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PREFACE 

For many military problems, the best information avail- 

able is the judgments of knowledgeable individuals, and 

these judgments must somehow be combined to produce rational 

decisions. 

Often the preferences of decisionmakers are inconsis- 

tent or not sufficiently well—defined to obtain a complete 

ranking of alternatives, or equivalently a utility function. 

Such a situation often arises if there is more than one de- 

cisionmaker and preferences are obtained by lumping, or 

if the alternatives are considered from several different 

points of view or under several different contingencies. 

The situation arises in such varied military problems as 

choosing officers for promotion (M candidates are evaluated 

by each of N different judges) and choosing alternative 

transport systems (M alternative systems are evaluated under 

N different situations (contingencies) in which they might 

be used). 

This report discusses alternatives to the strict de- 

cisionmaking goal of obtaining a full-fledged ranking of 

alternatives or a utility function.  It describes techniques 

from the theory of measurement, developed in recent years 
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by behavioral scientists, which help in decisionmaking 

situations where no utility functions exist. 

Related material may be found in RM-5957-PR, RM-6115-PR, 

RM-6118-PR, and RM-6299-ARPA. 

This report was produced as part of a program in group 

judgment technology conducted for the Behavioral Sciences 

Office of the Advanced Research Projects Agency. 
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SUMMARY 

The ultimate aim of the decisionmaking art can be 

stated as follows: Given the preferences of your decision- 

makers, obtain a complete ranking of the alternatives which 

reflects these preferences; equivalently, assign numbers 

to the various alternatives so that alternative x is pre- 

ferred to alternative y precisely when x gets a higher 

number than y.  The number assigned to an alternative is 

usually called its utility, and sometimes its worth, and 

the assignment is a utility function. 

Often the preferences of decisionmakers are sufficiently 

inconsistent so as to preclude the existence of such a utility 

function. This report discusses several alternatives for 

dealing with the situation where no utility function exists, 

in particular 

1. Finding a procedure whereby we can modify or re- 

define or make explicit our preferences in the 

course of decisionmaking in order to obtain a 

utility function. 

2. Settling for a utility assignment which best 

approximates a utility function. 
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3.  Modifying the demands on utility functions• 

This study emphasizes the third alternative, and de- 

scribes it in some detail in the context of the theory of 

measurement developed in recent years by behavioral scientists. 

The main theme of the measurement theory approach is that to 

measure preferences, we assign numbers (not necessarily 

utilities) which reflect these preferences in some precisely 

defined way.  Once having assigned numbers, we can use the 

full power of our mathematical techniques for dealing with 

and manipulating numbers in order to understand the pre- 

ferences.  In this spirit, preferences may also be "measured" 

by assigning other concrete mathematical objects to alterna- 

tives, including vectors, intervals on the line, and ran- 

dom variables. 

The measurement theory approach Is illustrated by 

developing in some detail the concept of dimension of a 

partial order.  Even if we cannot assign numerical utilities 

or worth values which reflect preferences in the classical 

sense, from the measurement theory point of view we can 

still learn a lot about the preferences by finding several 

measures of worth so that a given alternative x is preferred 

to an alternative y if and only if x is ranked higher than y 

on each of the worth scales.  If such measures can be found. 
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lc follows that the preferences define a partial order, 

and the smallest number of such scales needed Is called 

the dimension of the partial order.  The ultimate aim of 

the decisionmaking art can now be restated as that of trans- 

forming partially ordered preferences into preferences which 

have as low a dimension as possible.  If one-dimensional 

preferences (those amenable to classical utility functions) 

cannot be found, then the next best thing is to search for 

two-dimensional preferences. Several conditions under which 

a partial order is two-dimensional are described. 
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WHAT IF UTILITY FUNCTIONS DO NOT EXIST? 

1. UTILITY FUNCTIONS OFTEN DO NOT EXIST 

The ultimate aim of the declslonmaklng art seems to 

be: Given the preferences of your declslonmakers, obtain 

a complete ranking of the alternatives which reflects 

these preferences.  Equlvalently, this aim may be stated 

as follows: Assign numbers to the various alternatives so 

that alternative x Is preferred to alternative y precisely 

when x gets a higher number than y.  The number assigned 

to an alternative Is usually called Its utility, and some- 

times Its worth, and the assignment Is a utility function. 

Formally, If X Is the set of alternatives and < Is 

a binary relation on X representing (observed) preference, 

then we require a function u:X —> Reals so that for all 

x, y e X, 

(1)      x < y ^—> u(x) < u(y). 

We shall say that x Is weakly preferred to y If not x < y, 

and we are Indifferent between x and y If we prefer neither. 

Often the preferences (or evaluations) of decision- 

makers are sufficiently inconsistent (some might say 

"irrational") so as to preclude the existence of such a 

These two aims are equivalent so long as the set of 
alternatives is finite, as it is in all practical examples. 

a 
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worth or utility assignment.  We mention just one argument 

given in support of this empirical fact.  If we can assign 

numbers satisfying (1), then it certainly follows that our 

weak preferences (and also our indifferences) must be 

transitive:  If x is weakly preferred to y and y to z, then 

x must be weakly preferred to z. The transitivity of weak 

preference (and of indifference) has been attacked in the 

literature, with such attacks going back to the economist 

Armstrong fl, 2, 3, 4]. A whole series of models for 

preference with nontransitive indifference is described 

in Roberts [34] and in Fishburn [13]. 

This paper deals with the question: What is one to 

say and do in the disturbing situation where no utility 

function exists? Before turning to this question, we should 

note that much of utility theory deals with preferences 

between complex alternatives.  Thus, combinations or mixtures 

of objects in X are allowed, and we require of the utility 

function that it preserve combinations. 

For example, let x and y be certain alternatives, let 

p be a number between 0 and 1, and let xpy denote the 

uncertain alternative "x with probability p and y with prob- 

ability 1-p." If you are indifferent between alternatives 

x and y, then for every alternative z, you "ought" to be 

indifferent between xpz and ypz.  More generally, your 

utility function ought to satisfy 

u(xpy) = p«u(x) + (l-p)-u(y). 
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for all x y € X and p between 0 and 1. Studies of utility 

functions satisfying this condition, often called cardinal util- 

ity functions, originated with von Neumann and Morgenstern [40]. 

In our discussion we shall not deal with combinations or 

mixtures and the like. We shall concentrate simply on util- 

ity functions preserving the relation <  in the sense of 

equation (1), the so-called ordinal utility cunctions. 

If no ordinal utility function exists, one approach 

to the decisionmaking problem is to describe a procedure 

whereby we can modify or redefine or make explicit our 

preferences in the course of decisionmaking in order to 

become more "rational" (i.e., so that such a utility func- 

tion will exist). A second approach is to settle for a 

utility assignment which best approximates equation (1). 

As for the first approach, that of modifying preferences 

to obtain rationality, this is at least the spirit of many 

papers which suggest the following method.  Build a utility 

function (or some sort of function assigning numbers to 

alternatives, to be more accurate) from some evidence of 

our preferences, and then use the resulting function to 

define preference.  This is a "normative" (as opposed to 

"descriptive") approach.  It emphasizes how we should 

choose, what our preferences should be. This approach (and 

the normative—descriptive distinction ) is emphasized, for 

example, in a long recent Rand study by Raiffa [31]. A 

For more discussion of this distinction, see Marschak 
127]  and the survey article \15]  by Fishburn. 
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second paper illustrating this approach is one  by Miller 

[29].  Miller's basic idea is to reduce a complex problem 

to several simpler ones.  Thus, he suggests breaking each 

alternative into several simple facets or components.  For 

example, alternative transport systems can be studied 

under different contingencies. And if a new Ph.D. is 

selecting a job, he might consider various factors in 

assessing a particular job offer, such as monetary compen- 

sation, geographic location, travel requirements, and 

"nature of work." Each alternative is measured or scaled 

(for its performance) on each facet.  The utility or worth 

of an alternative on a given facet is obtained by using 

the numerical measure or scale value on the facet. And, 

finally, the utility of an alternative is obtained by 

adding (in a weighted sum) the utilities on the different 

facets. 

This utility function is then used to define prefer- 

ence, and so there can be no problem about equation (1) 

being satisfied.  On the other hand, if preferences among 

alternatives are gathered first, and then this procedure 

purports to produce a utility function reflecting them, 

there is considerable difficulty.  If no assignment satis- 

fying (1) exists, then obviously neither this nor any other 

procedure is going to find one. And even if an assignment 

satisfying (1) exists, this procedure might not produce 

such an assignment. 
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In most of the literature, there Is considerable stress 

on outlining procedures for obtaining utilities, and not 

enough stress on specification of conditions under which 

such procedures will "work." Yet, it is costly to invest 

time, energy, and resources on a decisionmaking procedure 

without knowing it is (at least reasonably likely) to lead 

to success. 

A more difficult method of modifying preferences to 

obtain rationality than that described above is first to 

modify preferences and then to build a utility function 

reflecting them.  Perhaps the only significant work on 

modifying preferences in the course of decisionmaking 

without first finding utility functions deals with a group 

decisionmaking framework.  Here, such techniques as Delphi 

have been studied (see [9]), with the ultimate aim of pro- 

ducing better decisions in groups by having some controlled 

interaction. The basic idea is that by allowing controlled 

interactions, we stand a chance of making our preferences 

more rational. 

A second approach, if no utility function exists, is to 

try to seek utility assignments which best approximate equa- 

tion (1).  There does not seem to have been much work done on 

this approach.  One method begins by obtaining complete 

rankings on several different facets or under several differ- 

ent contingencies (as in the Miller [29] approach above). 

Then the overall ranking is taken to be that ranking which 
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is the "best possible" consensus. Methods for defining 

the consensus ranking are given In Kendall [22], Friedman 

[17], and In Kemeny and Snell [21]. The best possible 

consensus will give rise to a utility function which hope- 

fully approximates equation (1) "well enough." 

In our (almost obsessive) search for a utility function 

satisfying equation (1), we have perhaps missed one approach 

to the dilemma that our everyday preferences are not always 

amenable to such a representation. Entirely different from 

the two described above, this third approach Is simply to 

modify the demands on the utility function. The outline 

of this approach Is the subject of the next section. 
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2.  MODIFYING DEMANDS ON UTILITY:  THE "MEASUREMENT THEORY" 
APPROACH 

This third approach Is perhaps best understood in terms 

of the "theory of measurement." The point of view we shall 

take about measurement is based on the ideas of Scott and 

Suppes [37] and Suppes and Zinnes [38]. The latter is an 

extensive, elementary introduction to the theory. 

We all agree that measurement has something to do with 

the assignment of numbers. Analysis of such paradigm cases 

as the measurement of mass and the measurement of tempera- 

ture indicates more, namely that measurement is the assign- 

ment of numbers which preserves certain observed relations. 

Thus, measurement of mass is the assignment of numbers which 

preserves the relation "heavier than" and measurement 

of temperature is the assignment of numbers which preserves 

the relation "warmer than." In this sense, utility is the 

measurement of preference, i.e., the assignment of numbers 

which preserves the relation "preferred to." 

Scott and Suppes [37] formalize measurement as follows. 

We start with an observed (binary, say) relation R on a set 

of objects or alternatives X. Then, choosing an appropriate 

relation n on the real numbers, e.g., <, we try to set up 

a mapping u from X into the reals which n-preserves the 

relation R, i.e., so that for all x, y € X, 

(2)     xRy «—> u(x) TT u(y). 
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The point of assigning numbers is that we know a great 

deal about their properties and so we can understand the 

observed relation much better if we can replace it by a 

concrete relation on numbers.  But this purpose will have 

been accomplished if we replace the observed relation by 

any useful concrete relation on the real numbers, and it 

does not have to be <• 

To give a helpful example here, let us return to 

the point we made earlier, namely that our weak preferences 

(or Indifferences) are not necessarily transitive.  In 

particular, indifference is not transitive. A very good 

example of Luce [25] in support of this point is the follow- 

ing.  We certainly have a (strong) preference between a 

cup of coffee with one spoon of sugar and a cup with four 

spoons.  But if we add sugar to the first cup at the rate 

of 1/100 of a gram, we will undoubtedly be indifferent 

between successive cups. Transitivity of indifference would 

imply indifference between the cups with one spoon and 

four spoons as well. 

This sort of example indicates that indifference might 

correspond more to "closeness," a nontransitive relation, 

than to equality, as the utility representation of the 

form (1) implies.  Maybe we should modify our demands in 

measurement of preference to at least take this idea into 

account, and thus demand an assignment of numbers so that y is 

preferred to x if and only if the number assigned to y is 
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not only larger than the number assigned to x, but "suf- 

ficiently larger" so that we can tell them apart. Measuring 

"sufficiently larger" by some positive number 6, Scott and 

Suppes [37] formalize this idea by demanding a real-valued 

function u on the set of alternatives so that for all 

alternatives x, y, 

(3)     x < y *—> u(x) < u(y) + 6. 

The point is that frequently a utility assignment satisfying 

(3) can be found when an assignment satisfying (1) cannot. 

This still gives us a working tool in making decisions, 

with the option that if u(x) and u(y) are "close," we can- 

not decide.  It is certainly fairer to describe preference 

data this way than in a way which imposes a preference when 

there really is none. 

Scott and Suppes give necessary and sufficient condi- 

tions, in terms of the relation <, for obtaining a represen- 

tation (3). A relation so representable is called a semi- 

order, a notion going back to Luce [25]. They also give a 

direct procedure for obtaining the function u if it exists. 

These are two of the major concerns of measurement theorists: 

to exhibit conditions under which useful representations such 

as (3) are attainable, and to provide constructive procedures 

for attaining them.  Further references on semiorders are Suppes 
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and Zinnes [38], Roberts [32-36], Holland [19, 20], Domotor 

[10], Krantz [23], and Fishburn [12, 14]. 

Of course, our preferences will often not be represent- 

able in the form (3).  But once we take the broad attitude 

of measurement theory, then we may try other representations; 

our tools In declslonmaklng are limited only by our Imagin- 

ation.  Simply find useful concrete relations rr on the real 

numbers which reflect observed preference in the sense of 

equation (2), i.e., so that 

x < y <—>  u(x) rr u(y). 

(In the semlorder case, a TT b <—*■ a <  b +6.) For that 

matter, why limit ourselves to numbers u(x)? Why not 

assign other concrete mathematical objects u(x) to alterna- 

tives x so that concrete relations on the u(x)'s reflect 

observed relations (preference relations) on the x's.  In 

particular, the u(x) may be vectors rather than numbers. 

This is measurement with several numerical assignments. 

We shall give an example of this kind of measurement in 

Sec. 3. A more radical idea is the following.  For each 

x, find an Interval on the real line u(x), to be interpreted 

as the range of values of x or something similar, so that 

for all x, y e X, 

x < y u(x) 0 u(y), 
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where u(x) (<) u(y) means a < b for all a e u(x), b e u(y). 

This assignment has been studied In Flshburn [12, 14] and 

in Roberts [34]; and this more general approach to measure- 

ment theory is advocated by Krantz [24]. 

To generalize even further at this point, one can 

learn a great deal about preferences by taking as basic 

data something other than the relation <.  To give an 

example, the theory of probabilistic consistency takes as 

basic data a collection of numbers p(x, y) representing the 

frequency with which x is preferred to y. The theory, recog- 

nizing that absolute consistency or absolute rationality is 

hardly ever attained, tries to define what it means for the 

decisionmaker(s) to be probabilistically consistent. A 

typical condition of probabilistic consistency is the 

strong utility model, which is satisfied if there are random 

variables Uy so  that for all x, y € X, 

p(x, y) - Prob [ux > uyl. 

This  is a generalization of (1), and the problem is  to find 

necessary and sufficient conditions on the data p(x,  y) 

for the exlstenoe of such random variables.    The theory of 

probabilistic consistency is developed in Block and Marshak 

[8],  Luce and Suppes   [26],  and Roberts   [32]. 

In summary,   the job of the measurement theorist is 

this:    find useful representations,  specify conditions 
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sufficient and/or necfcosary for these representations, and 

specify constructive procedures for obtaining the represen- 

tatlons.   The attitude of measurement theory toward measure- 

ment of preference and toward decislonmaking is the following. 

Accept the fact that our preferences may not be rational 

or consistent in the usual utility-function sense. Much is 

to be gained by translating these preferences into concrete 

relations on numbers or other known mathematical objects, 

because then we get an accurate and understandable picture 

of our preferences, and also can use the full range of our 

mathematical knowledge.  Build up a repertoire of useful 

representations to try out. Then, rather than try to twist 

preferences Into a given mold, report them in an insightful 

and useful way, and make the best of the information origin- 

ally given you. We illustrate this measurement theory 

approach ir some detail in the next section. 

The sufficient conditions are useful in practice to 
tell us when a given mathematical model (given representation 
like (2)) can be assumed. The necessary conditions are 
useful in practice to tell us when a given model should not 
be assumed, namely if it implies a condition which is clearly 
unsatisfactory. 

It is also important to discuss uniqueness of the 
representations, for the uniqueness theorems define the 
type of scale Involved.  (Cf. Suppes and Zinnes [38] for an 
elaboration of the relation between uniqueness of the represen- 
tation and scale type.) 
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3.  TWO-DIMENSIONAL PARTIAL ORDERS; A SPECIFIC EXAMPLE 

To give a detailed example illustrating the points 

made in the previous section, we shall use the measurement 

theory approach to develop the concept of two-dimensional 

partial orders;, and discuss the relevance of this relatively 

unknown concept for decisionmaking. 

If the preferences are asymmetric (x < y implies 

~y < x) and transitive (x < y and y < z imply x < z),   then 

they are said to constitute a partial ordering of the 

alternatives. 

Let us suppose that we cannot assign numerical worth 

values which reflect the preferences in the sense of (1). 

From the measurement theory point of view, we can still 

learn a lot about the preferences by finding several mea- 

sures of worth so that a given alternative x is preferred 

to an alternative y if and only if x is ranked higher than 

y on each of the worth scales.  (The different scales may 

represent different attributes or aspects or contingencies, 

etc., as in the Miller [29]  method discussed above.)  If 

such measures can be found, it follows that the preferences 

are transitive and therefore define a partial order.  The 

smallest number of such scales needed is called the dimen- 

sion of the partial order. The ultimate aim of the 

decisionmaking art can be restated as that of transforming 

our partially ordered preferences into one-dimensional 

*This definition differs just slightly from that for- 
mally adopted below. 

;. 
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preferences.  Short of this, it is useful to minimize the 

dimension of the preferences, and in particular to search 

for the next best thing, two—dimensional partial orders. 

The main purpose of this section is to analyze conditions 

under which a partial order is two—dimensional.  Since 

conditions characterizing the one-dimensional partial orders 

are known (see below), it is sufficient to characterize 

the class of partial orders with dimension at most two. 

In the following, we search for conditions on •< which 

are necessary and sufficient for the existence of two real- 

valued functions f and g on X so that for all x, y e X, 

(4) x < y if and only if [f(x) < f(y) and g(x) < g(y)]. 

We should remark here that (4) can be thought of as 

a natural generalization of (1).  For, let us define < on 

2* 
R      by 

(a^ b^ < (a2, b ) if and only if ^ < a2 and b^ < h^\ 

Then the existence of functions f and g satisfying (A) is 

2 
*/f is the real plane. 
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2 
equivalent to the existence of a function u:X —*• /? so 

that for all x, y e X, 

x ■< y  if and only if  u(x) < u(y). 

Necessary and sufficient conditions on (X, <) for the rep- 

resentation (1) have long been known.  If X is countable, 

then -< satisfies equation (1) if and only if it is a so- 

called weak order.  (Proofs of this and its extension to 

X of arbitrary cardinality are given, for example, by 

Milgram [28], Birkhoff [7], Luce and Suppes [26], and 

Fishburn [16].) 

To return to the representation (4), we begin with 

some definitions.  With a few obvious exceptions, binary 

relations are here defined on a given set X. We recall 

that a binary relation < is a partial order if it is 

asymmetric and transitive.  ■< is a linear order if it is 

a partial order which is complete (x ^ y implies x < y 

or y < x). 

Finally x ~ y means that x ^ y and y / x.  ~ is vari- 

ously referred to as indifference, matching, similarity, 

and so forth.  We call it indifference,  x ~ y means that 

x ^ y and x ~ y.  This relation is called incomparability. 
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Intersections of binary relations are defined as usual: 

(x, y) £ (l. < if and only if (x, y) e < [i.e., x < y] 
A3 3 3 

for all a e A.  Clearly, the intersection of a set of linear 

orders is a partial order.  Conversely, every partial order 

can be realized as the intersection of a set of linear 

orders, for by Szpilrajn's extension theorem [39], if 

x ~ y, there are linear orders <, and <„ that include < 

and have x <1 y and y <_ x.  Following Dushnik and Miller 

[11], we shall define the dimension D(<) of a partial order 

as the smallest cardinal number m such that < equals the 

intersection of m linear orders.* 

It turns out that when X is countable, this notion 

of dimension is essentially the same as that defined above, 

namely that for n > 1, D(<) < n if and only if there are 

functions f,, f0, ..., f on X such that for all x, y e X, 
i  ^      n 

(5)  x < y  if and only if  (viHf.Cx) < f.Cy)]. 

'Ore [30] uses the term "order dimension" for the 
Dushnik-Miller notion, and the term "product dimension" 
for the following equivalent notion due to Hiraguchi [18]. 
The product dimension of a partial order < is the least 
cardinal m such that < can be embedded, as a partial order, 
in the cardinal product of m chains.  It should be men- 
tioned that these two equivalent notions of dimension of 
a partial order bear no relation to the "height" or "length" 
of a partial order, which is also called dimension in some 
geometrical contexts. 
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This is proved in Baker-Fishbum-Roberts [6]. 

Figure 1 shows three partial orders for |XJ «6.  In 

these Hasse diagrams^ x < y if and only if x lies below y 

and there is a connected path from x up to y, each of whose 

links goes upward.  It is easy to see that D(<-) ■ 2.  For 

<„ is not a linear order, and two linear orders whose inter- 

section is <^ are b'<c<e<d<f<a and e<f<h<a< 

c < d.  It turns out that D(<1) -  DC-O ■ 3, and we shall 

return to these two partial orders below. 

A number of characterizations of partial orders with 

D < 2 have been obtained by Dushnik and Miller [11] and 

Baker, Fishburn, and Roberts [5, 6]. We shall state several 

of these here, and a complete summary may be found in [6]. 

Perhaps the basic characterization is the following, 

due to Dushnik and Miller. Suppose ~ is the incomparability 

relation corresponding to the partial order (X, <). Then 

D(<) < 2 if and only if there is a conjugate partial order 

<* on X satisfying the following condition for all x, y e X: 

x ~ y  if and only if  x <* y or y <* x. 

Thus, for example, if X is the real plane and < is defined 

on X by 
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(x^ yj^) <  (x2, y2) 

if and only if 

[xj^ < Xg and yj < y2], 

then (X, <) has D < 2 because it has a conjugate partial 

order defined by 

(Xj^ y^ <* (x2, y2) 

if and only if 

[\l >  x2 and yj^ > y2 and (Xj^ / x2 or yl t  y2)] 

To state a second characterization of the two-dimensional 

partial, orders« we need the notion of a ~-K:ycLe. We say 

that xn, x., . . . , x , is a «^-cycle if and only if xn ~ x. ~ 0  1      n-1     *■         J 0   1 

x« »« .. . ^ x . ~ xn,  and x. - x. for i t i  implies x.., ^ 2        n-1   0     i   j      r  J      r £+^ 

x. ., where addition is taken modulo n.* A triangular chord 

*It should be noted that this definition of cycle is 
slightly more general than the one usually given. 
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of such a cycle is a pair (x., Xj+o)* where x. ^ x.+2 and 

where addition is again taken modulo n. 

It is proved in Baker, Fishburn, and Roberts [5] that 

if (X, <) is a partial order and ~ is its incomparability 

relation, then D("<) < 2 if and only if every odd "^-cycle 

has at least one triangular chord. We can now verify that 

D(<2) > 2 for <„  of Fig. 1.  This follows because the 

~«—cycle a, c, f, b, e, b, d has no triangular chord since 

a </,, f, c ^2 b, f ^2 ^ b * b^ e ^ d, b i62 a, and d ^ c. 

For a proof that DC'O actually is 3, the reader is referred 

to Baker, Fishburn, and Roberts [6]. 

To get an even better picture of those partial orders 

which have dimension greater than two, let us define a com- 

parability cycle in a partial order (X, <) to be a sequence 

XQ, XJ, ..., x«. e X of odd length n = 2k + 1 satisfying 

these three conditions for all i: 

(i)   x. and x. , are comparable, i.e., x. < x. , 

or x,., < x. or x. ■ x,.,; i+l   i    i   i+l' 

(ii)  x. and x. . are incomparable; 

(iii)  if x. - x. for some j ^ i, then x... f^ x. , . 

Here subscripts are interpreted modulo n.  For each i, 
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x.., is one of the two elements which are "opposite" x. 

in the cycle.  It follows rather easily from the result 

about ~-<:ycles that a partial order (X, <)  has dimension 

at most two if and only if (X, <) has no comparability cycle. 

(For a proof, see Baker, Fishburn, and Roberts [6].) 

As an application, consider again the partial orders 

<1, <_ of Fig. 1.  In both cases, the elements in alpha- 

betical order make a comparability cycle if one element 

is repeated; e.g., a, a, b, c, d, e, f.  Therefore both 

<- and -<« have dimension greater than 2.  (It is shown in 

Baker, Fishburn and Roberts [6] that in fact, D(-0 - D(<2) • 

3.) 
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