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ABSTRACT 

This report develops a multidimensional, dynamic analysis of solid state 

avalanche diodes. Well-established electromagnetic concepts are applied 
to a widely used model of the diode and reveal a discrete spectrum of new 

small-signal modes. The approach used enlarges the conventional per- 
spective and has permitted the discovery that at least one of these new 
modes appears to possess a high power capability (associated with its 
two-terminal negative resistance) which has been partially realized ex- 
perimentally. The lowest-order mode contains all the results of prior 
quasi-static theories on the normal IMPATT mode, plus additional infor- 
mation which is used to delineate the range of validity of the quasi-static 
results. Formal discrepancies are uncovered between the usual quasi- 
static, one-dimensional result for diode impedance used in solid state 
studies and the dynamic multidimensional result for the normal IMPATT 
mode developed from microwave circuit theory. However, these discrep- 
ancies are numerically quite small except in certain narrow frequency 
bands. 

Accepted for the Air Force 
Joseph R. Waterman,   Lt. Col.,  USAF 
Chief,   Lincoln Laboratory Project Office 

in 



CONTENTS 

Abstract iii 

I.    Introduction 1 

II.    Model and Basic Equations 3 

III. Avalanche Zone 6 

IV. Drift Zone 8 

V.    The Quasi-TEM Radial Wave Mode (Normal IMPATT) io 

VI.    Impedance of the Avalanche Region 14 

VII.    The Drift Zone in the Quasi-Static Approximation 16 

VIII.    Conclusions 17 

References 20 



A    THEORY    OF    MULTIPLE    MODES 
IN    AVALANCHE    DIODES 

I.      INTRODUCTION 

This report develops a multidimensional,   dynamic,   small-signal analysis of solid state 
I 

avalanche diodes    by applying well-established electromagnetic concepts to a widely used ava- 

lanche diode model.    Prior theories are one-dimensional and quasi-static,  and take into account 

only longitudinal (z) variations of the fields and currents within the semiconductor.     The result 

is a single quasi-static avalanche mode.    In the present work radial (r) and z-variations are 

considered,  and the result is the existence of a spectrum of avalanche modes in the semicon- 

ductor.    The lowest-order mode is a "volume" mode (i.e.,  a mode in which the fields and cur- 

rents do not vary significantly throughout any diode cross section) and is just that mode revealed, 
3 

in part,  by one-dimensional theory.    The remaining modes are apparently surface-wave modes 

(i.e.,  modes in which the field and current amplitudes inside the semiconductor decrease signif- 
icantly with distance from the diode-air surface),  or similar to surface waves.    The idealized 

solid diode configuration with its contacts may be pictured somewhat as a parallel-plate capacitor 
or a radial waveguide with perfectly conducting walls,  each completely filled with a cylinder of 
semiconductor material.    The dimensions of the diode,  however,   are several orders of magni- 
tude smaller than ordinary capacitors or radial waveguides (see Fig. 4). 
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Fig. 1. Multiple uniform layer model of avalanche diode. The crosshatched 
sections bordering the active regions represent the highly conductive bulk 
material. 

In device work,  mode has usually signified a distinctive pattern of device behavior.    In this 
report,  avalanche mode is used to signify a self-consistent field and current distribution within 

the space-charge region of the diode which is consistent with the prevailing boundary conditions 
at the planar interfaces between the space-charge region and the remaining material of the diode. 
Each such mode in the preceding sense turns out to be connected with a distinctive pattern of 
device behavior. 

The avalanche modes are obtained by deriving and solving the fundamental small-signal field 
equation for avalanching carrier interactions with electromagnetic fields.    This turns out to be 



Fig. 2.    Simplified model of one type 
CERAMIC      

of packaged diode. 

a fourth-order wave equation for which the introduction of a spatially and temporally dispersive 

equivalent conductivity greatly simplifies the method of solution.    The avalanche modes within 

the diode are coupled to the purely electromagnetic modes in the semiconductor package and 

mount (see Fig. 2).    For many package and mount geometries,  these modes can be approximated 
4 

by a TEM radial waveguide mode,  with all higher-order radial waveguide modes cut off.     The 

modes in the package and mount are,  in turn,   coupled to the normal electromagnetic modes of 

the waveguide or transmission line containing the packaged diode. 

The approach used in the present report    enlarges the conventional perspective on solid 

state avalanche diodes in a manner which permits rigorous consideration of complex circum- 

stances which are not directly accessible through present one-dimensional theory.    From this 

perspective one may investigate the influence on avalanche diode operation of: 

(a) Higher-order avalanche modes (which apparently possess high power 
generation capability at microwave frequencies), 

(b) Noncircular diode cross sections, 

(c) Doughnut or ring shapes    (which are used to reduce the diode's thermal 
resistance), 

(d) Nonuniform radial temperature and as well as current profiles induced 
by thermal effects,7 

as well as 

(e) Determine the diode-package-mount interaction taking into account the 
cut-off higher-order radial waveguide modes, 

(f) Delineate the range of validity of the conventional one-dimensional,  quasi- 
static theory of the normal IMPATT mode,  and 

(g) Analyze potentially self-resonant IMPATT diodes (which are analogous to 
self-resonant LSA diodes8). 

The higher-order avalanche modes appear for the most part to be similar to surface waves 

and are referred to as SWIMPATT (for surface-wave IMPATT) modes,   and are discussed at 
a 

length elsewhere/   The modes are ordered,   as is the case of waveguide theory,   from smallest 



(lowest-order) wavenumber to larger (higher-order) wavenumbers.    The SWIMPATT modes are 
basically a two-dimensional avalanche phenomena.     They are somewhat analogous to the recently 

11-13 discovered two-dimensional wave effects in Gunn-effect diodes. The analogy is imperfect, 
however,  because (1) the above-mentioned Gunn-effect diodes are presently designed in the co- 

planar (or sheet diode) configuration, while the avalanche diodes under discussion are assumed 
to be in the sandwich configuration described at the beginning of this section,  and (2) the Gunn- 
effect diodes are believed to operate in their lowest-order mode while SWIMPATT are higher- 

order modes.    The present report will develop the fundamental theory.    Topics (b),  (c),  (e),  and 

(g) will be discussed in Ref. 14 as an application of the theory developed here.    Topics (a) and (d) 

will be developed    in Refs. 9 and 15.    The present report will consider topic (f) and,  in outline 

form,  topic (a). 

II.     MODEL AND BASIC   EQUATIONS 

The space-charge region of the avalanche diode is modeled as multiple,  uniform,  tandem 
116 layers   '       (shown in Fig. 1) within which a   ,   the electron ionization rate (which is assumed for 

simplicity equal to a  ,  the hole ionization rate) is assumed to be independent of the longitudinal 

position z.    It is also assumed that the material properties,  the DC electric field E  ,  and the 
DC electron and hole longitudinal currents,  J      and J     ,  are independent of the transverse co- 

ordinates within the diode.    The space-charge region is assumed to be terminated on both sides 
by highly conductive material. 

In the avalanche zone,   a = a    = a    is a non-zero quantity,  while the drift zones are modeled 

with a = 0 (see Fig. 1).    The electron and hole velocities,  v   = v z    and v   = -v z  ,  are taken ° n       n o p p p 
to be their scattering-limited values (where v    and v    are positive constants,   and z    is a unit 0 p n o 
vector in the positive z-direction).    Although v   ^ v ,  and a    ^ a    in Si and Ge diodes,  it is 

4i/ 
6n^p n^p 

assumed for simplicity '      that v   = v   = v,  and a    = a    = a (which holds for GaAs diodes). r        J n       p n        p 
The continuity equations for the electron and holes are 

fr-**-3«*« «> 

%-^*-\ + * (2) 

where g = otv (n + p) is the generation rate,   J    = —qv nz    and J    = —qv pz    are the electron and to r b nno p        ^ pr  o 
hole current densities,  q is the electronic charge,  and n and p are the electron and hole den- 
sities.    The effects of ohmic radial currents are considered in Ref. 9. 

The small-signal time-harmonic approximation for the electric field is 

e = E    + E ejwt (3) o / 

where E    = E z    is the DC component of e,   E is the RF  component of e with a frequency w 
radians per second,  and  |E   | »  |E|.    A similar description applies to the electron density 

N = n    + n e^ ,  and the hole density P = p    + p e-'     .    The ionization rate is approximated by the 
truncated Taylor series 

a(e) s a    + o^Ez (4) 

t This differs from the multidimensional avalanche phenomena in spherical diodes which have 
recently been discussed.10 



E- 2 
and (2) may then be used to obtain the continuity equations for the RF carrier densities 

expanded about E    with E    = E •   z  ,  and a.   a'  = da/de,  evaluated at e = E  .    Equations (1) r o Z 0 0        0' o n 

Dnn - aovp - cEz = ° <5> 

DpP - %vn - cEz = ° (6) 

where only first-order RF terms are retained,   c = -a'(J      + J     )/q,  and J o   no       po ' ^ 

D
n*lt + v

8|-
<v <7> 

Dp-lf-v
84-%v <8> 

In the one-dimensional problem,   it is sufficient to add Poisson's equation 

8E*       « 

to obtain a complete system of three equations in three unknowns  n,  p,  and E  .    In the multi- 

dimensional problem,  this system is not complete because of the existence of additional field 
47 components.    In general,  this requires the full Maxwell field equations,  which are 

VXE = ->\>IT <10' 

vxi?=jn + jp + f i§ cm 

where the constitutive relations D = «E and B = n H have already been used.    Equations (5),   (6), 

(10),  and (11) constitute a complete set of equations.    Equations (5) and (6) may be combined to 

give 

[D   D    - (a  v)2] n = c [D    + a  v] E (12) 1   n   p     '   o      J lpoJz v     ' 

[DnDp - (aov)2] p = c [Dn + aov] Ez (13) 

Multiplying Eqs. (12) and (13) by —qv,  and summing 

rD„Dp-(V)2l[Jn + V = 2aiV^r <14) 

is obtained. 

Equations (10) and (11) can be combined to obtain 

at 

2   2 Operating on Eq. (15) by the operator D D    - a   v   to eliminate J    and J  ,   it follows that 

7 

'DnDp-<%v)2'^X^XE"=-2V*;V—rSo-^o'DnDp-<%v)2l7# <16> 
oX oX 

Equation (16) is the fundamental wave equation for the avalanche diode model considered in this 

report.    Generalizations to the important case of ohmic and diffusive radial currents are con- 

sidered in Ref. 9.    Equation (16) is a fourth-order partial differential equation and,   in general, 



difficult to solve directly.    For the circumstances being considered,   it is useful to take advantage 

of the fact that the D   and D    operators are constant coefficient and commute with the operator 

(V x V x).    Consider electric fields which are describable by 

E =   YJ  EJ (17) 

where 

then 

E. = S.(r, <p) e l       r    ^ 

j(wt-K.z) 
(18) 

[DnDp-(o'ov)2] E. = F^w.K.) E. (19) 

where F.{oo, K.) = [j(c; — vk.) — a v] [j (a; + vK.) - a  v].    Using the above results,   along with 

6/at = jw,   Eq. (16) becomes 

V x V x E. = O;
2

(JL   f. •   E. (20) 
l 'o   1 l x 

where the equivalent permittivity matrix e. is defined by 

€     1   + jwe 
0        0 

0 ( 

(21) 

in which  e   is the standard dielectric permittivity of the material and a. is the equivalent conduc- 

tivity defined by 

a- = 
— 2io;vQ'' J J o  o 

1 "  w2 + 2icoa  v - (K.v)2 
J       o 1 

(22) 

with J    = J      + J     .    a. is the conductivity in the sense that it can be shown from Eq. (14) that o       no       po       l J 

J  . + J . = a.E . 
ni        pi        l   zi 

(23) 

Equation (20) may be written directly in terms of an equivalent conductivity matrix a. as 

V x V x E. - -jwuo [3. + JC06T] •   E. (24) 

where  T is the unity matrix and 

(T . 

a, 0 n 

0 0 0 

0 n 0 

(25) 



The influence of highly conductive regions sandwiching the space-charge region is approx- 

imated by using the boundary conditions appropriate to infinitely conductive material,   i.e., the 

radial component of E is zero at z = ±L/2.    The fields are expressible in terms of TE and TM 

cylindrical wave modes which are similar in some respects to the TE and TM radial waveguide 

modes.       In addition,  the TE radial wave modes are uncoupled to the avalanche currents and, 

hence,  are the same as for a "cold" dielectric cylinder bounded by metal caps.    Thus,  only TM 
radial wave modes (H    =0) will be considered.    In Ref. 44,  the effect of variations of the fields 

and currents with azimuthal angle is considered in connection with the influence of noncircular 
diode cross section. 

The TM radial wave avalanche modes have non-zero field components E  ,  H   ,   and E    (when 

there are no azimuthal variations) and are also similar in many respects to the well-known small- 
48 signal TM modes in an axially directed electron beam of finite radius.       When a TM radial wave 

avalanche mode has "sufficiently small" radial variations (and no azimuthal variations),  then the 

radial electric field component E   will be shown in a later section to have a negligible magnitude 

from the point of view used in most computations.    The resulting avalanche mode can be envi- 

sioned to be essentially a TEM (in the r-direction) wave with only E   and H    as significant non- 

zero field components.    This quasi-TEM mode for which the z-variations are derivable from 

one-dimensional theory (which conventionally explicitly discusses only the E    field component) 

is the normal IMPATT mode.    The H    field component for the normal IMPATT mode is readily 
derivable in the terms of the z-component of the total current density J_,= J    + J    + ju>E   which 

is shown in Sec. V to be essential independent of r  and  z  (as is already widely known).'    The 
TEM radial wave avalanche mode differs most significantly in mathematical form from the TEM 

radial waveguide mode      (which has E   and H    as the only non-zero field components) by virtue 
of the z-variations in E   which the space-charge waves in the avalanche diode produce.    The H 
field component is independent of z   in both the TEM avalanche mode and the TEM radial wave- 

guide mode.    By contrast,   it may be noted that the quasi-TEM radial wave mode (with negligible 

value for E  ) in an axially directed electron beam of "large" finite radius does exhibit z-variations 
in Ez (Ref. 48). 

Solution of the associated boundary value problem,  posed below,  yields a discrete spectrum 
of modes within the diode,   each of which has particular field and current distributions (which 
vary with frequency) within the diode.    The relative amplitudes of the modes would be determined 
by imposing boundary conditions at the "rim" of the semiconducting pill,   i.e.,  at r = R,   in the 
same manner as is done for radial waveguides to reflect the diode-circuit interaction. 

III.   AVALANCHE  ZONE 

From the basic equation,   Eq. (24),   it follows without further assumptions that TM waves of 
j(wt-k.z) 

the form 6  .(r) e must satisfy 
Z 1 

t Using Ampere's rule in the form 

^27T p27r pR r»27T p27r pR 

one obtains H^ = rJrp/2 inside the diode and R  Jrp/2r outside the diode (but nearby),  where  R 
is the diode radius. 



?£(r^) + T.26, = 0 ,26) 

where the subscript i has been dropped from & for simplicity. Note that the identity V x V x 

E = V(V • E) — V E is not required in obtaining Eq. (26), and further does not reduce the alge- 

braic complexity since V •   E =/ 0.    The remaining symbols are defined by 

.      (K2 -K2) (K2 -K2) 
Ta s 2 2        2 <27) 

<Km + Ka - Ki2) 

K2 = o;2uo€ (28) 

K^ = (w/v)2 + 2jao(u;/v) - K 2 (29) 

Ka
2 = (a,a/v)2      ,       ca

2,2ö;JovA       . (30) 

16 K    is the standard dielectric wavenumber,   ±K     are the wavenumbers calculated by Misawa o m J 

(along with zero) for one-dimensional space-charge waves in avalanching carrier streams,  and 
19 a>    is the avalanche frequency originally derived by Gilden and Hines      below which the equiv- 

alent diode conductance is positive in their theory. 

Equation (27) can be rewritten as 

K4 -K2(K2  + K2 -T2) + [K2K2  -T2(K2   + K2)] = 0 (31) l ivmoalomavma'J v     ' 

from which it is clear that there are four values of K. corresponding to T,  with 

KH = -Ki2      '       Ki3 = -Ki4 <3E) 

For simplicity the first subscript,   i,  of the K*s in Eq. (32) will be dropped.   Thus,  the only non- 

singular solution that includes r = 0 is' 

Ex=Jo(Tar)   2    Aie  J   {Z <33) 

i=l 

where J  (Tr) is the zeroth order Bessel function of the first kind,  A. are constants,  and the ejaJ 

dependence is understood.    From Eqs.(10) and (33),   it follows that 

4   /A. e"JKiZ \ H/^TaW   2 \        * (34) 
v K   - K: 

I=1  \     o 1 

and 

4 -JK.z 
K.A. e 

Er = 3TaJl(Tar)   q;;Kz (35) 

i=l \       o        i     / 

where J^(Tr) is the first-order Bessel function of the first kind.    Equations (33) to (35) describe 

the only non-zero field components. 

t Ring (or doughnut) diodes require both Bessel functions of the first and second kind for a com- 
plete description. 



Equations (12) and (43) can be used to obtain 

4 

Jn=Jo<V>   E   "niAie~3KiZ (36) 
i=l 

V Jo(Tar)   I   VAie_jKiZ (37) 

i=l 

where a   . = (a./Z) (1 + vK./w),  and a   . - (a./Z) (1 - vK./w).    Note a   . + a   . = a..    The customary 

boundary conditions (these are not altered by the presence of drift zones) which are 

Jn=0      at      z = -y (38) 

Jp = 0      at      z = + j (39) 

are symmetric so that when the drift zones are symmetric about z = 0 

Jn(z) = Jp(-z) (40) 

It follows from this symmetry that 

Ai = A2      ,       A3=A4 (41) 

Equations (33) to (35) then simplify to 

E
v = JJTor) ZA

A [cos(K.z) + M cos(K,z)] (42) 

[cos(K.z)       M cos(K z)l 

^r±z +   K2_K
32 I <43> 

Er = 2JTaAlJl(Tar) 

K, sin(K.z)       MK, sin(K.z)' 
+ —^5 ^~\ 

K2 -K,2 K2 -K2 

o 1 o 3 

where 

A3 \u cos01 + jvKi sine^ too    -(vKJ    + ZjuWa    1 
M * Tt  - "[a, cose3 ♦ jvK3 Sine3] [u2 _ (vKi,2 + 2juV% J (45) 

with 0. = k.L/2,  and 9_ = K  L/2.    In the absence of symmetry,  the results are more complex. 

IV.   DRIFT  ZONE 

When  a  and  a'  are almost but not exactly equal to zero,   Eqs.(5) and (6) apply in the same 

form as for the avalanche zone.    Thus,  the results for the drift zone are 

4 

Ex = Jo(Tdr) E Gie"J"iZ <46> 
i=1 



/       G.       \    -J/3.Z 

% = 3^TdJi<V I [TTZTzh    ' <47> 
i=4  \    o      ^i ' 

E,= JTJ.(T,r)   ; ^-S)e "»" (48) 
4    /     0-G. 

i=l  VKo _/3i 
2 
i 

where /3. = — ß~, ß- = —ß. and G. are constant amplitudes. However, there is not the same sym- 

metry as in the drift region, so G. ^ G_ and G. ^ G4. The equation for T remains in the same 

form,  i.e. 

(K2-/?2)(K£-/?2) 
T c -   —- - — — (49) 

d lv2   , vl      n2, 
<Km + Ka-^P 

But now 

K    —A   ^0       , because a' —■ 0 a a o 

2 2 K     — /3    + A    ,   A     —0      ,       because a  ,   a'  — 0 m      K m       m o       o 

where ß = w/v and A    and A     are K     and K     — ß    evaluated at arbitrarily small but not zero H        ' a m a m     H J 

values of cv    and a ■ . o o 
Thus,   Eq. (49) reduces to 

(K2-/32)(/?2-/J2 + A    ) 
T,f =       ° -    1   , S — (50) 

/?
2-/32+Am+Aa 

Equation (50) can be rewritten in the form 

[ßif -[ß{]
2 (ß2 +K2 -T2) +/32(K2 -Td

2)= 0 (51) 

where A   and A     have been taken as zero for simplicity.    Continuity of fields at x = ±L/2 re- 

quires that T    = T ,.    The solutions to Eq. (51) are then 
SL Q 

h-^'   ±JKo-Tl (i= 1'2'3'4) (52) 

The above description of the drift zone is not so complex as that required for the avalanche 

zone.    For the unsymmetric case,  there are four unknown coefficients (the G.'s) for each of two 

drift zones,   plus four unknown coefficients (the A.'s) for the avalanche zone totaling twelve un- 

known coefficients.    There are twelve boundary conditions that must be satisfied at the various 

interfaces.    They are E    = J    = 0 at x = b,   E    = J    =0atx = —a,   and continuity of E  ,   H   ,   J  , J r       p r       n J r      <p      n 
and J    at z = ±L/2.    This information is necessary and sufficient for the determination of the 

ratios of eleven of the coefficients to the twelfth,  plus the radial wavenumber T  .    Once T    is ' * a a 
determined,  then the longitudinal wavenumbers K. and ß. can be calculated. 

2 2        2 1 l 

In the special case when K    -T     - ß   (which corresponds to surface waves because here 

|T   | R > 1 typically),  we see from Eq. (52) that a degenerate situation occurs in which case eigen- 

functions A. e are no longer valid.    To analyze this special case,  one must then return to 



the fundamental avalanche equation,   Eq. (16),  and rederive its solutions anew.    An alternative 

approach is to analyze the drift zone degenerate case with a    = a'  = 0 to begin with,  as opposed 

to calculating the solutions from the avalanche zone results by letting a  ,   a' — 0 as we have 

done here.    However,  no further insight is gained from such an approach.    The basic wave prop- 

erties of the nondegenerate surface modes are outlined in Refs. 3 and 9. 

V.     THE  QUASI-TEM  RADIAL WAVE  MODE   (NORMAL IMPATT) 

In this section it is demonstrated that, when |T | r « 1 for 0 < r^ R, the preceding TM 

waves reduce to a quasi-TEM cylindrical bulk wave for which the axial component of electric 

field is that derived by quasi-static,  one-dimensional theory for the normal IMPATT mode. 

The first part of this demonstration consists of deriving approximate expressions for the 

K. 's.    This is accomplished by solving Eq. (25),   for K. in terms of T  ,  with the assumption that 
i l    i2 i        i2 l 

|T   |    «  |K    |   .    For typical parameter values of an avalanche diode operating at microwave 

frequencies (K /K    )2 is of order unity so that I T   |2|l+(K/K    )2 I « I K    I 2 and K 2 « I K     I2 

a'm * 'a11 a'    m    '        '   m' o        '    m' 
The solutions to Eq. (31) are then 

Kd2 = K
2
2=,Ko-T

a
2t1+(K

a/
Km)2l <53) 

K 3 * K4 - Km - Ko + Ta t1 + «W*' (54) 

2 2 2 Note from the above that K .   + K,  = K    .    The longitudinal length of the space-charge region is 

of the order of 10 (Jim or,  typically,  much less.    Thus cos (K.z) « 1,   sin (K .z) <* K .z.    In addition 

the assumption |T   |  r « 1 leads to J (T  r) * 1,  J.(T  r) ^T  r/2.    Then Eqs.  (42) through (44) 

reduce to 

E z ~2A1 [1 + Mm cos(Kmz)] (55) 

(p 1 
1 + (K  /K    )' K   a/    m' 

« A1(ao + joe) r (56) 

T 
Er^-jA3sin(Kmz)Mm(Ri)(Tar) (57) 

>   m ' 

a    represents a. with K. = 0.    E    is now in the TEM form,  and H    is in the TEM form except for o      r 1 1 z <p r 

a correction term which is negligible for | T  /K    | « 1.    E    is effectively zero because it is 

negligible for |T  /K    I « 1,   |T„|  r« 1. es '   a'    m' '   a' 
Equation (45) reduces to 

A3 ao 
Mm E Ä^ =   f(jw cos0m - VKm sinem) (58) 

where 0_ = K_L/2. m        m   ' 
The total current in the z-direction,  J™ = joicE    + J    + J  ,   can be obtained from Eqs. (36), x z        n        p 

(37),  and (42).    The result is 

JT = 2AdJo(Tar) [(ai + jwc) cos(KlZ) + Mm(a3 + jwc) cos(K3z)] (59) 

10 



where a. = a. when i = 1,  and CT~ = a. when i = 3.    When Eqs. (53) and (54) hold,  then a. =* a  , 

and a- =^—jo;?.    Thus,  when |T   |  r « 1,  then 

JT ^2A1(ao + jwc) (60) 

Observe that,  although JT is independent of position,   it is a function of frequency,  ionization 

rate,  saturated carrier velocity,  and the DC,current density. 

If one attempts to approximate the preceding quasi-TEM radial wave by a cylindrical wave 

which is TEM without approximation,   i.e.,  where E    ^0,  and H    ^ 0 but E   £ 0 (which is not 

possible because the boundary conditions could not be satisfied),  then a somewhat unlikely result 
20 is obtained.    It can be shown that      for the exact TEM radial wave the unity term in the R.H.S. 

of Eq. (55) is associated with T    given by 
cL 

T2 = T2 = -jwn  (a    + jwc) = K2 - jwn a (61) a o        J     o   o     J o     J     o o 

while T    = 0 for the remaining cosine term,   i.e., 

E    « 2A,  [J  (T   r) + M      cos(K    z)] (62) z 1      o     o m m x 

Inasmuch as a   plays the role,   in several instances,  of somewhat of an effective over-all con- 

ductivity (independent of K.) for the quasi-TEM (normal IMPATT) mode,   it appears plausible to 
2 1 

take T     as given by Eq. (61).    Then Eq. (55) could be written more descriptively as 
a 

E    = 2A.J  (T  r) [1 + M     cos (K    z)] z 1   ov   o m v   m 

Several important properties of T    are readily determined, 

(a) If u. » (jo    (and typically w    ^- 2a   v), 

then T2 « K2 = real, o o 

(b) If w -* 0, 

then T    - (5fe)<*+j>- (i-^fe>y? 
(c) If a; = Jw* + (2a ov)2, 

then Re(T2) = 0. 

The quasi-TEM radial wave mode within the IMPATT  diode,  as explicitly displayed by 

Eqs. (55),  (56),  and (57) can be now readily contrasted with the TEM radial electromagnetic wave- 

guide mode in the diode package and mount which is,  in general,  described by 

Ex = 2AJQ(Kor) (63) 

%=-VAJl(Kor)/^o <64> 

where K    a u;  u.  €  .    This reduces to o o o 

1 1 



E    = 2A x 

H    = jcueAr 

for the usual case where K r « 1. o 

(65) 

(66) 

The influence of the IMPATT diode's finite radius on its impedance is determined below 
to be 

TaRJo(TaR) 

2J4(TaR) (67) 

where Z    and Z    are the impedances derived from the one and multidimensional theories,   R  is 
o c o 

the radius of the diode,  and one may use the simple estimate of T    provided by Eq. (61).    The 

results, shown in Figs. 3 through 10, demonstrate that significant deviations (ranging from 5 to 

50 percent or higher) from the quasi-static, one-dimensional results occur only within a 100-MHz 

band surrounding the threshold frequencies of negative impedance and the reactive resonance fre- 

quencies.   The substantial deviations illustrated may be easily obscured in practice by dissipative 

losses in the contacts, package, and mount, as well as the usual tolerances in measurements. 

~z£5l S^oT 

FREQUENCY    (GHz) 

Fig. 3. Relative percentage difference between 
normal IMPATT resistance (in a 100-MHz band 
surrounding the negative resistance threshold) 
as calculated from conventional quasi-static 
one-dimensional and dynamic multidimensional 
theories. Parameters are J0 = 3760amp/cm^, 
L = 0.50 [im, b - L/2 = 0.92 |xm, and v-8.5x 
10& cm/sec. 

27.70 27.72 

FREQUENCY   (GHz) 

Fig. 4. Relative percentage difference between 
normal IMPATT reactance (in a 100-MHz fre- 
quency band surrounding reactive resonance) 
as calculated from one-dimensional quasi- 
static and dynamic multidimensional theories. 
Parameters same as for Fig. 3. 

\1 



56.50 

FREQUENCY   (GHz) 

- x 

Fig. 5. Same type of plot as in Fig. 3, 
using parameters J0 = 10,350 amp/cm^, 
L = 0.22 |im, b - L/2 = 0.39 um, and v = 
8.5 x 106 cm/sec. 

250 1       1 1       1       1 I I       I       I       I       I I       I       I       I       I       I 

|ll-«-1?l«l    - 

150 

c E 

*     50 

5     o 

1     -50 

- 

X - 
-150 " 

-?so 1       1 1       1       1 1 I      I       I       I       I       I 1       1       1       1       I       I 
6008 6010 60.12                       60.14 6016                   6018 

FREQUENCY   (GHz) 

Fig. £.    Same type of plot as in Fig. 4, 
using same parameters as for Fig. 5. 

70 68 70.70 

FREQUENCY   (GHz) 

Fig. 7. Same type of plot as in Fig. 3, 
using parameters J0 = 14,000 amp/cm, 
L = 0.17 jim, b - L/2 = 0.30 u.m, and 
v = 8.5 x 10-6 cm/sec. 

400 1       1 1       1      1 1      1      1      1      1      1      1       1 I       I       I       I       I       1 

|lt-«-ttl»«| _.         - 
c 

£    200 
-1 

s. 

O     100 - 

u     0 
x 

- 

f - 
—''-100 h 

-200 

' 

-400 1       1 1      1      1 1      1      1 I      I       I 1       1       1       1       1       1 
75 06 75.08 75.10 7512 75 14                  75 16 

FREQUENCY   (GHz) 

Fig. 8.    Same type of plot as in Fig. 4, 
using same parameters as for Fig. 7. 
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100 I   I   I   I   I   I   I   1 1   1   1   1   1   1   1   1   1   1 I      | 
[l|-4-12|$5| 

J 1 X 
A 

4 0 

J 
c 
§ 

1 
X 

I      ° 

X "-1 
■j 

-40 - J 
\ 
X 

- X 
- X 

J 
-10C 1   1   1   1   1   1   1   1 I      I      /    I      I      I      I      I      I      I 1 

n—i—i—i—i—i—i—r 1—i—i—i—r—i—i—i—r 

95 32 99.34 95.3« 

FREQUENCY   (GHz) 

1    I I I 1 l_ 
101.30 101.32 

FREQUENCY   (GHz) 

-I I 1 I I L. 

Fig. 10.    Same type of plot as in Fig. 4, 
using same parameters as for Fig. 9. 

Fig. 9. Same type of plot as in Fig. 3, 
using parameters JQ = 23,530 amp/cm^, 
L = 0.12 urn, b -L/2 = 0.21 urn, and v = 
8.5 x 10° cm/sec. 

VI. IMPEDANCE OF THE AVALANCHE REGION 

In this section,   Eq. (67),  which explicitly displays the dependence of the impedance of a diode 

operating in the normal IMP ATT mode on diode radius  R,  is derived.    We find that the usual 

quasi-static,  one-dimensional result for impedance used in diode work,  Eq. (71) below,   differs 

numerically over narrow frequency bands from the dynamic,  multidimensional result for the 

same quantity. 

For convenience,  we repeat here the appropriate equations for the normal IMPATT mode 

(where cos(K.Z) « 1,  and K3 - Km) explicitly including the radial dependence.    These are,  from 

Eqs.(42),   (43),   and (44), 

Ez^2AlJo(Tar)f1+Mmcos(Kmz)l 

*V -2A1J1(Tar)(% + ja,e)/Ta 

E    =*0 r 

The impedance of a diode operating in a normal IMPATT mode is given in general as 

-t 
where I   is the total current through the diode of radius   R  and 

V 
rL/2 

=    \ E_dz 
-L/2      z 

is the voltage across the diode.    The voltage may be written,  from Eqs. (68) and (72),  as 

V = J  (T  r) V      • o    a  '    o 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 
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where 

lo-y 
L/2 

V    =   \ 2A, [1 + M      cos(K    z)] dz (74) 
L/2 1 

is the voltage arising in the conventional one-dimensional theory. It is clear from Eq. (73) that 

the voltage remains an ambiguous quantity until an appropriate value of r is chosen. The total 

current is,  from Eq. (59), 

't = ffJt 
\  J+rd(?dr (75) 

Eqs.(71),   (73),   and (75) yield the conventional one-dimensional impedance Z    = V /irR  (<x    + iwc), 
o        o o 

when JQ(Tr) o. 1,  and J   is given by Eq. (60). 

The impedance of a one-port (two-terminal) is given in microwave circuit theory by    ' 

Z    =    —T (76) 

where 

P   - O E XH* •   dÄ (77) 

A c 

which represents the complex electromagnetic power flow through the enveloping surface A 

(which in the present case is the "exposed" cylindrical surface comprising the diode-air inter- 

face at r = R).    I  in Eq. (76) represents the terminal current which may be chosen as the I   used 

in the present report.    The total current is related to the magnetic field by Ampere's Law [which 

is simply the usual integral form of Eq. (41)] 

It=$H yKdcp (78) 

where azimuthal symmetry has been assumed,   R  is the outer radius of the diode and H    in 

Eq. (78) is evaluated at r = R.    Since H     is independent of <p   (for circular cross-section diode), 

Eq. (78) becomes 

I. = 2TTRH t <p 

- 47rAlRJ1(TaR) (orQ + jwf)/Ta (79) 

For the normal IMPATT mode,   Eq. (77) becomes 

Pt = O (EZH*) Rdcpdz (80) 

A 
c 

where the integrand of Eq. (80) is evaluated at r = R.    This result may be rewritten as 

V($H*Rd*)(£Ezdz) 

= I* V      (evaluated at r = R) (81) 
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where Eqs. (72) and (78) have been used along with knowledge,  from Eqs. (68) and (69),  that H 

is independent of z  and E    is independent of cp.    Equation (76) thus leads to 

J  (TR) V^ 
7    _    o    a o ^__ ,Q_v 
Jc =   47rA1R2J1(TaR2) (aQ + j«f )/T 

/TaRJo(TaR)\ 
zc-( 2Jl(Tam )zo t^-<67)] 

It is not unexpected that a multidimensional,   dynamic description of a diode should yield some 

sort of corrections to the one-dimensional,  quasi-static results.    Such is the case,   for example, 

for the classical capacitor.    However,   such a theory also reveals the potential existence of other 

modes,  as mentioned earlier,  which can never be obtained from the one-dimensional,   quasi- 

static theory. 

VII.    THE  DRIFT   ZONE  IN THE QUASI-STATIC  APPROXIMATION 

In this section the quasi-static one-dimensional description of the drift zone interactions are 

retrieved from the general theory of Sec. IV. 

When |T|  r   «1,  0<r^R 

4 
-j/S.z 

Jn=    I    O^G.e      l (83) 
i=l 

4 
-J0-Z 

V 2 vv  L (84) 
i=l 

similar to the avalanche zone where ß. replaces K.  in a   . and a   ..    For Ki      * l ni pi 

ß. = -ß2 - T    - K    — order of magnitude of w   \± e (85) 

2 2 then w    » (v/3.)    for all  co,  so cr   . =* a   _ <* or   . =* er   ~ =* CT    goes to zero where cv    and a'  go to 

zero.    Also /3~   = ß4 <* 2j(w/v) a    -(2a'J  /ve) + (cu/v)  ,   hence /3- = —/3. =* w/v + ja    - a  J  /cue 

for sufficiently small cv    and a\    From this it can be shown that cr   . and a  ~ go to zero while J o o n4 p3 to 

orp4 and(7n3 g° t0 ~^€' 
Thus 

,Tn--jo;€G3 e'j/3x (86) 

Jp--jWfG4e
+J/?z (87) 

The boundary condition Jp = 0,  at z - b,   implies from the above that G. = 0.    For the customary 

iK  z o range of values for  z,   e ^4 with considerable accuracy.    Thus,   Eqs. (46),   (47),   and (48) 

reduce,  for the quasi-TEM case,  to 

Ex - Go + G3 e-^z (88) 
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H,^(co-STe*) <89> 

Er"T[Ko(G
1-

G2)-G3T'Se"J'5Z] (90) 

where G   = G. + G_.    The boundary condition E   = 0 at z = b implies that G. = G  'for T /ß suf- 
^" — ifi'7 

ficiently small,  so the above reduces further to E   * G    + G, e~J/^  ,  H    « icof rG /2,  and E    =* 0. J x       o        3 <P & r 
Thus the quasi-static results can be retrieved.    The large radius result of Eq. (67) applies equally 

well to the drift zone. 

VIII.    CONCLUSIONS 

This report has presented a multidimensional analysis of avalanche diodes which exposes 

the existence of new modes (TM cylindrical waves) in the semiconductor in addition to that ob- 

tained through prior one-dimensional theories. '        The main parameters characterizing the 

radial variation of fields and currents are (1) the frequency,  (2) the avalanche frequency,   as de- 
19 fined by Gilden and Hines,     and (3) the wavenumbers for one-dimensional space-charge waves 

on avalanching carriers as determined by Misawa.       Associated with each mode are four plane 

waves traveling along the longitudinal axis of the semiconductor.    The results obtained from one- 

dimensional quasi-static analysis turn out to be contained in a quasi-TEM cylindrical "volume" 

wave which is retrieved from the lowest-order mode of the multidimensional avalanche mode 

spectrum.    The total current for the quasi-TEM mode,  which in prior analyses is an unknown 

constant,  has negligible spatial variation but is shown to be a function of the DC current density, 

frequency,   ionization coefficients,  and the saturated drift velocity.    The power transport and 

the impedance have been calculated from  E and H.    The quasi-TEM mode is the normal IMPATT 

mode. 

A small discrepancy has been uncovered between the quasi-static results for the normal 

IMPATT mode diode impedance conventionally used in diode research [Eq. (7 4)] and the dynamic 

result [Eq.(76)]   developed from multidimensional theory.    Fortunately,  the magnitude of the 

numerical discrepancy is negligible for most frequencies of interest except in narrow bands of 

about 100-MHz width where it may be obscured in practice by other factors.    However,  the ex- 

istence of the discrepancy does leave the question of whether its magnitude may not be significant 

in special diode applications (e.g.,  at submillimeter frequencies) or for diodes of other types. 

The mode spectrum has been determined by the continuity conditions at the planar bounda- 

ries z = ±L/2,   and the boundary conditions at the planar boundaries z = +b and z = -a.    This 

corresponds exactly to the procedure used in the prior one-dimensional theories.    As in the 

theory of radial waveguides,  specific conditions at the "rim," i.e.,  at r = R,  can be synthesized 

by an appropriate superposition of avalanche modes assuming mode completeness (which has not 

been proved here).    Generally there are no constraints that may be imposed at r = R because 

this will vary with the tuning of the associated microwave circuit and particulars of the local 
14 structures.    An exception is the self-resonant diode. 

The spectrum of higher-order modes is discrete and typically involves RF field and RF cur- 

rent profiles which vary strongly with radial position.    It is reasonable to expect some coupling 

between the various avalanche modes to occur as the signal level is increased.    Thus,   a rigorous 

large-signal theory of avalanche diodes must evaluate the effects of such mode coupling. 

Geometric effects and higher-order modes are considered in detail in the next two parts of 

this work in Refs. 9 and 14.    However,   it is useful to describe here,   in a qualitative fashion,  the 
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unusual but practical nature of a higher-order mode.    Consider an avalanche diode whose cross - 

sectional area is one to two orders of magnitude greater than those of conventional avalanche 

diodes operating at the same frequency.    The capacitance of such a diode,   at microwave frequen- 
cies,  would be one to two orders of magnitude greater than the permissible level for normal 
IMPATT operation.    However,  the preceding observation assumed a uniform RF field profile 

across the cross section of the diode.    If instead the RF field has an exponential taper with radial 

position,  as is approximately true in a SWIMPATT mode,  then the effective capacitance would 
be moderate.    Figure 4 4 illustrates this situation.    Further,   if one calculates the "effective ac- 

tive volume for the SWIMPATT mode,  taking into account the sharp profile,   it turns out to be 

larger for this surface wave than for the corresponding volume wave in normal IMPATT diodes. 

(a) 

18-4-12897 

E, 

(b) 

r=0 

Fig. 44.    Radial profiles of axially directed electric field for (a) normal-sized normal 
IMPATT mode diodes,   and (b) large-area SWIMPATT mode diodes. 

The buildup of a SWIMPATT wave may be conveniently pictured in two simplified stages. 
The first stage may occur in a time period of,  say,   40 nanoseconds (for an X-band diode) during 
which the effects of diffusion are too slow to be noticeable.    In this stage,  the fields and current 

quickly build up to a state in which they have a steep,  nearly exponential variation with radial 
position,  from their peak values at the outer diode perimeter to almost negligible values several 
tens of microns further inward toward the center of the diode.    The power output from such a 

wave is of the same order as that from the corresponding normal IMPATT diode because the 
effective active volume of the semiconductor is of the same order in both cases. 

As time passes,   diffusion occurs because of the steep RF radial gradients in current density. 
In other circumstances,   such diffusion would be small since the carriers would be swept out of 
the thin active region in the axial direction at their saturated drift speeds (v ).    Their radial 
excursions would be very limited since their average radial velocities due to diffusion would be 

very much smaller than v  .    However,  avalanching carriers continually produce electron-hole 

pairs throughout the avalanche zone.    Thus,  as they travel along their relatively small radial 
excursions,  the avalanching carriers would produce other carriers which would extend the radial 

excursion and in turn produce other carriers to further extend the radial inflow.    The net result 



is that the active volume increases markedly so that the output power goes up at least an order 

of magnitude.   However, the inflow of carriers increases the axial electric field further in from 

the perimeter,  which raises the effective capacitance and reduces the frequency of oscillation. 

The picture obtained from the above considerations is that of a very large area avalanche 

diode which produces high power as its frequency of oscillation sweeps over a broad range. 

Such diodes have been fabricated in the past and their reported operation was considered unex- 

plained in numerous details.    *   L   Now some details may be accurately explained by the above 

description and by further,  more quantitative information to be developed in Ref. 9.    For example, 

calculations based on some normal IMPATT thermal considerations yielded estimates of their 

sweep frequencies from two to three orders of magnitude off from the observed sweeps,  while 
22 other more speculative suggestions yield no quantitative estimates.       On the other hand,   some 

simple calculations,  presented in Ref. 9,  obtain both the correct order of magnitude of the sweep 

frequencies and the correct shape of the curve of sweep frequencies vs time.    As a further ex- 

ample,  the existence of the SWIMPATT mode and its characteristics explain the descrepancy 
23 between Melick's work,     (which demonstrated that the RF output IMPATT power peaked for areas 

around the "normal sized" IMPATT diode and decreased significantly with increasing diode area), 

and the exceptionally high peak power obtained from the extra large area diodes.    These large 
area diodes produced one to two orders of magnitude more RF power than the normal sized 

IMPATT diodes (operated at about the same frequency) fabricated by the same workers at their 
24 time of discovery.       The multiplicity of pulsed modes experimentally detected at the same time 

and in the same diode by Manasse and Shapiro25 is also consistent with the multiple mode theory 

developed in this report and Ref. 9. 
A final example is the efficiency predictions of DeLoach based on skin effects in the diode 

substrate which indicate a marked decrease from the normal efficiency of an IMPATT diode as 
its radius exceeds the skin depth in the diode substrate.       Gilden and Moroney      obtained approx- 

imately the same efficiencies (5 percent) for 36-mil-diameter diodes as those obtained for nor- 

mal (4-mil) IMPATT diodes by the same workers at that time.    This apparent inconsistency is 

explainable by the surface-wave character of the SWIMPATT mode. 
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