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FILE MANAGEMENT AND RELATED TQPICS

Robert M. Graham
Massachusetts Institute of Technology

1. Introduction

The subject of these notes is file management., We will develop the
problems of file management within the environment of a large information
and computing service, often called a computer utility or general purpose
time-sharing system. We do this for two reasons. First, this environment
imposes the most severe constraints. Other environments are obtained by
relaxing these constraints. Secondly, large information and computing
services will become more and more prevalent in the years to come.

Let us first look briefly at those objectives of an infermation «nd
computing service which are significant to this discussion.

a. Continuous service

The system must normally run 24 hours a day, seven days a week. This
implies a high degree of reliability. It also implies that maintenance of
the system must be done on-line,

b. Multi-user

The system must be able to service a large number of users working on
diverse applications. This implies some sort of resource manager~unt in order
to parcel out the time and storage facilities to this large community of
users. In addition, since users may very well be competitive and even
non-competitive users may storage sensitive data in the system, protr tion of
user's privacy must be guaranteed.

¢. Permanent information storage

The system must be able to store permanently as much information as the
user desires and be able to retrieve it undamaged at some future time.

d. On-line, conve.sational

The system must be able to provide on-line, conversational facilities

to a large number of the users at any given time. This implies some minimum

response time for trivial requests. 1In addition, it implies the need to be
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able to simultaneously process input and output from many terminals. Finally,
it implies sor: kind of multi-programming is necessary.

e, Fa.ilitate cooperative efforts

The system should facilitate cooperative efforts within groups of users.
This implies that sharing is necessary and further, that sharing must be
controlled. In addition, it implies communication among users via the system

itself.

2. The Function of an QOperating System

Most operating systems have two major functions, the management of
resources and provision of an interface between the user and the physical

hardware., Let us lock briefly at both of these aspects of an operating system.

2.1. QResource Management

The resource management aspect of an operating system is based on the
observation that there are a number of resources in the system which need to
be managed. These are the processors, memory (core, drum, disk,...), I/0
devices, and information (programs, data). The naive view taken in the
early days of computing was that the user should manage all of these resources.
The user approached the bare machine with whatever cards and tapes he needed
and the entire set of resources were his to do with as he pleased. He was
also stuck with the job of programming their management. Today we recogni:e
that this is not practical as a method of operation. Most operating systems
today take over a large portion of the management of these resources for
the user. Within the framework of resource management our view of file
ranagement is that it Includes the entire storage management, including the
management of core memory as well as file memory and information management.

It is important in thirking about resource management to keep separate the

two aspccts: mechanics and policy. There is also great advantage in
separating these two aspects in any implementation. We have the goal of
impiementing the system so that the system administrator is allowed as much
freedom as possible in choosing his allccation policy. Dy implementing

policy decision in a module which is separate from the mechanics of allocation,

which is not easily changeable, policy can be easily changed.
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2.2, The System As an Interface

In this section we view the system as a program which implements a
mapping between the user's conception of the world and reality. There are,
in fact, several levels of the user's view of the world, depending upon
his experience and his intent. One can easily distinguish the levels: a
casual user of an application subsystem, an ordinary programmer using
PL/I, a subsystem implementer, and finally, a system programmer. A user
may have quite different conceptions of the system at the various levels,

As an exampie of the system implemerting < mapping betwoen the user's
conception of the world and reality, wez will see a file system in which
the user refers to files by symbolic names and has the illusion that
memory is homogenous. The reality is that memory is not h.mogenous. It
is composed of disks, drums, core, etc. References to files can not be
made symbolically but must ve made by using device number, track number,
etc,

We also note that resource management may hold at each of the different
levels. Again the view is different depending upon the level. For example,
in the file system the user is able to create and destroy files. He has a
limit on the total length of all files which are charged to blwe. The limit
may be expressed either as the maximum number of words or as the number of
dollars which he may spend. He generally has no need to be concerned with
where the files are actually stored. The system does have to be concerned.
It maintairs a record of free storage for the various devices and must find
a place to put the file when the user creates it. The system has an absolute
limit on the total number of words of information which may be stored on

any particular device,.

3, A Model Svystem

In this section we give an overview description of a model information
and computing service, This is not a real system nor even a simplification
of & real system. Rather, it is an amalgam of the author's knowledge and
experience in this area, sufficiently simpliffed so that *he important

concepts involved may be clearly exhibited. 1t {s very similar to several

existing systems, principally Multics and TS55/360.
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3.1. The User's Conception of the System

We first look at the user's cenception of the system. When a user is
active he owns one or more processes. A process is, somewhat impreciselv,
a program in execution. Each process executes on a processor which belon:s
exclusively to it as long as the process exists. A process may stop itse f
to-wait for the occurence of some event. At some later time, when the event
occurs, it starts executing again. A process can create and destroy other
processes. Processes may communicate with one another, i.e., send signals
and messages in a stylized, formal way. Since a process is a program in
execution and runs until it stops itself. the process may be visualizeu as
some sort of virtual computer. We are interested in ftwo aspects of the
virtual computer: the address space which defines the set of information
which the process may reference. and the processor that the process owns
and executes on,which we call the pseudo-processor., The pseudo-processor
is implemented by the traffic controller and the address space is implemented
by the storage manager.

The utter views the address space as a hierarchy of files. The user
may freely create new files and place them anywhere in the hierarchy. He
may add adcitional Jlevels to the hier~rchy. He may delete files which exist
in the hierarchy. Aside from some simple space allocation, he views memory
as being essentially unlimited in size. His references are direct, symbolic
references. These references are device and location independent and do
not requirc any open. read, or write calls. The address space of his process
is shared vith other processes so *hat immediate sharing of information is
possible. Finally, the memory has automatic backup with the abiltity for
the uger tc retrieve any files which become damaged.

A user's process executes in a particular environment., He sees input
as a sourcé¢ and output as a sink. References to input and output are symbolic
and the rending and writing are device independent. Symbolically refercnced
input or output must be attached to & physical device. However, the attach-
ment ig dyramic and may be modified during execution. Fuch process is providel
with a pust-down stack for use in calling other procedures and for data of
the type known as automatic in PL/I. Each process is also supplied with an
area for us: by procedures for their private data, data which is called internal

static in PL/I.
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The user controls the system using a command language which includes a
macro-command facility. The user has mobility between interactive and
absentee user type s2rvice, Movement between the two types of service may
be done upon command and does not require reprogramming. All programs,
including the system itself, commands, and user programs are written on
the same hase, i.e., they use the same language processcrs and they observe
the same conventions, such as, procedure calling sequences and data formats.
All progrums, including the system, also execute in the same address space

of the pseudo-processor.

3.2. Reality

Let us look briefly at the reality of this model system. The hardware
has ei her a single or a very small number of processors which must be shared
by all the processes running in the system. It is the task of the traffi:
contreller to multiplex processes among the processors. Every process in
the system is in one of three states: running, ready, or blocked. A process
is running if it is actually executing on a processor. A process is ready
if it could run if a processor were available although none is available at
th> presen: time. The user is unaware of this state of a process. It is
indistinguishable from the running state as far as he knows. A process is
blocked when it is waiting for some event to occur before it may proceed,

The user may be aware of a process in this state if tue event is one for which
he is waiting. On the other hand, the event may be in response to a system
imposed wa.t, such as an input/outptt completion. In this case, the user is
unaware of the blocked state of his process.

The storage manuger {s responsible for {mplementing the address spacc.
The address space of the real processor in the system is a s_ gment
address space. A hardware interpretable address is o pair of (ntegers
consisting of a segment number and a location within that segment. In order
for a program to execute a reference to data, it must have an address of
this form. Hence, the iol of the storage manager is tc map files, which may
in fact be stored on disk. {nto the hardwarc a:ldress space in order that the
process may reference them. 1In addition to transforming a symbolic reference

into a machine address. the system must be concerred with moving information

from the disk to the core memory in order for it to be refercnceadble,
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4. Mcnagenent of the Hierarchy

The user's conception of memnry is a hicrarchy of files. This hierarchy

is 2 tree structure of files. The management of this structure is the topic
of this section. It is based on the concept of segment. A segment is a
symbollically named coliection of information which is a basic unit of crygan-
ization us:d by both the user and the system. A segment is a contigucus
set of words (or bytes), cv.g., a table, a procedure, etc. A seguwent may ave
internal structure which is interpreted by the user. However, the system
assumés nc¢ internal structure other than an array of words. An example o

a segment which is familiar to all of us is a buok in a library.

4.1. A Dicectory

A hierarchy will be composed of segments. Segments and files are
identical. Segment seems mcre appropriate to us, however the term file
will still be used. especially when the refercnced information is phvsically

stored in file memory (e.g., disk). UCertain information is needed for

each segment. The following items are obvious now (more will be added later):

a. nme

b. length

c. location
(Note: In this and the next few sections we will assume that core memery is
large enough to store, simultaneously, ail the segments which exist in the
hicerarchy ut anv given tiew. This will allow us to simplify the descriptien
of the locition and also permit us to state the memorv allocation problem
in its simplest terms. We will later remove this assumption and <ce the
implicatiors of the removal.) We will collect togerher all of this Informa-
tion about 41l of the segménts inte a directorvy which contains one entry for
ecach segmert. Further, no segment shall exist without 2 correspo ting
ea.ry in tle dirv tory., A directory is like a card ~atajegue in the iibra-v.
In tact, in some systems 3 directory is called a catalcgue.

Once we have a directory there are certain operations that need to be
done to the entries in the directory. These operaticens, collectively, we

will call directory management. The manipulations of the directorv required

are:

———
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a. Add an entry to the directory, i.e., create a segment.

b. Ramove an entry from the directory, i.e., delete a scgment.,

¢. Modify a directory entry, i.e., change the name of a segment or
change the length of a segment.

d. Copy information from a directory entry.

4.2, The Hierarchy

Now we have all the information about the segments assembled into a

single directory. Are there any disadvantages of :'ch an arrangement?

The answer is yes. Two of the principal difficulties are name conflicts

and the size of the directory. The problem of name conflicts becomes very
severe in a system with a large number of users. Edch user has his own

files and it may be very difficult, certainly irritating, for the user to
always have to scan a large list of names in order to find one which is not
already in use every time he creates a new file. The size of the directory,
which will be very large in the case of a large system, certainly complicates
the searching process in addition to slowing it down.

There is another disadvantage which is not quite so obvicus: a single
directory loes not contain any content related structure. (ontent reiated
structure .s very convenient and desirable. We are all aware of the content
related stucture of a library’s stacks. In a Jarge library with a large
number of lLooks we find the stacks divided into sections such as, History,
Science, anc. Philosophy. History is further subdivided into the subsections
American History, French History, etc. The American History section might
be again subdivided into various subsections pertaining to the periods in
American hlstorv, such as Pre-Revolutionary, Reconstruction Era, etc. The
conveni. «¢¢ o such an arrangement is very significant, particularly when you
know the subject but don't know the title. You necd to scan all of the
entries on that subject. If no content related structure were present one
wo1ld be faced with the task ot scanring the entire card catalogue in the
library, a monumental, if not imporsible, task.

This type of structure is cal led a tree or hierarchy. There are many
examples of this type of structure both in life and in the computing field
(v.g.. PL/I structures which are al’ hierarchies). We implement such a

hierarchy by hoviug a number of dirctories which are related to each other
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i that certain directories contain entries pointing to other directorics
rather than to data segments. In order to do this we need an additional
piece of ir "ormaticn in the directory entry: type informatien indicating
whether the entry describes another directory or data segment. Figure !
shows part of a typical hierarchy of segments for a large information and
computing system. Only the names of segments and directories in a given
directory need be unique. The same name may be repeated over and over
~gain as long as each time it is in a different directory. This resolves
the problem of name confli~ts. On the other hand, how does one reference
a segment in such a structure? There is one method of reference which
allows com:letely unambiguous references. It consists of the concatenation,
separated by perieds, of all the names of all of the parent directories of
the segment being referenced. We call such a reference an absolute tree
name. For example, in figure 1 the segment marked with * has the absolute
tree¢ name ROQOT.E.A.D, while the segment marked with *¥* has the absolute
tree name ROOT.E.A.C.R.A.

Another useful feature in such a structure is a cross roference,which
we call a iink. 7This is an entry which points to another entry rather than
to an actuel directory or data segment. This is a form of indirection. In
figure 1, ROOT.E.A.Q is a link. It names the same segment as does
ROOT.E.A.C.R.C. 1In order to implement a link we expand the type information
to indicat: non-directory, directory, or link. For the purpose of easy
management all other information about this segment will be kept in the master
entry. Herce, in the link entry the length is not used and the location,
rather thar being the physical location of the segment, will be thc absolute

tree name cf the master entry for the segment.

5. Physical Storage Management

We will continue to assume that we have a large enough core memory to
hold all of the segments in the hierarchy at any given time. There is still
a problem cince we are not assuming that memory is large enough so that we
never reed to reclaim any of the space occupied by segments which get deleted,
This is the simplest situation in which to frame the basic problem of storage
management or allocation. We will later address the actual situation which

is that of 1 small core memory backed up by drum, disk, and tape, i.e., a
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non~homogeneous, multi-level memory.

An address space jis a set of reference labels, such as tuples, integers,
etc. A segment is a linear array of words (or bytes) with & symbolic nare,
S. The address of a word in S is the pair (8,W), where W is the offset of the
word with.n the segment S. (8,W) is a reference label in the user's address
space (which we will call the hierarchy name space). Since a major task of
the file system is the mapping between the user‘s address space and the
hardware address space, it seems reasonable that the hardware address srace
reflects, as closely as possible, the structure of the user's address space.
This is puart of the motivation for the hardware address space being segment
oriented, with an address composed of a segment rumber and a word number,

We will see later other motivations for the segrent addressing hardware.

Before we turn to an examination of the actual hardware addressing,
let us look briefly at how the memory will be managed. There are two major
techniques for memory management, ccntiguous alloca..on and block allocat:.on.

We will discuss each in turn.

5.1. Coatiguous Address Allocation

When ve create a new segment of length N we need to find a space of
N contiguows words, starting say at location &. In referring to a word in
the segment we use the pair (@,W). The absolute address, A, of word W in
the segment is A=W (see figure 2). 1In contiguous address allocation, as
with all mecthods of allocation, we need a table or list of the unused, or

free, locations in memory.

Directory Entry for § Memory
0
a) name = §

b) length = N

c) type = non-directory

d) location = &

segment S

(5, W) = (0, W) = A=H¥ A YL

N

Figure 2
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Our problem arises when N is larger than the length of any contiguous
block of free space, even though the lotal amount of free space is larger
than N (this being part of our original assumption). In order to get out of
this diiemma we need tc move other segments in memory in such a way as to com-
pact the uncoccupied memory in order to obtain enough contiguous space for our
anew segment, All the users of segments which had to be moved must be told
about this since the 0 of each of these segments changed. All of their
address refereuces will now need to be recomputed. Since memory allocation
is dynamic all references to segments must either remain contiﬁuously unbnund,
being bound each time a reference is madc¢c or the references must be unbincable
so that they can be unbound and rebound whenever memory is compacted.

Let us be more precise about the particular algorithm that is being used
here. We will compact all of the segments at the lower end of memory.
Whenever a new segment is croated we will assign it to the frece space just
above the top of the used part of memory. Whenever a segment is deleted we
will just let it go, but remember that the space which it occupied is now
empty. When the free area is small enough that a segment about to be
created will not fit we must stop and compact all of the segments in memory.
it ie interesting to look at the amount of time which will be spent in
compacting.

Let M be the size of the memory and F be the fraction of memory used,
then (1-F)M is the amount of free space. Suppose further that « is the
average number of references to each of the words in a segment before the
segment is deleted. Since there is at most one reference to memory per
time unit this means that every K time units one word will be deleted.
Assuming equilibrium one word will be added every K un..s. Hence, the free
area will be exhausted in (1-F)MK units of time. The time required to move
the infermation in the remaining segments is about 2MF (assuming two
references to move one word). The fraction of time spent in compacting is
then

compacting time " 2MF - F
compacting timet+time to fill free storage 2MF+(l-F)KM F+(1-F)K/2

In a itime-sharing system where there is heavy use of functions such as
editing, a reasonable figure [or K is around 20. With K=20 and F=50¢, we
see that the function of time spent compacting is 94. With K=20 and F=75¢,
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the time spent compacting is 254. The implication of this is that to
achieve a rcasonable compaction time of less th~n l0¢ we have to give up

over half of the memory.

5.2, Block Allocation

In this scheme we divide memory into blocks of K words. A segment of

length N is then divided into B = [§i£]+1 pages. Each page is stored in

a block, so the segment is stored in B blocks of memory. Howevaer, these
blocks need not be contiguous. In order to achieve this non-contiguity w2
need a page map which contains the location of all the blocks in the segment.
A reference to a word in the segment is again a pair (@,W). o is the location
of the page map rather than the first word of the segment and W is the offset
of the word in the scgment, To find the absolute address of the word in
memory we must find two integers I and J such that I is the base.address of
the correct block and J is the word number within the block. The absolutc
address is then, A = I+J., The page number, in the segment, is P = % .

Then I is the contents of P, i.e., the page table entry for page P. Finally,
J = W-PK, i.e., J = W(Modulo K). See figurc 3.

p - h:\? l\'\'\ ‘....7... e eeereg
Directory FIntry for S
a) S
b) N o "..uuunﬁ.ﬁ“w e
' Pl Sl L page {eble e S

¢) ncn-direcctory A : | 1

d) « b

(S W)= (v, W) - > (I,J) -» A=I+J 4 \ .
| o e e v oge )

' A= P05 EEZZEIT TR e

Figure 3

e L R — -
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Two memory references are required to access a word using this scheme,
The first memory reference obtains I from the page table, the second memory
reference obtains the word of data which is being referenced. There are
two disadvantages to this scheme. The first is breakage. On the average %
words are unused in the last block of each segment (in addition 1 extra block
is required as a page map for each segment). The second disadvantage is the

additional memory reference required to access each word.

5.3. Comparison of the Two Methods

The following chart is a summary of the two methods compared for

various properties.

Allocation Type Contiguous Block
Reference time (to one Jord) 1 2
Data movement ECompacting required i No movement needed
Waste space | Up to 504 to reduce T Breakage + Pasre Map
Ecompactiﬁg time i
User program reference . kebinding required on ! No rebinding needed

' movement of segment

b

We note that with modern associate memory techniques the extra reference
required per word for the block allocation scheme can be significantly reduced.
In fact, hardware is available on a number of computers which make the block
allocation scheme much more attractive than the contiguous allocation scheme,

We now look at an example of hardware.

5.4. Segment and Paging Hardware

In this section we describe some actual segment and paging hardware. It
is the segment and paging hardware found on the GE645 computer. Other computers,
notably the IBM 360/67 have hardware which is practically identical to that
which is described here. A hardware address is a pair of 18 »it integers.
The first integer {s a segment number, the second integer {s a wo:d number
within the segment. This allows 218 segments and 218 words in each segment.
The segment number is used as an index in & descriptor table. The word

number is further split into two fields. The high order B bits s the page
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number and is used as an index in a page table. The low order 1) bits arc

the word number in the page specified by the tirst 8 bits. Figure 4
diagrams these relatiouships.
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Figure 4

The en:ry in the descriptor table contains the address of the beginnirg
of the page table. The entry in the page table cuntains the address of the
teginning of the block in which the page is stored. The absolute address of
the referenced word {s then A = g+Wg. Although the descriptor table and the
page table are required to be stored in core memory the mapping is applied
automatically by the hardware on ecach reference. The user and the system,
in general, may not refer to information in any other way, i.e., every refer-
ence to memory is a segment-page reference., Thus the hardware implements an
address mapping from a segmert space consisting of segmént numbers and
locations into a linear address space consisting of a set of contiguous

locations éddﬁessed by a single integer which is an absolute address. Note
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that when using this hardware the location stored in the directory entry is

the segment number, S4, rather than the base of the page table, «,

r 5.5. Core and Segment Management

3 We postulate two modules, core management and segment management. They
are responsible, respectively, for the management of core memory (i.e., the
linear address space) and the managment of segment numbers (i.e., the segment

address space).
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The core manager has three entries: create, delete, and alter., The
create entry will find a sufficient number of blocks for a segment of length
N and a page table to go aloag with it. It bullds a page table with entries
pointing tc the blocks assigned to the segmeat and returns the address of the
page table. The delete entry will relcase to free storage the space pointed
to by the entries In a page table whose address is its argument. The alter

entry will either obtain or rclease space and alter the page table to reflect
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the change in length of a segment requested by the entry.

The segment manager also has three entries; create, delete, and alter,
However, at this level we are working with segment numbers rather than
absolute addresses. The create entry will call the core manager to obtain
space and a page table for the segment tc be created. The next uaused
segment number will be assigned to the segment. A descriptor for the
segment will be put in the descriptor table. It coatains the absolute
address of the page table which is returned by the core manager. The segrnent
number of the newly created segment is returned by the segmint manager to
its caller. The delcte and alter entries take as arguments segment numbers
which are transformed by the segment manager, via the descriptor segment
contents, into the absolute address of a page table which is then used as
an argumert to call the core manager to have the actual space released or

obtained.

6. Maprinz Between the Hierarchy Name Space and the Segment Address Spac:

Ve nov discuss the mapping between the hierarchy name space of tree
names and :he segment address space of segment numbers. Stated in another
way the problem we arc discussing here is: given the absolute tree name
of a segmeat, such as ROOT.X.Q.Z, obtain the segment number of that segment.
The preblen conceptually is quite simple, in the sense that the segment
number for the named segment appears in the directory entry for that
segment. lience, all we need to do is find the apprupriate directory entry.

Let ur review briefly the functicns which the directory manager module
can perforn: for us. The directory manager has a number of entries. Each
entry always has one argument which (s the segment number of a directory
upon which the function i{s to be performed., The functions are:

a, Create, which adds a new entry to the directory.

b. Delete, which remeves an existing entry from the directory.

c. Aiter, which modifies the contents of an entry in the directory

{such as changing the name or the length of the segment).
d. Ccpy, which copies the information from the directory entry.

e. List, which makes a list of all of the entries in the directory.
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6.1. Directory Search

Each directory is in fact a separate segment. In order to refer to any
information the hardware processor must have a segment number. Hence, in
order for any program, such as the directorv ianager, to refer to a directory
it must have the segment number of the segment containing the directory. This
recursive situation, i.e., the directory manager being the only program which
can find a segment number needing a segment number in order to find one, is
broken by having one fixed segment number in the system, namely, the segment
number of the r.ot directory (ROCT in figure 1).

The a'gorithm then i{s as follows: We use an additional moduie called
search control which calls the copy entry of the directory manager. See .igure 7.
Given the name ROOT.X.Q.Z, search control calls the directory manager three
times in successfon. On the first call "e arguments are the segment numbey
of the roe: directery, which is known, and the name X, The dircectory manager
returns the segment number of X. The directory manager is then called with
the arguments, the segment number of X and the name Q. The segment number of
Q) {s returred. The {inal call to the segment manager has the arguments, the
segment number of Q and the name Z. The segment number 2 is returaed.  Search
control is then able to return the scgment number corresponding to the segment

name with tree name ROOT.X.Q.Z.
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6.2, Linking of Procedures and Dats

Any svstem which permits separately compiled or assembled procedure
segments tc reference each other symbolically must provide a fsciiity for
linking these separately compiled segments together, either before execuiin
begins or during execution. In order to achieve this linking at some time
other than compilation, the compiled procedure needs an appendage which contains
information regarding the .ymbelic names of the segmentr which are referenced
externally. If & refecrence is made by a procedure to another procedure sepment
named, ROOT.LIB.YRIG, this symbolic name must be contained somewhere in the
output of the compiler.

We hav2 becn speaking so far about symbolic references to segments wh-.ch
ultimately cesult {n a segmont uumber. Most programmers are {ailiar with
the concept of symbolic veference to locations within other segm nts. This
feature is (rovided in moust lvaders today. We sec that basfcally the probiem
is n» diffe-ent for this case then for the case where just the name of a segment
is symbolic. Our appendage produced by the compiler must also contain symbolic
information for any external references to locations within other segments.

In the previous example. we probably would be referring tn a specific subroutine

within the segment ROOT.LIK.TRIG. Suppose it i{s the sine subroutine and

the symbolic name of the entry peint within the segment is SIN. The complete

e
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source language reference might be ROOT.LIB.TRIG$SIN. This implies that

the appendage produced by the compiler which compiles the segment ROOT.LIB.TRIG
must contain a definition of the symbol SIN. Supposing that the entry point
were at relative location 42, the appendage would contain the pair (SIN, 42)
defining the symbolic 1lr.ation SIN. This concept of an appendage containing

the necessary information for symbolic references to external segments and

the definitions of symbols within the segment which may be referenced externally,
should not be new or strange to anyone familiar with the loaders found in most
modeérn operating systems.

As mentioned earli.er there are two times at which linking can logicaily
take place. One is before execution and the other is during execution. The
typical loader in most systems does pre-executicn linking. All of the
segments which are needed to execute the program are linked together before
execution begins. In many systems this is called loading. 1In earlier days
the loader usually lead directly to execution. Recognition that the function
of linking a separate process which need not lead to immediate execution can
be se2n in the terminology used in 0S/360 where the loader is now called the ;
link editor.

A loader operating in the environment which we have been discussing would
build a tatle containing each of the symbolic references. Search control wculd
be called once for each name in the table to obtain the segment number of the
segment. This segment number would be added to the table entry for the
symbol. Using the known conventions for the location of the appendage to
the segment, all of the symbolic locations within segments would be looked
up in the appropriate segment's appendage. These definitions would also be
eptered into the symbol table. Finally, all symbolic references would be
replaced by the appropriate segment pointer, i.e., by a pair (S#,W). i

Pre-execution linking has a number of disadvantages which have motivated
the dynamic linking facilities which are available in the new, large informa-
tion and computing systems like Multics and TSS/360. The major disadvantages
vf pre-execution linking are:

1. Many segments which are never used may have to be linked together in

a large complicated program complex.
2. 1In the system of the ty » we are discussing it is difficult, if not

Impossible, with the tempc of interactions and the continuous




e

R.M. Grzhan: File Management Page 20

progression frem command te command to determine w“en execution

bugins and when it ends. In fact, it is impossible to subdivide

ar interactive conversation program intc loading and execution

ptiases in any meaningful way.

3. Names of segments which are tc be referenced by a procedure are

of'ten not known until after esxecution begins. 1In fact, they may

be input data to the program which is execuiting. Censider, for

example, an edit pregram or a cempiler. These programs de not

know the names of the segments they are geoing to refer to until

they begin execution.

Dynamic linking (during execution) is not conceptually more difficult

than pre-execution linking. A procedure which is going to b2 dynamically
linked is fixed by the compiler so that the first time it attempts to make
an external reference, a fault will occur. The appendage which includes
the symbolic name of the external reference is includea along with the prccedure
at executisn time. The fault handler for the fault which occurs when the i
first reference is made, establishes the link at that time. Hence, this ?
fault handlexr is called the linker and the fault is called a link-fault,
The linker. using information given to it by the hardware when the fault
occurred, is able to work its way back to the procedure which caused the
fault and {ind the symbolic information necessary to define the external
reference. Using this information, i.e., the tree name of the segment being
referred tc, the linker calls search control to obtain the segment number of
the referenced segment. The linker than replaces the faulting reference with
the appropriate segment pointer and restores the machine conditions. Execution {

then contirues at the point the fault occurred.

6.3. Local Nanmes

It is highly undesirable tc require the user to always use absolute tree
names in writing his source language program. The user is usually working
in a well cefined context within which local names can easily be interpreted.
For example, the names of any referenced segments which are nct in his user
directory should be interpreted as system library procedure names,

Let us modify the linker so that it is able to deal with local names.
In order t~ achieve this we ne2d to interpose between the linker and search

control a mocule which expar:ds the local nsme into an absolute tree nams
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This module uses as its principal data base a set of context rules which are

used to transform local names into absclute tree names.
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The simplest kind of context rule is simply a directory name in which to
look for the local name. Thus a set of context rules would be a list of
directory names. The mapping in this case is quite simple. The first directory
name is prefixed to the local name, making an absolute tree name, This trece
name is passed to search control in an attempt to find a segment with that
name. If s2arch control is not successful, the next directory name on the
list is prefixed to the local name. Search control is again called to see if a
segment can be found with the new name. This process continues until the
list is exhausted. If no segment was found i{t is assumed not to exist and
appropriate error action is taken. An example list of context rules begins
with the name of the working directory. This is a directory declared to the
syctem by the user to be his home directory, 1t is usually his user directory
or one of his project directories, The second directory on the list would

be the system utility library directory. Succeeding entries on the list

might be other system library directories. The user must be able to control
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this list of cortext rules; reorder them. add to them, or delete from them.
For example, the user may wish to include several of his own private library
directories between the working directory and the system library director:es
on the !ist., The definition of context can be wade more flexible by allowing
gonditional rul:s, iteration, etc. 1In other words, the context rules can be

expressed 4s a program in a simple language.

6,4, Local Associative Memories

In any complex of programs it is highly probable that more than one
procedure will refer to a given segment. Each such reference initially
requires the invocation of the linker, an application of the context rules,
and a number of directory searches., It is possible to avoid these .dditional
directory searches and context rule applications if the linker maintains a
table whose entries consist of local names and their corresponding segment
peinters. The linker then searches this table for a local name before
calling local name expansion. If the local name exists in th}s table thexe
is no need to make any further calls. If the local name can not be found in
the table its segment pointer is obtained by calling local name expansion.
The local aame along with its segment number are then entered in the table.
We call thus table a local associative memory since it is used in essentially
the same wuay that *he hardware associative memory is used in remembering
references to segment numbers and page numbers. The table may be of limited
size and irfrequently referenced entries can be deleted to make way for other
entries which are more frequently referenced. Thus, the most referred to
local names will be in the table. A future reference to a local name which
gets deleted from the table will work correctly but will just take a little
longer, as long as it did the first time it was ever referenced.

There is another place where we can use this technique, 1. b control.
Search control can maintain a table whose entries are trec names with their
corresponding segment numbers. We can make a significant gain in efficiency
by using this table if we change slightly our search algorithm. We change
to & recursive type search, i.e., we work from right to left in the tree name
rather thar from left to right as was previously done. The rule for a recur-~

sive type search is: peel off the rightmost component and see if what remains

is ROOT, if not, call search control. This is a recursive call to get the




R.M. Graham: File Management Page 22

segment number of the prefix which we have retained. The prefix which we
have retained is, in fact, the name of the directory in which we expect

to find the segment whose name is the rightmost component, Applying this
algorithm to our previous example we would make in total three calls to
search control. The original call would be a request for the segment number
of ROOT.X.Q.Z. The second call is by search control to itself requesting
the segment number of ROOT.X.Q. The third call is again a call by search
control to itself requesting the segment number of ROCT.X. This is the last
call since we are left with ROOT when the rightmost component, X, is
removed. The segment number of root is built in. Now we are able to search

the root directory for X.

Sequence of calls to and returns from search (for tree name ROOT.X.Q.Z)

input argument segment poinker returned
1%% (original) call ROOT.X.Q.Z -
Zd call ROOT.X.Q -
3d call ROOT .X -
return from 3d - X4
returr from 2d - Q4
return from lSt - Z4

Contents of associative table after above sequence of calls

tree name segment number
ROOT ROOT# 4— this is a permanent
ROOT.X X¢ eatry
ROOT.X.Q Q4
ROOT.X.Q.2 24

Figure 9

The recursion begins unwinding at this point and ultimately we reach
the segment number of Z. After this search is performed our table will
contain the entries shown in figure 9. If search control consults this
table before calling cither itself or directory manager, any subsequent calls

to search control for the segment number of ROOT.X.Q.Z will produce Z§
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immediately., No further calls are required since ROOT.X.Q.Z will be found
in the table. In addition, we also gain when search control is called to
search for the segnent number of any segment in any directory which has
previously been referenced. For example, a call to search control for the
segment number of ROOT.X.Q.W would proceed as follows. ROOT.X.Q.W would
not be found in the table, the rightmost component would be removed and
ROOT.X.Q. would be found in the table, Thus, we obtain the segment number
of the directory in which to search for W immediately without any further
calls.

The use of software local associative memories is fairly common in a
large system such as our medel. It should be emphasized that the use of
local associative memories adds no new facilities. They are used
strictly for the purpose of greater efficiency. Often the use of such a
feature is not explicitly realized although it is used. Hence, the
mechanism of the software associative memory is confused with the concepts
which are being implemented. Sometimes it is not clearly recogrized, even
by the designer of the system, that the capability of the system would not
be restricted even if a much simpler but less efficient glgorithm were used,
We are not impling that systems should be implemented without the use of
such techniques. However, it is our feeling that systems should initially
be designec without the use of such techniques so that the designers can
focus clearly on the essential facilities to be provided by the system.
Questions of local optimization should be treated later when they do not
confuse the fundamental structure or fundamental problems that +the system has

to deal with.

7. Controlled Sharing of Segments

In stating the objectives of »ur model we saw that they implied the
necessity of being able to share information which is deposited in the systvem.
in this section we explore the implications that this ability to share
information has on the structure and working of the file system. We further
examine how sharing of information can be controlled so that the privacy of

cach user can be guaranteed.




R.M. Graham: File . 'nagement Page 25

7.1, Basic Requirements

First we state two fundamental reguirements in order for any control of
access to information to be effective,

a. Authentication of user identity. It is absolutely critical that the
system be able to authenticate the identity of any user who approaches the
system. If one can approach the system, pose as another user, and be
accepted by the system as that other user, then the system can not enforce
any effective control on access to information in the system. An effective
nethod of 3authenticating the identity of the user, which is secure enough in
most cases, is for each user to be assigned a password which he and he alone
knows. If he is unable to supply the password the system wiil not accept
him as who he says he is.

b. Restriction of the use of hardware instructions. It is absolutely
necessary that certain of the hardware instructions be prevented from being
executed in user programs. The hardware must have the equivalent of a
system mod2 and a user mode. In system mode all instructions may be executed.
In user mode only a subset may be executed. If a user is able execute all
of the instructions then he can get any of the information stored in the
system simply by programming the proper sequence of input/output commands
for the Jisk. The-e instructions must be blocked from execution in user

mode. In system mode all instructions are execttable because the system

c———

must be able to read and write information belonging to the user on his behalf.

Additionally, there must be some hardware partitioning of memory so that the
user is unable to modify the system programs themselves, Otherwise he could
make changes in them which would allow him to circumvent all of the other

protection features in the system.

7.2. Software Considerations

For the purpose of controiled sharing we are going to let the owner of
a segment designate who may share this segment. In addition, he specifies
what kind of access is permitted for each of the users who may share fit.
(Note: 1If the owner himself is included in this access specification he has
some sclf protection.) The kinds of access permitted and specifiable are:

read, write, and execui:, or combinations thereof.
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r Additional information must be added to each directory entry. The

additional information required is:
a. Identification of the owner.
b. £An access control list (ACL).

The access control list is a list of pairs of the form (user_id, access).

y v -

The user id is either the name of an individual or the designation of some
group (which may be everyone). The access is either read, write, execute,
or a combination thereof.

Each process has a small private data base which contains informatioa
which is peculiar to that particular process. The information includes
such things as: who owns this process, the time logged in, the account
number which charges are to be charged against, etc. In a sense, these are
the machine conditions of the pseudo-processor. Whenever the file system
is asked to reference a file the access control list in the directory entry
is checked. If the owner of the process which is currently executing, and
hence making the request, is not on the list, or is not included in one of
the group designations on the list, then the file system will refuse to

manufacture a descriptor for the segment.

7.3, Hardvave Considerations

This 'eads us to the point where it should be clear that in order to
inforce access control some hardware help is required. First, since the
hardware c:nnot reference any information except by a segment addressing,
if there i. no descriptor for v segment in the descriptor table a process
is unable :o make any reference to the segment. In order to inforce the
type of access, once it is known that access {s permissable, we need some
additional information in the descriptor. The additional information
nceded is the kind of access (i.e., read, write, or execute) which the referee
may have tc the segment. By using different descriptors, different users may
access the same segment, but with different privileges. In the diagram the
owner has read and write access and the sharer has only read access. The
absclute address in the twu different descriptors points ro the same place,
namely the page table for the segment. Notice also that we have added a

length fieid in the descriptor so that the hardware nay nrevent references

to non-exictoent pages., To summarize, cach process then has {ts own priv. te

—————
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descriptor tabhle, which is pointed to by the descriptor base register. As
a result of this each process can have different descriptors, each process
may have different access to the same segment, and each process may have
different segment numbers for the same segment (which aids allocation of
segment numbers). Finally, a process may not access any information other
than that which is reachable through descriptors and the descriptor table,

even when using machine language instructions.
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7.4. Immediacy of Sharing

There are two degrees of immediacy of sharing. When designing a system
such as our mode]l we must decide which of the two degrees will be permitted.
The first degree is to interlock the entire segment while any user i{s modifying
it for the entirc duration of his modifications. Anyone attempting to read
the segment will have to wait until the segment is released by the writer. 1In
order to capture a sugment for writing the writer has to wait ntil all users

who are reading the scgment have released it. The second degre is one in
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which interlocking is left upt to the users. This degree of immediacy is
sufficiently broad so that the previous degree is a special case of it. Tf
the previcus choice is made, then one does not have the alternative to
implement, as part of the system, the second degree of immediacy. We

choose, as was implied above, the second degree. This is made possible
because of the ability to have multiple descriptors for the same segment.

The system will of course supply some utility routines to assist the user in
managing tae interlocking of portions of data segments. However, no
presumption is made by the system that one particular interlocking discipline

is better than another,

7.5. Sharing of Procedures

The sharing of procedures has further implications which we now explore,
The ability to have pure procedures (i.e., ones which do not modify themselves),
especially when they are system procedures or popular commands, gives a rather
significant payoff in terms of space saving. It is a fact, however, that most
procedures need some private data in order to function properly. One comnon
example of private data are links to external segments. Recall that the
environment of a process provides a private data area for procedures. It is
to be expe.:ted that if several processes are sharing the same procedure
segment the rivate data required to make that procedure segment function
properly for each process will be different for each process. MHence, one
implication. of the sharing of procedures is that the private data area will
have to be duplicated for each distinct process sharing the segment.

The privat: data arca in the environment of the process is then private tc
the proces;, as is the stack and the pseudo-processor machine conditions ‘hich
were mentioned earlier.

The {nformation nceded to make up the links which are part of the private
data area arc an appendage to the procedure and we wish to have only one copy
of the procedure, Her.uo, the linker is faced with an additional chore. When
establishirg a link to a scgment for & first time the linker must make a copy
of the apptndage, which is a template of the procedure's private data area,
into the private data arca ¢f the process. The private data area of the process
is sometim:s called the linkage segment. The standard calling sequence used

te call procedures is designed to maintain a hardware base repister which
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always points to the appropriate private data area for each procedure while

it is executing.

In additioa, the standard calling sequence also maintains

a base register pointing to the stack area available to the executing

procedure,
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8. p.giﬂs

So far we have assumed essentially unlimited core memorv, We have proceeded
a long wav in our discugssion of the problems of a f{le svetem: managemant of the
hierarcliv, mapping between the hardware sesment address space and the hierarchv
name space, and several other topi:s. We now ddscard the assumption that memorv
is essentially unlimited and examine the consequences of core memorv heing quite
small, Remember that information must be In core memorv in order for the processor
to use it, Thua, the file svsrem, as we view it, must he concerned not orlv with
the mapping becween the hierarchv name space and the segment address snace, it
mugt also be concerned with the movement nf information between the file remories,
such as, disk, drum, etc., and core memorv where it can be directly referenced,

One simple, straightforward solution to the problem of a iimited amount of
core memory is to restricct the user address space to be onlv that size and force
the user to reuse the addresses, This forces him to propram all of the memory
allocation, This has been the common solution in the past, Svarems which choose
this solution usuallv have a feature calied chaining or overlavs, All these
facilicies do 13 to help the user manage core memory, especiallv the i{nter:lange
of programs berween the core memorv and the disk or drum, These facilities
typicallv provide no help in the management of the program's address space, we
reject thir solution for the followin;; reasons:

1. The user has to bYe concerend with the details of address space management.
Our philosonhy in building ever mnre comlicated svitems is te provide more and more
services for the user. makine the svstem more convenient for him to use and re-
1{eving him of concern for p:oblems which are not basicallv part of the problem
he 1s seeki:ig to solve,

2, Th» user will probhably not do an efficient job of memorv allocatien,
In fact, in a time~-sharing, interactive environment the user cannot do & rood f{oh.
Given the frequencv of interaction, the reasultant rapid movement of user informa-
tion in and out of core memorv {s required in order to achieve a suitable respunse
time, In this stftuation the user {s unahble te predict when or how to move his own
informat{on around. The svste~ mast work with a global view of all activitv in
the svatem,

3. All users can benefit from the sonhi{sticated memorv management alrorithm
which the svatem designers are ahle o immlement, Further, thev need not pav the

price of having cooies of their own manapgement algorichms which, althouch thev mav
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be equally sophisticated, will not be sipnificantly petter,
4, 1If the svstem is responsible for the management of all memorv, then when
the size of memory, the type of memory, or the file memorv devices are changed or
modified in such a way that a change in tactics is required, onlv one nrogram,
namelv the systcm memory management program, need be changed. The user programs .

will continue to execute unaware of the change having taken place, ;

8,1 Models of Prqgram Behavior

We are going to discuss some memorv management techniques and some of the
conslderations that go into the design of a memorv management algorichm, Firat,
we look at two models for program behavior. Tn order to design a reasonable
memory management alporithm we must have some model, some idea of the behavior of
programs in general, TFor the purpose of discussing the twc models; lec us suppose
that (Nen) words of bulk (B) memory are available with access time (to an individ-
ual ' T and n words of local (L) memory are available with access time t, with
t<<T and a<<N,

Our first model {s oine of completelv random 2ccess, We assume thar the

np——

probabilicy that any given word will bve refaremced next iz the same for every é

word in memorv, We arxe ;nnetésted in two probabilities: the probabiiicy that 2

the next reference will be in local memory,which is P, = %-and the probabilicy

that the reference will be in bulk memory,which is FB =i %5 We see¢ that che ;
a.!l 1-;“. n 4 g

average time for a reference is Tref FEt (1 N) T. Tigure 12 shouws Tref

plocted.as a function of the size of the local memoery while the total memorv

gize is kept fixed,
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We see thar Tre is largest when ail of the memorv is hulk memorv and smallest when

f
all of the memorv i{s local memorv. Let us look at the case for a tvpical svstem
exigsting todav, Common sizes are, n = 128K (approximatelv 105) and N = 10 million

(approximarely 107). Common access times are t = 1 microsecond (approximately

10-6) and T = 1) milliseconds (appreximatelv 10-2). Using these valueg we see,
5 S
T =3 1070+ (1 - 2 1677 =~ 9.9 milliseconds
ref 10 107

a rather high average reference time,

In this model there 18 no corrclation betwzen successive references. In
general this 13 never true for an actual program, hence, this model represents che
wordt possible case, Anv program which executes verv lonpg has loopns in the program,
Furthermore, ingcructions usuallv follow in sequence, thus rhere is a high praba-
biiiev that, after having referenced one word in a nrrocedure, the word in the
next sequential iocation will be referenced next. A loop tends to co  -=entrate
the references in a email area of the propram for some substantial period of tirve,
Ancther propercy is that manv data manipulations deal with contiguous blocks of
data, o,g%., matrix and vector operations, table searching, and text editing, This
again increases the probabilicy that the next reference will be to a word which
is contiguous with the previcuslv referenced location. Again the references over
a pericd of time will be concentrated in some area, Thus, both procedure and
data tend to concentrate references in some small area or areas.

Ve atate this fact of program behavier as the principle of localitv: The
next reference 13 most likelv 1o he to a word near one which has recentlv heen
referenced, Ler At be some small time interval, Figure 13 shows the frecuency
of reference plotted agiinst vemory location, For the random medel we see the
frequency of reference is evenlv disrrihuted across the entire memorv with very
licele variacion, The actual gsituation is more like the second gransh in which

there are a number of peazks which are areas of frequent reference,
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In the second model we collect all of the words with a hish frequencvy of
reference into the local memorvy. We further assume that k references to local
memory are always followed bv one reference to bulk memory., Our formula for
the average reference time is

- ke+T

Tref k+1

In figure 14 we have nlotted Tref against the size of the local memorv for

At = k+1, We notice that the curve for n = 0 srarts at T and slopes down quicklv
to an aversge reference time of just slightly lonper than t when M = k. Yncreas-
ihg the size of the local memorv hevond k decreases the average reference time
very litcle, We conclude from this that {f the local working memorv is laree
enough to hcld the frequently referenced information then little gain in over-
all average reference time is achievad by makine substantiallv more memory aviil~
able, We define the wcrking set to e the collection of words which are referenced
during a time period At, Thus, we see the average reference time is quite de=
péndent upon the working set being small enough to fit into local memorv cr
alternativelv, the local memory being large enough to hold the workine ser., Of
courge the working set changes with ¢ime as the reference pattern chanpes, Thus,
in order for our storage management to be effective we must design the alporichms
so they adopt te changes in the working set insuring that on the average the
working set 18 in local memory, This is the problem in paging; namelv, when are
pages brought inte local memory and what pages do we push out to make room for
them, Given a particular model of program behavior it may be possible to find an
optimal algorithm for making these decisions based on that model, However, at

present no single model seems to be good enough,
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8,2 Paginp Techniques

One technique which does work rather well in nractice is demand pagine, The
avatem assumes that the working set is contained in those pages which were most
recently referenced bv the process. Hence, whenever a new page, one that is not
currently in memorv, is referenced it is added to the working ser: rthar is, f{t
is paged into local memorv. No attempt is made to rage in anv page before it
i referenced; this is because there is no reasonable wav for the gsvstem to pre=-
dict which rapes will be referenced in the near future if thev have not been
refaerenced in the near pastc,

In order to make this kind of prediection the system would have to knov more

about the structure of the nrogram, particularly with resmect to the flow of

control through the program, Tt might be possible to make this kind of nredicrion

in the future with some assistance from the language processors. If a languase
orocessor ware able to consctruct a skeleton of the control flow and include wich
it information about the frequencies of loops and the transitions from one part
of the program to another, ir is conceivable that this would be sufficient for
waking valid predictions, However, flow analvsis of existing languages is at
best difficulr, Thus, it seems unwise to build a system around this predictive

puging decigsion without a great deal more studv of propram behavior models.

Demand paging is a page-in technique., As a companion of anv page-in algorithm

there must be an algorithm for replacement (or page~out). A replacement algorithm

must decide which page to put out when more space is needed in local memorv,
Using the working set concept, we assume that page which was referenced longest
ago 1s no lon~~+ part of the working set. It is the firsr randidare for paging
out, Again wi..out mere information about the program's behavior this is proba-
bly the best that can be done.

Within the framework of a system with manv interactive processes, other
considerations for paping in and paging out may actuallv be more significant
than the question of which page to page in and which pase to page out within a
single process during its execution, 1In our model with manv users and manv
processes simultaneously active, it is exnected that control will be wwitched
racher rapidly from one process to another; hence, the processes are in competi-
tion for local memorv, each needing enough local memorv to store its working set
if it is going to execute rapidly enough vo respond in a reasonable time, The
local memorv must be large enough to hold all of the working sers of all of the

processes which are currentlv being executed bv anv of the processors, Further,

it must be able to hold the working sets of all nrocesses which are candidates
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for executing next. The local memorv should be able to hold the working set of
all the processes that are on the readv or running lists, Otherwise the follow-
ing problem arises,

A process needs a new page, While waiting for the page to arrive it goes
blocked, The traffic controller now attempts to execute the next process on the
ready list; If this process's working set is mot in core, the svstem wili
have to page in a nage before being able to execute the process. In general,
the system will need ro page out a pape of the process which it just blocked
in order to make room for the new page of the next nrocess, While the new nprocess
is waicing ior a2 page of the old process to be paged out and its page to come in,
the required page of the nld process arrives. The old process now resumes execu-
tion, but, immediately references the pape which just poct paged out, To make
room for this page, a nage of the new nrocess gete paged out, Around and around
we go, This is thrashing. It can be avoided onlv bv having enough local memorv
to hold the workine sets of all the processes that are on the readv and running
lists,

What about processes that are on the blocked list? There are three considera-
tions here. First, 1f it's blocked waitine for a pase to come in we certainly
don't want to put out any of its papes unless we absolutelv have to, Second,
if the process is blocked waiting for tvmewriter input we know the tvpewriter
response is relatively slow, in the order of seconds, even if the user at the
tvpewriter console can react very fast, All pages belonging to this nrocess that
are currentlv in local memorv are excellent candidates for pape-out since thev
will not be needed for some time, Third, when a process interrunted bv the system
because its time slice was used up, is restarted its working set is probablv the
game working set that it had when {t was arbitrarilv terminated bv the svatem,
Hence, some prepaging at this point is reasonable and the working set should be
restored to local memorv before startine execution of the process,

Two further ohservations should he made. There are some pages that can not
be paged-out at all, e,sz.,, the papes conraining the paging nrocedures themselves
and interrupt handlers, Secondlv, pares which are unaltered need not be written
out, In other words, page-out of a pape which has nct been modified since it was
paged in consists of returning the block to the free storage and marking the pape

as having been paged out, The next time the pape 15 referenced the page=-in

consists of rereading tha oriminal cony.
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8,3 Hardware Considerations

™ order to implement the techniques of cthe last paragraph, we need to expand
the page table word to include some additional fields. The page written field {s
set bv the hardware whenever a store oneration refers to anv word in the pare,

The page reference bit is sat bv the hardware whenever a reference of anv kind

is made to the page. The page missing bit is set hy the software ro indicate that
the page is no longer in core. The field which conctains the absolute address of
the page when it's in core is used to indicate, indirectly, where the pape was
stored in secondary memorv, Its contents will be used as an index in the file
map for the segment, The file map is a table indicating the location of each

page in secondarv storage,

Anv attempt to reference a pare when the missine nare bit is set causes a
faulr, The fault handler is the paging program, The paeing program, using tche
fault information finds the information describing the location of the page in
secondarv storage, finds a free block in core, and sets up a request to read the
page into that block, Once the request is started, the process is blocked until
the page arrives so that some other process can use the processor, When the process
awakens the vage will h- e been read into its assiymed block, The pnager then puts
the absolute address of the block into the page table word and clears the reference
and written bits, Contrnl 1is then returned to the place in tne program where the

page fault occurred,
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8,4 Memory Swapping

We mencicn at this point an alternate method of memorv management which has
been used in several gvatems in the past and which still receiveg considerahle
support: the complete swap, 1In the complete swap, all of the program and data
for a user {s swapped out whenever his nrocess stops execution and all of the

program and data for the next user is swapped in before he starts execution,

—————
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This method enjoys the advantage that it is verv simnle te implement., On most
of the older hardware 1t 1s also rather slow, however, some of the modern hard-
ware alleviates this nroblem with gpecial design which makes swapping verv rapnid.
The method suffers two significant disadvantapes:

Much more information is moved than is needed to be moved. With the
paging algorithms described ahove it is zlear that a large nart of the data and
program in a large program complex is not in memorv much of the time and is never
read into memorv except when it is needed. The counter argument in favor of the
complete swap is that this movement of redundant information reallv costs nothing
since the entire swapping process 18 so fast., This mav be the case in terms of
speed if the hardware file storage devices are sufficientlv fast, However, this
prcbablv results in higher cost for the hardware., The second disadvantage is that
the complete swap method makes flexible sharing impossible or difficulc enough so
that it is practically impossible. Flexible sharing denends unon the users'
phvsical information being fragmented i{nto small enough entities so that thev can
be moved around at different times rather than beine welded together into a single
plece all of which must be moved ar the same time., It is clear that flexibhle
sharing mav result in manv users sharing one segment with small subsets of these
users sharing disjoint sets of segments, until the pattern of sharine becomes
quite intricate and complex., The onlv pnssible wav to permit this kind of sharinge
is to phvsicallv fraement the information. The senarate segments can then be moved
in and out of local memorv based on their usage, rather than based on the status

of anv particular user of a segment.

8,5 Management of Multi~level File Storage

We have been looking so far at the movement between local memorv and the first
level of secondarv storage., As mentioned earlier, secondarv storame actuallv comes
in a number of different levels, Local memorv is usuallv core memorv, The first
level of secondary storage is either drum or large core storase, Since both drum
and large core storame are roo small to store all of the files in the svatem
additional levels of memorv are necessarv and must be used bv the svstem for
storage of information. The next level 1s ordinarilv disk., The level bevond that
would be tape, datas cell, or some other similar device,

A decision algorichm is required for the movement of information between
each pair of levels., We have looked onlv at the decisinn alporichm for the move-

ment of informat{on hetween core memorv and drum, It {8 not our intent here to
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discuss decision algorithms for movement between the other levels, We will simplv
state a philosophical princinle which can be used for suidance in determining

the algorithms, The principle is that the oldest informacion, in terms of last
reference, should be stored on the slowest device, So, in a sense, the movement
algorithms are acttempting to order the information on the various devices 1n such
a way that the information which has been most recentlv referenced is stored on
the fastest access device and information which is the oldest 1s stored on the

slowest dev:.ce,

9. Address Space Mapping and Paging Combined

Let us look at the comnlete picture of the management of the hierarchv name
space, the management of the segment address space, the mapping between them, and
local memorv management (naging) which we have jusc discussed, A directorv entrv
now contains the following information:

(a) name of sepment

(b) length of segment

(c) cvpe of segment

(d; access control list

(e’ location ol seement

(f. date segment created

(g) date segment was last used

(h) dare sepmen: was last modified
The locatinn in the directory entrv 1s no lonper a simple segment number, since
segments mav be ssored on a numbher of dffferent devices, If fr is stored on disk
or tape th: location will consist of che device i{dentification and other informa-
tion which locates the sesment on the device. The last three {tems, which are

dates, are new items that are needed {n order to imnlement the movement algorithms

between cthe various levels of storape, Figure 16 shows a flow diagram of the i
various pileces of the file svstem which we have discussed., The circles are data
bases whict the modules reference. The flow diagrram represents the comnlete

file gvstem which 1sa active whenever a nrocess is being executed, That portion
of the prorram which {mplements the mnvement bectween disk and tape is a senarate

part of the svatem which we will look at in the next section of these notes,

7.2 Segment Address Space anagement

Management of the segment address space 1s somewhat more complicated than
the simple picture presented earlier. The argument to the sesment address manager

{3 the seegrent nointer to a directorv entrv for the sesment that {8 to bhe activated,
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The action of the gegment addresas manaper is as follows:

(a) Build a descriptor for the segment using the access control informacion
in che directory entrv, FEnter the descriptor in the descriptor tahle, therebv
assigning i1 segment number,

(b) Call the memorvy manager who sets up the page table for the sepmert and
[ f11ls in the page table entries. Initiallv all the entries in the page table
will have the missing page bit setr, since none of the pages are presentlv in core
memory,

(c) Build a file map which indicates the locatd¢on of each page in ge:ondarv
memory,

(d) Scart anv information transfers which mav be required,

(e) Return the segment number to che caller,

A strategv question arises with regard to the movement of a segment which
is stored on the disk into core memorv. The particular strategv depends on the
specific hardware: the transfer time between disk and core, the transfer time berweem
drum and cire, and the number end nature of the transfer paths. 1In the tvpical
modern computer confipuration it is nrobablv best to page a liphtlv referenced
segment directlv to and from the disk, while a heavilv referenced sesment should
be paged to and from the drum. It probablv {s unwise to beein an en masse move-
ment of tha segment from the disk when it 1is first referenced for the same reason
that prepazing is ineffective, However, if the segment is stored on tane action
to retrieve the segment should be initisted immediatelv,

One fur'cher problem arises, A process mav reference ennugh different segmencs

that local memorv gets filled un with nase tubles, It {s clear that we need a

way to get rid of page tables, the page tables for segments which have not been
refarenced in some time, Tf a sepment has not been referenced in a long time all
of 1its pap2s will have been paged out, Clearlv, there is no need for the page
table until the segment is referenced again, Hardware assisctance is needed. The
segment dencriptor is extended to include a missing sesment bft., WYhen the missine
segment bit is set the pace table mav be discarded., If an attempt is made to
reference u segment wh 'se missing segment bit is sec, the hardware will generate

) a missing segment fault, The fault handler for the missing sesment fault will

; reactivate the segment by building a new page =. ... *or the segment and a file man,
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10, Backup and Retrieval 1

In this section we discuss the followiny nroblem. No hardware device and

especiallv no sofrtwvare svstem 1s totallv and continuouslv reliable, The question

then arises: What do we dno when a malfunction occurs? Presumablv we wish to {
pick up the pieces as hest we can, restore service as soon as possible, and mini-
mize the amount of lost information. The malfunccions range from complete dis-
truction (e.g., all of the disk platters are scored) to minor destruction (power
failure, minor hardware or program bug) where most of the information i{s intact
and only a small amount is lost. To recover from anv in. ormation loss, backun
copies of all the information {s required. Lost {nformation {s then restored

from one of the backun cories,

10,1 Complete Dumping

A straightforwvard solution to the problem is to dumn evervthins on tane one
or more times rer dav, When ctrouhle occurs evervrthineg is reloaded, This solurion
has s number of disadvantages. It reaquires an excessive amount of time to dump.
In CTSS on the 1BM 7094 with more than 30 million words of disk storare used,
the required time was 4 to 5 hours to dump. While dumping was takinag place essen-
tially noching else could be done with the computer. An excessive amount of
information must be stored in this solurion, most of it ia redundant. Again in
CTSS a complete dump required 6 to 8 reels of tane, Service can nnt be reatored
rapidlv, The reloading procedure on CT3S took from 5 vo 6 hours before service
could be rescored .-ain. Finallv, since the nericds between dumpa will have to

be at least a dav if anv useful work ia roing to get done on the computer, the

amount of informacion lost when trouble occurs {s not verv minimal, Some scheme




R. M. Graham: TFile Management Pape 42

is required which avoids storing so much redundant information, Such a scheme
will of course be more comnlicated than the simple straishtforward solution nosed

in this paragraph,

10,2 Incremental Dumping
+ Three situations mav occur which should be dist nguf‘shed when considering
the problem of backup:
(a) The situation is hopeless, the entire contents of tie disk must be re-
srored,
(b) Most of the disk is alright and onlv selective restoration is renuired,
(c) No restoration at all is required, a few inconsistencies exist which
need to be resolved.
We name these three situations resgpectivelv, reload, recrieval, and salvage, If
we are to avoid saving excessive redundant information then we must dumn onlv
informacion which has been cha.iged recently (since th~ last coov was saved),
Note that some redundancv is desirsble; saving two copies i3 not considered ex~
cessive redundancv, Tt is pood insurance apainst failure to make one of che
coples correctly. In addition to backuo, which we are discussing, we intend
to couple the last stage of multi~level file storage management with the backup
mechaniem, 1,e.,0ld Files will be kent nnlv on the backup .apes, In other words,
the last level of file astoraee {s tape, the backup copies of the files,

In an attermpt to satisfv the objectives of restorine service acuicklv and

minimizing the amount of redundant infor~ation stored we wtll use three differ-

ent kinds ¢f tapes; incremental dump tapes, avstem checkpoint tares, and user

checkpoint tapes, The {ncremental dumr tapes are written bv a svezem process
| (the daemor) which {s continuallyv active (althourh it spenis much of {ts time in
8 blocked state) dumping files onto the incremental dump rane, All of the sesrments
beloneging 0 a user which were modified durine his operating session are copied
at the end of the sesslon cito the incremental tape, I[f a session runs longer
than a dav then the f{les med{fied will be conied onto the {ncremencal tane once
a dav, In addition, anv dire~torv entrtas which have heen modified durine the
session are also copied onto the incremental tape. Hence the incremental tape
comtains a copv of all Informacion which {s modified during the dav, These tapes
are created continuouslv, Figure 18 ahows the creation of incremental tanea

and svstem and user checkpoint tapes nlotted againsc time,
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Since some narts of the direcrterv hiera-: - and some of the sunervisor sepg-

ments mav not have been modified for a long time, the reload nrocess would have
to scan throuch a larges number of incremental tapes 1in order to get the svstem

stavted 1° this information existed onlv on the incremental tanes, Hence, we

need scme sort of checkpolnt tapes if we are to restore the svstem to its operating

state in a short amount of time, The svstem checkpnint tapes will contain all

the informa:ion needed to pet the svstem onerating on-line, This includes the

supervigor segmcnts themseives, the accounting allocation records, and the comnlete

hierarchv skeleton (i.e., the cont»nts of all the directorv entries)., The user
checkpoint tapes contain all the user data sesments which have heen referenced
since the last user checkpoint tane was written. Notice on the chart that the
system checkpoint tapes are writren everv few days and the user checkpoint tapes
every few weeks, These parameters are adjustable to pet the best halance hetween
fast restoration of service and excessive time spent in writing these tapes
inicially,

All of the tapes are wricten in the same format, A record on the tape con-
sists of either the trree name of a data segment followed by the data sepment
contents or the tree name of a directorv entry followed bv the information in

the directorv entry,

10,3 Reloading

The reloading procedure which is used in the case of total destruction 1is

ay follows, The incremental tapes have been written with a header record which

——

p
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centaing complete inscruccions for the reloading, including the ilentiffcation
of tape reels to be used bv the operators in erch of the following steps,

{a) Start witn the incremental tave being written at the time of the crash,
then this tape 18 loaded by the reload program it prints out, for the operator's
benefit, a list of rane reel identificarions in the sequence in whichk thev are
to b- loaded bv the reloader,

(b) All of the increme,tal tapes written gince the latert svstem checknoint
tapes sre reloaded in reverse order, that is, the most recent one first,

{¢) The latest svstem chneckpoint tare is now losded. Note that in the re-
lcading proceas as eazh incremental or svatem checkpoint tane is nrocessed no file
is loaded which is alreadv in the hierarchv, This means that the latest conv
of each file is the one that is retaiued, even though there mav exist coples of
a file on several of the incremental tapes. After this step normal on~line opera-
tion begins, The supervisor has been restored, the user account information is
present, and the hierarchv is complere. Since the hierarchv is complete, we
now have complete {nformation on the locarion, in the backup svstem, of all files
that have entries in the hierarchv. This means that normal operation can 5eein
and users who atcempt to use the svstem will be given precise status information
on anv flles thart have not vet been restored to the disk.

(d) Continue reloading ail of the iIncremental tanes written since the latest
user checkpoint tane and before the latest system checkpoint tape,

{e) Lcad the latest user checkpnoint tape,

The reloading process stops at this point, Any file which ia not now restored

has not been referenced since the next to the last user checkpoint tape was written,
This i3 true because the user checknoint tane copied all files cthar had been ref-
erenced sirce the previous user checkpoint tape., Thus, we have restored all
gegments which have been referred to within cthe past several weeks, Anv sepments
which have nct been restored by this process exist on some incremental tape., The
directorv entry for the semment has complete location information, includine tape
reel identification, 1f it should be referenced hv the user the system will
automatically recrfeve it from the approvriate incremental tape., This recrieval

is automacics The svstem instructs the operator what tape reel to mount, The

svstem then searches for the segment and relcads it without user {intervention,

10,4 Mulci=level Storage Management

It was mentioned that the backup would serve as the last stage of the multi-

level storape manarement, When the disk gets too full, we examine the oldest
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segments on the disk, After being certain that thev have been dumped on incre-

mental tape, their storage is released to the free storage pool,

Their directorv
entries are aprrcpriatelv marked.

Anv future reference to one of these segments
will automaticallv cause the sepgment to be retrieved from the incremental tape,

4ust as it was in the case of the older files which did not get relocaded after
a Jisaster,

10,5 Consolidation of Incremental Tapes

Let us look ar the life time of the various tanmes which have been creaced
bv the backup,

Only the latest two nr three sets of user and svstem checkpoint
tapes need to be saved.

More than one copv neads to be saved onlv in case a

problem arises in attemptineg to read the tape, Extra copies are insurance, The

incremencal tapes form the permanent backup cc v of seements in the svstem, These

need to he saved as long as thev contain anv segment which is known to the svsatem,

i,e.. which has an entry in the hierarchv, As time passes and months cturn into

vears, the numher of tapes that need to he saved can get verv large. There are

two wavs to reduce the number of tapes which need ro he saved,

The first method 1s consolidation,

When the cost of tape storage annroaches
the cost of execution of a consolidation program, it makes sense to consolidate
the old tapes,

e

The old incremental tapes probahlv contain verv few files which

have not been explicitlv or implicitlv delered. The consolidation program nrocesses

the old incremental tapes and compacts all of the files still known to the svstem

onto a smaller number of new tapes, These have the szme format as rhe incremental

tapes, in fact thev are indiscinguishable from original incremental tapes, The

hierarchv entries for these segments then need to be undated to reflect the numbers

of the tape reels on which the segments are now stored,
The second wav to reduce the number of tapes that need to be saved is ro

impose some absolute time limit for the retention of unused segments, perhaps a
vear 1s a reasonable time,

The user would then have to take sc.ne explicit accion
if he wished his old segments te be retained longer by the gystem,

10,6 Retrieval

The retrieval program .s a special program which restoras a given segment
from the incremental tapes,

-

The rectrieval program is used bv the file svstem to ™
retrieve segments when thev are referenced by a user after the file has been

deleted from the disk due to age. It 1s also used bv the svatem to repair minor

damage done bv a malfunction, i,e., when onlv a few files are destroved thege files

are eliminated from disk, then when thev are first referenced bv the user thev
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will be restored from the backup.

10,7 Salvage

The salvager is a program which checks for inconsistencies in the hierarchv,
in the free atorage pocl for the various devices, erc, Tt will attempt tn resolve
any inconsistencies that it can and will report all inconsistencies to the operator.
The basis for this propram is redundancv in the structure of the hierarchv which
can be used to detect ianconsiscencies, However, we nnerate on the followine basic
principle: It is hetter to loge 1Information than retain incorrect information.
So, unless we have a high degree of confidence, information is considered to be
vad and +{1]l de restored from the backur,

The following are examples of the tvpes of tests that can be made to check
tne consistencwy,

(a) Check the format of the directorv entrv. Directorv entrv formats are
i general variahle length since the access control list is of indeterminate
length, The counts of the varlable portions of the directory entrv should be
reasonable.

(b) Some of the contents of the directorv entrv can be checked, The length
of the segment given there should not exceed the user's gquota, Dates pgiven in the
directorv entrv should all be sensihle, i.e., bevond the date at which the
svstem started operating, The location information of files should be meaning-
ful, i,e., device numbers should in fact be numhers of devices that actuallv exist,
Track numbers should be within the range of track numbers for the .iven device,

(c) All the file maps can be scanned making a list of the disk tracks which
are mentioned in the file man, This list of used disk tracks can he compared with
the free storage list maintained for the disk, The twn lists should noz have anv
numbers in common and the sum total of the two lists should account for all the
tracks on the disk,

(d) A check can be made that no track on the disk i{s assiemed to more than
one segment, i.2,, appears in more than one file man,

{(e) The length of each segment can be checked against the number of tracks
which are assigmed for thar gsegment in the file mapn, The lenath of thc seement
should be less than or equal to the sum total of the number of tracks. On the
other hand tha length of the segment should be preater than the numher of tracks
assipned miaus one,

Extra radundancv can be built into the svstem for the purpose of makine

the salvager more effective, For example, it mav be worth the additional cost
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to put forward and backwared nointers in each of the tracks on the disk, While
thege are not necessarv because of the file map, thev give indenendent checks

on the organization of cthe segment on the disk, If the forward pointer, for
example, pnointed to the track which was recorded in the file man then we have
additional survort for the consistencv of the information, If forward ani back~
ward pcinters made sense hut the file map didn't we misht feel it would be safe
to use a two out of three vote and fix the file map entev so that it pointed to
the track which the forward and backward pointers of surrounding tracks pointed
to,

A salvapger program was used in the CTSS svstem and proved to be verv suc-
cessful, In general, there was a need to run the salvaser several times a week,
In peneral, use of the salvager enabled the svstem to recover from numerous minor
problems withoutr having to completelv restore the disk, The desien of the salvarer
is baged verv heavilv upon the details of the particular implementation and must
be worked out in that framework. In designing the svstem one ghould keep in mind

the value of additional redundancv in terms of making the salvager effective,

11, Ingut/Outgut

Tiiere are two basicallv different wavs of accessine information: Direct
reference (random access) and source/sink (sequential; read takes from a source
and write deposits in a sink), ¥ile svstems have been buyilt usine either one or
both of these concepts as a basis for referencing files, The most common seems
to be some variation of the source/sink concent., We have bheen calling the direct
reference method of accessing, the sepment concent, We call the source/sink me thod
the stream concent, We chose the sepment concept for the basis of our file svstem

because we feel {t 138 rmore natural for the user and provides a better model for

the problems of address mapping and storage manacement than does the source/sink
idea, The prohlems of storage management znd address mapping have to be faced
in the design of a file svsteam no matter which method of accessine is used as a
foundation.
| In the following paragraphs we will discuss the irput/output part of our
model svarem, We do thig for two reasons: To exhibit its inherent simplicicv
and to see that bv proper structuring files can easily he treated as scurces or
g9inks, t.e., as 1/0 devices. An input/output svstem is auite naturallv viewed
using the source/sink idea,

The basic entitv is a stream, either an input stream or an output scream,
Streams have svmbolic names, The basic operations on streams are read and write,

With the exception of some svstem defaults, a stream must be exnlicitlv atrached
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to a device, i.e., attach (name, device-spec). A atream mav be detached and re-
attached tn another device if desired. The attachment is dvmamic and takes place
during execution whenever the attach entrv of the T/C svatem is called,

Figure 19 ghows a block diagram of the I/0 svstem, The atcach entrv causes
the name of the stream and the device specificarion for the stream to be recorded
in the stream-name/device table. In addition, acrtach decides which device control
module {DCM) is appronriate and enters its name in the Cable, The 1/0 control
program’s action for read and write is relativelv simple, On a read or write entry
the name of the stream to be read or written is lacked up in the stream-name/device
table, the appropriate device control module is idencified and the read or write

call {s pasased on to the appronriare DOCM.
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Fipure 19

The DCM performs a number of functions. Fach NDCM has a read entrv and a
write entry, The DCM converts a cdevice independent reauest into a device-
dependent one, In doing this it must compile a program for the hardware input/
output controller (INC). This program reflects the idiosvncracies of the particu-
lar device to which the stream is atcached, It mav include line controls in the
case of remote terminals, select instructions in the case of tapes, and so forth,
In addicion, the device control module mav need to convert the internal character
code uséd by the svstem into an appropriate character code for the device, Type-

writer terminals, for example, come in manv different varfecies. Virctuallv everv
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different variecv has a different character code. The device control module after
compiling a program for the TOC callge the 10C manarer to start the I1/¢) usine

this INOC program, It 1s the DCM's respensibilitv to inceract with the TN manacer
until this I/0 request Luis been finished. This mav reauire several calls to the
10C manager depending upon the particular format of the proerams which the 10C

can execute,

The I0OC managzer is responsible for the overall management of the 1/0 controller,
In general with a large number of different users on the svstem the 10C manager
will have to queue tasks for the various channeis ¢“ the I0C, The I0C manacer
is responsible for overall monitoring of the operation of the INC, Tris requires
answering interrupts; recognizing comnletion of tasks, and starting new tasks
from the queue when channels become free,

The file system interface DCY, functions like any other NCM, However, it does
not call the IOC manager. The file svstem interface DCM is used to make a segment
look 1like an I/0 device, The principle data base for the file svstem interface
DCM is a table which contains status information for each seement which i3 beinn
referred to as a device, When an attach call i3 made to the I/0 control nrogram
attaching a stream to a segment, the requested sesment 1s activated, The file svstem
interface DCM maintains in the segment status table an index of the current position
in che segment where readine or writing 18 taking place., Read and wricte calls
are nrocessed bv the 7ile svstem interface NCY and consist of copvine the reauest-
ed information into or out of the sesment at the position of the index, After

the copv is made the index is undated to the new positien in the segsment.
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