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PREFACE 

This Memorandum is part of Rand's study for the Advanced Research 

Projects Agency of those phenomena which affect the  performance of 

optical reconnaissance and guidance equipment. The objective of these 

studies is to provide sufficient understanding to permit the systems 

analyst to compute performance estimates under various operational 

conditions. 

In optical communications and related devices, the random variations 

In the received signal due to atmospheric turbulence can represent a 

severe limitation to system performance. Theoretical studies of these 

fluctuations have been based on solutions to the wave propagation 

equation which are correct only to first order in the refractive index 

deviation. It is shown in this Memorandum that a solution correct to 

all orders is readily obtained by direct analogy with a method commonly 

adopted to solve the Schrödlnger equation for high energy potential 

scattering. Study of the more highly developed scattering theory provides 

useful insights into the nature and limitations of the various approxi- 

mate solutions of propagation theory; in particular, the Memorandum 

points out that the standard approximation adopted in propagation 

studies is based on an approach known to be invalid in scattering 

theory. The results should be of Interest to those concerned with 

the use of lasers in the atmosphere. 



SUMMARY 

By direct analogy with a method developed by Schiff to solve the 

Schrödlnger equation  for high energy potential scattering,  It Is pos- 

sible to solve the equation for wave propagation  In a turbulent medium 

In a manner which explicitly demonstrates that the solution so obtained 

Is correct to all orders In the refractive Index deviation and to low- 

est order In the stationary phase approximation.    Although the solution 

Is readily extended to next order In stationary phase, such an extension 

Is recognized In scattering theory as unwarranted since It neglects 

terms of the sa m order from outside the region of stationary phase. 

The conventional "Bom" and "Rytov" solutions widely adopted In propa- 

gation theory are of questionable validity since they represent approx- 

imations (first order In refractive index deviation)  to the extended 

solution. 



THE MOLIERE APPROXIMATION FOR WAVE PROPAGATION IN TURBULENT MEDIA 

It  is the purpose of this note to point out the applicability of 

the Möllere approximation, used  in high energy potential  scattering 

theory,  to treatments of wave propagation in random or turbulent media. 

In its usual formulation,  the Möllere approximation to the solution of 

the Schrödinger equation 

[V2 + k2 - U(r)] t(r) - 0 (1) 

,,(1-4) 
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^ ~ *M - exp [tkz  - ^ [     U(x,y,z') dz'1 (2) 
—00 

ikz 
where e   represents the incident wave function. The integration 

Indicated in Eq. (2) is along a straight line parallel to the z-axis. 

With the condition ka » 1, where the length a represents the character- 

istic distance over which U(r) changes by a significant fraction of 

Itself, the approximation applies throughout and near the region of 

the scattering potential, and may be used in the standard Integral ex- 

pression to determine the scattering amplitude. Although limited to 

** 
determination of small angle scattering,  it may be used for strong 

potentials where the Born approximation is of little value. 

The wave equation for a scalar wave propagating in a medium whose 

index of refraction is n(r), 

*The WKB approximation is t ~ iw " exp (1 J Vk - U ds), with the 
integration along the classical trajactory. 

SchlffO) has extended the Möllere approximation for use in 

large angle scattering. 



(72 + n2k2) * - 0 (3) 

may be made formally equivalent to Eq. (1) with the substitution 

-\      2        -*    2 
U(r) - - ek , where e(r) - n -I. 

With the assumption that n = 1 when z < 0, the Mollere approxi- 

2 
mation for the wave in the "near zone" (0 < z ~ ka ) may be expressed 

in the form 

IS 

♦M"V 0 (4> 

where * - eikz  is the incident wave, and* To 

So -|J c(x.y.z') dz' (5) 

Expansion of Eq. (4) gives the Born approximation, 

h ■ V1 + t8o) (6) 

In treatments of propagation in random media, the index of re- 

fraction is usually expressed in the form n(r) • 1 + n.Cr),  hence 

2 
e " 2n. + n., and S may be expressed in the form 

So - k J Bjdt.y.O d«' + J J ^(x^.z') dz' (7) 

In the WKB approximation, * - exp (Ik J* nds), where the inte- 
gration is along the ray path. 

JLJL 

It will be assumed that the mean value of n< satisfies 
(n.)- 0, and that <n?> is constant. 



If, as Is often assumed, \n.\  «  1, the Born approximation may be 

expressed as 

♦B " ♦o(l + "P (8) 

where 

S^ - k| n^x.y.z') dz' (9) 

The corresponding "Rytov approximation" 

IS.' 

'R  fo ' ♦D - ♦ « 0 (10) 

Is somewhat ambiguous In that Its exponential form Implies a higher 

order (In n.) approximation. 

(3) Schiff ' has shown explicitly how the Infinite Born expansion 

may be summed, with each term In the expansion evaluated to lowest 

order In the stationary phase approximation, to give the Möllere 

approximation. Thus, Eq. (4) gives the wave In the zaroth-order 

stationary phase approximation correct to all orders In n.; the Born 

and Rytov approximations, Eqs. (8) and (10), are zeroth-order stationary 

phase approximations correct to first order In n.. Schiff points out 

that the next order stationary phase approximation, given by 

n%     is +si 
♦i" ■ ♦. • 0 l <") 

with 



1 cz 

S1 - - ij  (z - z') hCx.y.zO dz' (12) 

2 
where h = 7 e, Is inconsistent In that it neglects terms from outside 

the stationary phase region which, In general, are of the same order. 

The stationary phase expansion Is an expansion In powers of (ka)  ; 

(2) 
Gol'dman and Migdal ' have emphasized that such "classical" ex- 

pansions are asymptotic and can never give diffraction effects cor- 

rectly. 

Similarly, the first-order (In n.) approximation to Eq. (11), 

In either the Born or Rytov form. 

(D ♦J      " *o(1 + 1So + 'P (13) 

or 

♦;l) - ^ e    0    1 (14) 

where 

si " ■ A I  <z ■ z/> h/(x.y.z/) <»«' (15) 

,2 
with h' ■ 27 n., Is also Inconsistent. 

Equations (13) and (14) have been widely adopted In the propaga- 

tion literature as approximations to the wave in the near zone. Their 

Inconsistency is not manifest in the conventional development  ' 

where the wave equation is expanded in powers of n. with S and S. 



treated as quantities of the same order. Only after the first order, 

or Rytov, equation Is reformulated as an Integral equation Is the 

stationary phase approximation Introduced, essentially by restriction 

of the region of Integration to the "Fresnel cone."  This cone has 

Its vertex at the field point and opens In the negative z-dlrectlon 

with angular spread ~ l/ka; the same angle characterizes the "dif- 

fraction cone," which has its vertex at the scattering inhomogeneity, 

or "turbule," and opens in the positive z-dlrectlon. The Fresnel 

approximation is introduced as a consequence of the well-established 

"forward scattering" approximation (the assumption that essentially 

all the diffracted radiation is confined to the diffraction cone) 

and is conjectured to be of general validity provided ka » 1. 

This view contrasts strongly with that adopted in potential scattering 

theory, where the use of the Fresnel approximation is restricted to 

the determination of S . 
o 

It is of Interest in this regard to consider a simple example, 

the scattering of a plane wave by a single spherical turbule with 

radius a and constant index deviation n. with the condition In-ka] « 1. 

As is well known, the scattered field may, with reasonable unambiguity, 

be separated into a widespread (i.e., throughout distances of order a 

in the x,y-plane), weak coherent "refractive" field and a narrow, 

intense diffraction beam. If a field point very near (but not neces- 

sarily on the axis of) the turbule is considered, that portion of the 

turbule within the Fresnel cone gives the refraction field with excel- 

lent accuracy, but gives no diffraction field. At a larger distance, 

* (3 7) 
More precisely, the Fresnel paraboloid of revolution '  (the 

region of stationary phase). 



the Fresnel cone Intersects a greater section of the turbule, and 

Implies the existence of a weak, wide-angle diffraction beam, In 

addition to the refraction field. As the distance Is Increased, the 

diffraction pattern as determined by the material In the pertinent 

Fresnel cone Increases In Intensity (and total scattered energy) and 

decreases In angular opening; the refraction fields remain accurately 

2 
determined. For distances exceeding ka , the Fresnel cones associated 

with points in the scattered field Intercept essentially the entire 

turbule, and the approximation Is obviously valid. 

The errors associated with this Initial elimination and gradual 

mlxing-in of the diffraction field depend on the quantities being 

determined. For example, the refractive and diffractive phase shifts 

are of the same order, and the narrowness of the diffraction beam 

insures that the near-zone transverse mean-square phase deviation 

associated with a collection of independent spheres with randomly 

distributed values of n. will have negligible error in the Fresnel 

approximation.  In contrast, the amplitude perturbation in the 

diffraction field is considerably larger than that in the refraction 

field, and it is easy to show that, despite the narrowness of the dif- 

fraction field, the amplitude fluctuation associated with scattering by 

a densely packed collection of random spheres is everywhere dominated 

by the diffractive effects. The example, while highly artificial. Is 

In agreement with the general conclusions of potential scattering 

where the Fresnel approximation is used to determine S (a phase 

perturbation) and where S. (the Fresnel amplitude perturbation) is 

regarded as inconsistent. 



7 

Nevertheless, the admonition of Schiff and others against the 

extended use of the Fresnel approximation is 0f necessity somewhat 

imprecise in that it is based on the observation that the contri-

butions from outside the Fresnel cone are likely to be of the same 

order as s
1

; it remains possible that, under certain circumstances, 

the outside contributions may be considerably smaller than those from 

inside. Although use ~£ the general wave equation to estimate con-

ditions far which the extended Fresnel 3pproximation may be valid 

presents a formidable task, it i.s pos.1ible to show(S) that when 

2 4 5 
z/(n

1
) k a > 1, the conventional near-zone Fresnel solution (Eq. (14)) 

of the Rytov equation agrees with the assumptions underlying the 

derivation 0f the Rytov equation as an approximation to the wave 

equation. While this "consistency" condition, based on a solution 

of the approximate equttion, is neither necessary nor sufficient for 

the validity of the extended Fresnel approximation, such condi.tions 

are commonly adopted when more rigorous conditions (those based on 

solutions of the general wave equation) are unavailable. 

A more familiar consistency condition on the Rytov approximation 

is the Barn condition Is I < 1, which implies (s2
) < 1; and hence (note 

0 0 

the Fresnel approxinl&tion :!.::! valid for the determination of S ) the 
0 

2 2 * "upper limit" condition (n1) k az < 1. Thus, values of z for which 

the conventional Fresnel-Rytov solutions are consistent may be 

2 3 
determined from the parameter y • (n

1
)(ka) : When y < 1 the solutions 

* This condition i~ neither necessary nor sufficient for the 
validity of the Rytov equation and has been derived many times with 
various approaches, some of which are disr.ussed in Ref. 8. 



are consistent (although not necessarily valid) in the interval 

Y £ z/ka < Y ; when Y > ^ t^e solutions are inconsistent (although 

* 
not necessarily invalid) for all z.  Reasonable estimates for the 

various parameters indicate y » I  for optical propagation in the 

atmosphere, hence, in this application, the Fresnel-Rytov solutions 

should be used with caution. 

CONCLUSIONS 

Schiff's approach to the solution of the Schrodlnger equation 

(3) 
for high energy potential scattering   may be used to solve the 

scalar wave equation for propagation in a turbulent medium in a 

manner which explicitly demonstrates that the Möllere solution 

(Eq. (4)) is correct to all orders in the refractive index deviation. 

The method is readily extended to higher order in stationary phase, 

(2  3) 
but the extended solution (Eq. (11)) is invalidv ' ' since it 

neglects terms of the same order from outside the stationary phase 

region. The conventional near-zone Born and Rytov solutions are 

approximations (of order n.) to the extended solution, and their 

use is unjustified. 

A closely related inconsistency is that which arises from the 
assertion (Refs. 5 and 6) Chat, for z £ ka , the Rytov equation may 
be further approximated and render valid the equations of linear 
(in n.) geometric optics. This view, when combined with the widely 
adopted upper limit given above (yz < ka2) implies, inconsistently, 
the existence when v > 1 if an interval V'1 < z/ka2 < 1 in which the 
Rytov equation is invalid and the less general geometric equation is 
valid. 
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