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SIMILAR SOLUTIONS IN
VIBRATIONAL NONEQUILIBRIUM NOZZLE FLOWS

N. Munlswamy Reddy and Fred L. Daum
Aerospace Research Laboratories

Wright-Patterson Air Force Base, Ohio

ABSTRACT p - pressure (p =p'/pd )

The problem of obtaining similar solu- R -molecular gas constant

tions in pseudo-one-dimensional nozzle (R= Rim)

flows with vibrational relaxation is con- ro - nozzle throat radius
sidered. The govezning equations are trans-
formed into a similar form by using a new S - reservoir entropy (SO  S'/R)
similarity parameter q so that the nonequi- 0
librium flow solutions depend on two param-
eters for a given kind of Gas. However, Sr  - reservoir entropy
the similar equations are further reduced (S = S'/R) = 15.2 for nitrogen
to a universal form by a transformation of r
the independent variable 1 to F, such that Td characteristic dissociation
the similar solutions, for all combinations temperature
of initial zonditions and for a defined
family of nozzle shapes, depend on a single Tt - translational temperature
parameter X which are then presented Li a (Tt = Tj/Td)
single graph. It is also shown that the
equilibrium solutions depend on only one T - vibrational temperature
parameter C. The parameters 9 and X are V (TV = T'/T
also the exact, general correlating param- d
eters. With the present similar solutions characteristic dissociation
the flow quantities in a nozzle are readily d
determined without :esorting to complex velocity [U = (ATd)i1
computer programs.

U - velocity (u U'/Ud)
NOMENCLATURE 

- velucity defined as
A - area raio (A/A.) 0 0

X - distance along the nozzle axis
a - speed of sound (x = x'/L)

C - constant defined in Eq (8) £ - vibrational energy (e = '/RTd)

0 - constant defined in Eq (8) C(M) - equilibrium vibrational energy

f I,f 2 ,f3 - functions dsfined in Appendix A T - vibrational relaxation time
constant

HO  - reservoir enthalpy (HO  H,/u)0 d = function defined as

- static enthalpy (h = h'/u') 1Oge(uA/pu.)

k1,k2  - functions defined in Appendix B Pd - characteristic dissociation
density

L - nozzle scale parameter
(L = r'/tan y) P - density (p = p'/pd )

S -flow Mach number = characteristic vibrationaJ

m moncular weight 
2y - expansion ang of conical

N - number of vibrational levels nozzle ou asymptutic cone
(N = Td/e v )  angle of hyperbolic nozze

(NS) -iefJned in Eq (17) X 2 ,XI - paramete-s defineA in Eqs (17)

) 2 :(27) and (34) respectively

N - defined in Eq (31) tion defined as T (/V)

Pd , ciaracteristic dissciation - translational temperature func-
pressure d = dU2 ) tion defined as (0 /Tt)



XjXj*X  - parameters defined in Eqs (24). In the present analys's, the governing
(28) and (35) respuctively equations, for a pseudo-one-dimensional

nonequilibrium nozzle flow with vibrational
" (Se - T) energy relaxation but no dissociation, are

transformed into a similar form by using a
Subscripts new independent variable n. The definition

of the similarity parameter n and the meth-
- nozzle throat od of transformation of the governing equa-

tions in the present case are very similar
0 - reservoir to those used in the analysis presented by

the authors8 which deals with the problem
Superscript of dissociational nonequilibrium nozzle

flows. It is shown that the similar solu-
- dtmensional quantity tions, for a family of nozzle shapes and

a spocifted gas, eepend on two parameters,
SO and ), in addjtion to the independent

1. INTRODUCTION variabli T. However, the similar equations
aze further reduced to a universal form by

The phenomenon of thermal and/cr chem- a translormation of the independent vari-
ical nonequLlibrium in flow!ng gases at able n to so that the similar solutions
high temperatures is of fundamental impor- depend on a single parameter X with P as
tance in rocket nozzles as well as in lab- the independent variable. General similar
oratory facilities which sire being used to s)lutions which can be used for all com-smulate the flow s1elds over bodies in binations of initial conditions are pre-
hypersonic flight. Ird the past decade a sented in a single graph foz nitrogen. The

considerable amount of thecretica! effort parameters X and g are the exact and gen-
has been directed toward undettstanding the eral correlating parameters. The limiting

has eendiretedtowrd udeztandng he olutions, namely frozen and equilibriumnonequilibrium flow effects iu nozzles ltos aeyfoe n qilru
noneuilbnim flw efecs innozlessolutiona, are also obtained with g as the

under steady flow conditions. The problem indepenet arale and stios
has been studied under the assumption of independent variable and these solutions
pseudo-one-dimenaional, adiabatic, inviscid depend on only. The approximite corre-lating parameters that have appeared iu. theflow. In spite of these simplifying assump- litature 6 t,7 cab deue fr the
tions the solutions are far from being sim-
ple and are often plagued by many numerical present general correlating parameter X and

the approximations involved in these anal-
procedural difficulties. A comprehensive yses are discussed.
review of this problem is presented in
Ref 1. More recently, a time-dependent II. TRANSFOE.AT10N OF GOVERNING EQUATIONS
analysis2 has been proposed which circum-
vents some of the numerical aifficulties in the analysis of the dissociation non-
but retains the problem of determintng the equilibrium case3 it was logical to use the
flow oantities through a numerous-stepped characteristic dissociation values to nun-
process. The basic problem of obtaining dimensionalize the governing equations
numerical soluticnc for nozzle flows with since the characteristic dissociation den-
vibrational energy relaxation has been sity and temperature appear in the govern-
studied by several authors (e.g., Refs 3, ing equations. The same values are also
4, 5). The present state-of-the-art for uses for nondimensionalization in the
solving vibrationa. nonequilibrium nozzle present case for the follouing reasons. The
flows requires complex computer programs poverning equations contain only tt-e char-
with which the flow variables are deter- acteiisf.ic vibration, i temperature Ov and
mined by numerical integration for any there is no corresponding characteristic
given initial and bouvdary conditiona. How- density. Furthermore, it is shown later
ever, this approach does not provide suit- that th slmilar solutiun. in the present
able theoretical comparisons for use by the case do r.ot depend on the values used for
experlmentalist bscause of the many vari- nondimensjonalization and hence can be
abes involved. Thus, it is apparent that ar.,itrarily chocen.
general correiating parameters are needed.
Several approximate analyses6 ,7 have been The governing ,quations for a steady,
used to predict the frozen vlbrational pseudo-one-dimensional, adiabatic, Inviscid
temperature in nozzle flows. In these flow with negligible dissociation are con-

an mly -p----!=ate carrzi....- parat- sidered, ?he flov variAbles p'. l.l T'
eters have been deduced which do not in- and u' are nondimensionalized with the
:lude ill the variables of tho problem. corresponding issociation values hich are
Furthermore, these analyses predict only defined in tne nomenclature. The nozzle
the frozen vibrational temperature. area and the distance along the nozzle axis

are nondiev|ionalized by the nozzle throat
From the preceeding discussion it is area A# and .icalG pareter L, respectively.

obvious that suitable similar solutions The governing equations after nondimen-
to this problem are highly desirable. Such sionalization are written as
similar solutions would Lot only eliminate
the need for repeated complex computations Equation of state:
but a so provide for the experimentalist,
the badly needed correlating parameters. p pTt

2



Conservation of wass: Conservation of energy:

puA = P.U (2) , 2  (07 1 + N

Conseivation of energy: L 2 e0-1 (11)

Oi2 + h H const Conbervation of momentum:
00 (3))

where h = (72)T(5/2)(d/tp)-(-f)ed/(e 4-) = 0 (12)

h 2)t +Rate equation: 1/3

Conservation of momentum: d4 Lo de' e (1-f)

udu + dp/o = 0 (4) dx Cuud e (e-) (ee'- (1-f 1 )
(13)

Rate equation (Landau-Teller type):
where f, and f. are the factors which take
into account the effect of the cut-off

de _ L harmonic oscillator approximation and are
dx UUdr v, (5) given in Appendix A. It is shown in Appen-dix A that these f functions tend to zero

for , - -, corresponding to the simple
where e(-) corresponds to vibrational equi- harmonic oscillator approximation. Farther-
librium. Applying :he cut-off harmonic more, it is also shown in Appendix A that,
oscillator approximation (see Appendix A), for temperatures even as high as 7000*K for
the vibratLo energ; e can be given in nitrogen, these functions are negligible.
terms of vibrational temperature as Hence, the simple harmonic oscillator ap-

proximation is sufficiently accurate for

0 NO the present analysis.
eo/Tv - ]  eN0/Tv-1 (6) The independent variable x in Eq (13)

is changed to Ii by using the following
where a Boltzmann distribution of the mo- rrocedure. From the conservation of mo-
leculLr nunber density in the different mentum and mass the following relation can
vibrational levels is assumed. The corres- be derived: (14)
ponding vih'ational energy at vibrational - 1 A)
equilibrium c(-) is given as d iOgeP/d lO-eA (d/ loe

0 NO where H f u/a and a2 = dp/dp. For a family
e/T NliTti l of nozzles with the area distribution given
e/t e -1 (7) by A = (1 + xJ)I and using Eq (14) the fol-

lowing expression can be written:
The vibrational relaxation tive constant T,
has been correlated 9 for many gas systems dr, M 2
by using measured values and may be rep- -= A
resented by an expression of the form dx _-) (15)

Substituting for A- I/1 J from the definition

e / )/ of n, Eq (15) can be written asT VP '  Ce t v' (8) d 21 i

where C and D are constants for a given gas. aX k)Y (u i

An independent variable n is now de-
fined as n - loge(uA/Pt*) and c'ie tempera- l/ij en/ij .- )/

-functio"ns are defined as D - O/Tv  1
Ov/Tv' atd 1 = O/Tt Ov/Tt. Using these
definiLions and Eqs (7) and (8), the gov- Combining Eq (13) and Eq (16) the rate
erning equations are reduced to equation is transformed to

Equation ot state: 1/3

d= 1 X=2_ -[n(1-l/J)+' D]Py =  Oe n  
(9) dn (Ns), ee

Conservation of mass: / epi (1

(-i (10)en(10) \e1/ ( e l (17)

3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



where for y = 7/5. Equation (19) is the familiar
1/ij isentropic relation foi a perfect gas.

X 2 loge P*u* )  
LPdUd/lJ

Equilibrium Flow Solution

and
M2 (l+/i )  This limiting case is achieved when the

-A) vibrational relaxation time TV is very
short and rhis happens if X 2 * With
this situation the condition of * ' can

The problem under consideration has be inferred from fne rate equation (Eq
been reduced to solving two differential (17)). With * = ', the generalized momen-
equations, Eqs (12) and (17), for two un- tum equation (Eq (12)) can be integrated
knowns P and * with n as the independent and given as
variable. Once ' and * are determined by
solving Eqs (12) and (17), the other un-
knowns, p, p and u are obtained from the - (5/2) lOge - lOge(1-e- ) +
other governing equations which are simple
algebraic equations. Wl(e '1) + f 3 const (20)

Character of Similar Equations where the function f3 is a term associated
with the cut-off harmonic oscillator ap-

The main motivation in expressing the proximation and is negligible as shown in
rate equatien in the form shown in Eq (17) Appendix A. Equation (20) is the expres-
is to combine all the parametera of the sion for the change in entropy in an equi-
problem into a single parameter A How- librium flow.10 This equation also shows
ever, Eq (17) also contains the aditional that entropy is conserved. The expression
parameters D and ij. The parameter D is for entropy in this case can be given as
a constant for a given gas and this means
separate solutions have to be obtained for S (S'/R) = - (5/2) loget -
each kind of gas. The parameter ij is the 0 0

nozzle shape parameter and a given value of
ij covers a family of nozzle shapes; its I°ge(1-e') + -----_ + f + S
value is 2.0 for nozzle shapes of practical r (21)
interest, namely conical (i - 2, j - 1) and
hyperbolic (i - 1, j - 2) shapes. Equation where Sr = S /R and is the reference en-
(17) also contains a rather undesirable tropy. The equilibrium flow solution can
term (N s)2 which is a function of the flow be obtained from Eq (21) with n 4s the in-
quantities in the nozzle and is not a con- dependent variable and So as the parameter.
stant. In this respect this term may be It is worth noting that the liniting solu-
called a nonsimilar functiun. The proper- txons do not depend on the nozzle geometry.
ties of (N.) and a method of including
the effect ol (N,)2 into the solutions of
similar Eqs (12) and (17) are discuved in IV. NONEQUILIBRIUM SOLUTIONS
one of the following sections. In addition
to specifying X2, D and ij, the initial Initial Values
values of ', 4, for a given value of n,
have to be specified for the solutions of To obtain ioneqailibrium solutions, a
Eqs (12) and (7). The specification of set of initial flow quantities ', 4 and n
these initial values will be facilitated by have to be specified before solving the
the limaiting solutions, nately the frozen similat goveriting Eqs (12) and (17). If
and equilibrium solutions, the flow starts with frozen initial con-

ditions it is known to remain in the fro-
zen sta-e. Hence, the solution is obtained

III. LIMITING SOLUTIONS fr,'m tb- simple algebraic equations corres-
ponding to the frozen flow case. If rhe

Frozen rlow Solution flow starts with an initial state which i
in norequilibrium, the sImilar governinc

Tils limiting case is achieved when the equations (Eqs (12) and (17)) have to be
vibrational relaxation time Tv is very solved using the specified initial values
large and this happens if X2  - =,. Then of ', and n for the given parameters A2,

d/d -0 follows from the rate equation D ard ii. However, in almost all practical
ani hence che trivial solution 4 constant. situations of nozzle flows, the flow starts
The generalized momentum equatiou (Eq (12)) in the nozzle reservoir with equilibrium
simplifier to conditions and remains in near-equilibrium

up to the nozzle throat. 1 ,8 This will be-
dri - (5/2)(dIp) = 0 (18) come evident when the variation of (Ns)1

along the nozzle axis is discussed in the
This equation can be integrated and given following section. Therefore, in the
as present analysis the flow is assumed to be

in an equilihrium condition up to the
(const)T l(Y - 1)] throat. In this case the function 4 'Pp = const,(T)5 /2 (cns) (19)



Ond the initial value of 4 can be obtained reservoir conditions. It was observed
from the equilibrium solution (Eq (21)) foi from a number of nozzle computations that
values of n and So . in this rather in- the velocity, when nondimensionalized with
Oirect way the entropy So also appears as a a velocity of u' - (p /p ,)I, does not
Saramoter in the nonequilibrium solutions, change very much for different reservoir
tt is noted that this behavior io very aim- conditions. Therefore, the expression for
Llar to that of the dissociational non- (Ns) a is rewritten as
equilibrium case. 8  (lAlM 2IU (1+l/ii)

For a given gas (D constant) and a fam- (S) 2 (1u-A
Sly of nozzle shapes (ij constant) the
aramerers X and So have to be specified

for the nonequilibrium solutions. However, / U\ (l+ I /iJJ
this two parametric dependence car be re- t .
duced to a eingle one by the following Ud  (25)
transformation. A new variable is de-

fined as - (S 3 - n). Then Eq (21). which where u, - (u'/uL). The constant term
gives the equilibrium solutions, reduces to u'/u-) ( + I / ij) ((1+1/e ersion Eq (25) can be included

5/2in t e expression for X2 in Eq (17) and
1°ge (1e-')] + f + S the remaining terms can be taken as the

e'Pl (22) nonsimilar function (N,),, namely:

(H2i A (J-1)/J (1+1/ia)
Thus, the equilibrium solutiona may be rep- (N ) - U
resentaA by a single universal cnrve show- S
ing the variation of i with the independent (26)
variable C. The governing similar equa-
tions (Eq (12) and (17)) for the nonequi- and
librium cAse reduce to (1+1/ia)

) = 0 2 oge(ud/U (27
(5/2)d(log )+dC+[e /(e-)]d - = 0 (27)e (23)

Then the parameter X2 defined in Eq (26)
becomes

L2 eX 2-j e[(1-l/1J-D '/-1 x X= (1-1/ij)S o] (28)

dC (N s)2
By letting t 1.0 and j - 2.0 (correspond-

e 'ing to the hyperbolic nozzle case) Eq (26)
(e0-e --- ' 4 2is rewritten as:

( 2 4 ) ( s ) =2 _ ( 1 A 1  3 /( 2 9

where (29)
X= - (l'1/ij)S0 ) A typical variation of (N3 )1 with area

2 2 ratio is shown in Fig 1. It is noted that

moving upstream from the nozzle throat,
The nonequilibrium solutions depend on (Ne)3 rapidly tends to zero since H and u,

a single parameter X for a given gas and both 0 0. At the geometric throat the rate
for a family of nozzle shapes. The initial of change of area with x goes to zero for
values for the nonequilihrium solutions can all nozzles with no area discontinuity at
be easily obtained from Eq (22) for equi-
librium starting conditions. The parameter

contains the effects of the vibrationalo t_ _ __o

relaxation tine constant CvP the rezervoir -
conditions and the noizle shape. The non- __

similar function (N.), has to be taken into
account in urder to obtain an exact non--
equilibrium solution fron Eqs (23) and (24). 3

The properties of (N.), and a mathod of its (,),
correlation are discussed in the following
section. 

2_

Nonsimilar Function Ns  1.
The function (N.). given in Eq (24) is - 1 _. __, _,

a function of H, u and A. Lence, it will 1 0 2 30 40 60 0 V O 0
have different values for different res- Ai4
ervoir conditions and it also varies along
the nozzle axis. The velocity u in the Figure 1. Typical Variation of
expression for (N.) has been nondimension- Function (N ), uith Area
alized by ud which Is independent of the Ratio for Nltregen



P

the throat. Therefore, (N,), has an in- the corresponding mass flow ratio as given
determinate form since H also becomes unity, below

X However, it can be shown that it tends to a 6.o
definite limit rt the throat. To obtain HS C (M ) [p'U,/PoUo]
this limit, the complete expression for S 1 (31)
(dr/dx) given below must be considered.

where the exponent 6.0 was determined by

dr, IL 1 _dA equating the h. values corresponding to the
d- A --x (30) -maximum and minimum values of (N,), given
dx A dx W (30) in Fig 2. The Na values computed from

Eq (31) are shown in Fig 3 for the same
If an area discontinuity exists at the reservoir conditions used in Fig 2. All

throat (for example at the juncture of two the values for different reservoir con-
conical nozzles) the rate of change of area ditioae correlate very well and can be
has a finite value and (dn/dx) tends to in- represented by a mean curve as shown by the
finity at the throat. However, nozzles dotted line in Via 3. The maximum dis-
used in practice generally have no area dis- crepancy of the actual values from the mean
continuity at the throat so that the func- curve is within a few percent. T:e mean
tion (Na) i is expected to behave as shown curve can be also represented by a simple
in Fig 1. The function (N8 ) i remains pos- analytical equation of the form:
itive even for H < 1.0 in the upstream
portion of the nozzle since dA/dx is neg- /4.(03
ative and hence the negative sign in EqN =0.7-.3(20-3)
(29) applies to the upstream portion from
the nozzle throat. for

Vibrational nonequilibrium nozzle flow
quantities,startlng at the nozzle throat, and
were computed for nitrogen for a number of NS 

= 0.37 for (g*/&) > 2.0
reservoir conditions by using the computer
program of Rcf 11. The 4 values were also The N. values were alzo computLd with
computed using the equation = (So-) E diffeeent hyperbolic nozzle ahapes (L -
(SO + lgeP). The reservoir entropy was 0.5 to 2.0) as well as combined hyper-
computed from Eq (21) where the reference bolic (L - 0.5 to 2.0) and conical (L = 1
entropy Sr was taken equal to 15.2 for to 3) shapes. It was found that the dif-
nitrogen which makes the entropy values the ferences in the Ns values were within the
sane as those computed in Ref 12. The (N.), accuracy of the cerrelation aown in FL& 3.
values were also computed for several res- The factor [pluipluo 6 0 was also in-
ervoir conditions, using Eq (2 6 ), and are eluded in the 1X *x 1 ression so that its
plotted in Fig 2 with (C,g) as the varn- effect is properly taken into account.
able. Although all the curves correlate After including the mass flow factor, the
fairly wall immediately downstream of the final expressions for N., A and X are.
nozzle throat, a significant temperature
effect shows up for 4,/E values greater 3/- A_ I_
than about 1.2. In an effort to obtain a l = - (1-A )x
better correlation the following approach S (W1)
was taken. In the mass flow correlation
analysis (Appendix B) it is noticed that
the nondimensionol mass flow (P'uj' 'u;) is (l+lIj) P*U' -.
also slightly temperature devendent. There- U1  [ (

fore, the (Ns) 1 values were multiplied by 00

41-5

-AI

/ \~c /I

to " 12 L3 t4 LS U V. Le 0) .0
LO LI 14 ts I 16 V~ 1.3 4I)

Figure 2. Variation of Function Figure 3. Correlation of Funceion
(Hs)1 with the Parameter N. with the Paramieter
(&*IF,) for Nitrogen (&,/0 for Nitrogen
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l id 5d -EO RILM,

to

r (~~-~$)6.o 3)1

x = - (1-1/uJ) So] (3) JI2

4 5 C ID 12 14 16 aS 22 24Discussion of Nonequilibrium Solutions

ThQ two similar governing equations Figure 5. Similar SelutS.ons for
(Eqs (23) and (24) with Ns given by Eq (32) Vibrational Nonequilibrium
were solved by a fourth-order Runge-Kutta
technique with ij n 2.0 and D - 14.7 which itrogen Flow D 14.7)
corresponds to nitrogen. 9 The starting
values of and * were obtained for a given function 9 increases monotonically as
& from the equilibrium solution (! - 0) decreases. The equilibrium solution shown
given by Eq (22). The reference entropy Sr in Fig 5 is also given by the envelope of
in Eq (22) was taken equal to 15.2. The all the nonequil'ibrium solutions. The con-
factors f , f,, and f3 are all assumed to stant D - 14.7 for nitrogen was obtained
be zero (see Appendix A). The starting from the correlation of experimental values
values of for different X values were over a certain temperature range. 9 How-
selected in such a way that the solution ever, D can have slightly different values
always startb with equilibrium conditions. for the same gas over different ranges of
The equilibrium solution obtained from temperatures. Therefore, similar solutions
Eq (22) is shown in Fig 4 and is repre- were also computed with D - 13.5 and 15.5
sented by a single universal curve since it and are shown in Figs 6 and 7 respectively.
is independent of X, ij and D. Also, in It would be an easy -atter to interpolate
Fig 4 a typical similar nonequilibrium between these solutions for slightly dif-
solution is compared with an exact solution ferent values of D. The frozen vibrational
obtained from the computer program of Ref temperature function 4f depends on X only
11. The comparison is considered to be and the variation of with X for all the
very good. three values of D, is shown In Fig 8.

A series of solutions for different ' - r
values of X for nitrogen D - 14.7) are EGJILI M S T1
shown in Fig 5. The vibrational tempera- 5 e
ture function 1 is seen to follow the trans- o0
latlonal tenperature function to very closely 4- xfor awhile, the extent of which defends on 6- - 4
X. and then diverges rather suddenly and 12

reaches a constant value: this corresponds
to the freezing of the vibrational energy 1/
mode. The translational temperature

C XACT MJ.111,CA CCMAWT 2

2 5' - PKUI VWt5A* Sa"q" 0 1

IEQ"WUW \ \ 4 6 a FO Q 14 16 Is I 22

Figure 6. Similar Solutions for
I Vibrational Nonequilibrium] LNitrogen Flow (D - 13.5)

V. TEE PARAMETERS AND X

It is shown in this analysis that the
, _ _ 1 _ _ _nonequilibrium similar solutions depend on-, 4 is ,6 0 is 19 0 two general parz-eters 4 and X. In order

to use the similar solutions presented in
this report the parameters 4 and X should

Figur 4. romparison of Present Similar be known in terms of the tnitial and bound-
Soldtions with an Exact ary values. Therefore, the functional de-
Solution (X - 4.4, D = 14.7, pendence of and X are considered in this
S- 2.)section.

7



E UILIORIUM SOLUTION- 14 0 -
122

0

4 6 8 10 3 34 6 iSwith Area Ratio for Nitrogen

Figure 7. Similar Soli.tions for , p.

Nitrogen Flow CD - 15.5) °o

20 000 so

1 6000 201

4 4~ l 2 0

.................... ........................... ,...... I....... ....... ~ A 6

Figure 0. Velocity Function

32 1 'i. Correlation with Area
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The exponent 4.0 in Eq (37) was determi.ed
Parameter by using considerations similar to those

used previously in the correlation of Ns.The parameter is defined as By substituting for So, u'/u and p from

Eqs (21), (37) and (B2), respectively an
= o.lg F_uA expression for , after some algebraic

p36) manipulations, may be given as

This parameter is not only a function of the : - - -og/2 -k

reservoir and nozzle throat conditions but
also a function of velocity, which is un-
known. Therefore, the velocity ratio b'/u ~I.. A

2  ~+S
was computed for several sets of reservoir IA[0.5 - 0.31 1 gl 2JJ + S (38)

conditions and its variation with nozzia
area ratio is shown in Fig 9. It is ob-
sarved that this type of correlation still it is noted that depen6. on only two
results in a significant aaount of reservoir param~.ters, namely, the area ratio A and
temperature efect which is similar to that the reservoir temperatsre function Oo . The
noticed in the correlation of (Ns)1 shown parameter does not depend on either the
in Fig 2. Therefore, earn velocity ratio reference density Pd or the reservoir den-
was multiplied by the corresponding mass qity p . The parameter is now expressed
flow ratio and replotted in Fig 10. All the in terms of the initial and boundary values
computed values now orrelcte very well and only and hence can be readily computed
a mean curve can be cnrawn through the points for any given conoitions.
as shown. This mean curve can be repre-
sented by a simple expression of the type

60D
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Parameter X effect is the reason why the frozen vi--

brational temperature presented in these
The parameter X is defined as analyses 6 ,7 depends on the reservoir tem-

perature in addition to the approximate

(1-1/li) parameters. Furthermore, these analyses
o (39) predict only the approximate frozen vi-

brational temperature and do not provide

Letting no loge(wo/Pd) and expressing p' the flow quantities in the nonequilibrium
in terms of p0 nd Y. from the equation o? region.

state, the exprLssion for entropy (Eq (21))is shown as Range of the Applicability
of the Parameter X

S0Ro-/2 The geaeral correlating parameter X, as

SO = log + -- + S noted before, d pends on pc, L and go for a

PL -eO)'e- given gas. The variation of p L with go
L jfor a constant X can be computed from(40) Eq (42) and is shown in Fig 11 for a number

of X values with ij - 2.0. The variation
The parameter A given in Eq (34) ccn be of p, (L - 1.0) with go for a constant
expressea as equilibrium mole fraction of 0.I is also

shown; this curve represents approximately

(6+l1/ (/lij) the high temperature limit beyond which 'Ia
/) dissociation becomes appreciable and the

A =6o[ X dissociation relaxation may have to bv con-
ge ij C sidered in addition to the vibrational re-

laxation phenomenon. It can be inferred
from Fig 11 that all of the practically

I (11/feasible reservoir nonditions (a maximum
P;i/i.o LPd pressure of 100i atmospheres and a tempera-

(41) ture range frou 2000*K to 8000*K) are co,-

ered by X values between 1 to 8, which is
where the mass flow correlation expression rather a narrew range rmpared to the range
given in Appendix B has been used to elim- of X values presented in Fig 5. It is also
inate the mass flow term in A. With Eqs observed in Fig 5 that the nonequilibrium
(40) and (41), the parameter X reduces to solution, for a given X, departs from the

equilibrium solution at a certain maximum
r./ -I25* value of ?P; these maximum 'P values are also

X loge [ 1 /1.)( 1Gb plotted in Fig 11. For reservoir condi-
e Lv C 0 x tions, which fall above this line, the

solutions start with equilibrium conditions
-/u F 1 and can be obtained from the present si m-

1 .e- 0)a jio + ilar solutions. For reservoir conditionse--/ J 41/1 + r  which fall well below this line thi flows
can be taken as completely frozen in the

(42) entire nozzle. In a narrow region just
below the equilibrium limit line the flow

It is noted thRt the terms (ROv/m)i, L and will be in the nonequilibrium state and the
C/pA have the dimensions of velocity, length
and time, respectively. Q and Sr are non-
dimensional numbers. If Po is measured in
atmospheres then the C units will be atm- OFOJ

sec. The parameter X is independent of A.
For a given gas X depends on only po, L and STM F ART (O.M42

go .-ince Ov, C and Sr are all constan, . (0147
The function; € ard , as well as the gen- 3 X.0

eral parameters and X do not depend on
any of Lhe reference values that are used - 2

for nondimensioualizing the governing equs-
tionb. Re~nce, the reference values can lie 4chosen arbitrarily. N

In Ref 6 the parameter p;L was used as o
a correlating parameter. Also, in Ref 7 a
parareter (pL ,oI/C) vas deduced by non- , _ _ _ _

dimensionalizing the sudden freezing cri- 4 C 7 0.9 Lo L L2

teria with reservoir values. These two
parameters can be deduced from the present
general parameter X. To obtain the param-
eter pL the entire effect of go has to be Figure 11. Range of Applicability
neglected. The other parameter can be ob- of the Parameter X (ij - 2.0,
tained from X by neglecting a portion of C - 1.715 x 10-11 atmsec.,
the effect of yo. This neglect of the io p, in atm., L in cm)

9



Solutions have to be obtained by starting vibrationally excited through an Infinite
with reservoir conditions as the initial number of equally spaced energy levels. In
values. Furthermore, the function N. up- the real situation, the excited molecules
stream of the throat has to be also in- dissociate when the vibration energy level
eluded in the solutions, corresponding to the dissociation energy is

reached. Therefore, in the cut-off har-
Effect of Starting Value monic oscillator approximation the vibra-

on Similar Solutions tion energy is contidered only up to the
dissociation limit. Since the energy lev-
els are assumed to be equally spaced, theIt is observed in Fig 5 that, for a number N of allowable energy levels, when

given value of X, there is a range of n

(hence &*) values that could be used as the applying this approximstion is given by

initial starting values. The upper limit N - Td/8v.
is given by the equilibrium limit line in
Pig 11 and the lower limit is given by theThfaorwictaenoacuttedissociantin loer limit ssshow in g 1. F effect of the cut-off harmonic oscillatordissociation limit as shown in Fig 11. For a p o i a i n a e g v n b l -,
example, the range of 4s, values is approx-
imately 1.1 to 0.6 for X - 8.0 and C.65 to
0.45 for x - 4.0. Hence, for a given X, F 4 o- 1
the nonequilibrium solutions could be | [ e )2

started with any of a range of C* values. s (Al)
This would result in slightly different (Al)

values of Ns and, therefore, different non-
equilibrium solutions for the same value ofrN(e -)(e ')(eN -elI)
X. To examine this point more closely, f =

nonequilibrium solutions were obtained for 2 (e 0(_(eNA_1)(eN2))different g, values but with the same X
value and it was found that, for the range
of allowable starting values mentioned pre- F-N .
viously, the differences In the nonqui-, f = -og(I _ 1 I A
librium solutions varied only a few perc&"t 3e (e (A3)
and this error is within the accuracy of
the correlation of Na shown in Fig 3.

It can be Qaily shown that these factors
VI. CONCLUSIONS tend to zero as N - -. This limit corre-

sponds to the simple harmonic oscillator

Baued on the present analysis the fol- approximation. Since no other expression

lowing conclusions are reached: in the governing equations contains the
parameter N, the governiag equations for a

1. Similar solutions for vibrational non- simple harmonic oscillator approximation

equilibrium nozzle flov problems can be can be obtained by s:mply assumins these

i yfactors are equal to zero. Furthermore, ite 1y ucan be shown that for nitrogen, with N - 34,
eter 9. the correction factors are all very small

2. The similar solutions presented can be even for temperatures as high as 7000K.

used over a wide range of practicable com- For example, at Tt - TV - 6000*K and N - 34,u s e o v e a' -i d -a g 0 , pf 8 .7 xb e0o.
binaticns of initial conditions and nozzle f1 - 2.28 x 10 - , f2 " 0, f3 - -8.7 x l0-.
scale parameters. Thus, for the problem under consideration,

J. The vibrational equilibrium solutions the simple harmonic oscillator model is

depend on the one parameter g only vad the more than adequate.

noLequilibrium solutions depend oa two
parameters & and X. The frozen vibrationel APPENDIX B
temperature depends on X only.

Correlation of Mass
4. The parameters 4 and X serve as univer-

sal correlating parameters since they con- Flow and Throat Density

tain all the parameters of the problem. The general correlating parameters

5. The prescat similarity transformation and X contain the mass flow plul and
of the governing equations afforda a better critical throat density pj which have to
insight of the parametric dependence in be obtained in a separate computation. If
this problem and should be of interest to the flow at the throat is in nonequilibriump
t-.reticians as well as experimentalists. then the quantities plul and p, have to be

computed by a trial and error procedure.
However, in the present analysis the flow

APPENDIX A is considered to be in vibrational equi-
librium up to the throat for which situation

The Cut-Off Harmonic the mass flow and the throat density can be
Oscillator Approximation obtained by a set of algebraic equations. In

the present case, the mass flow values were
The simple harmonic oscillator model computed for nitrogen over a wiJe range of

assumes the diatomic molecule may be reservoir conditions by using the computer
10
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