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DIFFICULTY AND POSSIBILITY OF
KINETIC THEORY OF QUANTUM-MECHANICAL SYSTEMS
Part III - Inconsistent Scale
Effects in the Theory of Scattering®
by
Toyoki Koga

SUMMARY

It is shown that results of the theory of scattering
among unfixed particles vary inconsistently as depending on
the choice of volume scale employed for the second quanti-
zation, This situation demonstrates that the conventional
guantization method is not feasible for treating interactions
among ur.fixed particles., The paradox is an inevitable
consequence of the theory of absolute indeterminism underlying
the conventional method of gquantization. Only by interpreting
a wave function as an ensemble representation, as demonstrated

in Part II of this report, we may reach reasonable results,

It is noted that the same paradox arises in common in
classical mechanics, if one treats interactions among particles

accordingrto Gibbe's concept of particle.
*The reasoaing made in this report is solely mathematical.

The author wishes to know if there is any physical interpre-
tatioa useful for dissolving the paradox. '




I. INTRODUCTION

It is an essential part of kinetic theory to study
correlative interactions among particles. In gquantum mechanics
this study is the theory of scattering, originated by Born. 1In
the previous part, Part II, we simply rejected Born's theory of
scattering as useless, It is the purpose of this part to
elaborate upon the previous statement rejecting Born's theory
from kinetic theory.

We first outline the feasible method of Born, treating
the scattering of particles by a fixed central field in section
II. This is done for the convenience of understanding of the
following two problems: In section III, we shall Jiscuss rather
critically the scattering of two unfixed electrons known in
quantum electrodynamics. In section IV, we shall refer to
the Hamiltonian of electron in interaction with transversal
photons and Coulomb field, in the same spirit. Causes of those
paradoxes demonstrated in section III and IV are discussed in

the last section,

II. PBORN'S THEORY OF SCATTERING
BY A CENTRAL FORCE FIELD

The following ie an excerpt from Ref. 1,pp. 86,87.

The basic equdtion is



VY o+ -ueny=o (2.1)

(The numbering of equations is different from the one in Ref. 2)
Here

k? = ZmE/ha. U(r) = ZnV(r)/'h2
and E is the kinetic energy mv2/2 of the concerned particle and
is assumed to be invariant, and V is the potential. The origin of
? is the center of the force field fixed in the space. '¢ is

expected to have an asymptotic form

/‘P"' exp(ikz) + r-lexp(ik r) £(8) (2.2)
where the z-axis is in the direction of the beam, ¢ is the

<
angle between r and the z-axis. It is known that

,w = 6(x,y,2) - “:z e}(glik-j";‘-r"] F(L') az’
re=-1r

is a solution of

va'lf + k2’¢= F(x,y,2)

if G is the general solution of

v% + k% = 0 .

It follows that the solution of (2.1) will satisfy the integral
equation

Hp g 1 oxp(ik/;-fv)
o am |2 -

U(r') ¥(r*) at’ (2.3)

We take for G

G = exp(ikz)



To obtain f(8) we require the asymptotic form of (3) for large
r. Denoting by E a unit vector in the direction of %, so that
2= (sinOcoaf. sing sin ¢. cos &)
we have
- - LA
|? - ¥~ r-n-r'+ terms of order 1/r

and hence from (3)

Le N

N
P otks o gt Ei!? exp(-ika-+)U(r") ¢ (r') d T’ (2.4)
Formulae (3) and (4) are exact. It is interesting to note that
the scattered wave is that which would be produced if each
element of volume scattered a wavelet of amplitude, at unit
distance, -2fmh~2V(r)dT time the amplitude of the wave at

that point. We may obtain a formula for f(6) if we assume
that the wave is not much diffracted by the scattering center.
We may then replace ]ﬁ(r') in the integral in (4) by the
unperturbed wave function exp(ike'). This approximation is

only valid for fast particles. We then obtain from (2) and

(4), dropping the dashes,

1 - v ’,
£(0) = - = Ji’xp ik(n, - n)-r] U(r) dT (2.5)
-+
where n, is a unit vector along the z-axis, so that z = 30.;.

The integral may be evaluated by taking spherical polar co-

ordinates, [ , B , the axis J = O being taken in the

-‘O-



-
direction of the vector ng = 7. We obtain

O
f®) - - 23 Iﬂéﬂ‘ﬂ v(r) rPar (2.6)

[
where K = k,;O - ;[. The above is the quotation from Mott and

Massey (Ref. 1). BEmploying the feasible result obtained in the
above, we shall continue our discussion as follows:

If V = ¢2/r, we have

£(6) ~ -.2/(I12) v) (dimension: length)

( gt no dimension)
(2.6)!

It is reasonable to state that

X, ffr"-“"m)] [t o) ae

]
0 ].ﬂu. iks

gives the ratio of the number of particles which have already
been scattered, to the total number of particles in a space

volume which contains the center of force at its center. (We
may take always a cube for the volume.) According to (2.6)',

we Obtain

N b 2p=2
o o b Jygenr (2.7)
(av?)2 (a1

A fact we like to note is that, if we take a unit volume for



the domain of integration, the numerical value of

j("/r)zd ?/fd T (dimension: length-a)

is the same for any unit of length, because of the geometrical
symmetry of those domnins, On the other hand, the numerical
value of o“/(uva)2 changes acco=ding to the unit of length®.
Specifically speaking, N./No is smaller for larger unit length.
The situation is easily visualized: There is only one center
of the scattering field, and the domain where the scattered
particles exist is locnlized physically, as independent of the
choice of length of unit, In a cube of 1 cm”®, 1/5 of the volume
might be occupied by those scattered particles, but in a cube of
1 kn’. only infinitesimal part o' it may be occupied by those

scattered particles,

*One might wonder, why Na/NO appears to have dimensions,
It is explained as follows: Consider the ratio of two volumes
as 13/1’}
where l is the length of an iron bar. If one takes for L

a unit length, regardless of any choice of unit, then

a ==£5.
As a matter of fact, the physical length of L cnanges as we chan e

unite On the other hand, l does not change in the physical sense.

wbe



III. SCATTERING OF TWO ELECTRONS

The following is an excerpt from Ref. 2, section 24,

Consider two charged particles both obteying the Dirac
equation and let their wave functions 9 ,,4,. The static
interaction is then V = Zl 2 /r12 In the first Born appro-
ximation V has a matrix element for scattering, from an initial
state O where the two particles have momenta ;61, ;52 y B8ay,

s @
to a final state with momenta, p, , p, . We use the plane

wave sdlutions

-+ -
’V/OI = uOIpr(ipOir/hc)

Mpl = ulexp(iﬁrgi/hc)o etc.

Then the matrix element of V is

d7yd7
2 14%¢2 L] - - -» -
Ypo = %1%2° EEX “p[ﬁ ("01 P)- 7y +(py, -py) T 2]

X (u] ugy )(ug ug, )

2[4014 5 -y 7 2
=22 efr-:-:l- exp[ (1:' -P, ). (r -r, )]x

-

i -» L - -
X exp[;;.(po]. ’poz -pl - pz)‘ ra]‘(ul 01)(0 u )

MﬁZCZZIZZ 02 . .
= (u1 Uy )(u2 Uoa ) (3.1)

[Poy P4




-
(dTia = volume element of r, - :2 ), provided that the total

momentum is preserved, i.e. that

-+ > > »

Poy * Pgp =P *+ P (3.2)

Otherwise VFO vanishes,

(Footnote: The integral is not properly convergent. Insert

- -
first a factor exp(-or..), > =Ir1 - ral , and afterwards let

12
A go to zero., Also take into account what was said in section

14,3, about the conservation of momenta and the normaligation

of the wave functions.) (The quotation ends here.)

According to the foot note, we understand that

Iu"u dT= 1, etc.

Therefore, we may regard (ufu,, )(uju,,) in (3.1) as of order of
unity. So, we write
b 3

v = a
PO (Prgy/he) B, - B /92

2
and plot Véo—\, ’pOI = pi /Pol in Figel schematically.

FO
l L1> LZ) LB (unit length)
L, L
Ij. \\ o I 2 2
—— lpOl-pl' /pol
Fige 1

-8-



At a given point of th~ abscissa, Véo decreases rapidly as
the length of unit increases. It is easy to estimate taht,

at (,- ;l,z/pgf 1, Vi, is of the order of unity, if the length

of unit is of the order of (cross section)”?. If one takes cm

for unit of length, Véo may be of the order of unity at

(36

extremely small number., If all the matrix elements involved

1" 30)2/pgl = (cras section)i/z read in cm>. This is an

in a problem change in the same way, the matter might be trivial,

It is not so, as will be demonstrated in the next section,

Before going to the next s:ction, we consider the cause of
this difficulty. Let us rec2ll the situation in section II,
and compare (2.7) with the result of integration with resp:ct
to 47y, » ;2 being supposed to be fixed, in Eq.(3.1). Both
are similarly affected by the choice of unit length, regardless
of the normalization of wave functions. The integration with
respect to d T > is not affected by the choice of scale.

Also it is noted that recoils of those interacting particles

are not considered in this calculation, When particle 1 is

scattered , particle 2 is fixed in the space, and vice versa.



IV, INTERACTION ENERGY IN

QUANTUM ELECTRODYNAMICS

The following is excerpted from Ref. 2, p.126.

If the electrons are described by second quantization, the
Hamiltonian is a space integral like section 12, eq.(35). i,
is bilinear in ¥, P°*.

- ﬂ'(.t.f- WBIP AT, p=-sPr ), ste.
(4.1)
It is clear that the Coulomb term in (6), AL say, must be
replaced by the Coulomb interaction of the total charge-density
with itself, Thus
Bipt = -.j\l, (+A) YT + njﬁ(:)_(i(/ a2 ac’
(4.2)
After second quantization 1}‘. tf are operators changing the
number of negative and positive electrons..... (the quotation ends.)
In (4.2), the second term in the right hand side

(r) Plr?)
” P P iz e (423)

T

is affected by the change of unit of length: Suppose that

f’(r) and (° (r') are uniforms Then we obtain for (4.3)

dtd 2!
e




’

where f(r) =f and P(r') =(3 o« In order to avoid confusion,
let us always zive the electronic chirge in c.ges8.electrostatic
unit., Then the unit volume in which ('5“ Q‘ ) is normalized should
be read in cm’unit so that the law (charge)a/distance = energy
(erg) is maintained. Suppose that our unit volume in which

(’V‘II’ ) is normalized is I.3 cm3. Then we have for (4.3)
JEC

P\ ’r = r'l ol 7 (c.goeo unit)

This value decreases as L increases.
On the other hand, the first term in the right hand side of
(4,2)
- ef¢‘(9{';)¢‘ at
is affected by the choice of unit volume in a difierent way.
Suppose that A is uniform in the space, Then we have for the

above -
->
(-efytyae)d,
The quantity inside tue parentheses is of the order of -e. It

appears that there is no scale ef:ect, But 7 is affected by scale

as follows: The vector potential has dimension

(e

where é denotes the dimension of energy and L of length, This

is in accordance with

?
energy _-_—f(Ha + E2 )d¢ , H=curl K. etc. (4.5)

elle



For the second quantization, we first put, according to Ref.2,
page 56,
A L *.
= Z(qAAl N A )
1,
a (bEc2)* 5:‘ exp(ik.T)

(;: : unit vector)

ﬁ
A
-
A,
Hence the q's should be of dimension
[q] = [(E/L)y"/c] (c: 1light velocity)
O L(h L-Bv-l)%J

Defined by
[ ] = - - [ ]
QA’qA *qA ' ?\ 1){(%\ qk)'

PQ is of dimension
[#e] = [» 3] (4.6)
The second quantization is made by

&

- QB = -i4, etc. (4.7)
Comparing (4.,6) and (4.7), we notice tne following: Firstly,

we suppose that there is a wave of which the energy is AV (one
light quantum). If L is larger, the value of PQ should be

smaller according to the classical theory (4.6). According to

the quantum theory (4.7), however, PQ is always of the order of

he From the classical view point, we have to make PQ stronger

than of the really existing wave, as we choose a larger unit

length in the procedure of quantization., Actually in quantum
mechanics, we assign nhy , instead of Y, to a wave, Hence
we may avoid the difficulty, which is raised in the classical

sense, by changing n,instead of hy , of the concerned wave,

-12-



This interpretation is reasonable as long as we are treating
photons alone., But this interpretation is obviously unreasonable,

if we treat the interaction between a photon and a charged

particle, because the interaction is made by ¥ , instead of
niy . The interaction becomes unrealistically stronger as
we choose a longer unit length.

In summary, the first term in the right hand side of (4,2)
becomes larger and the second term becomes smaller in unreason-
able manners, as we chopse a larger unit length. In addition,
we note the following two remarks:

l, As far as photons are concerned, we may ignore completely

the classical theory (4.6) and insist that those quantized photons

are indifferent of the classical field as-umed during the

procedure of quantization. As for (4.3), however, it cannot
escape from its own paradox.

2. In the quantization of an electron field, the anticomu-
tation relation is given in such a way as to permit the amplitude
of the field to decreases, as we choose a larger unit volume, and
hence the total charge within the unit volume is invariant. See
Ref,2, p.s115. This condition is different from the condition
imposed by (4.7) on an electromagnetic wave. By the former,

a wave becomes weaker, and by the latter, a wave becomes stronger,

as the concerned unit volume gets larger,

-13-



V. CONCLUSION

For treating a problem of interactions among particles,
the second quantization method is not feasible. The reasons
are: a) Interactions are represented by either bilinear or
nonlinear forms of representations of quantized particles,
and b) the effect of interaction between a pair of particles
changes significantly, according to the choice of volurie scale
employed for quantization.

The paradoxes discussed in this paper are inevitable
consequences of the theory of unconditional indeterminism
and of acausal jump underlying the conventional quantization
nethod, If we intend to avoid those paradoxes in problems of
interaction, we have to abandon the theory of absolute

indeterminism. In other words, we have to interpret a wave
as an ensemble reprecentation of particles, 28 discussed
in detail in Part II of this report. Ref.3.

The same paradox arises in common in classical mechanics,
if one treats particles according to Gibbs's concept of particle,
as discussed in detail in Ref. 4.

The above is the present conclusion of the author, as based
on the mathematical reasoning made in this report., Is this
peculiar conclusion inevitable? The author wiahes to know if
there is any physical interpretation leading to a more noderate

concluaion.

-lla
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DIFFICULTY AND POSSIBILITY OF
KINITIC THEORY OF QUANTUM-MECEANICAL SYSTEMS
Part IV - Inconsistencies in Representation

of Photon-Electron Interaction®

by
Toyoki Koga

Inconsistent scale effects and questionable momentum
relations are shown to be involved in conventional repre-
sentatives of photon-electron interaction. The inconsis-
tencies are sisilar to those which tend to occur in the

classical kinetic theory.

*Discussions with Dr. Arthur I. Ruark and Dr. Henry

Margenau have been most helpful.

Preceding page blank
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I. INTRODUCTION

In Part 1II, Ref. 1, it was discussed that interaction
representatives of quantized fields contain inconsistent
effects of the space volume in which fields are normalised.
There, the photon-electron interaction was also discussed.

It has been found, however, that the photon-electron inter
action was not properly discussed there, due to some mis-
understanding, or blind acceptance, by the author of some

part of the text referred to. In this report, the same inter-
action is discussed again more in detail, in order to supple-
ment the shortcoming of the previous discussion.

For preparing this report, three relevant accounts, given
respectively by Fermi, Dirac and Heitler, have been studied.
References 2, 3, and 4, Fermi writes volume n s according to
his notation, explicitly all the way through his book.s But he
does not go to detailed discussions of interaction matrices,
and hence no inconsitency Las chance to appear there. Heitler's
manner of presentation is most confusing. Heitler states in

page 39, Ref. 4: L is to be considered large compared with the

dimensions of the material system. The physical behavior of

the system will not then depend upon L. For convenience we shall,

as a rule, put L = 1. (L is the linear dimension of the space

in which fields are normalized.) This is a grave misstatement,

-18-



Heitler is mixing up his wish and the reality of those math-
ematical representations which he treata. He sometimes retairs
L, but omits it in those formulae where L has a crucial
meaning. As long as this matter is concerned, Dirac also
cannot escape some complaint, as is discussed briefly in the
appendix,

One, who believes in the conventional interpretation of
axiomatic quantum mechanics, might think that the conclusion
derived in this report is surprising. However, from the view
point that conventional solutions of the Schrodinger equation
or of the Dirac equation are of ensembles, those inconsistencies
discussed in this report are most readily predictable.

In this report, we remain merely pointing out inconsistencies
in those representations, and do not propose any altanative

approches. The photons considered here are all transversal,

II. MATRIX ELEMENTS OF INTERACTION

The account given in this section is the same as in Ref.
b, except that LB. the volume of the space in which fields
are normalized, is written explicitly here. Vector potential

-
A may be written as a series of plane waves

-19-



d - . -o.
A= Z;(qAAA +q A%) (2.1)

div k=0
(2.2)

Aa = (‘Hl‘ca)” o, exp(in,.?) L-3/2

.’
Heore L3 is the volume of space of which A and its derivatives
.’
have the same values on two opposite planes; A is periodic of

the surface. 3, is a unit vector perpendicular to X, . Hence

j(Z;:; AT = ‘017-02 Su s (2.3)

(dT : volume element)
Introducing the canonical variables

Q, =4, +q°
* * (2.4)
P =-i(q, - q})
we have for the energy of a single wave
H, =% B2 o Qd). (2.5)

By exact analogy® with the ordinary quantum theory we have
to consider the canonical variables of each radiation oscillator

as non-commutable operators satisfying the commutaion relation**

*A detailed account may be found in Ref.2, appendix one.
-’
**If L had been omitted from A, , those in (2.6) would be

of dimension of AL . See Ref, 1.

-20-



P =PQ - QP = -if
[4] = nq - qF 2.6

[B%]= [R2] =[047=0
The eigen values of the energy of such an oscillator are given
by

I, = (n, + %) 6V (2.7)
The amplitude Q, can be represented as a hermitian matrix

Q,ne1* Q+1,n * (IN].)”(II/ZV)’é

(2.8)
Q,nt* 0 if n' inll
and
99, ne1 * (ne1)h(n/2)% (absorption)
9p41,n * (ne1) % (n/20)% (emission) (2.9)

qn#l,n . q;,n+1 x O

According to the above representation of photon, the
Hamiltonian for the interaction between an electron and photons

(transversal) is given by

-+ a4
B, = - [y divar (2.10)
- -e(uy,—,cZ)%L-B/ZE f.r,(‘exp(i;(;.;) Yaz

R qof¢°,¢¢exp(-ii-;)(fd'(’J (2.11)

-21-



where .£‘=,Z.:, hgl- 1/(2zA), K =e/(2TA),

In order to proceed to applications, it is necessary to
write explicitly the matrix elements of nint s for example

for transition:

electron b

-
number of photons s, — = 1

we have
2 -
nank.bg~ s* = ( Zlﬁikc ')”(nA ’1)%1' 32
> g
XJV: o, exp(iX, r) ¢b a< (2.12)
(absorption)
where

k= B = oh/(2xA) = [k ] ck

and for emission

2zl @ % %, -3/2

e (ewoceaee)"(n, +1)

Ban,+1,bn, "
A

X I y2 dexp(-tkP) ¢ a7 (2.13)

(emission)

-22-



We notice that ¥, * are normalized in L’ » and hence
IV‘; A, oxp(2i K. r) «,bbd T (2.14)

is independent of L by itself. Hence each of those matrix

elenents of obtained in the above contains factor L'3/2

n1nt

III. CANCELLATION OF L

Since the q's contain no factor of L,

B, = 2%, (3.1)
also does not contain factor of L. The eigen values of H, are
nkh g_+ ¥%h ¥
The situation so far is satisfactory.

In general, each matrix elements of Hintcontains factor

1-3/2, 1t is thought that the arbitrary factor L is eliminated
by making a sum with respect to all the possible frequencies of
photons (Ref. &4, pp. 39,40):

Z - ](L/Zrc)jd}x= J I?d}k (342)
& (27ch)> *
(n= k/ch)

-23-



We soon realize, however, that the cancellation is complete

only when fhe total process of transition consiste of two

matrix elements, for exaample

H "3 (503)

Nyl +1 l!n,‘ol.n,‘ ~ L

In this case, we see that

S~ L’ | (3.4)
multiplied (operated)to (3.3), results in no factor of L.
In general, however, L remains in the results. For a siamplest
example, consider the case of Bremsstrahlung (Ref.l4,p.243), the
photon emission from an electron passing through a potential
field: The transition (emission) probability contains L"/Z.
In the calculation of the self-energy of electron, the result to
the first approximation does not contain L. But those to the

higher order approximations always contain L,

IV. MOMENTUM CONSERVATION

The representation (2,14) is rewritten as follows:
fy; (g®XP(ik.r) ¥, d7T

A
e

= [ ] " r ! : e ' =3
= ua‘(eub) oxpv_i(pb-pai'k‘), r/cﬁ]d?

-24-



v k4
The integ:al 18 proportional to o(gb-pafk‘) and vanishes

unless

-

4
- p. + = 0 (“ol)

-

b

A

See Ref.4, p.l4h, Of any intermediate trunsition, this condition
should be satisfied. We notice, however, that condition (4,1)
and making the summation I; with respect to infinite number of
photons are not compatible: For each single photon, either emitted
or absorbed, an electron in interaction with tne photon must

have a different momentum, even though the initial momentum is
given. 1If the transition due to A phaton is occuring, the
transition of the same electron occuring simultaneously due to
another )\’ photon is affected by the transition due to

A photon, and vice versa, Note that the mcmentum of the same
photon is vibrating quickly among different values due to inter-
actions with many photons. Nevertheless, in the conveational
method of calculation, it is assumed that each trsnsition takes
plnce as independent from the other transitions which seem to

take place simultaneously. (An electron appears to be a many-
faced politician who assumes simulteneously different standing-
points {p order to please his constituents of various contradictory

opinions.)

The difficulty is virtually avoidable by assuming that

only one series of emission and absorption of virtual photons



takes place at a given moment of time. Then we have to assume
that the time scale of a series of one emision and one absorption
(the first approximation) is longer than the time scale of a
seriea of two emisions and two absorptions (correction to the
second approximation), and so forth, See Ref. 4, § 15, The
situation is exactly the same as that of the BBAKY successive
approximation theory of calculating multiple interactions among
classical mechanical particles, by assuming that a two-particle
collision ie affected by three-particle collisions, and a three-
particle collision is affected by four-particle collisions, and
so forth, The assumption of such a mode of interaction is
phyeically eignificant only when there is really a proper
time scale relation in those multiple interactions. See Ref. S.
The time scale of two-particle interaction should be longer
than the time-scale of three-particle interaction; the time
ecale of three-particle interaction should be longer than the
time-scale of four-particle interaction, and so forth.

For quantum-mechanical interaction, however, we usually

have an excuse that an interaction takes place without lponding_

any time, However, we have seen that this theory of &causal

jump is not feasible for treating non-stationary states, Ref.6.

If the excuse be accepted, it is as yet difficult to rational-
ize the assumption that the probability of occurrence of a
"emission-absorption" transition is always smaller than the
probability of a "emission-absorption-emission-absorption’

transition, etc.
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V. DISCUSSION AND CONCLUSION

It has been rather easy to see that there are inconsistent
scale effects and inconsistent momentum relations involved in
the representation of photon-electron interaction, But it is
not easy to find the way to avoid them. We recall that earlier
Einstein, Ref.7, derived Planck's radiatioa law, by assuming
a law of emiesion and absorption probabilities similar to the
one given by (2.9). One might wonder why Einstein had no
trouble in deriving Planck's law, The reasons seem to be:

l, In Binstein's theory, only the ratio between absorption
rate and emission rate is considered. Hence there is no L.

2e After each interaction between a photon and a molecule,
a statistical(gross) valancg of energy is considered on the side
of the molecule. Einstein's interaction is much similar to
Boltzmann's binary collision, instead of being multiple. Hence,
there 1is no difficulty of momentuam relation.

3. The summation with respect to frequencies of photons
is not made; instead the summation is made with respect to the
possible states of molecules, of which the statistical law is
already known.

The same contrast is seen between Planck's Hohlraum and
the cavity of LB which we assumed in section II., The wall of
Planck's Hohlraum reacts with radiation in the thermodynamical

or statistical-mechanical way., On the other hand, the wall of
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the cavity employed in section II determines the density
distribution of frequenciea possible for photons merely in
the geometrical relation,

It would be haaty to aet forth all at once any solution
of those difficulties., At leaat, however, it is evident that
the conventional repreaentation of photon-electron interaction
ia not consistent, and that thoae difficultiea are much
analogoua to the known and already solved difficulties in the

claasical kinetic theory.
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APPENDIX

Dirac's Quantization of Radiation

Instead of (2.1) and (2.2), Dirac begins with

oy

A= I{A..xp(-ii-i- sy t) .
+ A exp(ik: T - 14 8) ) ¢ (A1)

(Dirac uses symbol k for; in section 1I, and 2Xx ¥ for ¥ in
in section II. In order to avoid confusionmn, some of thoge

symbols in Ref. 3, p.24O are changed here.) Here
* +
div A = 0O, [IA =0 (A.2)

’
A is defined with respect to the entire space, as is seen in
*
(A.l)s Also A is already the result of summation with respect
to all the frequencies, Hence, it is felt that there is no

need to consider a cavity of volume LBo The total energy is

given by
4 af 4 ~» . 2 3
B = b7 JK(At AEX (A.3)
In order to introduce oscillators, it is necessary to rewrite
Bp
IR 2 - -
Hp= 41’ ‘Z‘K(A(A,‘)skl (Aob)
<
We notice that B, in (A.3) is given as corresponding to A

given as a Fourier integral (A.1). On the other hand, HR

>
in (A.4) is given as corresponding to A given as a Fourier

series. Thus, in (A.4), thewave frequencies are discrete;
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in order to represent Z with waves of discrete frequencies,
we have to accept the following two conditions: 1. X does
not represent honestly the initial field over the entire space;
we should be satisfied with the representation valid in a
finite domain of space Ls. 2. In order to be eo, ; should be
periodic with respect to L. Hence s:l is propor! ional to
L™, Thus the representation of A which is made with discrete
waves contains factor L-B/z. In other words, Dirac's
representation is just the same as Fermi's and Heitler's.
Later on, Dirac makes the same mistake as of Heitler
mentioned in section II. See Ref. 3, p.24h, Dirac first writes
the transition matrix which contains factor L-B/z. Then he
says: Passing over to continuous photon states by means of the
conjugate imaginary equation (56), we get..e.s Thus he gets

a matrix element which doee not contain L—B/Z. This treatment

is valid only when

2.Ba \n,+1 Bn,e1,m, * ({Bn‘.nﬁol) (I8, el,n)
is permissible, Also noted is that, in the case of Bremsetrahlung,

we need a representative of discrete frequency which does not

contain L., Dirac's formalism does not provide this.
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