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1.0 SUMMARY 

The spatial stability of fourteen Falkner-Skan similarity profiles for 

the range ß - - 0.1988 (separation) to ß = 1.0 (stagnation flow) are 

considered. The Orr-Sommerfeld equation that governs the amplitude of 

Tollmien-Schlichting disturbances superimposed on flows having such profiles 

is solved by a step-by-step integration method. The rapid error buildup 

usually inherent in such methods is eliminated by the use of the Gram-Schmidt 

orthogonalization procedure. Eigenvalue solutions for values of Reynolds 

number Rg# up to Hr were successfully obtained for all the cases considered. 

Curves of constant spatial amplification are presented on the dimensionless 

frequency vs. Reynolds number diagram for the various ß1 s. The corresponding 

temporal amplification rates are presented in the form of curves of constant 

c. on the dimensionless wave number vs. Reynolds number diagram (curves of 

constant phase speed c  are also included). The critical Reynolds number, 

which is presented as a function of ß, is found to be in fair agreement 

with Pretsch's results. In the present study, however, the separation profile 

is found to possess a finite critical Reynolds number. Eigenfunction solutions 

obtained from the present analysis are in excellent agreement with the calcula- 

tions of Radbill and Kaplan and also with the experimental data of Schubauer 

and Skramstad. 
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k.O    NOMENCLATURE 

aQ, a., a2 coefficient- of planar fit used to locate zeroes of secular equation 

(see equation (l8)) 

A        Gram-Schmidt orthogonalization constant defined by equation (ll) 

c        dimensionless complex velocity of Tollmien-Schlichting disturbance, 
cA 

c        dimensionless group velocity, c /U 
g ß* e 

F dimensionless stream function of mean flow 

G characteristic function defined by equation (6) 

K Gram-Schmidt normalization factor for $,. at y. 

R Reynolds number based on boundary-layer thickness, U 6/v 

RB# Reynolds number based on displacement thickness, V B*/v 

S denotes spatial values 

t dimensionless time parameter, t#U /5 

T denotes temporal values 

u1       root-mean-square value of longitudinal component of disturbance 

velocity 

U        dimensionless longitudinal velocity component of the mean flow, 
UA 

U longitudinal velocity component in the external free stream 

x dimensionless distance along body surface, x^/6 

y dimensionless normal to surface coordinate, y.^/6 

Z normal admittance defined by equation (15) 

a        dimensional wave number associated with Tollmien-Schlichting 

disturbance 

QL       dimensional wave number, a6 

ß        Hartree ß, dimensionless pressure-parameter 

7 latent root, [cr + i(XR(l - c)] ' , of the reduced Orr-Sommerfeld 

equation in outer region 



6 boundary-layer thickness 

8* displacement thickness 

V kinematic-viscosity coefficient 

A Laplace operator, d /dx + d /dy 

y\ dimensionle ss coordinate normal to surface 

cp disturbance amplitude function 

<l> vector function space defined by equation (9) 

* eigenfunction solution 

\|r disturbance stream function 

^0 stream function of the mean flow 

Sb total stream function 

£ vorticity 

0) dimensionless frequency, (i^v/u 

fl constraint function defined by equation (30) 

SUPERSCRIPTS 

1        differentiation with respect to coordinate normal to surface 

denotes normalized values 

SUBSCRIPTS 

i imaginary part of complex quantity 

r real part of complex quantity 

k value of k-th integration step 

w wall value 

* where there may be doubt, dimensional quantities are indicated 

by ( )# 



5.0 INTRODUCTION 

The stability of a family of incompressible boundary-layer profiles with 

respect to disturbances of the Tollmien-Schlichting type has been extensively 

treated by only two people, Schlichting   and Pretsch* . Schlichting 

analyzed the Pohlhausen family and Pretsch the Falkner-Skan family. The pro- 

files of the Pohlhausen family are convenient for analysis but, of course, 

are only approximations of the exact solutions. The profiles of the Falkner- 

Skan family, which are exact solutions, are considered in this report. The 

velocity profiles that occur in this family, such as ß = 0 (flat-plate flow), 

ß ■ - 0.1988 (separation), and ß = 1.0 (stagnation flow), are of practical 

as well as theoretical interest. It was for a flow over a flat plate that 

Schubauer and Skramstad first demonstrated the occurrence of the theoretically 

predicted regions of instability as the first step in the transition process 

from laminar to turbulent flow. The connection between instability and 

transition is still largely unresolved. Nonetheless, a semiempirical method 

for predicting transition developed independently by Smith ' and Van Ingen ' 

enjoyed remarkable success. The theoretical analyses for all these important 

papers were based on the stability characteristics of the Falkner-Skan profiles. 

The stability of Palkner-Skan profiles is reconsidered here because the 

earlier works by both Schlichting and Pretsch involve approximate representa- 

tion of the mean flow and rely on asymptotic methods to obtain solutions of 

the stability equation. It has since been found that asymptotic methods, 

although useful in establishing conditions for stability at high Reynolds 
(5) 

numbers, often lack accuracy at lower Reynolds numbers  . Moreover, because 

of the presence of the second derivative of the mean velocity in the stability 

equation, it is important to use accurate velocity profiles in performing 

stability calculations. The different results obtained by Schlichting and 

Pretsch for a flow in the presence of an adverse pressure gradient serve to 

demonstrate this point. In this situation, the upper branch of the neutral 

curve approaches an asymptote, a 5* = constant, as Kg*-*00* *br the 

separating profile (ß = - O.I988) the difference in the numerical values 

obtained was considerable. Schlichting obtained 0.1*50, whereas Pretsch 

obtained 1.07. This difference is primarily due to the assumed form of the 

mean velocity profile. Schlichting based his solution on a polynomial 



approximation of the velocity profile. Pretsch based his on the more accurate 

profile calculated by Hartree^ '. With the exception of a few cases (mainly 

ß = 0 for a limited range of Reynolds number), the mathematical difficulties 

encountered in the stability analysis have discouraged further attempts to 

improve the stability charts produced by these early investigators. The 

usefulness of the charts and a desire to devise the mathematical techniques 

necessary to treat this and similar problems efficiently prompted a further 

investigation into the stability properties of these profiles. 

Because of the limitations of asymptotic analytic methods, there has been 

a considerable effort devoted in recent years to the development of numerical 

methods. These inherently afford good accuracy at low Reynolds numbers but 

encounter numerical difficulties at high values. A notable advance was made 

by Landahl and Kaplan'•' with their "purification scheme".  It cleverly 

circumvents the rapid error buildup that usually occurs in the step-by-step 

integration of the Orr-Sommerfeld equation. This equation is commonly accepted 

as the basis for stability investigations in two-dimensional incompressible 

isothermal flows. The purification scheme was found adequate to deal with 

cases in which the Reynolds number based on boundary-layer thickness did not 
i. 

exceed 10 . In many practical cases, critical Reynolds numbers far greater 
h 

than 10 must be considered. For example, in flows with adverse pressure 

gradients, the asymptotic behavior of the neutral curve is established at 

very large Reynolds numbers. The Reynolds number restriction thus imposes 

a severe limitation on the class of problems that can be investigated by 

Landahl and Kaplan's method. Nonetheless, their basic approach is sound and 

the more precise mathematical formulation of the "purification" procedure 

adopted in the present analysis has proved successful in eliminating the 

shortcoming. 

In the present investigation the purification scheme of Landahl and Kaplan 

is replaced by the Gram-Schmidt orthogonalization procedure* '. This innova- 

tion has been successfully applied to the solution of the Orr-Sommerfeld 

equation for values of Reynolds numbers Rfe# up to 10 . The velocity profiles 

used to perform the stability calculations arc obtained from a direct numerical 

integration of thr boundary-layer equation. 

B 



6.0 ANALYSIS 

6.1 The Orr-Sommerfeld Equation 

The dynamic equation for an incompressible, non-heat-conducting, viscous 

fluid in two-dimensional parallel flow written in terms of the vorticity 

£(t,x,y) and stream function ^(t,x,y) is 

jt.iAt ♦»£_{*.£ (la) 
5t  R s  dx by     by     dx 

where 

t; = A* (lb) 

The above equations have been made dimensionless by normalizing all lengths 

by the reference length 8, ail velocities with respect to U , and all 

times by 8/U . For the purpose of linearization*a small disturbance 

♦(x>y>t) is superimposed on the mean flow \|r ; i.e., 

* = *0(y) + *(x,y,t) (2) 

Introduction of the Tollmien-Schlichting wave 

iOL(x-ct) 
♦ = cp(y)e (3) 

into equation (2) and substituting the resulting stream function into equation 

(la) leads, after linearization, to the familiar Orr-Sommerfeld equation (here- 

after referred to as the 0-S equation), 

(U - c)(<p" - o£p) - U> = - ^ (q>™* - 20^'+ aj<p) 00 

Henceforth subscript 1 on a is deleted for convenience. The boundary 

conditions assumed for the present problem are homogeneous. Thus the solution 

of the 0-S equation constitutes an eigenvalue problem leading to the solution 

of a secular equation of the form G(R, a, c) =0. 



6.2 Spatial Amplification of Disturbance 

Traditionally, in the formulation of the eigenvalue problem disturbances 

are considered as amplified or damped in time; a   is taken to be real 

(a = a ) and the frequency co = Oc is taken to be complex (a) = a) + io>.). 

The temporal point of view is of course ideal for such analysis. This becomes 

obvious when we note that in the governing equations of motion, the temporal 

derivatives are of first order and have a coefficient of unity, whe -eas the 

other derivatives, all of the spatial variety, are of higher order and appear 

in more complicated forms. The temporal viewpoint has produced theoretical 

predictions that are, in some cases, in fair agreement with experimental 

observations. Much of the discussion that follows in this section may be 

found in the current literature (e.g., reference 7), but will be presented 

here for the sake of completeness. 

Physical observations of the breakdown of laminar flows in a boundary 

layer have revealed the presence of combined spatial and temporal growth of 
(9) 

small wavelike disturbances preceding transition, e.g., Brown  . On the 

other hand, the forced-oscillation experiments of Schubauer and Skramstad^ ' 

and KLebanoff, Tidstrom, and Sargent  ' give illustrations of a purely spatial 

growth of disturbances. These observations necessitate a closer look into 

the adequacy of the description of the growth of small disturbances as a 

process of temporal amplification.  In this paper the eigenvalue problem for 

the case of spatial amplification, G(a   1  , a>  ..) = 0,  is considered. 

Two different approaches for bridging the difference between the theoretical 

and the observed descriptions o:? the phenomenon will be discussed. The first 
(12) 

is descriued in a note by Gaster    that derives a relation between the 

spatial and temporal amplification rates under the assumption that these rates 
2 

are small. The transformation states that to the order of o>. , where a>. 
im im 

is the maximum value of a>. at a given Reynolds number, one may write 

Oc.(T) 
a.(s) =--i_+o(c^) (5a) 

10 



a (s) = a(T) (5b) r 

<o.(S) = a>r(T) (5c) 

where the disturbance group velocity c  is given by 

o-c   a(ac ) ba 
cg " cr + a ST- - "la- - ST <5*> 

and S and T denote spatial and temporal systems, respectively. Note that 

the group velocity of a dispersive wave system is the speed at which the energy 

of the disturbance is convected. For fixed-frequency disturbances, one must 

recognize that although ac  is fixed, its variation with wave number does 

not vanish and that energy may still be carried by a disturbance at a 

velocity different from its phase speed. The method is based on the 

linearization of the relationship between a and c in any given neighbor- 

hood. This method of relating spatial and temporal amplification rates was 

used by Landahl and Kaplan''' in studying tht stability of laminar flow over 

compliant boundaries. Recently, however, Betchov and Criminale^ ' showed 

that the linear relationship between a and c assumed by Gaster is not 

always valid in regions away from the neutral curve.  In fact, there may be 

regions for which the temporal criterion does not predict instability although 

the spatial criterion does. 

The other approach to spatial amplification is of course the direct attack 

on the characteristic equation, 

G(a,oj,R) = 0 (6) 

by regarding a as a complex parameter and considering only real values for 

a^ thus restricting c to be proportional to the complex conjugate of a. 

In this approach, which is used in the present investigation, there is no 

restriction on the magnitudes of a and c, as there is with Gaster's 

transformation. 

11 



It must be noted that a complex a introduces amplifications of the form 
-ct x 

e i . A term of this form causes exponential growth of the disturbances for 

either positive or negative x for the case of nonzero a.. Thus, to develop 

a stability criterion, one  must determine whether the disturbances grow as 

they travel in the upstream or downstream direction. Establishing a criterion 

for spatial stability requires knowledge of the direction in which the wave 

is amplified and of the direction in which energy is carried by the disturbance, 

as determined by the sign of the group velocity. The spatial criterion for 

stability is presented in table I. The temporal criterion for stability is 

also presented for comparison. The use of the group velocity in the stability 

Table I 

SPATIAL AND TEMPORAL CRITERION OF STABILITY ACCORDING TO 

LANDAHL AND KAPLAN^ 

Temporal Growth Spatial Growth Stability 

c. > 0 a. < 0 c > 0 
i    g 

a. > 0 c < 0 
i    g 

Unstable 

c. = 0 
l 

a. = 0 
i 

Neutral 

c. < 0 
l 

a. > o c > o 
i   g 

a. < o c < 0 
i   g 

Stable 

criterion for spatial growth of disturbances is an effective application of 

a radiation condition. Hence, disturbances are unstable as they convect 

energy in the same direction as that of their spatial growth. By means of 

Caster's transformations, equation (5), it is seen from table I that the two 

criteria, the spatial and the temporal, are consistent. The present paper 

reports on the spatial stability of Falkner-Skan similarity profiles for 

which the characteristic function is solved in terms of real values of o> 

and complex values of a. 

12 



6.3 Solution of the Orr-Sommerfeld Equation 

When the coefficients of the 0-S equation vary in the range of interest, 

as in the present case, no closed-form solution exists. In the region outside 

the boundary layer, the mean flow is constant and the 0-S equation reduces to 

the following equation with constant coefficients: 

qT- (o? + 72W + o?A> = 0 (7) 

where y   = cr + iaR(l - c). This differential equation has four solutions 

expressible in terms of exponential functions, as follows 

h - e^ <p2 = e<* 

?5 = e'7* %  = eW (8) 

where the real parts of a and y   are greater than zero. If the solutions 

are to remain bounded as y ->», then cp, and cp* are the only admissible 

solutions. Since cp. and <p, satisfy the 0-S equation at the outer edge of 

the boundary layer (i.e., y = l), they are used to specify initial conditions 

for the corresponding solutions within the boundary layer itself. A Runge- 

Kutta method for a fourth-order differential equation is used to integrate the 

0-S equation with the parameters R and Oc fixed. A linear combination 

of these two solutions is then formed to satisfy a boundary constraint at the 

wall. A numerical search procedure is then used whereby the value of the 

parameter a is found for which the boundary conditions at the wall are 

satisfied. The particular values of R, a, and c for which this is true 

are referred to as eigenvalues. The problem is thus solved, at least in 

principle. In practice, however, two solutions that are linearly independent 

at the beginning of the integration are observed to become linearly dependent 

within the region of interest. This difficulty can be removed by using 

multiple-preeision arithmetic, which is rather costly in terms of programmer 

and computer time. 

13 



6.4 Gram-Schmidt Orthogonalization Procedure 

Initially, at least, the two solutions cp, and cp, are linearly- 

independent. To insure that they remain so, the following function space is 

defined: 

♦<y) - (<fc <P', <f,  <P"') (9) 

A given vector in this complex function space completely defines a solution 

of the governing equation. Two solutions or, equivalently, two vectors in 

this function space that are linearly independent (noncollinear) may be 

linearly combined to construct another solution (vector) that is entirely free 

of any one of the jenerating solutions (vector). Because of round-off, <t>1 

has a small parasitic error proportional to $,. To remove the parasitic error 

from the integrated solution, an auxiliary function $, is constructed such 

that no component of 4>, is contained in it. This is accomplished by normal- 

izing the integrated values of <>-. at the end of each step of the integration 

u  constructing, at some y,, the function $,, as follows: 

W - f^) - Af3(yk) (10) 

where 4>^ is the normalized value and A is an as yet undetermined constant. 

Since it is desired to remove any presence of the solution 4>, from <j> , the 

function J. is constructed to be orthogonal to $^. Hence, 

A = 4>x(yk) • *5(yk) (11) 

and 

$x = ^(y) - [t^) ' *3(yk)| ^(y) (12) 

Since <(>.. and $, represent solutions of the 0-S equation, the purified 

solution <j>,  is also a solution. The procedure may be extended to generate 

additional independent solutions as desired. The algorithm is known as the 

Gram-Schmidt orthogonalization procedure. 

Ik 



The purification of the integrated solution for $- may be applied at 

any arbitrary step of the integration, provided the solution has not become 

completely dominated by the parasitic error. .In the present study the ortho- 

gonalization procedure is applied at each step of the integration. No inves- 

tigation was made to determine the effect of the frequency of orthonormalization 

on the results. The above method is used in conjunction with the integration 

(IBM 709*0 of the 0-S equation for a number of Falkner-Skan velocity profiles. 

Single-precision arithmetic was adequate for all the necessary computations in 

the stability analysis. 

6.5 Numerical Determination of the Eigenvalue Criterion 

To solve the eigenvalue problem numerically, one does not need to know 

the functions ^(y) and $,(y), but only their values at the wall. A 

solution * is constructed as follows: 

* - $x + B^ (13) 

where B is selected from the requirement that 

c*w + ww = ° (lA) 

and D is some arbitrary constant. The boundary-layer admittance Z, which 

is proportional to 4> , is substituted for the boundary condition * = 0 

-eft» 
Z(R, otc, a) m 

w    w 

(15) 

The eigenvalue criterion is then the condition that Z vanishes. When this 

occurs, 

w   w (16) 

and the boundary conditions at the wall are satisfied. The quantity Z is, in 

general, complex. Hence, equation (15) may be expressed separately in terms of 

15 



its real and imaginary components, thus yielding two equations in two unknowns. 

There are only two unknowns, since R and ac are held fixed and a is taken 

to be a complex number. Thus equation (15) may be written in the functional 

form 

zr = zr(ar, ojj 

Z± = 2t{aT, a±) (17) 

The application of a standard iteration method to solve these equations 

is convenient. However, because of the acute sensitivity of the topology of 

Z to small changes in a, such a scheme is inadequate to meet the general 

requirements of the problem. The use of a LaGrange-type interpolation such as 

that employed by Landahl and Kaplan proved unsatisfactory for the Reynolds 

number range considered in this study. The procedure now used is to fit a 

plane to three successive trial points of the form 

a = aQ + a^p + a2Zi (18) 

where the a's are, in general, complex. The first two trials are based on 

either estimates or extrapolations of previously established eigenvalues for 

fixed R's and ac's. The third is obtained from a linear prediction based 

on the first two. Thereafter, the aforementioned procedure is used. The value 

for a in the next trial is simply aQ. It is given by the equation 

/zrZi   -ZpZiVWZrZi    -ZpZiV+^Zi    - ?r Z± V 
V   2    3 3    2/ 1      I    3    1 1    3//     V    1    2 gJj 

'       /ZrZi   -ZrZiWZ>Zi   =Wpl   = Zr Zi \ [23     3 2)   y 3 1     1 3)   [ 1 1     21^ 

Under the present scheme, there is one free parameter that one may fix to 

modify the topology of the surfaces expressed by equation (17). That param- 

eter is D in equation (l**). It was found that setting D equal to U" 

led to satisfactory results for all the cases considered. It is sometimes 

desirable to select a different set of arguments to solve the characteristic 

problem. To determine points on a curve of constant temporal amplification 

16 



such as, say, the neutral curve (c. = 0), one may choose a     and A, where 

A is defined by the relation A = a /c . This procedure was in fact used to 

generate eigenfunction solutions for neutral disturbances. 

6*6   Determination of the Eigenfunction 

Once the eigenvalues are found, the task of constructing the corresponding 

eigenfunction is relatively simple. The two solutions denoted by $, . (y) 

and $* ,(y) corresponding to some y, are related to the previous sets 

obtained by the Gram-Schmidt orthogonalization procedure by the recursion 

formulas 

+3,k = +5,k-l \ " *3,k-2 S Vl (20a> 

m-l 

h^ n VJ mzl      (2ob) 

and 

V ■ +l,k-l - *k *3,k <21*> 

= V-2-^V-Vl*3,k-l <21b> 

m-l 

= V-»" I V„ *3,k-n -121 (21C) 

n=0 

ttie constant K.  is the normalization factor for +., at y.. In the 

course of integration, ♦, . _(y) and $, v-m^ are evaluated at a single 

point, ftiese are in fact the quantities $1(mh) and <t>,(mh) defined earlier, 

therefore, it is convenient to express equation (21c) in a slightly different 

form. From equation (20b) it may be shown that 

^ - II *k.J       m - 1 > n (22) 
K3,k-m  j=n 

17 



so that 

\L,k     ^l,k-m       k,m ™3>k-m (23) 

where 

m-1 m-1 

v -1 v„ n \.i 
n=0 j=n 

(2*) 

Note that 

k,m+l ~~ "K-m      k,m        K-m (25) 

The solutions <l>  (y) and $, (y) may be readily evaluated from the above 

formulas by simply saving the values of <t> , $■*,  A^, and the normalization 

factor K.  at each integration step. The eigenfunction is determined by 

combining equations (13), (20b), and (23) to yield 

$(mh) = $1 (mh) 

' m-1 

B J] K(jh) - b 

L d=o 
k,m £3(mh) (26) 

where 

m-1 m-1 
bk,m = I  A<nh> n   K^ 

n=0     j=n 

(27) 

6.7 Solution of Velocity Profile of the Mean Flow 

The lalkner-Skan profiles are obtained by a numerical integration of the 

boundary-layer equation 

F
,M
(T)) = -FF" + ß(F'2 -1) (28) 

18 



with the appropriate value of ß. The boundary conditions for thi3 equation 

are 

F(0) = F'(o) = Lim (F* - l) = 0 (29) 

A family of solutions of equation (28) can be generated by using the initial 

conditions given by equation (29) and various trial values of p"(o). These 

solutions may be parametrically represented as functions of TJ and F"(o). 

Making use of the asymptotic nature of the desired solution reduces the 

original two-point boundary-value problem to finding the minimum (zero) of 

a function ß given by 

ß[F"(o), ti] = WX(F* - l)2 + W2(F")
2 + W5(F

,M)2 (30) 

The quantities W_, VL, and VL are weight factors. Since the boundary 

condition on F' (T^) is explicit, whereas those on ^'(v) and Fm(n ) are 

implicit, W. was taken as 10 and VL and VL were taken as unity. The 

particular form of the constraint relation given by equation (30) was chosen 

be cause it is suited for solving boundary-layer problems for which F* is a 

monotonically increasing function. The process is initiated by using trial 

values of F"(o) until at least one high and one low value have been obtained. 

A high or low value is determined by integrating equation (28) until the pro- 

duct (F1 — ljF11 becomes positive and then checking the sign of either factor. 

If it is positive, the value of j"(o) is high; if it is negative, the value 

of J"(o) is low. Quadratic interpolation is employed to yield ^„[^'(o)] 

equal to zero from the last high and low trials of F"(o). Rapid convergence 

of this process has been established. 

With F(0), F'(0), and ^(o) specified, the solution of equation (28) 

is treated as an initial-value problem that is solved by a Runge -Kutta method 

for third-order differential equations. The calculations were made on the 

709** TiM computer with double-precision arithmetic. The profiles obtained are 
(lk) 

in agreement with Smith*sx  , which are tabulated to five decimal places. 
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The normalized velocity and its second derivative, which appear in the 0-S 

equation, are related to the function F as follows: 

U(y) = F-(y) (31) 

and 

u"(y) = (nB) F'"(y) (32) 

where % is taken to correspond to the point at which the normalized 

velocity has the value 0.9990. The velocity profiles thus obtained are 

used to integrate the 0-S equation across the boundary layer. 

The values obtained for the momentum thickness 0, shape factor H, 

boundary-layer thickness nß, and the displacement thickness A*, are given 

in table II. The characteristic length used in normalizing the stability 

parameters is 8* = A* >/(2 - ß)vx*/U . 

Table II 

BOUNMRY-IAYER fi&RAMETERS FOR VARIOUS ß's 

00 00 

ß *6 A« =  / F'dT) 

0 

8 =  / F1 (l-F1 )dT) 

0 

H 

1.0 3.11*3 0.0*79 0.2923 2.216 

0.8 3.280 O.6987 0.3119 2.2l*0 

0.6 3. Mo 0.7#*0 0.3359 2.271* 

0.5 3.533 0.8oJ*6 0.3503 2.297 

o.J* 3.636 O.8526 0.3667 2.325 

0.5 3.75? 0.9110 0.3857 2.362 

0.2 3.887 0.98^2 O.J»082 2.1*11 

0.10 k.6k8 1.0803 0.1*355 2.1*81 

0.05 k.ik$ 1.1*17 0.1*515 2.529 

0.0 *».257 1.2168 0.4696 2.591 

-0.05 ^•390 1.312** 0.1*905 2.676 

-0.10 k.yGl 1.M27 0.5150 2.801 

-o.ii* k.Tkk 1.5*59 0.5386 2.963 

-0.1988 5.56? 2.359 0.5851* 1*.029 
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7.0 RESULTS AND DISCUSSION 

The results of the- present study are presented in the form of curves of 

constant a.Ö*/Rß^ on the diagrams of dimensionless frequency vs. Reynolds num- 

ber (CD , RßiK.) in figures 1 through 1^. The critical Reynolds number Rg* 

determined by cross-plotting the computed data is presented as a function of 

Hartree ß's in table III and is shown in figure 15. The Reynolds number at 

maximum spatial amplification rate is presented as a function of ß in fig- 

ure 16. For purposes of comparison, Pretsch's results (obtained on the basis 

of temporal considerations) are also given. For the separation profile, 

Pretsch's results indicate that unstable disturbances are always present, what- 

ever the Reynolds number. This strongly suggests that all separation flows are 

essentially turbulent. A lower mode, perhaps corresponding to Pretsch's was in 

fact discovered in the present analyses. This is shown in figure 31. The wave- 

number spectrum for this mode is especially small, indicating that insofar as 

Table III 

CRITICAL REYNOLDS NUMBER FOR VARIOUS ß's 

p 

crit 

Iresent Analysis Pretsch 

1.0 12^90 12600 

0.8 10920 

0.6 8890 8300 

0.5 7680 

0.4 6230 5000 

0.3 ^550 

0.2 2830 3200 

0.1 1380 

0.05 865 

0.0 520 660 

-0.05 318 

-0.10 199 126 

-0.1*+ 138 

-0.1988 67 0 
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stability is concerned the dominant mode is the one possessing the critical 

Reynolds number RfiiX. = 67 shown on the same graph. Unstable disturbances cor- 

responding to the lower mode were found to propagate upstream (c < 0)! These 

self-excited oscillations apparently do not lead to transition, at least until 

a critical Reynolds number is reached, for laminar separation has certainly 

been.experimentally observed. The maximum frequency a)   for which disturb- 

ances are unstable, as well as the maximum amplification rate (-a. 6*/Rfi<J(.)  , 

is shown in figure 17- 

In order to carry out a more thorough comparison with the results of 

other investigators, and particularly with those of Pretsch, curves of constant 

c^ and cp calculated from the present spatial results are presented on the 

diagram of dimensionless wave number vs. Reynolds number (a 8*, R^), figures 

l8 through 31, The neutral curves are summarized in figure 32. Contours of 

the neutral curves obtained by Pretsch (not shown) are generally in fair agree- 

ment with the present results for positive ß's. Pretsch*s neutral curve for 

the Blasius profile encloses a much smaller wave number spectrum for Reynolds 

numbers near the critical as may be seen in figure 33> in which the predicted 

maximum wave number for which disturbances are unstable (a 8*)    is plotted x r 'max 
as a function of ß. The contour along the lower branch of the neutral curve 

was found to be in good agreement with the present results. The maximum tem- 

poral amplification rate, C|  , is also compared in figure 33« Pretsch's 
"Tnax 

results were obtained on the basis of a temporal criterion and the present 

results on the basis of a spatial criterion. The agreement shown between the 

results for maximum amplification rates obtained from the two analyses is an 

indication that the use of the Gaster transformation in connecting the results 

of the spatial and temporal analyses is valid, at least insofar as unstable 

disturbances are concerned. The discrepancy between the results of the two 

analyses is perhaps best explained by the fact that asymptotic methods are less 

accurate in regions where viscous effects are important. In this region the 

inyiscid solution is less representative of the total solution. The viscous 

correction is therefore less able to compensate for this defect, particularly 

at low Reynolds number such as near the critical Reynolds number of a Blasius 

profile or profiles having an adverse pressure gradient. 

In the case of the negative Hartree ß's,  it has been theoretically 

established that at large Reynolds numbers the upper branch of the neutral 

curve does not approach the R^-axis, as it does with positive ß's, but 
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approaches a certain asymptote a 6* = constant. This result was discussed 

by TollmienN  , who showed that the constant is a function of ß. The 

asymptotes for aÖ* for these cases provide a further check on the validity 

of the present results, because the limiting inviscid solution must emerge as 

the exact solution of the complete Orr-Sommerfeld equation as R -»« for 

nonzero values of the wave number a. In this region the asymptotic method 

used by Pretsch should be valid. The comparison in figure $k  for ß = - 0.10 

shows good agreement with the asymptotic value obtained by Pretsch. It may be 

noted from figure 28 that the neutral curve for ß = — 0.05 obtained from the 

present analysis had not reached an asymptote even at R-^ = 10 . For this 

reason, the calculations were extended to a Reynolds number of 200,000 for 

this case. Similar calculations were made for the cases ß = — 0.01 and 

ß = - 0.025. In none of these cases was an asymptote firmly established, 

although the gradient present was found to be small. The values for 

RB^. = 2 x 10* are plotted on the figure. 

Velocity perturbations for the Blasius profile at R-^ = 902 and 2080 

were obtained by matching the minimal value of the eigenfunction solutions to 

the experimentally observed amplitudes of Schubauer and Skramstad. These are 

shown in figures 55 and 56, respectively. From the description given in 

Schubauer and Skramstad1s report, one cannot precisely determine the location 

in the profile where the measurements were made. To locate a neutral disturb- 

ance, the hot wire would have had to be moved several inches downstream in 

order to get a measurable change in amplitude. As a result, the wire would 

have had to be moved upward enough to maintain the same similar distance from 

the surface. This adjustment is physically difficult to accomplish. The point 

at which phase reversal takes place is more readily established experimentally. 

This may be done by simply fairing through the available data. The data of 

Schubauer and Skramstad is rescaled to match the point of phase reversal with 

the results of the theoretical analysis (shown on same figure). It may be 

observed in figures 55 and 56 that the correlation with theory is significantly 

improved in the two cases considered. Of particular note is the much closer 

agreement obtained for the location of the maximum and minimum within the 

boundary layer. The solutions obtained by Radbill '  have also been included 

in these figures. 
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The agreement between the results of the theoretical analyses is quite 

good and is somewhat reassuring, since in the present analysis no investiga- 

tion into the effect of the frequency of application of the Gram-Schmidt 

procedure on the eigenfunction solution had been made. The computation time 

required to establish one set of eigenvalues is roughly 20 seconds. A compari- 

son with Kaplan's result for R~ = 3000 is shown in figure y\. 
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8.0 CONCLUDING STATEMENTS 

^Solutions for Reynolds numbers up to R*^ = HK were successfully- 

obtained by the present method for all the cases. This Reynolds number is at 

least 50 times as large as that which can be handled by the "purification" 

scheme devised by Landahl and Kaplan. The method is capable of being extended 

into the inviscid region and in fact precludes the necessity for performing 

an inviscid analysis in most practical situations. It is clear that the 

present method's capability of coping with the numerical difficulties 

encountered in performing a stability analysis of small disturbances in an 

inviscid problem may be adapted to deal with compressible flows. 
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Figure 7. - Curves of constant spatial amplification rates (ß = 0.2) 
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Figure 14. - Curves of constant spatial amplification rates iß « -0.1988) 
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Figure IS.-Effect of pressure gradient on the critical Reynolds number 
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Figure 16. - Upper and lower bounds of the Reynolds number at maximum spatial 
amplification rate. 
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Figure 17. - Effect of pressure gradient on the maximum spatial amplification rate and 
frequency of unstable disturbances 
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Figure 31. - Curves of constant temporal amplification rates (ß - -0.1988) 



Figure 32. - Curves of neutral stability for the Hartree ß boundary-layer profiles 

GO 



.15 
MAXIMUM WAVE NUMBER OF UNSTABLE 
DISTURBANCES (ar8*)MAX 

    PRESENT METHOD 
A      PRETSCH (1941) 

MAXIMUM TEMPORAL AMPLIFICATION 
RATE   CJMAX 
  PRESENT METHOD 

o      PRETSCH (1941) 

Figure 33. - Effect of pressure gradient on the maximum temporal amplification rate and wave 
number of unstable disturbances 
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Figure 36. - Comparison of root-mean-square longitudinal disturbance velocity 
with data of Schubauer and Skramstad (R§« ■ 2080) 
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