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DIFFICULTY AND POSSIBILITY OF 

KINETIC THEORY OF QUANTUM-MECHANICAL SYSTEMS 

Part III - Inconsistent Scale 

Effects in the Theory of Scattering* 

by 

Toyokl Koga 

SUMMARY 

It Is shown that results of the theory of scattering 

among unfixed particles vary inconsistently as depending on 

the choice of volume scale employed for the second quanti- 

zation« This situation demonstrates that the conventional 

quantization method is not feasible for treating interactions 

among unfixed particles« The paradox is an inevitable 

consequence of the theory of absolute indeterminism underlying 

the conventional method of quantization« Only by interpreting 

a wave function as an ensemble representation, as demonstrated 

in Part II of this report, we may reach reasonable results« 

It is noted that the same paradox arises in common in 

classif-ul mechanics, if one treats interactions among particles 

according to Gibbs's  concept of particle. 

•The reasoning made in this report is solely mathematical. 

The author wishes to know if there is any physical interpre- 

tation useful for dissolving the paradox. 
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■ 

I.  INTRODUCTION 

It is an essential part of kinetic theory to study 

correlative interactions among particles. In quantum mechanics 

this study is the theory of scattering, originated by Born« In 

the previous part, Part II, we simply rejected Bom's theory of 

scattering as useless. It is the purpose of this part to 

elaborate upon the previous statement rejecting Bom's theory 

from kinetic theory. 

We first outline the feasible method of Born, treating 

the scattering of particles by a fixed central field in section 

II. This is done for the convenience of understanding of the 

following two problems: In section III, we shall discuss rather 

critically the scattering of two unfixed electrons known In 

quantum electrodynamics. In section IV, we shall refer to 

the Hamiltonlan of electron In interaction with transversal 

photons and Coulomb field, in the same spirit. Causes of those 

paradoxes demonstrated In section III and IV are discussed In 

the last section. 

II.  BOBN'S THEORY OF SCATTERING 

BY A CENTRAL FORCE FIELD 

The following is an excerpt from Ref. l,pp. 86,8?. 

The basic equation is 
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72 ij/  ♦ (k2 - UCr))^ = 0 (2.1) 

(The numbering of equations ie different from the one in Ref. 2) 

Here 

2       2 2 
k  = 2mE/* ,  U(r) » SmVCr)/* 

and E is the kinetic energy mT2/2 of the concerned particle and 

is aasumea to be invariant, and V is the potential. The origin of 

r is the center of the force field fixed in the space. y is 

expected to have an asymptotic form 

Y'vexp(ikB) + r"1exp(ik r) f(ö) (2.2) 

where the z-axis is in the direction of the beam, Q  is the 

angle between r and the z-axis. It is known that 

f   a Q(x,y.z)  - -i- Mikjr-r'j]      ^  d?. 
' w       /r - r'/ kn 

is a solution of 

•y   ^    ♦ k f = r(xty,z) 

if 0 is the general solution of 

2    2 ■y 0 + k 0 = 0 , 

It follows that the solution of (2.1) will satisfy the integral 

equation 

' 47C 

expfik/r-r1/) , , FV ,1, i-    U(r')y(r') dT'     (2.3) 
/?-?7/ 

We  take for 0 

0 a exp(ikz) 
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To obtain f(0) «re require the asymptotic form of (3) for large 

r.    Denoting by n a unit vector in the direction of r,  so that 

n s  (sin^cos^,  ain^ sin   d,  coeff) 

we  have 

|r - r'/A»   r - n-r*  ♦ t«r«s of order 1/r 

and hence from (3) 

4 

expC-ikn.r'Wr«) V» (r«) d? ' (2>) _    ik»        ik.r   / 

Formulae (3) and (4) are exact« It is Interesting to note that 

the scattered wave is that which would be produced if each 

element of volume scattered a wavelet of amplitude, at unit 

distance, -2Ämh" V(r)dT time the amplitude of the wave at 

that point. We may obtain a formula for  f(Ö) if we assume 

that the wave is not much diffracted by the scattering center. 

We may then replace  ^(r1) in the integral in (k)  by the 

unperturbed wave function exp(ikB'). This approximation is 

only valid for fast particles. We then obtain from (2) and 

(4), dropping the dashes. 

f(0) - - -L [exp ik(n0 - n). r] U(r) df     (2.5) 

where n.    is a unit vector along the z-axis, so that z * tW ?• 

The Integral may be evaluated by taking spherical polar co- 

ordinites, £ %   ß   *  the axis JL  > 0 being taken in the 
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direction of the vector n0 - n. •• obtain 

f(fl) - - i^ I 2i£iH2 V(r) r2dr (2.6) [ ein(Kr) v( 

«her« K ■ k/ng - n/.      Th« above ia the quotation fro« Mott and 

Masaey (Rel. 1).    Employing the feaalble reault obtained in the 

above,  we ahall continue our diacuaaion aa folloaat 

If V « e2/r,  we have 

f(e)^   -a2/(Bv2) f($) (dimenaiont  length) 

( » } no diaenaioa) 
(2.6) 

It ia renaonable to atate that 

»o    f.ii»#-ik. 4T 

givea the ratio of the nuaber of particlea which have already 

been acattered,  to the total nuaber of particlea ia a apace 

voluae which eontaina the center of force at ita center.    (We 

aay take alwaya a cube for the voluae.)    According to (2.6)*, 

we obtain 

"•                S JC# 2r-2dr 
-2- -^        ij (2.7) 

A fact we like to note ia that, if we take a unit voluae for 
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the domnin of integration,  the numerical value of 

J' tf/r)2*?/^! (dimension:  length"2) 

ia the same for any unit of length, because of the geometrical 

symmetry of those domnlns. On the other hand, the numerical 

value of eV(mv2)^ changes according to the unit of length*. 

Specifically speaking, NJ/NQ is smaller for larger unit length. 

The situation is easily visualized: There is only one center 

of the scattering field, and the domain where the scattered 

particles exist is localized physically, as Independent of the 

choice of length of unit. In a cube of 1 cm-*, 1/3 of the volume 

might be occupied by those scattered particles, but in a cube of 

1 km , only infinitesimal part of it may be occupied by those 

scattered particles. 

•One might wonder, why N /N0 appears to have dimensions. 

It is explained as follows: Consider the ratio of two volumes 

a «^VL' 
where £ is the length of an iron bar.  If one takes for L 

a unit length, regardless of any choice of unit, then 

As a matter of fact, the physical length of L cnanges as we change 

unit. On the other hand, £ does not change in the physical sense. 
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III.  SCATTERING OF TWO ELECTHONS 

The following is an excerpt from Ref. 2, section 2k, 

Consider two charged particles both obeying the Dirac 

equation and let their «rave functions t/'v'V'p* The static 

interaction Is then V ■ Z.Z.eVr.p» *n the first Born appro- 

ximation V has a matrix element for scattering, from an Initial 

state 0 where the two particles have momenta p.., p  , say, 

to a final state with momenta. Pi » P? • We U8e the Plane 

wave solutions 

^01 » u^expdJ^Ac) 

ti/, » u.expdpyr./fxc)» etc» 

Then the matrix element of V is 

FO 

XdlJ u01 Xu« u02 ) 

I he 

^:ft2c221Z2e2 

I'or'J2 
(u* u01 )(u« u02 ) (5.1) 
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(dTj^ " volume element of r, - r-  )» provided that the total 

momentum la preserved, I.e. that 

Pol + P02 s Pi + P2 0#2) 

Otherwise V_0 vanishes. 

(Footnote; The integral Is not properly convargent.  Insert 

first a factor exp(-(Ar ), r  a/r - r | , and afterwards let 

o< go to zero. Also take into account what was said in section 

14.3. about the conservation of momenta and the normallgation 

of the wave functions.)  (The quotation ends here.) 

According to the foot note, we understand that 

fu'u dT = 1, etc. 

Therefore, we may regard (u*u0/ )(u*uoz) in (3.1) as of ordsr of 

unity. So, we write 

Vpo     (Wc^Sjj/p^ 
ro     (.2P01/tc>  /501-f//p2 

01 

and    plot V^0^   | P01 " PJ   /PQI      in Fig.l    schematically. 

LL> L2> L3 (unit length) 

-      -»2/2 
|PorPll   Ao» 

Fig.   1 
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At a given point of th^ abscissa, V'  decreases rapidly as 

the length of unit increases.  It is easy to estimate taht, 

at (p01- P-I^/PQI
3
 
1» VFO i8 of the order of unity« if the length 

of unit is of the order of (cross section)1^.  If one takes cm 

for unit of length, V'0 may be of the order of unity at 

(tf  - p ) /p2  . (crss section)   read in cm^. This is an 
01   0  r01 

p ) /p^  = (crss section) 

extremely small number.  If all   the matrix elements involved 

in a problem change in the same way, the matter might be trivial« 

It is not so, as will be demonstrated in the next section. 

Before going to the next section, we consider the cause of 

this difficulty.  Let us recall  the situation in section II« 

and compare (2.7) with the result of integration with respect 

to dr12 • r2 bein8 supposed to be fixed, in Eq.(3*l)*  Both 

are similarly affected by the choice of unit length, regardless 

of the normalisation of wave functions. The integration with 

respect to d ^  is not affected by the choice of scale* 

Also it is noted that recoils of those interacting particles 

are not considered in this calculation. When particle 1 is 

scattered , particle 2 is fixed in the space, and vice versa. 
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IV.  INTERACTION ENERGY IN 

QUANTUM ELECTRODYNAMICS 

The following is excerpted from Ref. 2, p.126. 

If the electrons are described by second quantization, the 

Ramlltonlan is a space integral like section 12, eq.(33)* 1« 

is bilinear in ^ t V'*. 

H - N/McX. p +y3/()'f d £ , ^ =-e(Y'*V')i etc. 

ik.l) 

It is clear that the Coulomb term in (6), H   say, must be 

replaced by the Coulomb interaction of the total charge-density 

with itself. Thus 

H.,t . ..j^ilhfiX > yk]^Jjll\z  dt' 
(^.2) 

After second quantization 1^*, iM are operators changing the 

number of negative and positive electrons  (the quotation ends.) 

In (^.2), the second term in the right hand side 

is affected by the change of unit of length! Suppose that 

P(r) and f* (r*) are uniform. Then we obtain for (^.3) 

ff  dt d •?• 

jr - r'j 
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where PCr) =/* and p(r,) = p  .  In order to avoid confusion, 

let us always s;ive the electronic chirge in c.g.s.electrostatic 

unit.  Then the unit volume in which (y* ^ ) is normalized should 

be read in cm'unit so that the law (charKe)2/distance = energy 

(erg) is maintained« Suppose that our unit volume in which 

i'\f*ll'  ) is normalized is L* cm^. Then we have for (4.3) 

r «< ■■.---  (c.g.s. unit) 
jr - r«/    L 

This value decreases as L increases. 

On the other hand, the first term in the right hand side  of 

(4.2) 

- eJ^W'A)jf/ dC 

is affected by the choice of unit volume in a different way. 

Suppose that A is uniform in the space. Then we have for th« 

above 

(-«(ivi*t)'At 

The quantity inside tue parentheses is of the order of -e.  It 

appears that there is no scale efiect.  But A is affected by scale 

as follows: The vector potential has dimension 

where ^ denotes the dimension of energy and L of length.  This 

is in accordance with 

r 2   2     *    •* 
energy — (H  + E  )df ,  H =. curl A, etc.    (4.5) 
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For the second quantization, we first put, according to Ref.2, 

pajre 56, 

A^ ■ (kic2)]/i  ej exp(iic.r) 

(« ; unit vector) 

Hence the q's should be of dimension 

[q] » f(t/l)*/o] (c: light velocity) 

. [ui-VVJ 
Defined by 

PQ    is of dimension 

[PQ] . [h IT3] (4.6) 

The second quantization is made by 

^QA  - QA^   = -i *,  etc. (4.7) 

Comparing  (^.6) and  (4.7),   we notice tne following:    Firstly, 

we suppose that there is a wave of which the energy is 4i f(one 

light  quantum).    If L is larger,   the value of PQ should be 

smaller according to the classical theory  (4.6).    According to 

the quantum theory  (4.7),   however,  PQ is always of the order of 

h.     From the classical view point,  we have to make PQ stronger 

than of the really existing wav«,  as we      choose a larger unit 

length in the procedure of quantization.    Actually in quantum 

mechanics,  we assign nüy*,  instead of Ü v',  to a wave.    Hence 

we may avoid the difficulty,   which is raised in the classical 

sense,   by changing n,instead of hV •  of the concerned wave. 

-12- 



... 

This interpretation ia  reasonable as long as we are treating 

photons alone» But this interpretation is obviously unreasonable, 

if we treat the interaction between a photon and a charged 

particle, because the interaction is made by -h^ , instead ox" 

nh t> . The interaction becomes unrealistically stronger as 

we choose a longer unit length. 

In summary, the first term in the right hand side of (4.2) 

becomes larger and the second term becomes smaller in unreason- 

able manners, as we choose a larger unit length.  In addition, 

we note the following two remarks: 

1. As far as photons are concerned, we may ignore completely 

the classical theory (4,6) and insist that those quantized photons 

are indifferent of the classical field assumed during the 

procedure of quantiaation.  As for (4,3), however, it cannot 

escape from its own paradox, 

2, In the quantization of an electron field, the anticomu- 

tation relation is given In such a way as to permit the amplitude 

of the field to decreases, as we choose a larger unit volume, and 

hence the total charge within the unit volume is invariant. See 

Ref,2, p.113. This condition is different from the condition 

imposed by (4,7) on an electromagnetic wave. By the former, 

a wave becomes weaker, and by the latter, a wave becomes stronger, 

as the concerned unit volume geta larger. 

-13- 



V. CONCLUSION 

For treating a problem of interactions among particles, 

the second quantization method is not feasible* The reasons 

are: a) Interactions are represented by either bilinear or 

nonlinear forms of representations of quantized particles, 

and b) the effect of interaction between a pair of particles 

changes significantly, according to the choice of voluue scale 

employed for quantization« 

The paradoxes discussed in this paper are inevitable 

consequences of the theory of unconditional indetermlnism 

and of aeausal jump underlying the conventional quantization 

method. If we intend to avoid those paradoxes in problems of 

interaction, we have to abandon the theory of absolute 

indetermlnism« In other words, we have to interpret a wave 

as an ensemble repreeentation of particles» as discussed 

in detail in Part II of this report« Ref.3« 

The same paradox arises in common in classical mechanics, 

if one treats particles according to Qibbs's concept of particle., 

as discussed in detail in Ref. k. 

The above is the present conclusion of the author, as based 

on the mathematical reasoning made in this report. Is this 

peculiar conclusion inevitable? The author wishes to know if 

there is sny physical Interpretation leading to a more moderate 

conclusion« 
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I.  INTRODUCTION 

In Part III, Ref. 1, It was dlacussad that interaction 

representatives of quantised fields contain inconsistent 

effects of the space volume in which fields are normalised. 

There, the photon-electron Interaction was also discussed. 

It has been found, however, that the photon-electron inter- 

action waa not properly discussed there, due to some mis- 

understanding, or blind acceptance, by the author of some 

part of the text referred to. In this report, the same inter- 

action is discussed again more in detail, in order to supple- 

ment the shortcoming of the previous discussion. 

For preparing this report, three relevant accounts, given 

respectively by Fermi, Dirac and Reitler, have been studied. 

References 2, 3, and k,    Fermi writes volume jZ , according to 

hia notation, explicitly all the way through his book* But he 

does not go to detailed diacuesions of interaction matrices, 

and hence no inconsitency has chance to appear there. Heltler's 

manner of presentation is moat confusing. Heitler states in 

page 39» Ref. k:    L is to be considered large compared with the 

dimensions of the material system. The physical behavior of 

the system will not then depend upon L. For convenience we shall, 

as a rule, put L » 1.  (L is the linear dimension of the space 

in which fields are normalized.) This is a grave misstatement. 

-18- 



Hei tier la mixing up hi» wish and the reality of those math- 

ematical representationa which he treats* He sometimes retaica 

L, but omlta It in thoae formulae where L has a crucial 

meaning« Aa long aa this matter is concerned, Dirac also 

cannot eaeape aome complaint« aa is discussed briefly In the 

appendix* 

One« who believes In the conventional Interpretation of 

axiomatic quantum mechanlca, might think that the conclusion 

derived In this report Is surprising*  However, from the view 

point that conventional solutions of the Schrodlnger equation 

or of the Dlrac equation are of ensembles, those Inconsistencies 

discussed in this report are moat readily predictable* 

In this report, we remain merely pointing out Inconalatenclea 

In those representations, and do not propose any altanatlve 

approehea* The photons considered here are all transversal* 

II. MATRIX ELEMENTS OF INTERACTION 

The account given in this section is the same aa In Ref* 

^, except that L , the volume of the space in which fielda 

are normalized, Is written explicitly here. Vector potential 

A may be written as a series of plane waves 

-19- 



A' ix(qAA. ♦q: A:) ^-^ 

div AA ■ 0 
(2.2) 

AA » (4cc
2)H •; exp(ixA.r) L"

3/2 . 

i ■♦ 
Her« L  ia the volume of space of which A and its derivatives 

have the same values oa two opposite plaaea; A ia periodic of 

the aurfaee« eA is a unit vector perpendicular to ffA • Hence 

J(A^'A^ )d? « ^^c2^ * (2.3) 

(dT t  volume element) 

Introducing the canonical variables 

PA . -i^(qA.q;) 

(2.4) 

we have  for the energy of a single wave 

HA  » m   P2    ♦j/2 Q2) . (2.5) 

By exact analogy* with the ordinary quantum theory we have 

to consider the canonical variables of each radiation oscillator 

as non-commutable operators satisfying the commutaion relation** 

•A detailed account may be found in Ref.2, appendix one. 

**If L had been omitted from A^ , those in (2.6) would be 

-3 
of dimension of hL . See Ref. 1. 
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(2.6) 

Th« •Igen raluts of th« energy of such an oscillator are given 

by 

EA ■ (nA ♦ H) t^ (2.7) 

The amplitude QA can be represented as a hermitlan matrix 

(2.8) 

«•,.♦1- «^l.n • («♦l)H(b/2v)'4 

Qn^,. 0  if n» !< n 1 1 

and 

'n n+1 ' (»»♦lMh/2^    (absorption) 

'n+l.n " (tt*l>,4<V2>')H    (emission) (2.9) 

qn*l«n * ^«n+l 

According to the above representation of photon, the 

Hamiltonian for the interaction between an electron and photons 

(transversal) is given by 

H  * -ej^*(d'k)i'dT (2.10) 

= -e(4 7Cc2)^L-3/2£ r^Vt«xp(iicA.r) V-d? 

+ q»|V^texp(-iJc.r)f dt]    (2.11) 
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where     ^t = ^.e,   /K;|-1/(2äM,       ^«C/(2^A). 

In order to proceed to applications, It la aeeeasary to 

»rite explicitly the matrix elements of H.  t ,  for example 

for transition^ 

electron       b      —4      a 

number of photons       nA    —>      n> - 1 

we have 

"an^bn^*!- "• ( ^ )  K *^ L 

X fy 1 expd^/ r) f   d C (2.12) 
ja   * * b 

(absorption) 

where 
k^. »{t    « ch/(2«A) "/^/cü 

and for emission 

_                            t 2Äh2 c2    Jt.        ,^-3/2 
HanA+lfbnA* "• ( £ >  (nA +1) L 

x| i/»* «^expC-i^^^d? (2.13) 

(emission) 

22- 



W« notice that 'V' « if* are normalized In L , and hence 

j^* Av  exp(il J^. r) ^ d X (2.1^) 

is independent of L by itself. Hence each of those satrix 

-V2 elements of H. .  obtained in the above contains factor I, ' 

III. CANCELUTION OF L 

Since the q's contain no factor of L, 

also does not contain factor of L. The eigen values of YLA  are 

n h i^ ♦ Hh K 

The situation so far is satisfactory. 

In general« each matrix elements of H, .contains factor 
mc 

L"*'2. It is thought that the arbitrary factor L is eliminated 

by making a sum with respect to all the possible frequencies of 

photons (Ref. 4, pp. 39«'fO): 
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We soon realize, however, that the cancellation Is coaplete 

only «hen the total process of transition consists of two 

matrix elenents, for example 

H        II L-5 <3*3) H
B4.^+1 "n^l.iv ~ 

In this case, «e see that 

7 ^ L3 <3-^ 

■ultiplied (operated)to (3«3)« results in no factor of L* 

In general, however, L remains in the results, for a simplest 

example« consider the case of Bremsstrahlung (Ref«'»,p.243)t the 

photon emission from an electron passing through a potential 

field: The transition (emission) probability contains L   • 

In the calculation of the self-energy of electron, the result to 

the first approximation does not contain L. But those to the 

higher order approximations always contain L. 

IV. MOMENTUM CONSERVATION 

The representation (2.14) is rewritten as follows: 

Jfl Vxp(i**r)*Vr 

■ u* weub|exp[l(p'b-Pft*k> r/cfijd 7 
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*   '   * 
The intdgial   la  proportional   to    6(Pw-p ♦^)  and  vanibUte 

unless 

R   -  p    ♦ k,   = 0 (4,1) 
b        a 

See Ref.1*, p.l^1». Of any intermediate transition, ibis condition 

should be satisfied. We notice, however, that condition (4.1) 

and making the summation T^ with respect to infinite number of 

photons are not compatible! For each single photon, either emitted 

or sbsorbsd, sn electron in interaction with the photon must 

havs a diffsrent momentum, even though the initisl momentum is 

given.  If the transition due to A photon is occuring, the 

transition of the ssme electron occuring simultsnsously due to 

another V photon is affected by the transition due to 

A photon« and vice versa. Note that the momentum of the ssme 

photon is vibrating quickly among different values due to inter- 

actions with many photons. Nevertheless, in the conventions! 

method of calculation, it is assumed that each transition tskss 

plnce as independent from the other transitions which seem to 

take place simultaneously.  (An electron appears to be s msny- 

faced politician who assumes simulteneously different stsndlng- 

points in ord«r t0 please his constituents of various contrsdictory 

opinions.) 

The difficulty is virtually avoidable by assuming thst 

only one series of emission and absorption of  virtusl photons 
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takes plae« at a given moaent of time. Then we have to assume 

that the time scale of a series of one emision and one absorption 

(the first approximation) is longer than the time scale of a 

series of two emisions and two absorptions (correction to the 

second approximation), and so forth. See Ref. 4, £ 15. The 

situation is exactly the same as that of the BBQKT successive 

approximation theory of calculating multiple interactions among 

classical mechanical particles, by assuming that a two-particle 

collision is affected by three-particle collisions, and a three- 

partiels collision is affected by four-particle collisions, and 

so forth«   The assumption of such a mode of interaction is 

physically significant only when there is really a proper 

time scale relation in those multiple interactions. See Ref. 3* 

The time scale of two-particle interaction should be longer 

than the time-scale of three-particle interaction; the time 

scale of three-particle interaction should be longer than the 

time-seals of four-particle interaction, and so forth. 

For quantum-mechanical interaction, however, we usually 

have an excuse that an interaction takes place without spending 

any time. However, we have seen that this theory of «causal 

Jump is not feasible for treating non-stationary states. Ref.6. 

If the excuse be accepted, it is as yet difficult to rational- 

ize the assumption that the probability of occurrence of a 

"emission-absorption" transition ia always smaller than the 

probabil* ty of a "emission-absorption-emissiott-absorption" 

transition, etc. 
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V.  DISCUSSION AND CONCLUSION 

It has b««D r«th«r easy to sae that there are inconalatent 

scale effects and inconsistent somentum relations Involved in 

the representation of photon-electron Interaction. But It Is 

not easy to find the way to avoid them* We recall that earlier 

Unstein« Ref.7, derived Planck's radiation law, by assuming 

a law of emission and absorption probabilities similar to the 

one given by (2*9)• One might wonder why Einstein had no 

trouble in deriving Planck's law. The reasons seem to bei 

1. In Unstein's theory, only the ratio between absorption 

rate and emission rate is considered. Hence there is no L. 

2. After each interaction between a photon and a molecule, 

a statistlcal(gross) valance of energy is considered on the side 

of the molecule. Einstein's Interaction is much similar to 

Boltsmann's binary collision, instead of being multiple. Hence, 

there is no difficulty of momentum relation. 

3. The summation with reapect to frequencies of photons 

is not made; instead the summation is made with respect to the 

possible states of molecules, of which the statistical law is 

already known. 

The same contrast is seen between Planck's Hohlraum and 

the cavity of L which we assumed In section II. The wall of 

Planck's Hohlraum reacts with radiation in the thermodynamieal 

or statistical-mechanical way. On the other hand, the wall of 
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the cavity employed in section II determines the density 

distribution of frequencies possible for photons merely in 

the geometrical relation. 

It would be hasty to set forth all at ones any solution 

of those difficulties. At least, however, it is svldsnt that 

the conventional representation of photon-electron intsrsotion 

is not consistent, and thst thos« difficulties srs much 

analogous to the known and already solved difficulties la the 

clasnical kinetic theory* 
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APPENDIX 

Dlrac's Quantisation of Radiation 

»• |K 

Instand of (2.1) and (2.2), Dirac begins with 

sxp(-l*«r * i y*  t) ♦ 

♦ AJ axpCi*. r - i'i t)J d3C (A.l) 

(Dirac usas syabol k forjt in section II, and try tor y1  in 

in section II« In order to avoid confusion, some of those 

symbols in Ref. 3, p.240 are changed here.) Here 

di» A > 0,    LiA « 0 (A.2) 

A is defined with respect to the entire space, as is seen in 

(A.l). Also A is already the result of summation «1th respect 

to all the frequencies. Hence, it is felt that there is no 

need to consider a cavity of volume L • The total energy is 

given by 

HR " ^'J^**' V^* (A«3) 

In order to introduce oscillators, it is necessary to rewrite 

HR 

HR- V^ ZKCVAJS*
1 (A.4) 

We notice that HL in (A.3) is given as corresponding to A 

given as a Fourier integral (A.l). On the other hand, Hp 

in (A.4) la given as correapondin^ to A given aa a Fourier 

series. Thus, in (A.4), the wave frequencies are discrete; 
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In order to represent A with waves of discrete frequencies, 

we have to accept the following two conditions: 1* A does 

not represent honestly the initial field over the entire space; 

we should be satisfied with the representation valid in a 

finite domain of space L • 2*  In order to be so, A should be 

periodic with respect to L. Hence sj is propor' ional to 

L . Thus the representation of A which is made with discrete 

-3/2 
waves contains factor  L   «In other words, Dime's 

representation is just the same as Fermi's and Reitler's* 

Later on, Dirac makes the same mistake as of Heitler 

mentioned in section II* See Ref. 3, p.244, Dirac first writes 

the transition matrix which contains factor iT  • Then he 

says: Passing over to continuous photon states by means of the 

conjugate imaginary equation (36), we get«.** Thus he gets 

a matrix element which does not contain L"*' . This treatment 

is valid only when 

is permissible*  Also noted is that, in the case of Bremsstrahlung, 

we need a representative of discrete frequency which does not 

contain L. Dirac's formalism does not provide this* 
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