M 712731 Final Report # INVESTIGATION OF PKP SEISMIC WAVES Le Mis donne de la comme de la comme de la la comme de OCT 15 1979 STANFORD RESEARCH INSTITUTE SRI-irvine - Irvine, California 92664 · U.S.A. 41 Final Report September 1970 # INVESTIGATION OF PKP SEISMIC WAVES By: WILLIAM F. ISHERWOOD ### Prepared for: DIRECTOR OF PHYSICAL SCIENCES AIR FORCE OFFICE OF SCIENTIFIC RESEARCH WASHINGTON, D.C. 20533 Attention: SRPG ARPA Order: 292, Amend. No. 43 Project Code: 7F10 Name of Contractor: Stanford Research Institute Date of Contract: 1 February 1967 Amount of Contract: \$131,188 Contract Number: F44620-67-C-0080 Project Scientist: William F. Isherwood Title of Work: Investigation of PKP Seismic Waves SRI Project PHU-6495 #### Approved: D. R. GRINE, Manager Geophysics Program GEORGE R. ABRAHAMSON, Director Poulter Laboratory Physical Sciences Division CHARLES J. COOK, Executive Director Physical Sciences Division ## CONTENTS | LIST OF FIGURES AND TABLES | iii | |---|-----| | FOREWARD | i v | | INTRODUCTION | 1 | | RESULTS | 4 | | Seismic Noise | -1 | | Detection Threshold | 6 | | Data Processing Techniques | 1.4 | | Travel Times | 16 | | Source Characteristics | 19 | | Internal Constitution of the Earth | 23 | | SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS | 26 | | BIBLIOGRAPHY | 28 | | APPENDIX A | 29 | | DISTRIBUTION LIST | 36 | | DOCUMENT CONTROL DATA - R&D | 38 | ## FIGURES | Figure 1. | Plan of BYA Seismic Array | 1 | |------------|--|----| | Figure 2. | Block Diagram - Typical Channel | 2 | | Figure 3. | 142° Geocentric Distance from Byrd -
Showing Sites of Russian Explosions | 3 | | Figure 4. | BYA Travel Times | 5 | | Figure 5. | Surface Meteorology | 7 | | Figure 6. | Spectral Content of Noise and PKP Signal | 8 | | Figure 7. | Effect of Band Pass Filtering (0.4 to 2.0 Hz)
Earthquake: $9/8/68$ C. Alaska $m_b = 4.5$ $\Delta = 145.2$ | 9 | | Figure 8. | PKP Composite | 10 | | Figure 9. | Detection Threshold | 13 | | Figure 10. | Seismometer Response - Typical Channel | 15 | | Figure 11. | BYA Travel Times for BC Branch, Least Squares Fit t - 19m 31.07726 sec + 3.00003 (Δ - 142) sec | 18 | | Figure 12. | DF - AB Interval
Event: $11/7/68$ Novaya Zemlya m _b = 6.0 Δ = 173.2° | 20 | | Figure 13. | First Motions | 21 | | | TABLE | | | Table I | Events Shown on Figure 9, PKP Composite | 12 | #### FOREWORD This final report is a documentation of the work done under contract F44620-67-C-0080, Investigation of PKP Seismic Waves. Details of the project history, data gathering operations, and results of preliminary examination of the data were presented in an Annual Report issued March 15, 1969, and are only summarized in this report. Project results and conclusions are presented here. Stanford Research Institute's participants in the project were as follows: C. W. Smith, Physicist; W. F. Isherwood, Geophysicist; D. E. Wolf, Mathematician; and J. D. Eisler, Senior Geophysicist. Initial project supervisor was W. H. Westphal; interim supervisor was R. A. Schmidt, and supervisor for the conclusion of the project is D.R. Grine, Manager, Geophysics Program. Major D. D. Young, AFOSR, acted as initial Project Monitor and also assisted with the installation of the seismic array at Byrd Station. Bruce A. Bolt, Professor of Geophysics, University of California, Berkeley, acted in a consulting capacity. #### INTRODUCTION Stanford Research Institute (SRI), with support from the Advanced Research Projects Agency (ARPA and the National Science Foundation (NSF), installed a four-element seismic array (BYA) at Byrd Station, Antarctica, beginning operation January 18, 1968. Short period vertical component seismometers were selected in anticipation of high magnification operation. Figures 1 and 2 show the plan of the BYA array and a block diagram of the system. The March 15, 1969, Annual Report (Isherwood, 1969) describes in detail the system and the data gathering operations. The site was selected to study core phase arrivals because PKP waves have a principal focus at an angular distance, Δ , of approximately 142° from the source, and Byrd Station is close to 142° from several of the great seismic zones in the Northern Hemisphere, as shown in Figure 3. FIGURE 1 PLAN OF BYA SEISMIC ARRAY FIGURE 2 BLOCK DIAGRAM-TYPICAL CHANNEL FIGURE 3 142° GEOCENTRIC DISTANCE FROM BYRD Helicorder and magnetic tape records for the period January 18, 1968, through November 24, 1969, including approximately 1000 core phase arrivals, were analyzed. The objectives of the research contracted between ARPA and SRI were as follows: - 1. To establish and prepare specifications for a high-quality seismograph station capable of recording PKP seismic waves to operate in Antarctica during the year of 1968. - 2. To study the characteristics of the ambient seismic noise and relate them to oceanic and continental storms. - 3. To apply appropriate data processing techniques aimed at enhancement and identification of PKP waves in the presence of ambient seismic signals and noise. - 4. To analyze and interpret PKP wave data in terms of their source characteristics and the internal constitution of the earth. Since the above interpretations depend on accurate travel time prediction, BYA-observed travel times were compared with published tables as an inseparable objective. Initial evaluation was based on the origin times, hypocenters, and magnitudes published by the U. S. Coast and Geodetic Survey (USC&GS). Events listed herein are referred to by the USC&GS origin times. Nomenclature will follow that of Jeffreys and Bullen (1967) and Bolt (1968). Figure 4 presents the PKP travel time curve for reference throughout the text. #### RESULTS ## Seismic Noise Although background noise level varied with time, Byrd Station was found to be a fairly quiet scismic site, especially within the band of PKP frequencies. Helicorder records were generally made with a system magnification near 100 K. Typically, higher noise levels were observed for periods of one to two weeks interspersed with longer periods of low noise levels. The seismometers were buried at a depth of ~ 60 m, providing adequate insulation from direct vibration by local winds. Inspection of the records showed no correlation between the seismic noise level and local storms; many severe local storm occurred during periods of low noise. The months of March and April 1968 present an example: During March, the records were generally noisy with the most noise from about the 10th to 19th. Wind records for this period show a two-day storm on the 13th and 14th but show lower average winds and peak gusts than later in the month. April, which set a record monthly average wind speed of 27.1 mph, had relatively low noise levels. Correlation of noise levels with oceanic storms was prevented by lack of meteorological data for the oceans near the Byrd Land coast. According to the Antarctic Support Activities (OIC, Detachment Charlie, personal communication), there were a maximum of five ships in the entire area off the coast in the calendar year 1968, providing almost no meteorological data. State-of-sea determination from satellite pictures FIGURE 4 BYA TRAVEL TIMES is, as yet, an unperfected art. Consequently, the surface charts available have a noticeable lack of data for the required ocean area (Figure 5). Tests were run to determine the frequency content of the ambient noise and the PKP signals. Initial frequency measurements were made by scaling the helicorder records. Later, analog filtering of the magnetic tapes were employed and finally spectral analysis was carried out by digital computer. Figure 6 is a plot showing the frequency spectrum of an average noise sample compared with a typical sample of PKP signal. This clearly shows that the majority of signal energy is contained between 0.4 Hz (2.5 sec period) and 2 Hz (0.5 sec period). The background noise lies mostly at much higher frequencies and slightly lower frequencies than this signal range. Figure 7 shows an extreme case before and after digital filtering with pass band of 0.4 to 2.0 Hz. The large amplitude noise near 5 Hz on Figure 7 is encountered when snow cats are in operation in the station area. Being well out of the signal band, it is the easy target of additional filtering. Natural ground motion presents more of a problem. The greatest natural interference arises from longer period noise, which rises to ~ 30 mu at 0.3 Hz (as measured from the helicorder) and may be as high as \sim 10 m μ at 0.5 Hz. Signals from 1 to 2 Hz have least competition with background noise, which is generally < 1.5 mu of ground motion. ## Detection Threshold PKP arrivals were observed at Byrd Station for the range of $\Delta=110$ to 173° . The amount of energy transmitted, however, varies considerably over this range as pointed out by Shahidi (1968). At distances where more than one arrival are seen, the relative energy from different wave paths also varies with Δ . This is seen both in the amplitudes of arrivals and the quality of the first motion seen. The variation is shown in Figure 8, a composite of PKP arrivals. Table 1 lists the events used in Figure 8. Although an attempt was made to use events of near the same magnitude and use records of near the same gain, the relative amplitudes between different traces means little for such a small sample. Events with Δ 's $< 140^{\circ}$ show early arrivals, corresponding to the GH branch of the travel time curve. These ray-paths transmit so little energy that arrivals are seen only from large events and even then onsets observed were emergent. FIGURE 5 SURFACE METEOROLOGY FIGURE 6 SPECTRAL CONTENT OF NOISE AND PKP SIGNAL FIGURE 7 EFFECT OF BAND PASS FILTERING (0.4 to 2.0 Hz) FIGURE 8 PKP COMPOSITE FIGURE 8 PKP
COMPOSITE concluded Table I EVENTS SHOWN ON FIGURE 8, PKP COMPOSITE | Δο | Region | Date | m _b | Depth (km) | |-------|-------------------|-----------------|----------------|------------| | 173.2 | Novaya Zemlya | Nov. 7, 1968 | 6.1 | 0 | | 166.1 | Laptev Sea | Apr. 7, 1969 | 5.5 | 33 | | 153.4 | Iceland | Dec. 5, 1968 | 5.5 | 5 | | 149.1 | E. Kazakh | Sep. 5, 1968 | 5.5 | 0 | | 145.1 | S.W. Russia | Sep.26, 1969 | 5.6 | 0 | | 142.3 | E. Kamchatka | Jan.22, 1969 | 5.5 | 33 | | 140.2 | Turkey | Sep. 3, 1968 | 5.7 | 5 | | 138.9 | Kamchatka | Jun.15, 1968 | 5.4 | 39 D | | 137.5 | Kurile Islands | Oct.24, 1968 | 5.5 | 35 | | 135.8 | Hindu Kush | Dec.19, 1968 | 5.4 | 151 | | 133.0 | Hokkaido, Japan | Aug. 7, 1968 | 5.6 | 54 D | | 129.7 | E. of Honshu, Jap | an Jun.12, 1968 | 5.7 | 36 D | | 125.7 | Shikoku, Japan | Dec.11, 1968 | 5.4 | 32 D | | 120.7 | Ryukyu Islands | Nov.12, 1968 | 5.8 | 48 D | | 117.1 | Taiwan | Feb.26, 1968 | 6.0 | 24 | | 114.4 | Philippines | Nov.10, 1968 | 5.2 | 33 | | 110.8 | Luzon, Philippine | s Aug. 3, 1968 | 5.9 | 37 | | | | | | | The PKP detection threshold at Byrd Station was determined as a function of Δ by searching the helicorder records for about 500 USC&GS listed events. The curves on Figure 9 show the detection threshold and its variation with Δ from these unfiltered helicorder records. (Not all of the arrivals identified were recognized by the on-site operator.) As would be expected there is some scatter about the lines given. Beyond 150° , the number of events listed by the USC&GS were fewer; consequently, this portion of the figure is poorly determined. Beyond 140° , the arrivals from different branches frequently interfere with each other. A separate curve for EF arrivals is shown where they are distinct. This threshold could no doubt be lowered by providing sharper cutoff analog filters. The threshold determined from the helicorder records is not the optimum available from the recorded data. Work is needed to optimize the data and assess the realizeable detection threshold. The magnetic tape data may then be machine processed to lower the threshold. ## Data Processing Techniques Although the present analog system is highly filtered (Figure 10 shows the typical frequency response), the value of further data processing is clearly shown in Figure 7. For computer processing, the records from 142 events were selected and digitized by the Vela Digitizing Center at 50 samples per sec. The first enhancement of PKP arrivals was by digital filtering with a band pass of 0.4 to 2.0 Hz, the results of which were shown previously. These cutoff frequencies were chosen by inspection of the seismograms. No doubt even greater enhancement can be accomplished with optimum filtering—which has not been attempted at this stage. Summations of the signals from the four seismometers were formed, as well as "lagged sums" as a test of velocity filtering feasibility. Results indicated that a straight sum of the signals was helpful in correlation of significant arrivals, but the BYA array was too small to show additional improvement by velocity filtering. Uncertainty of local geologic influence and relative timing between channels added to the difficulty in interpreting values of apparent velocity observed across the array. (The average of arrival times from the playback of 100 events shows that arrivals on the center seismometer are seen 0.1 sec earlier than on the surrounding three seismometers. Geologic and elevation uncertainties and measured relative phase delays in the electronics cannot account for this difference. At these slow tape speeds, however, relative timing is quite sensitive to precise tape head spacing and tape stability. The center seismometer was recorded on a different head from that used on the other seismometers. This should be avoided if a tenth of a second reliability in timing is expected.) ## Travel Times Existing travel-time tables formed a starting point for analysis of BYA observations. Jeffreys and Bullen (J-B), 1940, published tables of predicted PKP travel times based on a two-layered core of the earth. This included predicted times for paths corresponding to the AB, BC, and DEF branches of the travel time curve. As more observational data became available, additional arrivals (precursors) were noted and slight deviations from the J-B tables were seen. In 1968, new tables by Bolt were included in a new set of seismological tables for P phases (Herrin et al., 1968). These included times for a new branch, GH; a consequence of the intermediate core in a tripartite core model. New travel times for the BC branch were not included. These 1968 tables (corrected 2.0 sec for use with J-B P tables) were used in this study. Appendix A lists good quality PKP arrivals at Byrd used in this analysis. Observed travel times were corrected for the earth's ellipticity according to tables by Jeffreys and Bullen (1967). Depth corrections were taken from Bolt (1968). Herrin and Taggart (1968) give a station correction for station BYR (USC&GS station located within 100 m of the center BYA seismometer) of 0.24 sec + 0.24 sin(Z +266°), based on 90 observations. Simple calculation of the expected delaying effect of the seismometer's location on 2160 m of ice and at an altitude of 1500 m above sea level yields a station correction of 0.43 sec. An observational check of 82 teleseismic P (75° < Δ < 95°) arrivals at BYA during 1968 showed an average residual of 0.8 sec (compared to J-B tables). No significant azimuthal dependence was seen. Due to these discrepancies, no station correction is introduced. Future evaluation of the data may justify further consideration of this factor. Between about 142 to 152°, relatively high amplitude arrivals are identified. These form a consistant set with sharp onsets (see Fig. 8) but do not fall on any of the branches listed in the 1968 tables. On the basis of the recent literature, these will be referred to as BC arrivals (e.g., Sacks et al., 1970, and Engdahl and Felix, 1970). These are plotted separately on Figure 11. Each point plotted represents the corrected travel time from a single event. Circles are earthquakes; triangles are suspected blasts (0 km depth by USC&GS). From a total of 115 arrivals, a curve was computed by at least squares fit. The first-order fit: $t = 19m 31.07726 sec + 3.00003 (\Delta - 142^{\circ}) sec$ standard error = 0.746 sec is shown in the figure. Second- and third-order curves were also calculated and are given below: t = 19m 30.749 sec + 3.2447 ($$\Delta$$ - 142°) sec - 0.0282003 (Δ - 142°) sec standard error = 0.726 sec t = 19m 30.885 sec + 2.988 ($$\Delta$$ - 142°) sec + 0.04730 (Δ - 142°)² sec - 0.00573871 (Δ - 142°)³ sec standard error = 0.724 sec Because of the small difference in standard error, the second- and thirdorder fits are not justified at this time. Although some investigators have extended the BC branch to 155° or farther, the sparse BYA data do not confirm extension beyond 152°. The USC&GS shows few earthquakes at these distances; also, the detection threshold appears to be higher for this range. As seen in Figure 8, the BC arrival has, at the least, lost its preeminence. Arrivals identified as falling on the AB branch were observed at $\Delta > 145^{\circ}$. From $145^{\circ} < \Delta < 152^{\circ}$, however, the AB arrivals follow closely the larger BC signals. From $153^{\circ} < \Delta < 180^{\circ}$, AB arrivals are the largest PKP amplitudes recorded at BYA. Since the detection threshold of AB was lower than that of EF in this range, enough AB arrivals were recorded to confirm the trend and general shape of the published curve. BYA observations, however, were usually later than predicted by several seconds. For instance, the well-recorded events originating at Novaya Zemlya give AB travel times of 1.3 and 1.5 sec greater than predicted. Combined with the EF arrival times previously mentioned, this gives DF-AB intervals of 3.6 to 3.9 sec greater than predicted and show that neither can be adjusted for a different depth of hypocenter without increasing the deviation of the other. FIGURE 11 BYA TRAVEL TIMES FOR BC BRANCH Of additional interest on these events at $\Delta=173^{\circ}$ is seismic energy starting at least 25 sec earlier than the AB arrival (Figure 12). This does not appear to be described in the literature; however, Bolt (personal communication) reports indications of this energy from other events at similar Δ 's, and Ergin (1967) shows numerous arrivals between the DF and AB branches. ## Source Characteristics Part of the study of source characteristics has shown that core phases offer some promise in discriminating between earthquakes and explosions. PKP and PKIKP can be used in most of the same ways as teleseismic P. As pointed out by Bolt (1968), they have an advantage in that PKIKP has a sharp onset beyond $\Delta = 160^{\circ}$. PKP has a large amplitude with a sharp onset for $142^{\circ} < \Delta < 152^{\circ}$ on the BC branch. Bolt also notes that the contrast in dt/d Δ between the AB (denoted by PKP₂) and EF branches for $\Delta > 160^{\circ}$ produces a PKP₂ - PKIKP internal more sensitive to changes in Δ than the S-P interval near $\Delta = 50^{\circ}$. An error of 0.1° in Δ should be detectable. Examples are shown for earthquakes and Russian nuclear shots of first motion, determination of depth from BC branch travel times, and the sharpness of the PKP₂ - PKIKP interval. The maximum sensitivity--or lowest detection threshold--appears to fall on the BC branch at $142^{\circ} < \Delta < 152^{\circ}$. Within this range, numerous events of USC&GS magnitude m_b = 4.5 and occasionally less are seen even on unenhanced records. Below 142° , there appears a gradual dropping off in amplitude and quality to $\sim 110^{\circ}$. For example: 117° Nevada Test Site (Boxcar) $m_b =
6.3$ Yielded 15mµ Poor onset 147.6° North-Atlantic earthquake $m_b = 4.7$ Yielded 40mµ Good onset As for P, the first motions of PKP events are possible distinguishing characteristics between explosions and natural earthquakes. Figure 13 shows onsets of arrivals of the BC branch. Trace 1 shows the common case in which explosions show a clearly compressional first motion. However, Trace 2 shows that these are not always clear-cut, especially if only one seismometer trace is examined. (In this case, comparison with traces from FIGURE 12 DF - AB INTERVAL FIGURE 13 FIRST MOTIONS the other recording seismometers shows the true compressional onset.) Although none of the BC arrivals from blasts examined showed clear dilation, such as shown on Trace 3 from a North Atlantic earthquake, onsets from events of $m_b < 5.0$ were unclear from preliminary examinations. The sharp onsets observed on the BC branch arrivals lead to another distinguishing criterion-depth of hypocenter. Since PKP waves travel along paths nearly normal to the earth's surface, differences in arrival times vary more with hypocenter depth than for other wave paths. For example, if the true onset of a PKP wave could be determined to \pm 0.5 sec and compared with an accurate time prediction of a zero depth event, the hypocenter would be determined to ± 3 km. (In practice, effects of local geology cannot be completely discounted.) The feasibility of this is examined briefly. The derived curve of Figure 11 was used to predict travel times for surface focus events recorded at Byrd Station. Appendix A shows the results of subtracting these predicted times from the actual travel times without depth correction. The time residual can be used with tables from Bolt (1968) to recalculate hypocenter depth. The depths determined from our residuals are then compared with those depths given by the USC&GS. All those events, presumably explosions, listed at 0 km by the USC&GS also show times corresponding to depths within 5 km of the surface based on the Byrd Station arrival times. The only other event with such a shallow depth determination is an event at Lake Baikal $(\Delta = 151^{\circ})$, which the USC&GS similarly lists as 4 km deep. The small scatter in BC arrival times allows their use with teleseismic P in least squares solutions for depth determination. The steeper penetration of the crust and upper mantle may make this BC curve more valid as a world average than P travel time. The errors shown by Evernden (1969) in depth determination from average P travel time curves should be less for PKP. Beyond 152° in Appendix A, there is no immediate attempt to determine hypocenter depth from arrival times because of differences between observed travel time and published values (Bolt, 1968) of several seconds. BYA data were too sparse to justify fitting a curve as done for the BC branch. Arrivals on the DF branch are compared to the Bolt (1968) curve. The greater scatter observed is partly due to interference by precursors. For $\Delta > 160^{\circ}$, on larger events where DF and AB are both clearly observable, there is another way to determine hypocenter depth that is independent of the USC&GS epicenter solutions. Origin times are still needed. Figure 12 shows the recording of an explosion at Novaya Zemlya, 173° from Byrd. The onset of both DF and AB arrivals are clear on all four seismometers. At $\Delta \geq 160^{\circ}$, the slope of the AB branch is many times as steep as that of the DF branch. For example, the interval between these branches is increasing at 4.0 sec/deg at 173° . If the AB-DF interval can be picked accurately to 0.4 sec, the Δ is determined to 0.1 deg. Once this confidence can be gained in the true Δ , the depth can be determined by the absolute travel time and predicted travel time curves. ## Internal Constitution of the Earth Checks were made for azimuthal dependence of residuals, both from teleseismic P and PKP arrivals; no dependence was found. In both cases, the majority of USC&GS-listed events occurred in a small range of azimuthal angles. With this limitation, a small variance with azimuth, < 0.4 sec, would not have been detected. The boundaries of the outer and inner cores are now being determined most accurately by observation of PcP and PKIKP waves. Presently used figures for their mean radii are 3477 km (Taggart and Engdahl, 1968) and 1216 km (Bolt, 1968). GH arrivals, which could confirm the extent and velocity of an intermediate core, are not clearly enough recorded from the small events used in this study for quantitative interpretation. In agreement with Husebye and Toksoz (1969), we find GH arrivals cannot be observed with confidence beyond 145°. The observed DF-AB interval in $\Delta > 160^{\circ}$ may be caused by deep variation in constitution of the earth. Bolt (personal communication) lacks confidence in his published travel times as a world norm in this range due to systematic anomalies observed in the region of his test data earthquakes (Indian Ocean). Similarly, of course, Byrd Station may exhibit complimentary anomalous features. An alternate hypothesis put forth is that the core of the earth is more spherical than the basic ellipsoidal figure of the earth. This could retard AB arrivals, yet advance DF ones. The arrival of energy 25 sec before the AB arrivals at $\Delta = 173^{\circ}$ might be interpreted as a result of an island arc crustal plate dipping into the mantle at Novaya Zemlya. In view of similar observations from different areas, however, we cannot strongly support this conclusion. Figure 4, shown earlier, plots travel time from well-recorded earthquakes against predicted times. Appendix A lists the events used. Between 125 and 140° there were many more arrivals of good quality, and only the clearest onsets were used. Outside this range, the number of earthquakes were fewer, and consequently all events which appeared reliable appear on the figure. Each segment of the travel time curve will be examined separately. Arrivals along the DE segment agree closely with predicted times from 110° to just under 140°. Near 140°, there is some interference by earlier arrivals of increasing amplitude (see Figure 8). In Appendix A, these early arrivals are shown without depth calculation. This interference may hide the DE onset or otherwise lead to misinterpretation of later arrivals. BYA results for this range are in full accord with the tables. Precursors to the DE arrivals were seen on large earthquakes from 110 to 145° . We follow Bolt's nomenclature and call these GH. Although these precursors tend to be emergent in onset, the energy arriving before the DE arrival increases from about 135° up. At $\Delta < 135$, the GH onsets are seldom picked with any confidence. At $\Delta > 142^{\circ}$, there is some question in distinguishing GH arrivals from other energy. Beyond 147° , where time separation would again permit identification of GH, the arrivals seen correspond better with times for BC (again see Figure 8). BYA data can only confirm the existence of precursors to the DF branch and give only mildly supporting evidence for the time of onset of this branch. At Δ greater than 145°, the EF arrivals were recorded from very few earthquakes. Primarily, there simply were not many earthquakes in this region, but also this branch no longer contains the majority of the energy. From 142° < Δ < 152°, the BC branch dominates, and EF arrivals show up as precursors only on some of the larger (m_b \geq 5.5) E. Kazakh events. At Δ > 152°, the separation of EF from other arrivals is sufficient to avoid interference; however, there were not enough large earthquakes for good comparison with published EF values. The clearest records of EF were from two large events at Novaya Zemlya ($\Delta = 173^{\circ}$). EF arrivals from these were 2.1 and 2.6 sec earlier than predicted (Bolt, 1968). ### SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS A four-element, magnetic-tape-recording, seismograph array was established at Byrd Station, Antarctica. It was run by SRI for the calendar year 1968 and has been operated since by USC&GS personnel. Byrd Station was found to be a fairly quiet site, seismically, especially within the band of PKP frequencies. Helicorder records were made with system magnification of near 100 K. The limiting factors were the station's "cultural noise" and low frequency background noise, both primarily outside the signal band. The detection threshold for PKP events from unenhanced BYA records is shown in Figure 9. No significant correlation was found between noise levels and local storms. Lack of meteorological data prevented correlation with oceanic storms to the north. Digital tapes were made of 142 events for examination of data enhancement techniques. Spectral analysis shows the PKP signal energy lies primarily between 0.4 and 2 Hz. Digital filtering passing this band greatly enhances the PKP signals, thereby lowering the detection threshold. Although the BYA array is too small for effective velocity filtering, the straight sum of signals in the array is of some help in observing coherent energy arrivals. The data now on hand could be enhanced even more effectively by computerized optimum filtering. Digitizing the 1969 data would roughly double the data sample to be treated. Work with records from BYA for the first two years showed that the BC branch of PKP is sharp enough to be promising for depth determination on events with $m_b > 4.8$. A new determination of detection thresholds as a function of Δ can be made after using digital techniques to enhance arrivals on more records. It would be useful to work out an analytical solution for the possible improvement in hypocenter depth determination by adding PKP arrivals to the least squares fit of teleseismic P. The EF and AB branches offer possibilities in depth determination
beyond $\Delta=160^{\circ}$. Arrays in South Africa, Malagasy, and Kerguelen could be used to monitor western U.S. earthquakes and nuclear shots over a range of Δ to establish any advantages over P depth determination. Arrays should be large enough to determine $dt/d\Delta$ as an aid in separating the various branches near BC. Operating arrays covering Asia could be established in South America and New Zealand, even if only the BC branch should have a clear advantage over P in depth determination. Travel times computed from PKP arrivals observed at Byrd show general agreement with recently published tables (Bolt, 1968). Deviation from the most recently published tables include the following: (1) presence of a strong BC branch, (2) lack of confirmation for GH branch at $\Delta > 145^{\circ}$, (3) greater DF-AB interval at $\Delta > 160^{\circ}$, and (4) presence of arrivals between the DF and AB arrivals at $\Delta = 173^{\circ}$. #### **BIBLIOGRAPHY** - Bolt, B. A., 1964, The Velocity of Seismic Waves Near the Earth's Center, Bull. Seism. Soc. Am. Vol. 54, pp. 191-208. - Bolt, B. A., 1968, Estimation of PKP Travel Times, Bull. Seism. Soc. Am., Vol. 58, pp. 1305-1324. - Engdahl, E., 1968, Core Phases and the Earth's Core, Doctor's Thesis, St. Louis University. - Engdahl, E. R., and C. P. Felix, 1970, Array Analysis of Core Phases, Abstract only, Trans. AGU, Vol. 51, pp. 369. - Ergin, Kazim, 1967, Seismic Evidence for a New Layered Structure of the Earth's Core, J. Geophys. Res., Vol. 72, pp. 3669-3687. - Evernden, J. F., 1969, Identification of Earthquakes and Explosions by Use of Teleseismic Data, J. Geophys. Res., Vol. 74, pp. 3828-3856. - Herrin, E. (Chairman) et al., 1968, 1968 Seismological Tables for P Phases, Bull. Seism. Soc. Am., Vol. 58, pp. 1193-1352. - Herrin, E., and J. N. Taggart, 1968, Regional Variations in P Travel Times, Bull. Seism. Soc. Am., Vol. 58, pp. 1325-1338. - Husebye, E., and M. N. Toksoz, 1969, On the Structure of the Earth's Core, in press (referenced in Husebye and Madariaga 1970). - Husebye, E., and R. Madariaga, 1970, The Origin of Precursors to Core Waves, Bull. Seism. Soc. Am., Vol. 60, pp. 939-952. - Isherwood, W. F., 1969, Investigation of PKP Seismic Waves, (prepared for AFOSR under Contract F44620-67-C-0080), Stanford Research Institute, Menlo Park, California, March 1969. - Jeffreys, H., and K. E. Bullen, 1967, Seismological Tables, Gray Milne Trust (First Edition 1940). - Sacks, I. S., G. Soa, and P. Aparicio, 1970, Time Anomalies and Structure Beneath the Andes, Carnegie Institution, Annual Report of the Director, pp. 452-459. - Shahidi, Mohammad, 1968, Variation of Amplitude of PKP Across the Caustic, Phys. Earth Planet. Interior, Vol. 1, pp. 97-102. - Taggart, J. N., and E. R. Engdahl, 1968, Estimation of PcP Travel Times and Depth to the Core, Bull. Seism. Soc. Am., Vol. 58, pp. 1293-1304. | No. of
Seismometers | - | ** | •• | 2 | 8 | • | 6.6 | , , | | 2 | • | • | 3 | • | • | | • | 4 m | 4 m # | | | | N m + + + m | N m + + + m + | | N n + + + n + + | | N | | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 | N | N | | N | N | |------------------------------|----------|-------------|----------------------|--------------|----------|----------|----------|------------|----------|-------------|----------|----------|------------|------------|-------------|----------|-------------|------------------------------|---|-----------------------------------|--|---|--|--|--|--|--|---
---	---	---
---|---| | C & GS
Depth | 8 | 15 | # # | 33 M | | 47 | 2 3 | · ; | | 2 | | 15 | 513 | 33 | = | | 4 | ; | | | | | 48 b
438 b
17
13
13
13
33 | 48 b
484 b
17 17 13 13 33 36 36 | 48 b
436 b
13 13 13 33 33 36 35 35 35 35 35 35 35 35 35 35 35 35 35 | 484 b 484 b 17 17 13 13 36 36 53 53 61 61 61 61 61 61 61 61 61 61 61 61 61 | 48 b 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 48 b
48 d
48 d
48 d
48 d
48 d
48 d
48 d
48 d | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 4 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | Deptb
from Res.
(Bs) | ٤ | | ĸ | 8 | ın | ; | , | ; ; | | 83 | 3 | = | 513 | Ħ | 2 | | # | a ĝ | a ដូ ខ្ញុំ | # # # E | * # # 5 E E | * 8 8 2 2 2 2 | * 8 5 5 27 77 5 | * 8 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | * \$ \$ 12 12 12 12 12 12 12 12 12 12 12 12 12 | 8 | 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 2 | # # # # # # # # # # # # # # # # # # # | # # # # # # # # # # # # # # # # # # # | # # # # # # # # # # # # # # # # # # # | * \$ 9 9 E I I I I I I I I I I I I I I I I I | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 | 4 2 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | Res.for
O Depth
(sec.) | 6.2 | | ; | 1.1 | 0.0 | 7.2 | : | | 12.2 | 0.0 | 9.9 | +3.0 | 60.1 | 4.9 | 12.2 | | 9.9 | 6.6
56.0 | 6.6
56.0
52.5 | 56.0
52.5
2.0 | 56.6
52.5
2.0 | 56.0
52.5
2.0
21.3 | 5.6.0
52.5
2.0
2.0
2.3
2.3
2.9 | 56.0
52.5
21.3
2.9 | 52.5
52.5
1.3
2.1.3
4.6
6.8 | 2. 5 2. 5 2. 5 2. 6 4. 6 4. 6 6. 8 6. 6 6. 8 6. 6 6. 8 6. 6 6. 8 6. 6 6. 8 6. 6 6. 8 6. 6 6 |
5.6.0
5.0.0
5.0.0
5.0.0
5.0.0
7.8
7.8
7.8 | 25.5
27.3
21.3
21.3
21.3
21.3
21.3
21.3
21.3
21 | 25.5
27.3
21.3
21.3
21.3
21.3
21.3
21.3
21.3
21 | 86.6
86.0
87.5
87.3
87.3
87.4
87.2
87.3
87.3
87.3
87.3
87.3
87.5
87.5
87.5
87.5
87.5
87.5
87.5
87.5 | 25.0
27.1
27.2
28.3
3.3
3.3
4.4
4.4
4.4
5.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6 | 86.6
86.0
87.5
87.5
87.5
87.5
87.5
87.5
87.5
87.5 | 2.6
2.0
2.0
2.0
2.0
2.3
3.3
4.2
4.4
4.4
4.4
4.4
5.9
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0 | 56.6
57.0
57.0
57.0
57.0
57.0
57.0
57.0
57.0 | 8.6.6
8.0.0
8.2.2
8.1.3
8.2.2
8.2.2
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3.3
8.3
8 | 8.6.6
8.6.0
8.7.7
8.3.1
8.4.4
8.6.6
8.6.6
8.6.6
8.6.6
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.8
8.6.6
8.6.6
8.6.6
8.7.6
8.7.6
8.7.6
8.7.6
8.7.6
8.7.6
8.7.6
8.7.6
8.7.6
8.7.6
8.7.6
8.7.6
8.7.6
8.7.6
8.7.6
8.7.6
8.7.6
8.7.6
8.7.6
8.7.6
8.7.6
8.7.6
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8.7.7
8. | | Digi-
tized | * | × | ×× | × | × | × | × × | : > | × | × | × | × | × | × | × | | × | # # | * * * | * * * | * * * * * | * * * * * * * | H H H H H H | нинини | | | ини и и и и и и и и и и и и и и и и и и | ини и и и и и и и и | иии иии иии иии и | иии иии иии иии иии | | | | | | и и и и и и и и и и и и и и и и и и и | | įį | 1.3 | 24 | 33 | | | 9.2 | 2 2 | • | 2 | | 5.6 | | z | 7.9 | 2.8 | | | 0. | 9. 9. | 2.6 | 2.6
7.6 | 0. 9. 7. 8. 7. 8. 7. 8. 7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. | 8.0
7.6
7.6
190
2.6 | 1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 | 8.0
116
7.6
7.6
1180
130 | 8.0
7.6
7.6
1.80
1.30
1.2 | 2.6
1.2
1.2
1.0 | 8.0
1.7
1.2
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3 | 2.0 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 | 8.0
7.6
7.6
7.6
130
130
11.2
11.2
10
10
10
10
10
10
10
10
10
10
10
10
10 | 230 230 230 230 230 230 230 230 230 230 | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 9. 0
1. 0 | 2.0
11.2
11.2
11.3
11.3
11.3
11.3
11.3
11.3 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | Period
(sec.) | 2 | 3.0 | 2.0 | | | 1.0 | 2.0 | - | : : | | 1.2 | 2.0 | 1.0 | 2.1 | 1.0 | | | 9.0 | 0.6 | 1.5 | 1.5 | 0.6
1.0
2.0
1.4 | 2.0 | 2.0 2.0 0.9 | 2.0
2.0
1.4
1.0 | 2 | 0.1 1.0 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | 2. 1 1 0 0 1 1 2 2 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 2 | 2 | 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 | 20 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 | 2 2 2 2 3 4 4 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 | 2 2 3 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 | 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 | 1.5 | | , 13
(8ec.) | 0.7 | 0.7 | 0.0 | 0.0 | 1.3 | 9.0 | 9.0 | 0.1 | 0.1 | 1.3 | 1.0 | 1.0 | 7 | 1.1 | 1.0 | 1.0 | | 1:1 | :: | 2 2 2 | 3 3 3 3 | 3323 | 3 3 3 3 3 3 | | | | | | | | | | 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 | | | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | T.T.
Min-Sec | 10= 24.6 | 18- 10.8 | 17# 56.7
18# 31.6 | 16m 38.2 | 18 46.2 | 18 40.2 | 10m 31.6 | 178 47.4 | 16 36.0 | 18m 45.0 | 18 44.6 | 10- 48.6 | 17= 51.5 | 18m 47.3 | 10. 41.6 | 10= 47.5 | | 178 57.4 | 17s 57.4
10s 03.8 | 17s 57.4
18s 03.8
18s 54.8 | 17s 57.4
19s 03.8
19s 54.8
19s 55.5 | 17m 57.4
10m 03.0
10m 54.0
10m 55.5
10m 37.2 | 17m 57.4
10m 53.8
10m 54.8
10m 55.5
10m 37.2 | 17° 57.4
18° 53.5
18° 55.5
18° 56.1
18° 56.1 | 178 57.4
188 03.8
188 55.5
188 37.2
188 56.1
188 55.1 | 172 57.4
189 03.8
180 53.5
180 57.2
180 57.1
180 55.1
180 55.1
180 55.1
180 55.1 | 175 57.4
189 53.5
189 55.5
189 55.5
189 55.1
189 55.1
189 55.1
189 55.1
189 55.1
189 55.1
189 55.1
189 55.1 | 17- 57-4
18- 55-5
18- 55-5
18- 55-1
18- 55-1
18- 55-1
18- 55-1
18- 55-1
18- 55-1
18- 55-1
18- 55-1
18- 55-1
18- 55-5
18- | 17- 57-4
18- 55-5
18- 55-5
18- 55-1
18- | 17. 57.4
18. 55.5
18. 55.5
18. 55.1
18. 55 | 175 57.4 186 53.6 186 55.5 186 55.5 186 55.1 186 55.1 186 55.1 186 55.1 186 55.1 186 55.4 186 57.6 186 55.6 | 17. 57.4
18. 55.5
18. 55.5
18. 55.1
18. 55 | 17. 57.4
18. 55.5
18. 55.7
18. 55 | 17. 57.4
18. 55.5
18. 55.7
18. 55 | 17. 57.4
18. 55.5
18. 55.5
18. 55.1
18. 55.1
18. 55.1
18. 55.2
18. 55 | 17. 57.4
18. 55.5
18. 55.5
18. 55.1
18. 55.1
18. 55.2
18. 55 | | Compression/
Dilation | ۵ | ۵ | | | | ú | υA | | ۵ | | | | J | A | Q | | | v | C | U A | U A | 0 | U a a | ه م م | 0 0 0 | 0 0 0 | U A A A U U | 0 a a a a a a a a a a a a a a a a a a a | U A A A A U U A U | U A A A A U U A U | | U A A A A U U A U U U | | | | | | ٥٩ | 109.713 | 110.042 | 110.906 | 114.457 | 116.958 | 116.966 | 117.132 |
117.425 | 119.026 | 116.077 | 116.148 | 119.197 | 119.288 | 119.566 | 120.462 | 120.690 | , | 121.23 | 121.23 6
121.753 | 121.230 | 121.238
121.753
122.036
122.253 | 121.238
121.753
122.036
122.253 | 121.238
121.753
122.036
122.253
122.614 | 121.733
122.036
122.253
122.614
123.366
123.36 | 121.238
121.753
122.036
122.253
122.614
123.366
123.366
123.514 | 12.753
12.753
12.036
12.614
12.614
12.366
12.366
12.364
12.314 | 12.23
12.73
12.23
12.23
12.23
12.54
12.54
12.36
12.36
12.36
12.36
12.36
12.36
12.36
12.36 | 121.733
121.733
122.233
122.233
122.614
123.781
123.781
123.781
124.382
124.382 | 121.733
121.733
122.233
122.233
122.614
123.781
123.781
124.342
124.342
124.342
124.343 | 121.733
121.733
122.233
122.233
122.234
123.346
123.741
124.342
124.342
124.342
124.342
124.342
124.342
124.342 | 121.753
121.753
122.253
122.253
122.254
123.366
123.781
124.343
124.343
124.343
124.343
124.343
124.343
124.343
124.343
124.343
124.343
124.343
124.343
124.343 | 121.733
121.733
122.634
122.634
123.64
123.64
123.64
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
124.763
1 | 121.733
122.036
122.036
122.036
123.036
123.036
123.036
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.043
124.04 | 121.753
122.036
122.036
122.036
122.036
123.036
123.031
124.343
124.343
124.343
124.343
124.343
124.343
124.343
124.343
124.343
125.666
125.673
125.673
125.673
125.673
125.673
125.673
125.673 | 121.753
121.753
122.036
122.036
122.036
123.036
123.036
124.032
124.032
124.032
124.032
124.032
124.032
124.032
124.032
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.648
125.64 |
121.753
121.753
122.036
122.036
122.036
123.04
123.04
124.342
124.342
124.342
124.342
124.342
124.342
124.342
124.342
124.342
124.342
125.671
125.671
125.671
125.671
125.671
125.671
125.671
125.671
125.671
125.671
125.671
125.671
125.671
125.671
125.671
125.671
125.671
125.671
125.671
125.671
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673
125.673 | | Mo.
Sta | 8 | 26 | 101 | 90 | 159 | * | 57 | 22 | 23 | 1 | 7 | 51 | 23 | 42 | 8 | | 8 | 8 # | 8 # \$ | 2 H B E | # # # £ | 31
31
46
76
75
102 | 8 K # 2 Z Z 4 | * # # * * * * * * * * * * * * * * * * * | 2 | 8 H \$ 5 2 2 H 8 H 02 | 2 | 2 102 2 102 2 103 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2 10 2 2 10 2 2 10 2 2 10 10 10 10 10 10 10 10 10 10 10 10 10 | 8 1 2 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 8 1 2 2 2 3 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 8 1 2 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 8 H 2 5 7 8 8 H 2 8 8 E E E E E E E E E E E E E E E E E | 2 1 1 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 | 8 1 2 2 2 3 8 8 1 1 2 2 2 2 3 8 8 1 1 1 2 2 2 3 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 8 1 | | م | 5.4 | 5.7 | 9.6 | 5.2 | 6.3 | 5.2 | 6.0 | | 5.8 | 5.3 | 5.1 | 5.4 | 4.7 | 5.3 | 5.7 | | 9. | | 5.0
5.0 | | 5.7 | , 4. 0. 7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. | | , 4 in | , 4 % % % % % % % % % % % % % % % % % % | 8 4 4 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 8 5 4 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | Region | Luzon,P1 | Philippines | Luzon Pl | Phil ippines | | Telvan | Talvan | Bonta 1sl. | | 8. Illimois | Telivan | Thefren | Boats 1s1. | Donte Isl. | E.Chima Sea | | Ryukyu 1sl. | Ryukyu 1sl.
8.Nonshu,Jap. | Ryukyu isi.
8. Konshu, Jap.
S. Konshu, Jap. | | - 1 | | | | | | | | | | | | | | | | | Long. | 119.95 | 122.0E | 122.3 | 121.4E | 116.5# | 121.4E | 121.5E | 140.6 | 124.62 | 96.5W | 122. JE | 122.5 | 139.SE | 142.5E | 126.5E | | 128.4 | 138.00 | 128.4E
138.0E
138.4E | 128.4E
138.4E
141.6E | 128.4E
138.0E
138.4E
141.6E | 128.4E
138.4E
141.6E
129.4E | 138.46
138.46
141.67
123.46
177.99 | 133.4
133.4
133.4
123.4
123.4
123.4
123.4
123.4 | 128.4
138.4
129.4
127.9
131.5 | 138.06
138.66
141.66
129.66
127.99
131.76
140.86 | 123.46
133.06
141.66
123.46
127.28
131.36
140.06
137.78 | 133.06
133.06
14.66
125.66
137.79
137.76 | 133.66
133.06
141.66
125.66
131.77
131.77
131.77
131.77 | 133.06
133.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
110.06
11 |
133.06
114.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
115.06
11 | 133.08 13 | 133.66
133.66
133.66
133.66
133.66
133.66
133.66
133.66 | 123.46
114.06
1120.46
1120.46
1120.46
1130.46
1130.46
1130.46
1130.46
1130.46
1130.46
1130.46
1130.46
1130.46
1130.46
1130.46 | 123.46
114.06
1120.46
1120.46
1120.46
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48
1130.48 |
123.46
1141.66
125.66
127.99
137.99
142.06
143.06
137.77
137.77
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
137.78
1 | | Ë | 14.94 | 15.5K | 18.5H | 20.0% | 37.2% | 22.5N | 22.78 | 26.3% | 25.18 | 38.9E | 24.9 | 25.0% | 28.0M | 28.8% | Z7.0% | | Z7.5K | 27.5g | 27.58
26.71
10.08 | 29.72
29.74
20.34 | 27.5%
29.7%
30.3%
26.3% | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 27.5% | 23.58
30.38
31.28
25.38
25.38
31.09 | 27.58
29.74
30.34
26.38
26.38
31.09
31.09 | 27.58
29.74
30.38
33.18
33.18 | 27.58
29.73
31.28
33.18
33.48 | 27.55
29.24
30.24
29.54
29.54
33.14
33.14 | 27.58
29.24
30.24
33.14
33.14
32.54
32.54
32.54
32.54
32.54 | 27.55
29.24
30.24
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34 | 27.55
29.24
39.24
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34
39.34 |
27.58
29.24
30.24
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34
30.34 | 27.28
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
29.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24
20.24 | 27.58
29.73
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28
30.28 |
27.55
29.17
30.18
31.18
31.18
31.18
31.29
31.29
31.30
31.40
31.40
31.50
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40
31.40 | 27.28
28.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
29.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28
20.28 | | O.T.
Hr-Min-Sec | 194407.9 | 204216.7 | 062505.8 | 170159.2 | 163000.0 | 171509.8 | 105016.7 | 192020.3 | 053245.7 | 170141.1 | 055405.7 | 070817.1 | 121408.6 | 212448.3 | 055859.0 | | 004412.6 | 032126.3 | 032126.3
223343.2 | 032126.3
223343.2
040604.1 | 032126.3
223343.2
040604.1
074546.8 | 032126.3
223343.2
040604.1
074546.8 | 004412.6
032126.3
223343.2
040604.1
074546.8
140506.0 | 004412.6
032126.3
223343.2
040604.1
074546.8
140506.0 | 004112.6
032126.3
223343.2
040664.1
140506.0
121713.4
192247.8 | 004112.6
003136.3
223343.2
040604.1
040604.0
140506.0
121713.4
192247.8
146041.4 | 004112.6
002126.3
223343.2
223343.2
040604.1
07456.8
14056.0
121713.4
14224.8
145229.4
146041.4 | 004112.6
002126.3
223343.2
223343.2
140504.1
111713.4
115224.4
115229.4
1150901.5 | 00412.6
002136.3
223343.2
223343.2
140504.1
1140506.0
121713.4
115228.4
115228.4
115289.4
1150801.5
071317.8 | 00412.6
002126.3
223343.2
223343.2
223343.2
140504.0
121713.4
192247.8
145229.4
145229.4
145001.5
071317.8 | 004112.6
002136.3
223343.2
223343.2
140504.1
115224.4
115224.4
115224.4
115224.4
115224.4
115224.4
115224.4
1152041.5
071317.8 | 004112.6
002136.3
223343.2
223343.2
223343.2
140506.0
121713.4
145229.4
145229.4
140041.4
120001.5
004204.2
114530.8
161704.6 | 004412.6
002126.3
223343.2
223343.2
140506.0
121713.4
145224.8
145224.4
145224.4
145229.4
120001.5
071317.8
004204.2
114530.8
114530.8 | 032136.3
223343.2
090264.1
0745.6.0
140506.0
121713.4
145229.4
146041.4
120001.5
071317.0
071317.0
002204.2
14330.6
062103.2
005041.8 | 032126.3 223343.2 040604.1 0745.6.8 140506.0 121713.4 192247.8 146041.4 146041.4 120801.5 071317.8 071317.8 004204.2 111330.8 161704.6 042103.2 | 004112.6 002126.3 223343.2 040604.1 0745.6.8 140506.0 121713.4 192247.8 146041.4 140041.4 120001.5 071317.8 071317.8 004204.2 111430.8 161704.6 042103.2 005041.8 | | Date | 99/9 /9 | 8/28/66 | 3/68 | 11/10/68 | 12/16/68 | 99/1 /9 | 2/26/68 | 10/7/68 | 5/ 3/68 | 11/6/86 | 10/18/66 | 10/20/68 | 2/11/68 | 1/ 8/68 | 6/15/68 | | /12/66 | 12/66 | /12/66
4/66
22/66 | /12/66
4/66
22/66
/29/66 | /12/66
4/66
22/66
/29/66
/16/68 | /12/66
4/66
4/66
/22/66
/16/68
/14/68 | 12/66
4/66
222/66
16/68
11/68 | /12/66
4/66
4/66
/29/66
/16/68
11/68
8/66 | /12/66
4/66
4/66
/22/66
/16/68
14/68
8/66
6/68 | 112/66
4/66
4/66
222/66
129/66
116/68
8/66
6/68
6/68 | 712/66
4/66
4/66
22/66
718/68
8/66
8/66
8/68
13/68
28/68 | 1/2/66
4/66
4/66
22/66
1/29/66
1/69
1/69
1/28/69
1/28/69
1/28/69
1/28/69 | 11/12/66
5/ 4/66
7/22/66
10/29/66
10/29/66
6/ 6/69
9/15/68
10/28/68
4/ 1/88 | 111/12/66 5/ 4/66 7/22/66 10/29/66 10/29/66 6/ 6/69 9/15/68 4/ 1/68 12/11/68 | 1/2/66
4/66
22/66
7/29/66
1/6/69
1/6/69
1/6/69
1/6/69
1/6/69
1/6/69
1/6/69
1/6/69
1/6/69
1/6/69
28/68
28/68
28/68
28/68 | 1/2/66
4/66
4/66
1/29/66
1/16/68
8/66
8/66
8/66
1/16/68
1/168
1/168
1/168
1/168
6/88
6/8 | 1/2/66
4/66
4/66
1/29/66
1/29/66
1/6/69
1/6/69
1/46
1/69
1/46
1/46
1/46
1/46
1/46
1/46
1/46
1/46 | 1/2/66
4/66
4/66
1/29/66
1/29/66
1/6/69
1/6/69
1/69
1/69
1/69
1/69
1 | 11/12/66 5/ 4/66 10/29/66 10/29/66 10/29/66 6/ 6/68 6/ 6/68 6/ 6/68 6/ 1/28 6/ 1/28 6/ 1/28 6/ 1/28 6/ 1/28 6/ 1/28
6/ 1/28 6/ 6/38 6/ 6/38 6/ 1/28 6/ 6/38 6/ | 11/12/66 5/ 4/66 10/29/66 10/29/66 6/ 6/68 9/15/68 6/ 6/68 6/ 6/68 6/ 6/68 6/ 6/68 10/28/68 6/ 6/68 11/18 6/ 1/88 6/ 5/86 6/ 6/88 6/ 6/88 6/ 6/88 6/ 6/88 6/ 6/88 6/ 6/88 6/ 6/88 6/ 6/88 6/ 6/88 6/ 6/88 6/ 6/88 6/ 6/88 6/ 6/88 | | Date | D.f.
Mr-Bin-Sec | Let. | Long. | Reg i on | e ^a | No. | ° 7 | Compression/
Dilation | T.T.
Min-Sec | (3)
(3)
(8) | Period
(sec) | įĵ | D1g1- | 5 - | į | C & GS
Depth | No. of
Seismonetera | |----------|--------------------|------------|--------|----------------------|----------------|-----|------------|--------------------------|--------------------|-------------------|------------------|-----|-------|------------------------------|----------------------------|------------------|------------------------| | 2/22/68 | 200031.5 | 37.6N | 141.4 | E.of Honshu | 5.5 | 2 | 126.315 | • | 19m 59.8 | 1:3 | 1.9 | 2 | × | 0.0 | (E) | 25 | 6 | | 9/ 3/68 | 070136.5 | 37.5 | 141.75 | E. of Bonshu | 5.4 | 2 | 128.590 | ပ | 19 59.2 | 1.3 | 1.5 | 16 | × | 9.6 | 3 | 19 0 | • | | 1/ 5/68 | 112812.6 | 38.54 | 142.0€ | E.of Honshu | 5.9 | 121 | 129.000 | ပ | 19= 04.1 | 1.3 | 2.2 | 130 | Ħ | 6.2 | \$ | £ | • | | 6/12/68 | 175201.2 | 39.18 | 142.9 | E. of Honshu | 5.5 | 7.4 | 129.554 | ú | 19= 07.4 | 1.3 | 2.0 | 23 | × | 3.7 | ន | 30 8 | | | 6/12/68 | 215741.3 | 39. 3N | 142.00 | E.of Honshu | 5.7 | 8 | 129.718 | ٥ | 19 06.3 | 1.3 | 1.4 | 28 | × | 5.2 | Ħ | 8 | • | | 6/15/68 | 033118.3 | 39.38 | 142.00 | E.of Monshu | 5.4 | 35 | 129.736 | 0 | 19= 06.8 | 1.3 | 2.0 | 16 | × | 2.6 | 16 | 22 | • | | 6/13/68 | 211035.4 | 39.48 | 142.9€ | E. of Ronsku | 5.5 | 2 | 129.785 | • | 15= 07.8 | 1.3 | 1.4 | 92 | × | 3.8 | 2 | 2 | - | | 7/12/88 | 004436.5 | 39. SK | 143.2E | E.of Monshu | 6.0 | 2 | 129.860 | • | 190 06.3 | 1.3 | 2.0 | 911 | × | 3.4 | 12 | 23 | • | | 6/18/68 | 01 381 7.4 | 38.5% | 142.5€ | E. of Monshu | 5.3 | 80 | 129.869 | U | 15 07.2 | 1.3 | 2.0 | 14 | ĸ | 4.6 | ន | 33 | n | | 7/12/68 | 035627.5 | 39. SK | 143.ZE | E. of Honshu | 5.5 | 3 | 129.877 | υ | 19 09.7 | 1.3 | 2.0 | 2 | × | 2.1 | 13 | × | • | | 6/12/88 | 134150.7 | 39. SK | 142.7E | E.of Bonshu | 6.0 | 102 | 129.915 | υ | 19m D5.6 | 1.3 | 2.0 | 95 | × | 4.3 | ĸ | 14 0 | • | | 5/20/88 | 031619.6 | 40.04 | 144.0E | 144.0E E.of Honshu | 5.5 | 0 | 130.165 | υ | 19m 09.5 | 1.4 | 1.5 | 4.0 | × | 2.7 | 2 | 31 0 | • | | 5/18/68 | 230454.7 | 38.9% | 143.1E | E.of Honshu | 5.8 | 101 | 130.191 | S | 19m 97.3 | 7: | 1.2 | e e | × | 5.0 | 32 | 33 | - | | 11/13/88 | 184147.8 | 40.2K | 147.5E | E. of Boashu | 5.5 | 9 | 130.572 | | 19 07.0 | : | | | × | 9.0 | 9 | • | N | | 1/ 9/68 | 062823.0 | 40.4% | 143.7E | 143.7E E.of Honshu | 4.8 | 33 | 130.654 | U | 15 09.1 | 7: | 1.9 | | × | 0.4 | ĸ | 33 | m | | 11/24/68 | 212059.9 | 40.3K | 142.3€ | E.of Honshu | 5.9 | 133 | 130.702 | | 19m 06.3 | 1.4 | | | × | 8.9 | â | 51 0 | 2 | | 5/16/68 | 004855.4 | 40.0 | 143.2 | E. of Bonshu | 5.9 | 115 | 131.147 | ۵ | 15 15.1 | 1:4 | 2.0 | 63 | × | -1.0 | 90 | | • | | 9/12/68 | 105011.8 | 40. | 143.2€ | 143.2E E. of Honshu | 5.4 | 93 | 131.206 | • | 15 12.5 | 7: | 1.2 | 15 | × | 1.7 | 9 | 15 | • | | 89/91/9 | 164321.D | 40.78 | 142.16 | 142.1E E.of Honshu | 5.7 | 102 | 131.215 | ۵ | 19= 06.9 | 7:1 | 2.6 | 45 | × | 7.3 | 69 | 89 | | | 5/24/68 | 140624.2 | # . | 143.0 | E. of Bonshu | 9.6 | \$ | 131.272 | v | 19 10.6 | 1.4 | 1.5 | 5.3 | × | 3.7 | B | 38 | • | | 6/17/68 | 115300.4 | 41.0% | 143.0E | Nokkaido, J. | 5.7 | 8 | 131.323 | ပ | 19m 10.5 | 1.4 | 2.2 | • | × | 3.6 | * | 48 D | • | | 5/16/68 | 063651.0 | 41.18 | 143.0€ | Hokka ido, J. | 5.7 | 11 | 131.425 | ٥ | 19 10.0 | 1.4 | 0.9 | 10 | × | 3.8 | ឆ | 35 | | | 2/16/68 | 191647.2 | 41.38 | 142.4€ | Hokkaldo, J. | 9.6 | 75 | 131.744 | ပ | 4 | : | 1.5 | 8 | × | 7 | × | 42 0 | • | | 5/16/68 | 202214.9 | 41.46 | 142.6E | Hokkaido, J. | 9.6 | 7.4 | 131.805 | ၁ | 19m 12.2 | 1:4 | 2.0 | 28 | × | 3.1 | 61 | 39 0 | • | | 5/16/68 | 103501.6 | 41.5E | 142.7E | Hokkaido, J. | 6.3 | 138 | 131.659 | ນ | 19= 12.9 | 1.4 | 2.0 | 8 | × | 2.5 | 15 | 33 | - | | 5/22/68 | 105153.3 | 41.5E | 142.₩ | Hokkaido, J. | 8.9 | 2 | 131.877 | υ | 192 10.1 | 7.7 | 2.0 | 33 | ×× | 5.4 | 8 8 | \$ | •• | | 10/1/68 | 204901.3 | 42.0% | 142.4€ | Hokkaido, J. | 5.7 | 101 | 132.426 | | 1\$ 12.4 | 7 | 2.4 | 3 | × | ; ; | ; x | 3 25 | . • | | 9/21/64 | 130558.2 | 42.28 | 142.6E | Hokkaido, J. | 8.8 | 167 | 132.522 | | 19 56.5
19 12.4 | 7.7 | 2.0 | 3.6 | ×× | F. | 7.2 | 8 8 | m 4 | | 2/ 3/68 | 113044.4 | 43.24 | 146.85 | Karile IS. | 5.0 | 8 | 132.776 | • | 19m 13.6 | 1.5 | 1.0 | 12 | × | 3.5 | ន | \$ | ~ | | 1/22/68 | 001353.0 | 42.30 | 142.3€ | 142.3E Holitaido, J. | 4.7 | 45 | 132.901 | Q | 19- 14.2 | 1.5 | 1.1 | 7.4 | × | 3.1 | 61 | 31 0 | • | | 1/2 | 000013.4 | 43.18 | 144.6 | Hokksido, J. | 9.6 | 3 | 133.000 | ပ | 19s 11.3 | 1.5 | | 5.6 | × | 6.4 | 2 | 0 \$ | - | | 1/29/68 | 101905.6 | 43.6K | 146.72 | Eurile Is. | 6.3 | 16 | 133.220 | ۵ | 19 12.5 | 1.5 | 2.D | 270 | × | 5.4 | ĸ | ę | m | | 1/27/68 | 024549.2 | 35.48 | 27.EE | Dodecamene 1 | 1. 5.D | \$ | 133.515 | ۵ | 10.01 | 1.3 | 1.0 | 1.7 | H | 2.1 | 13 | 6 | • | | B | 0.T.
Rr-Mis-Sec | Ë | Fong | Region | م | ž. | ° | Compression/
Dilstion | T.T. | (1,1) (Sec.) | Period
(Sec.) | įĵ | 01g1- | Res.for
0 Depth
(Sec.) | Depth
From Nes.
(na) | C to GS
Depth | No. of
Seismometers | | Date | 0.T.
9r-#18-Sec | ž | Long. | Fer 18 | • | Mo. | ° | Compression | 1.1 | , | | ě. | 0161- | | Depth
from Bes. | C & GS
Depth | No. of | |----------|--------------------|--------------|--------|---|--------------|----------|--------------------|--------------|--------------------|------------|----------|--------------|----------|---------------------|--------------------|-----------------|--------------| | 8/30/88 | 174024.4 | 1 | 28.05 | K. Bed. Sea | 1 | • | 123 621 | 01181100 | 395-8u | (360) | ا= | 3 | 11 200 d | | Ĵ | | Selsmometers | | S/30/88 | 052348 | 7 | 5 | | | | 100.00 | ٠ | 12.7 | 1.3 | 0. | Ç | × | 3.1 | <u>•</u> | 2 | - | | | | | 100.00 | | o. | 101 | 133.837 | U | 19 12.5 | 9. | 1.0 | 2.9 | × | •.1 | 8 | 4 | • | | 3/ 20/30 | 210944.8 | | 130.35 | Surile Isl. | 5.8 | \$ | 133.804 | J | 19 13.3 | 1.8 | - | 8 | × | 5.9 | M | # | • | | 3/1/3 | 232447.2 | ٥
٢ | 58.25 | Iren | 5.4 | S. | 133.677 | U | 19m 17.3 | 1.3 | 1.5 | = | * | 2.1 | 12 | 2 | | | 5/21/98 | 062000.9 | 7 | 150.2 | Karile Isl. | 5.7 | 2 | 133.007 | | 19 12.9 | 6:1 | 2.2 | * | × | 6.3 | : = | : 5 | | | 3/ 1/63 | 072730.2 | 34.04 | 29.25 | Iren | 6.9 | . | 133.947 | • | 19 13.5 | 1.3 | 1.2 | 4.2 | × | | l | 13 | | | 12/5/98 | 0.112570 | 36.99 | 20.05 | Dodecanese | 5.5 | 2 | 134.573 | | 198 | | | | ٠, | | | 2 | | | 10/31/89 | 032215.0 | 36.9K | 21.12 | Dodecanese | 5.1 | * | 134.581 | | 19.9 | | - | 2 | < > | • | : | g : | N | | 2/ 3/99 | 032618.9 | 6 .99 | 152.6E | Karile Isl. | 5.3 | 2 | 135.054 | • | 198 10.3 | = | | : : | ٠, | • • | = : | = | - | | 1/19/88 | 070204.4 | 45.0N | 143.2 | Hokksido, J. | | 140 | 135.150 | | 19 40.5 | 1.6 | • | = | ٠ . | 9.0 | 22 | \$ | | | 7/25/68 | 105031.5 | 45.78 | 146.75 | Kurile 1el | • | • | 135.150 | | 194 43.7 | | | | < × | | | ž | n n | | 1/ 4/98 | 214755.8 | 37.8 | 23.2 | S.Greece | | 2 9 | 135.234 | ¢ | | . i | 1.5 | 2 | × | 2.4 | Ξ. | 11 | • | | 12/19/88 | 051751 7 | * | 30 78 | | | : | 10.00 | | 19.5 | <u>.</u> | 0. | 5.4 | × | 5.7 | 31 | 33 | • | | 12/15/86 | 021417 5 | | | DESTRUCTION OF THE PERSON | . | T | 135.855 | | 19m 05.4 | 1.3 | | | × | 17.71 | 143 | 151 | 2 | | 00/61/71 | 671417.0 | F | 175. | | 5.7 | 83 | 136.290 | | 19 17.3 | 1.8 | | | × | 6.2 | \$ | 33 M | | | -6/09/S | 6.914co1 | | 154.7 | Estile Isl. | 5 . | ; | 136.995
136.895 | 0 U | 194 09.8 | 1.7 | .0 | <u>.</u> . 8 | ×× | : | 1 | 9 | · m· | | 1/ 3/99 | 031639.1 | 37.18 | 57.9E | Iren | 5.6 | 43 | 136.975 | | 19m 24.5 | 1.3 | | 3 | | | 6 | 2 : | - | |
2/19/98 | 224541.2 | 39.4K | 25.05 | Aegean Sea | 8.9 | 109 | 137.109 | • | 19 21.3 | 1.3 | 1 | Ş | . > | | , | : ' | N 1 | | 2/ 3/89 | 085706.8 | 49.48 | 155.9€ | Kerile Isl. | 5.4 | 8 | 137.273 | | 13.11.1 | 1.1 | | } | ٠ 🛏 | | | . ; | m (| | 10/24/99 | 223550.9 | 49.78 | 155.82 | Kurile 1s1. | 5.5 | \$2 | 137.530 | | 19= 11.3 | 1.7 | 0.1 | • | | | | 3 3 | , | | 8/24/89 | 041954.5 | 39.24 | 40.25 | Turkey | 5.1 | 7 | 138,366 | • | 19 27.8 | 1 | : : | | ٠, | | , | £ ; | • | | 12/30/98 | 070311.7 | 57.6K | 151.4 | Sodisk Isl. | 5.4 | 104 | 139.514 | | 19 12.9 | 2.0 | | ; | < × | ? | N | : : | . | | 6/31/BB | 0.16011 | | | -1 | l | | 136 514 | | 19 23.5 | 2.0 | | | * | 4.0 | × | Ä | N N | | 7/21/68 | 210221 | | 32.00 | | • | . | 138.760 | U | 19 27.3 | 1.3 | 1.0 | 2.6 | × | 1.3 | • | 13 | • | | | 6.162012 | £ . | | Okhotsk Ses | ÷ | ī | 138.878 | | 19 13.2 | 1.7 | 0.B | • | × , | | | 876 0 | • | | 6.15/98 | 112732.8 | S1.7H | 159.4€ | E. Komehatka | 5.4 | 8 | 138.914 | U | 19 13.4 | = | • | • | • • | | | 578 0 | - | | 2/19/98 | 142342.8 | 49.7% | 147.72 | Okhotek See | 4.7 | 7 | 138.949 | ٥ | 19 11.2 | 1.7 | - | 2 | • | | | 0 85 | + | | 4/23/98 | 202914.5 | 58.73 | 150.00 | Alasks Galf | 9.3 | 80 | 139.526 | υ | 19.5 | 2.0 | : . | : : | ٠, | | | 280 | m, I | | 5/24/99 | 213711.2 | 54.28 | 189.3E | Kommedorsky | 4:7 | 62 | 139.742 | | 12 25.9 | • | | | < > | | | 57 | m · | | 9/ 3/98 | 041952.2 | 11.81 | 32.3E | Turkey | 5.7 | 57 | 140.251 | 0 | 19. 22.7 | 3 | 1.5 | : 2 | | | | ď | - m | | 2/36/68 | 150610.0 | 3 | | | : | 1 | 107.041 | = | 198 36.3 | <u>:</u> | : | # | × | | | 50 | • | | | 7.61.00 | | | A. C. | | 3 | 140.274 | | 19 03.5 | <u>:</u> | . | 2.9 | × | | | 181 | m | | 64.4 | 103423.4 | 23.25 | 159.7 | E. Kessington | 4.7 | x | 140,300 | U | 19 17.5
19 27.3 | 6.6 | 0 | - | × , | | | 33 | ▼ . | | 1/20/99 | 142011.5 | ¥. ¥ | 166.0E | Kommedorsky | | 134 | 140.905 | | 19 21.5 | 1.9 | | | | | | ;
 | - | | 12/17/88 | 120215.0 | 6 0.2 | 152.00 | S. Alaska | 8.9 | 101 | 141.177 | | 19 13.7 | 2.1 | | | : × | | | 3 4 | n (| | 1/28/99 | 211239.1 | 55.4H | 166.0E | Somendoreky | 5.4 | = | 141.363 | • | 19 24.1 | •: | 1.7 | 25 | × | | | 2 | ı • | | Date | 0.T.
9r-#1s-Sec | ž | 2 | 8-g 10s | م. | No. | ٥٧ | Compression/ | 1.1 | J. (| Period | į. | 0161- | Bes. for
O Depth | | C & GS
Depth | No. of | | | | | | | | ; | | | - DEC | (364.) | (305.) | į | : | (sec.) | (E) | | Seismometers | | 0.T. | 3 | 3 | Ret 199 | م | Ste. | δ.α | Compression/
Dilation | T.T.
#ta-Sec | ()
()
() | Per tod
(Sec.) | į | D161-
t128d | Depth
O Depth
(Sec.) | Depth
From Res.
(km) | C & GS
Depth
(ka) | No. of
Setsmometars | |------------|--------------|----------|--------------------|-------------|------|---------|--------------------------|-----------------|----------------|-------------------|-------|----------------|----------------------------|----------------------------|-------------------------|------------------------| | 020636.6 | 1 | 35.38 | 1 | : | = | l۵ | - | 15 25.6 | 1.5 | 1.7 | | 2 | 4.2 | 2 | l | n | | 223838.9 | 42.46 | 35.38 | C. Kazakh | 5.2 | • | 142.212 | Ü | 19 25.4 | 1.5 | 1.0 | 5.6 | N | 6.4 | 38 | 33 | 6 | | 011345.2 | 55.69 | 162.1E | E. Comchatha | 5.3 | S | 142.216 | | 1.61 41 | 1.9 | 1.0 | 2.5 | × | 10.6 | 8 | 20 | • | | 150532.7 | 55.8 | 162.9 | E. Kanchatka | 5.5 | 2 | 142.256 | | 12 26.2 | 1.9 | | | | 3.9 | 52 | 91 | 2 | | 004230.0 | 55.91 | 163.0E | E. Kaschatka | 5.5 | 2 | 142.371 | - | 19 24.6 | 2.0 | | | × | 5.7 | 36 | 33 | 8 | | 040008.7 | 1.9 | 77.5 | E. Kazakh | • | 2 | 143,350 | _ | 1% %.2 | 1.5 | | | | 1.5 | S | SS | | | 132253.9 | 45.69 | 3. E | Presenta | 4.6 | • | 143.386 | ٥ | 19 17.6 | 1.6 | 0.0 | 3.0 | | 15.9 | 124 | 122 | n | | 231504.0 | 45.7M | 39.65 | | 9. | 25 | 143,535 | _ | 12 19.1 | 1.6 | 6.0 | 2.4 | - | 19.0 | 12 | 123 | • | | 205504.3 | 94.0 | 147.38 | C. Alaska | •: | 11 | 144.635 | _ | 19 33.5 | 2.2 | | | | 3.3 | 2 | 8 | 1 | | 195740.3 | 64.19 | 147.58 | C. Alaska | : | 22 | 144.747 | | 19 32.6 | 2.2 | | | | *; | 22 | 90 | 1 | | 205137.5 | 64. 1N | 147.96 | C. Alasks | • | 8 | 144.753 | - | 15 33.1 | 2.2 | | | | | 72 | 31 | 1 | | 065955.9 | 45.9 | 42.5E | S.W. Russla | 9.6 | 5 | 145.143 | - | 19 30.2 | 1.6 | | | | ÷ | ø | • | 1 | | 162258.6 | 94.8 | 1 47.6W | C. Alaska | ÷.s | 2 | 145.420 | | 0.7E #81 | 2.2 | 1.0 | ¥. | × | 2.2 | = | 12 | • | | 085745.3 | # .7x | 62. Z | Ke zekh- | 4.7 | = | 145,691 | - | 19 35.3 | 1.6 | 6.0 | 6.1 | × | 5.3 | ĸ | 33 | • | | 120644.5 | 2.3 | 151.24 | C. Aleska | ; | 32 | 145.789 | | 15 32.1 | 2.5 | | | | 8.2 | 3 | 93 | - | | 215426.5 | 57.98 | 32.46 | 9. Atlantic | 4.5 | • | 145.629 | | 198 36.4 | 2.0 | 9.0 |] = | | 4.2 | 29 | 33 | - | | 005651.3 | 58.1M | 32. ZW | 6. Atlantic | 5.0 | 8 | 145.967 | _ | 15 37.9 | 2.0 | | | | 3.1 | 8 | 33 | | | 011304.9 | 58.1N | 32.16 | 6. Atlantic | 5.2 | 22 | 146.004 | _ | 12 37.9 | 2.0 | | | | 3.3 | ដ | 33 | - | | 010738.4 | 58.28 | 32.16 | 6. Atlantic | 5.0 | * | 146.099 | | 19 37.6 | 2.0 | | | | 3.6 | 22 | 33 | 1 | | 032429.8 | S9.3M | 32.3W | M. Atlastic | ; | • | 146.191 | - | 19m 36.3 | 2.0 | | | | 5.3 | 35 | 33 | - | | 120339.9 | 58.38 | 32.78 | 6. Atlantic | † .6 | 72 | 146.165 | - | 19 35.5 | 2.0 | | | × | 6.1 | 7 | 33 | 8 | | 050057.6 | S8.38 | 32.2W | W. Atlentic | 9.6 | 72 | 146.176 | | 19 36.0 | 2.0 | | | | 5.7 | 38 | 33 | 1 | | 221915.6 | 65.4M | 150.18 | Alasks | 9.0 | 105 | 146.209 | - | 19 39.9 | 2.2 | 2.0 | 360.0 | × | 1.7 | = | 1 | • | | 205412.4 | 59.4M | 32.3W | W. Atlanttc | \$: | 12 | 146.256 | 1 | 19 36.9 | 2.0 | | | | 3.2 | 2 | 33 | 1 | | 232159.1 | 58.48 | 32.36 | 9. Atlantic | 9. | 9 | 146.256 | - | 19m 36.9 | 2.0 | | | | 5.1 | ř | 33 | 1 | | 002050.4 | 59.4X | 32.16 | 6. Atlantic | : | 9 | 146.290 | | 19 36.6 | 2.0 | | | | 5.2 | ¥ | 33 | 1 | | 040201.7 | 47.98 | 40.0 | W. Kazekh | 5.5 | 62 | 147.495 | 5 | 19= 41.7 | 1.7 | 1.0 | 0.1 | × | 4.2 | 29 | 33 | - | | 095527.0 | 59.4N | 30.46 | M. Atlantic | 4.7 | = | 147.607 | _ | 19 40.4 | 2.1 | 2.0 | 40.0 | × | 5.5 | 33 | 33 | • | | 004600.5 | 68.28 | 136.54 | 9. Yukon | 4.2 | • | 146.278 | - | 1\$m 43.0 | 2.2 | | | | . | 32 | 33 | 1 | | 1 92239.4 | 30 . 3K | 16
17 | USSR-
Mongol 1a | • | 2 | 146.410 | | 13 43.3 | 1.6 | | | | 5.3 | S. | æ | n | | 120757.2 | 49.74 | 76.1E | E. Kazakh | • | ıs | 146.949 | S | 15 47.1
51.0 | 1:1 | 9.0 | 16.0 | ** | 7 | 7 | | •• | | 0.721020 | 49.7K | 78.1E | E. Kazakh | 5.2 | 25 | 146.984 | ۔
ن | 19 51.0 | 1.7 | | | | ٠.٠ | 7 | • | 8 | | 024657.0 | 49.7X | 76.2E | E. Kazakh | 5,3 | 20 | 149.006 | ບ | 19 50.4 | 1.7 | | | | 0 | 0 | 0 | 1 | | 040157.1 | 49.78 | 76.1E | E. Kazakh | 5.0 | 8 | 149.013 | | 15 50.9 | 1.7 | | | | 5 | -3 | 0 | 1 | | 040557.4 | ÷. | 70.1E | C. Kazakh | 5.5 | 3 | 148.034 | _
 | 19 46.0
50.5 | 1.7 | 9.0 | 1.0 | × | 7 | 7 | • • | •• | | 034257.5 | ÷ | 79.H | E. Kenth | 9.6 | 8 | 149.043 | _ | 18 46.5
50.7 | 1.7 | 1.5 | 9.3 | m× | ŗ | 7 | • • | •• | | 0.T. | 1 | | | ١. | ė | | Compression/ | | J.F. | Period | į | 0161- | 6es . for
0 Depth | Depth
From 9es. | C & GS
Depth | 90. of | | Mr-Mtn-Sec | Ë | Long: | Regton | م | Sta. | ,
, | Diletton | 61n-Sec | (Sec.) | | Ĵ | ttred | (Sec.) | Ĵ | Ĵ | Setmoneters | | | D.1 | | | | | 9 | | Compression/ | T.T. | <u>.</u> ت | Period | | 0161- | Res for
O Depth | Depth
From Bes | C & GS
Depth | No. of | |-----------------|-------------------|---------------------|----------|------------------|------------|----------|-----------|--------------------------|----------------------------------|------------|------------------|----------|-------|--------------------|-------------------|-----------------|--------------| | Date | Hr-Hin-Sec | Lat. | . Seor | Region | ٥ | Sta. | ه. | | His-Sec | (Sec .) | | (m) | tized | (Sec .) | (m) | ĵ | Seismoneters | | 11/ 9/88 | 025357.7 | 49.8K | 76.0E | E. Kazakh | 4.9 | 2 | 149.065 | | 15 51.1 | 1.7 | | | | •- | 7 | • | ~ | | 4/24/66 | 103557.1 | 19.8 | 76.1E | E. Kazakh | 9.0 | 8 | 149.079 | | 13 51.1 | 1.7 | 1.0 | 15.0 | × | •;· | ę. | ۰ | М | | 3/ 1/69 | 062657.5 | 19.61 | 76.22 | E. Kazakh | | 2 | 149.079 | v | 17 6.4 | 7: | | | | • | • | • | • | | | - 1 | | | | | | | | 30. | | | | | , | - | , | • | | 10/ 1/69 | 040257.6 | ÷ | 76.2 | E. Kazakh | 5.3 | 8 | 149.106 | U | 1% 50.4 | 1.7 | | | | ÷.2 | Ŧ | • | - | | \$/16/89 | 040257.1 | 4 . 3 | 78.1E | I. Kazekh | 5.3 | 3 | 149.112 | v | 19m 50.6 | 1.7 | | | | 0 | • | ۰ | - | | 6/11/9 | 030557.6 | 19.4 | 78.ZE | E. Kazakh | 5.3 | 53 | 149.115 | | 19 50.6 | 1.7 | 1.0 | 10.0 | × | • | ۰ | • | • | | 6/19/68 | 050557.3 | 50.0W | 79.1E | E. Kazakh | 5.5 | \$ | 149.170 | | 196 46.6 | 7.1 | 0.0 | 2.6 | - | • | , | • • | | | 1/23/69 | 024658.1 | 19.94 | 76.35 | E. Kazekh | 8.0 | * | 149.199 | υ | 19 50.3 | 1.7 | | | l | • | • • | • | | | 6/20/68 | | 50.0g | 78.0E | | . | 2 | 149.316 | | 19 50.9 | 1.1 | 9.0 | 3.0 | | . • | ~ ~ | • | - | | \$/31/69 | 9.951050 | 50.0K | 77.17 | E. Kazakh | 5.4 | 8 | 149.337 | ٥ | 15 51.1 | 1.7 | | | | | 2 | • | - | | 10/30/69 | 121722.3 | 52.3M | 35.00 | C. Bussin | 4.8 | 35 | 149.897 | | 12 4.1 | 1.0 | | | | 6.9 | ; | 33 | • | | 7/21/68 | 014119.5 | 55.28 | 113.30 | E. Saikal | 5.1 | 35 | 150.158 | | 19 47.5 | 1.9 | 2.1 | 27.0 | × | 6.2 | 7 | 33 | • | | 4/21/89 | 171834.2 | 61.94 | M. 78 | lceland | 4.6 | 72 | 150.501 | | 19 49.6 | 2.2 | | | | 4.6 | R | 33 | - | | 8/31/68 | 180635.7 | 56.3% | 115.6E | E. Saikel | 4.6 | • | 150.791 | | 15 51.1 | 2.0 | •: | 10.0 | × | f.3 | 2 | 25 | • | | 11/26/68 | 183151.8 | 55.9% | 111.45 | L. Seikal | 5.1 | * | 151.094 | | 19m 55.6 | 2.0 | | | × | ۲. | • | • | 8 | | 12/ 5/68 | 0\$4411.0 | 83.94 | 21.70 | lcelend | 5.5 | 8 | 153.340 | | 198 53.4 | 2.2 | | | × | | | s | 7 | | | | | | | | | | | 20m 13.8 | 2.5 | | | × | | | 80 | 8 | | 5 | 022057.9 | 66.1N | 142
. 1E | E.Siberia | 2 . | ‡ | 155.400 | Þ | 19m 57.0
20m 03.0
20m 16.3 | 2.2 | 1.2 | . | × | | | g | • | | 5 5 69 | 214731.7 | 66.8K | 18.20 | lcelasd | 5.2 | 25 | 156.470 | | 20m 22.3 | 2 | | | | | | 33 | - | | 9 2 69 | 045957.4 | 57 4N | 36.18 | W. Bussia | • | 2 | 157.215 | | 20m 27.3 | 2.0 | | | | | | • | 2 | | 69 ± 6 | 045956.1 | 57.4N | 55. 1E | Ural Mts | • | 21 | 157 220 | | 20m 28.2 | 2.0 | | | | | | • | • | | 3 7 68 | 072742 7 | 71.8N | 3.58 | Jas Mayes | • | ž | 163 299 | • | 20m 50.9 | 2.3 | 2.0 | 4.0 | | | | 33 | 6 | | 4 7 69 | 202629.9 | 76 SK | 130.HE | Laptev Sea | 5.5 | 28 | 166 113 | | 19m 59.0
21m 2.9 | 7.7 | | | | | | ឧឧ | •• | | 8 22 69 | 194056 1 | 76.9% | 130.HE | Laptev Sea | • | 20 | 166.471 | | 21m 5.9 | 2 | | | | | | 33 | - | | 4 21 69 | 222759 5 | 74.2% | 9.72 | Greesland Sea | 9.5.0 | 25 | 167, 713 | | 21m 18.0 | 2.4 | | | | | | 33 | • | | 19 69 | 022655.4 | 74 416 | 10.1E | Norwegian
Sea | 4 5 | 7 | 167.860 | | 21= 9.6 | 2 4 | | , | | | | ដ | | | 12 30 GR | 102709.7 | 76.2% | 7.8 | Svelberd | 9 | ‡ | 168 . 858 | | 20m 9.3
21m 17.3 | 7 7 | | | HH | | | ឧឧ | N N | | 4 7 68 | 051624.9 | H1.5N | 3.9 | N. Svalberd | 5.3 | 53 | 169,995 | ပ | 21= 20.2 | 2.5 | 9.0 | 1.3 | × | | | 33 | е | | 10 14 69 | 070006.2 | 73 4N | 34.8E | Kovaya
Zemlya | 6 1 | 127 | 173.214 | | 20m 6.8
21m 38.8 | 2.4 | | | | | | | - • | | 11 7.64 | 100205.3 | 73.48 | 26.28 | Kowaya | 0 9 | 7 | 173.237 | | 20m 7.3 | 2.4 | 0.6 | 22.0 | × × | | | • | • | | | | | | | | | | | | | | | • | | | , | | | Det e | 0.T
Nr-Him-Sec | Ľ. | 2 | Berion | • | Mo. | ٥,4 | Compression/
Dilation | T.T. | (1,1) | Period
(Sec.) | į | D161- | Depth (Sec.) | Prom Bra. | C & GS
Oepth | No. of | | | | | , |) | | | | | ! | | | į | | ; | Ì | ļ | | #### NOTES FOR APPENDIX A O. T. origin time as calculated by USC&GS * Epicenter determination considered by USC&GS as less accurate than others. Lat., Long. as calculated by USC&GS. m, body wave magnitude as calculated bu USC&GS. No. Sta. number of stations used in C&GS computation. Δ^{O} geocentric angle between seismometers and epicenter-average used when pick taken from more than one seismometer. Compression/dilation - first motion where noted. T.T. absolute travel time. When two travel times are listed, the first is DF and the second is either BC or AB. $\epsilon_{ ext{ii}}$ ellipticity correction- from Jeffreys and Bullen 1967. Period visual appraisement. Amp. peak amplitude based on instrument calibration (two place accuracy only). Digitized X indicates digital records were made (by Vela Digitizing Center, Alexandria, Virginia). Residual for 0 depth Predicted time minus travel time where predicted time is based on first order least squares fit for the BC arrivals (depth corrected using A. Qamar's tables (Bolt, 1968) for Point B and travel times have been corrected for the earths ellipticity. Depth from Res. Using A. Qamar's tables (Bolt, 1968) for Point B C&GS depth - 33 km is used where C&GS considers "N" or normal depth. No. of seismometers the number of seismometers from which the BYA picks were made and averages taken. The 1970 records are generally only from 1; the helicorder record. Others, 2, 3, and 4 are functions of playback equipment used. | Security Classification | | | | | |--|------------------------------|---------------|--------------|-----------------------| | | DOCUMENT CONTROL | DATA - R& | D | | | (Security classification of title, body of | ebstreet and indexing annota | | | | | 1. ORIGINATING ACTIVITY (Corporate author) | | a | | CURITY CLASSIFICATION | | | | L | | SSIFIED | | STANFORD RESEARCH INSTITUTE | | [2 | NA | • | | | , , | | | · | | 3. REPORT TITLE | | | | | | INVESTIGATION OF PKP SEISMIC | WAVES | | | | | | | | * " | | | | | | | | | 4. OESCRIPTIVE NOTES (Type of report end incl Scientific | • | | | | | 5. AUTHORIS) (First name, middle initial, last na | | | | | | · Ho thouse (First halls) invale miles | | | | | | William F. Isherwood | | | | | | | | | | | | S. REPORT DATE | 74. 1 | OTAL NO. OF | PAGES | 75. NO. OF REFS | | September 1970 | | 40 | | 15 | | SA. CONTRACT OR GRANT NO. | 3a. C | RIGINATOR'S | EPORT NUME | ER(5) | | F44620-67-C-0080 | | 6495 | | | | b. PROJECT NO. | | | | | | 8652 | | | | | | c, | 9b. g | THER REPORT | NOIS (Any of | -2.69 TR | | 62701D | | TOCR | 70 | -2459TR | | d. | Ĺ | T ODI | | | | 10. DISTRIBUTION STATEMENT | | | | | | 1. This document has been | approved for pub | lic releas | e and sal | le: its | | distribution is unlimited. | • | | | | | | | | | | | 11. SUPPLEMENTARY NOTES | | ronsoring MIL | | Scientific Research | | TECH, OTHER | 1 | 400 Wilson | Boulevar | rd (SRPG) | | | A | rlington, | Va. 22209 | • | | 13. ABSTRACT | | | | | | A four-element seismic a | | | | | | for investigation of PKP seis | mic waves. This | seismic st | ation (B) | (A) has been | | operating continuously since | January 18, 1968. | Seismic | data are | recorded on | | magnetic tape at a level perm | itting playback a | t a system | magnific | ation of as | | high as 500,000. Background | ground motion amp | litudes at | Byrd Sta | ation were found | | to be in the order of 10 mill | | | | | | of the order of 100 millimicr | | | | | | was operating, nearby. About | 2,700 compression | nal and sh | ear arriv | vals were | | reported in the first 8 month | s of recording, w | ith epicen | ters rang | ging over the | | entire earth. About 400 of t | hese events have | been confi | rmed as F | PKP arrivals. | | The epicentral distance for t | hese arrivals ran | ged from 1 | 10° to 17 | 73°, with the | | majority being from the Japan | ese and Kurile ar | eas. Data | from the | e first full | | year of operation are now bei | ng processed at S | RI. The s | tation wa | s turned over | | to the USC&GS and is currentl | y being operated | by that ag | ency. | | | | | | 1 | | | | | | | | | , a | | - | | | | Key Words: | | | | | | Seismology | PKP | | | | | Wave Propagation | p' | | | 160 | | Earth's Core | Antarctica Opera | tion Deep | rreeze 19 | 808 | | Core Phases | | | | | DD FORM 1473 (PAGE 1) UNCLASSIFIED Security Classification