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SIMILAR SOLUTIONS IN

VIBRATIONAL NONEQUILIBRIUM KOZZLE FLOWS

N. Muniswamy Reddy and Fred L. Daum
Aerospace Research Laboratories
HWright-Patterson Afr Force Base, Ohio

ABSTRACT

The probiem of cbtaining similar solu-
tions in psecudo-one~dimensional nozzle
flows with vibrational relaxation is con-
sidered. The governing equations are traus-
formed into a similar form by using a2 new
similarity parameter n so that the nonaqui-
librium flow solutions depend on two param-
eters for a given kind of gas. However,
the similar equations are further reduced
to a universal form by a trensformation of
the independent variable 7 to £ such that
the similar solutions, for all combinations
of initial :sonditions and for a defined
femily of nozzle shapes, depend on a single
parameter ¥ which are then presented 1a a
single graph. It is also shown that cthe
equilibrium solutions depand on only one
parameter §. The parameters § and X are
also the exact, general correlating param-
eters. With the present siwmilar solutions
the flow quantities in a mozzle are readily
deternined without .esorting to complex
computer programs.

NOMENCLATURE
A m araa raxio (A'/A})
a = gpeeé of sound
c = constant defined in Eq (8)
D = constant defined in Eq (8)
f;’fz’fa = functions d2fined in Appendix A
HO = reservoir enthalpy (H0 = H;/u;)
h = gtatic enthalpy {(h = h'/u;)
kx’kz = functions defined in Appendix B
L = nozzle scale parameter

(L= r'ftan v

N = flow Mach number
n = molacular weight
] = pnumber of vibrational levels

(N = Ty/0,)
(Ns)2 = defJned in Eq (17)
(Ns)’ = defined in Eq (26}
N = defined in Eq (31)

Pd « cuaracteristic disscciation
pressure (py = pdua)

2y

A sA A

pressure (p = p'/pd)

molecular gas constant

(R = R/m)
nozcle throat radius

reservoir entroepy (So = S&/R)

regervoir entropy
(Sr = 5;/R) = 15.2 for nitrogen

characteristic dissoclation
temperature

translafional temperature
(Tt = Tt/Td)

vibratignal tenperature

(Tv = Tv/Td)

characteristic dissociation
velocity [ud = (RTd)*]
velocity (u = u'/ud)
velvcity defined as (p")/p('))i

distance along the nozzle axis

(x = x'/L) \

vibrational energy (e = e'/RTd)
!

equilibrium vibrational energy

vibrationzl relaxation time
constant

function defined as
Tog, (uA/p,uy)

characteristic dissoeciation
density

densizy (p = p'/oy)

characteristic vibrationa)l
rerperature {8 = ev/Td)
expansion ang . of conical
nozzle ot asymptutic comne
angle of hyperbolic nozzle

parametevs defined in Eqs (17)
(27) and (34) respectively

vibrational temperature func~
tion defined as ¢ = (OVITQ)

translational temperature func-
tion defined as ¥ = (ev/Té)




X23XysX = parameters defined in Eqs (24),

(28) and (35) respuctively

3 - (s - n)
Subscripts
* = nozzle throat

o = regervoir

Superscrirt

1)
% dimensional quentity

I. INTRODUCTION

The phenomenon of thermal and/er chem-
iczl nonequilibrium in flowlng gases at
high temperatures 1s of funlamental impor-
tance in rocke:t nozzles as well as in lab-
cratory facilities which are being used to
simulate the flow Jlelds over bodies in
hypersonic flight. In the past decade a
considerable amount of thecretical effort
has been directed toward undeistanding the
nonequilibrium flow effects in nozzles
under steady flow conditions. “he problem
has been studied under the assumption of
pseudo~one~dimenaional, adiabatic, inviscid
fiow. 1In spite of thease simplifying assump-
tions the soiutions are far from being sim-
Ple and are oftcn plagued by many numerical
procedural difficulties. A comprehensive
review of this problem is preseated in
Ref 1. More recently, a time-dependent
analysis? has been proposed which circum-
vents some of the numerical aifficulties
Sut retains the problem of determining tke
flow guantities through a numerous-stepped
process., The basic problem of obtaining
numerical soicticne for nozzle flows uwith
vibrational energy relaxation has been
studied by saveral authors (e.g., Refs 3,
4, 5). The present state-of-the-art for
solving vibrationa.: nunequilibrium nozzle
flows requires complex computer programs
with whick the {low variables are deter-
mined by numerical integration for any
given ipitial and boundary conditions., How-
ever, this approach does not provide suit-
able theoretical compariscns for use by the
experimentalist b2cauvse of the many vari-
ab“es involved. Thus. it is apparent that
general lorxrexrating pArameters_ are needed.
Several appruximate analyses5’ have been
used to predice the frozen vibrational
tenperature in nozzie flows. In these
analyces approximete corr2laced rarawm-
eters have been deduced which do not in-
zlude 211 the variables of the problenm.
Yurthermore, these analyses predict only
the frozen vibrational tempegature.

3pn—nv4—oro coreral nr-lng

From the preceeding discussion it is
obvious that suitable similar solucrions
to this pxoblem are highly desirable. Such
similar solutious would nct only eliminate
the need for repeated complex computations
but a so provide for the experimentalist,
the badliy neceded correlating parameters.

In the present analysls, the governing
equations, fur a pseudo-one-dimensional
nonequilibrium nozzle flow with vibrational
energy relaxatior but no dissociation, are
transformed intn a similar form by using a
new independent variable n, The definition
of the similarity parameter n and the meth-
od cf transformation of the governing equa-
tions in the present case are very similar
to those used in the analysis presented by
the authors® which Jeals with the problem
of dissociational noneguilibrium nozzle
flows. It 18 shown that the similar sclu-
tions, for a family of nozzle shapes and

z spccified gas, depend on two parameters,
3, and ), in add,tion to the independent
variable n. However, the similar equations
are further reduced to a universal form by
a transformation of the independent vari-
able n to § so that the similar solutions
depend or a single parametex ¥ with § as
the independent variable. General similarx
s>lutions which can be used for all com~-
binations of initial conditions are pre-
sented in a single graph for nitrogen. The
parameters ¥ and £ are the exact and gen-
eral correlating perameters. The limiting
¢olutions, namely frozen and equilf{brium
solutions, ore also obtained with £ a3 the
independent variable and these solutions
depend on § only. The upproximite corre-
lating pavametere that have appeared iu the
literature®s? can be deduced from the
present general correlating parameter X and
the approximations involved in these anal-
yses are discussed.

II1. TRANSPOFRMATICON OF GOVERNING EQUATICNS

in the analysis of the disscciation non-
equilibrium case® it was logical teo use the
characteristic dissociation values to nouan-
dimensionalize the governing equations
siace the characteristic dissociation den-
sity and temperature appear in the govern-
ing equations. The same values are also
usea for nondimensionalization in the
present case for the following reasons. The
governing equations contain only tke char-
actexiscic vibration(i temperature 6, and
there is no corresponding characteristic

density. Furthermore, it is shown later
that th. siunilzar solutions in the present

cdse do not depend on the values used for
nondimensfonalization and hence can be
arvitrarily choren.

The governiag .:quations for a steady,
pseudo~one-dimensional, adiabatic, inviescid
flow with negligibjie dissociation are con-
sidared, ihe flow wariables p', o', T’
and u' are nondimensionalized with the
corresponding 1issvciation values which are
defined in tnc nomencliature, The nozzle
area and ithe distance along the nozzle axis
are nondimepiionalized by the nozzle throat
area Ak and acale parsmeter L, reaspectively.
The governing equations after nondimen-
gionalization are written as

Equation of state:

P =ply (1)




Conservation of rass:

puA =

Py (2)
Conservation of cnergy:
w2 + h = H, = const 1
where ho= (772)T, + ¢
Conservation of momentum:
udu + dp/p = O (4
Rate equation {Landau-Teller type):
de _ L .
S - e(®) - ¢
dx  uugyt, el ! (5)

where €(®) corresponds to vibrational equi-
librium. Applying -he cut-off harmonic
oscillaror approximation (see Appendix A),
the vibratio energy € can be given in
terms of vibrational temperature as

0 Ne
eﬁ!Tv_] eNG/TV_]

(6)

where a Boltzmann distribution of the mo-
lecular wurbe:r density in the differeat
vibrational levels is assumed. The corres-
ponding vibrational) encrgy at vibrational
equilibrium €(») is given as

B Ne
oNO/Ty 3

)

The wibrational relaxation time constant T,
hus been correlated’ for many gas systenms
by using measured values and may be rep-
resented by an expression of the form

1,473
- DSy /T )
TP Ce Voo (8)

where C and B are constants for a given gas.

An independent variable n is now de~
fined as n ~ log,(uA/o4ty) and che tempera~
ture funceions are defined as ¢ = §/T, 2

B8y/Ty aud v = 6/T¢ = 0y/T{. Using these
definiitions and hqs (7) and (8), the gov-
erning equations are reduced to

Equacion ot state:

~n

py = e €D

Conservation of mass:

(10)

Conservation of energy:

u?

- - -lL__] = H
o . 0
Lz eléq (11)

Conservation of momentum:

dn- (5/2) (dy/e)-(1-F,)ye?do/(e¥-1)
Rate equation:
d¢
dx

e-

< pa

= 0 (12)

1/3
Lopge e DY et-1 (e?
- Cuuy et e¥-1

where £, and f, are the factors which take
into account the effect of the cut-off
harmonic oscillator approximation and are
given in Appendix A. It is shoun in Appen-
dix A that these f functions tend to zero
for i + ®, corresponding to the simple
harmonic oscillator approximation. Further-
more, it is aleos shown in Appendix A that
for temperatuzres even as high as 7000°K for
nitrogen, these functions are negligible.
Hence, the simple harmonic oscillator ap-
proximation is sufficiently accurate for
the present analysis.

The independent variable x in Eq (13)
is changed to n by usirg the following
rrocedure. From the conservation of mo-
mentum and mass the following relation can
be derived: (14)

d 10g,p/d Tog A = -(¢n/d IOgeA) = M2/7{1-42)

where M = u/a and a® = dp/dp. For a family
of nozzles with the area distribution given
by A = (L + x3)1 and using Eq (14) the fol-
lowing expression can be written:

-1)/
dx ‘Mz ! (15)

Substituting for A~Y/13 from the definition
of n, Eq (15) can be written as

dn _ ., [ M 1743
ax (k- 7] (et x
- L (J=1)/3
IRYESIRLVES: (1-A'1/‘) (16)
Combining Eq (13) and Eq (16) the rate
equation is transformed to
1/3
dp . 1 exz - e-[n(l~1/id)+¢ D+4] .
dn
(NS 2
LR A 1-f
e¥-1
o Ll Gy B
e¥-1 -, {17)
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A, = log, ﬁp*u*)l’i° LpdudelijCJ

and

(N)

. ( M2 ) (]_A_l/j)(a-l)/é L(242/19)
s’2 M

|

The problem under consideration has
been reduced to solving two differential
equations, Eqs (12) and (17), for two un-
knowns ¥ and ¢ with n as the independent
variable., Once Y and ¢ are determined by
solving Eqs (12) and (17), the other un-
knowns, p, p and v are obtained from the
otier governing equations which are simple
algebrailc equations.

Character of Similar Equations

The main motivation in expressing the
rate equaticn in the form shown in Eq (17)
18 to combine all the parameter3 of the
problem into a single parameter A,. How-
ever, Eq (17) also contains the aédicional
parameters D and 1j. Tune parameter D is
8 congtant fur a given gas and this means
separate solutions have to be obtained for
each kind of gas. The parameter ij is the
nozzle shape parameter and a given value of
ij covers a family of nozzle shapes; its
value is 2.0 for nozzle shapes of practical
interest, nauely conical ({ = 2, § = 1) and
hyperbolic (1 = 1, j = 2) shapes. Equation
(17) also contains a rather undesirable
term (Ng), which is a function of th2 flow
quantities in the nozzle and is not a con-
stant. In this respect this term may be
called a nonsimilar functien., The proper-
ties of (N;), and a method of including
the effect o% (Ng), into the sciutions of
similer Eqs (12) and (17) are discussed in
one of the following sections. 1In addition
to specifying A,, D and ij, the initial
values of Y, ¢, for a given value of 1,
have to be specified for the solutions of
Eqs (12) end (i7). The specification of
these initial values will be faci{litated by
the liuicting solutions, nately the frozen
and equilibriuvm solutfoans.

IIl. LIMITING SOLUTIONS

Frozen rlow Solution

Tnis limiting case is achieved wheu the
vibrstional relaxation time T, is very
large and this happens 1f A, + - =, Then
dé/dn + 0 follows from the rate equation
and hence che trivial solution ¢ = constant.
The generalized momentum equatiou (Eq (12))
simplifiec to

dn - (5/2)(dy/y) = 0 (18)

This equation can be integrated and given
as

p = (const)(T)S/? z (const)T[l’(Y-l)] (19)

4

for y = 7/5. Equation (19) is the familiar
igentropic relation for a perfect gas.

Equilibrium Flow Solution

This limiting case is achieved when the
vibrational relaxation time T, is very
short and rhis happens if A, +®. With
this situation the condition of ¢ = Y can
be inferred from fhe rate equation (Eq
(17)). With ¢ = ¢y, the generalized momen-
tum equation (Eq (12)) can be integrated
and given as

n - (5/2) log.y - 1098(1~e'w) +

wl(ew-l) + f, = const (20)

where the fnnetion f, 18 a term assoclated
with the cut-off harmonic oscillator ap-
proximation and is negligible as shown in
Appendix A. Equation (20) is the expres-
sion for the change in entropy in an equi-
librium £flow. This equation also shows
that entropy is conserved. The expression
for entropy in this case can be given as

So = (Sg/R) = n - (5/2) loggy -

]
eV¥-]

-y
1oge(l-e ) + +f, +S,

(21)
vhere S, = S./R and is the reference en-~
tropy. The equilibrisvm flow solution can
be obtained from Eq (21) with n %8 the in-
dependent variable and So as the parameter.

It is worth noting that the limiting solu-
trons do not depend on the nozzle geometry.

1V, NONEQUILIBRIUM SOLUTIONS

Initial Values

To obtain acnequilibrium solutions,
set of inltial flow quantities ¥, ¢ and n
have to be specsfied before solving the
similax governing Eqs (12) ané (17). 1If
the flow starts with frozen initial con-
ditions it xs known to remain in the fro-
zen sta'e, Hence, the solution is obtained
from tbs simple algebralc equations corres-
ponding to the frozen flow case. If rhe
flow ztarts with ar initial state which is
in nonequilibrium, th2 similar govexning
equations (Eqs (12) and (17)) have to be
s8olved using the specified initial values
of ¢, $ and n for the given parameters },,
D ard 1j. However, in almost all practical
situations of nozzle flows, the flow starts
in the nozzle reservoir with equilibrium
conditions and remains in near-equilibrium
up to the nozzle throat.!s3 This will be-
come evident when the variation of (Ng),
along the nozzle uxis is discussad in the
following section. Therefore, in the
present analysis the flow is assumed to be
in an equilihrium condition up to the
throat. In this case the function ¢ =
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and the initial value of Y cun be obtained
fron the aguilibrium solutlon (Eq {21)) for
values of n and S,. In this rather in-
dixrect vay the entropy S, also appears as a

arazater in the nonequilibrium sclutious.

t is noted that this behavior i4 very sim-
flar to that of the dissociatioral non-
aquilidbrium case.

For a given gas (D conatant) and a fam-
ly of nozzle shapes (1] constant) the
arameters A, and S, have to be specified

for the nonequilibrium solutions. However,
this two paramerric dependence can be re-
duced to a aingle one by the following
transformation. A new variable § is de-
fiped as £ =« (S, - n). Then Eq (21), which
gives the equilibrium solutiona, reduces to

£ ot 0g, 2011+ £, S,
e¥-1 e
(22)

Thus, the equilibrium soiutjons wmay be rep-
resentad by a single universal cunrve show-
ing the variation of % with the independent
variable £. The governing similar equa-
tions (Eq (12) and (17)) for the nonequi-
1ibriunm case reduce Lo

(5/2)d(10g,¥) +de+yle®/(e’-1)21de(1-,) 2

/3
de _ 1 X2 -1 [(1-1/13)E-D% ! -1
= ey e
de¢  (H,)

§%2
¢
e -1 (e°-e¢‘ 1-f,
e¥-1 e

X, = [A, - (1-173)5,)

(24)

where

The nonequilibrium solutions depend on
a single parameter X, for a given gas and
for a fanily of nozzie shapes. The initial
values for the nonequilikrium solutions can
be easily obtained from Eq (22} for equi-
librius starting conditions., The parameter
X; contains the effects of the vibrational
relaxatior time constant T,, the rezervolr
conditfens and the nozzle shape. The non-
similar funezion (Ng), has teo be taken iato
acecount ¢nr urder to obtalr an 2xact non-
equilibriuvm solution #rom Eqs (Z3) and (24).
The properties of (N;}, and a mathod of 1its
correlation are discussed Jn the folilowing
section.

Honsimilar Function Ng

The function (Ng), given {n Eq (24} is
a function of M, u and &. Lence, it will
have di{fferent values for different res-
ervolr couditions and it also varfes along
the nozzle axis. The velccity u in the
expression for (Ns) has been nondimension-
alized by uy which is independent of the

reservolir conditions. It was obsayrved
frcm a number of nozzle computationsg that
the velocity, when nondimensionalized with
a velocity of ug = (p}/pl)t, does not
change very much for different resexvoir
conditiors. Therefore, the expression for
(Rg), is rewritten as

2 - (§-1) 1+1/4))
(8 ( H \ (1-A 1/1) 3 /Ju (1+1713)

n
s"2

M2-1 1
]

( Eé.)(l+1/id)
ud (25)

where u; = (u'/ul). The constant term

uglug)(1+1/11) in Eq (25) can be included
in the expression for A, in Eq (17) and
the remainirg terms can be taken as the
nonsimilar function (Ns)x' nanely:

2 175 (3-1)/3 {(1+1/i)3)
(1), = (ﬁ;:T) (1-a"%) v,
(26)
and

. (1+1/1))
A! = Az + IOge(ud/uo) 21

Then the parameter X, defined in Eq (26)
becoaes

x, = by - (0-1743)8] (28)
By letting 4 = 1.0 and § = 2.0 (correspoand-

ing to the hyperbolic nozzle case) Eq (26)
is rewritten us:

2 -1, 3/¢

(“S)l = % Fi-:}- (] A ) Ul
(29)
A typical variation of (Ha)1 w#ith area
ratio is shown in ¥f{g 1. 1It 1is noted that
noving upstream from the nozzle throet,
(Hg), rapidly tends to zero since ¥ and u,
voth + 0. At the geometric thrxoat the rate
of change of area with x goes to zero for
all nozzles with ro arca discontinuity at

-, T L} 7 1] L) 1] L .
4t E
3 .
(Ng),
2 -t
it P
L J 1 L. b 1 1 3. b 3 L 1
B i 0 20 20 <« ©N & 1 & 9
LY/

Figure 1. Typical Variation of
Function (¥,), vith Area
Ratio for Ni:rcgen



the throat. Therefore, (Ng), has an in-
determinate form aince M also becomes unity.
However, 1t can be shown that it tends to a
definite limit 2t the throat. To obtain
this linmit, the complete expression for
(dn/dx) given below nmust be considered.

dn . 1dA (_"L)

dr A dx | M1 o)

1f an area discontinuity exists at the
throat (for example at the juncture of two
conical nozzles) the rate of change of area
hag a finite value and (dn/dx) tends to in-
finity at the throat. However, nozzles
used in practice generally have no area dis-
continuity at the throat so that the func-
tion (N3), 18 expected to behave as shoun
in Fig 1. The function (Ng), remains pos-
itive even for M < 1.0 in the upstream
portion of the nozzle since dA/dx is neg-
ative and hence the negative sign in Eq
(29) applies to the upstream portion from
the nozzle throat.

1

Vibrational nonequilibrium= nozzle flow
quantities,starcing at the nczzle thkroat,
were computad for nitrogen for a number of
reservoir conditions by using the computer
progran of Ref 11. The § values were also
conputed using the equation § = (S,-n) =
(S, + logep). The reservoir entrppy was
computed from Eg {21} where the veference
entropy S, was taken egual to 15.2 for
nitxogen which makes the entropy values the
sane as those computed in Ref 12. The (¥g),
values were also computed for several res—
ervoir conditions, using Eq (26),; and are
plotted in Fig 2 with (£,/8) as the vari-
able. Although all the curves correlate
fairly well imnediately downstream of the
nozzle throat, a significant temperature
effect shows up for §,/€ values greater
than about 1.2. 1In an effort to obtain a
better correlation the following approach
was taken. In the mass flow correlation
analysis (Appendix B) 1t is noticed that
the nondimensionsl mass flow (p;u;losué) is
also slightly temperature devendent. There~
fore, the (Ns)l values were nultiplied by

LAY

R S R T 5
£7€
Figure 2. Variztion of Function

(Rsh with the Pgrameter
(E,/%) for Nitrogen

the corresponding mase flow ratic as given
below

llll6'0
He = (N) Do u./ogull (31

where the exponent 6.0 was determined by
equating the k, values corresponding to the
naxioun and mininum valuea of (Ng), given
in Fig 2. The N, vslues computed from

Eq (31) are shown in Fig 3 for the same
regservoir conditions used in Fig 2. All
the values for different reservoir con-
diticas correlate very well and can be
represented by a mean curve as shown by the
dotted line ia Fig 3. The maxiomun dig-
crepancy of the actual values from the mean
curve 18 within a few percent. Tie nean
curve can be also represented by a sinple
analytical equation of the form:

_.6.6
K, = 0.37 - 0.32 (2.0 - E*lg) (32)
1< (£,/6) < 2.0

NS = 0.37 for (E*/E) > 2.0

The Ng values were alzo computid with
diffesent hyperbolic nozzie shapes (L =
0.5 to 2.0) as well as combined hyper-
boiic (L = 0.5 to 2.0) and coafcal (L = 1
to 3) shapes. It was found thzt the Jdif-
ferences in the Ng values were within the
accuracy of the ccrrelation shbown in Fig 3.
The factor [plul/plull®® was also in-
civded in the l‘ axpression so that its
effect is properly taken into 2ccount.
After iacluding the mass flow factor, the

final expressions for Ng, 1 and x are,

_ M2 ~1/3 (J'l)/J
HS = (ﬁr:?) (1-A ) x

1 —

, (#1/1) [p;u; :i +:0
Palo

(33)

[+1.) T T ' 3 v T T T T T
AT-03212.0 -£,20°5 (uEAN CRVED
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_.n}.gz-,;nm‘uwuw%m Sorouivot
{ penTs
g _ Tkl et 1
H, 5 PPN %
e ¥ o 20 © E
» 6000 X9
}f s 500 o
w‘_‘? ® 800 fes)
(.r i 1 ¥ i i 1 i L. i
LT T T {7 T R TR~ 7 s S |
&b
Figure 2. Correlation of Fuaccion

Ry with the Parazeter
(£,/E) for Nitrogen
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x = 0 - (1-1/4)) S (35)

Discussion of Nonequilibrium Solutious

Thz two similar governing equations
(£qs (23) and (24) with Rg givea by Eq (32)
were solved by a fourth-order Runge-Kutta
techinigue with 1j » 2.0 and D = 14.7 which
corresponds %o nitrogen.g The starting
values of ¢ and 3 were obtained for a given
£ from the equilibrium solution (§ = ¢)
given by £q (22}. The reference eutropy Se
in £q (22) was taken equal to 15.2. The
factors f,, f,, and £, are all assumed to
be zerv (see Appesndix A). The starting
values of § for different Y values were
sclected in such a2 way thac the solution
always starty with equilibrium conditions.
The equilibrium solution cbtained from
Eq (22) is shown in Fig 4 and is repre~
secnted by a single universal curve since {t
is independent of X, ij and D. Alsc, in
Fig 4 a typical similar nonequilibriue
solution i8 compared with an exact solution
obtained from the computer program of Ref
11. The comparison is considered to be
very good.

A series cof solutions for differxent
values of x for nitrogen (D = 14.7) are
shown in Fig S. The vibrational tempera-
ture function 4 is seen to fellow the trans-
latfonal tenperature function § very closely
for awhile, the extent of which depends on
X+ and then diverges rather suddenly and
reackes a constant value: this corresponds
to the freezirg of the vibrational energy
node. The translacional tenperature

20, BB \l L T ¥ L3 L T ¥ A
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Figute 4. ronparison of Present Similar
Solutions with an Exact
Solutfon {y = 4.4, D = 34.7,
iy = 2.0

ije2 =~

R
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Figuze 5. Similar SclutZongs for
Vibrational Nonequilibrium
Nitregen Flow (D = 14.7)

function p increases monotonically as &
decreases. The equilibrium solution shown
in Fig 5 is also given by the envelope of
all the nonequilibrium solutions. The con-
stant D = 14.7 for nitrogen was obtained
from the correlation of experimental values
over 8 certain temperature range.® How=
ever, D can have slightly different vaiues
for the same gas over different ranges of
temperatures. Therefore, similar solutions
vere also computed with D = 13.5 and 15.5
and are shown in Figs 6 and 7 respectively.
it would be an easy =atter to interpolate
between these solutions for slightly dif-
ferent values of D. The frozen vibrationzl
temperature function ¢¢ depends on X only
and the variation of ¢¢ with ¥ for all the
three values of D, is shauwn in Fig 8.

€ T ¥ TR ¥ T
(i
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oLx E
16
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¥, W
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13 E
0 (] X 2. 1 1 1 L %
4 [ [} 0 ” 2] 16 8 0 2

Figure 6. Similar Soiutions for
Vibrational Nonequilibrium
Nitrogen Flow (D = 13.5)

V. TKE PARAMETERS £ AHD ¥

It is shown in this analysis that the
nonequilibrium similar solutions depend on
two general parameters § and x. In order
to une the similar solutions presented in
this report the parameters § snd X should

be known in terms of the initial and bound-

ary valnes. Therefore, the functional de-
pendence of § and Y are considered in this
section,
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Parameter §

The paramectexr § is defined as

uA
§=S_- log [ ]
(V] e fpu, (36)

This parameter is not only a function of the
reservoir and nozzle throat conditiong buc
also a function of velecity, which is un-
known. Therefore, the velocity ratic u'/uj}
was conputed €or scveral sets of reservoir
conditions and its variation with nozzie
area ratio is shown in Fig 9. It is ob-
served that this type of correlation still
results in a significant axount of reservoir
temperature elfect which is similar to that

S aTTTTYIrTTINY

[/ \\\m
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0
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Figure 9. Velocity Ratio Variation

with Area Ratio for Nitrogen
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u'
-
U*

[8.5 - 0.31(1 + log  A)™]

Correlation with Area
Ratio for Nitrogen

Tyt y 4.0
u pouo
== | = x
Uy PRy

(37)

The exponent 4.9 in Eq (37) was determiued
by using considerations similar to those
used previously ir the correlation of Ng.
By substituting for S,, u'/ui and pi from
Eqs (21), (37) and (B2), respectively. an
expression for §, after some algebraic
manipulations, may be given as

Yo

£ = ——— = 309“ koK

e¥o-1

( "z" -1 " Slz(l_e-VO) x

2 Yo

AL0.5 - 0.31(1+1vg,, A)~?] } * St (38

it 1s noted that § depenés on only twe
parameters, namely, the area ratio A and
the reservoir temperatire function 00. The
parameter 5 does not depend on either the

noticed in the correlation of (Ng), shown

in Fig 2. Therefore, eszn velocity
was nultiplied by the corresponding
flow ratio and replotted in Fig 10.

ratio
mass
All the

computed values now zorrelgte very well and
a mean curve can be arawn through the points

38 shown.

This mean curve can be repre-

sented by a simple expression of the type

reference density py or the reservoir den-
sity pg. The parameter { 13 now expressed
in terns of the fnitial and boundary values
only and hence can be readily computed

for any given conaitions.
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Parameter yx

The parameter ¥ is defined as
x = A - (1-1713) So (39)

Letting ng, = loge(p /pg) and expressing p
in terms of pg ~nd ¥, from the equation og
state, the expression for entropy (Eq (21))
is shown as

o R0y "T1Z ¥
= d "v'o )
o = log, + — +5

t -ty Y .
Lpom (l-e”70)f e'o-1

r

(40)

The parareter A given in Eq (34) cen be
expressea as

g LO*L/LS) o0 y(1/2-1/1))
A= log, |— (-—1) x
e ij ¢ m
péllij, (1/2+1/tJ)Lpd(l-l/iJ)
(41)

where the mass flow correiation expression
given in Appendix B has been used to elin-
inate the nass flow term in A. With Eqs

(40) and (31), the parameter X reduces to

\1/2 (

(6+171%) k-2.5/14)
xnlogl_ — ( )Lv

(Rev/ c .

- i1-1/11)] A
(1-e "°) (1-17i3) - + S,

e o-1
(42)

It is noted that the terms (R9y/m)¥, L end
C/py have the dimensions of velocity, length
and time, respectively. y? and S, are non-
dimensional nusbers. If pgy is measured in
atmospheres cthen the C units will be atm~
sec. The pavraneter ) is indzpendent of A.
For 1 given gas X depends on cnly 95’ L and
¥o oince 8y, C and 35, are all constan. .
The functions ¢ ard ¢ as well as the gen-~
eral parameters £ and ¥ do nct depend on
any «f the reference valucs that are used
for nondimensiuvnalizing the governling equa~
tions. Hence, the reference values can he
chosen arbitrarily.

In Ref 6 the paraneter piL was used as
a covrrelating parameter. Also, in Ref 7 a
pararmeter (pJL ,a*/c) was deduced by non~
dimensionalizing the sudden freezing cri-
teria with reservolr values. These two
parameters can be deduced from the present
generzl parameter x. To obtaia the parav-
eter polL the entire effect of y, kas to be
neglected. The other parameter can be ob-
tained from ¥ by neglecting a portion of
the effect of y,. This neglect of the ¥,

effect is the reason why the frozen vi-
brational temperature presented in these
analyses®,? depends on the reservoir tem-
peratures in addition to the approximate
parameters. Furthermore, these analyses
predict only the approximate frozen vi-
brational temperature and do not provide
the flow quantities in the nonegquilibriun
region,

Range of the Applicability
of the Parameter ¥

The geaeral correlating parameter X, as
noted before, d:pends on pg, L and P, for a
given gas. The variatior of pgl with Y,
for a constant X camn be computed fronm
Eq (42) and is shown in Fig 11 for a number
of ¥ values with 1j < 2.0. The variatien
of pi (L = 1.0) with §, for a constant
equilibrium mole fraction of 0.4 is alse
shown; this curve represents approximately
the high temperature limit beyond which 4is
dissociation becomes appreciable and the
dissociatior relaxation may heve to be =son-
sidered in addition to the vibrational re-
laxation phenomenon. It can be inferred
from Fig 11 that all of the practically
feasible resarvoir ronditions (a maximum
pressure of 1007 atmospheres and a tempera-
ture range frona 2000°K to 8000°K) are cov-
ered by X vaiues between 1 to 8, which is
rather a narrew range r)mpared to the range
of %X values presented in Fig 5. It is also
observed in Fig 5 that the nonequilibrium
solutiorn, for a given ¥, departs from the
equilibriunm snlution at a certain maxinoum
value of {; these waxinum ¢ values are also
plotted in Fig 11. For reservoir condi-
tions, which fall above this line, the
solutions start with equilibrium conditionms
and can be obtained from the present sim-
ilar solutions. For reservoir conditions
which fall well below this line the flows
can be taken as completely frozen in the
entire nozzle. In a narrow regiom just
below the equilibrium limit line the flow
will be in the nonequilibrium state and the

L] 13 L 1 3 L] L L] 1
\  LINIT FOR DISSOGIATION MOLE FRACTION GF 0.1
ar LT FOR EQUILIBRIUM

Figure 11, Range of Applicability
of the ?arnneter x (13 -~ 2.0,
€ w 1,715 x 10" acm-sec.,
Py 1o ata., L in cm)



solutions have to be ovitained by starting
with reservoir conditiona as the initial
values. Furthermore, the function N; up-
stream of the throat hae to be also in-
cluded in the solutions.

Effect of Starting Value
E* on Similar Solutions

It i3 ohgerved in Fig 5 that, for a
given valuc of X, there is a range of Y,
(hence £,) values that could be used as the
initial starting values. The upper limit
is given by the equilibrium limir line in
Fig 11 and the lower limit is given by the
dissoctiation limit as shown ir Fig 1ll. For
example, the range of ¥, values 1s approx-
imately 1.1 to 0.6 for ¥ = 8.0 and €.65 to
0.45 for ¥ = 4.0. Hence, for a given %,
the nonequilibrium solutions could be
started with any of a ranmge of §, values.
This would rcsult in slightly different
values of Ng and, therefore, different aon-
equilibrium solutions for the same value of
X To examine this point more closely,
nonequilibrium solutions werc obtaized fovx
different £, values but with the same X
value and it was found that, for the range
of allowable startirkg values mentioned pre-
viously, the differences in the nonequi--
libriurm solutions varied only a few perceat
and this error is within the accuracy of
the correlation of N, shown in Fig 3.

V1. COHCLUSIONS

Based on the present analysis the fol-
lowing conclusions are reached:

1. Sipilar solutions for vibrational non-
equilibrium nozzle flow problems can be
obtainsd ty using the new siwmilarity param-
eter E.

2. The similar solutions presented zan be
used over a wide range of practicable com~
binaticns of initiel conditions and nozzle
scale paraneters.

3. The vibrational equilibrium solutions
depend on the one pacameter £ only sad the
ponequilibrium solutions depend ox two
paranmeters § and X. The frozen vibrational
temperature depends on % only.

4. The parameters § and Y
sal) correlating parancters
tain ali the parameters of

serve as univery-
eince they con-
the problen.

5. The present similarity transformation
of the governing equatione affords a better
insight of the parametvic dependeiuce in
this problem and should be of interest to
th.uvraticiens as well as experimentalists.,

APPERDIX A

The Cut~-0ff Haramonic
Oscillstor Approximation

The sinple haruonic oscillator model
assunes the diatomic molecule may be

vibrationally excited through an infinite
number of equally spaced energy levels. In
the real situation, the excited molecules
disgsoclate when the vibretion eaergy level
corresponding to the dissociatfon energy is
reactred. Therzfore, in the cut-ocff har-
monic oscillater approximation the vibra-
tion energy is considered only up to the
dissociation limit. Since the energy lev-
els are assumed to be equally spaced, the
nuxber N of allowable energy levels, when
applying this approximation is given by

N = T4/8,.

The factors wvhicn take into account the
effect of the cut~off harmonic oscillator
approxication are given belo::

) N’e“(e"—])z

! e®(eli®-1)? (A1)

e = [Heef-1)(e¥-1)(e0-e) ]

2 (e®-e¥) (ef¥-15(eT%-1) (A2)
_ _ By Wy T

f3 = [1092(1 e ) l_e“"-])_ (A3)

It can be es3ily shown that these factors
tend to zero as N + @, This 1limie corre~
sponds to the simple harmonic oscillator
aprroximation. Since no other expression
in the governing equations contains the
parameter N, the governiag equations for
simple harmonic oscillator approximstion
can be obtained by sinply assuping these
factors are cqual to zero. Furthermore, it
can be shovn that for nitrogen, with H = 34,
the correction factors are all very small
even for temperatures as high as 7000°K.

For example, at T{ = Ty = 6000°K and N = 34,

£, = 2.28x 167°, £ =0, £, -2.7 x 107°%,

Thus, for the problexz under consideration,
the simple harmonic oscillator wodel is
more than adequate.

a

&
-~

APRENDIX B

Correlation of Hass
Flow and Throat Density

10

The general correlating parameters §
and X contain the mass flow pju] and
critical throat density p; which have to
be obtained in a separate computation. If
the f£low at the throat is in nonequilibrium,
then the quantities pju] and p, have to be
coaputed by a trfal and error procedure,
However, ir the present analysis the flow
{8 considered to be in vibrational equi-
1libriun up to the throuat for which situation
the mass fiow and the throat density can ba
obtained by a set of algebraic equations. In
the present case, the mass flow values were
computed for nitrogen over a wide range of
reservoir cenditions by using the computer
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program of Ref 12 and are presented in PFig
Bl, The nondimensional mass flow (piud)/
(pduy) is independent of reservoir pressure
but slightly dependent on reservoir tem-
perature. It can be represented by a
linear equation of the type

1 ] t ]
Pyly ® k,(pouo) (B1)
where

k, = [0.689 - 6.3 x 107 T} (°K)]

A similax correlation for the nondimension-
al throat density pi/p. 18 also shown in
Fig Bl. It ia alsrn ingepcndent of reser-
voir pressure and can be represented by a
linear equation of the type

[} = k L)
P, 2P0 {B2)
where

k, = [0.635 - 2.33 x 107° Ty (°K)]
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