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ABSTRACT

It has been speculated for many years that microwave beam

tubes using cyclotron and synchronous wave interactions could have a

higher efficiency than is presently attainable in ordinary TWT's. This

observation is based on the analysis of filamentary beam model which

predicts that all electrons will lose an equal amount of axial energy when

they interact with a circularly polarized traveling-wave circuit field.

Under ideal conditions, therefore, the collector potential may be depressed

close to the cathode potential: thus, very high efficiencies could be

realized.

A theory of transverse-wave interactions with a more realistic

model of the beam is developed to show that the main practical limitation

arises from the fact that a moderate power electron beam must have a non-

zero size and non-zero space charge density. The analysis of these

effects leads to the following expression for the optimum efficiency with

collector depression:

Efficiency = [ 1 + (beam diameter/r-f beam displacement)] -1

A nonlinear theory of the transverse-wave tubes is also

developed to predict the saturation output power attainable. Unlike the

large-signal theory of TWT's, it is possible to describe the non-linear

behavior of transverse-wave tubes by a simple analytic expression.

Numerical calculations of saturation characteristics are presented. The

over-voltaged behavior of the tube under strong input drive is calculated

to show that the power saturation due to velocity de-synchronlzation could

be overcome by increasing the beam voltage.

Considering practical limitations of the beam parameters and

the saturation characteristics, a set of possible design parameters of a

high efficiency (>50%), moderate power level (-'1 KW) transverse-wave

i
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tube is obtained. The attainment of such goals with a reasonable circuit

length appears difficult but is not excluded bry our theory.

An experimental low-power vehicle operating in the 500-1000 MHz

band was constructed to test the above theoretical predictions. Both the[ synchronous and the cyclotron wave Interactions- have been observed. The

small-signal behavior as well as the saturation characteristics were in

good agreement with the theory. Retarding potential measurements were

made to determine the energy spread induced by the RF interactions.rExperimental results, in general, tend to confirm the validity of the

theoretical results,

:

g.

¥i

}Li



'4,

LIST OF FIGURES

..fl. 2J PAGE
S(A-0 Diagram for Cyclotron and Synchronous Wave

% Amplifiers.

2. Beam Displacement Variables. 13

3. Illustration of the Energy Distribution of Electrons Over 20
the Beam Cross Section.

4. Electron Energy Dtstribution at the Output of the RF 22:"Interaction Region.

2A5. vs. C in the Small-Signal Limit (Q=0). 49

6. General Structure of the Nonlinear Solution for A(M). 51

7. Sketch of G vs. ' to Determine the Real Roots of 54
G=0 (of F=0) as a Function of 6 for Q << 1.

8. Gain vs. Normalized Distance (Small-Signal Limit). 57

9. Large-Signal Gain vs. Q (for a 0 = 2.0). 59

10. Normalized Efficiency vs. Q (for 4 4 = 2). 60
0

11. Large-Signal Gain vs. Q (forty t, = 1. 5). 62

12. Normalized Efficiency vs. Q (for %t = 1. 5). 63

13. Sketch of the Experimental Transverse-Wave Amplifier. 68

14. Photograph of the Experimental Tube. 69

15. Dielectric Supports for Bifilar Helix. 70

16, Experimental Setup for Gain Measurement and 72
Retarding Potential Meaurement.

17. Output vs. Beam Voltage (f = 700 MHz, I° = 5 n )° 73

18. W-0 Diagram Showing All Possible Interactions 74
Involving Synchronous Waves and Longitudinal
Space-Charge Waves.

19. Frequency vs. Beam Voltage for Synchronous- 76
Wave Interactions.

20. Saturation Characteristics of Synchronous-Wave 77
Amplifier,

21. Output vs. Beam Voltage Showing Over-Drive 78
Characteristics,

ti

r 
1t



G FIG._

22. Over-Voltaging and Over-Driving Ch a;acteristics 80
(Calculated for Q = 5, a/# p 5 x 10- , 0.8).

23. Collector Current vs. Retarding Potential, 81

24. Collector With Velocity Analyzer. 84

25. Collector Current vs. Retarding Potential in the 85
Modified Collector.

26. Electron Energy Distribution of Spent Beam in 86
Synchronous-Wave Amplifier.

27. Output vs. Beam Voltage for Cyclotron-Wave 88
Interactions (f = 380 MHz, B:= 440 Gauss).

28. W-fl Diagram Showing Cyclotron-Wave Interactions 89
With Twisted Two-Wire Line.

29. Frequency vs. Beam Voltage for Cyclotron-Wave 90
Amplification.

30. Electron Energy Distribution of Spent Beam in 92
Cyclotron-Wave Amplifier.

IV-

Ii:

Di



LIST 0'0 TABLES

Th~I~JLPAGE #

I Design Equations for Transverse-Wave Amplifier 29

IIA Examples of Calculated Performance of 30
Synchronous-Wave Amplifiers

- IIB Examples of Calculated Performance of 31
Synchronous-Wave Amplifiers

IIC Examples of Calculated Performance of 32

Synchronous-Wave Amplifiers

Y III Design Parameters 67

IV Comparison of Energy Spread Measured and Calculated 81

v

--



iii

I. INTRODUCTION

The original study of electron-beam waves with transverse RF

4 modulation by Siegman introduced many interesting concepts for new

microwave devices. Most of the subsequent work in transverse-wave

microwave tubes were motivated by expectations of either low-noise or

*. high-efficiency devices. It has been shown both theoretically and ex-
perimentally that by selectively exciting the fast cyclotron wave (which

carries positive energy) and removing the beam noise, one could obtain
~2-8

a class of low-noise parametric amplifiers. It has also been pointed

out, on the basis of the simple filamentary beam theory, that the inter-

action of a transverse beam wave with a circuit wave should not introduce
a longitudinal velocity spread in the electron beam. Based on this

observation, it has been speculated that the efficiency of transverse-waveF" amplifiers with collector depression may be raised far beyond what is

attainable in longitudinal-wave tubes. The present study of the transverse-

wave devices was motivated by this promise of a class of high-efficiency

microwave amplifiers. I

As was pointed out by Scgman in his original paper, the energy

I exchange mechanit-i in transverse-wave interactions does involve an

extraction of energy from the longitudinal motion of the electrons. It is

not immediately obvious, therefore, that one can automatically avoid a

longitudinal velocity spread in a transverse-wave tube. Wessel-Berg9

has shown theoretically how the coupler design can affect the axial

velocity modulation. His basic conclusion, reasoning from the usual

filamentary beam model, is that only one of the transverse modes should be

excited to have a low velocity spread at the output of the coupler.

There have been only a limited number of experimertal studies

of the interaction between transverse beam waves and slow-wave circuits.toi
1s



Johnson I I has demonstrated interactions of both synchronous and cyclotron
12

waves with a bifilar helix, and Hayes has built a synchronous-wave

amplifier In which a resonant interaction structure was used, as in a

klystron. No attempt was made In either of these studies to investigate

the velocity spread in the beam and the possible use of the interaction

mechanism for a high-efficiency amplifier. The only experimental efforts

aimed specifically at the achievement of high efficiencies in a transverse-

wave tube were studies by Carroll I 0 and Crumly and Larson! Carroll's

experiment on a cyclotron-wave traveling-wave tube were discouraging,

as he was able to obtain an efficiency of only about 30% even with depressed

collector operation. Experiments by Crumly and Larson were plagued by

spurious oscillatiors and beam blow-up. No satisfactory theoretical

explanation has been offered to account for the lack of success.

The interest in the high-efficiency amplifier Is justified, if it

can be shown that the high-efficiency predicted is attainable in a device

D with a relatively high power output. Theories of transverse-wave Inter-

actions, however, have not dealt with problems unique to high-power

devices. The filamentary beam model most often used in the analytical

study, for instance, is inadequate to describe a high-power beam, and

the power saturation characteristics were unpredictable since there was

no adequate nonlinear theory of transverse-wave interactions. In view of

the unsuccessful experimental efforts and the lack of adequate theoretical

foundations for design of high-power tubes, the emphasis in the present

study has been on the theoretical understanding of the high-power

behavior of transverse-wave tubes.

This report is divided into three major parts: First, in Section

2, we present a theory of transverse-wave interactions using a realistic

model of the beam suitable for high-power amplifiers. The energy exchange

mechanism in transverse-wave interactions is reviewed, and the energy

2



t.. spread induced in a beam with non-zero size and space charge by

high-power transverse-wave Interactions is calculated. Various choices

of design parameters are considered to show the basic design contraints in

terms of the maximum efficiency attainable in high-power amplifiers. The

power saturation characteristics of transverse-wave amplifiers are examined

in-Secion-3 by analyzing the nonlinear behavior of transverse-wave inter-

actions.

Results of die analyses iti-Sections-2 -and 3 provide the theoretical

basts for predicting capabilities and limitations of high-power, high-

efficiency transverse-wave amplifiers. The purpose of the experimental

study desckbed-ir-Seetiorn-4 was to verify the validity and determine

limitations of various theoretical design equations. Experimental results

presented In Section 4, by and lar'je ' confirm Gu-etheoretical predictions,

and thus provide added credence to the theoretical projection of the

potential device capabilities.

3.4
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11, THEORY OF HIGH-POWER TRANSVERSE-WAVE TUBES

2.1 Introduction

The filamentary beam model often used in the analysis of

transverse-wave tubes is inadequate to describe high-power tubes,

since one must use a sizable beam with non-zero space charges in order

to meet the beam-power requirements. In this section, we will analyze

transverse-wave tubes with a realistic model of the beam to evaluate the

effects the beam size and space charge. In Section 2.2, we will review

the basic mechanism of energy exchange In traveling-wave type transverse-

wave tubes to demonstrate in a clear physical way why a filamentary beam

can lose axial energy without any spread being Introduced. We then con-

sider some of the practical limitations which constrain us from achieving

these ideal conditions. In particular, we calculate In Section 2.3 the

energy spread induced by transverse-wave interactions in an electron

beam of finite diameter and finite space charges to show that the optimum

efficiency (with collector depression) attainable in a transverse-wave tube

is limited by these practical considerations. In Section 2.4, we consider F
in detail the possibility of designing high power, high efficiency trans-

verse wave-amplifiers in view of the constrains derived in Section 2.3.

2.2 Filamentary Beam Theory of Transverse-Wave Amplifiers

Of the four transverse-beam waves originally introduced by

Siegman, the slow cyclotron wave with positive polarization and the

synchronous wave with negative polarization are the so-called negative-
1

energy waves. As in ordinary traveling-wave.tubes, the coupling of

negative-energy beam waves with waves propagating along a slow wave

circuit leads to traveling-wave amplification. Therefore, there are two

possible types of transverse-wave traveling-wave amplifiers: a synchronous

wave tube and a cylotron wave tube. Figure 1 shows w-8 diagrams and

4
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the synchronism conditions required for the two types of traveling-wave

amplifiers. Theoretical analyses of these amplifLers for gain, power output,
1 14

bandwidth, etc., have been given by Siegman , Louisell and others, Our

analysis will follow that of previous authors, but our emphasis will be on

the physical mechanism of energy transfer and the question of longitudinal

velocity spread.

circuit field (E ) that is purely transverse at the unperturbed beam position
c

(x = y = 0), and with a uniform axial magnetic field B = 1oz is

j" + c = _rEx (2.1I)

y" - w x = -nE (..2)
c yc

In the above, x is the total-time derivative of x,

+x _ (2.3)
dt zt 0Z

= e/m, and wc = n6 is the cyclotron frequency. For analytical conven-C o

ience, we introduce the circularly polarized variables r and Ec whfre

r = x + jy (2.4)

E = E + jE (2.5)
c xc yc

The force equation can be written in terms of these variables as

"r -
r = -nE c  (2.6)

To illustrate the meaning of the circularly polarized variebles

given in (2.4) and (2.5), note that a left polarized traveling-wave field

is described by

E= E eJ(oW' t - 0z + P) (2.7)
C 0

6



with E real, since
0

j-(E + E = ECos (Wt - Rz )Exc 2 c 0

E (E - E =Esin (wt - Oz +P) (2.8)Eyc =2j (c -c* 0-E

Arightpolarzed wave, on the other hand, has Ec ,, exp [-i (eWt- 84

2.2.1 Synchronous Wave

We now specialize to the synchronous wave interaction

and assume (1) exact synchronism between the beam and the circuit wave,

(v = Gv (2.9)

0

and (2) a purely circularly-polerized circuit field. Condition (2) can

easily be achieved by an appropriate "twisted" type slow wave structure,

and we should also note that a linearly polarized coupler would not result

in a net energy exchange with the synchronous waves. We should also point

out that throughout this work the circuit field "E " refers only to the space
cL

harmonic that is synchronous with the beam.
Under these assumptions, it is easily shown that the following

is a solution of Eq. (2. 6) and the boundary condition, r(z = 0) 0

E= E1 (eZ + e-z) e(t-z) (2.10)

r =a (eLz -e - z) eI(&t -az) (2.11)

with
n1

1l - - (2.12)
O c

and where we have made the usual "low gain" assumption, ryv 0<<w . An
O C



expression for the gain constant a' will be derived later in this section.

In the linear theory of transverse wave interactions, the

longitudinal electric field at the beam does not usually appear explicitly,

since it is a second-order quantity. All physical descriptions of the gain

mechanism, however, show that it is this longitudinal field that is

responsible for the energy conversion from the beam to the circuit wave.

If the beam displacement from the axis is much less than a wavelength,

then the longitudinal circuit field at the beam position is approximately

6E 6E

E - x + Zy y (2.13)

with (x, y) describing the beam position, since Ez (0,0) 0. An

electric field of a slow wave circuit with /B <<c has V x E 0 0, and

therefore

8 E 6E
z x

(2.14)
6E bE

by z

The electric field at the beam can, therefore, be written as

OE bE
xc YEzb x + y _=x 6 z 5z

I .(2.15)
I* ci

=Re r /

which for a < is.

E Re (-jfr*Ec) (2.16)zb c

8
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Using Eqs. (2. 10) and (2.11), the above becomes

E v (e2&z -e z) (2.17)Ezb - Gv W0-
o c

The significance of Eq. (2.17) is that (outside of the slowly varying terms

e +2 &z) the axial electric field seen by an electron is constant during its

motion through the tube, and moreover, it is the same for all electrons,

independent of their entrance phase with respect to the circuit field. If

we integrate the axial equation of motion

dv zdt -OEzb (2.18)

along the unperturbed electron trajectory, z = v (t - t ), we have

00
-12B 1E112 - e20 z +-2O'z_

v (z) -v = 2c~ 2  -e e -2)
owo

c
2n 2 jE 1 12  2

2 2 sinh C'z (2.19)
a v Wo c

with v the injection velocity. According to this theory, a monoenergetic
0

beam injected at z = 0 remains monoenergetic at the output, z = C. If we

depress the collector to a potential that is above the cathode potential by

an amount corresponding to the energy lost (to the circuit wave) by each and

every electron, a theoretical electronic efficiency of 100% would be obtained.

The way in which the electrons give up energy to the circuit

without developing any longitudinal modulation of their velocity is now

physically clear. The electrons are initially located at x = y = 0 where

there is no longitudinal electric field. The transverse electric field causes

a radial displacement (essentially an E x B /B 2 motion) of the electrons
0 0

9



off axis into a region where there is a longitudinal electric field. With

a circularly polarized transverse electric field, all electrons arriving

at a given position z are located the same distance from the axis, and

(since w =,vO) they also see a constant phase of the longitudinal

electric field during their transit through the tube.

As a check on the above explanation of the energy transfer

mechanism, we will show how the application of energy conservation

results in the well known expression for the gain constant, a. The time-

average circuit power i s given by

Pc(z) -2zK (2.20)

in terms of the transverse interaction impedance, K . Energy conservation
requires

6Pc _PB (2.21)

where PB is the net power lost by the electron beam (gained by the circuit)

per unit length, and for synchronous waves

B 01 Ezb (2.22)

since the transverse energy acquired by the electrons is very small.

From Eqs. (2'. 17), (2.20), (2.21) and (2.22), we find that

energy conservation is satisfied if

2 210 ( 0
-K2 V W (2.23)o c

2
where V = v /2n is the beam voltage.

0 0

10
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2.2.2 Cyclotron Wave

For synchronism with the slow cyclotron wave, we

require a right polarized wave (or a reversed magnetic field, w -W ).
C C

Except for this difference, we find that, with exact synchronism (w-av =
IM

- c), the beam motion is given by Eqs. (2.11) and (2.12) with the +j replaced

by (-j), and the longitudinal field at the beam is g an given by Eq. (2.17).

Therefore, all of the previous comments on the loss of axial kinetic energy

without any spread being generated apply to cyclotron wave interactions

as well. The main physical difference is that the transverse field "seen" by

an electron in its rest frame is at the cyclotron frequency, and hence the

perpendicular velocity is not small as it is with the synchronous wave.

However, both the longitudinal electric field and the electrons "rotate

around" the axis with the same pitch, so that the axial electric field seen
2o'z

by a particular electron remains constant (outside of the e frowth) during

its transit.

With the cyclotron wave interaction, the transverse kinetic

energy can be shown to be a factor of w/w times the magnitude of the

change in the axial kinetic energy (mv Av ). In operating a depressed
0 Z

collector to achieve high efficiency with cyclotron waves, therefore, a

scheme would have to be provided to convert this transverse energy back

to longitudinal, such as the use of a diverging magnetic field at the

collector. Otherwise the optimum theoretical efficiency would be limited

to (I + W /W)
c

2.3 Effects of Finite Beam Radius and Space Charge on the

Energy Spread

It was shown in the previous section how the energy exchange

mechanism with a filamentary beam involves motion of the beam electrons

off axis into a region of finite longitudinal electr'c field. For a beam of

11
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zero spot size, all of the electrons see the same longitudinal decelerating

field, and hence the amplification of the circuit field proceeds by
removing an identical ariount of energy from each electron. This physical

picture of the interaction mechanism immediately suggests that a finite

size beam would not be monoenergetic at the output, since electrons

initially at different radii would see different decelerating fields during

their transit. The purpose of this section is to quantitatively assess this

phenomenon.

The perturbed motion of the beam consists of a helical dis-

placement in the transverse direction (Fig. 2) with the center of the beam

located at x 1 (z,t), y 1 (,t). We ".ill ignore any distortions in the beam

cross-section that arise from the pertubation; that is, we will assume

at the outset that the beam retains its circular cross-section and has

uniform charge density Po. (Distortions in the cross-section will be small

fora thin beam, and should have no substantial effect on the energy spread). I i

Note also that we do not assume that the beam displacement is much less

than the beam diameter in our treatment, so that the analysis is not "small

signal" in the usual sense.
Our model is therefore fundamentally different from the models

used in analyses of the effects of finite beam size and space charge on the

dispersion characteristics of the transverse beam modes. We assume )

<< 1, and for this case the uncoupled beam waves have dispersion

characteristics that are closely approximated by the predictions of the

filamentary beam model. 15" On the other hand, the following analysis

shows that the filamentary beam predictions regarding axial energy spread

are only valid when the beam displacement greatly exceeds its diameter.

12
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The electric field inside the beam is given by

P0
Ex (x-x) +Exc (2.24)

PoE -- 2 (y - y ) + E
y 2e yc (2.25)

0

where E is again the "circuit" electric field (the field arising from charges
C

on the circuit structure), assumed constant in the regime of Interest

(a valid approximation if both the beam radius and the beam displacement

are much less than 1/B).

We again introduce the circularly polarized variables as in Eqs.

(2.4) and (2.5) with r(z,t) now describing the position of a paricular

electron in the beam cross-section. The force equation for the electrons

is now
2

r" (vc = _ (r - r -Ec 2 rl1 c (2.26)

where r I = x + JY describes the beam center motion and W =-?po/e) I /2
1 1 p oo0

is the plasma frequency.

2.3.1 Synchronous Wave Interaction

The circuit field is taken to be circularly polarized in the

left hand sense, so that

Ec =Ele((t e Z)[e + e-z] (2.27)

14



We anticipate (and then prove) that the motion of the beam center has

the form (c.f. Eqs. (2.10) and (2.11))

r, aleJ("t -az)[e&Z - e-Z] (2.28)

In Eqs. (2.27) and (2.28) we have included both the growing

and decaying parts of the solution. For simplicity, in the following

analysis we will explicitly exhibit only the growing wave part, although

the final answers will include both terms when we specialize to the

case of perfect synchronism.

The solution of Eq. (2. 26) for the transverse motion of a

particular electron is (homogenous plus particular)

SRal + nE 1/
r(t, z) r v)+z (2.29)

0 W-fv Wiv - ew

where

2

2 P (2.30)R 2w0
c

is the rotation frequency about the beam center and r = a eJ 0° describes
0 0

the position of the electron in the absence of a perturbation (basically a

constant of integration). To obtain Eq. (2.29) we have made the following

assumptions;

2 22<< 2 (2.31)p c

E v<-8v <.
o c (2.32)

ty <W/v (2.33)

15
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with v v , the unperturbed axial velocity. Note also that in Eq. (2. 29)
z 0

the unperturbed motion of the electrons is assumed to be a simple rotation

about the axis; that is, we have neglected the finite Larmor radius effects.

As long as the magnetic field is at least a factor of two or more above the
17

Brillouin value, this is a sensible model of a physical beam. Such a

"'smooth" unscalloped beam could, in principle, be realized with the

Brillouin magnetic field (wp = w / and w = w /4), but the achievement
p c R c

of this ideal in practice would be very difficult and, therefore, we will be

conservative and assume inecuality (2.31) in the following analysis.

To determine the displacement of the beam center, we note that

by definition,

<r(t,z) > r 1 (t,z) (2.34)

where the brackets imply an average over Po . This yields

nEl/c j
a1I ° -e (2.35)

0

and the displacement of a particular electron is, therefore, given by
E1/1 c ( L

r(t,z) =r ejWRt + eI(Wt-z) +&z

0

R e(Wt - fz) + oz (2.36)r oe +a e1

This result is intuitively clear; the net motion of an individual

electron is simply the superposition of (1) the gyration at a frequency (4,

about the instantaneous beam center and (2) the common displacement of all

electrons by an amount a1 as given by Eq. (2.35). It is also interesting to

note in Eq. (2.35) that the "pole" in a1 is still at 1) 0, and is not shifted

to = by the beam space charge.

16



To calculate the axial energy lost or gained by a particular

electron, we need expressions for the axial component of the electric

field. The axial component of the space-charge field (E ) can be
zS

determined by noting that for a thin beam the equipotentials associated

with the space charge field inside the beam are approximately

= - 4 (x- x 1 ) + (y - y) (2.37)
0

and, therefore,

60
zs bz

C, [- -(x - xI-- + (y- y ,

P-" Re (r - r az 
(2.38)

From Eqs. (2.35), (2.36) and (2.38), we have

R£
E _ aE Cos wt-8z-cst-0](e -e )

0zs (Vo (2.39)

as the longitudinal space-charge field seen by the electron at synchronism

(W= ev ). Note also that we have now included the decaying part of the
0

solution as well as the growing part in Eq. (2.39).

The longitudinal circuit field at the beam position is again

given by Eq. (2.15), and from Eq. (2.36) and (2.27) we find

17



2a
£ 1 e 2&z -2&zE - --1-(e -e +

zc zv -o0 C

aoE (e + e )sin (wt-8z-w t- )
oR o (2.46)

In addition to the second order longitudinal circuit field common

to all electrons (first term in (2. 40)), there is now a first order longitudinal

circuit field at the electron's position that depends on the initial location

of the electron within the beam cross-section.

The longitudinal force equation is

dv
Z .- r(E +Ez) (2.41)

dt zs zc

which integrates along the unperturbed electron trajectory to yield

I2El 2& z -2az

v -v (- +e -2)
2q .v Wo c

-fa voI sin (t zw t0) (e - e ) (2.42)

(This expression for Av as a function of z and t is, of course, invalidz
whenever L11v gets large enough so that the electrons begin to drop out

z

of synchronism with the circuit wave; i.e., when I - 8vz1 becomes
comparable to avo)

0

Keeping terms up to second order, we now have the following

expression for the kinetic energy in electron volts of the electron described

by the initial position ao , Po. (Note that the transverse velocity is

18



nF.,ligiblo for a synchronous wave).

2

Wk

2 2 2 2v nE1  W'0 1 (Z -Oz 2 (z -Yz) 2 22 2 (e e + 2 2 (a -e sin (Cet -z -W t -0)

4 2&'v 0W 2o2v

o 0

Note that the last term in Eq. (2.43) is first order in El, and that

it changes sign over the beam cross-section. That is, at a given instant

of time and given position z, electrons in a particular sector of the beam
have lost more than the average --nergy while those in the opposite sector

have lost less than the average (Fig. 3). (In this discussion we ignore

the third term in Eq. (2.43) since it is of higher order). As time goes on,

these sectors of the beam"rotate" around. On the other hand, if we ask

for the average kinetic energy lost by all the electrons in a particular

cross-section of the beam, this last term will drop out, and we get the

following for the average energy lost.
2

de a da v
b 2v 0 00+ 0^ = ,b2r ooo+__

L -Joo Wk vb2 2r1

2nE1 W iW
_ 1---- _ 2b2b (eaz -cz2

22 i 4 ( -e (2.44)
0 c
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4i

DIING LINE AT = (W-R)t-Pz

ELECTRONS THAT HAVE
LOST MORE THAN THE
AVERAGE (IN SHADED
REGION)

ELECTRONS LOSING LESS THAN
THE AVERAGE (IN UNSHADED
REGION)

J

FIGURE 3 ILLUSTRATION OF THE ENERGY DISTRIBUTION OF
ELECTRONS OVER THE BEAM CROSS SECTION
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Note that we must have

IC b)2 < (2.45)
4w

to have any net loss of energy by the electrons. We will assume in the

following that this finite-radius correction term is very small, since the

validity of our model requires 8b << 1.

The mean energy loss of all electrons, of course, is the only

relevant quantity when computing the small signal gain and the power

output. (c.f., Eq. 2.46). In considering the enhancement of amplifier

efficiency by collector depression, however, the distribution of electron

energies is also of importance. From Eq. (2.43), it is clear that the

energy loss of any particular electron can differ from the mean loss (AE:)

by as much as +. , with

16 = E , b - e ( ( 2 . 4 6 )
s a

The energy distribution of the electrons at the output would,

therefore, look roughly as shown in Fig. 4. The significance of A E is ass
follows. A (properly designed) collector could be depressed to a voltage

of

V CL A(s)(2.47)

without returning any electrons. (-V) is cathode voltage with respect to
0

circuit. The (net) dc power supplied to the beam is then

Pdc I ( L 4 As) (2.48)
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PER SEC.

VO ENERGY IN eV

(I.,ECION VOLTAGE)

FIGURE 4 ELECTRON ENERGY DISTRIBUTION AT THE OUTPUT
OF THE RF INTERACTION REGION
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On the other hand, the increase in the RF power output is equal to the

average energy lost by the electrons, as was shown in Section 2.2. That is,

P -P =P =I r
out in et o L (2.49)

Therefore, the maximum efficiency with collector depression is

-I e~t -

opt P 1 + Fs/ACL (2.50)

(The validity of this formula is clearly restricted to the domain

s + 1L < V ; the implications of this restriction are discussed in

more detail in the following section).

For the highest possible theoretical efficiency, we should

keep 's AIcL as low as possible. From Eqs. (2.44) and (2.46), we

have

20 bV w
s 0 c

'L E 1I sinh rvz (2.51)

with V v 2i2r,thebeam voltage in the interaction region. Using0 0

Eqs. (2. 20) and (2. 23), the a,,ove can be written as

,E: V I W,

002b c (2.52)E L Pe W W

with P = P - P . This form shows that the ratio of energy spread
e4. out in

to mean energy loss decreases as the inverse square root of P Physically
eC

this is because the mean energy loss only begins to become sizable when

23



the beam has been displaced outward as a whole (i.e., it is second order

in El) whereas off axis electrons gain or lose energy immediately on

entrant- into the interaction region, and result in a sr2ead that is first

order in El

From Eqs. (2.20), (2.23) and (2.35), the RF power output can

be expressed in terms of the beam displacement as

Pe Pout P" 13.10oo rI (z)l 2

= out - in 2 (2.53)

Using this in Eq. (2.52), we find that an alternate expression

for ZF /L is

s 2b e beam diameter

AsL rlt beam displacement at output

This is a very appealing form, physically. It says that the

filamentary beam picture - with very small Ae te - is applicable orly

when the RF beam motion is considerably larger than the actual beam size.

If this is not the case, the distribution of longitudinal forces over the

beam cr:ss-section must be accounted for.

2.3.2 Cyclotron Wave Interaction

The above analysis has, of course, been concerned

exclusively with the synchronous wave. For the cyclotron wave, a very

similar analysis applies, and the longitudinal electric field at the beam

has essentially the same form as that given above, except that now the

field "seen" by an electron oscillates at approximately the cyclotron

frequency since wt - Oz W t + const. following an electron. If
c

W2

c , 2 , (2.55)
c c
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as is generally the case, then the space-charge field dominates the

energy spread generation, and the result is that energy spread with

cyclotron wave interaction is smaller than with synchronous waves by

a factor of 0" R/ c.e.,

Ac€ wRs = 2b R
CL 1r11 l c

2

j W(2.56)

fcr cyclotron wave interactions. In the above, the energy loss and

energy spread referred to are only the axial kinetic energies. As mentioned

in Section 2.2, for cyclotron waves the transverse kinetic energy is W Ice
c

times A CL, and any discussion of the efficiency with a depressed collector

in this case would requtre an accounting of the transverse energy as well.

2.4 Design Considerations for High Efficiency Amplifiers

The most important result of the preceeding analysis is the

prediction of a finite energy spread resulting from the finite beam size,

as expressed by Eqs. (2.54) and (2.56). This energy spread places limitv

on the maximum theoretical efficiency obtainable with depressed collector

operation (Eq. 2.50). High efficiency is of interest only for tubes of

relatively high power, and high power implies a beam size of non-negligible

dimensions. The purpose of this section is to summarize the main design

equations, and to illustrate by a few examples what beam and circuit

parameters are necessary for the achievement of a high efficiency power

amplifier. We will concentrate exclusively on the F. nchronous wave

amplifier in this discussion; design considerations for a cyclotron wave
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amplifier are similar. (Our emphasis on synchronous wave devices is

due to the fact that they have the potentiality of TWT type bandwidths).

2.4.1 Basic Design Euations

A summary of the basic design equations are given in

Table I. The small signal gain (Eq. 2. 23), the power output (derived from

Eqs. (2.12) and (2.20)), and the minimum magnetic field for beam focusing

(taken as twice the Brillouin field) are listed first. The expression for

optimum efficiency with a depressed collector (Eq. 2. 54) is given next.

Since the optimum efficiency increases with increasing beam displ:cement,

a theoretical limit can only be obtained when we limit the beam displacement

(r ) Our entire analysis has been confined to the small-signal regime,

and therefore, we will only be able to give rough limits on the maximum

beam displacement and the maximum efficiency.

There are several limits on the beam displacement or power

output that must be considered. The first limit follows from the very

gross statement that LC + LeL must remain less than V in the interactionS 0

region. From Eqs. (2.52) an(' (2.49), this implies that

2Bb c 00 +

SPe. I°  . (2. 5 7)

Introducing the electronic efficiency (without depression)

PeGC

, V- '(2. 58)e V I
00
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Equation (2.57) becomes

WC 1/2
+ 28b 'd 1 i < 1 (2.59)

e w e

The maximum value of r allowed by (2.59) is
e

+- 8 b ) - b] 2 (2.60)
max

and this is given as limit No. 1 in Table I. One should clearly be well

below this limit for the analysis we have given to have any reasonable

degree of validity, however, this limit can be (;heoretically) approached

only in cases of relatively large gain per wavelength (large o'/i), as we

will see in the examples.

A saturation mechanism that is usually far more important is U
the sdturation of the growing wave by the reduction in the mean axial

velocity due to the RF interaction. From the linear theory, the exponential

growth ceases when the axial velocity is changed from the synchronous

velocity by an amount

2&v
VI = 0 (2. 61)

For small &/8, as usually obtained, this limit is reached for relatively

small changes in the axial velocity. Since P v Av I /r, this

predicts saturation effects when

41y/ft (2.62)
e
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A detailed treatment of the nonlinear regime (See Section 3) shows that

the ultimate saturat.on in the output power occurs for P a factor of two

to four times the limit in Eq. (2. 62); in Table I we use a value of 8 a/8

as the limit in r due to this effect. We should also point out that this
e

limit could, in principle, be alleviated by tapering the phase velocity

of the circuit (or the unperturbed beam velocity).

Another iinit on the RF beam displacement is clearly that of

interception by the circuit. The distance between the circuit and the

beam should not be much larger than i/B, or the interaction impedance

would be adversely affected. We therefore restrict the maximum value of

Or to a number the order of unity. This constraint is usually the least

serious in the cases of interest to us, because of the relatively large

magnetic field required for focusing a dense beam.

2.4.2 Some Typical Examples

With the relevant equations summarized in Table I,

we now consider a few typical numerical cases. We use for illustration

a tube operating at 3 GHz with a dc beam power of 10 kW (in the interaction

region) in all cases. Since the largest beam displacement (smallest

cs A ) results with the smallest possible confining field, we use the
s L

minimum magnetic field in all examples. (We should caution the reader
again that the numerical results on optimum efficiency that we give are to

be viewed purely as rough estimates to serve as guidelines on the relative

merit of the parameter choices; real accuracy should not be expected in

view of the roughness of the nonlinear constraints that have been used).

In the iirst example (Table IA), the chosen beam parameters
2

are 10 kV, 1 amp, and a current density of 10 A/cm (moderately large area

compression ratio). The beam radius is therefore 0.18 cm and the necessary

magnetic field (twice the Brillouln value) is 900 gauss. For these parameters
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Small signal gain - AL KI
2V 0 w

Power output (P >> P P = - w1o 

Focusing w > 2'2
c p

Optimum efficiency with As \-l
collector depression r I +
(Valid only for r less than opt

= 2b (synchronous waves)

CL  r I

Saturation Limits on 'n Pout/Vol

#1 "Reflected electrons" [(I 2 / 2,I(Ac +c AC<Vo) e <  +A 2) -A]
s L <0 J

#2 Velocity desynchronization z 8 8/0J• e

#3 Beam interception r <I

TABLE I

Design Equations for Transverse-Wave Amplifier
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TABLE IIA
Examples of Calculated Performance

of Synchronous-Wave Amplifiers

AJ 10 ap/mb =0. 18cm (beam radius)
0

V =10 kV B 900 gauss
0 0

1 0 1 amp Saturation limit #1:

f 3 3GHz <e 35

Interaction Impedance (K)
t

<a10 00 ion 1

3/' length for 20 dB gain 12 cm 38 cm j120 cm
S 8o,/R 62 % 20 % 16.2 %

e2 -

Prout maximum (1 3. 6 kW 2 kW 620 kW

Or1at maximum P Out 0.67 0.5 0.15

r(1) <35% 30% 10 %

(1) limited by saturation mechanism 41.
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Of TABLE IIB

25 a mb =0. 11cm (beam rad ius)

V 10 kV B =1.45 kilogauss
00

I0 1 amp Saturation limit #1:

f =3GHz -ne < 46%

Interaction Impedance (K)
________________________ ______________________ _________________t

100 1001

3/ length for 20 dB gain 10 cm 60 cm 190 cm

8 (v18B 40% 13 % 4 %
e2

rou maximum 4 kW 1.3 kW 400 W

8 r at maximum Pro.t 0.3 0.16

rot42 % 30 % 18 %L

Examples of Calculated Performance
of Synchronous-Wave Amplifiers
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of TABLE 110

JO 25 amps/cm2  b 0.,08 cm (beam radius)

V 0 20 kV B 0=1.2 kilogauss

1 0.5S amps Saturation limit #1:

f 3 3GHZ <i 70%

interaction Impedance (K)

__________________ 100 100

3a= length for 20 dB gain 40 cm 120 cm

=e 8 &/8 28 % 8 %

rou maximum 2.8kW 800 W

Rr1 at maximum Pou 0.50 0.26

rop 56 % 41%4

Examples of Calculated Performance
of Synchronous -Wave Amplifiers
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saturation constraint No. I limits us to an ultimate efficiency of much less

than 35%. At the bottom of Table IIA, the interaction length required for

approximately 20 dB gain is given as a function of the circuit interaction

impedance, along with the other relevant quantities. We note that an

interaction impedance of 10 ohms or greater is necessary to keep the

length of the tube within reasonable bounds. With such an interaction

impedance saturation limit No. I imposes the most severe constraint,

and efficiencies in excess of 20% are very unlikely in this case.

In Table IIB, we have increased the current density to 25 A/cm2

without changing the voltage or net current to see the effect of a reduced

beam diameter. The overall conclusion is that the necessary increase

in the focusing magnetic field largely offsets any dramatic improvements

in the predicted performance.

The final example is presented in Table IIC. We retained the

higher current density and went to a much higher beam impedance

(20 kV, 1/2 amp). The higher beam impedance means that a higher

interaction impedance is necessary to keep the tube length within

reasonable bounds, but vith the higher interaction impedance (- 100 ohms),

rather good optimum efficiencies (56%) are predicted. The "gross"

saturation constraint (#!) iias been moved up to 'n 70%, so we are well
e

below this limit with this design.

2.4.3 Scaling Laws

The numerical examples listed in Table II give us an idea

of the efficiency obtainable with transverse wave interactions. We now

~briefly consider how the optimum efficiency results scale with the chosen

parameters such as frequency, beam voltage, etc. The "best" uesign

would of course satisfy many criteria besides optimization of the efficiency

(bandwidth, tube length, etc.), but we concentrate solely on this parameter

in the present section.
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If we choose as independent parameters f, J 0 V 0 ne and
2

Pot (the RF output power), then Io = Po/Te V , b I /7TJ o, and the

minimum B is fixed according to the focusing constraint in Table I. The0

resulting energy spread scales as

1/2 1/2
s  out

E: L  r ,e Vo 0 0l/

This illustrates that the attainment of high efficiencies with

collector depression is more difficult at high powers and high frequencies.

We can also see that higher voltages are better, the basic reason being

the fact that higher power can then be obtained with less current. (This

trend, of course, has a practical upper limit since the tube length would

become prohibitively long for very large V /I ). We can also see that
0 0

although ahigher current density reduces Ae f the improvement onlyS

goes as the 1/4 power of Jo .

If we now take the electronic efficiency to be limited by

mechanism #2 in Table I, and choose Kt , f, V , , and P as the

independent parameters, the energy spread scales as

fl/6 1/6s out

AC L V 13/24 1/12 Kt1/3
0 0

Note the very weak dependence on ali parameters in this case.

This result illustrates that in the domain where Tn is limited by the axial
e

velocity desynchronization, very little improvement could be achieved by

methods such as beam compression (increased Io) or increases in the
0

interaction impedance.
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2.5 Conclusion

The original suggestion of high-efficiency from transverse-

wave interactions was based on the analysis of a filamentary beam.

Under practical conditions, the filamentary beam model is inadequate

for the description of a tube designed for a reasonably high power output,

because high power can be obtained only with a beam of finite cross-section

and non-negligible space charge. In this section we presentedaquantitative

analysis of the effects of finite beam size and space charge on the RF-induced

vclocity spread. The summary of design equations and numerical examples

cited in Section 2.4 show that the optimum efficiency attainable in a

synchronous-wave device is indeed limited by these considerations. The

longitudinal energy spread in a cyclotron-wave amplifier should be much

less than in synchronous-wave devices according to the result obtained

in Section 2.3.2. In cyclotron-wave devices, however, the electron

beam acquires a sizable transverse kinetic energy that must be accounted

for in the design of depressed collectors for high-efficiency operation.

The main conclusion of our study is that efficiencies in excess

of 50% with output powers in excess of a kilowatt are theoretically
possible in a transverse-wave tube: however, a rather substantial area

compression of the beam would be necessary as well as a relatively high

beam impedance (V /1 ). Without this careful attention to the minimization

of beam size, our theory predicts that the efficiency of transverse wave tubes

would probably be no better than is presently obtainable with ordinary TVVT's.
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III. NONLINEAR BEHAVIOR OF TRANSVERSE -WAVE AMPLIFIERS

3.1 Introduction

The theoretical analysis presented in Section 2 is a small-

signal theory in the sense that changes in the axial velocity, "V , are
z

assumed small enough that the phase synchronous condition (V Byz)
z

can be maintained over the entire length of the interaction region. As

we have seen in the previous section, however, the amplification of the

wave takes place at the expense of the longitudinal beam velocity, and,

therefore, one would expect a saturation mechanism due to the reduction

in the mean axial velocity of the beam. In Section 2.4, we estimated

the threshold of this saturation mechanism by specifying an allowable

velocity spread, ( v = 2cv o/1 We would expect the small-signal
z 0

theory to begin to fail, when the percentage energy lost by electrons

exceed a number of the order of (&/fl). This limitation could be a severe

one, since (&/8) is typically of the order of few percent.

The nonlinear theory presented here accounts for the loss

of synchronism due to extended interactions and can quantitatively

predict how the output power of the tube saturates at high input drive

levels. In marked contrast to the nonlinear theories of ordinary traveling-
18

wave tubes , we are able to develop a rather complete analytical nonlinear

theory of the transverse-wave tube. The basic reason for this relative

simplicity derives from the fact that, in our case, all electrons have a

similar "history" in traveling through the circuit, "scrambling" in phase

and overtaking does not occur as readily in a transverse wave tube as it

does with space-charge wave interactions.

In Section 3.2, we derive nonlinear interaction equations. For

the sake of completeness, some of the basic equations presented in Section

2 are repeated in Section 3.2. The final result of the development in
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Section 3.2 is the nonlinear differential equation for the amplitude of the

wave in a transverse-wave traveling-wave amplifier. In Section 3.3, we

examine the behavior of the amplifier in various limiting cases, we obtain

approximate solutions to the nonlinear equations. In Section 3.4, we

present results of numerical calculations to show the saturation

characteristics and the effect of over-voltaging on the power output.

3.2 Derivation of Nonlinear Equations

The basic assumptions in the analysis are the following:

1. The filamentary beam model is used throughout. An analysis

of the axial energy spread resulting from finite beam size in

the small-signal regime has been given in Section 2. If the

RF displacement exceeds the beam diameter, this model should

be reasonably accurate.

2. The displacement of the beam from the axis is assumed to

be much less than /R, so that the amplitude of the transverse

circuit field is essentially constant in the region of interest.

This assumption should be well satisfied in almost all cases

of interest.

3. The percentage change in axial velocity is assumed to be 7

relatively small even up to saturation. As will be shown, this

approximation is reasonable as long as the small-signal gain

per wavelength ( is relatively small; this limit should cover

the majority of the cases of interest.

4. The circuit is assumed to be lossless.

3.2.1 Basic Description of the Beam-Circuit Interaction V

For analytical convenience, we use the circularly-

polarized variables introduced in Section 2.

r = x ±)y (3.1)
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E =E +jE (3.2)
C x y

where x(z,t) and y(z,t) describe the team position, and E and E are
x y

the transverse components of the circuit field ot the beam position.

The transverse component of the force equation can then be written as

2
d r dr
dt2 cdt c (3.3)

with r = 1d /m and w = B , wiUh B the unperturbed axial magnetic field
c O o

in the +zdirection. We will confine our attention here to the synchronous

wave; in Appendix A we show that the final results have exactly the same

form for the cyclotron wave interaction. For synchronous wave interactions,

we can take Idr/dt I <<w r and drop the first term on the left side of Eq. (3.3).
c

Physically, this assumption means that we have taken the time variation of

the electric field in the beam frame to be slow, so that the electron motion

fo.lows the usual adiabatic law, v = E x B /B 2

The time dependence of E is now taken as e' higher harmonicsc
induced on the circuit are assumed to be negligible. It is shown below

that the axial velocity (v ) is a function of z alone, and therefore, the beam
z

lisplacement has the same time dependence -r(z,t) r (z) eJ . The

transverse equation of motion is therefore

+ r = X.._ E (3.4)
z v v cc z
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The beam is assumed to be weakly coupled to the circuit, so

that the differential equation for the (right-circularly polarized) circuit

mode can be written as

.E
c +JoEc = cr (3.5)

o

where 8 is the "cold" propagation constant of the circuit mode, and "c"I
4 0

is a coupling constant that will be evaluated below from power conservation

considerations.

In a linear analysis, we would take v =" v , the injectionz 0
velocity. For the nonlinear theory, we must determine v from

z

dv
z 11-E (3.6)

dt zb

where E is the longitudinal field at the beam position. Because of
zb

assumption (2), we can write

6E 6E

E z- x +-- Y (3.7)

For slow )es, V xE 0 and the above becomes

6E 6EEx + y
zb 6z x +

Ec,

Re - z  Re 0 rE ) (3.8)
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The time-average power carried by the circuit is defined as

PC I 2 (3,9)

0 C

in terms of the (transverse) interaction impedance, Kt* Since the

transverse kinetic energy of the electrons is small in a synchronous-wave

interaction, conservation of energy requires

- Iol Eb (3.1C)

where I is the magnitude of the unperturbed beam current. This
0

relation follows by noting that -6P /6z must be the power per unit length

given to the electrons, which is (-ev • E) X = -1Iol Ezb where X is the

number of electrons per unit length. (For cyclotron waves, the transverse

kinetic energy of the electrons must also be included, in the energy

balance, as is shown in Appendix A).

To evaluate the coupling constant c in Eq. (3. 5), we note that

_ 2 * * *
Ed crE + c r E (3.11)

or

51 *
P= Re(crE ) (3.12)c 2

0 t
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From Eq. (3.10) and Eq. (3.8), we see that

Cp .

c I I1 ± Re (jRorE ) = or j J (3.13)

A comparison of (3.12) and (3. 13) shows that

0 = J8 3  Kt11 o l  (3.14)

It is convenient to remove the "fast" variation in Ec by defining

E (z) = -E (z) e-Joz (3.15)

c

Equation (3.5) becomes

1 -j z E
r=c e o (3.16)

A single differential equation for E is then obtained by using

Eq. (3.16) in Eq. (3.4);

+ j - 2-
-~- o-E 2 = 0 (3.17)

2z 0

with

31K
2 o o t

o W v (3.18)
C z
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All of the usual small-signal results are obtained from Eq. (3.17) by

taking v =.v , the unperturbed velocity. This is allowed in a small-z o

signal theory since the longitudinal field is second order in the perturbation

amplitude.

To calculate the change in the longitudinal velocity, it is

important to note that the longitudinal electric field at the beam given by

Eq. (3.8) is a function of z only, and is not explicitly a function of time

even though r and E both vary as e) t.c

Therefore, v = v (z) and Eq. (3.6) becomesz z

6v
Vz z _nE zb(Z)

n c (3.19)
1101 bz

We can integrate (3.19) to obtain

2) = --2- _ 2T (P - Pn) (3.20)
2 ~v z 1 0 c in

where v is the velocity at the injection point, and P. is the inputO in

circuit power.

To calculate P (z), we must solve Eqs. (3.17) and (3.20)
c

siumltaneously. This could be done numerically, but it turns out that in

the spirit of the weak coupling assumptions that underlie our basic equations

(a <<B) , the interaction will saturate for v - v /v<< 1. Therefore,

0 z 0 0
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we can approximate (3. 20) as

l =  ]IJv c - in ) (3.21)
fv i ,")cP iPnC in

where vl= , -v , and we note that the only important place in Eq. (3.17)

where v A must be kept is in the term

v 0 v 0 o -2 v 1  (3.22)z 0 0

since (w/v - 0o) will be very small (the order of ce ) in all cases of interest.

We also note that a can be treated as a constant in this approximation,

and Eq. (3.18) can be written in the form

2--. 8 2 1 w - Kt (3.23)0 0 2X-V0

with Iv = V2r~ 0 0

3. 2 2 Normalized Equation for the Circuit Power vs. Distance

The basic differential equation for E (Z) is given by

Eq. (3.17), with the change In axial velocity (v1) given in Eq. (3.21). We

introduce a normalized circuit field amplitude

(z) (z)/E (3.24)

in
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with Ei the complex amplitude of the circuit field at the input (Z = 0). Ain

normalized distance (C) is defined as

a =o z (3.25)

Equation (3.17) then becomes

2.d s + j [4Q  ( F-112 - 1) -  261 d - = 0 (3.26)

d2 JdC

where

1 in P in o _1_ (2

4 3 a 0 I (3.27)
0V 0 00

and

W 8 /Vo
_ ( 0 (3.28)2 &

0

The dimensionless quantity "Q" expresses the input drive level, and 6 is

determined by the "detuning" of the beam voltage V away from perfect

synchronism at the input (6 = 0). The boundary conditions on F, (C) at C 0

are

(0) = 1 (3.29)

0)= 0 (3.30)
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The latter condition follows from Eq. (3.16), since the beam is assumed

to enter the circuit unmodulated (r(O) = 0) .

We now express the complex field amplitude )(C) in terms

of its magnitude and phase as

.(C) = A (C.) eG0 () (3.31)

Substituting this form into Eq. (3. 26), we obtain the following

coupled differential equations for A and 6.

A" _ [(0,) 2 + 1] A - 0-4 [4Q (A2 _ 1) - 26] = 0 (3.32)

1 A + 20'A' + [4Q (A2 - 1) - 26] A' = 0 (3.33)

(In the above, we have used the shorthand notation A' = dA/dC, etc.)

Since Eq. (3. 33) is a first-order equation in e', we can solve

for 0' in terms of A as

0) - -4 ' A 4Q 2(r) 1 2%A (C) A'(C d
A2 -

A2  [Q (A2 - -] (3.34)

A

where we have used the fact that the boundary condition (3.30) requires

0'(0) = 0and A(0) = I.

A differential equation for A alone can be obtained by using

Eq. (3.34) in Eq. (3.32). The resulting equation can be integrated once

by multiplying by A'. We can derive the final result much faster by
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using the following relation that is easily derived from Eq. (3.26).

d-I 2 _ d- 2 0 (3.35)

This yields, upon one integration,

dA 2 2 2 2
,-- + () A =A - 1 (3.36)

If we now -,se Eq. (3.34) in this relation (rather than in Eq. (3.32)), we

obtain the following first-order differential equation for A(").

(dA)2 = (A2 -1){ 1 - A ) (QA2 -Q- 6) 2

F (A) (3.37)

The calculation oi the normalized circuit field amplitude A (C) (and also

the phase 0(s), if desired) has thus been reduced to a quadrature, since

m A dAl1

dA1 m (3.38)

An alternate form for this integral results when we change
1/2

variables to u = (A- -- 1)

2 01/2

C (Qu 2  6) (3.39)

0
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This form is preferred for numerical computation, since it

eliminates the (integrable) rliergence of the integrand at the lower limit.

3.3 General Discussion of the Saturation Characteristics;

Approximate Solutions

The growth of the normalized circuit field amplitude (A) or

2
power (P (z)/Pi A ) as a function of distance is governed by Eqs. (3.37)

-(3.39). In the remainder of this section, we will be concerned with

the cblutions to these basic equations. For the reader's convenience,

we remark again that the distance has been normalized as in Eq. (3.25)

where ev is the small-signal gain constant (c.f. , Eq. 3.23), Q is the
0

normalized input power level (Eq. 3. 27), and 6 is a normalized variable

expressing the shift of the beam voltage away from perfect synchronism

(Eq. (3. 28). (In the following we will not be concerned with the effects

oi no'ilinearities on the output phase; however, this quantity could be

calculated from Eq. (3.34) if desired).

In the present section we will discuss the general characteristics

of the nonlinear behavior and some approximate analytical solutions,

while in the following section we present results of a numerical integration

of Eq. (3.39) for several cases of interest.

3.3.1 Small-signal Limit

We consider first the small-signal limit to illustrate

how the well-known linear results are obtained from our general formulation.

In the limit Q- 0, Eq. (3.39) becomes

(A2 - 1)1/2

0i (1 -62 2] 1/2 (3.40)
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This integral can be performed analytically; for 62 < 1 the

result is

2 1/2 (i [1 (3.41)¢ (1 - 62) snh ( -62 (A - 11/

An explicit expression for A(f) can therefore be obtained in this case.

For 62 < 1, we have

Pc(z) sn2
A2 c - s+

P i. 2 (3.42)in (1 - 6)

and with 62 >I,

A2 + sin 2 ( :-1
(6 2 -1) (3.43)

A sketch of A2 as a function of is presented in Fig. 5 for

several values of 6. Note that all of the curves start out with an initial

growth A 1 + 2 ; if 161 < 1 then we are in the region of exponential

growth with z, and it is clear from Eq. (3.42) that the fastest rate of

growth is at synchronism (6 = 0). If 161 is greater than one, then the

circuit wave amplitude oscillates periodically with z, as indicated in

Fig. 5. For 6 significantly greater than unity, there is very little

energy exchange between the beam and the circuit, as would be expected

physically.

3.3.2 General Characteristics of Nonlinear Saturation;

Efficiency of a High Gain Amplifier

In the linear analysis discussed above, we set Q =0
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in Eq. (3,37); this approximation clearly breaks down when A becomes

large enough to make QA the order of unity. With nonzero A, the general

shape of the A vs. C curve must be as shown in Fig. 6. The reasoning

is as follows. Initially, A increases with C since dA/d. VFis positive.

It is clear from Eq. (3.37), however, that F must become negative for

sufficiently large A, and therefore a "saturation'" amplitude (A ) must
s

exist for which dA/dC = V_/ )= 0. At this point the amplitude is a
2 2maximum; beyond this point it decreases since d A/dC can be shown to

be negative at A = A . The overall behavior of A vs. , Is therefores
oscillatory, as shown in Fig. 6. The existence of this oscillatory.behavior

can also be easily appreciated by noting the analogy between Eq. (3.37) and

a nonlinear mass-spring oscillator or with the motion of a particle In a

potential well [ (dx/dt) E - V (x)]

From Eq. (3.37), the equation determining the saturation

( amplitude is

-2i_ 1)- 2 (1 - I/A s
2 ) =1 (3.44)

Equation (3.44) can have several real roots for A 2, and clearly the
5

smallest real root is the one of Interest. For 6 = 0, and with a "high gain"

amplifier, saturation will occur for Pout >>P in (or As >> 1). In this case,

we have

QAs 2 s 1 (3.45)

or

(Pout) o (3.46)max o

(
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The maximum electroaic efficiency of such oa high gain amplifier, when
a operated at the synchronous voltage, is 8o /6

0 0

The order of magnitude of this saturation level of the output

power can be obtained directly from the small-signal equations by

evaluating how much axial energy can be taken from the beam before the

gain constant drops to zero. From this physical picture of the saturation

mechanism, we would expect that an improvement an the efficiency could

be realized by over-voltaging the tube somewhat (makirg 6 > 0), since

then the beam could lose more axial energy before it slips out of

synchronism with the circuit. This is indeed the case, SinCe the

approximate solution of Eq. (.3.A4 for AS with As >> 1 and 6 ' 0 is

2
QA+

which indicates an Irnprovement in the maximum output power by a factor

of (1 + 6). Of course* we would expect some sort of limit on how much

this Improvement can be- (i.e. , how big 6 can be), since the linear

analysis indicates that very little energy exchange between the beam

and circuit occurs for 6 >> I, The complete answer to this question must

await the numerical studies in Section 3.4. We can, however, make a

few general comments about the Q << 1 limit, which adequately covers the

"high gain" case. (By "high gain we mean not only large small- signal

gain, but also Pout >> Pin under saturation conditions as well).

The key question is to determine whether or not Eq. (3.47) is

the smallest real root of Eq. (3.44). To answer this question, we define

T =A 2 _ 1 (3.48)
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I.

-and

G 2 A F-(A)
A -1

= + I- (QT 6')2 (3.49)-

The general shape of G vs. "T is illustrated in Fig. 7. With 6 <O, GV

has, only one zero-for T' > 0. For 6 >0# a critical value of 6 exists where!

three real roots for T appear. At this critical value of 6, we have G = 0

and 6G/ = 0 (see Fig. 7). If we again concentrate on a hiqh.gain

famplifier (Q 1 and TC >> 1 ), the onset of the real root at TY 

Oc drs for

and

= I + J2--(3.51)

2
From this analysis, the maximum value of A as a function of5

6 1) occurs for 6 sk 1, and therefore the maximum possible

electronic efficiency of a high gain amplifier is

-T) )out 16 a _o(3.52):- (n ) =- --- = 16 o

max 00 0

(
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--i 3.3.3 Approximate Solution of .the Nonlinear gggations for1

a High Gain Amplifier Operated atInitial Synchronism

t In this section we develop an approximate solutior

to Eq, (3.39) for the case 6 = 0 and Q << 1. As noted in the preceeding

section, "saturation" occurs for QA2 - 1 and therefore a high gain amplifier

(A >> 1) will saturate when Q is still much less than unity.
out

We let

u = sinh y (3.53)

in Eq. (3 39); the Integation then becomes

0 A 1/2 (354

(co shy)

Aslong as Q<<1, we can v 9

2 snh 6  9.2

Q 2 6 (3.5 5)

(6osh Y)2  1

since this term is negligible compared to unity unless , >> 1. We then

obtain

o 42\ 161 e 4yo) (3.56)C o- 2- 1 16

where

O =cosh-1 A (3.57)
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Equation (3.56) gives C (A) in a readily calculable form; we should also

point out that this equation is only valid in the region < C since the

positive square root of F was used in deriving (3.39) from (3.37).I From Eq. (3.56), we see that saturation occurs when V° =

where

i "~ e27° m =

~4

or

2 2
A (cosh ) 1i/Q

s om

in agreement with the results of Section 3.3.2. The saturation distance

is given by

Q

2As an example, the A vs. C curve is given in Fig. 8. for the case
-2Q = 10-2

3.4 Numerical Solutions of the Saturation Characteristics

In this section we will present the results of a numerical

integration of the nonlinear equation of motion, Eq. (3.39). Most of

the approximate analytical results in the previous section are restricted

to the "nigh-gain regime" 2A >> 1). In the present section our main

emphasLk will be on the "intermediate" gain regime where the analytical

results fail.

To determine the output power as a function of the input drive

power (Q) and beam voltage tuning (6), we used a numerical integration
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routine to evaluate Eq. (3.39), giving sets of values of A2 and C (for

particular Q and 6 inputs) up to the saturation position r where thes

denominator of Eq. (3.39) vanishes. Beyond thi.s point, we used the

periodicity of the A vs. C relation, so that only the C : C region needss

to be calculated explicitly. Repeating the numerical integration for a

variety of Q and 6 values allows us to construct curves of output power

vs. input drive for a given tube length and a given beam voltage (see

Figs. 9 and 10).

The case of an interaction length -L = 2/a is shown in
20

Figs. 9 and 10. In Fig. 9 the gain (A = P out/P in) as a function of input
drive level is presented, while in Fig. 10 the same results are presented

in the form of net electronic power conversion efficiency (P out- P i)/P 0

vs. input drive.

With the beam voltage precisely at synchronism (6 = 0), the

maximum power conversion efficiency is obtained at Q - 0.1, and the J
power gain is about 11 at this maximum, (compared to a small signal

power gain of 15). (At saturation, Q(A - 1) is very close to unity, in

agreement with the predictions of Section 3.3. 2). Note the regime

Q >> 1 in Fig. 9 where the gain is zero at certain input drive levels.

These nulls arise when Q ts such that tube length is an even multiple

of C (Q) (see Fig. 5), while the "peaks" occur when the length is an5

odd multiple of ,s

The saturation characteristics of an "over-voltaged tube"

(6 > 0) are shown in Figs. 9 and 10. With 6 = 1, saturation occurs

for Q - 0. 25 and the maximum electronic power output is doubled

compared to the synchronous case, in good agreement with the preceeding

"large gain" theory (c.f. Eq. 3.47), To achieve this higher electronic2
efficiency, we must sacrifice a certain amount of gain (As 2 9 at 6 = 1

and Q =.25).
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(
In Figure 9, we also show curves for 6 2 and 6 = 3. It is

perhaps somewhat surprising that the peak electronic efficiency

continues to improve with increasing 6, roughly by a factor of (1 + 6).

(c.f. Eq. (3.47)). This result was not predicted by the "large gain"

theory in Section 3.3.2, which is not surprising since the assumption

Q << 1 eliminates the interesting regions of Figs. 9 and 10 for the

6 2 and 3 cases.

We verified that the reak valie of Q (A - 1) does continue

to increase with increasing 6 for 3 < 6 < 6. The critical value of Q

(for peak Pel) scales roughly as _- 63 for large 6; this scaling can be

predicted by rough arguments on the necessary shape of G(T) in Fig. 7

for the case Q>> I, 6 >> 1. The gain at peak Pel is therefore very small

for large 6, since (A - 1) - 7/62 for 6>> 1.

Because of the low gain, the improvements in electronic

efficiency for 6 >> 1 are of limited practical significance. It is

important to stress, however, that the "limit" implied by Eq. (3.52) is

not fundamental, and can be improved on somewhat by tolerating a some-

what lower saturated gain.

A set of numerical results for a lower gain amplifier (v 0 = 1. 5)

are shown in Figs. 11 and 12. In this case, one can go to even higher

values of 6 (overvoltage even further) before the gain is degraded

substantially from the small-signal gain.

3.5 CONCLUSIONS

Most significant results of numerical computations are

presented in Figs. 9 - 12. These results show saturations characteristics

of synchronous-wave amplifiers due to beam de-synchronization and effects

of over-voltaging the beam. Surprising results of these calculations are

the saturation characteristics of grossly over-voltaged beams. The
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calculated results indicate that the saturation effect due to over-driving

can be compensated for by Increasing the beam voltage. At input levels

approaching a significant fraction of the beam power, one continues to

get a small but finite gain. Experimental results (presented in the next

section) confirmed these general features of the saturation characteristics

of synchronous-wave amplifiers.

These calculated results imply that the efficiency of the

transverse-wave interactions (i.e., electronic efficiency) could be

raised considerably by proper adjustments of the voltage profile along

the length of the interaction space. The voltage could be increased

in small steps at appropriate positions (C s) along the tube to increase

the saturation level. This process could be continued at least until

6 reaches 6. The power saturation limitation specified by Eq. (2. 62);

therefore, can be overcome relatively easily by shaping of the voltage

(profile, either tapering or jumping. Nonlinear equations presented in

this section provide the prescription for the required voltage shaping for

maximum efficiency.
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IV. EXPERIMENTAL STUDIES

4.1 Introduction

The summary of design equations presented in Section 2.4

pointed out theoretical limitatrons of the synchronous-wave devices. These

computed results indicate that the attainment of a high-efficiency, high-

power device is possible if one can find a suitable circuit with a large

transverse interaction impedance. Since we were unable to find a suitable

transverse-wave circuit with a large interaction Impedance, the attainment

of a high-efficiency, high-power device was theoretically precluded. For

this reason, our experimental study was designed as a diagnostic study

to verify the validity of various theoretical predictions so that the design

equations presented earlier in Section 2 may be used reliably to project

capabilities of transverse-wave amplifiers.

( The experimental vehicle designed as a diagnostic tool is

described in Section 4. 2. The circuit used in the experimental tube was a

twisted two-wire line which offers the versatility of being useful for both

cyclotron and synchronous-wave interactions. The transverse interaction

impedance of the circuit , however, was estimated to be only about 4 ohms.

Synchronous-wave experiments are described in Section 4.3. The power

saturation characteristics and the velocity spread induced by the RF

interaction were measured and related to the theory. Cyclotron-wave

Interactions were also observed, and results of these experiments are

described In Section 4.4,

4.2 Experimental Vehicle

The slow-wave circuit for the study vehicle is a twisted two-wire

transmission line. It may also be described as a bifilar helix in which both-

the longitudinal (even) and the transverse (odd) modes may be excited. The

lon .itudinal mode, however, may be effectively suppressed by a selective

(
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excitation, and, because of the wide disparity in the phase velocities of

the two modes, the-electron beam interaction with the longitudinal mode
11

may be ignored. Johnson has demonstrated that a bifilar helix Is an

effective and versatile tool for studying transverse-wave interactions.

The dispersion relation for the transverse-mode of the bifilar

helix kor, a twisted two-wire line) is approximately

21ir w0
8 - c W (4.1)

p c

where p is the pitch of the helix. The expression for the transverse

interaction impedance, derived in Appendix B, is

io

K = [4,q 2 iF d2)2 n (d/p) (4.2)

where d is the distance between the two wires and p is the radius of wires.

Table III contains a list of design parameters for the helix and

properties of the circuit calculated from the above equations. The choice

of design parameters were dictated by practical considerations of beam size,

beam displacement, mechanical design of helix support and available

material, as well as the interaction impedance itself. The instantaneous

bandwidth of the circuit is quite limited, but frequencies for both the

synchronous and cyclotron interactions could be voltage-tuned over a

wide range of frequencies.
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TABLE III

Design Parameters

Circuit Bifliar helix (twisted two-wire line)

I.D. = 150" f = 0.5- 1.0GHz

pitch = .500" v 6x108-l1.2x109 cm/secp
wire size = .030" 8 - 5.1/cm

length = 16" K 4.0V

Beam V = 100 - 500 volts0

Ba = 1 - 10 mA (grid-controlled)

Beam diameter = 0.040"

Focusing field 200 - 1000 Gauss (variable)

The electron gun was designed to operate at beam voltages of

200-1500 volts with beam currents of 1-10mA. To provide the flexibility

of varying beam currents, a gridded gun design was chosen. The choice

of beam voltage was determined by the synchronism condition with the

circuit in the frequency range of 0.3 to 1. 0 GHz, The beam current vopr

limited by the (1) current density limitation, (2) considerations of energy

spread due to finite beam size discussed in Section 2, and (3) the focusing

field requirement. The minimum focusing field required for this beam is

approximately 400 gauss. The gun design parameters are also presented

in Table III.

Figure 13 shows a sketch of the experimental tube and Fig. 14

is the photograph of the completed tube. The helix is supported by four

dielectric rods in a shell of .600" I.D. as Shown in Fig. 15.

(
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4.3 Synchronous-Wave Interactions

Figure 1 6 shows the experimental setup. The most effective

method of exciting the transverse-wave mode in the "bifilar helix" is to

excite two helices 1800 out of phase from each other using some sort of

balun arrangement. We discovered, how-ever, that highly phase-sensitive

setup is undesirable because a small unbalance in the phase caused by

the beam could be interpreted erroneously as a large gain. By exciting one

helix with the other one shorted to the ground, we were able to obtain a

reasonably good coupling to the transverse wave with a transmission loss

of approximately 3.5 dB. In the output circuit, the signal from the two

helices were added via appropriate phase shifters and a hybrid to insure

that all available power is correctly measured.

4.3.] Gain and Saturation Characteristics

The gain measurements were made by observing the

signal output as a function of the beam voltage with the beam current

fixed. Figure 17 shows a typical result obtained at 700 MHz. This

figure shows that there are at least three distinct modes of interactions

between the helix and the beam. To identify the transverse-wave mode,

we reversed the direction of the magnetic field. Comparing the two traces

in Fig. 17, we see that there are two modes of interactions (one at far

right and one at far left) that remain insensitive to the direction of the

magnetic field. These two interactions are the space-charge wave

interactions; one occurring at low voltage being the Kompfner dip and

the one at higher end, the ordinary traveling-wave tube gain. The inter-

action at 250 volts, which changes its sign with the reversed magnetic

field is positively identified as the synchronous gain and dip (depending

on the sign of the synchronous wave). Figure 18 shows the w-B relation

required for various synchronous-wave interactions. Another test to

( 7
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identify various modes of interactions Is to gradually increase (or

decrease) the beam current. With an increase in the current density,

the voltages for the longitudinal wave interactions spread apart as

expected (since the plasma frequency increases), but the synchronous

voltage for the transverse-wave remains insensitive to the magnitude of

the beam current. Figure 19 shows a plot of the frequency versus voltage

for the synchronous-wave interactions. The theoretical curve for W - Ry
0

is super-imposed, Considering the finite size of the beam and the

space charges, the observed frequencies are the indication of the

synchronous-wave interactions.

The saturation characteristics were measured, again, at '00 MHz.

Figure 20 shows the results of our measurements. The small-signal gain

calculated from Eq. (2. 23) for this tube is roughly 3.0 dB and the

corresponding y 0, is approximately 0.8. To compare this data with the
0

theoretical saturation characteristic, theoretical curve for o . 0.8

calculated using formulas developed in Section 3 is also presented in

Fig. 20. Because of the small error in the estimated small-signal gain,

the theoretical curve appears to be shifted verically. Except for this

discrepancy, the saturation level predicted from the theory is very close

to the measured value. The measured curve also shows the same

qualitative results noted in Figs. 9 and II. The saturation characteristics

given in Fig. 20 shows that one continues to get finite gain, even when

the input drive approaches the beam power level. With 1 watt drive, we

obtained as much as 300 mW net gain from the tube with the beam power

of 1.5 watts. This corresponds to 20% electronic efficiency.

The over-voltaged behavior of the tube at high input drive is

illustrated in Fig. 21. As expected from the results of calculations in

Section 3, the beam voltage for maximum gain shifted upward as the input

drive was increased. To compare this result with theoretical predictions,
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we present in Fig. 2 2, a plot of the power gain as a function of 6. In

Fig. 22, 6 = 1 corresponds to approximately 3 volts. The calculated

form of the velocity dependence of the gain is remarkably similar to

measured curves.

4.3.2 Velocity Spread Measurements

The main purpose of the experimental study was to

measure the actual velocity spread induced in the beam by the synchronous-

wave interaction. To measure the velocity distribution of the "spent" beam,
19

we performed retarding potential measurements on the collector. For

this measurement, the collector was negatively biased (relative to the

helix), and the collector current was measured as a function of the

collector bias, A set of data obtained at 700 MHz with a beam current

of 1 mA is shown in Fig. 23. With no input drive, we note that the

collector current was space-charge limited when the collector voltage

was about 35 volts above the cathode potential, and, therefore, the

velocity distribution in the absence of the RF drive could not be

measured accurately by this technique. With a strong RF drive, however,

there is a marked velocity spread. Since the number of electrons that

have lost a substantial portion of their energy is small, the space-

charge limitation should not affect the measurement of the lower edge

of the electron energy distribution. Results of the retarding potential

measurements are useful, therefore, in determining the lowest energy

of electrons in the spent beam. Referring to Fig. 4, the energy spread

induced by the RF interactions may be calculated as follows

Acs (v o-ACL)-V mi (4.3)

PE out In 
(4.3 a)

0
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where V is the initial beam velocity and V mi n s determined from the

measured data (Fig, 23),

According to the theoretical result derived in Section 2, the

energy spread may be calculated independently from the net power gained

by the circuit wave. From Eqs. (2.53) and (2.54), we get
[2( - P) 11/2

2 (P out -in (4

4(s 4C L(2b/Irl) (4.5)

The energy spreads calculated from Eq. (4.3) and measured

Vmi n are compared to es calculated from the net power gain and Eq. (4.5)

in Table IV. These results are in close agreement for large dE L For

small values of te L' Vmin could not be measured accurately due to

space-charge limitations of collector current

TABLE IV

Comparison of Energy Spread Measured and Calculated

Curve P -Pn s (from Eq. 4.5) V min(measured) t s (from Eq. 4.3)
(mW) (volts) (volts) (volts)

1 30 75 155 70

2 20 64 165 65

3 9 60 170 71

4 6 49 185 59

5 2 20 195 53

I = imA, V = 250 Volts
0 0
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Although the calculations described above do give a qualitative

confirmation of the validity of the theory of energy spread, it is desirable

for us to develop a more accurate measurement technique which is free

from the space-charge limitations. To do this, we have modified the

design of the collector to reduce the space-charge in front of the

collector without losing the effective cross-section of the beam. Fig. 24

shows a new collector design. Electrons are admitted to the collector

through a rectangular slit which performs the function of limiting the

collector current. A rectangular slit is far more preferable to a circular

aperture since this will allow us to sample all electrons that have been

displaced off axis. The electrons admitted into the analyzer is velocity-

sorted by the usual method.

Fig. 25 shows a typical set of results. The beam focusing was

adjusted for maximum transmission through the slit with no drive. When

the RF drive was increased, the beam transmission through the aperture

was reduced due to the transverse displacement of the beam, Results

presented in Fig. 25 are similar to the data presented in Fig. 23, and

only improvements are noted in the space-charge 3imitation.

To obtain the energy distribution function itself, we should differentiate

the collector current with respect to the retarding voltage. This is

accomplished by superimposing on the retarding potential a small

1000 cycle modulation, and measuring the amplitude of the 1000 cycle

component in the collector current. Fig. 26 shows a family of distribution

functions. Because of the odd shape of the curve in the absence of the

RF drive, it was difficult to obtain quantitatively accurate data of the

velocity distribution. These results, nevertheless, show gross distortions

of the energy distribution due to RF interactions. These results are not

predicted by the filamentary beam theory.
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4.4 Cyclotron-Wave Interactions

The synchronou, condition for the interaction between the

circuit wave and the slow cyclotron wave is given by (c.f. Fig. 1)

0 = (W + Wc )/v (4.5)

Since 03 of the circuit is i'elatively constant (B :" 5. 1, c.f. Table III) for

all frequencies, this condition could be satisfied by increasing the beam

voltage and reducing w and wC. The lowest possible value of wc is

determined by the beam focusing requirement. In our experiment, the

minimum mag.-etic field required for a reasonable beam transmission

was 450 gauss for which (w C/27) 1 250 MHz. With the beam voltage

of 1200 - 1500 volts, the cyclotron-wave amplification was observed in

the frequency range of 350 - 450 MHz. Fig. 27 shows the RF power

output vs. voltage. In this type of display, one generally sees inter-

actions of the slow cyclotron wave with both the forward and backward

circuit waves. The w - R diagram for the two interactions is illustrated

in Fig, 28. As expected, these interactions occur for the magnetic

field directed opposite to the direction for the synchronous-wave

amplification. Fig. 29 is a plot of the frequency-voltage relation for

the cyclotron-wave (forward-wave) amplification.

The small-signal gain expression for the cyclotron-wave

amplification is the same as the one for the synchronous-wave. (Eq. 2.23).

Since the beam current is reduced by poor focusing and beam-voltage

is increased, the small-signal gain for the cyclotron-wave amplifier is

less than in the synchronous-wave device.

According to the theory of energy spread derived in Section 2.3.2,

the energy spread induced in the bean' y cyclotron-wave interactions is

predicted to be much less than in synchronous-wave tubes. As mentioned
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earlier, however, a significant portion of the axial energy is converted

into transverse kinetic energy in cyclotron-wave amplifiers. To design

collectors for high-efficiency cyclotron-wave amplifiers, one must

devise a method of collecting electrons with a sizable transverse kinetic

energy.

The energy distribution functions of spent electron beams in

cyclotron-wave amplifiers were measured by the same technique employed

earlier in the synchronous-wave tube. Figure 30 shows a family of

distribution curves, but the interpretation of these results is not simple,

because the effect of the retarding voltage fpplied via a cylindrical

electrode) on the transverse kinetic energy is difficult to analyze.

4.5 Conclusions

Experimental results presented in this section may be summarized

as follows:

I. Both the synchronous and the cyclotron wave interactions

have been positively identified.

2. The small-signal gain and saturation characteristics of

the synchronous-wave amplifiers are in good agreement

with theoretical predi -tions based on the nonlinear theory

presented in Section 3.

3. The energy distribution function of the spent beam in

synchronous-wave amplifiers have been analyzed to show

that the energy spread predicted by the theory in Section 2

gives fairly reliable results.

These experimental results indicate that the design equations

derived in Sectior 2 and the nonlinear behavior predicted in Section 3

may be relied upon in projecting capabilities of high-power transverse-

wave amplifiers.
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V. CONCLUSIONS AND RECOMMENDATIONS

We have presented results of a study to evaluate the feasibility

of attaining high efficiencies in high-power transverse-wave amplifiers.

The analyses presented in Sections ? and 3 provide the theoretical

foundation required to predict the capabilities of high-power transverse-

wave tubes that had been unavailable heretofore.

Results of the experimental study presented in Section 4

indicate that our design equations may be used reliably to predict

anticipated performance characteristics of synchronoils wave amplifiers.

Projected c;pabilities of high-power, high-efficiency, synchronous-wave

amplifiers are described in Section 2.4. It was pointed out that efficiencies

in excess of 50% are possible with power outputs in kilowatts, provided

that a transverse-wave circuit with high transverse interaction impedance

( - 100 ohras) could be found. It was pointed out in Section 3 that the

power saturation due to the velocity desynchronization is not a fundamental

limitation, and it could be overcome by a simple voltage jumping (or

tapering). The nonlinear theory of Section 3 may be used to determine the

optimum voltage profile.

A summary of anticipated performance characteristics of high-

power transverse-wave tubes is given below.

1. Power Output

A reasonable estimate for the CW power output of transverse

wave amplifiers is 2 kW in S-band. This is roughly equal to the best

performance of high-power (CW) wideband traveling-wave tubes.

2. Efficiency

Referring to the calculation presented in Table II, we can

reasonably expect to operate these high power tubes w ith efficiencies in

the neighborhood of 50%.
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3. Gain

Because the interaction impedance of the transverse-field

circuits is generally low (of the order of 10 ohms), the gain per wave

length in transverse wave tubes will be relatively low. For a tube with

10 dB gain in S-band, wr would need a tube 18-20 inches long. For

tubes longer than 20 inches, we could experience a serious mechanical

problem of alignment and construction. The design objective should be

set for about 10 dB.

4. Bandwidth

The twisted two-wire line we have been experimenting

with has a very limited bandwidth. In fact, most twisted structures that

we know of have limited bandwidth, and, therefore, we do not expect

the bandwidth of the device to be much greater than about 10%. It should

be pointed out, however, the device is voltage tunable over a tremendous

frequency range. The tuning range should cover all of L and S bands.

Based on our conclusions, it is apparent that the future effort

should be directed toward developing new circuits with high interaction

impedance and broader bandwidth capabilities. Since most of the known

twisted structures have low transverse interaction impedance, the

possibility of selectively exciting a circularly polarized wave in non-

twisted structures should be investigated. A rea;onable care must be

exercised in the selection of the circuit, however, to avoid oscillations

(and subsequent beam blow-up) due to the presence of spurious modes.

The analysis in Section 2 showed that the axial velocity spread

in cyclotron-wave amplifiers is expected to be much less. It was also

pointed, however, that in a cyclotron-wave device, one has to contend with

the problem of transverse kinetic energy. This problem has not been

considered in detail in this program. A further study of cyclotron-wave

amplifiers may be fruitful. Although capabilities of cyclotron-wave
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devices remain relatively unexplored, we feel that the de .ice capabilities

outlined above represent the most optimistic performance expected in the

immediate future, assuming no dramatic new concept is developed in the

near future.
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Appendix A

Nonlinear Equation for Cyclotron Wave Interaction

In this appendix, we will derive the nonlinear differential

equation for the circuit field for the cyclotron-wave interactions. It

will be shown that the form of the equation is exactly the same as

Eq. (3.17) which was derived specifically for the synchronous-wave

interaction.

For the slow cyclotron wave case, we need a right-polarized

circuit mode or a reversed magnetic field; for simplicity we choose the

latter course and let u -' -w in Eq. (3-3). The beam displacementc c

will now be of the form

r(t,z) = R(t,z) e -JCLct (A-i)

where R is assumed to be slowly varying on the scale of one cyclotron

period. ORj- wR The transverse equation of motion is approximately

dR = E e ct (A- 2)
dt a c

c

Except for this change in the force law, the analysis up to

Eq. (3-10) is also applicable to the cyclotron wave case. Energy

conservation is now modified as follows. The power per unit length into

the electrons is

-e v.E = -IE - X eRe (vE) (A-3/
o o zb o c
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Since v -j r for the cyclotron wave,

RevE* Re (-w rE*)

0 zb (A- 4)
0

Therefore

1 0 E b (I

I0o EzbI + W / (A- 5)

go v (A- 6)

for cyclotron waves. It then follows that the coupling constant is

3
5$ Kill
I + W /W (A-7)

C

the differential equation for E(z) (see Eq. 3.17) how becomes

+j & 0 (A- 8)

2
where a' is given by (2. 23), with the appropriate P (Eq. A- 6).

0 0
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The final differential ecquation for the normalized field is

exactly the same as for the synchronous case, (3-26), except that now

I 0 C j(A-9)

and

Q8V I in A- 10)
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APPENDIX B

Transverse Interaction Impedance of Twisted Two-Wire Line

The interaction impedance may be esti'aated from the

characteristic impedance of the two-wire line, assuming a gentle twist

(p/R > 1 ). The characteristic impedance of the two-wire line is

z = o PO -tn (d/o)
0 Ir n 7 (B. 1)

where d and p are the distance between the two wires and the wire radius

respectively. The transverse electric field at the midpoint between the

wires is related to the "circuit" voltage by the following expression

et (o) - dZn(d/p) (B.2)

and the transverse electric field of one circularly polarized component

(+ I polarization) in the twisted line is

E , (o)i IE(o)I

2 t 2dCn(d/P) (B. 3)

The power flow along the circuit may be expressed as

Iv 2  2 2d2 Cn2 (d/p) IE+1 (°), 2

P c 2Z Z (B. 4)
0 0
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The transverse interaction impedance is, therefore, given by

Kt =IE (o)I 2 /20 2 P c [462 o dJI. ri(d/P)(B5
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