843
CM=NEXT(CM)I GO TO 840

842 DI=RNO(CM)
IF(DRTAB(DI,2).EQ.FNO) GO TO 850
GO TO 841

847 WRITE(6,848) (SERCH(I),I=1,30)
848 FORMAT(H 30A1,'WAS FOUND BUT IS NOT A MEMBER OF',

1/,T29'THE ILASS SPECIFIED IN THE QUERY:',
2/ T 2a'RECORDS SATISFYING OTHER KEYWORDSIF ANY,',
3 'AE LISTED')
AT=AE
CALL QSCANI(E822,£855 C870)

843 WRITE(69851) (SERCH(119I1,30)
851 FORMAMdH t30Al 'WAS FOUND BUT IS NOT A MEMBER OF',0

l/,T2,'THE FORMA SPECIFIED IN THE QUERY:',
2/9T29'IT IS A MEMBER OF:')
1=0

30CM=MINDEX(SJ,8) I
FTABCI)=DRTAB(RNO(CM),2)

315 IF(NEXT(CM).EQ.Q) GO TO 325
CM=NEXT(CM)
DO 320 FI=1.30
IF(FTAB(FI).EQ.BLANK) GO TO 310
IF(FTAB(FI).EQ.DRTAB(RNO(CM)12)) GO TO 315

320 CONTINUE
325 CM=MINDEX(1,8)
327 DO 330 1=1,30

IF(FTAB(I).EQ.BLANK) GO TO 333
IF(FTAB(I).EQ.RNO(CM)) GO TO 335

33U CCITINUE
333 IF(NEXT(CM).EQ.0) GO TO 355

CM=NEXT(CMI
GO TO 327

335 ST CMEM(CM)
SLF"-ST

340 IF(SEQ(SE+1).EQ.STAR) GO TO 345
SE=SE+1
GO TO 340

345 WRITE(6,350) (SEQ(IX)9IX=STtSE)
350 FORMAT(IH 9T2,30A1)

GO TO 333
355 DO 357 1-1 30
357 FTAB(I)=BLANK

WRITE(6 360)
360 FORMAT(lH 9T2,'RECOPDS SATISFYING OTHER KEYWORDS,', >

I/tT2t'IF ANYIARE LISTED')

CALL QSCANI(&822vC8559E870)
850 DO 85? 'P'(RSMK 100

IF(RECT;.3(RKl.iQ.8LANK) GO TO 853
IF(RECTAB(RK).EQ.RNO(CM)) GO TO 854

84

852 CONTINUE
853 RI=RlI

RECTAB(RI)=RNO(CM)
85. IF(S2.EQAl) GO TO 362

RI=R[+1
RE'Z"TAB(RI =STAR
RSMK=RI

362 AT=AE
CALL QSCANI(&822,&855,&870)

C ----- THIS BLOCK OF CODE PROCESSES ALPHABETIC AND/OR
C-----NUMERIC RANGE REQUESTS.

855 CMNO=NODTAB(HCTR)
S J =2

857 IF(M~INDEX(SJt5).NE.DX) GO TO 865
1=1
lF(MlNDEX(SJy6).EQ.0) GO TO 860
J=MINDEX(SJ 6)

858 IF(SEQ(J).E6.SERCH(I).AND.SEQ(J).EQ.UPRAN(I))
IGO TO 859
IF(SEQ(J).GE.SERCH(Ih.AND.SEQ(J).LE.UPRAN(I))

IGO TO 861
GO TO 865

861 IF(SEQ(J).EQ.SERCH(I)) GO TO 863
IF(SEQ(J).EQ.UPRAN(I)) GO TO'866
GO TO 864

859 1=1+1
J=J+1
IF(SERCH(II.EQ.BLANK) GO TO 864
GO TO 858

863 1=1+1
J=J+1
IF(SERCH(I).EQ.BLANK.OR.SEQ(J) .GE.SERCH(I))
IGO TO 864
GO TO 865

866 1=1+1
J=J+1
IF(SERCH(I).EQ.BLANK.OR.SEQ(J) .LE. "RAN(I))

1 GO T0 864
GO TO 865

860 IF(MINDEX(SJI).EQ.SERCH-(I) .AND.M' X(SJI)
I.EQ.UPRAN(I)) GO TO 862
IF(MINDEX(SJ IhGE.SERCH(I).AND.M :~X(SjtI)

1.LE.UPRAN(I'i) GO TO 871
GO TO 865

871 IF(MINOEX(SJI).EQ.SERCH(I)) GO TO 873
IF(MINDEX(SJI).EQ.UPRAN(I)) GO TO 876
GO TO 864

862 Iw1+1
IF(SERCH(I).EQ.BLANK) GO TO 864
GO TO 860

873 1=1+1
IF(SERCH(I .EQ.BLANK.OR.MINDEX(SJ, I).GE.SERCH(lI

I GOTO864
GO TO 865

876 Iwd.1
IF(SERCH(I .EQ.BLANK.ORMINOEX(SJ I) .LE.IiPRANII))

1 GOTO864
8f'5 SJaSJ41

lF(MINDEX(SJ,1).NE.BLANK) GO TO 857
$SO.
GO TO 830

864 CM-MINDEX(SJ,8)
856 IF(CMEM(CMI.EQ.CMNOI GO TO 868
867 IF(NEXT(CM).EQ.O) GO TO 865

CMwNEXT(CM)
GO TO 856

868 OI=RNO(CM)
IF(DRT6R(OIZ).EQ.FNO) GO TO 872
Go To c67

872 00 883 RK-TRSMK 100
IF(REC TAf&(RK).iQ.BLANK) GO TO 869
IF(RECTAB(RK).EQ.RNO(CM)) GO TO 865

85

883 CONTINUE
869 R!=RI+l

RECTAB(RI)=RNO(CM)
GO TO 865

C-----RECORD NUMBFRS WHICH SATISFY INDIVIDUAL QUERY KEYWORDS
C------ARE STORED IN A LIST ('RECTAB').THIS BLOCK OF CODE
C-----SEARCHES 'RECTAB'TO DETERMINE WHICH RECORDS SATISFY
C------ALL QUERY KEYWORDS.

870 IF(RI.EQ.O) GO TO 893
IF(RECTAB(RI).EQ.STAR) GO TO 887
RI=RI+1
RECTAB(RI)=STAR

887 RECTAB(Rl+l)=DOLS
W= 0
RI=l
TRNO=RECTAB(RI)
RS= 1

880 RS=RS+1
IF(RECTAB(RSI.NE.STAR) GO TO 880
RMK=RS

881 RS=RS+l
882 IF(RECTAB(RS) EQ.DOLS) GO TO 895
885 IF(RECTAB(RSl.EQ.TRNO) GO TO 890

RS=RS+l
IF(RECTAB(RS).NE.STAR) GO TO 885
IF(W.EQ.O) GO TO 893
GO TO 635

890 RS=RS+1
W= 1
IF(RECTAB(RS).EQ.STAR) GO TO 881
GO TO 890

893 WRITE(6,892)
892 FORMAT(H ,'REQUEST NOT FULFILLED:

1 'NO RECORDS SATISFY THE QUERY')
GO TO 44

895 ST=DRTAB(TRNO,3)
SE=ST

896 IF(SEQ(SE+1).EQ.STAR) GO TO 898
S E= SE+ I
GO TO 896

898 WRITE (6,89q) (SEQ(IlvI=STSE)
899 FORMAT (/tT2,2(/,T2v120Al))

RI=RI+1
iF(RI.EQ.RMKI GO TO 635
TRNO=R ECTAB(RI)
RS=RMK+ 1
GO TO 882

900 WRITE (69101
10 FORMAT(1HOT40,'1* FLY NAVY *1*'

TERM=I
NEXT(R)=0
GO TO 45

925 WR ITE61
6 FOmMATIH,'ERROR: UNBALANL.ED PARENTHESIS')
WRITE(6 7) WORKMI 1=1 240)

7 FORMAT(292(/,T29126Ald
IF(TERM*EQ.1) GO TO 45
ERIl
GO TO 45

950 WRITE(618)
8 FORMAT(IH ,ERROR: RECORD LENGTH EXCEEDS 240 CHARACTER

WRITE(6,7) (WORK(I),j=1,240)
IF(TERM.EQ 1) GO TO 45
READ(492) (WORK(J),I=1,80)
WRITE 6,2)
ER= I
GO TO 45

1000 WR ITE(6t9991
999 FORMAT(T2, 'PROGRAM TERMINATION')

STOP
END

86

SUBRUOiTINE CHAR4(ARRF4 L)
IMPLICIT INTEGER*2 (A-Zi
DIMENSION ARR(241),F4(241)
DATA OP/'('bCP/') '/,BLANK/' '/,COMMA/191/

C-----THIS SUBROUTINE STORES THE FIRST FOUR CHARACTERS OF
C-----EACH DATA ELEMENT IN THE ARRAY 'FRST4'.DURING DATA
C-----ELEMENT PROCESSING EACH CHARACTER BLOCK IS MOVED INTO
C-----THE MASTER INDEX,1F NOT PREVIOUSLY ENTERED.

DO 5 1-1 241
5 F4(I)=BLANK

1=0
J= 1
CC TR= 0

7 1=1+1
IF(ARR(Ik.NE.OP) GO3 TO 7

10 1=1+1
IF(I.GE.Ll GO TO 60
IF (ARR (). EQ.OP.OR. ARR(II.EQ.CP .OR.ARR (I).*EQ.COMMA)

IGO TO 20
25 F4(J)=ARR(I)

J=J+1
CCTR=CCTR4 I
IF(CCTR-4) 10,30630

20 IF(ARR(I).EQ.OP. R.CCTR.EQ.0) GO TO 10
35 F4(J)=BLANK

J=J+1
CCTR=CCTR+ 1
IF(CCTR-4) 35,30930

30 CCTR=0
IF(ARR(I).NE.COMMA) GO TO 40
1=1+1
IFIARR(Ih.NE.OP) GO TO 25

40 1=1+1
IF(I.GE.L) GO TO 60
IF(ARR() .NE.OP.AND.ARR(I) .NE.CP.AND.ARR(I) .NE.COMMA)

1GO TO 40
4 45 Iw1+I

IF(I.GE.L) 0O TO 60
IF(ARR(I).EQ.OP.OR.ARR(I).EQ.CP.OR.ARR(Ih.EQ.COMMAI

IGO TO 45
GO TO 25

60 RrTURN

SUBROUTINE lNITI
IMPLICIT INTEGER*2 (A-Z)
DIMENSION TOP(603),RIG T(6Q216DOWN(601)
COMMONIONE/TOP, AVAILIPQjRRqbDtYY
EQUIVALENCE (TOP(3) R GHT!2 ,DOWN(1))

C -----TNHIS SUBROUTINE INI+IAIIZES CELLS USED IN TREE
C----- STRUCTURES.

DO 10 W9160103
TOP(I)j=0

10 RIGHT(IO
DO 20 1=1,59893

20 DOWN(I)=1+3
DOWbN(4601) =0
RETURN
END

SUBROUTINE GETI
IMPLICIT INTEGER*2 (A-Z)
DIMENSION TOP(603)qRIGHT(602)6DOWN(601)
COMMON/ONE/TOPbAVAILIqPQiRR, DYY
EQUIVALENCE (TbP(3)9RIGNT(2)qDOWN(l))
Pao

Q=DOWN(Q)
RETURN
END

SUBROUTINE INIT2
IMPLICIT INTFGER*2 (A-Z)
DIMENSION RNO(603),CMEM(6O2bvNEXT(601)
COMMflN/1WO/RNOAVA IL?, SRCMvRMI
EQUIVALENCE (RNO(3)vCMEM(2bvNEXT(I')

C ------THIS SUBROUTINE INITIALIZES CLASS MEMBERSHIP CELLS*
DO 10 12:1160103
RNO(11=0

10 CMEM(I)=O
DO 20 1=1,59893

20 NEXT(I)=143
NEXT(601)=0
RETURN
END

SUBROUTINE GET2
IMPLICIT INTEGER*2 (A-Z)
DIMENSION RNO(6O3htCMEM(6O2)iNEXT(601)
COMMUN/TWO/RNOAVAIL2, SR,'CMRM
EQUIVALENCE (RNO(3),CMEM(2),NEXT(l3)
R= S
S=NEXT(S)
RETURN
END

SUBROUTINE MISRCH
IMPLICIT INTEGER*2 (A-Z)
DIMENSION ACUM(241)
uIMENSION SERCH(30),MINDEX(500,8),SEQ(4000)
COMMON/THREE/ANS SERCHgt4INDEXACUMSJSKNSEQ
DATA BLANK '/vTR''

C-----THIS SUBROUTINE SEARCHES THE MASTER INDEX FOR THE
C-----WORD CONTAINED IN THE ARRAY'SERCH#.

ANS=0
SJ=0

5 SJ=5J+1
SK= l
1=1

10 IF(MINDEX(SJSK).EQ.SERCH(I)) GO TO 15
SJ=SJ+1
IF(MINDEX(SivSK).EQ.BLANK) GO TO 200
GO TO 10

15 IF(N-41 16916#20
16 DO 17 7J;214

IF(MINDEX SJtJk.NE.SERCH(J)) GO TO 5
17 CONTINUE

GO TO 100
20 1=1+l

KK=MINDEXf 51,61+1
IF(SEQ(KK).NE.SERCH(I)) GO TO 5

55 KK=KK+l
IFISEQ(KKI.EQ.STAR) GO TO 90
1-141
IF(SEQ(KK).EQ*SERCH(I)) GO TO 55
GO TO 5

90 1=1+1
IF(SERCH(I).NE.BLANK) GO TO 200

100 ANScI
200 RETURN

END

88

SUBROUTINE IDENT(*9*,*)
IMPLICIT INTEGER*2 (A-Z)
DIMENSION SERCH(30) ,MINDEX(500,8),SEQ(4000) ACUM(2411
CDMMON/THREE/ANSSERCHMINDEXACUMSJ, SKN,.EQ
DATA flP/ (f,CP/') /,COMMA/',' /,HYP/'-'/ AMP/*'/,COL/

C ------THIS S UBROUTINE DETERMINES WHETHER THE A CUMULATOR
C-----CONTAINS AN INPUT RECORD OR A QUERY AND RETURNS TO
C-----THE APPROPRIATE CODE BLOCK IN THE M/PROG FOR
C-----FURTHER TESTING AND PROCESSING.

F1.=O
F2=0
F3=0
F4=0
DO 10 1-1 N
IF(ACUM(liLEQ.OP) FI=1
IF(ACUM(I).EQ.HYP) F2=1
IF(ACUM(I).EQ.COL) F3=1
IF(ACUM(Ih.EQ.AMP) F4=1

10 CONTINUE
11 IF(F1.EQ.O) GO TO 40

IF(F2.EQ.O.AND.F3.EQ.O.AND.F4.EQ.O) GO TO 30
IF(F3.EQ.1.OR.F4.EQ.1) GO TO 50
J= 1

15 IF(ACUM(J).EQ.OP) GO TO 17
J=J,1
GO TO 15

17 DO 20 I-J N
IF(ACUM(I J.EQ.O3P.OR.ACUM I) .EQ.CP.OR.ACUM(I J.EQ.COMMA)

IGO TO 20
IF(ACUM(I).NE.HYP) GO TO 50

20 CONTINUE
21 GO TO 60
30 RETURN
40 RETURN 1
50 RETURN 2
60 RETURN 3

END

SUBRO'ITINE TRAY
IMPLI(hT INTEGER*2 (A-Z)
DIMENSION TOP(603)IRIGHT(602)iDOWN61
DIMENSION LEVEL(50 9NODTAB(50 N61
DIMENSION SERCH(3ObgMINDEX(500,8),SEQ(4000),ACUM(241)
COMMON/ONE/TOP, AVAIL 1,PQRRDDYY
COMMON/THREE/ANSSERCHtMINDEXACUMSJ, SKvNtSEQ
COMMON/FOUR/NOOTABF
EQUIVALENCE (TOP(3 9RIGHT(2btDOWN(l))
DATA LX/'LI/ BLANK/' I/

C----TNIS SUBROUTINE TRAVERSES THE FORMAT TREE AND LOCATES
---THE END NODES OF EACH BRANCH. THE CLASS CORRESPONDING
----TOEACH END NODE IS STORED IN THE ARRAY 'NODTAB'.

DO 10 1=1950
10 NODTA8(I =BLANK

Is0
AVAIL1-MINDEX(SJ*81
RRuDOWN(AVAIL 1)
Lal1
LEVEL(LI-AVAILI

12 DD*RR
C---EACH LEVEL IN THE TREE IS ASSIGNED A NUMBER WHICH IS
C ----- STORED IN A STACK.AS THE TREE IS TRAVERSED
C----THE STACK IS PUSHED DOWN OR POPPED UP ACCORDINGLY.

15 IF(OWN(DD).EQ.0) GO TO 20
LmL+1
LEVEL(LIuDD
DOaOWN(OD)
GO TO 15

89

20 1=1+1
NODTAB(I)=TnP(OD)
MINOEX(1OP(DD) ,5)=LX
IF(RIGHT(DD).EQ.O) GO TO 25
DD=R I GHT (DD)
GO TO 15

25 IF(LEVEL(L).EQ.RR) GO TO '10
IF(LEVEL(L).EQ.AVAILI) GO TO 35
DD=LE VEL (LI
IF(RIGHT(DD).;,..0) GO TO 27
L=L-1
GO TO 25

27 DD=RIGHT(DD)
1=1-1
GO TO 15

30 IF(RIGHT(RRI.EQ.O) GO TO 35I
IF(DOWN(RR).NE.O) GO TO 12

NODTAB(!)=TOP(RR)
MINDEX(TOP(RR) ,5)=LX
GO TO 30

35 RETURNI

SUBROUTINE MENT
IMPLICIT INTEGER*2 (A-Z)
DIMENSION SERCH(30),MINDEX(500,8),SEQ(4'') ACUM(241)
COMMON/THREE/ANSSERCHMINDEXACUM,SJ, SKN, EQ
COMMON/FIVE/MULT MKEK
DATA P#/gP pTR*/

C------'MK' SCANS THE DATA ELEMENT FROM ITS FIRST 'OP'
C ------(COUNTING *OP'SIUNTIL THE FIRST CHARACTER IS
C-----FNCOUNTERED.THEN 'EK'SCANS FROM *MK' (COUNTING ICP'SI
C-----UNTIL AN 'OPIIS ENCOUNTERED. IF THE PARENTHESES AR -
C-----UNBAL''JCED WHEN 'EKISTOPS THEN A MULTIPLE ENTRY F AISTS

PCTR= J
MULThO

5 IF(ACUM(MK).EQ.OP) GO TO 10
MK MK+l
IF(ACUM(MK).EQ.STAR) GO TO 30
GO TO 5

10 PCTR=PCTR41
MK=MK+1
IF(ACUM(MK).EQ.STAR) GO TO 30
IF(ACUM(MK).EQ.OP) GO TO 10

15 EK=MK
20 EK=EK41

IF(ACUM(EK).EQ.CP) PCTR=PCTR-1
.F(ACUM(EK).EQ.STAR) GO TO 30
IF(ACUt(EKh*EQ*OP) GO TO 25
GO TO 20

25 !F(PCTR.NE.01 MULT-1
30 RETURN

END

SUBROUTINE QSCAN(*t*, *1
IMPLICIT INTEGER*2 (I-Z)
DIMENSION UPRAN(30)
DIMENSION SERCH(3ObM!NDEX(500 8),SEQ(4000) ACUM241)
COMM'r-*2/WiRFE/ANS,SERCHMINDEX,ACJMSJtSK,N, EQ
COMM(i,/SI XS2 AT,AEIHCTRUPRAN
DATA UP/$('/ P/'i '/,COI4MA/' ,'/,BLANK/' 'IHYP/'-'/,ST
I O/: I

C-----THIS SUBROUTfINE/LOCATES KEYWORDS IN THE QUERYi
C-----DETERMINES IF ALPHABETIC/NUMERIC RANGES ARE REQUESTED,
C-----LOADS THE 'SERCHIARRAY,AND RETURNS TO THE M/PROG FOR
C-----QUERY PROCESSING.

s10o
S2 =0

90

AT7N+l
10 IF(ACUM(ATI.NE.OPI GO TO 15

AT=AT+ I
GO TO 10

15 HCTR=0
IIF(ACUM(AT).EQ.HYP) GO TO 40

20 AE=AT
IF(S2.EQ.1) GO TO 22
IF(SI.EQ.O' HCI'R=HCTR+l

22 DO 25 1=1,30
SERCH(I)=BLANK
UPR411()=BLANK

25 CONTINUE

30 SERCH(N)kACUM(AE)
AE=AE+l
IF(ACUM(AE).NE.COMMA.AND.ACUM(AE).NE.CP) GO TO 32
S 1=0
S2=0
GO TO 50

32 IF(ACUM(AEI.NE.COL) Gnl TO 34
C-----ARRAY 'SERCH' IS LOADEQ WITH THE LOWER RANGE LIMIT
C-----AND ARRAY 'UPRAN IS LOADED WITH THE UPPER RANGE LIMIT.

S 1=1
UMa1
AE=AE+l

31 UPRAN(Uil=ACUM(AE)
AE=AE+l
IF(ACUM(AE).EQ.COMMA.OR.ACUM(AE).EQ.CP) GO TO 60
uI=UI+'
GO TO 31

14 IF(ACUM(AE).EQ.AMP) GO TO 35
N=N4 1
GO TO 30

35 S2=1
GO TO 50

40 HCTR=HCTR+1
ENTRY QSCANI(*v*,*i

45 ATmAT+l
IF(ACU"'kAT).EQ.STARl GO TO 70
IF(ACUM(AT).EQ.OP.OR.ACUM(AT).EQ.COMMA,.OR.ACUM(ATI.EQa

I GOTO45
IF(ACUM(AT).EQ.HYP) GO TO 40
GO TO 20

50 RETURN 1
60 RETURN 2
70 RETURN 3

END

91

BIBLIOGRAPHY

1. Taube, M., "Progress in the Design of Information Retrieval
Systems, " Advances in EDP an:' Information Systems, American
Management Association Report No. 62, 1961.

J

2. Bourne, C. P., Methods of Information Handling, Wiley, 1963.

3. Kildall, G. A., Experiments in Li.rge Scale Computer Direct
Access Storage Manipulation, Computer Science Group, University
of Washington, Seattle, Technical Report No. 69-1-01,January 8,
1969.

4. Meadow, C. T., The Analysis of lnformation Systems: An Intro-
duction to Information Retrieval, Wiley, 1967.

5. Hays, D. G., "Research Procedures in Machine Translation",
Natural Language and the Computer, p. 183-214, McGraw-Hill, 1963.

6. Harper, K. E., "Dictionary Problems in Machine Translation,"
Natural Languag, and the Computer, p. 215-222, McGraw-Hill, 1963.

7. Garvin, P. L., "Syntax in Machine Translation, " Natural Langu-
age and the Computer, p. 223-232, McGraw-H.1!, 1963.

8. Mersel, J., "Programming Aspects of Machine Translation,'"

Natural Language and the Computer, p. 233-251, McGraw-Hill, 1963.

9. Salton, G., "A Comparison Between Manual and Automatic In-
dexing Methods, " American Documentation, v. 20, no. 1, p, 61-71,
January, 1969.

10. Travis, L. E., "Analytic Information Retrieval, " Natural
La ngu e and the Computer, p. 310-353, McGraw-Hill, 1963.

11. Green, B. T., and others, "Baseball: An Automatic Question
Answerer, " Computers and Thought, p. 207-216, McGraw-Hill, 1963.

12. Weissman, C., LISP 1. 5 Primer, p. 5-22, Dickenson, 1968.

13. Computer Facility, Naval Postgraduate School, CP/CMS User's
Guide, September, 1969.

14. Becker, J. and Hayes, J. M,, Information Storage and Retrieval:
Tools, Elements, Theories, Wiley, 1963.

92

15. Williams, W. F., Principles of Automated Information Retrieval,
The Business Press, 1965.

16. Artandi. S., An Tntroduction to Compters in Information Science,
The Scarecrow Press, 1968.

17. Janker, F., Indexing Theory, Indexing Methods, and Search
Devices, The Scarecrow Press, 1964.

18. Swets, J. A., "Effectiveness of Information Retrieval Methods,
American Documentation, v. 20, no. 1, p. 72-89, January, 1969.

19. Kellogg, C., "The Fact Compiler: A System for the Extraction,
Storage, and Retrieval of Information, " Proceedings of the Western
Joint Conipliter Conference, vol. 17, p. 73-82, 1960.

20. Martin, J., Design of Real-Time Computer SysL.rms, Prentice-
Hall, 1967.

21. Withington, D. G., The Use of Computers in Business
Organizations, Addison-Mesley, 1966.

93

Ki

UNCLASSIFIED

DOCUMENT CONTROL DATA. R D
Iset"Hitytt , fa(s tesfi oon of fit;@. body of abstract ad indexing annotation ouitI be entered when the overall report ix rlassllied)

0loN4SN& I ING &C i iVi T v (c.nrporavt Auth or) ia. REPORT SECURITY CLASSIFICATION

Naval Postgraduate SchoolI Unclassified
Monterey, California 93940 2b. GROUP

3 RIEPORT TITLE

Application of a Data Structuring Concept in a General-Purpose Fact-Retrieval
System

4 OESCRIPTIVE NOTES (Type o report and*inclusevo dates)

Master's Thesis; September 1970
S. AU tmORISI (Filt name, middle initiat, last name)

Richard Joseph Petrucci

SREPORT DAYE 7a. TOTAL NO. OF PAG S Tb. NO. OF REFS

September 1970 94 21
ga4. CONTRACT OR GRANT NO. 0*. ORIGINATOR'S REPORT NUMSiRIS)

b. PROJECT NO.

9b. OTHER REPORT NOSI (Any other number& that may be assigned
this report)

d.
10O iISTIlSUTION STATEMEilNT

This document has been approved for public release and sale; its distribution
is unlimited.

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Naval Postgraduate School
jMonterey, California 93940

I3. ABSTRACT

An on-line, general-purpose fact-retrieval system is presented which
employs a classificatory data structuring technique. The technique embraces
the basic concept of hierarchical classification of data and provides users
with multiple arienues of access to a data file. Additionally, the data file may
be partitioned into unrelated data sets.

DDFOR 1 4 7 3 UNCLASSIFIED

S/N 0101-807-6811 95 ecuuity Clslicatlon A-I406

UNCLASSIFIED
Security eilasit'l(ation

LINK A LINK 8 LINK C
KEY WO" -

NOLE WT NOLE W? ROLE WT

Information retrieval

Hierarchical classification

Indexing

Fact retrieval

Computer

Storage

DD ,wo.1473 BACK) UNCLASSIFIED
$/N 0O ol.0o7- SIt z I96 S icurlty Clessification A.)Ido*

*I

