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PREFACE

The broad range of optimization problems that can be classified
as multistage decision processes are amenable to scluticn by the tech-
niques of dynamic programming. This Memorandum provides a specific
application of the dynamic-programming approach to solving such prob-
iems, which arise in many areas of scientific investigation.

The present study is an outgrowth of an investigatioh of border
infiltration undertaken by The Rand Corporation for the Advanced Re-
search Projects Agency. In that investigation, the technique presented
here was applied to the more limited problem of predicting infiltration
routes. The model, however, has uow been generalized so that it can be
applied to a variety cf problems.

This model is programmed for use on JOSS, Rand's time-shared, on-

line computer system, but it is designed to be readily adaptable to other

on-line systems., At present, JOSS is being used by approximately 20

agencies within the Department of Defense and by numerous other organi-
zations, as well as by Rand. And since all of these agencies deal with
practical problems that are structured with many decision variables and

constraints, this model should prove widely useful.
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SUMMARY

This Memorandum contains the derivation of a dynamic-programming

model for finding optimal solutions o problems involving certain multi-

stage decision processes. The model has been impicmented on JOSS, and

instructions on its use are also included.

- The dynamic-programming approach analyzes an optimization problem
with various censtraints and variables by decomposing the problem into
a sequence of stages at which lower-order optimization takes place.

The model presented here encompacses a va.ue-iterative method which is
less restrictive and which offers desirable advantages over other cur-
fently used techniques. One such advantage is a reduction in the actual
amoﬁnt of computer storage required to reach an optimal solution.

The model is flexible and allows for testing the sensitivity of a
decision process to changes in the terminal point and thus in the asso-
ciated costs. Additional information may be gained from examining the
buildup of an optimal solution, which can also be printed out if condi-

tions permit.
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I. INTRODUCTION

The term dynamic programming is frequently applied to the mathe-
matical analysis of problems in which conditions that muet be satis-
fied by an optimal time-staged decision process .re to be exploited to
determine the best course of action. Dynamic elements (i.e., simulta-
neous time considerations) are foremost in many types of problems in-
volving multistage decisionmaking over definite--or even indefinite--
time horizons.*

Some of the subtle points of dynamic programming are frequently
~heruvad i{n discussions of the subject., In Section II, we shall attempt
to clarify these points, as they relate to a class of decision problems
that can be characterized by a particular network system. This, then,
facilitates the construction of a model suitable for finding optimal
solutions to such problems. The principle of optimality used in the
present model allows one to find the minimum-cost (shortest) path as
a function of the maximum number of arcs allowed. (The unconstrained
shortest-path problem has been treated extensively, e.g., see Refs.

1 and 2.)

Section III describes the JOSS** implementation of the modei and
includes instructions for its use., An illustrative problem is given
in Appendix A, and the program listing is given in Appendix B. i

*
A definite time horizon is one in which the number of perlods or
stages remainine in < decision process is stipulated.

')

JOSS is an on-line, time-shared computer svstem developed at
Rand. JOSS is the tridemark and service mark of The Rand Corporation
for its computer program and services using that progranm.
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II1. THE MODEL

The class of problems with which we are concerned is defired as
follows: Let a decision process be characterized by a network system
consisting of p nodes and a collection of directed arcs. (A node is
merely a junction point with incoming and/or outgoing arcs.) Let (i,3)
denote the arc from node i to node j, and the amount Cij be the associ-~
ated expense of traversing (i,j). A termiaal node, r, must be specified.
There is, however, no requirement that a particular starting point be
specified.

Given a decisionmaking process that can be formulated by such a
network system, we define an optimal solution to be a path (from nodal
points in the system to the terminal) that satisfies the following
principle of optimality:

Fegardless of the previovus ratiornale used to arrive
at a particular state, the remaining decisions as
to what path to take én route to the terminal must
themselves constitute an optimal solution.

Here we let Yi be the present value of an optimal path from n~de 1
to the terminal node r, where optitmal implies a path having minimal
total cost. Now, {f an optimal path from node i to node r starts by
f{rst going to node j, then

Y =Y +C : Q)

and
Y sy, +C, (2)

for all k ¢ ] in the system.

Equation (1) states that the cost of an optimal path from node 1
to the terminal, ¢, which starts by first going to node j is the sum
of the cust of an optimal path from node j to r and the cost of going
from nuod~ i to node j. Equation (2) insures that among the posaible
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choices of paths tc take from node i, none is better than the one start-
ing with node j.

Since Eqs. (1) and (2) must hold for every node i different from

the terminal node r, then Yi must satisfy a set of functional equations,

Y, = minimum {Y, + C,, ]
i~ . ij* ’
(i,3) : 4 3)
iv, the system

for all i 4 r, and

Yoo 0. (4)

A method of successive approximatic: may be used to solve for the

p - 1 unknowns, Y, (i 4 r). Specifically, a value-iterative algorithm

is applied. The value of the Yj's is irnitially set at zero, and the

Yi" are then calculated as in Eq. (3) for every node i # r in the sys-

tem. That is, the firsgt jiteration is computed as follows:

Y(1,1) = minimum [0 + cij]'
1,3

(5)
in the gystem
for all 1 ¢4 r with Y(1,r) = O.

The first {ndex on Y is the iteration
number.

On the mth iteration, the Yt" computed during iteration n - 1 be-

cone cstimates of the Yj'c. and new Yl" are computed a3z follows:

Y(n,1) = sicimem [Y(n - 1,3) + C ],

(. 4) i

(6)
in the system

again for ali { ¥ r and Y(n,r) . O©.

The quantity Y(n,{) is interpreted as the ainimua cost of a path
starting from node { that contains exactly 0 arcs, unless the terminal

is on the path, in which case the path terminates at node r.
cost, C

1f the
®
13 around every loop in the system {8 positive, then an n exfsts

T
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such that for all n 2 n*, Y(n,i) = Y(n*,i). We termina:é the iterative
process when this condition is met. That is, after each iteration > 1,
we test Y(n,i) = Y(n - 1,1), and when this condition is met for all i
in the system, we have obtained the optimal solution. We also obtain
ancther vector, g{(n,}), which has its value set cqual to the j that
minimizes Eq. (5) or (6), depending on the iteration number.

That the process will terminate in a finite number of steps is shown
by the following argument: As n increases, eventually every path of n
arcs reaches the terminzl. And when this occurs, Y(n,i) will statilize
to the correct minimal-cost value for the path, since the oniy uc.! value
added to Y(n,1) will be Y{(n,r) = O.

Equations (5) and (6) form the basis of the model, which has been
implemented on JUSS. The value-iterative algorithm is less restrictive
and offers certain advantages over various other techniques which might
be used. For example, the model does not require that the number of
stages or nodes between the starting point and thé terminal be stipulated.
Theve is a recurstve algorithm which is sometimes used and which, under
our formulation, would compute an optimal solution from a particular
node i with n more nodes between i and the final decision point. How-
ever, it could be that if the terminal is node 6 and the state of the
system is at, say, node 5, the optimal path to the terminal might go
through nodes 4, 1, 8, and 7, rather than going directly to 6 from 5.
Similarly, a policy-iterative algorithm would require that a realizable
path from node i to the terminal be stipulated before an optimal solu-
tion could be found.

Our model does not restrict the direction in which the arcs con-
necting nodes may go (i.e., paths may be cyclic), and it allows varying
numbers of arcs tu lead out of and/or into each nodal point. Section III

illustrates these concepts and gives instructions on the use of the model.
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IIl. THE JOSS PROGRAM

The JOSS program is stored in file 238(SYOP8) under Iteﬁrl (DYﬁAH).
After recall, the user types "Do part 1." to enter ail necessary param-
eters of the system. Iaput includes tiie total number of nodes, the
lowest node number, and the terminal node number of the system. Both
consecutive and nonconsecutive numbered noder are permitted. In the
latter case, the model requests a number for each node in the system.
The number of arcs leading out of each node is demanded as well as the
node into which the jth arc out of node i goes.

Costs for traversing (i,3) may be entered in part 1 or recalled
from anothcr stored item before operation of the program is initiated.
If they are recalled from another item, they must be arrayed in the
vector c(i,j). Alternatively, one might define c(i,j) to be a function-
by using a "Let" statement. 'The program will accept either procedure.

The program goes on to part 2, which controls the iteration algo-
rithm. Since the model needs only to compare Y(n,i) and Y(n -~ 1,i) to
determine whether or not an optimal colution has been reached, steps
are included that delete all other stored present cost values and parts
of the program when size requirements approach computer memory capacity.
Given this feature, the mcdel should be able to handle many problems
whicl. would otherwise require large amounts of storage space. However,
it might first be necessary to delete y and g (present cost values are
stored in array y, minimizing arcs are stored in array g) and then re-
call the prograwm before reusing it, if deletion occurs. Both y and g
are sparse arrays.+

The optimal solution is output as the best arc to take from each
node en route to the terminal. The total minimum cost from each node
to the terminal is also given, and if storage spsce permits, the build-

up of the solution can also be output (i.e., the results from each it-

*
eration < n ).

+JOSS initially considers all elements of these arrays to be zero,
which facilitates our first estimate of the Yj's.

1 .’I' |'
aw Sl
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As an illustrative example, consider the following network system:

Node numbers are circled; node 13 is the terminal. The costs for tra-
versing the various arcs are shown alongside each arc. Any node might
be the current state, node 13 being the state at the end of the final
decision. To illustrate, a path along the arcs (1,3), (3,7), (7,8),
and (8,13) represents the current decision to go from node 1 to node 3,
the subsequent decision to go from node 3 to node 7, etc.

In a general sense, the network represents the possible connections
between decisions to be made and the associated cost of going from one
decision to another. For example, the different arcs into node 9 might
represent alternative decisions in buying or selling.

The program requires 11 iterations to solve the network. The solu-

*
tion is giver at the top of the following page.

*
See Appendix A for the input, optimal solution, and solutions

buildup to this network. In the example of Appendix A, the terminal

point was changed *o node 5 and the optimal solution recomputed.




Minimum
Best Path|Cost to
From | To | Terminal
1 3 43
2 8 38
3 7 36
4 9 32
5 6 39
6 8 24
7 8 26
8 |13 1
9 [11 30
10 |13 16
. 11 |10 21
' 12 8 22

Notice that this solution satisfies the principle of optimality defined
earlier,

To investigate how the optimal set of nodes changes wita changes
in the terminal point, we simply set T equal to the desired node and
type "Do part 2.". If only costs are to be changed, type "Do part 25.".

Each node which has at least one exit arc 1s included in the solu-
tion. 1In case of dead ends (i.e., nodes with no exit arcs), an attempt
has been made to program around them by assigning a very high cost.

By the inclusion of random elements, tﬁe model could be extended
to take into account the impact of uncertainty on an optimal ~cision
process (this extension has not yet been made). In such cases, uncer-
tainties are viewed as imperfect predictions to be characterized by
probability distributions for the different possible events. Stochas-
tic versions of many dynamic-programming models are often not much more
difficult to solve than their deterministic counterparts. In the pres-
ent case, such a model would be solving for a path having the least

expected cost (i.e., the "most probable" path).
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Appendix A
- ILLUSTRATIVE PROBLEM: INPUT AND OUTPUT

Use file 238 (SYOPS),

Roger,

Recall item 1 (DYNAM),

Done.

Do part 1.

Number of nodes in the system = 13

Lowest node number in the system = 1

Terminal node number = 13

Are node numbers consecutive? (Answer:Yes=1;No=2) = 1

Into array A(i), enter number of arcs leading out of node i.
A(1)
A(2)
A(3)
A(y)
A(5)
A(6)
A(7)
A(8)
A(9)
A(10)
A(11)

L N B B T I T R |
OM@U(OUM&U(A’MFM

Into array 0(i,j), enter node number into which the j=th are
out of node i gnes,
0(1,1)

w

n
1
3
7
8
2
7
1
5
9
3
1
y
9
6
5
7

8
6
8
6
1

2
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0(8,3) = 13
0(9,1) = 5
0(9,2) = 11
0(8,3) = 12
0(10,1) = 4
0(10,2) = 11
0(10,3) = 13
0(11,1) = 9
0(11,2) = 10
0(11,3) = 12
0(12,1) = 11
0(12,2) = 8

Are costs to be entered here? (Yes=ljNo=2) = 1
Into array c{i,j), enter the cost for traveling from node i
to node j, i.e., the cost for traversing (i,j).
c(1,3) = 7
c(1,4) = 12
c¢(2,1) = 12
c(2,3)= 5
c(2,7) = 12
c(2,8) = Z1
c(3,2) =5
c(3,7) = 10
c(4,1) = 12
c(u,5)
c(4,9)
c(5,3)
e(5,1)
c(5,4)
c(5,9)
c(5,6)
c(¢,5)
c(6,7)
c(6,8)
c(7,6)
c(7,8)
c(8,6)
c(8,12)
¢(8,13)
c(9,5)
c(9,11)
c(9,12)
c(10,u)
e(10,11)
c(10,13)
c(11,9)
c(11,10)
c(11,12)
c(12,11)
¢(12,8)

wr W

[

~3
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Number of iterations = 11, Optimal set of nodes are as follows:

From node Go to node  Min cost to terminal( 13)

43,00
38.00
36,00
32.00
39.00
24,00
26,00
17.00
30.00
16.00
21.00
22,00

e e
WOWR WMWY I OW

Output buildup of optimal solution? Answer(Yes=1i;No=2) = 1

Iteration number = 1, State of the system follows:
From node Go to node Present Cost

1 3 7.00
2 3 5,00
3 2 5.00
4 9 2.00
5 3 3.00
6 8 7.00
7 6 4,00
o 12 1,00
9 11 9.00
10 11 4,00
11 12 3.00
12 11 3.00

Iteration number = 2. State of the system follows:
From node Go to node Present Coat

- LA T 2 LT X g

1 3 12,00
2 3 10,00
3 2 10.00
u -] 10,00
5 3 8.00
6 3 8.00
7 8 10,00
8 12 4,00
Q 11 12,00
10 11 7.00
11 12 6.9C

12 8 6,00

il
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Iteration number = 3. State of the system follows:
From node Go to node Present Cost

K] 17,00
3 15.00
2 15,00
9 14.00
3 13,00
8 11,00
6 12,00
7.00
11 15.00
11 10.00
12 9.00
8 9.00

[T TN

NP OO N UVE WN P
[y
N

Iteration number = 4, State of the system follows:
From node Go to node Present Cost

3 22,00
3 20,00
2 20,00
9 17.00
3 18.00
8 14,00
6 15.00
12 10.00
1 18.00
10 1 13,00
11 12 12,00
12 8 12.00

OO WU EWN

Iteration number = S. State of the system follows:
Tron node Go to node Presaent Cost

27,00
25,00
25.00
20,00
23,00
17.00
18.00
13,90
21,05
15,30
1%.93

13,3

Tt 22 ) DD W W W W

Vo bt pa bt

. popa

.
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Iteration number = 6.
From node Go to node
1 4
2 7
3 7
4 9
5 4
6 8
7 6
8 12
9 11
10 13
11 12
12 8

Iteration number = 7.

-13.

State of tha system follows:

Present Cost

32,00
30,00
28,00
23,00
27.00
20,00
21,00
16.00
24,00
16.00
18.00
18.00

State of the system follows:

From node Go to node Present Cost
1 y 35.00
2 7 33.00
3 7 31.00
y 9 26,00
5 4 30.00
6 8 23,00
7 6 24,00
8 13 17.00
9 11 27,00

10 13 16.00
11 12 21,00
12 8 21,00

Iteration number = 8,

State of the system follows:

S woeene

From node Go to node Present Cost
1 N 38,00
2 7 36.00
3 7 3L, 00
4 9 29,00
5 u 33,00
6 8 24,00
7 9 26,00
8 13 17.00
9 11 30.00

10 13 16,00
pA 10 21.7%
12 8 22,00
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Iteratisn number = Q. State of the svitem follows:
From ncde 50 to node Present Cost
: u 41,C0
2 g 38.00
3 7 3€.,00
u 9 32,90
S Y 36.00
6 8 24,00
7 8 26,00
8 13 17.00
9 11 30.00
10 13 16.00
11 19 21.00
12 8 22,00

teration number = 10, State of the system follows:

From node Go to node Present Cost
1 3 43,00
p) 8 38.00
3 ? 36,00
4y 9 32,00
S 6 39,00
6 8 24,00
? 8 26,00
3 13 17,00
9 11 30.00
12 13 16.00
1 10 21.00
2 38 22,00
Set T » §,

Do part 2.




1

Number of iterations = 9, Optimal set of nodes are as follows:

From node Go to node Min cost to terminal( §)

- LT

19,00
24,00
22,00
7.00

8,00
12,00
19,00
3,00
14.00 - 1
19,00
22,00

= O&F VOBV NNINE

1
12 1

Output buildup of optimal solution? Answer(Yes=z1;Noz2) = 2

qr‘
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Appendix B

PROGRAM LISTING

Use file 238 (SYOP8).
Roger.

Recall item 1 (DYNAM)
Done.

Type all,size.

1.10 Demand N as "Number of nodes in the system",

1.11 Demand L as "lowest node number in the system",

1.12 Demand T as "Terminal node number",

1.15 Demand q as "Are node numbers consecutive? (Answer Yes=1;No=2}",

1.17 Do part [q=1:10;11]. .
1.20 Type "Into array A(i), enter number of ares leadzng out af node i. ."
1.24 Do part 12 for i=1(1)N. e
1.30 Type "Into array 0(i,j), enter node numbexr 1nto<wh1ch the j-th are",
1,31 Type "out of node i goes.”. -

1.34 Do part 13 for i=1(1)N. A

1,36 Demand ¢ as "Are costs to be entered here? (Yes-i N0'2)"

1.37 To part 2 if q=2.

1.40 Type "Into array c(i,j), enter the cost for travelzng from node i"..
1.41 Type "to node j, i.e., the cost for traversing (i »jY"

1.4 Do part 14 for i=1(1)N.

1,70 To part 2.

2,09 Set e=1,
2,10 Set k=0,
2.11 Set £=0,
2.15 Set kzk+1i.

2,16 Setr hzk-l,

2.17 Do part 20 if k>2 and (size—1700)>0
2.12 Do part 3 for i=1(1)N. :

2.20 Do part 5 for i=1(1)N..

2,24 To step [£=20:2,1536,10],

3,12 VSet yik,n(i))=[n(i)=T:0;Q].
3,20 Dc part » for j=1(1)A(n(i)).

u,10 Dore if {y(h 0(n(1),j))+c(n(1) O(n(i) $)) Iy (k,n(i)).
4,13 Set glx,n(i))=(0{n(i),i)=T: T.g(k.n(i))=T g(k,n(i)); O(n(i)‘j)]

£,12 2uit if v(k.n(l))tv(k-i.n(l)).
£,12 UTone if i,
1]




e T

Page.
Type k in form 1,
Lire.
Type T in form 2,

5 Type form 3,
" Do part 7 for i=1(1)N,
 Type _s__"
- Demand q as "Output bulldup of ontlmal solut;on’ Answer(Yes=1;No=2)",
Do part 8 for z=1(1)h if g=1

Done if n{i)=T or A(n(i))= 0.
Type n(i),g(k,n(i)),y(k,n(i)) in form 4,

Type 5 »_

Type z in form 5.

Type form 6, form 3,
Do part 9 for .:1{1)N,

Done if n(i)=T or A(n{i))=0,
Type n(i),g(z,n(i)),y(z,n{i}) in form 4.

Do step 10,5 for i=1(1)N.
Done.
Set n{i)=i+l-1,

Type "Into array n(i). enter number of the ith node.". .
Do step 11,5 for i=1{1)N.

‘Done,

Demand n(i),

Demand A(n(i))o

‘Done if A(n(i))so.

Do step 13.5 for j=1(1)A(i).
Done,

o5 Demand 0(n(i),j).

.1 Dene if A(i)s0,

Do step 14,5 for j=1(1)A(1).
Done,
Demand . c(n( ;,O(n(i),j));

Set b k=2, |

Do part 21 for dszb(-1)e,

Set e=b+1, ,

Delete part 1,part 8,part 9,step 6,20,step 6,25,step 20.4,

Do part 22 for i=z1(1)N,

Done if n(i)=T, .
Delete g(d,n(1)), y(d,n(i)).

To step 1.44,




Form 1:

_ Mumber of iteraticns =

Form 2:
Trom node Co to node
Form 3:
Form u:
Form 5:
Iteratica number = .
Form 63
Trom node Go to node

A
v

i

£(0,0)
z is sparse

<
P
[
»
©
S’
"
o

n
(s
N
[
"

513
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.« Optimal set of nodes are as. follows:
Yin cost to terminal( )

- A Y R W W e TP e W D e W

State of the system follows:

Present Cost

Q:  [A(n(1))50:10%6; min[3=1(1)A(n(1)):y(h,0(n(1),3))+c(n(1),0(n(i),3))] 1
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sively converges to the solution. The
principle of optimality, which permits
finding the minimum-cost (shortest) path

as a function of the maximum number of

arcs allowed, is: Regardless of how a
particular state was arrived at, the re-
maining decisions as to what path to take
enroute to the terminal must themselves
constitute an optimal solution. The costs
of traversing arcs may be input, recalled
from other files, or calculated by JOSS
from input functions. Model flexibilicy
allows for testing the sensitivity of a
decision process to changes in the terminal
point.
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