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FILE MANAGEMENT AND RELATED TOPICS

Robert M. Graham
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1. Introduction

The subject of these notes is file management. We will develop the

problems of file management within the environment of a large information

and computing service, often called a computer utility or general purpose

time-sharing system. We do this for two reasons. First, this environment

imposes the most severe constraints. Other environments are obtainLd by

relaxing these constraints. Secondly, large information and computing

services will become more and more prevalent in the years to come.

Let us first look briefly at those objectives of an information ind

computing service which are significant to this discussion.

a. Continuous service

The system must normally run 24 hours a day, seven days a week. This

implies a high degree of reliability. It also implies that maintenance of

the system must be done on-line.

b. Multi-user

The system must be able to service a large number of users working on

diverse applications. This implies some sort of resource manager'-nt in order

to parcel out the time and storage facilities to this large community of

users. In addition, since users may very well be competitive and even

non-competitive users may storage sensitive data in the system, protr tion of

user's privacy must be guaranteed.

c. Permanent information storage

The system must be able to store permanently as much information as the

user desires and be able to retrieve it undamaged at some future time.

d. On-line, convesational

The system must be able to provide on-line, conversational facilities

to a large number of the users at any given time. This implies some minimum

response time for trivial requests. In addition, it implies the need to be
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able to simultaneously process input and output from many terminals. Finally.

it implies sorr, kind of multi-programming is necessary.

e. Fa.ilitate cooperative efforts

The system should facilitate cooperative efforts within groups of uScrs.

This implies that sharing is necessary and further, that sharing must be

controlled. in addition, it implies communication among users via the system

itself.

2. The Function of an Operating System

Most operating systems have two major functions, the management of

resources and provision of an interface between the user and the physical

hardware. Let us look briefly at both of these aspects of an operating system.

2.1. Resource Management

The resource management aspect of an operating system is based on the

observation that there are a number of resources in the system which need to

be managed. These are the processors, memory (core, drum, disk,...), I/O

devices, and information (programs, data). The naive view taken in the

early days of computing was that the user should manage all of these resources.

The user approached the bare machine with whatever cards and tapes he needed

and the entire set of resources were his to do with as he pleased. He was

also stuck with the job of programming their management. Today we recogni:;e

that this is not practical as a method of operation. Most operating systems

today take over a large portion of the management of these resources for

the user. Within the framework of resource management our view of file

r,anagement is that it includes the entire storage management, including the

management of core memory as well as file memory and information management.

It is important in thinking about resource management to keep separate the

two aspccts: mechanics and policy. There is also great advantage in

sepavaLing these two aspects in any implementation. We have the goal of

impiementing the system so that the system administrator is allowed as much

freedom as possible in choosing his allocation policy. By implementing

policy decision in a module which is separate from the mechanics of allocation,

which is not easily changeable, policy can be easily changed.



R.M. Graham: File Management Page 3

2.2. The System As an Interface

In this section we view the system as a program which implements a

mapping between the user's conception of the world and reality. There arc,

in fact, several levels of the user's view of the world, depending upon

his experience and his intent. One can easily distinguish the levels: a

casual user of an application subsystem, an ordinary programmer using

PL/I, a subsystem implementer, 3nd finally, a system programmer. A user

may have quite different conceptions of the system at the various levels.

As an exawpie of the system implemerti:g ; mapping betwoen the user's

conception of the world and reality, we will see a file system in which

the user refers to files by symbolic names and has the illusion that

memory is homogenous. The reality is that memory is not hlmogenous. It

is composed of disks, drums, core, etc. References to files can not be

made symbolically but must be made by using device number, track number,

etc.

We also note that resource management may hold at each of the different

levels. Again the view is different depending upon the level. For example,

in the file system the user is able to create and destroy files. He has a

limit on the total length of all files which are charged to bhn. The limit

may be expressed either as the maximum number of words or as the number of

dollars which he may spend. He generally has no need to be concerned with

where the files are actually stored. The system does have to be concerned.

It maintairs a record of free storage for the various devices and must find

a place to put the file when the user creates it. The system has an absolute

limit on the total number of words of information which may be stored on

any particular device.

3. A Model System

In this section we give an overview description of a model information

and computi ig service. This is not a real system nor even a simplification

of a real system. Rather, it is an amalgam of the author's knowledge and

experience in this area, sufficiently simplified so that the important

concepts involved may be clearly exhibited. It is very similar to several

existing systems, principally Multics and TSS/360.
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3.1. The User's Conception of the System

We first look at the user's conception of the system. When a user is

active he owns one or more processes. A process is, somewhat imprecisely,

a program in execution. Each process executes on a processor which belonZs

exclusively to it as long as the process exists. A process may stop itse f

to wait for the occurence of some event. At some later time, when the event

occurs, it starts executing again. A process can create and destroy other

processes. Processes may communicate with one another, i.e., send signals

and messages in a stylized, formal way. Since a process is a program in

execution ind runs ,,ntil it stops itself. thp process mnv he visualizeu ats

some sort of virtual computer. We are interested in two aspects of the

virtual computer: the address space which defines the set of information

which the process may reference. and the processor that the process owns

and executes on,which we call the pseudo-processor. The pseudo-processor

is implemented by the traffic controller and the address space is implemented

by the storage manager.

The urer views the audress space as a hierarchy of files. The user

may freely create new files and place them anywhere in the hierarchy. He

may add adcitional levels to the hier-rchy. He may delete files which exist

in the hierarchy. Aside from some simple space allocation, he views memory

as being eisentially unlimited in size. His references are direct, symbolic

references. These references are device and location independent and do

not requirc any open. read, or write calls. The address space of his process

is shared vith other processes so 'hat immediate sharing of information is

possible. Finally, the memory has automatic backup with the ability for

the user tc retrieve any files which become damaged.

A user's process executes in a particular environment, lie sees input

as a sourc( and output as a sink. References to input and output are symb.lic

and the reading and writing are dovice independent. Symbolically referenced

input or output must be attached to a physical device. However, the attach-

ment is dyramic and may be modified during execution. F-ch process is provide:

with a pusl--down stack for use in calling other procedures and for data of

the type known as automatic in PL/I. Each process is also supplied with an

area for usz by procedures for their private data, data which is called internal

static in PL/I.
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The user controls the system using a commnand language which includes a

macro-command facility. The user has mobility between interactive and

absentee user type s.rvice. Movement between the two types of service may

be done upon command and does not require reprogramming. All programs,

including the system itself, commands, and user programs are written on

the same base, i.e., they use the same language processorq and they observe

the same conventions, such as, procedure calling sequences and data formats.

All programs, including the system, also execute in the same address space

of the ostudo-processor.

3.2. Reality

Let us look briefly at the reality of this model system. The hardware

has either a single or a very small number of processors which must be shared

by all the processes running in the system. It is the task of the traffi:

controller to multiplex processes among the processors. Every process in

the system is in one of three states: running, ready', or blocked. A process

is running if it is actually executing on a processor. A process is ready

if it could run if a processor were available although none is available at

th? presenz time. The user is unaware of this state of a process. It is

indistinguishable from the running state as far as he knows. A process is

blocked when it is waiting for some event to occur before it may proceed.

rhe user may be aware of a process in this state if tue event is one for which

he is waiting. On the other hand, the event may be in response to a system

imposed waLt, such as an inptt/outrp't completion. In this case, the user is

unaware of the b".ocked state of his process.

The storage man.ger is responsible for implementing the address space.

The addres, space of the real processor in the system is a sLgment

address space. A hardware ijterpri.table address is a pair of integers

consisting of a segment number and a location within that segment. In order

for a program to execute a reference to data, it must have an ,ldress of

this form. Hence, the .ob of the storage manager is to ma? files, which may

in fact be stored on disk. into the hardware a-ldress space in order that tue

process tray reference them. In addition to transforming a symbolic reference

into a machine address. the system must be concerned with moving itformation

from the disk to the core memory in order for it to be referenceable.
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4. Mnagenent of the Hierarchy

The user's conception of memory is a hicharchy of files. This hieraicbv

is a tree structure of files. The management of this structure is the topic

of this sectioi. It is based on the concept of segment. A segment is a

symbollically named collection of information which is a basic unit of ori:an-

ization us.!d by both the user and the system. A segment is a contigu(us

set of words (or bytes), e.g., a table, a procedure, etc. A segient may lave

internal structure which is interpreted by the user. However, the system

assumes nc internal structure other than an array of words, An example o

a segment which is familiar to all of us is a book in a library.

4.1. A Di:ectory

A hierarchy will be composed of segments. Segments and files are

identical. Segment seems mcre appropriate to us, however the term file

will still be used. especially when the refereried information is physically

stored in Eile memory (e.g., disk). Certain information is needed for

each segment. The followiiug items are obvious now (more will be aided later):

a. nime

b. lngth

c. location

(Note: In this and the next few sections we will assume that core mercnory is

large enoulh to store, simultaneously, all the segments which exist in the

hierarchy itt any given time. This will allow us to simplify the description

of the iocition and also permnit us to state the memory allocation problem

in its &iinest terms. We will later remove this assumption and -ee! the

implicatiots of the removal.) We will collect together all of this Informn- 

tion about all of the segments into a directory which contains one entry f-r

each segmert. Further, no iegment shall exist without a corri'spo. "ing

en ry in t0e dir ,:tory. A ditectory is likt a card ,- taiegue in the I'a.bra v.

In fact, in some systers 3 directory is called a catalegue.

Once ue have a directory there are certain operarions that need to be

done to th( entries in the directory. Thehe operatiors, collectively. We

wtill call directory mar.agement. The manipulations of the directory required

are:
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a. Add an entry to the directory, i.e., create a segment.

b. Renove an entry from the directory, i.e., delete a segment.

c. Modify a directory entry, i.e., change the name of a segment or

change the length of a segment.

d. Copy information from a directory entry.

4.2. The Hierarchy

Now we have all the information about the segments assembled into a

single directory. Are there any disadvantages of c-,ch an arrangement?

The answer is yes. Two of the principal difficulties are name conflicts

and the size of the directory. The problem of name conflicts becomes very

severe in a system with a large number of users. Each user has his own

files and it may be very difficult, certainly irritating, for the user to

always have to scan a large list of names in order to find one which is not

already in use every time he creates a new file. The size of the directory,

which will be very large in the case of a large system, certainly complicz.tes

the searching process in addition to slowing it down.

There is another disadvantage which is not quite so obviCus: a single

directory ioes not contain any content related structure. Content reiated

structure 's very convenient and desirable. We are all aware of the content

related st'ucture of a library's stacks. In a large library with a large

number of books we find the stacks divided into sections such as, History,

Scienceanc. Philosophy. History is further subdivided into the subsections

American History, French History, etc. The American History section might

be again subdivided into various subsections pertaining to the periods in

American hstori, such as Pre-Revolutionary, Reconstruction Era, etc. The

conveni. ice o iuch an arrangement is very significant, particularly when you

know the subject but don't know the title. You need to scan all of the

entries on that subject. If no content related structure were present one

woild be faced with the task ot scanring the entire card catalogue in the

library, a monumental, if not impossible, task.

This type of structure is called a tree or hierarchy. There are many

examples of this type of structure both in life and in the computing field

(e.g., PiL/I structures whch are a!. hierarchies). We implement such a

hierarchy by hyVing a number of dir ctories which are related to each other
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i: that certain directories contain entries pointing to other directories

rather than to data segments. In orler to do O-his we need an additional

piece of ir-ormation in the directory entry: type information iniicating

whether the entry describes another directory or data segment. Figure 1

shows part of a typical hierarchy of segments for a large information and

computing system. Only the names of segments and directories in a given

directory need be unique. The same name may be repeated over and over

-gain as long as each time it is in a different directory. This resolves

the problem of name confl;--ts. On the other hand, how does one reference

a segment in such a structure? There is one method of reference which

allows com.,letely unambiguous references. It consists of the concatenation.

spparated -y periods, of all the names of all of the parent directories of

the segment being referenced. We call such a reference an absolute tree

name. For example, in figure 1 the segment marked with * ha5 the absolute

tree name ROOT.E.A.D, while the segment marked with -* has the absolute

tree name ROOT.E.A.C.R.A.

Another useful feature in such a structure is a cross reference.whicl.

we call a link. This is an entry which points to another entry rather than

to an actuil directory or data segment. This is a form of indirection. In

figure 1, ROOT.E.A.Q is a link. It names the same segment as does

ROOToE.A.C.R.C. In order to implement a link we expand the type information

to indicato non-directory, directory, or link. For the purpose of easy

management all other information about this segment will be kept in the master

entry. Herce, in Lhe link entry the length is not used and the location,

rather thar being the physical location of the segment, will be th - absolute

tree name cf the master entry for the segment.

5. Physical Storage Management

We will continue to assume that we have a large enough core memory to

hold all of the segments in the hierarchy at any given time. There is stitl

a problem since we are not assuming that memory is large enough so that we

never need to reclaim any of the space occupied by segments which get deleted.

This is the simplest situation in which to frame the basic problem of storage

management or allocation. We will later address the act,,al situation which

is that of a small core memory backed up by drum, disk, and tape, i.e., a
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non-homogv'neous, multi-level memory.

An address space is a set of reference labels, such as tuples, integers,

etc. A segment is a linear array of words (or bytes) with a symbolic nave.

S. The address of a word in S is the pair (S,W),where W is the offset of the

word within the segment S. (S,W) is a reference label in the user's address

space (which we will call the hierarchy name space). Since a major task -if

the file system is the mapping between the user's address space and the

hardware address space, it seems reasonable that the hardware address svsze

reflects, as closely as possible, the structure of the user's address spaze.

This is part of the motivation for the hardware address space being segment

oriented, with an address composed of a segment number and a word number.

We will see later other motivations for the segmrent addressing hardware.

Before we turn to an examination of the actual hardware addressing,

let us look briefly at how the memory will be managed. There are two major

techniques for memory management, contiguous alloca~kon and block allocat:.on.

We will discuss each in turn.

5.1. Cont.guous Address Allocation

When ve create a new segment of length N we need to find a space of

N contiguot.s words, starting say at location a. In referring to a word in

the segment we use the pair (az,W). The absolute address, A, of word W in

the segment is A=( +W (see figure 2). In contiguous address allocation, as

with all methods of allocation, we need a table or list of the unused, or

free, locations in memory.

Directory ntry for S Memory

a) name =S 0

b) length = N

c) type = non-directory

d) lozation = a Ca

segment S(:,,W) -- * (cy,W) -+ A=(--W4 A il111

c)+N

Figure 2
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Our problem arises when N is larger than the length of any contiguous,

block of free space, even though the Lotal amount of free space is larger

than N (this being Part of our original assumption). In order to get out of

this dilemma we need to move other segments in nemory in such a way as to com-

pact the unoccupied memory in order to obtain enough contiguous space for our

new segment. All the users of segments which had to be moved must be told

about this since the Li of each of these segments changed. All of their

address references will now need to be recomputed, Since memory allocation

is dynamic all references to segments must either remain continuously unbriund,

being bound each time a reference is made or the references must be unbindable

so that they can be unbound and rebound whenever memory is compacted.

Let a5 be more precise about the particular algorithm that is being used

here. We will compact all of the segments at the lower end of memory.

Whenever a new segment is created we will assign it to the free space just

above the top of the used part of memory. Whenever a segment is deleted we

will just let it go, but remember that the space which it occupied is now

empty. When the free area is small enough that a segment about to be

created will not fit we must stop and compact all of the segments in memory.

It is interesting to look at the amount of time which will be spent in

compacting.

Let M be the size of the memory and F be the fraction of memory used,

then (I-F)F is the amount of free space. Suppose farthet that .\ is the

average number of references to each of the words in a segment before the

segment. is deleted. Since there is at most nne reference to memory per

time unit this means that every K time units one word will be deleted.

Assuming equilibrium one word will be added every K un,,s. Hence, the free

area will be exhausted in (l-F)MK units of time. The time required to move

the infcrmation in the remaining segments is about 2M (assuming two

references to move one word). The fraction of time spent in compact'ng is

then

compacting time 21C F
compacting time+time to fill free storage 2MF+(I-F)KM F+(I-F)K/2

In a Lime-sharing system where there is heavy use of functions such as

editing, a reasonable figure for K is around 20. With K=20 and F-50%, we

see that the function of time spent compacting is 94. With K-20 and F=75%,

j



R.M. Graham: File Management Page 12

the time spent compacting is 25e. The implication of this is that to

achieve a reasonable compaction time of less t,-n 10% we have to give tip

over half of the memory.

5.2. Block Allocation

In this scheme we divide memory into blocks of K words. A segment ol

length N is then divided into B L.+1 pages. Each page is stored in

a block, so the segment is stored in B blocks of memory. }|owev'r, these

blocks need not be contiguous. In order to achieve this non-contiguity w.!

need a page map which contains the location of all the blocks in the segment.

A referenc.! to a word in the segment is again a pair (ct,W). c is the location

of the pag,. map rather than the first word of the segment and W is the offset

of the word in the segment. To find the absolute address of the word in

memory we must find two integers I and J such that I is the base ,,address of

the correct block and J is the word number within the block. The absolute:

address is then, A = I+J. The page number, in the segment, is P ["fl.
Then I is the contents of k*P, i.e., the page table entry for page P. Finally,

J = W-PK, i.e., J = W(Modulo K). See figurc 3.

Directoryj ntry for S

a) S

b) N * --- ' -

c) n(n-directory

d) ct

(SW)---;-(Y',W)-~I)*'=+

Figure 3
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Two memory references are required to access a word using this scheme,

The first memory reference obtains I from the page table, the second memory

reference obtains the word of data which is being referenced. There are
K

two disadvantages to this scheme. The first is breakage. On tnie average

words are unused in the last block of each segment (in addition I extra block

is required as a page map for each segment). The second disadvantage is the

additional memory reference required to access each word.

5.3. Comparison of the Two Methods

The following chart is a summary of the two methods compared for

various properties.

Allocation Type Contiguous Block

Reference time (to one .iord) 2

Data movement Compacting required I No movement needed

Waste space !Up to 50e to reduce Breakage + Page Map
!compacting time

User program reference k--binding required on No rebinding needed
'movement of segment

We note that with modern associate memory techniques the extra reference

required per word for the block allocation scheme can be significantly reduced.

In fact, hardware is available on a number of computers which make the bleck

allocation scheme much more attractive than the contiguous allocation scheme.

We now loot at an example of hardware.

5.4. Segment and Paging Hardware

In this section we describe some actual segment and paging hardware. It

is the segment and paging hardware found on the GE645 computer. Other computers,

notably the IBM 360/67 have hardware which is practically identical to that

which is described here. A hardware address is a pair of 18 bit integers.

The first integer is a segment number, the second integer is a wold num'er

within the segment. This allows 218 segments and 218 words in each segment.

The segment number is used as an index in a descriptor table. The word

number is further split into two fields. The high order 8 bits 's the page

)!
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number and is used as an index in a page table. The low order 13 bits are

the word number in the page specified by the tirst 8 bits. Figure 4

diagrams these relatioaships.

I .. .i _ . 7.. i .!, ,

006

,; ........... .........3. ... .

Figure 4

The en:ry in the descriptor table contains the address of the beginni ,g

of the page table. The entry in the page table c'r)ntains the address of the

beginning o-' the block in which the page is stored. The absolute address of

the referenced word is then A m P4W# Although the descriptor table and the

page table z~re required to be stored in core memory the mapping is applied

automatically by the hardware on each reference. The user and the system,

in general, may not refer to information in any other way, i.e., every refer-

ence to memory is a segment-page reference. Thus the hardware implements an

address mapping from a segmert space consisting of segment numbers and

locations into a linear address space consisting of a set of contiguous

locations addeessed by a single integer whxich is an absolute address. Note
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that when using this hardware the location stored in the directory entry is

the segment number, S#, rather than the base of the page table, ci.

5.5. Core and Segment Management

We postulate two modules, core management and segment management. They

are responsible, respectively, for the management of core memory (i.e., the

linear address space) and the managment of segment numbers (i.e., the segment

address space).

(4, ,

,./ .b./

Figure 5

The core manager has three entries: create, delete, and alter. The

create entry will find a sufficient number of blocks for a segment of length

N and a page table to go along with it. It builds a page table with entries

pointing tc the blocks assigned to the serms.t and returns the address of the

page table. The delete entry will release to free storage the space pointed

to by the Cntries in a page table whose address is its argument. The alter

entry will either obtain or release space and alter the page table to reflect
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the change in length of a segment requested by the entry.

The segment manager also has three entries: create, delete, and alter.

However, at this level we are working with segment numbers rather than

absolute addresses. ThE create entry will call the core manager to obtati

space and a page table for the segment to be created. The next uaused

segment number will be assigned to the segment. A descriptor for the

segment will be put in the descriptor table. It contains the absolute

address of the page table which is returned by the core manager. The seg-nent

number of the newly created segment is returned by the segm.nt manager to

its caller. The delete and alter entries take as arguments segment numbers

which are transformed by the segment manager, via the descriptor segment

contents, into the absolute address of a page table which is then used as

an argumert to call the core manager to have the actual space released or

obtained.

6. Map iny Between the Hierarchy Name Space and the Segment Address Spaco

.e no; discuss the mapping between the hierarchy name space of tree

names and -he segment address space of segment numbers. Stated in another

way the problem we ,re discussing here is: given the absolute tree name

of a segmeit, such as ROO.X.Q.Z, obtain the segment number of that segment.

The problen conceptually is quite simple, in the sense that the segment

number for the named segment appears in the directory entry for that

segment. Hence, all we need to do is find the apprupriate directory entrx.

Let u. review briefly the functions which the directory manager module

can perforrm for us. The directory manager has a number of entries. Each

entry always has one argument which is the segment number of a directory

upon which the function is to be performed. The functions are:

a. C:'cate, which adds a new entry to the directory.

b. Delete, which rerieves an existing entry from the directory.

c. Alter, which modifies the contents of an entry in the directory

(such as changing the name or the length of the segment).

d. Ccpy, which copies the information from the directory entry.

e. List, which makes a list of all of the entries in the director,,.

1
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Figure 6

6.1. Directory Search

Each directory is in fact a separate segment. In order to refer to any

information the hardware processor must have a segment number. Hence, in

order for any program, such as the directory ianager, to refer to a directory

it must have the segment number of the segment containing the directory. This

recursive situation, i.e., the directory manager being the only program which

can find a segment number needing a segment number in order to find one, is

broken by having one fixed segment number in the system, namely, the segmnnr

number of ::he r. t directory (ROOI in figure 1).

The a'gorithn then is as follows: We use an additional module calleo

search control which calls the copy entry of the directory manager. See .igure 7.

Given the i.me ROOT.X.Q.Z, search control calls the directory manager three

times in succession. On the first call 'ie arguments are the segment number

of the roo:. directory, which is known, and the name X. The directory manager

returns th, segment number of X. The directory manager is then called with

the arg'xments, the segment number of X and the name Q. 'lle segment ni,'ber of

Q is returred. The final call to the segment manager has the arguments, the

segment viunber of Q and the name Z. The segment number Z is rctutned. Searc.

control is then able to return the segment number corresponding to the segment

name with tree name ROOT.X.Q.Z.
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6.2. Linking of Procedtures and Data

Any system which permits separately compiled or assembled procedure

segments tc reference each other symbolically must provide a f.ci.ity for

linking these separately compiled segments together, either before execu1i rn

begins or during execution. In order to achieve this linking at some time

other than zompilation, the compiled procedure needs an appendage which co'itains

information regarding the ,ymbhlic names of the segment:" which are referented

externally. If a reference is made by a procedure to another procedure se;ment

named, ROOT.LIB.'RIG, this symbolic name must be contained somewhere in tht,

output of the compiler.

We hav been speaiking so far about symbolic references to segments wh-.Cl

ultimately -esult in a seg,.nt tiumber. Most programmers are satliar with

the concept of synbolic t-eference to locations within other seg-lig. Thi.,

feature is )rovided in most leaders today. We see that basically the probem

is n' diffe-ent for this case then for the case where just the name of a stgment

is symbolic. Our appendage produced by the compiler must also contain symbolic

information for any external references to locations vithin other segments.

In the previous example. ue probably %-:ould be referring tn a specific sabroutinc

within the segment ROOT.LIPI.TRIG. Suppose it is the sine subroutine and

the svmbolic name of the entry point within the segment is SIN. The complete
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source language reference might be ROOT.LIB.TRIG$SLN. This implies that

the appendaige produced by the compiler which compiles the segment ROOT.LIB.TRIG

must contain a definition of the symbol SIN. Supposing that the entry poirit

were at relative location 42, the appendage would contain the pair (SIN, 42)

defining the symbolic i..ation SIN. This concept of an appendage containing

the necessary information for symbolic references to external segments and

the definitions of symbols within the segment which may be referenced externally,

should not be new or strange to anyone familiar with the loaders found in most

modern operating systems.

As mentioned earlier there are two times at which linking can logically

take place. One is before execution and the other is during execution. The

typical loader in most systems does pre-execution linking. All of the

segments which are needed to execute the program are linked together before

execution begins. In many systems this is called loading. In earlier days

the loader usually lead directly to execution. Recognition that the function

of linking a separate process which need not lead to immediate execution can

be seen in the terminology used in OS/360 where the loader is now called the

link editor.

A loader operating in the environment which we have been discussing would

build a table containing each of the symbolic references. Search control would

be called once for each name in the table to obtain the segment number of the

segment. This segment number would be added to the table entry for the

symbol. Using the known conventions for the location of the appendage to

te segment, all of the symbolic locations within segments would be looked

up in the appropriate segment's appendage. These definitions would also be

entered into the symbol table. Finally, all symbolic references would be

replaced b) the appropriate segment pointer, i.e., by a pair (S#,W).

Pre-execution linking has a number of disadvantages which have motivated

the dynamic linking facilities which are available in the new, large informa-

tion and computing systems like Multics and TSS/360. The major disadvantages

of pre-execution linking are:

1. Many segments which are never used may have to be linked together in

a large complicated program complex.

2. In the system of the t), , we are discussing it is difficult, if not

Impossible, with the tempo of interactions and the continuous



R.M. Grahan: File Management Page 20

progression from command to conmand to determine wLen execution

begins and when it ends. In fact, it is impossible to subdivide

a: interactive conversation program into loading and execution

phases in any meaningful way.

3. Names of segments which are to be referenced by a procedure are

often not known until after execution begins. In fact, they may

b( input data to the program which is execrting. Consider, for

example, an edit program or a compiler. These programs do not

know the names of the segments they are going to refer to until

they begin execution.

Dynamic linking (during execution) is not conceptually more difficult

than pre-e:ecution linking. A proceaure which is going to be dynamically

linked is fixed by the compiler so that the first time it attempts to make

an external. reference, a fault will occur. The appendage which includes

the symbolic name of the external reference is includea along with the prccedure

at execution time. The iauk handler for the fault which occurs when the

first reference is made, establishes the link at that time. Hence, this

fault handler is called the linker and the fault is called a link-fault.

The linker, using information given to it by the hardware when the fault

occurred, 4,s able to work its way back to the procedure which caused the

fault and find the symbolic information necessary to define the external

reference. Using this information, i.e., the tree name of the segment being

referred t;., the linker calls search control to obtain the segment number of

the referenced segment. The linker than replaces the faulting reference with

the appropriate segment pointer and restores the machine conditions. Execution

then continues at the point the fault occurred.

6.3. Local Names

It is highly undestrable to require the user to always use absolute tree

names in writing his source language program. The user is usually working

in a well defined context within which local names can easily be interpreted.

For example, the names of any referenced segments which are not in his user

directory should be interpreted as system library procedure names.

Let us modify the linker so that it is able to deal with local names.

In order t achieve this we necd to interpose between the linker and search

control a moCule whih expads the local naie into an absolute tree nat.
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This module uses as its principal data base a set of context rules which are

uned to transform local names into absolute tree names.

.. . . .. . . . . . . .... . . I

7--

ti t~-' t

Figure 8

The simplest kind of context rule is simply a directory name in which to

look for the local name. Thus a set of context rules would be a list of

directory names. The mapping in this case is quite simple. The first directory

name is prefixed to the local name, making an absolute tree name. This troe

name is passed to search control in an attempt to find a segment with that

name. If s.earch control is not successful, the next directory name on the

list is prefixed to the local name. Search control is again called to see if a

segment can be found with the new name. This process continues until the

list is exhausted. If no segment was found it is assumed not to exist and

appropriate error action is taken. An example list of context rules begins

with the name of the working directory. This is a directory declared to the

sy!-tem by the user to be his home directory. It is usually his user directory

or one of his project dreccories. The second directory on the list would

be the system utility library directory. Succeeding entries on the list

might be other system, library directories. The user must be able to control

,)
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this list of cortext rules; reorder zhem. add to them, or delete from them.

For example, the user may wish to include several of his own private library

directories between the working directory and the system library directori-es

on the ?i :t. The definition of context can be wade more flexible by alloving

conditional rulo:s, iteration, etc. In other words, the context rules can be

expressed as a drogram in a simple language.

6,4. Local Associative Memories

In 'ny complex of programs it is highly probable that more than one

procedure will refer to a given segment. Each such reference initially

requires the invocation of the linker, an application of the context rules,

and a number of directory searches, It is possible to avoid these Additional

directory searches and context rule applications if the linker maintains a

table whose entries consist of local names and their corresponding segment

pointers. The linker then searches this table for a local name before

calling local name expansion. If the local name exists in this table theie

is no need to make any further calls. If the local name can not be found in

the table its segment pointer is obtained by calling local name expansion.

The local aame along with its segment number are then entered in the table.

We call thLs table a local associative memory since it is used in essentially

the same way that -he hardware associative memory is used in remembering

references to segment numbers and page numbers. The table may be of limited

size and ir.frequently referenced entries can be deleted to make way for other

entries which are more frequently referenced. Thus, the most referred to

local name.; will be in the table. A future reference to a local name which

gets delete!d from the table will work correctly but will just take a little

longer, as long as it did the first time it was ever referenced.

There is another place where we can use this technique, i,, h control.

Search control can maintain a table whose entries are tree names with their

corresponding segment numbers. We can make a significant gain in efficiency

by using tiis table if we change slightly our search algorithm. We change

to a recursive type search, i.e., we work from right to left in the tree name

rather thar from left to right as was previously done. The rule for a recur-

sive type s;earch is: peel off the rightmost component and see if what remains

is ROOT, if not, call search control. This is a recursive call to get the
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segment number of the prefix which we have retained. The prefix which we

have retained is, in fact, the name of the directory in which we expect

to find the segment whose name is the rightmost component. Applying this

algorithm to our previous example we would make in total three calls to

search control.. The original call would be a request for the segment number

of ROOT.X.Q.Z. The second call is by search control to itself requesting

the segment number of ROOT.X.Q. The third call is again a call by search

control to itself requesting the segment number of ROOT.X. This is the last

call since we are left with ROOT when the rightmost component, X, is

removed. The segment number of root is built in. Now we are able to search

the root directory for X.

Sequence of calls to and returns from search (for tree name ROOT.X.Q.Z)

input argument segment pointer returned

1st (original) call ROOT.X.Q.Z
d
2 call ROOT.X.Q

3 call ROOT.X

return from 3
d  X#

returr from 2
d  Q#

return from 1st Z#

Contents of associative table after above sequence of calls

tree name segment number

ROOT ROOT# 4- this is a permanent

ROOT.X X# entry

ROOT.X.Q Q#

ROOT.X.Q.Z Z4

Figure 9

The recursion begins unwinding at this point and ultimately we reach

the segment number of Z. After this search is performed our table will

contain the entries shown in figure 9. If search control consults this

table before calling either itself or directory manager, any subsequent calls

to search control for the segment number of ROOT.X.Q.Z will produce Z# I



R.M. Graham: File Management Page 24

immediately. No further calls are required since ROOT.X.Q.Z will be found

in the table. In addition, we also gain when search control is called to

search for the segment number of any segment in any directory which has

previously been referenced. For example, a call to search control for th

segment number of ROOT.X.Q.W would proceed as follows. ROOT.X.Q.W would

not be found in the table, the rightmost component would be removed and

ROOT.X.Q. would be found in the table. Thus, we obtain the segment number

of the directory in which to search for W immediately without any further

calls.

The use of software local associative memories is fairly common in a

large system such as our model. It should be emphasized that the use of

local associative memories adds no new facilities. They are used

strictly for the purpose of greater efficiency. Often the use of such a

feature is not explicitly realized although it is used. Hence, the

mechanism of the software associative memory is confused with the concepts

which are being implemented. Sometimes it is not clearly recognized, even

by the designer of the system, that the capability of the system would not

be restricted even if a much simpler but less efficient algorithm were used.

We are not impling that systems should be implemented without the use of

such techniques. However, it is our feeling that systems should initially

be designee without the use of such techniques so that the designers can

focus clearly on the essential facilities to be provided by the system.

Questions of local optimization should be treated later when they do not

confuse the fundamental structure or fundamental problems that he system has

to deal with.

7. Controlled Sharing of Segments

In stating the objectives of iur model -e saw that they implied the

necessity of being able to share information which is deposited in the sysr-em.

In this section we explore the implications that this ability to share

information has on the structure and working of the file system. We further

examine how sharing of information can be controlled so that the privacy of

each user can be guaranteed.

i
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7.1. Basic Requirements

First we state two fundamental requirements in order for any control of

access to information to be effective.

a. Authentication of user identity. It is absolutely critical that the

system be able to authenticate the identity of any user who approaches the

system. If one can approach the system, pose as another user, and be

accepted by the system as that other user, then the system can not enforce

any effective control on access to information in the system. An effective

rethod of iuthenticating the identity of the user, which is secure enough in

most cases, is for each user to be assigned a password which he and he alone

knows. If he is unable to supply the password the system will not accept

him as who he says he is.

b. Restriction of the use of hardware instructions. It is absolutely

necessary that certain of the hardware instructions be prevented from being

executed in user programs. The hardware must have the equivalent of a

system mode and a user mode. In system mode all instructions may be executed.

in user moce only a subset may be executed. If a user is able execute all

of the instructions then he can get any of the information stored in the

system simply by programming the proper sequence of input/output commands

for th2 lisk. The!e instructions must be blocked from execution in user

mode. In system mode all instructions are execLtable because the system

muit be able to read and write information belonging to the user on his behalf.

Additionally, there must be some hardware partitioning of memory so that the

user is unable to modify the system programs themselves. Otherwise he could

make changes in them which would allow him to circumvent all of the other

protection features in the system.

7.2. Software Considerations

For the purpose of controlled sharing we are going to let the owner of

a segment designate who may share this segment. In addition, he specifies

what kind of access is permitted for each of the users who may share it.

(Note: If the owner himself is included in this access specification he has

some self protection.) The kinds of access permitted and specifiable are:

read, write, and execuL. , or combinations thereof.
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Additional Laformation must be added to each directory entry. The

additional information required is:

a. Identification of the owner.

b. An access control list (ACL).

The access control list is a list of pairs of the form (userid, access).

The user id is either the name of an individual or the designation of some

group (which may be everyone). The access is either read, write, execute,

or a combination thereof.

Each process has a small private data base which contains informatio.a

which is peculiar to that particular process. The information includes

such things as: who owns this process, the time logged in, the account

number which charges are to be charged against, etc. In a sense, these are

the machine conditions of the pseudo-processor. Whenever the file system

is asked to reference a file the access control list in the directory entry

is checked. If the owner of the process which is currently executing, and

hence making the request, is not on the list, or is not included in one of

the group designations on the list, then the file system will refuse to

manufacture a descriptor for the segment.

7.3. Hard'ware Considerations

This 'eads us to the point where it should be clear that in order to

inforce actess cuntrol some hardware help is required. First, since the

hardware cannot reference any information except by a segment addressing,

if there i', no descriptor for 'i segment in the descriptor table a process

is unable :o make any reference to the segment. In order to inforce the

type of aci.ess, once it is known that access is permissable, we need some

additional information in the descriptor. The additional information

needed is the kind of access (i.e., read, write, or execute) which the referee

may have t( the segment. By using different descriptors, different users may

access the same segment, but with diffe.'ent privileges. In the diagram the

owner has read and write access and the sharer has only read access. The

absolute address in the twu different descriptors points to the same place,

namely the page table for the segment. Noftice also that we have added a

length field in the descriptor so that the hardware may r,-event references

to non-exist,'nt pages. To summarize, each process thc. hli its own priv. te
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descriptor table, which is pointed to by the descriptor base register. As,

a result of this each process can have different descriptors, each process

may have different access to the same segment, and each process may have

different segment numbers for the same segment (which aids allocation of

segment numbers). Finally, a process may not access any information other

than that which is reachable through descriptors and the descriptor table,

even when using machine language instructions.

- L_

Figure 10

7.4. Immediacy of Sharing

There are two degrees of immediacy of sharing. When designing a sysz,,m

such as our model we must decide which of the two degrees will be permitted.

The first degree is to interlock the entire segment while any user is modifying

it for the entire duration of his modifications. Anyone attempting to read

the segment will have to wait until the segment is released by the writer. In

order to capture a segment for writing the writer has to wait ntil all users

who are reading the segment have released it. The second degrL is one in
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which inteclocking is left upt to the users. This degree of immediacy is

sufficiently broad so that the previous degree is a special case of it. Tf

the previcus choice is made, then one does not have the alternative to

implement, as part of the system, the second degree of immediacy. We

choose, as was implied above, the second degree. This is made possible

because of the ability to have multiple descriptors for the same segment.

The system will of course supply some utility routines to assist the user in

managing tae interlocking of portions of data segments. However, no

presumption is made by the system thlat one particular interlocking discipline

is better than another.

7.5. Sharing of Procedures

The sharing of procedures has further implications which we now explore.

The ability to have pure procedures (i.e., ones which do not modify themselves),

especially when they are system procedures or popular commands, gives a rather

significant payoff in terms of space saving. It is a fact, however, that most

procedures need some private data in order to function properly. One common

example of private data are links to external segments. Recall that the

environment of a process provides a private data area for procedures. It is

to be expe,:ted that if several processes are sharing the same procedure

segment th-! : ivate data required to make that procedure segment function

properly for each process will be different for each process. Hence, one

implicatio of the sharing of procedures is that the private data area will

have to be duplicated for each distinct process sharing the segment.

The privat data area in the environment of the process is then private tc

the proces;, as is the stack and the pseudo-processor machine conditions -hich

were mentioned earlier.

The information needed to make up the links which are, part of the private

data area are an appendage to the procedure and we wish to iave only one copy

of the pro4edure. Her' c, the linker is faced with an additional chore. When

establishirg a link to a segment for a first time the linker must make a copy

of the appendage, which is a template of the procedure's private data area,

into the private data area of the process. The private data area o1 the process

is sometinvs called the lii,,kage segment. The standard calling sequence used

to call procedures is designed to ;aiintin a hardware basev .ister which
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always points to the appropriate private data area for each procedure whiLe

it is executing. In additica, the standard calling sequence also maintai:is

a base regLster pointing to the stack area available to the executing

procedure.
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8. Paging

So far we have assumed essentially unlimited core memorv. We have proceeded

a lonR way in our discussion of the problems of a file system: management of the

hierarchy, mapping between the hardware segment address space and the hierarchy

name space, and several other topies. We now ddscard the assumption that meTori

is essentially unlimited and examine the consequences of core memory beinR quite

small. Remember Lhat information mL-t be in core memory in order for the processor

to use it. Thus, the file system, as we view it, must he concerned not only with

the mapping between the hierarchy name ipace and the segment address space, it

must also be concerned with the movement of information between the file itemories,

such as, disk, drum, etc., and core memorv where it can be directly referenced.

One simple, straightforward solution to the problem of a limited amount of

core memory is to restrict the user address space to be only that size and force

the user to reuse the addresses. This forces him to propram all of the memory

allocation. This has been the common solution in the past. Systems which choose

this solution usually have a feature called chaining or ovrrlavs. All these

facilities do is to help the user manage core memory, especially the itter,'.anpe

of programs between the core memory and the disk or drum. Theqe facilities

typicallv Provide no helo in the management of the proeram's address space. 4e

reject chit solution for the following reasons:

I. The user has to be concerend with the details of address space management.

Our philosonhv in buildinp ever more com.flixated svtems is to prcvidz mort! and more

services for the user. makine the system more convenient fir him to use and re-

lievinR him of concern for otoblems which are not bascallV pArt of the problem

he is seekiig to solve,

2. Th! user will probably not do an efficient job of memorv Allocation.

In f4ct, in a time-sharini, interactive environment the user cannot do a Rood Job.

Civen the frequency of interaction, the resultant rapid movement of user inforra-

tion in and out of core memorv is required in order to achieve A suitable resDon.se

time. In this situation the user is unable to predict when or how to ',ove bis Own

information around. The svste meat work ,iirh a plobal view of all activitv in

the system.

3, Al'. users can benefit from the sophisticated memory management alorichm

which the system designers are able to im'lement. rurther, they need not pay the

price of havinq conies of their own management aloritchms wtrch, althourch they may
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be equally sophisticated, will nor be significantly oetrer.

4, If the system is responsible for the management of all memory, then when

the size of memory, the type of memory, or the file vemorv devices are chanr.ed or

modified in such a way that a change in tactics is required, onlv one program,

namely the system memory management program, need be changed. The user programs

will continue to execute unaware of the change having taken place.

8.1 Models of Program Behavior

We are going to discuss some memory management techniques and some of the

considerations chat go into the design of a memory managemeat algorithm. First,

we look at two models for program behavior, in order to design a reasonable

memory ranagement algorithm we must have some model, some idea of the behavior of

programs in general. For the purpose of discussing the two models, let us suppose

that (N-n) words of bulk (B) memory are available with access time (to an individ-

ual T and n words of local (L) memory are available with access time ., with

t<<T and %'<N.

Our firsr model is one of completely random access. We assume that the

probability thor. any given word will be referenced next is the same for every

word in memory. We are inierested in two probabilities: the probabiLity that

the next reference will be in local memory,which Is P " . and the probability
L ~

that the reference will be in bulk memorywhich in F - 17. We see that the
average time for a reference is Te - t + (I - -) T "igure 12 shws

plotted as a function of the size of the local memory while the total memory

size Is kept fixed.

II

k.A S'd C,

Figure 12
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We see char T is largest when all of the memory Is bulk memorv and smallest when
ref

all of the memory is local memory. Let us look at the case for a tvpical svstem

existing todav. Common sizes are, n - 128K (approxlmacelv 10 5) and N 1 10 million

(approximately 10 7). Common access times are t - I microsecond (aoproximatelv

10- 6 ) and T 1 P0 milliseconds (approximately 10 2). Usine thege values we see,

105  -6 10 -5  2r - 10 + (I - 10 - 9.9 millisecondsTref 7

10 10
a rather high average reference time.

In thLs model there is no corrolation between successive references. Tn

general this is never true for an actual program, hence, this model represents Lhe

wort possible case. Any program which executes very lonp has loons in the program.

Furthermore, instructions usually follow in sequence, thus nhere is a high proba-

bilitv that, after having referenced one word in a procedure, the word in the

next sequencial location will be referenced next. A loop tends to co'centrate

the references in a small area of the program for some substantial period of tire.

Another property is that many data manipulations deal with contiguous blocks of

data, e.., matrix and vector operations, table searching, and text edittn. This

again Increases the probability that the next reference will be to a word which

is contiguous wlch the previously referenced location. Again the references over

a period of time tyill be concentrated in some area. Thus, both procedure and

data tend to concentrate references in some small area or areas.

We state this fact ot nrogram behavior as the principle of locality: The

next reference in most likelv Lc be to a word near one which has recently been

referenced. Let At be some small time Interval. Figure 13 shows the fren,'ency

of reference nlocted aeiinqt memory location. ror the random model we see the

frequency of reference is evenly distributed across the entire memory with very

little variation, The actual situation iq more like the second eranh in which

there are a number of peaks which are areas of frequent reference.

Random Model

o location N

Actual Situation 4)

0 location

Figure 13
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In the second model we collect all of the words with a hIRh freauenc% of

reference into the local memory. We further assume chat k references to local

memory are always followed by one reference to bulk memory. Our formula for

the average reference time is

Tref k + I

In figure 14 ¢e have nlotred Tref against the size of the local memory for

At - k+l. We notice that the curve for n - 0 starts at T and slopes down quickly

to an average reference time of just slightly longer than t when 4 - k. Yncreas-

ing the size of the local memory beyond k decreases the average reference time

very little. We conclude from this that if the local workinR memory is large

enough to hold the fre quently referenced Information then little gain in over-

all average reference time is achieved by making substantially more memorc. av.il-

able. We define the wcrking set to !e the collection oF words which are referenced

durinR a time veriod At. Thus, we see the average reference time is quite de-

pendent upon the working set being smeal enough to fit into local memorv cr

alternatively the local memory being large enough to hold the working set. Of

course the working set clhanges with time as the reference pattern changes. Thus,

in order for our storage management to be effective we mutst design the algortchms

so they adopt to changes in the working set insuring that on the average the

working set is in local memory. This is the problem in papinp; namely, when are

pages brought into local memor, and what pages do we push out to make room fir

them. Given a particular model of program behavior it may be possible to find an

optimal algorithm for making these decisions based on that model. However, at

present no single model seems to be good enough.

1%.

K' tI

tt

Figure 14
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8.2 Paging Techniques

One technioue which does work rather well in Practice is demand paein:. The

system assumes that the working set is contained in those pages which were most

recently referenced by the process. Hence, whenever a new page, one that Is not

currently in memory, is referenced it is added to the working set: that is, It

is paged into local memory. No attempt is made to nage in any page before it

is referenced; this is because there is no reasonable way for the system to pre-

dict which rages will be referenced in the near future if they have not been

referenced in the near past.

In order to make this kind of prediction the system would have to kno more

about the structure of the program, particularly with respect to the flow of

control through the program. It might be possible to make this kind of prediction

in the future with some assistance from the language processors. If a lanauage

processor were able to construct a skeleton of the control flow and include with

It information about the frequencies of loops and the transitions from one part

of the program to another, it is conceivable that this would be sufficient for

Aaking valid predictions. However, flow analvsis of existing languaReq is at

best difficult. Thus, It seems unwise to build a system around this predictive

paging decision without a great deal more study of propram behavior models.

Demand paging is a page-in technique. As a companion of any page-in algorithm

there must be an algorithm for replacement (or page-out). A replacement algorithm

must decide which page to put ouc when more soace 1s needed in local memory.

Using the working set concept, we assume chat page which was referenced longest

ago is no lon- part of the working set. It is the first rardidate for paging

out. Again wz ,,)ut mere information about the program's behavior this is proba-

bly the best that can be done.

Within the framework of a system with many interactive processes, other

considerations for paging in and paging out may actually be more significant

than the question of which page to page in and which paoe to page out within a

single process during its execution. In our model with many users and many,

processes simultaneously active, it is expected that control will be switched

rather rapidly from one process to another; hence, the processes are in competi-

tion for local memory, each needing enough local memory to store its working set

if it is going to execute rapidly enough to respond in a reasonable time. The

local memory must be large enough to hold all of the working sets of all of the

processes which are currently being exectired by any of the processors. Vurther,

it must be able to hold the working sets of all processes which are candidates
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for executing next. The local memory should be able to hold the working set of

all the processes that are on the ready or running lists. Otherwise the follow-

ing problem arises,

A process needs a new page. While waiting for the page to arrive it goes

blocked. The traffic controller now attempts to execute the next process on the

ready list. If this Process's working sAt is not in core, the system will

have to page in a page before being able to execute the process. In general,

the system will need to page out a page of the process which it Just blocked

in order to make room for the new page of the next nrocess. While the nev nrocess

is waiting ior a page of the old process to be paged out and its page to come in,

the required page of the old process arrives. The old process now resumes execu-

tion, but, immediately references the page which Just pot paged out. To make

room for this page, a page of the new nrocess gets Paged out. Around and around

we go. This is thrashing. It can be avoided only by having enough local memory

to hold the workine sets of all the processes that are on the ready and running

lists.

What about processes that are on the blocked list? There are three considera-

tions here. First, if it's blocked waitinR for a pape to come in we certainly

don't want to put out any of its pages unless we absolutely have to. Second,

if the process is blocked waiting for tvnewriter input we know the typewriter

response is relatively slow, in the order of seconds, even if the user at the

typewriter console can react very fast, All pages belonRIng to this Process that

are currently in local memory are excellent candidates for vace-out since they

will not be needed for some time. Third, when a process Interrupted by the system

because its time slice was used up, is restarted its working set is probably the

same working set that it had when it was arbitrarily terminated by the system.

Hence, some prepaging at this point is reasonable and the working set should be

restored to local memory before startinR execution of the process.

Two further observations should be made. There are some pages chat can not

be paged-out at all, e.g., the pages concaining the paging procedures themselves

and interrupt handlers. Secondly, pages which are unaltered need not be written

out. In other words, Dage-out of a page which has nct been modified since it was

paged in consists of returning the block to the free storage and markinp the Pape

as having been paged out. The next time the page is referenced the vage-in

consists of rereading the original cnisy.
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8.3 Hardware Considerations

In order to implement the techniques of the last paragraph, we need to expand

the page table word to include some additional fields. The paee written field Is

set bv the hardware whenever a store operation refers to any word in the Pape,

The page reference bit is snt by the hardware whenever a reference of any kind

is made to the page. The paee missing bit is set by the software to indicite that

the page is no longer in core. The field which contains the absolute address of

the page when it's in core is used to indicate, indirectly, where the nape was

stored in secondary memorv. its contents will be used as an index in the file

map for the segment. The file map is a table indicating the location of each

page in secondary storage.

Any attempt to reference a rape when the missino nape bit is set causes a

fault. The fault handler is the paging program. The paqing program, using the

fault information finds the information describing the location of the pape in

secondary storage, finds a free block in core, and sets up a request to read the

page into that block. Once the request is started, the process is blocked until

the page arrives so that some other process can use the processor, When the Process

awakens the vage will h e been read into its assigned block. The nager then Puts

the absolute address of the block into the page table word and clears the reference

and written bits, Control Is then returned to the place in tne program where the

page fault occurred,

..... t' - r,',. ,' , , *II~. AV ~ ( ~ *I
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Figure 15

8.4 4emory Swapping

We mention at this point an alternate method of memory management which has

been used in several systems in the past and which still receivesconsiderable

support: the complete swap. In the complete swap, all of the program and data

for a user is swapped out whenever his Process stops execution and all of the

program and data for the next user is swapped in before he starts execution.

fi



R. M. Graham: File Manaeement Page 37

This method enjoys the advantage that it is very simple to implement. On most

of the older hardware it is also rather slow, however, some of the modern hard-

ware alleviates this problem with special design which makes swappfnR very rapid.

The method suffers two significant disadvantages:

Much more information is moved than is needed to he moved. With the

paging algorithms described above it is clear that a large part of the data and

program in a large program complex is not in memory much of the time and is never

read into memory except when it is needed. The counter argument in favor of the

complete swap is that this movement of redundant information really costs nothing

since the entire swavping process is so fast. This may be the case in terms of

speed if the hardware file storage devices are sufficiently fast. However, this

prcbablv results in higher cost for the hardware. The second disadvantage Is that

the complete swap method makes flexible sharing Impossible or difficult enough so

that It is practically impossible. Plexible sharing denends upon the users'

physical information being fragmented into small enough entities so that they can
be moved around at different times rather than beine welded together into a single
piece all of which must be moved at the same time. It is clear that flexible

sharing may result in many users sharing one segment with small subsets of these

users sharing disjoint sets of segments, until the pattern of sharinp becomes

quite intricate and complex. The only possible way to permit this kind of qharinp

is to phvscallv fragment the information. The separate segments can then be moved

in and out of local memory based on their usage, rather than based on the status

of any particular user of a segment.

8.5 Management of Multi-level File Storage

We have been looking so far at the movement between local menmorv and the first

level of secondary storage. As mentioned earlier, secondary storage actually comes

in a number of different levels. Local memory is usually core memory. The first

level of secondary storage is either drum or large core storage. Since both drum

and large core storage are too small to store all of the files in the system

additional levels of memory are necessary and must be used by the system for

storage of infor-ation. The next level is ordinarilv disk. The level beyond that

would be tape, data cell, or some other similar device.

A decision algorithm is required for the movement of information between

each pair of levels. We have looked only at the decision algorlthm for the move-

ment of information between core memory and drum. It is not our intent here to
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discuss decision algorithms for movement between the other levels. We will simplv

state a philosophical principle which can be used for guidance in determining

the algorithms. The principle is that the oldest information, in terms of last

reference, ihould be stored on the slowest device. So, in a sense, the movement

algorithms are attempting to order the information on the various devices In such

a way that the information which has been most recently referenced is stored on

the fastest access device and information which Is the oldest Is stored on the

slowest device.

9. Address Space _apping and Paging Combined

Let us look at the complete picture of the management of the hierarchi name

space, the management of the segment address space, the mapoinp between them, and

local memory management (naging) which Y:e have Just discussed. A directorv entry

now contains the following Information:

(a) name of segment

(b) length of segment

(c) type of segment

(d. access control list

(e" location o. segment

(f. date segment created

(g) date segment was last used

(h) date qepmen; was last modE fied

The location in the directory entry is no lonper a simple segment number, since

segments may be scored on a number of different devices. If it Is stored on disk

or tape tht location will consist of the device identification and other inform,-

tion which locates the se ment on the device. The last three items, which are

dates, are new items that are needed in order to imnlement the movement algorithms

between thi. various levels of storape. figure 16 shows a flow diagram of the

various pieces of the file system which we have discussed. The circles are data

bases which the modules reference. Vie flow diaeram repreqentq the complete

file system which is active whenever a process is beinR executed. That portion

of the program which implements the movement between disk and tape is R senarate

part of the system which we will look at in the next section of these notes.

9.2 Segment Address Space 4anapement

Management of the segment address space is somewhat more complicated than

the simple picture presented earlier. The argument to the seement address manager

is the' qeerent nointer to a directorv entry for the segment that is to he activated.
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The action of the segment address manager is as follows:

(a) Build a descriptor for the segment using the access control information

in the directory entry. Enter the descriptor in the descriptor table, therehv

assigning ai segment number.

(b) Call the memory manager who sets up the page table for the .egmert and

fills in the page table entries. Initially all the entries in the page table

will have the missing page bit set, since none of the pages are presently in core

memory.

(c) Bu.ild a file map which indicates the location of each paee in se,:ondarv

memory$.

(d) Start any information transfers which may be required.

(e) Return the segment number to the caller.

A strategy question arises with repard to the movement of a segment which

is stored on the disk into core memory. The particular strategv depends on the

specific hardware: the transfer time between disk and core, the transfer time becweem

drum and cire, and the number end nature of the transfer paths. In the tpical

modern computer configuration it is Probablv best to page a liphtlv referenced

segment directly to and from the disk, while a heavily referenced segment should

be paged t and from the drum. It probably is unwise to berin an en masse move-

ment of the segment from the disk when it is first referenced for the same reason

that prepajinR is ineffective. However, if the segment is stored on tave action

to retriev, the segment should be initiated immediatelv.

Onefurcher problem arises. A process may reference enough different segments

that local memory gets filled un with naRe tables. It is clear that we need a

way to get rid of page cables, the page tables for megments which have not been

referenced in some time. Tf a sepment has not been referenced in a lonp time all

of its pares will have been paged out. Clearly, there is no need for the pare
table until the segment is referenced again. Hardvare assltance is needed. 7The

segnt descriptor is extended to include a missing segment bit. 'hen the missinq

segment bit is set the page table may be discarded. If an attempt Is made to

reference a segment w se missing segment bit is set, the hardware will generate

a missing Negment fault. The fault handler for the missing segment fault will

reactivate the segment by building a new vate '.-,.. *or the serment and a file man.
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Figure 1'

10. Backup and Retrieval

In this section we discuss the followinp problem. No harchare device and

especiallv no softuare system is totally and continuouslv reliable. The ouestion

then arises: What do we do when a malfunction occurs? Presumablv we wish to

pick up the pieces as best we can, restore service as soon as possible, and mini-

mize the amount of lost information. The malfunctions range from comolete dis-

truction (e.g., all of the disk platters Are scored) to minor destruction (power

failure, minor hardware or program buq) where most of the Information is intact

and only a small amount is lost. To recover from any lr_'ormAtion loss, backun

copies of all the information is required. Lost information is then restored

from one of the backup copies.

10.1 Complete DumpinR

A straightforward solution to the oroblem is to dumn evervthinq on tare one

or more times ner day. When trouble occurs evervthinp is reloaded. This solution

has a number of disadvxntages. It recuires an excessive amount of time to dump.

In CTSS on the IBM 7094 with more than 30 million words of disk storage used,

the required time was 4 to 5 hours to dump. While dumpint was takinR place essen-

tially nothing else could be done with the computer. An excessive amount of

information must be stored in this solution, most of it is redundant. Again in

CTSS a complete dump reouired 6 to 8 reels of tape. Service can not be rentored

rapidly. The reloadinq procedure on CT3S took from 5 to 6 hours before service

could be restored -in. Finally, since the neriods between dumos ,ill have to

be at least a day if any useful work is toinR to get done on the computer, the

amount of information lost when trouble occurs is not very -iniTml. Some scheme
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is required which avoids storing so much redundant information. Such a scheme

will of course be more complicated than the simple straihtforward solution oosed

in this paragraph.

10.2 Incremental Dumping

Three situations may occur which should be dist ngutshed when considering

:he problem of backup:

(a) The situation is hopeless, the entire contents of the disk must be re-

suored.

(b) Most of the disk is alright and only selective restoration is reruired.

(c) No restoration at all is required, a few inconsistencies exist which

need to be resolved.

We name these three situations respectively, reload, retrieval, and salvage. If

we are to avoid saving excessive redua&daut information then we must dumn only

information which has been chaiged recently (since th: last cov was sived).

Note that some redundancv is desirs'1e; qavinp two copies is not considered ex-

cessive redundancy. It is good insurance against failure to make one of the

copies correctly. In addition to backuo, which we are di.icusing, we intend

to couple the last stage of multi-level file storage management with the backup

mechaniem, i.e.9old files will be kept only on the backup -apes. In other words,

the last level of file storage Is tape, the backup copies of the files.

In an attempt to satisfy the objectives of restorine service nuicklv and

minimizing the amount of redundant infor-ition stored we will use three differ-

ent kinds cf tapes; incremental dump tapes, svstem checkpoint canes, and user

checkpoint tapes. The incremental dump tapes are written by a sv,4:em process

(the daemor) which is continually active (althouth it spen,is much of its time in

a blocked itate) dumoing files onto the incremental dump cane. All of the serments

belonging *-o a user 'hlch were modifled durinp his operating session are copied

at the end of the session (,,ito the Incremental tape, If a session runs loneer

than a day then the files mr'lified vill he copied onto the incremental tape once

a day. In addition, any dtre,7torv entrias which have been modified durinp the

session are also copied onto the incremental tape. Hence the incremental tape

crntains a copy of all Information which is modified durtng the dev. .Iese Cape/

are created continuously. Figure 18 sh ws the creation of Incremental tapes

and system and user checkpoint tapes plotted Acatnnt time.
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Figure 18

Since some Parts of the directory hiera-: and some of the supervisor sep.-

ments may not have been modified for a long time, the reload Process would have

to scan through a large number of incremental capes in order to get the assem

started i' this information existed only on the incremental tapes, Hlence, we

need seme sort of checkpoint capes if ,qe are to restore the system to its operating.

state in a short amount of time. The systen checkpoint tapes w¢Ill contain All

the inforrazion needed to 7et the svster, operating on-line. This includes the

supervisor seem nts themselves, the accountins, allocation records, and the complete

hierarchy skeleton (i.e., the contenits of all the directorv entries), The user

checkpoint tares contain all the user darn sevments tihich have been referenced

since the lasc user checkpoint tape was written. Notice on the chart that th,

9vatem checkpoint capes are written every few days and the user checkpoint capes

every few weeks. These parameters are adjustable to pet che best balance between

fast restoration of service and excessive time spent in writinp these tares

initially.

All of the tapes are wr'itten in the s~me format. A record on the tape con-

sists of either the treae name of a data segment followed by the data seement

contents or the tree name of a directorv entry followed by the information in

the directorv entry.

10.3 Reloading,

The reloading procedure which is used in the case of total destruction is

as follows. The incremental tapes have been written with a header record which
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contains complete instructions for the reloading, including the identification

of rape reels to be used by zte operators in er:h of the following steps.

(a) Start with the incremental tape being written at the :ime of the crash.

W.1en this tape is loaded by the reload program it prints our, for the operator's

benefit, a list of tape reel identifications in the sequence in which they are

to b.- loaded by the reloader.

(b) All of the increme-,tal rapes written since the laterc system checknoint

caves are reloaded in rcverse order, that is, the most recent one first.

(c) Te latest sYstem checkpoint tane is now loaded. Note that in the re-

leading process as each incremental or system checkpoint tane is processed no file

is loaded which is already in the hierarchy. This means that the latest conv

of each file is the one that is retained, even thouqh there may exist copies of

a file on several of the incremental capes. After this step normal on-line opera-

tion begins. The supervisor has been restored, the user account information is

present, and the hierarchy is complete. Since the hierarchy is complete, we

now have complete information on the location, in the backup system, of all files

that have entries in the hierarchy. This means that normal operation can jeeir

and users who attempt to use the system will be given precise status information

on any files that have not vet been restored to the disk.

(d) Continue reloading all of the Incremental tanes written since the latest

user checkpoint tane and before the latest system checkpoint tape.

(e) Load the latest user checkpoint tape.

The reloading process stops at this point. Any file which is not now restored

has not been referenced since the next to the last user checkpoint tape was written.

This is true because the user checkpoint cane copied all files thar had been ref-

erenced sir-ce the previous user checkpoint rape. Thus, we have restored all

segments wLich have been referred to within the past several weeks. Any seements

which have not been restored by this process exist on some incremental tape. The

directory entry for the seement has complete location Information, includin; tape

reel identification. If it should be referenced by tha user the system wil

automatically retrieve it from the appropriate incremental rape. This retrieval

is automatic. The system instructs the operator what tane reel to mount. The

system then searches for the segment and reloads it without user Intervention.

10.4 Multi-leval Storage Management

It was mentioned that the backup would serve as the last stage of the multi-

level storage manRaemen. When the disk gets too full, we examine the oldest
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segments on the disk. After being certain that they have been dumped on fncre-

mental tape, their storage is released to the free storage pool. Their directorv

entries are aprropriately marked. Any future reference to one of these segments

will automatically cause the segment to be retrieved from the incremental tape,

just as it was in the case of the older files which did not get reloaded after

a disaster.

10.5 Consolidation of Incremental Tapes

Let us look at the life time of the various taves which have been created

by the backup. Only the latest two or three sets of user and system checknoint

tapes need to be saved. More than one copy needs to be saved only in case a

problem arises in attemptine to read the tape, Extra copies are insurance. The

incremental tapes form the permanent backup cc v of segments in the system. These

need to be saved as long as they contain any segment which is known to the system,

i.e..which has An entry in the hierarchv. As time passes and months turn into

years, the number of tapes that need to he saved can get very large. There are

two ways to reduce the number of tapes which need to he saved.

The first method is consolidation. When the cost of cane storage approaches

the zost of execution of a consolidation program, it makes sense to consolidate

the old capes. The old incremental tapes probably contain very few files .Yhich

have not been explicitly or implicitly deleted. The consolidation program processes

the old incremental tapes and compacts all of the files still known to the system

onto a smaller number of new capes. These have the same format as the incremental

tapes, in fact they are indistinguishable from original incremental capes. The

hierarchy entries for these segments then need to be undated to reflect the numbers

of the tape reels on which the segments are now stored.

The second way to reduce the number of capes that need to be saved is to

impose some absolute time limit for the retention of unused segments. perhaps a

year is a reasonable time. The user would then have to take sqo.e explicit action

if he wished his old segments to be retained longer by the system.

10.6 Retrieval

The retrieval program is a special program which restores a given segment

from the incremental tapes. The retrieval program is used by the file svstem to

retrieve segments when they are referenced by a user after the file has been

deleted from the disk due to age. It is also used by the system to repair minor

damage done by a malfunction, i.e., when only a few files are destroyed these files

are eliminated from disk, then when they are first referenced by the user thev

I!
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will be restored from the backup.

10.7 Salvage

The salvager is a program which checks for inconsistencies in the hlerarchv,

in the free storage Pool for the various devices, etc. Tt will attempt to resolve

any inconsistencies that It can and will report all inconsistencies to the operator.

The basis for this program is redundancy in the structure of the hierarchi, which

can be used to detect inconsistencies. However, we onerate on the follow-lne basic

principle: It is better to lose information than retain incorrect information.

So$ unless we have a high degree of confidence, information is considered to be

bad nd itill be restored from the backup.

The following a.e examples of the tvnes of tests that can be made to check

tne consis~enc-?.

(a) Check the format of the directorv entry. Directory entry formats are

in general variable lenpth since the access control list is of indeterminate

length. The counts of the variable portions of the directory entry should be

reasonable.

(b) Some of the contents of the directory entry can be checked. The length

of the segment given there should not exceed the user's cuota. Dates given in the

directorv entry should all be sensible, i.e., belyond the date at which the

system started operating. The location information of f1les should be meaning-

ful, i.e., device numbers should in fact be numbers of devices that actually exist.

Track numbers should be within the range of track numbers for the .iven de',rice.

(c) All the fMle maps can be scanned making a list of the disk tracks which

are mentioned in the file man. This list of used disk tracks can be compared with

the free storage list maintained for the disk, The t';o lists should not have any

numbers in common and the sum total of the two lists should account for all the

tracks on t'ie disk.

(d) A check can be made that no track on the disk is assigned to more than

one segment, i.e., appears in more than one file man.

(e) The length of each segment can be checked against the number of tracks

which are a:3si ned for char segment in the file map. The length of thc seement

should be less than or equal to the sum total of the number of tracks. On the

other hand the length of the seement should be Rreater than the number of tracks

assiRned minus one,

Extra redundancy can be built into the svstem for the purpose of making

the salvager more effective. For example, it may be worth the additional cost
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to put forward and hackwared nofnters In each of the tracks on the disk. Uhile

these are not necessary because of the file map, they eive inderendent checks

on the organization of the seement on the disk. If the forward pointer, for

example, pointed to the track which was recorded in the file man then we have

additional sunort for the consistencv of the Informition. If forward an! back-

ward pointers made sense hut the file map didn't we might feel it would be safe

to use a two out of three vote and fix the file man entry so that it nointed to

the crack which the forward and backward pointers of Rurrounding tracks pointed

A salvager program was used in the CTSS system and proved to be very suc-

ceisful. In eeneral, there was a need to run the salvafer several times a week.

In general, use of the salvager enabled the svstem. to recover from numerous minor

problems without havinc to completeiv restore the disk. The desIgn of the salvaser

is based very heavily upon the details of the narticular implementation and must

be worked out in that framework. In deqigning the system one should keep in mind

the value of additional redundancy in terms of makine the salvager effective.

11. Input/Oucput

There are two basically different ways of accessinR information: Direct

reference (random access) and source/sink (seiuential; read takes from a source

and write deposits in a sink). Pile systems have been built using either one or

both of these concepts as a basis for referencinp files. The most common seems

to be some variation of the source/cdnk concent. We have been calling the direct

reference riethod of accessing, the segment concent, We call the source/sink method

the stream concept. We chose the seament concept for the basis of our file system

because we feel it is more natural for the user and provides a better model for

the problems of address mapnInR and qtoraRe manaement than does the source/sink

idea. The problems of storage management tnd address mapping have to be faced

in the design of a file svstm no matter which method of accessinp Is used as a

foundation.

In the following paragraphs we will discuss the input/output part of our

model system. We do this for two reasons: To exhibit its inherent sImplicitv

and to see that by proper structurin, files can easily he treated as sources or

sinks, i.e., as I/o devices. An Input/output system Is iuite naturally viewed

usinR the source/sink idea.

The basic entity is a stream, either an Input stream or an output qtroim.

Streams have symbolic names. The basic operations on streams are read aind write.

With the exception of some system defaults, a streim must be ex"licitlv attached
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to a device, i.e., attach (name, device-spee). A stream may be detached and re-

attached to another device if desired. The attachment is dynamic and takes place

during execution whenever the attach entry nf the I/O system is called.

Figure 19 shows a block diagram of the I/O system. The attach entry causes

the naine of the stream and the device specification for the stream to be recorded

in the stream-name/device table. In addition, attach decides which device control

module (DCM) is appropriate and enters its name in the zable. The 1/O control

program's action for read and write is relativelv simple. On a read or write entry

the name of the stream to be read or t-yritten is looked up in the stream-name/devlce

tablet the appropriate device control module ii idenciffed and the read or write

call is pansed on to the appronriate DC.
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Figure 19

The DCM performs a number of functions. Each DCM has a read entry and a

write entry. The DCM converts a device independent reauest into a device-

dependent one. In doing this it must coipile a program for the hardware input/

output controller (10C). This program reflects the idiosvncracies of the particu-

lar device to which the stream is attached. It may include line controls in the

case of remote terminals, select instructions in the case of tapes, and so forth.

In addition, the device control module may need to convert the internal character

code used by the system into an appropriate character code for the device. Type-

writer terminals, for example, conte in many different varieties. Virtually every

L
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different variety has a different character code. The device control module after

compiline a proRram for the TOC calls the TOC manager to start the I/O usinq

this IOC program. It is the DCM's responsibilitv to interact with the IOC managor

until this IO request Lis been finished. This may renuire several calls to the

IOC manager depending upon the particular format of the proeramn which the TOC

can execute*

The IOC manager is responsible for the overall manaRement of the 1/O controller.

In general with a large number of different users on the svstem the 7OC manager

will have to queue tasks for the various channels o' the IOC. The TOC manager

is responsible for overallmonitoring of the operation of the IOC. This requires

answering interrupts, recognizing comnletion of tasks, and starting new tasks

from the queue when channels become free.

The file system Interface DC", functions like any other DC1. However, it does

not call the IOC manager. The file svscem interface DCM is used to make a segment

look like an I/0 device. The principle data base for the file system interface

DCM is a table which contains status information for each segment which i!; bein-

referred to as a device. When an attach call is made to the I/O control nroeram

attaching a stream to a segment, the requested segment is activated. The file system

interface DCM maintainq in the segment status table an index of the current position

in the segment where readinh or writinp Is caklne place. lead and write calls

are processed bv the file wvstem interface !)C" and consist of cnoving the renuest-

ed information into or out of the segment at the position of the index. After

the copv is made the Index is undated to the new position in the segment.
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