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PREFACE

The broad range of optimization problems that can be classified

as multistage decision processes are amenable to solution by the tech-

niques of dynamic programming. This Memorandum provides a specific

application of the dynamic-programming approach to solving such prob-

lems, which arise in many areas of scientific investigation..

The present study is an outgrowth of an investigation of border

infiltration undertaken by The Rand Corporation for the Advanced Re-

search Projects Agency. In that investigation, the technique presented

here was applied to the more limited problem of predicting infiltration

routes. The model, however, has aow been generalized so that it can be

applied to a variety of problems.

This model is programmed for use on JOSS, Rand's time-shared, on-

line computer system, but it is designed to be readily adaptable to other

on-line systems. At present, JOSS is being used by approximately 20

agencies within the Department of Defense and by numerous other organi-

zations, as well as by Rand. And since all of these agencies deal with

practical problems that are structured with many decision variables and

constraints, this model should prove widely useful.
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SUMMARY

This Memorandum contains the derivation of a dynamic-programming

model for finding optimal solutions to problems involving certain multi-

stage decision processes. The model has been implemTented on JOSS, and

instructions on its use are also included.

The dynamic-programming approach analyzes an optimization problem

with various constraints and variables by decomposing the problem into

a sequence of stages at which lower-order optimization takes place.

The model presented here encomp8' es a va ue-iterative method which is

less restrictive and which offers desirable advantages over other cur-

rently used techniques. One such advantage is a reduction in the actual

amount of computer storage required to reach an optimal solution.

The model is flexible and allows for testing the sensitivity of a

decision process to changes in the terminal point and thus in the asso-

ciated costs. Additional information may be gained from examining the

buildup of an optimal solution, which can also be printed out if condi-

tions permit.
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I. INTRODUCTION

The term dynamic progr'ruing is frequently applied to the mathe-

matical analysis of problems in which conditions that muet be satis-

fied by an optimal time-staged decision process re to be exploited to

determine the best course of action. Dynamic elements (i.e., simulta-

neous time considerations) are foremost in many types of problems in-

volving multistage decisionmaking over definite--or even indefinite--
,

time horizons.

Some of the subtle points of dynamic programming are frequently

*',~- in discussions of the subject. In Section II, we shall attempt

to clarify these points, as they relate to a class of decision problems

that can be characterized by a particular network system. This, then,

facilitates the construction of a model suitable for finding optimal

solutions to such problems. The principle of optimality used in the

present model allows one to find the minimum-cost (shortest) path as

a function of the maximum number of arcs allowed. (The unconstrained

shortest-path problem has been treated extensively, e.g., see Refs.

1 and 2.)

Section III describes the JOSS implementation of the modei and

includes instructions for its use. An illustrative problem is given

in Appendix A, and the program listing is given in Appendix B.

A definite time horizon is one in which the number 3f periods or

stages remainint in i decision process im stipulated.

JOSS is an on-line, time-shared computer system developed at

Rand. JOSS is the tre4euark and service mark of The Rand Corporation

for its computer program and services using that program.
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II. THE MODEL

The class of problems with which we are concerned is defined as

follows: Let a decision process be characterized by a network system

consisting of p nodes and a collection of directed arcs. (A node is

merely a junction point with incoming and/or outgoing arcs.) Let (ij)

denote the arc from node i to node J, and the amount C be the a3soci-

ated expense of traversing (i,j). A terminal node, r, must be specified.

fhere is, however, no requirement that a particular starting point be

specified.

Given a decisionmaking process that can be formulated by such a

network system, we define an optimal solution to be a path (from nodal

points in the system to the terminal) that satisfies the following

principle of optimality:

RegardZles of the previous rationale used to arrive

at a particuZar state, the remaining decisions as

to what path to take en route to the teriinat must

themselves constitute an optimal solution.

Here we let Y be the present value of an optimal path from n-do I

to the terminal node r, where optimal implies a path having minimal

total cost. Now, if an optimal path from node I to node r starts by

first going to node J, then

¥Y YJ + Ci )

and

Y IC Yk + CLk (2)

for all k 0 J In the system.

Equation (1) states that the cost of an optimal path from node I

to thv terminal. r. which starts by first going to node J is the sua

of the cost of an optimal path from node j to r and the cost of going

from nod- i to lode J. Eqiation (2) insures that amog the possible
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choices of paths to take from node i, none is better than the one start-

ing with node j.

Since Eqs. (1) and (2) must hold for every node i different from

the terminal node r, then Yi must satisfy a set of functional equations,

Y J minimum [Yj + C ij
(i~j) 3
4% the system

for all i 0 r, and

Y -0. (4)r

A method of successive approximatioi may be used to solve for the

p - I unknowns, Yi 0 r). Specifically, a value-iterative algorithm

is applied. The value of the Y a' is irtially set at zero, and the

¥'s are then calculated as in Eq. (3) for every node i 0 r in the sys-

tam. That is, the first iteration is computed as follows:

Y(l'i) - minimum [0 + Cj,(
(ij) ()
in the system

for all I r vith Y(l,r) : 0. The first index on Y is the iteration

nwmber.

On the rth iteration, the Y i's computed during iteration n - I be-

come estimates of the Y's, and new Y I's are computed as follows.

Y(n,i) - minimum [Y(n - 1,4) + Ci,
(i J) (6)
In the system

again for all i 0 r and Y(nr) 0.

The quantity Y(n,l) is interpreted as the minimm cost of a path

starting from node I that concains exactly a arcs, unless the terminal

is on the path, In which case the path terminates at node r. It the

cost, Cij, around every loop in the system is positive, then an n exists
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such that for all n a n , Y(n,i) - Y(n i). We terminate the iterative

process when this condition is met. That is, after each iteration > 1,

we test Y(n,i) - Y(n - l,i), and when this condition is met for all i

in the system, we have obtained the optimal solution. We also obtain

another vector, g(n,i), which has its value set dqual to the j that

minimizes Eq. (5) or (6), depending on th. iteration number.

That the process will terminate in a finite number of steps is shown

by the following argument: As n increases, eventually every path of n

arcs reaches the terminal. And when this occurs, Y(n,i) will stalilize

to the correct minimal-cost value for the path, since the only ue_ value

added to Y(n,i) will be Y(n,r) 2 0.

Equation,2 (5) and (6) form the basis of the model, which has been

implemented on JOSS. The value-iterative algorithm is less restrictive

and offers certain advantages over various other techniques which might

be used. For example, the model does not require that the number of

stages or nodes between the starting point and the terminal be stipulated.

There is a recurusiAe algorithn which is sometimes used and which, under

our formulation, would compute an optimal solution from a particular

node i with n more nodes between i and the final decision point. How-

ever, it could be that if the terminal is node 6 and the state of the

system is at, say, node 5, the optimal path to the terminal might go

through nodes 4, 1, 8, and 7, rather than going directly to 6 from 5.

Similarly, a policy-iterative algorithm would require that a realizable

path from node i to the terminal be stipulated before an optimal solu-

tion could be found.

Our model does not restrict the direction in which the arcs con-

necting nodes may go (i.e., paths may be cyclic), and it allows varying

numbers of arcs to lead out of and/or into each nodal point. Section III

illustrates these concepts and gives instructions on the use of the model.



II. THE JOSS PROGRAM

The JOSS program is stored in file 238(SYOP8) under Item I (DI.AII).

After recall, the user types "Do part 1." to enter all necessary param-

eters of the system. input includes the total number of nodes, the

lowest node number, and the terminal node number of the system. Both

consecutive avd nonconsecutive numbered noder are permitted. In the

latter case, the model requests a number for each node in the system.

The number of arcs leading out of each node is demanded as well as the

node into which the jth arc out of node i goes.

Costs for traversing (i,j) may be entered in part 1 or recalled

from anothcr stored item before operation of the program is initiated.

If they arE recalled from another item, they muse be arrayed in the

vector c(i,j). Alternatively, one might define c(i,j) to be a function

by using a "Let" statement. The program will accept either procedure.

The program goes on to part 2, which controls the iteration algo-

rithm. Since the model needs only to compare Y(n,i) and Y(n - l,i) to

determine whether or not an optimal solution has been reached, steps

are included that delete all other stored present cost values and parts

of the program when size requirements approach computer memory capacity.

Given this feature, the model should be able to handle many problems

whict. would otherwise require large amounts of storage space. However,

it might first be necessary to delete y and g (present cost values are

stored in array y, minimizing arcs are stored in array g) and then re-

call the program before reusing it, if deletion occurs. Both y and g

are sparse arrays.

The optimal solution is output as the best arc to take from each

noJe en route to the terminal. The total minimum cost from each node

to the terminal is also given, and if storage space permits, the build-

up of the solution can also be output (i.e., the results from each it-

eration < n

+JOSS initially considers all elements of these arrays to be zero,
which facilitates our first estimate of the Yj 's.
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As an illustrative example, consider the following network system:

122

10 1

Node numbers are circled; node 13 is the terminal. The costs for tra-

versing the various arcs are shown alongside each arc. Any node might

be the current state, node 13 being the state at the end of the final

decision. To illustrate, a path along the arcs (1,3), (3,7), (7,8),

and (8,13) represents the current decision to go from node 1 to node 3,

the subsequent decision to go from node 3 to node 7, etc.

In a general sense, the network represents the possible connections

between decisions to be made and the associated cost of going from one

decision to another. For example, the different arcs into node 9 might

represent alternative decisions in buying or selling.

The program requires 11 iterations to solve the network. The solu-

2*

tion is give. at the top of the following page.

See Appendix A for the input, optimal solution, and solutions
buildup to this network. In the example of Appendix A, the terminal
point was changed o node 5 and the optimal solution recomputed.

9 7
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Minimum
Best Path Cost to
From To Terminal

1 3 43

2 8 38

3 7 36

4 9 32

5 6 39

6 8 24

7 8 26

8 13 17

9 11 30

10 13 16

11 10 21

12 8 22

Notice that this solution satisfies the principle of optimality defined

earlier.

To investigate how the optimal set of nodes changes wiLA changes

in the terminal point, we simply set T equal to the desired node and

type "Do part 2.". If only costs are to be changed, type "Do part 25.".

Each node which has at least one exit arc is included in the solu-

tion. In case of dead ends (i.e., nodes with no exit arcs), an attempt

has been made to program around them by assigning a very high cost.
By the inclusion of random elements, the model could be extended

to take into account the impact of uncertainty on an optimal cision

process (this extension has not yet been made). In such cases, uncer-

tainties are viewed as imperfect predictions to be characterized by

probability distributions for the different possible events. Stochas-

tic versions of many dynamic-programming models are often not much more

difficult to solve than their deterministic counterparts. In the pres-

ent case, such a model would be solving for a path having the least

expected cost (i.e., the "most probable" path).
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Appendix A

ILLUSTRATIVE PROBLEM: INPUT AND OUTPUT

Use file 238 (SYOPB).
Roger.
Recall item I (DYNA14).
Done.
Do part 1.
Number of nodes in the system 13
Lowest node number in the system = I
Terminal node number = 13
Are node numbers consecutive? (Answer:Yes=1;No=2) = 2Into array A(i), enter number of arcs leading out of node i.

A(M) z 2
A(2) = 4
A(3) 2
A(4) = 3
A(5) = 5
A(6) a 3
A(7) a 2
A(8) = 3A(9) -- 3

A(1o) a 3
A(11) x 3
A(12) a 2
A(13) z 0

Into array 0(i,j), enter node number into which the J-th arc
out of node i goes.

0(1,1) = 3
0(1,2) = 4
0(2,1) 1
0(2,2) = 3
0(2,3) = 7
0(2,4) = 8
0(3,1) x 2
0(3,2) = 7
0(4,1) M 1
0(4,2) a
0(4,3) a 9
0(5,1) = 3
0(5,2) , 1
0(,3) 4
0(5,4) = 9
0(5,5) z 6
0(6,1) = 5
0(6,2) u 7
0(6,3) 8
0(7,1) * 6
0(7,2) 8 S
0(8,1) 6 5
0(8,2) a 12
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0(8,3) z 13
0(911) = 5
0(9,2) = 11
0(9,3) =12

0(10,1) z 4
O(10S2) =11
0(10,3) z 13
0(11,1) 2 9
0(11,2) a10
0(11,3) = 12
0(12,1) 11
0(12,2) =8

Are costs to be entered here? (Yes=lNoz2) =1
Into array c(i,j), enter the cost for traveling from node i
to node j, i.e., the cost for traversing (~)

c(1,3) z 7
c(1,4) z 12
c(2,1) z 12
c(2,3)'= 5
c(2,7) = 12
c(2,8) =21
c(3,2) z 5
c(3.7) x 10
c(491) = 12
c(4,5) a 7
c(4.9) z 2
c(5,3) z 3
c(5,1) z 6
c(5,4) a 7
c(5.9) a 13
c(5o6) =15
c(6~,5) x
c(6,7)a
c(6,8) = 7
W.76) z4
c(7,8)zI

c(8,12) a I
c(8,13) z 17
c(9,5) a 9 .

c(9,11) z 9
c(9,12) 16
c(10,4) 37

C(10,11) 4
c(10,13) lt
c(11,9)

c(11,22)
c(12,11)

c(1?,8)
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Number of iterations 11. Optimal set of nodes are as follows:

From node Go to node Min cost to terminal( 13)

1 3 43.00
2 8 38.00
3 7 36.00
4 9 32.00
5 6 39.00
6 8 24.00

7 8 26.00
8 13 17.00
9 11 30.00

10 13 16.00
11 10 21.00
12 8 22.00

Output buildup of optimal solution? Answer(Yesxl;No=2) z I

Iteration number * 1. State of the system follows:
From node Go to node Present Cost

------ ------ ------------------

1 3 7.00
2 3 5.00
3 2 5.00
4 9 2.00
5 3 3.00
6 8 7.00
7 6 4.00

12 1.00
9 11 9.00

10 11 4.00
11 12 3.00
12 11 3.00

Iteration number * 2. State of the system follows:

From node Go to node Present Cost
------ M ---eWee-e------eeeeee

1 3 12.00
2 3 10.00
3 2 10.00
4 5 10.00
5 3 8.00
6 3 8.00
7 9 10.00
8 12 4.00
Q 11 12.00

10 11 7.00
11 126.3c
12 8 6.00
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'teration number 3. State of the system follows:
From node Go to node Present Cost

1 3 17.00
2 3 15.00

3 2 15.00
4 9 14.00
5 3 13.00
6 8 11.00
7 6 12.00
8 12 7.00
9 11 15.00

10 11 10.00
11 12 9.00
12 8 9.00

Iteration number 4. State of the system follows:
From node Go to node Present Cost

1 3 22.00
2 3 20.00
3 2 20.00

4 9 17.00
5 3 18.00
6 8 14.00
7 6 15.00
8 12 10.00
9 11 18.00

10 11 13.00
11 12 12.00
12 8 12.00

Iteration number S. State of the system follows:
ron node Go to node Present Cost

-- -- -- -- - - - ---- - - -- - - -- - -

1 3 27.00
2 3 2-.OG
3 7 25.00
'4 20.00
5 3 23.00
6 8 17.00
7 6 18.00

12 13.00

1: 1.0*
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Iteration number = 6. State of tha system follows:
From node Go to node Present Cost

----------------------------------------------------------
1 4 32.00
2 7 J0.00
3 7 28.00
4 9 23.00
5 4 27.00
6 8 20.00
7 6 21.00
8 12 16.00
9 11 24.00

10 13 16.00
11 12 18.00
12 8 18.00

Iteration number = 7. State of the system follows:
rrom node Go to node Present Cost
- - - - - - - - - - ---- -- -- -- -- -- -- --

1 4 35.00
2 7 33.00

3 7 31.00
4 9 26.00
5 4 30.00
6 a 23.00
7 6 24.00
8 13 17.00
9 11 27.00

10 13 16.00
11 12 210
12 821,00

Iteration number a 8. State of the system follows:
F'rcm node Go to node Present Coet

1 4 38.00
2 7 36.00
3 7 34.00
4 9 29.00
S 4 33.00
6 8 2,.00
7 8 26.00
S 13 17.00
9 11 30.00
10 13 U.00
41 10 21.910
12 8 2-.c0
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Iteration number 9. State of the svstem follows:
Fron node Go to node .resent Cost

------ ------ ------------------------
U u41.CO

2 9 38.00
3 7 36.00
4 9 32.00
5 4 36.00
6 8 24.00
7 8 26.00
8 13 17.00
9 11 30.00

10 13 16.00
11 10 21.00
12 8 22.00

Iteration number 10. State of the system follows:
From node Go to node Present Cost

1 3 43.00
2 8 38.00
3 7 36.00
4 9 32.00
5 6 39.00
6 8 24.00
78 26.00
3 13 17.00
9 11 30.00

13 16.00
10 21.00
9 22.00

Set T 5.

Do part 2.
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Number of Iterations 9. Optimal set of nodes are as follows:

From node Go to node Min cost to terminal( 5)
-----------------------------------------------------

1 4 19.00
2 7 24.00
3 7 22.00
4 5 7.00
6 5 8.00
7 6 12.00
8 6 19.00
9 5 9.00

10 4 14.00
11 10 19.00
12 11 22.00

output buildup of optiual solution? Answer(Yesz1;*Noz2) a
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Appendix B

PROGRAM LISTING

Use file 238 (SYOPB).
Roger.
Recall item 1 (DYNAM).
Done.
Type all,size.

1.10 Demand N as "Number of nodes in the system".
1.11 Demand L as "Lowest node number in the system".
1.12 Demand T as "Terminal node number".
1.15 Demand q as "Are node numbers consecutive? (Answer:Yes-l;Noz2)".
1.17 Do part [qzl:10;11].
1.20 Type "Into array A(i), enter number of arcs leading out of node 4.".
1.24 Do part 12 for i=1(1)N.
1.30 Type "Into array O(i,j), enter node number into which the j-th arc".
1.31 Type "out of node i goes.".
1.34 Do part 13 for i=:(1)N.
1.36 Demand q as "Are costs to be entered here? (Yes=1;No:2)".
1.37 To part 2 if q=2.
1.40 Tipe "Into array c(i,j), enter the cost for traveling from node i".
1.41 Type "to node j, i.e., the cost for traversing (ij),".
1.44 Do part 14 for i:1(1)N.
1.70 To part 2.

2.09 Set e=1.
2.10 Set k=O.
2.11 Set f=0.
2.15 Set kzk+l.
2.16 Set h=k-1.
2.17 Do part 20 if k>2 and (size-1700)>O.
2.13 Do Lart 3 for il(1)N.
2.20 Do Dart 5 for i=1(1)N.-
2.2 4 To step [fxO:2.15;,6.10].

3.13 Set y(k,n(i))=[n(i)=T:0;Q].
3.20 Dc part 4 for J=1(1)A(n(i)).

4.10 Done if ty(h,0(n(i),j))+c(n(i),O(n(i),J))]=y(k,n(i)).
4.13 Set g,(k,n(i))--O(n(i),4)=T:T;g(k,n(i))-T:g(k,n(i));O(n(i),j)].

5.10 ')uit if v(k,n(i))*v(k-1,n(i)).
.-- Oone 1:.
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6.10 Page.
6.11 Tyne k in form 1.
6.13 Line.
6.14 Type T in form 2.
6.15 Type form 3.
6.16 Do part 7 for i=1(1)N.
6.17 Type ,_,_
6.20 Demand q as "Output buildup of optimal 9olution? Answer(Yes=1;No=2)"'.
6.25 Do part 8 for z=(1)h if q=1.

7.iD Done if n(i)=T or A(n(i))O.
7.f,5 Type n(i),g(k,n(i)),y(k,n(i)) in form 4.

8.01 Type , ,
8.02 Type in- form 5.
8.03 Type form 6, form 3.
8.04 Do part 9 for .z(1)N.

9.01 Done if n(i)=T or A(n(i))=0.
9.02 Type n(i),g(z,n(i)),y(z,n(i)) in form 4.

10.1 Do steD 10.5 for i=l(1)N.
10.2 Done.
10.5 Set n(i)xi*L-1.

11.1 Type "Into array n(i). enter number of the ith node.".
11.2 Do step 11.5 for izl(1)N.
11 3 Done.
11.5 Demand n(i).

12.1 Demand A(n(i)).

-.13.1 Done if A(n(i))S0.
13.2 Do step 13.5 for j=1(1)A(i).
13.3 Done.
13.5 Demand 0(n(i),j).

14.1 Done if A(i):0.
14.2 Do step 14.5 for j=l(1)A(i).
14.3 Done.
14.5 Demand e(n(11,O(n(i),J)),

20.1 Set b=k-2.
20.2 Do Dart 21 for dzb(-1)e.
20.3 Set e=b+1.
20,4 Delete part 1'part 8,part 9,step 6.20,svep 6.25,step 20.4.

21.1 Do part 22 for iz1(1)N.

22.1 Done if n(i)=T.
22.2 Delete g(d,n(i)), y(d,n(i)).

25.1 To step 1.44.



For-m I1:
Nu-nber of iterations .Op~timal set of nodes are as follows:

Form 2:
From node So to node Hin cost to termin~l( )

Form 3:
------ ---------------------------------

Form 4:

Form 5:
Iteration number *State of the systemn follows:

Form 6t

From node Go to node Present Cost

Q: [A(n(i)):;C:1O0'6; minri:1(1)A(n(i)):v(h,O(n(i),j))*c(n(i),O(n(i),j))] I

Fg(O,O)
is sparse

7 is snarze

size 513
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value-iterative algorithm which succes-

sively converges to the solution. The

principle of optimality, which permits
finding the minimum-cost (shortest) path
as a function of the maximum number of
arcs allowed, is: Regardless of how a

particular state was arrived at, the re-
maining decisions as to what path to take
enroute to the terminal must themselves
constitute an optimal solution. The costs
of traversing arcs may be input, recalled

from other files, or calculated by JOSS
from input functions. Model flexibility
allows for testing the sensitivity of a

decision process to changes in the terminal
point.


