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ABSTRACT

Non-1linear homogeneous constitutive equations are developed
in this thesis for highly filled polymeric materials such as solid
propellants. In the range of strains below vacuoie dilatation
these materials obey the homogeneity rule of linearity but do not
obey the superposition rule. Such materials typically exhibit an
irreversible "stress softening" called the "Mullins Effect."”

The development in this dissertation stems from attempting to
mathematically describe the failing microstructure of these composite
materials in terms of a linear cumulative damage model. It is demon-
strated that pth order Lebesgue norms of the strain histocry can be
used to describe the state of damage in these materials and can also
be used in the constitutive equation to characterize their time
dependent mechanical response to strain disturbances.

Stress analysis procedures for materials having non-linear
homogeneous constitutiv. equations are developed for two and three
dimensional proportional boundary value problems. A series of
correspondence principles are derived wherein half of the solution,
either the stresses or the strains, can be obtained by solving an
equivalent linear elastic problem. The remaining half of the solution
can be obtained by substituting the linear elastic solution into the
non-linear homogeneous constitutive equation.

The constitutive equation has been extended to include thermo-

rheologically simple materials by defining a reduced time. It is
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also demonstrated that by using weighted pth order Lebesgue norms the

constitutive equation can also contain the rehealing of damage which

is exhibitaed by highly filled polymeric materials.
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I.0 INTRODUCTION

This thesis deals with non-Tinear homogeneous constitutive equations

of degree one, a type of behavior that until now has not been mentioned
in the fieid of mechanics. This type of behavior satisfies one of the

two requirements for linearity and in the author's opinion constitutes

the simplest type of non-linear behavior. Because one of the linearity
requirements is satisfied by these materials, they are often mistaken
for linear materials [1], since the characterization procedures used by
many laboratories do not differentiate between linear and homogeneous
behavior [2]. The difficulty 1ies in differentiating between necessary
conditions and sufficient conditions to guarantee linear behavior. If a
material is Tinear, it will always have a homogeneous constitutive
equation. However, if a material has a homogeneous constitutive

of degree one, it need not be linear.

The existence of materials having a homogeneous but non-linear
constitutive equation was first discussed in the author's Master's
Thesis, "Applications of Viscoelasticity to Filled Materials" [2]. In
that thesis the problems of applying the linearity conditions to material

characterization procedures were discussed as was the reason filled

polymeric materials exhibit this type of behavior. That thesis also
demonstrated that if meaningful stress analysis were to be performed on
propellant structures, accurate constitutive equations for these

materials must be developed.

ix,',i,x‘b. .
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Composite solid propellants and other highly filled polymeric
materials which exhibit "stress softening" [2-8] at strains below
detectable dewetting [6,9,10,11] appear to obey non-1linear homogeneous
constitutive equations of degree one. The stress analysis of composite
propellant structures hias received considerable attention in the past
decade [12-18] because grain failure generally leads to missile failure.
In the range of strain below detectable dewetting these pronellant
materials have usually been treated and thought of as linear viscoelastic
solids since they have relaxation moduli that are generally independent
of strain magnitude [1,2,19]. Examination of the mathematical require-
ment for linearity indicates that the above criterion is simply a check
on the homogeneity of the constitutive equation and does not guarantee
linearity.

The purpose of this thesis is, therefore, to (a) develop non-
linear constitutive -equations homogeneous to degree one for characteri-
zing highly filled polymeric materials and (b) develop methods by
which these constitutive equations can be used in solving two-and three-
dimensional boundary valued problems.

To accomplish these goals systematically, a brief discussion of
kinematic and constitutive linearity and non-linearity is introduced
in Section 2. In Section 3 it is demonstrated that the existing non-
linear constitutive equations for viscoelastir solids do not contain
the necessary mathematical devices to describe the behavior discussed
above. In Section 4 the "stress softening”" or "Mullin's Effect" [2-8]

is analyzed from a simple mechanical failure model of the propellant

; S " T oo T S e F NP & 4
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microstructure and is seen to contain this type of non-linear behavior.

Also the pth

order Lebesgue norms [20] of the strain history are
presented as being excellent memory measures of the strain history to
use in the constitutive equations.

In Section 5 the model is extended to include the general three-

dimensional constitutive equation for isotropic materials. In Section

6 it is demonstrated that the use of a weighted norm [21] in the consti-

tutive equation includes the "réhea]ing" of the "stress softening"

which also is exhibited by these materials. Section 7 demonstrates

that the extension to thermorheologically simple materials is valid.
Stress analysis procedures for materials having homogeneous

constitutive equations of degree one are developed in Section 8. Here

a series of correspondence principles are derived for proportional

\ boundary value problems demonstrating that for large classes of these

constitutive equations, a linear solution corresponds to half (either
the stress or the strain distribution) of the actual sclution. Material

\ characterization procedures are discussed in Section 9 where one method
is proposed for this type of m;terial. In Section 10 the theory is
applied to experimental data and shown to yield accurate stress

predictions for a variety of strain inputs.
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IT.  LINEARITY REQUIREMENTS

There is apparently some confusion among many practicing |
engineers as to what exactly constitutes a linear constitutive

equation and how such a relation is obtained. In the literature

on linear elasticity, linear viscoelasticity and continuum mechanics, f;
Tinear constitutive laws are usually simply given and the actual
mathematical requirements for linearity are never stated [22-27]. L
The problem is greatly complicated when considering non-linear 1

behavior, or more precisely what condition or conditions must be |

violated before the material is classified as non-linear. Most

-
S A

non-linear theories have had their origin in the addition of second i

- e

order terms to a first order equation. Is this second order theory

then the simplest non-linear equation or are there even simpler non-

AP ror s A

Tinear forms? These questions cannot be answered until the mathemati-

e

cal requirements for linearity are stated, for only by violating the

linearity conditions can non-linearity be defined.

P e

9%

When solving boundary value problems in the field of solid
mechanics, non-Tinearities can arise in two ways, kinematic and
material. Material non-linearities mean naturally a non-linear
stress-strain constitutive law. Kinematic non-linearities have to

do with the strain-motion relationship.

T o —




2.1 Kinematic Linearity.

Kinematic linearity has to do with motion only and has nothing
to do with the force-motion relationship. The motion of a body in
continuum mechanics is defined as the mapping of all points in the
body from some reference configuration X to the deformed configura-
tion xL [25,26,27]. The continuum approach interprets this motion

in terms of a deformation gradient F, defined by

Fij = axi/axj ,  i,j =1,2,3. (2.1)
Strains in continuum theory are defined in terms of the defor-

mation gradient. There are various definitions or measures of the

quantity called strain. One of the most commonly used definitions of

finite strain is the Green strain tensor E defined by

E= olFF - 1], (2.2)

In the above equation ET denotes the transpose of F and I is the

unit tensor. In component form the Green strain tensor becomes

1 ifp=agq
; (2.3)

0 ifp#q

In texts on elasticity [22,23,24], the definition of strain
is usually given in terms of the displacement gradients rather than

the deformation gradients. In terms of the components U of the

-5-
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displacement vector u, which are defined by

U,i = X%-X,i, i = ],2,3, (2-4)

the Green strain tensor becomes

ou ou dU. du
1i_p q i %%
EPQ "2 [BX ax. t A ax ] y (2.5)

q P q P

When the displacement gradients are very small, the second
order terms in equation (2.5) can be ignored and the Gieen strain
tensor reduces to the Cauchy infinitisimal strain tensor tensor e

Pq
defined by

U 9
1l p,_a}.1 +E _2
epq Z[i)xq axp] Z[qu qu qu . (2.6)
fhe strain-displacement gradient equation given by equation (2.6)

is linear. Linear equations are defined as having one basic mathe-

matical property which can be expressed as

Flag+Xy a9+, ) = Flag,ap,0 0 ) + X)Xy, ")
(2.7)
In the above equation f is a function of the variables x;,X,,°".
If the function is linear then equation (2.7) will be satisfied for
all arbitrary real scalars PR and all values of the variables Xy
Equation (2.7) is defined as the linearity condition for functions.

-6-
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If the strains are given as linear functions of the displacement
gradients aui/axj, the linearity condition guarantees that the strain
due to several infinitesimal motions is simply the sum of the strain
due to each motion acting separately. Sokolnikoff has given a
mathematical proof of this superposition of strains due to several
infinitesimal motions in his treatment of infinitesimal affine
transformations [24]. Superposition of strain or displacements caused
by infinitesimal motions is therefore justified when solving boundary
value problems. Since the discussion has dealt only with motion,
the superposition of infinitesimal strains for both linear and non-linear
materials is justified and is independent of the linearity of the stress-
strain constitutive equation and other equations entering into the
problem

Since part of this dissertation attempts to show a type of

correspondence between a linear solution of linear boundary valued
problems and an equivalent problem wherein the stress-strain constitu-
tive equation has a particular type of non-linearity, only the infini-
tesimal strain tensor epq will be used in the remainder of this
dissertation. Use of this strain tensor restricts the range of valid

application to cases when the displacement gradients are small.

2.2 Constitutive Linearity.

In the field of mathematics, the requirements for linearity are
the same whether they be applied to differential equations, functions,
operators, transforms, functionals or other mathematical operations.

The linearity requirements are basically the same as those given by

-7-
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equation (2.7). When these linearity requirements are applied to con-
stitutive theories they are applied best to functional equations [28]
since in continuum mechanics a simple material is defined as a
material wherein the present state of stress can depend upon the
history of the deformation gradients [25,26,27]. Expressed mathe-
matically, a physically homogeneous simple material can be represented

as the functional equation

S;4(t) = Gij[ax;)(gg)/axq] : (2.8)
Not every relation of.the form (2.8) is physically meaningful.
When an arbitrary rigid rotation of the body is superimposed on a
given deformation history, the stress field §}j must undergo an equal
rigid rotation. The form of the constitutive equation must be such
that this requirement is satisfied. Green, Rivlin, and Pipkin [29-33]

have shown that if the constitutive functional is expressed as

axt(t) axi(t) t
Sij(t) - a;k a;]( sz[Epd(t,;)] ’ (2.9)

'S 1=

then the above mentioned restriction will be satisfied for an arbitrary

time dependent rigid body rotation. In terms of the Cauchy infini-

tesimal strain tensor equation (2.9) becomes

t

15(6) = Qyy8)05, (015,(0) = Qg (8105, (8) Fy[epg(t0)] - (2.10)




In equation (2.10) §}.(t) is the stress in the rotated system,

J

Spq(t) is the stress in the reference system, and Q represents the

rigid rotation of the frame of reference. With respect to the

reference system the stress is given by the functional equation
t
S0 = fe (] .
Sij(t) = Fijlepg(tsr) (2.1)

For a constitutive equation to be linear it must satisfy the

following functional equation [28].

£ t £ £

F.. ,7) + be' (t, ] = F..[ s ]+ F..[ ! R ].

1J[aepq($=f,) epq(F;) Tij epq(.f:f,) b3 epq(f.:f,)
(2.12)

In equation (2.12) a and b are arbitrary scalars and epq and

are arbitrary strain histories. The measure of strain used in

Pq
equation (2.12) can be any linear or non-linear strain-displacement

e

gradient relationship and still yield a linear stress-strain relation-
ship. It should be pointed out however that if a non-Tinear strain-
displacement gradient relation is used in a linear stress-strain consti-
tutive equation, by the time some form of strain compatibility condition
is used or if the equilibrium equations are expressed in terms of the
displacement gradients, the resulting system of stress-displacement
gradient equations will be non-Tinear. It is for this reason the
Cauchy strain tensor e__ defined by equation (2.6) wi’1 be used in

Pq
the remainder of this thesis.




2.3 Redundancy in Linearity Requirements

The linearity conditions given in equations (2.7) or (2.12)

can be written as two separate rules instead of one as

F [ pq(zta)] =aF1j[ pq(gfsi], and (2.13a)

Fij[epq(t;f)) i e;’q(ia)] ) Fm[%dé;’] *F [pq( to)]’ (2.13b)

where epq(r), eéq(r), a, are arbitrary.

Careful examination of these two conditicns indicates that
the first rule of linearity, called scalar multiplication or homo-
geneity of degree one [28,34], is contained in the second rule
of linearity, called additivity or Boltzmann superposition
for practical purposes. This duplication can simply be shown
for all scalars that are rational numbers. The proof of this

redundancy in linearity conditions can be given as follows.

For all positive integers P equation (2.13b) gives

t t t
Py P ’ L S Y +oco-{' ) ] =
Fn[epq(::(g)] ru[epq(ia) pqlt5)

(P times)

Fij[epq(tzs)] boot T [po(tto)] - PF, [pq(tto)] (2.14)

-10-




Similarly for all positive integers Q the same equation gives

t ;L t Lt
i3 oo ’0)] " Fij [’G pqt27) 0 epq(fia)]
Q times (2.15)
1. 1. 1. 4F
i3 [5 epq(fgs)] Feee R [5 epq(if;'{,)] K [5 epq(ff)]
Q times

Hence Boltzmann superposition guarantees the following two

conditions
Fesatt )
19 ’ = PF.. R . .
i Pepq(ig)] 13[epq(f=6)] and (2.16a)
F P] t 1 F t
E l_ﬁ epq(f;&’] Q ij[epq(f;")]' (2.16b)

Using the principle of superposition repeatedly it can now be

shown that

- t
s [t

where r = rational number.

t
rFij [épq(t,gi] , (2.17)

T=

Thus it is seen there 1is only one mathematical requirement
for Tlinearity if a reasonable form of continuity requirement is
enforced, and that is Boltzmann superposition. It can be shown

also that scalar multiplication in no way imolies supernosition.

-11-
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In fact scalar multiplication is simply a homogeneity condition
of degree one in the constitutive law, and many non-linear differential
equations, functions, and functionals are homogeneous but not

Tinear. By homogeneity of degree n it is meant that a mathematical

operation, say f(x,y,z), has the property [35]
f(ax,ay,az) = a"f(x,y,z). (2.18)

If a function has this property, differentiation with respect
to the scalar a, and evaluation at a equal unity produces Euler's

equation [35]

- of  af, af
nf = x =~ FY %y tz oo (2.19)

An example of a function that is non-linear but homogeneous

to degree one, hereafter referred to simply as homogeneous, is
f(xy52) = (& + 42 + ). (2.20)

Non-Tinear ordinary differential equations having this property
can always be separated [35] and solved quite simply by choosing
a new variable that is the ratio of the two variables in the
equation. Examples of functional equations that are homogeneous

but not Tinear also can be constructed [28,34]. The main difficulty

-12-
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E _ that arises from this observation is the commonly used and stated
criteria for linearity of elastic and viscoelastic materials is, ]
3 "doubling the strain input doubles the stress output" [19]. In :
y light of the linearity conditions it is seen that this is only a 3
? check on the homogeneity of the materials constitutive law which
is a necessary condition for linearity, but in itself cannot

guarantee linearity. The homogeneity condition demands that the

SRR IT MR O]

relaxation moduius for a linear viscoelastic material be independent

s S

f of the magnitude of the applied strain, or that the first stretch

! behavior of an elastic solid have a constant moduli. These are
necessary conditions for linearity but not sufficient conditions.
laterials that possess this homogeneity property but are still
non-linear perhaps are the simplest non-linear materials since at
least one of the conditions of linearity is satisfied. Because

; one of the Jlinearity conditions has been satisfied, the material

will possess some of the properties of linear materials. Unfortunately,

P g2

the standard characterization methods used by many laboratories
will cause all homogeneous materials, linear or non-linear, to :
be characterized as linear materials [1,2]. Examnles of a non-
Tinear viscoelastic material having a homogeneous constitutive :

law are solid propellants and most highly filled nolymeric materials

[1,2] such as asphalt concrete. Examples of non-linear elastic* :

materials having homogeneous constitutive lawis are steel wire [36],

rock [37], portland cement and masonry materials.

*Elastic is used in the classical sense which means comnlete recovery
of geometry when the tractions are removed.

-13-




For non-linear elastic materials possessing homogeneous constitu-
tive laws, linear elastic analysis can be shown to be applicable
so long as the material has never been deformed, superposition is
not required, and the stresses during unloading are not required.
In other words, it is equivalent to using non-linear elastic theory
for the first stretch plasticity. Both cases should yield valid
results for the first loading but will give erroneous results
for unloading.

For non-Tinear viscoelastic materials possessing homogeneous
constitutive laws little can be said about the behavior as will
become evident later, If all the time effects are of the Boltzmann-
Volterra heredity integral type [29,30], then and only then will
linear viscoelasticity yield the proper results for the first
stretch behavior. If the time effects are not of the type
mentioned above, then linear viscoelastic analysis will only give
the proper solution for a single step input.

The purpose of this thesis is to develop constitutive
equations for non-linear materials having homogeneous constitutive
equations of degree one with and without time effects and to demon-
strate how simply they can be used in solving boundary valued
problems. Before proceeding, however, some discussion of the so-

called Fréchet multiple integral expansion is in order since it

supposedly represents a general expansion of a simple material [29,30].

-14-
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III.  INADEQUACIES OF CURRENT NON-LINEAR THEORIES

3.1 The Frechet Expansion

During the last decade considerable advances have been made in
formulating constitutive equations to represent the mechanical be-
havior of non-linear viscoelastic materials [21-33,38-40]. The
foundation for the theoretical investigations of non-linear materials
with memory was first formulated by Volterra [28], Green and Rivlin [29],
Nol1 [38], and Pipkin [39]. This work was concerned with a class of
materials known as simple materials [26,27]. A simple material is
defined as a material in which the state of stress at time t, Sij(t)’
can be expressed as some functional of the deformation gradient. Using
arguments similar to those employed by Frechet [28,41] in 1910, Green,
Rivlin and Pipkin have demonstrated that a continuous tensor valued
functional, (a functional of several variables some of which are com-
ponents of a tensor) may be approximated by a functional power series
of homogeneous tensor valued functionals. Frechet's contribution is
a generalization of the Weirstrass theorem [42] stating a continuous
function may be approximated by a polynomial. Volterra [28] made use
of Frechet's work for non-linear functionals of one variable and for
Tinear functionals of several variables. In his book, Volterra [28]
suggests that all hereditary phenomenon in the mechanics of materials
could be taken into account if the constitutive equation was expressed

as
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S'ij(t) = F'ij[el 1 (t,T)’ezz(tsT)seH(taT)selz(tﬂ'):ela (taT) ,eza(t,‘l‘)

=0 T=0 T=0 =0 =0 =0
t
¢ @ t’ [ ]
Fw[epq(T:g)] (3.1)

He indicated that this functional relationship could be expanded
in the Frechet type of multiple integral expansion. Giving only the
linear terms in the expansion Volterra indicated a general regular

linear* hereditary material could be expressed as

t

Sij(t) = Aijkﬂ,(t)ekﬂ,(t) +f Dijkﬂ,(t’T)ekﬂ.(T)dT (3.2)
) 0

Equation (3.2) is an integral constitutive equation for an aging

Tinear anisotropic viscoelastic solid.

Green, Rivlin and Pipkin have since extended Volterra's work by
including the non-linear terms in the expansion. The resulting equation

in the case of small deformation was given as

£
S..(t) = ‘s ,T1 )€
13 ,/ Kijpry (7108 (r2)0 +
0

t t
/o‘/o‘ KijP1Q1P2Q2(t’T1’T?')epﬁh (Tl)epz%(Tz)dTlde’ v

t .t
+1 .o f w.. .o ” .
/o /0“1Jp1ql"pnqn(t’“’ Tn)pyq, (T1) ewnqn(f"n)d’rl dry +

(3.3)

*
Equation (3.2) is not the most general linear relationship, (e.g., it
does not contain the general linear differential operator equation of
linear viscoelasticity [19]). It is however the most general integral
relationship. These additional non-integral linear terms were called
"irregular" by Volterra [28].
‘ -16-
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The manner in which this equation is developed is quite simple
[29,43]. Consider that the stress Sij(t) is only a function of the
strain at N discrete points in time T where T < Tiel? 1<m<N,
Ty = t. This function would therefore be an approximation to the be-

havior of a simple material. Representing this function by a general

polynomial yields

N
Si3(t) = ZCTJP g1 ) P1QI( ¥
r1=]
N N
+ C.. ) , +
Z E 1JP1Q1P2Q2(t r T"z)eP1Q1(TY‘1)eP2Q2(T"2)
Y‘1=] Y‘2=2

(3.4)

By letting the number of discrete times N increase to infinity,
the equation goes to the limit of complete history dependence. Thus,
the above summations become functionals over the interval 0 <t < t.

In addition specia? dependency must be allowed for the values of strain
taken at time t, e_ (t) which is called the "exceptional point" (see

Pq
Volterra [28] page 15). By allowing N to increase to infinity,

equation (3.4) becomes
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; 55508 % Adnign te0,0, (8) * Aysp gupaa, (H80,q, ()8p 0, (8) +

| ot

; + C.. ,

; ./ L‘~JP1Q1(t Tl)ePlQl(Tl)dT1 ¥

: 0

t t 3
] [ [ Cidprainaay T2 g, (T2)ey g (roddmadey + :
% 0 \) (3.5) 43
E Equation (3.5) is equivalent to equation (3.3), and one equation

can be obtained from the other by integrating by parts [44]. Both

v

LR et oty

forms will be used in this thesis, but equation (3.3) will be preferred

since it is the most compact notation.

Equation (3.3) according to Green, Rivlin and Pipkin, represents

a general simple material [38,39], providing the strain histories and

: the functionals are continuous. The equation surely describes an

| anisotropic non-linear time-dependent material with aging, however,
whether the expansion is useful to describe ali non-linear simple f
materials has not been shown. They indicate that the functional

represented by the above expansion may be approximated with any degree %

of accuracy simply by adding more terms in the expansion [29], just as :

oy
e

the Weirstrass theorem indicates a continuous function may be approxi-

mated uniformly to any desired degree of accuracy by simply adding more

A e

terms in the polynomial. From such statements the impression is given

s o T R

that by taking a large number of terms in the expansion one might

2 s

approximate all types of behavior quite well. However, such is not the

case. Equation (3.3) was obtained by purely mathematical methods to 3

approximate the continuous functional given in equation (3.1), linear
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or non-linear. One simple demonstration that this particular repre- ;
sentation cannot approximate some types of non-linear behavior is
given telow.

Mathematically, there are two requirements for 11neafity [28].
These requirements are homogeneity and additivity. If a constitutive {

functional is linear it must satisfy these two conditions for all

AT ML T TR T

times t, all strain inputs e_ (1), and all real scalars a. A func-

Pq
tional that obeys the homogeneity principle and not the additivity

principle is not linear, although it does have some properties similar §
to linear functionals. Such a functional is known as a homogeneous
functional of degree one [28,23]. A homogeneous functional of degree n

would be given by [28,23]

t n r t
' . o ) = F.n ) ] H
Fu[aepq(f:f,)] 8 mLepq(::f,)
where n = positive integer. (3.6) i
i

Since Volterra, Green, Rivlin, and others indicate (3.3) is a general
expansion for a continuous functional, the expansion should contain
this type of non-linearity. Solid propellant materials [1,2] and
other granular media appear to have homogeneous constitutive equations

of degree one but not Tinear equations. They can have relaxation

B3 et getmiie

moduii that do not depend upon strain magnitude, yet these materials
do riot obey the additivity requirement. Consider for simplicity the

non-linear homogeneous functional of a single variable x(t,t) given by

TIPS - FTor
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y(t)--o[x(tb] : (3.7)

T=0

which by definition obeys the homogeneity principle

tf'r )]

T=0

aG[x(th )] , (3.8a)

T=0

G[ax(

and does not obey the additivity principle

e[xl(tfﬂ : xz(tfr)] ,ee[xl(tf-c)] ; e[xz(tf-f)]. (3.8b)

=0 T=0 T=0 - =0

Expanding the right hand side of equation (3.8a) in a Frechet expansion

t - .
aG[x(t,r)] = aK (t) + a/ Ki(tsty)x(ry)dry +

T=0 0
A it
+ a j / Kz(tg'tl,Tz)).((‘tl);(('rz)d'rld’rz +

0
ft
+a j
0

Expanding the left hand side of equation (3.8a) in a Frechet expansion

0
t

f Kn(tstasr o )x(ny) e k(r, )dey e odr, +++(3.9)
0

yields

du
;
-

G[ax(tfr)] =K (t) + a f Ky (tsty)X(1y)dr; + a

=0 °

0
t .t
+ a2//Kz(t,'rl,Tz)k(rl)i(rz)dndrz +
0 Y0
t

; anfKn(t,n,..,Tn)iul)..;((.fn)dn..d% .. (3.10)
0
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The second terms in equations (3.9) and (3.10) are identical, but

T IR SR R ey S T PR
.

they are linear and obey both scalar multiplication and additivity.

To have a homogeneous functional of degree one, yet a non-linear

ALL e Tmr e AR A (D

functional, the difference between these two equations must be
identically zero for 211 scalars a, for all arbitrary x(z), and for

ail time t. For this condition to be satisfied requires that 3

DY R ORIE I

t At
0= (a-])Ko(t) + (a2-a) [f Kz(t,rl,rz)).(('t])k(rz)drldrz +
0¥o

P e S e X Le

t t

. + (an-a) / f Kn(t,'rl,rz,'°rn)5<(rl)"(1n)d11"drn + e
0 0

(3.11)

If a material has this property the kernel functions may be
assumed known since they are material properties. Choosing a history
x1(t) and evaluating each term at some time t;, a polynomial of

degree n is obtained assuming the original expansion is truncated at

the nth term. This truncation will give at most n values of the
scalar a for which equation (3.8a) is satisfied. Increasing the g
time to t, or change the history to x,(tr) results in another set of

roots, presumably different from the first. Therefore if the series

1
is truncated, scalar multiplication can hoid only for a certain number f
of scalars and these will change with time. Also. it should be 3
pointed out that for any set of kernel functions whenever the series |
is terminated a set of scalars for which scalar multiplication will ;

hold at some particular time can always be obtained.
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f There are only two ways in which it is possible for scalar multi-

plication to hold for all scalars using the Fréchet expansion. One

% way is for the material to be linear and then every kernel function
in equation (3.11) is zero and superposition holds. The second way
is to admit an infinite number of terms in the expansion. In the
second case if the infinity of roots obtained fills the set of real
numbers the condition will be satisfied. This Tatter case is not
worth considering since the value of a series expansion is questioned
if every term must be used. The Fréchet expansion is therefore not
a good approximation for the class of materials having non-linear
homogeneous constitutive equations of degree one.

It may be argued that perhaps such materials do not exist. This
argument is not valid for three reasons: (1) simple equations can be
constructed which have the indicated properties and satisfy ail the

requirements stated in obtaining such an expansion; (2) the expansion

was obtained on purely mathematical grounds, and should contain this
type of non-linearity; (3) there are materials which appear to have
the indicated properties. One interesting point about any that could
be constructed for such materials is that they are all permanent

memory constitutive equations and interestingly enouah, the materials

possessin¢ this property also are permanent memory materials. A
permanent memory material is defined in this thesis as a material in
which the current state of stress or strain will always be devendent
on past states.

For non-aging materials, Volterra [28] and Green and Rivlin [29] g

demonstrated that the kernel functions should be of the form

-22-
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K (t,rl,rz,"Tn) = Kn(t‘Tl,t-Tz,",t‘Tn) . (3.12)
The output for two strain inputs differing only by a time shift

also will differ by the same time shift when the kernels are written

in this manner. With reference to non-aging materials, Green and

Rivlin have assumed fading memory [29,46] kernel functions in their

alternate derivations of this theory. In these alternate derivations

the stress at time t is expressed in temms of the time derivatives of

strain evaluated at the current time. This non-linear form involving

various combinations of the derivatives is to the Fréchet expansion

what the linear differential operator equation is to the Boltzmann

Integral [45,47]. To obtain these equations, Green and Rivlin

assumed that the kernel functions were zero if any of their arguments,

t'Ti’ became greater than some fixed time T [29]. Physically the

time T is a measure of the 1imits of memory. This idea describes

one concept of fading memery and is a property many materials do not

exhibit. If the kernel functions have this property of a limited

memory and one considers the output to some input epq(r) with the

property that
e (t) =e_(t+h) , (3.13)

where h > T, then it can be shown that using the Frechet expansion

[28,29] the stress output has the property
sij(t) = Sij(t+h) . (3.14)
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Physically fading memory means that there are no irreversible
physical effects caused by the history of deformation since any
¢ffect can be negated by simply allowing the material to rest in the
undisturbed state for a time greater than T [25,28,29,33]. Many
rheologists are under the impression that during stress relaxation
testing if the stress relaxes to come constant value, then fading
memory is implied, but this is not the case. It, like so many

things, is a necessary requirement, but not a sufficient one.

3.2 Isotropic Theories of Non-Linear Viscoelasticity

The theory of Green, Rivlin and Pipkin discussed in the previous
sections was for anisotropic solids. If the material is a non-aging
material and originally isotropic in the undeformed state, Rivlin [36]

and Pipkin [29] have shown that the equation may be expressed as
t t .t
$(t) = / {Ikitre(r;) + ky&(ry)bdr, *fflkstré(u)thé_("fz)
0 0vo
+ Ik, tr[@(v1)&(t) 1+ kse(ry)tre(r,) + kselry)elr,y)}dridr,
t ot & _
*fff{_l_k7t"‘é(T1)tré(T2)tY‘_é_iT3) +_I;.katr_é.(Tl)t”[é(Tz)_é.(Ts)]
o Yo +0

+ kog(ty)tre(ry)tre(rs) + kygelty) trlé(c,)élts)]

t t .t t

+k11§(T1)é(Tz)tYé(.T3)+kmé(n)é(fz)é(Ts)}dTlded’fa*/ f f f
00 J0O VO

(3.15)
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In the above equation k;,k, are functions of (t-t,); k3,ky,ks.k are
functions of (t-t;,t-t5); and ky,--*-,k;, are functions of (t-1;,
t-15,t-13); etc. To obtain this equation they showed that the equation

for an isotropic material could be written as

t t .t
S(t) = Kol+fK1(t-T1)_é_(11)d11 +[f Kz(t-'rl,t-'rz)_é_(rl)é(i'z)drld'rz
¢] 0 Y0

t t
dooe +[/ Kn(t—rl,t-'rz,“,t-'cn)_é(n)“_'e_('rn)drl"d'cn+ R
0 0
(3.16)

where the kernel function Ko,Kl,";Kn ari functionstof the history

of the three strain invariants I,(g),I1,(¢), and I3(t) as well as the
variables t-ri. Instead of usingothe h?story of tge invariants which
involves combinations of the strains, they exnressed these histories

in terms of the traces of the tensors which is an equivalent form since
tre, tre2, and tred form an integrity basis for the three scalar
invariants [29,30,44]. Then they expanded each kernel in a Fréchet
expansion and equation (3.15) is what remains after all the terms are
gathered. It should be pointed out again that in the 1imit of small
strains, equation (3.15) reduces to linear viscoelasticity. Also it is
seen that when the kernel functions in equation (3.16) are only
functions of the current value of the invariants and not their histories,

and are also constant functions of the variables t-ri, the integrations

can be performed giving
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where the ki are functions of the three scalar strain invariants
evaluated at the current time t. Applying the Cayley-Hamilton
Theorem [25,27], which states a tensor must satisfy its own charac-

teristic equation, gives the equality
e = 1e? + Ie+ I3l . (3.18)

Hence one sees that any power of the strain tensor higher than
degree two can be exoressed in terms of the e?,e, I and the scalar

invariants I,,I,, and I3. Equation (3.17) can be reduced to
S=y L tyietye? (3.19)

where bgoV1s¥y ave arbitrary functions of the invariants of e.
Equation (3.19) is the constitutive equation describing the most
general non-linear isotropic elastic solid [26,32]. Written in

component form this becomes
From this equation it can be readily seen that the principle

stresses and the principle strains have the same directions because

when all the shear strains become zero, so do the shear stresses.
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Equation (3.20) is elastic in that the stresses are only a function
of the current strain tensor and independent of any previous values
of the tensor. Elasticity is a theory with no memory of past defor-
mation states and is naturally contained in the fading memory visco-
elasticity. In equation (3.16) it was stated that the kernels were
functionals of the history of the invariants and that these functionals
were expanded by the Frechet expansion to obtain equation (3.15). As
pointed out earlier the Fréchet expansion cannot simply describe some
types of non-linearities. One of the reasons the expansion is used is
that it is objective [25,26,27]. Objectivity in continuum mechanics
means that the forces acting on an element resulting from some strain
history must be invariant to arbitrary rotations and translations of
the coordinate systems. Green and Rivlin have shown that the Fréchet
expansion has this property so long as the strains are given by an objec-
tive measure of strain such as the Green or Cauchy strain tensors [29].
Since the invariants are by definition invariant with respect to
rotations and the strains are gradients of motion a translation also
has no effect on their magnitudes, so it is permissible to have the
kernels be any functional of the history of the invariants. In
particular homogeneous but noﬁ-]inear integral representations of
viscoelasticity can be constructed within the framework of the Green-

Rivlin theory so long as specific functional forms are chosen.
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3.3 Other Non-Linear Constitutive Equations

There are many types of non-linear constitutive equations. For
viscoelastic phenomenon these equations are usually éf the integral
type. Some of these equations are similar but are developed from
di fferent approaches.

Herrmann recently developed an energy approach to non-linear
viscoelasticity [43]. He assumed the material was capable of instan-
taneous deformations and not capable of instantaneous energy dissi-
pation. He has shown that with these two restrictions, the stress at
time t, Sij(t) is the derivative with respect to the strain eij(t) of
an energy functional. The resulting constitutive equations for both
isotropic and anisotropic material behavior are the same as those
developed by Green, Rivlin and Pipkin. The energy anproach taken by
Herrmann therefore appears to restrict the valid application of the
constitutive equation discussed in sections 3.1 and 3.2 to materials

capable of instantaneous deformations but not capable of instantaneous

energy dissipation.
Schapery has derived a single integral representation [48,49] that

has proven very useful in describing some types of permanent memory
behavior. His work was founded on an irreversible thermodynamic
development and his equation has a form similar to the Boltzmann
superposition integral representation of linear viscoelasticity.
Roughly speaking, Schapery's non-linear theory incorporates all the
non-linearities in a distorted time scale.  Rather than using the

current time t and the dummy time 7 in his integral representation he
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uses a reduced current time ¢ and a reduced dummy time £'. These
reduced times are given as functiorals of the temperature-time

and strain-time histories. These equations appear to be especially
applicable for characterizing plastic type materials. Schapery has
shown that rate independent plasticity and some types of viscoplasticity
are within the range of applicability of his equations. He has also
applied them to materials such as solid propeliants [16,48,49].

Analysis of his equations however indicate it would be difficult to
contain the homogeneous non-Tlinear constitutive equation discussed

in this thesis within the framework of his theory.

Coleman and Nol1l [21], Lianis [50] and others [51,52,53] have
contributed considerably to the theory of non-Tinear viscoelasticity
as applied to solids and liquids alike. A1l of their theories are
based on the principle of fading memecry which is valid for amorphorus
polymers or liquids but excludes a great many materials. Uriike the
work of Green and Rivlin and Pipkin, the work of Coleman, Noll, and
Lianis has been mostly concerned with non-isothermal conditions and
the additional restrictions placed on the constitutive theory from the
laws of thermodynamics. The representations used by these researchers
are in general a simplification of those proposed by Green and Rivlin.
Since this paper is not concerned with fading memory viscoelasticity,
their work on the thermoviscoelastic behavior of fading memory materials

contributes 1ittle to describing permanent memory phenomenon.
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IV. MODELING THE MULLINS' EFFECT IN FILLED POLYMERS

Viscoelastic materials have a "memory": that is, their present
state depends upon their entire past history. Nearly all of the
integral viscoelastic constitutive theories used to date for polymeric
materials such as solid propellants are based on the concept of
"fading memory". This means that a material is more sensitive to its
immediate past than to their distant past. A physical interpretafion
of fading memory constitutive laws, both linear and nonlinear, indi-
cates that such materials tend to forget the distant past. This theory
implies no permanent change in microstructure, or damage caused by the
deformation. A fading memory material can undergo nho irreversible
changes in structure and can be thought of as attributing the time
effects, such as relaxation and creep, to internal Qiscosity.

Experience indicates that propellants do not fall into the cate-

gory of fading memory materials even at small strains below detectable
dewetting [1,2] or volume dilatation. Propellants suffer from the
"Mullins' Effect" [2-8], which is a stress-softening that occurs with
deformation, and causes a permanent hysteresis on repeat loading.

There is considerable evidence that all the hysteresis effects
observed in propellants and most of the viscoelastic behavior are
caused by the time dependent failure of the polymer on a molecular
basis and are not due to internal viscosity [1,2]. At near equi1ibr§um
rates and small strains, propellants exhibit the same type of hysteresis

that meny lowly filled, highly cross-linked rubbers demonstrate at
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large strains [1-8]. This phenomenon is called the "Mullins' Effect"
and has been attributed to microstructural failure. Mullins postulated
that a breakdown of particle-particle association and possibly also
particle-poiymer breakdown could account for the effect [3-5]. Later
Bueche [7,8] proposed a molecular model for the'Mullins' Effect" based
on the assumption that the centers of the filler particles are displaced
in an affine manner during deformation of the composite. Such defor-
mations would cause a highly non-uniform strain and stress gradient in
the polymer between particles, especially in the direction of stretch.
He assumed that polymer chains attached themselves at both ends to
neighboring filler particles and that these chains ruptured when the
particles were separated enough to extend the chains to near their

full elongation. He derived a model from which he could calculate the

difference in stress levels at a given elongation for the first and
second stretching cycles [7]. It is this type of model that is
generally accepted as being representative of the molecular behavior
which causes the "Mullins' Effect". Figure 4.1 illustrates this be-
havior for repetitive stretching to increasing strain levels. In highly

cross-1inked rubbers, the effect only depends upon strain and is

generally irreversible [5,6,59]. However, if the prestressed composite
is allowed to rest for long times in the relaxed state, a portion of

the original stiffness might be regained [5,59}. This recovery or re-
healing appears to be a complex function of the recoverv temperature

and time, nevertheless, it can and does greatly influence the materials

behavior.
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#11 of the theoretical and nearly all of the experimental work
done in studying this phenomenon has been on materials similar to the
rubber found in automobile tires. These are highly cross-linked
rubbers that are usually filled to about 20 volume percent with very
fine carbon black. Propellants, on the other hand, are lowly cross-
linked and highly filled with coarse particles. The relative particle
spacing is consequently much more severe and th: pniymer chains are
on the average hundreds of times longer in propellants than in tire
rubber. The probability of finding a larger porticn of the chains
connecting particles would be greater in propellants and the effect
therefore should be much stronger and occur at smaller strains [1,2,6],
but the same basic mechanism proposed by Bueche still applies. This
polymeric chain failure is therefore the step which precudes the vacuole
formation process which causes the stress and dilatational non-lineari-
ties observed at iarger strains [9,10]. Multiple stretch data on
propellants at large strains with and without a superimposed preséure
environment demonstrate that propellants also exhibit the Mullins'
type hysteresis at large strains in the absence of measurable dilata-
tion [6].

The time independent "Mullins' Effect" can account for the near
equilibrium hysteresis observed in propellants at low strains, but
cannot account for the nonlinear time effects [1,2]. There is con-
siderable evidence however, that the "Mullins' Effect" in propellants
is a very strong function of time [1,2]. Time denendent chain failure
can be readily demonstrated by simply examining some of the routine tests
run on solid propellants and also examining the influence of filler on

the viscosity of a given polymer.
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One of the simplest ways of demonstrating a time dependent
"Mullins' Effect" is through the strain enddrance test [1,19]. In
this test, a sample is strained to some level and held there for
several days or longer. The only measurement taken is the time to
failure, if the sample fails within the test period. The point of
interest here is that samples fail while held at conditions of con-
stant strain when the stress is slowly relaxing or at most constant.
This type of failure is clear evidence of a time dependent "Mullins'
Effect" and also demonstrates that some portion of the time dependent
stress relaxation must be due to chain failure.

Another example of a time dependent "Mullins' Effect" is that of
a lowly cross-linked polymer, with little or no time dependency when
unfilled, which becomes significantly time dependent when filled [531,
as shown in figure 4.2. The more filler incorporated into the system,
the more marked the time effect. Many propellant polymers fall into
this category and nearly all propellants show time dependence over
such long times that true equilibrium data cannct be obtained. This
time dependence in the composite material and no time dependence in
the unfilled polymer cannot be explained by the argument that the
polymeric strain rates are higher in the composite than in the pure
polymer since the time effects continue for such long times, and many
propellant binders show no time dependence even at very short times.

Tests such as those described above indicate that the constitutive
equations and degree of microstructural damage must be highly coupled

effects. One of the existing concepts now being used to predict
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failure in propellants calculates the state of stress using fading
memory constitutive theory and then uses these calculated stresses
in cumulative damage relations to predict failure [54,55]. The

assumption that the degree of damage and the constitutive equation o

are uncoupied can only lead to erroneous results for materials exhibi-

BN 22N £ i

ting the "Mullins' Effect". The model discussed below describes the
"Mullins' Effect" and clearly demonstrates the coupling between the

constitutive equation and the degree of damage. The model provides

g ST e Dt X &

insight into the mechanism of behavior and indicates key variables or

measures that should be used in the general multidimensional consti-

tutive equation. :
I

4.1 Modeling the Time Independent "Mullins Effect"

There have been various models and mechanisms proposed for the

"Mullins' Effect". Bueche proposed a model based on chains failing

due to physically non-homogeneous local deformations [7,8]. His

e T e S oo T - -
T ro

model was not sufficiently general and was designed to prove whether

i

the chains were unbonding from the filler or actually failing. In

this section a general one dimensional model will be developed for the
"Mullins' Effect". Before proceeding, it would be wise to clarify

the main difference between filled and unfilled polymers. The eaqui-
1ibrium constitutive equation for cross-linked amorphous polymers has
been developed from the statistical theory of rubber elasticity assuming
ideal rubber behavior [56,57]. There are six basic assumptions made

in the development of the statistical theory of ideal rubber rehavior.

They are:
-36-




1. There 1is no change in internal energy with isothermal
deformations.
2. The end-end displacement of a polymer chain is small

compared to its actual Tength.

3. The relative end-end displacements (Ax,xy,xz) of all g
polymer chains in the system are equal for homogeneous '
motions.

4. The relative chain deformations occuring microscopically
are the same as the deformation of the body for homo-
geneous motions.

5. There is no interaction between polymer chains.

6. A polymer chain never fails.

These assumptions dictate that the configurational entropy

associated with a polymer chain be given by a Gaussian distribution
and enable simple addition of the contributions of each chain. The
Gaussian distribution is only valid for end-end chain displacements
that are small compared to the actual chain length since they actually
allow for end-end displacements from zero to infinity {56,57].
Corrected configurational statistics for large cefocrmations provide
what is called the Langevin Function [57]. The Langevin Function
provides the correct configurational entropy since it 1imits the end-
end separation of a chain to the chains actual length [57]. The
Gaussian distribution appears as the first term in the Langevin Function
which is essentially a virial expansion. The main difference between

these two distributions is the force-deformation relation they give for
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a polymer chain [57] which is illustrated in figure 4.3. The great
stiffening experienced when a chain is near fully extended can be
simply observed by stretching a rubber band to failure.

The main difference between filled and unfilled systems is that
even under equilibrium conditions the relative end-end displacement
of all polymer chains in the system are not equal. Instead one finds,
by any form of analysis, that the Tocal strains in a filled system
subjected to a physically homogeneous deformation are a very strong
function of filler content, position, particle shape, and the distri-
bution of chain lengths. The prime reason for the physically non-
homogeneous local deformations of the polymer is that it is the centers
of the filler particles that must undergo near affine or similar defor-
mations since they are rigid and cannot occupy similar positions at
the same time. The polymer being highly extensible and mobile is
forced to undergo large variations in local strain. It is therefore
not valid to assume the force contribution of each chain is similar,
nor is it valid to assume the end-end displacements are small since
very large strains can occur locally. Even small macroscopic strains
can cause some fraction of the material to undergo very large local
strains. For such conditions it is valid to assume that a chain will
fail if some critical condition is exceeded. It is this type of
localized failure that causes the "Mullins' Effect" in filled polymers.
Such failure must preceed vacuole formation which is common in filled
polymers. This behavior can be modeled for one dimensional behavior

in a fairly general way by making the following assumptions [1]:
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1. The relative axial deformation of any given polymer

chain is proportional to the axial applied strain, the
proportionality constant differing from chain to chain.

2. Each polymer chain has the same elastic, but not necessarily

linear, stress-strain law.

3. Each polymer chain fails and remains failed if at any

time in jts history some failure criterion is exceeded.

In these assumptions physically non-homogeneous local defor-
mations, a non-linear stress-strain law for each element, and the
possibility of having some of the elements fail have all been taken
into account. Since the desired end result of this work is accurate
constitutive relations for materials exhibiting permanent memory

phenomenon that can be used in engineering analysis, emphasis will be

placed on the behavior of elements, not necessarily on polymer chains.

The resulting equations appear to be of value for describing many
materials, not only amorphous polymers.

The first assumption can be expressed mathematically as

ei(xj’t) = e(t)ri(xj) . (4.1)
where e, = axial strain in the ith element
e = applied axial strain
T = strain intensity factor for
the ith element
xj = spatial coordinates

-40-
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Assuming the elements are elastic and the problem strictly
one dimensional and time independent, the failure criterion for an
element can be expressed either as a maximum strain or maximum stress

criterion. Assuming a chain fails when an extension €y OF equi-

X

valently stress Simax

f(e.) = -f('r.e) if T.lllell h emax

0 if o llel] > epay

In equation (4.2) %(ei) is an arbitrary function that is single
valued, and ||e|| is the largest strain applied in the history of
the deformation. The reason for using ||ej| ds it assures that
once an element fails, it remains failed.

The observed stress from such a model is simply the toist force

divided by the total area which is given by \
N N
s =5 308 = 2 flrge). (4.3)
i=1 i=1

The summation in equation (4.3) can be more conveniently expres-
sed as an integral. Using distribution theory equation (4.3) becomes

Snax/ | |e] |

S = /N(T)f('l'e)d‘r . (4.4)

0
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are exceeded, the following equation is obtained.




In this integral N(t)dr is a weighting function that represents
the fraction of elements in a unit cross-section having strain inten-
sity factors between v and v + dr. The Tower 1imit of integration
can be taken as zero since N(t) can be zero until some lower limit
of v is reached. The upper limit of integration is a function of the
deformation history. The resulting stress-strain equation is a func-
tion of wo variables, the current strain e, and the maximum strain
in the deformation history, ||e||. Before proceeding further, it
should be pointed out that this simple stress-strain law can contain
reversible as well as irreversible elastic responses which can be
both linear and non-linear, up to and including fai‘ure by proper
selection of the function N(t). For example if all elements had the
same intensity factor (e.g., rubber elasticity where 7, = 1) we obtain

;
N(t) = 8(z-1), where § is the Dirac delta function. The resulting

integration yields

f(e) if ||el] sen.

0 if |lel] > I

Similarly reversible behavior for only some small region of

strain can be obtained by having N(t) non-zero only for the same

range of 7. An example of this case would be
g(<) T < @
N(t) = (4.6)
0 T -~ @
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The resulting integration yields

C PRy

enax’ | 1€l 1 a

S =/ N(z)f(ze)dt = f g(c)f(re)dr = f'(a,e)

0 0

ity

AR, Y& FERTCONIY

when allel| <e .. - (4.7)
The problem at hand is not reversible behavior, but instead is
irreversible phenomenon such as the "Mullins' Effect”. Consider that
N(z) and f(re) are arbitrary but non-zero, and the material was
subjected to the strainuhistory given below, it can be shown that the

Mullins' type hysteresis is contained in equation (4.4).

One cycle-stretch to failure strain input.

Since ||e|| is by definition the maximum strain experienced in

the deformation history, this input yields

e(t) ifO0<tcty
lle]] = { e, iftictsty (4.8)

\
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The resulting stress output for this case, when the values of

range from zero to infinity would be

emax/e(t)

S(t) = J[N(r)f(re)dr = Gle(t),e(t)] ifOo<t=~t, (4.8a)
0
€max’ €0

S(t) = /N(r)f(re)dr = G[e(t),eo] if i<t ct,y, (4.8b)
0
enax/&(t)

S(t) = J/.N(T)f(re)dr = Gle(t),e(t)] ifty, <t. (4.8c)
0

This type of behavior is illustrated in the sketch below.

G[e,e]
N\

Clearly equation (4.4) contains the Mullins' type hysterisis
discussed earlier. Data from tests like the one illustrated above
to increasing values of e, can be used to determine the distribution
function N(t) independent of the local stress-strain function f(<e).

Differentiating couation (4.8a) and (4.8b) with respect to strain,
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subtracting one from the other, and evaluating each at e = ey

produces

N(rt=e._./e) = %‘2‘ {G'[e,eo] - G'[e,e] } (4.9)

max’ o
e-eo

emax

where C = —7————7—= constant .
f Cmax

If for example the difference between these derivatives was
found to be independent of €y then N(z) woulc be proportional to
1/172. For the general case the djfference between these derivatives
could be expanded in a polynomial in e, to obtain

N
k
{G'[eo,e] - G'[e,e] } = ji:akeo (4.10)
k=0

&8

where 3 = constants

The distribution function N(t) could be determined as a poly-
nomial in 1/t since in equation (4.9) the variable t is evaluated

Cmax’ ©

performing the integration, the resulting equation for the stress

at t = Substituting a polynomial for N(t) and f(re) and

0.

output can b2 expressed as

<4~

S = AjePy(e/]|e]|) + Axe2P,(e/|]e]|) + A3e3P3(e/]|e]]) + --,

where A; = constants
and P; = polynomials in the variable {e/!|e|])
P; (1) =1 (4.11)
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There are only two possibilities for the variable ||e|]| in
equation (4.11) or its predecessors, either ||e]| = e or ||e|| =
constant. In the first case the unique stress-strain behavior for
the first stretch is given. Ir the second case a hysteresis behavior

dependent upon ||e|| as well as e results.

4.2 Modeling the Irreversible Time Dependent "Mullins' Effect"

In the irreversible elastic case above a constitutive equation
was derived that was dependent upon two variables, the current strain
e, and the maximum strain in the history of the deformation, ||e]|.

At first, one might think that by using the history dependent equation
derived above as a multiplier to a hereditary type fading memory
viscoelastic constitutive equation, an equation describing all the
irregularities and non-linearities a filled polymer demonstrates could
be obtained. This is not the case, and can be clearly demonstrated

in a number of ways. The simplest proof is that for monotonically
increasing strains e = ||e||, and the equation would contribute
nothing new and no permanent memory phenomenon. Yet, filled polymers
exhibit non-linearities of the type that cannot be handled by the
Fréchet integral for such cases. Other features that must be contained
in an accurate coupled constitutive equation is the concept of time
dependent failure of elements and ultimately the material. These two
possibilities clearly negate the possibility of so simple an equation

of state.
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There are two likely possibilities for incorpoirating time
dependent failures. The first is to apply a kinetic reaction rate
theory to the elastic elements, [1,55] and the second is to apply a
cumulative damage law [45,54] to the elastic elements. The first of
these approaches is inconsistent with the time independent case and
leads to very cumbersome mathematics [1]. The cumulative damage
concept on the other hand appears to be a natural extension of the
time independent case since it contains equation (4.4) as a special
case. It is this type of model that will be pursued here.

Linear cumulative damage theory based on Miners' law [1,54]

requires that

M

D(t) = Do (t,/te) - (4.12)
=1

In the above equation tk is the time the material is held in
the kth state of stress or strain, tfk is the time to failure for the

kth state of stress or strain were acting alone, and

material if this
D(t) is the measure of damage. For such a theory, failure occurs when
D(t) = 1. Since the elements of our model are elastic, it makes no
difference if a stress or strain damage formulation is assumed. It
simpiifies the mathematics however if a strain cumulative damage
criterion is assumed since our model expresses stress in terms of
the strain history.

Using a power law strain-time to failure relation [54] for

h

the singly applied strain gives for the it element
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-p
tey = Cleil , (4.13)
where | | indicates absolute value or magnitude,
and F = material property,
C = constant,
the damage equation becomes
(4.14)

M
p
e, (t) = 25 tlel” .
k=1

Equation (4.14) like equation (4.3) can be more conveniently

expressed as the integrail

CDi(t) = J/. Iei(s)lpdé, where £ = dummy time. (4.15)
0

Recalling the e, is the Tocal strain in the ith element and that

this strain is related to the applied strain by re, the equation for

the stress becomes

t.(t)
S(t) =[ N(t)f(re)dr,
0

where T = maximum permissible value of t, and

t 1/p
t(t) = {CDi(t)/[le(r,)lPds} .
Jo
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The maximum permissible value of t, can be obtained by maxi-
mizing the numerator and minimizing the denominator in equation (4.17),
or equivalently answering the question, what must the intensity
factor v on an element be such that its time to failure is the current

time t? Upon setting Di(t) = 1, equation (4.17) becomes

t 1/p
r (t) = V{/ le(E)IPda} = ¢'/llel, (4.18)
0]

i
where C = constant

th

Mathematically the quantity ||e||p is called the p“" order

Lebesgue norm [20,21] LP. The LP norm has properties that are

worth noting and these are listed below.

t 1/
1e11, =4 f oterPaef

a) lafll, = lallIfl],
o) [1f+sll, < 11F11#1 1l
o) tally < 11F1,1lsl1,
- -ql] + -
d) 11F-h11 < 1=l g+l g-nl 1

. t 1/p t
e) ], = Lung./P |f(g)|pdg§ = Maximum | f(g)] .
p+o (Yo 0

In the above equations f, g, and h are time functions, p and a are

scalars, and £ is a dummy time.
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Thus for the time dependent case with permanent hysteresis our stress-
strain equation becomes
! I
c'/|lel]
S(t) =[ N(c)f(re)dr . (4.19)

0

If N(t) is non-zero in the range 0 < tv < =, then it can be
expanded as suggested by equation (4.9) and (4.10). If f(ze) is
similarly expanded in a polynomial a form similar to equation (4.11)
is obtained, the only difference being the replacement of ||e]],

which was defined as what is now known to be ||e||_, by ||e||p. The

resulting stress-strain equation is

S(t) = Alepl(e/llel lp) + AzeZPZ(E/”el Ip) + A3e3P3(e/| lel lp) + oo,

(4.20)

where A1 constants

P, = polynomials in the variables (e/llellp) .

The use of pth order Lebasgue norms in the constitutive equations

is not original to this thesis. Fitzgerald [58] has proposed a
constitutive equation wherein the stress is a functional of the present
value of the deformation gradient and its pth order Lebesgue norm.
Coleman, Noll and Mizel have aiso proposed using these norms as
approximations to the constitutive functionals [21,60]. Certain re-
stricted forms of the constitutive equations developed in this study

cail be shown to be contained in these earlier works. The development
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herein however was not motivated by the earlier works which were
developed from a pure mathematical continuum approach. Instead the
development in this dissertation stems from attempting to mathemati-
cally model the microstructural benavior of highly filled polymeric
materials. Key variables, which were measures of microstructural
damage, that were obtained from these models so happened to have the
exact same mathematical definition as LP norms and was brought to the
author’s attention by Fitzgerald. This work may therefore in some
way physically justify the use of norms in constitutive theory.

It is clear that equation (4.19) and {4.20) contain the time
independent behavior given by equations (4.4) and (4.11) as special
cases by letting p = .

In order to obtain equation (4.18) and therefore equations (4.20)
and (4.21), it was assumed that tfk in the cumulative damage relations
was given by a simple power law. Equivalently this meant that the
damage relation, D(t), for this special case could be exnressed in

|Dt(t)l/ - aIle‘lI D"(t) b (IOZ‘)

where a is a constant and D%(t) is some new measure of damage. Since
failure was defined to occur when Di(t) = 1, failure also occurs when
D%(t) =1 for all p. Although D%(t) is a non-linear damage measure
whenever D(t) is linear, it has more useful properties than D(t). An
example of this is that by using equation (4.21) instead of equation
(4.12) for this simple power law case, the strain cumulative damage
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: criterion contains the maximum strain failure criterion simply by

: letting p = ». Also equation (4.21) and equation (4.12) predict

: precisely the same time to failure for all arbitrary strain histories
' providing tfk is given by a simple power law. Since any monotonically
increasing function can be approximated in terms of LP noms, cases
when tey is not a simple power law can also be handled. Consider the

case when D%(t) can be given by

Di(t) = ar[le;[ |y + azflegflo + -+ + allel];. (4.22)
For a simple step strain of magnitude LI the time to failure, tf, is
given by the equation

- 1/2 ]
ool - arte + aste / + oo 4 aptf /p , (4.23)

io
Letting e, = te as before the critical value of v at any time t
becomes

i -1
: r(t) = arllel|z + alfeflo + -+ + a]lel] . (4.24)

C

Equation (4.24) could be used to give the upper limit of integra-
tion in equation (4.16) and equations similar to equation (4.20) could
be generated. This approach is not necessary since in the next section
the approach given here is generalized to obtain three dimensional

constitutive equations with permanent memory phenomenon. The importance
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of the model approach selected is to shed 1ight on key variables or
measures to use in the constitutive equations.

Before proceeding further it would be wise to point out some of
the behaviors possible using equation (4.19) or (4.20). Earlier in
this thesis existing integral viscoelastic constitutive theories
were criticized as being of limited value since they did not contain
the special case of a homogeneous non-linear constitutive equation of
degree one. Equation (4.19) clearly satisfies the concept of a simple
material since if the history of the strain is known, the stress can
be computed. To see if the homogeneity condition can be satisiied,
the history ae(tr) is substituted for the history e(r) and the two
equations can be compared. Doing so we find after usina the properties
of LP norms given above that

C'/1alllell,

t
Flae(e)] =] N(z)f(ate)dr . (4.25)

° 0

t
For the homogeneity condition to hold we must recuire for all e(z) and
0

all scalars a

1 1 ]
/el c/]al (le] |,

a/N(r)f(re)dr = /N(T)f(aTE)dT. (4.26)

0 0

Replacing the dummy variable ¢ in the left hand side of equation (4.26)
by at, equation (4.26) becomes
'/l el |, c'/al[lell,
a2/N(aT)f(are)dr = /N(r)f(are)dr. (4.27)
0

0
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Observe that if a2N(at) = N(t) and if the indefinite integral involves
only even powers of t, then the homogeneity condition will be satisfied.
Note that N(t) = 1/1? meets the first requirement and the second
requirement is satisfied simply by making the function f odd.

Before generalizing this method it should be shown that N(z) = 1/+2
is representative of filled systems. This conclusion can be readily
demonstrated by examining the distribution of effective gage lengths
between two particles in a filled system. Recalling that N(t) was
the fraction of elements in a unit cross-section having intensity
factors between 1 and t + dt, the proof proceeds as follows. Consider,
for simplicity's sake, an array of evenly spaced, rigid spherical
particles embedded in a polymer matrix. From symmetry conditions,
only one cell from such an array must be analyzed. The cell selected
below is adequate for this purpose and can be thought of as a cube
with sides d, having protuding half-spheres from the uppe and lower

faces as cketched below.

p

5
a N
AN\
\ A
T

[

If the material is deformed, the distance d can be thought of as

increasing from d to d + 5. Observe that the relative deformation
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between points aa is considerably different from that at bb. Defining

the local strain as being

e; = (aiai - aa)/aa , (4.28)

where aa,a;a, re considered functions of r.
The spacing between similar points on adjacent particles before

deformation becomes

d if r>o.
aa = (4.29)
a-2ptos¢ if r < p,

and after detormation the spacing becomes

a;a; = aa + 4. (4.30)

fhe local strain in fLhis one dimensional model is given by

s/d ifr>g
e;(r) = (4.31)
4/(d-2pcos¢) if r < p.

The obsarvable mi.croscopic strain e, for such a deformation would
simply be 4/d.
Defining the intensity factor t as being the ratio of local to

measured strain, one obtains
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1 ifr>p
= (4.32)

© (1-2%cos¢)'] ifr<op.

The distributing function N{t) can be found by integrating over
the middle cross-section those elements having intensity factors .

This computation may be carried out more easily by expressing the

incremental cross-sectional area in terms of v and ¢. To accomplish
this, note that those elements having constant t are on a circle of 4
constant r. The elemental strip of area is 2rrdr, where r = psing.

The incremental strip of area can be expressed as

dA(t) = 2mp?sinecosedd for r < p (4.33) ?

Differentiating equation (4.32) to obtain the value of siny and solving
equation (4.32) for the value of cos¢ equation (4.33) becomes
2
dA(r) = E—g— Ly -

T

)s r<p (4.34)

-u-'

Assuming the elements are distributed uniformly over the section, »
yields N(t) = dA(r). Accounting also for the portion where r > p in

which © = 1, completes the computation. The final relation for N(t)

from the simplc model described above is

Nx) = (1enlo/d)2) s(e-1) + 5 (7 - L),

where 1< 1 < (1-2p/d)”] (4.35)

§(t-1) = Dirac Deita Function.
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The volume fraction of filler of this model system can be exoressed
in terms of the parameters o and d as V. = %E(n/d)3, where V. is the
volume fraction of filler in the composite model. The maximum value

of t therefore becomes

3Ve\1/3 -1
Ty [1 - 2(1—5—-) (4.36)

Equation (4.36) indicates that as Vf increases even to modest

values, T becomes quite large and in fact approaches infinity for

max
this simple model as Vf + 0.52. Clearly when t is large equation (4.35)
becomes N(t) = 1/t2. The main difference is that the lower 1imit of

in the calculated distribution is 1 whereas in equation (4.19) it was
taken as zero. In filled polymers exhibiting the "Mullins' Effect”,
this is of no concern, since the stress-strain behavior of an element

is very non-linear as indicated by the Langevin statistic and nearly

all of the stress is being supported only by a small fraction of the
polymer chains. Equation (4.19) can contain the types of behavior
exhibited by solid propellants and other filled polymers and also the
forms N(t) and f(ve) must take on are consistent with propellant
microstructure.

Before proceeding further to the development of three dimensional
constitutive equations, considerable insight into the problems of
mechanical characterization of materials can be obtained by analyzing
the simple one dimensional equation given in equations (4.19) and

(4.20). To restrict this equation to homogeneous functionals of degree
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one a sufficient condition is to require that equation (4.19) have

the form
S(t) = AreP((e/]e[]))?) - (4.37)

In the above equation P is a polynomial in the variable
(e/||e||p)2. This condition is necessary if scalar multiplication is
to hold for all scalars, positive or negative. A special case of this

equation is
S(t) = 100e[1 + (e/llellp)n], where n is an even integer. (4.38)

Equation (4.38) gives a relaxation modulus that is independent of

the applied strain magnitude, and will obey the homogeneity require-
ment of linearity for all scalars, with any arbitrary strain input.
Equation 4.38 is not linear however as norms are not superposable
except in the most trivial examples. The material represented by
equation (4.38) is therefore non-linear, but for many types of tests
used for material characterization it could not be distinguished from
a linear viscoelastic material. In fact, the parameters n and P
appearing in this constitutive equation can be adjusted sc that the
derivative of the constant strain rate test is proportional to the
relaxation modulus; a commonly cited property of a linear viscoelastic
material [19,45]. Careful examination of the stress output to various

strain inputs confirms the non-linear nature of this equation and
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indicate it is within the range of this simple equation to discribe
the one-dimensional response of solid propellants at small strains.
To demonstrate this ability, the stress output for a variety of
strain inputs have been determined for different values of n and P.
These data are illustrated in figure 4.4 through 4.9. In these
calculations the ratio n/P has been kept constant; therefore all of
the materials would exhibit the same relaxation modulus. However as
clearly indicated by these figures, the behavior to other inputs is
diffe.:nt for the different values of n and P. This feature of
giving the same output for one test, yet a different output for other
tests, is characteristic of non-linear systems. If the material were
linear, this feature would be impossible since one test dictates the
results of all other tests for linear systems. Characterization of

non-linear materials is therefore a difficult task as many tests must

be used. Individuals familiar with the behavior of linear viscoelastic

materials and the non-linear behavior of composite solid propeliants
will observe great similarity between the data illustrated in

figures 4.4 through 4.9 and the behavior of these materials.
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V.  THREE DIMENSIONAL CONSTITUTIVE EQUATIONS

In section 3 it has been demonstrated that the Fréchet expansion
provides a constitutive equation that is of 1ittle value for materials
with non-linear homogeneous constitutive equations. In order to
develop a general non-Tinear constitutive equation with homogeneity
of degree one, the restrictions imposed by this expansion must be
circumvented. The main difficulty lies in the fact that the Fréchet
multiple integral expansion represents a time-memory mechanism. In
section 4 it was demonstrated that if the so called LP noms of the
deformation history could appear in the constitutive equation, then
many of these difficulties could be eliminated. It should be pointed
out that the LP norms yield a strain-memory mechanism and not just a
time-memory mechanism. This section will primarily deal with consti-
tutive equations for non-linear materials having homogeneous constitu-
tive equations of degree one that can describe the mechanical response
of solid propellants and are amenable to three dimensional stiress
analysis.

The simplest way to proceed in the development of constitutive
equations homogeneous to degree one is to recall the stress-strain

equation for isotropic materials given by Green and Rivlin was

S(t) = Ko(t)L+[Kl(tsT1)é(T1)dT1 +

0
£t
+[//<1(t,n,'rz)_é_(n)é(fz)dnd'fz ¥
0 Y0

t t
+ oeee +/[ Kn(t’Tl""’Tn)_é_(Tl)".é(Tn)dTl'"dTn + -+, (5.1)
0 0
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t t t
wiere Kn(t’Tl’TZ’”Tn) = Kn[Il(E):I?_(g):I3(€)5t5T19"Tn] s
0 0 0
and £ = dummy time™. (5.1
‘ con't)

In th%s theory the kernels were functionals of the history of the
scalar inviriants ¢f the Cauchy infinitesimal strain tensor as well as
the generi@ and current values of time. If the form of these kernel
functionalséwas given again as a Fréchet expansion, then the class of
materials having non-1linear homogeneous constitutive equations was
shown not tu be centained by the theory. There is great similarity
between equition (5.1) and the one dimensional irreversible equation

obtained fron the models in section 4, which was given as
S = Alerl(elllellp) + AzeZPz(e/llellp) + A3e3P3(e/||e||p) + oo
1 ..
tAe Pn(e/||e||p) + (5.2)

Equation (5.2) allows for no fading memory viscoelasticity, only
permanent strain-time memory. If the kernel functionals of equation
(5.1) were allowed to take on terms like (||Il||p/lllll!q), then the
equation could contain two types of memory phenomenon; the fading
memory viscoelasticity contained in the hereditary integral representa-

tion and the permanent memory behavior registered in the LP norms.

*
The dummy time & is introduced so that no confusion can arise as to
what variables enter into the integration process.
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It is important to note here that none of the principles of iso-
thermal continuum mechanics are being violated. The only principle
that could be violated is that of objectivity which states the consti-
tutive equation should remain invariant to an arbitrarv rotation or

translation of our reference frame [25,26,27]. If the strain measure

itself is objective and the stress written as a functional of the

TS h e S it 213 A

objective measure, then the constitutive equation will automatically

be objective as shown by Green and Riviin [29]. 3
Before proceeding in the development of homogeneous constitutive

equations of degree one, a special case of equation (5.1) is worth

mentioning. Note that when the kernel functionals are independent of

the variables Tis i=1,-++n, then the integrations can be performed

and the result is

S(t) = K ()L + Ky (t)e(t) + Kp(t)e2(t) + -+ + K ()e"(t) + -+,
t t t
wheve K, (t) = Ki[Il(g),Iz(g),I3(g), t]. (5.3)

Applying the Cayley-Hamilton theovem [25,27,30], equations (5.3)

can be reduced to the form
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Equation (5.4) represents a viscoelastic material where all the
time effects come from the history of the scalar invariants of strain
and also from aging effects, which can be eliminated by removing the
variable t. Depending orn the form of the functionals Vi this
particular constitutive equation can describe both permanent and
fading hemory viscoelasticity with strain coupling. When the history
dependence is eliminated from the functionals ¥s» then equation (5.4)
reduces to equation (3.20), the standard non-linear elastic equation
for isotropic materials.

The development of constitutive equations which are homogeneous
to degree one is quite simple and can be done by simply imposing
restrictions or constraints on equation (5.1). PRecall homogeneity
of degree one simply means that scalar multiplication is valid for

all scalars. Recall also that the strain invariants are given by

=
—
1

= €1t ey; tes;

= e11@pp + ¢11@33 + €99833 - €152 - €137 - €542

—
[y
1

2 2

I3 = e;jep0e33 + 2812813803 - 118232 = €5,8132 - e33€152 (5.5)

Mathematically the homogeneous constituti.< equation of degree

one has the property that the equation

Fij[aepq(fz;)] = aFij[epq(i;)] (5.6)
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holds for all real scalars, all strain inputs and all time t. Since
the first strain invariant is homogeneous to degree one, the second
to degree two, and the third to degree three, non-linear homogeneous
constitutive functionals can be constructed within the framework of
the Green-Rivlin theory.

From physical reasoning kernel functionals homogeneous to degree
less than zero cannot be admitted since they can yield unbounded
stresses or singularities which are not real. With this added restric-

_ tion the most general constitutive equation homogeneous to degree one

within the range of applicability of equation (5.1) is

t t ot ot ,
S1J(t) = 6.‘:‘ [Ko[Il(5)312(5)313(5)st"f]ekk('f)d'f
0

0 0 0

where Ki[}11(g),aQIZ(E),a3I3(£),t,r] =

t t t
[0 (010, 15(0),8.1]. (5.7)

0 0 0

In equation (5.7) the kernel functionals are homogeneous to
degree zero. If the kernels are independent of the history of the
invariants then the equation reduces to that of linear viscoelasticity.

If the material is non-aging, equation (5.7) must reduce to [28,29]
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t t ot ot .
+jKl[Il(g)912(5)313(5)3t"{]eij(7)d7 . (5°8)
0 0 0
0
In a similar manner the state of strain can be expressed in
terms of the history of the stresses for homogeneovs eaquations of

degree one as

t t ot ot ,
e'lJ(t) = Glj LO[JI (g) 9'J2 (E),J3 (€)9t"1‘]skk(’t )dT
0 :

0 0

¢ t ot ot ,
+/Ll[Jl(E)’JQ(E),J3(€),t-r]31-]-(r)d'c , (5.9)
0 0 0 ‘
0
In equation (5.9) the Ji are the principle stress invariants, and the

kernels have the property that

t t t t ot ot
Li[édl(a),azdz(a),a3dg(a),t-r] = Li[Jl(a),dz(a),Js(a),t-r] .
0 0 0 0 0 0

(5.10)
Except for the case when the equations reduce to linear equations,
direct inversion from equation (5.8) to equation (5.9) appears to
be virtually impossible. Unlike the linear constitutive equations the
power of Laplace transforms cannot be applied since these transforms
can be applied only to linear functionals. This difficulty does not

mean that the inversion does not exist. In fact the homogeneity
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condition alone intuitively suggests that the inversion does exist
since scalar multiplication must hold for all scalars and this type of
one-to one behavior is characteristic of invertible systems. For the
purpose of this thesis however, equation (5.9) is given as the inverse

form of equation (5.8) when such an inverse exists.
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VI. ANNIHILATORS, A TYPE OF FADING MEMORY

In section 4 a one dimensional permanent memory constitutive
equation was developed using LP norms as a history measure. In
section 5 the constitutive equation of Green and Rivlin was extended
to include homogeneous non-linear constitutive functionals of degree
one. This extension simply placed general restrictions on the kernel
functionals of the integral expansion representation and no particular
forms for the kernel functionals were given. The final equations
given in section 5 contain a type of permanent memory as wei] as
fading memory elastic and viscoelastic behavior. The word elastic
in this sense is being used in the classical definition [22,24,36]
which states a material is elastic if it returns to its original
shape when all the tractions are removed. Fading memory implies the
material will also return to its original properties if allowed to
rest sufficiently. If the material has both fading memory and
permanent memory components that make up its total behavior, the
combined response is naturally ofhfhe permanent memory type. Some
materials exhibit a type of fading memory not contained in the conven-
tional sense of fading memory. To illustrate this more clearly, a
fading memory viscoelastic material will recover its original properties
on essentially the time scale as it can dissipate energy. Often in
the field of polymer rheology the measure relaxation times Yss OF
retardation times Bys are used to characterize materials in Frony
series type representations [19,61]. If a material has a single

relaxation time y, then it will recover its original properties when
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the tractions are removed if it is allowed to rest for a time, say 5Y.
Materials exhibiting the "Mullins' Effect" often exhibit no relaxation
or rate effects yet will recover all or some portion of their original
properties if allowed to rest for very long periods of time [5,6,60].
This ~ehealing phenomenon, as it has often been called, implies the
reversing of permanent damage or memory and occurs on a completely
different time scale than any viscous effects. This behavior could be
viewed as some form of annihilation of the permanent memory measures

which are governing the materials response. The rehealing phenomenon

js common in solid propellants and most filled polymer materials and
must be properly accounted for in accurate constitutive equations for

these materials.

The mathematical formulation of the rehealing phenomenon into
the constitutive equations is not difficult, and in no way destroys
the homogeneity restriction placed on the kernel functions in the
latter part of section 5. There are numerous ways in which the
rehealing phenomenon can be included. In section 4 it was shown that

LP

norms were convenient and realistic measures of permanent memory
phenomenon, therefore a more general norm will be defined which
yields the behavior discussed above. In section 4 the norm ||f||p

was defined as

£ 1/
IR ={/ If(&:)lpdg} P (6.1)
0
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A weighted norm [20,27,60]. Ilfllh b’ is now defined as

t
0

where h(t-g) is a positive function which weights the function f(g)

1/p
(] F(e)] h(t-a))"dg} , (6.2)

over its history as £ ranges from zero to t. For our purpoces it

I T PR

is sufficient to define the weight function as

(6.3)

1 ifg=1t
h(t-£) =’

<1 ifg<t

S e b R AL AT b i

A logical choice for the weight function is a single exponential
term or perhaps a Prony series. For the purposes of this thesis it is
sufficient to demonstrate that the use of such a norm in the consti-
tutive equation yields the rehealing behavior discussed earlier. Note
that when the weight function is unity for all its arguments, then the
conventional norm is recovered; use of Ilfllh,p norms in constitutive
functionals contains those functionals only using ||f||p norms.

As an example, consider the case when h(t-¢) is defined as a

simple exponential term

h(t-g) = exp(-b(t-£)) = exp(-bt)exp(bg) , vhere b > 0. (6.4)
The weighted norm now becomes

5 y
[ Fllp,p = exp(-bt){/ If(e)lpexo<bpa)dr,} " (6.5)
o .
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This weighted norm has some interesting properties that are

= Akl v e

discussed below which indicate it is within the capabilities of such
norms to describe the properties discussed above with reference to the
rehealing phenomena.
1) If the constant b<<P, then the annihilation of
memory will be on a completely different time
scale than any relaxation phenomena. Hence ]

for short times, the ||f|lh p fovm will behave

o i K asid o oo

approximately as the ||f||p norm.

2) Total annihilation can only take place when the

function f(¢) is returned to the rest state,

oo 1o v W

f = 0, the annihilation then takes place at the

rate ||f|], " ce"b(t"to) where f(¢) = C

when ¢ > to'

3) If the function f(¢) is held constant, say at fos for

PRy LorB et | Jrerne i

some long time period, the accumulation and
annihilation of the norm balance each other and a

constant norm is achieved at long times.

t 1/»
[1fllh,, = exp(-bt) {./2 lfolpexp(bPE)dg} -

ywearrry PO e T RN | Tt A

T T y—

e
lfolexp(-bt)[expégpt) '] ,
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or

£l = 7ol (6P)/P a5 bt — Targe values.

To demonstrate that in a constitutive equation the proper type
of behavior can be obtained, consider the simple one dimensional

constitutive equation of the form

s(t) = Ae(t)(Ilel Iy /11elly ) »
where h(t-g) = exp(-bt)exp(be), and p>g>>b . (6.6)

For short times the equation behaves exactly as it would if
unweighted norms were used. If a state of strain is held constant
for sufficiently long times, the stress will decay to some equilibrium
non-zero value directly proportional to the constant strain e, If
allowed to reccver in the rest state for some long period of time,
some or all of the original response will be recovered. These
effects are shown in figures 6.1 through 6.3 for a cyclic input with
different rest periods between cycles. It is precisely this type of
behavior that is characteristic of the rehealing phenomenon that
plagues and complicates the behavior of many filled polymeric materials.
It appears that by incorporating Ilfllh,p norms into the kernel func-
tions of the constitutive equations proposed at the end of section 5,

constitutive equations for materials with permanent memory, fading mem-

ory, rehealable memory or any combination of these could be obtained.
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These constitutive equations are not simply curve fitting
exercises but can be used in three dimensionai stress analysis in a

simple, straight-forward manner as will be demonstrated in section 8.
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VII. THERMORHEOLOGICALLY SIMPLE MATERIALS

In the previous sections homogeneous constitutive equations
were developed for materials with a large class of memories. The
equations were restricted to constant temperature conditions. It is
well known that time effects such as relaxation, creep, and the reheal-
ing phenomena are strongly temperature dependent [5,59]. If all the
temperature effects are of the classical thermorheologically simple -
type [19,45,47,48,49] (where an equivalence between time and temperature
exists), then a constitutive equation can be obtained that accounts for
transient as well as constant temperature environments. The equivalence
between time and temperature has been well documented by a number of
researchers for polymeric materials [19,45,47], and others have given
phenomenological as well as theoretical reasons for its existence. It
can be shown for example in the sp}ing-dashpot models of linear visco-
elasticity that if the viscosity of the dashpots all have the same
relative temperature dependence, and the spring constants are all
independent of temperature, then time-temperature superposition and hence
thermorheologically simple behavior is valid [47]. The assumption of
thermorheologically simple materials is not restricted to the domain of
linear materials. It is purely a mathematical relationship between a
reduced time and the real time-temperature history at a point. The
standard definition of reduced time which will be called t' and its generic

value which will be called ' or &' are
T
g' () = (1) = f Ale(&)]dg, and (7.1a)
0

-82-

e

hatial s ks Jach b

LY

.




t
t' = 7' (t) = ] Ale(g)1de » (7.1b)
0

where 6(g) is the temperature-time history and A is a positive function.

Providing the assusiption of thermorheological simplicity is valid, the

*
homogeneous constitutive equation of degree one would now beccme

0 6] 0

t' £ " i .
+ f Kl[ll(s' )sI(g"), Ia(¢g! ),t'-r]e- (' )de'
C

tl tl
where K, ah(s'),azzz(a'>,a313<a'>,t""'] ]
0

t tl tl tl .
S;5(t') = 513[ Ko[ll(é'),Iz(a‘),13(5‘)st'“"']ekk(f')dT'
0

oe Je
| S - b
_%a - dt' = ——Egar dt = depq (7.3)

the equation can also be expressed as

0 0

t tl tl tl .
S'ij(t) = Gij f KO[Il(Q').Iz(E'),I3(g'),t'-’r']ekk(‘r)d'r
0

t tl tl tl .
+ fKI[II(EZ'),IZ(E'),13(5'),t'-f]eij('f)df - (7.4)
0

0 0 0]

* Three reduced times were defined instead of the conventional two to
eliminate confusion as to what variables enter into the integration
process in equation (7.2).
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Equation (7.4) is often times much simpler to use than equation (7.2)

since épq(r) is controlled in some forms of experimental data.

Since propellant materials tested at constant temperature normally
exhibit time-temperature superposition [15,18,45], it appears that this
form of the constitutive equation could be an excellent approximation Of
their behavior. In equation (7.2) or (7.4) the form for the kernel
functions has not been specified. If the kernel functions are to be

represented as IIfHp or llfllh p Norms, no complications arise as the
9

reduced time t and its generic value £' or t' simply replace the real

time t and its generic value 1 or £ in the equations, whether they be

norms, functionals or functions. The definition of the norm for a reduced

time scale would be

t! 1
[Fl1h,p = {f (lf(é')lh(t'-a'))pdg'} ", (7.5)
0

where the superscript r denotes the norm is with respect to reduced time.
From such a norm it is apparent that increasing the temperature
could greatly change the rate of annihilation of memory.
To demonstrate the simplicity and effectiveness of the reduced
time, consider again the one dimensional constitutive equation in terms

of the ||f||; norms.

S(t) = B e<t>[!ie||;/||e||g] , where p>q . (7.6)
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If the temperature is constant, the reduced time simply becomes
t' = A(e)t, and
Ale)e . (7.7)

E,'

For the case of stress-relaxation tests it is found that

/p
ro_
el 17 = leg| (A(e)) ", ane
1
legl1] = lel (A(e)e) fa 0.8)

The stress-time output for this test simply becomes a power law

in the reduced time.

1 1
—_— T ._n 1
S(t) = Be LA(0)t] 9= Aejt' , where n = -

r-\"cl'—‘

7.9)

In fact, if the material is thermorheologically simple, the stress-
real time output from two similar tests performed at different tempera-
tures can be superposed on a s(t) vs Log t plot by simply shifting along
the time axis. The amount of shift required is precisely log [A(e;)/
A(65)] , where 8, and 6, were the two test temperatures. This shift

ability of stress-time data for equivalent tests will be true for Tinear

or nonlinear materials, no matter how the stress functional is represented.
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VITI. SOLUTION OF BOUNDARY VALUED PROBLEMS

The equations developed thus far are non-linear but homogeneous
constitutive equations of degree one that describe a large class of
memory phenomena. For the special case of thermorheologically simple
materials the equations have been expressed in terms of reduced time
variables thereby encompassing an even larger class of behaviors.

The purpose of this section is to demonstrate the applicability of
this type of constitutive equation in the solution of either stress

or displacement boundary valued problems. The types of problems
considered will be proportional boundary valued problems with constant
body forces and no inertial effects. By a proportional boundary
valued problem it is meant that the conditions at the boundary sur-
face are given as a single product term involving a spatial function
and a time function. Since no inertial effects are being accounted
for, the time variance of the boundary conditions must be reasonably
slow or quasi-static to justify having no inertia terms in the equa-
tions of equilibrium. Proportional boundary value problems encompass
a majority of the engineering problems encountered since they can
allow for the boundary values to change with time. For linear
elasticity or linear viscoelasticity, the procedure for developing a
solution is straightforward since all the equations that must be
solved are linear and superposition is applicable. For non-linear
materials however, one is quite fortunate if a large class of problems
can be contained in a solution scheme. Such is the case for the

homogeneous constitutive equation of degree one.
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8.1 Proportional Stress Boundary Valued Problems

In the introduction of this section it was indicated that the
solution to proportional boundary valued problems could be obtained
for non-linear constitutive equations homogeneous to degree one.
For plane strain or plane stress problems which have proportional
stress boundary values it is found that a linear elastic solution
for the stresses is a solution for the stress-time distribution
whenever the kernel functionals of the constitutive equation can be
decomposed into a product form. The strain-time distribution for
this case will be given by substituting the linear stress solution
into the non-linear constitutive equation which is homogeneous to
degree one. That such a solution is applicable is demonstrated in
the following discussion.

By a proporticnal stress boundary valued problem it is meant that

the boundary conditions are space and time separable.

Sij(xk’T)‘ﬁ(xk) = Sij(xk)\ﬁ(xk)f(T)’ all x e boundary.

where v. = direction cosines of a unit vector nomal

J
to the boundary
§}j(xk) = stresses prescribed at some reference time
f(t) = time function (8.1)
In the above description it was assumed that the boundary position
does not change significantly with time which naturally restricts this

discussion to infinitesimal strain theory. Hence the strain tensor

-87-




in the constitutive equation will be given as the Cauchy strain

tensor eij where

= %-(aui/ax. + auj/axi). (8.2)

®ij i

With this definition of strain, the constitutive equation

becomes

¢ t t t ..
e;{xst) = éijfLo[dl(xk,s),dz(xk,a),dg(xk,g),t-r]sﬁ(xk,r)dr
0

t t t t :
+ / Ll[dl (xkag) aJZ(xksg) 9J3(xksa) at"‘t] Sﬁ(xk,r)dr. (8.3)
0 0 0
0

The kernel functionals in equation (8.3) were specified as being
homogerieous to degree zero. Note that the kernel functionals contain
spatial measures since the invariants are simply combinations of the
stress which except in trivial cases, are functions of the spatial
coordinates Xy * For the purpose of clarity, assume that a linear
elastic solution for the stresses within the body is valid. For the
proportional boundary valued problem this linear elastic solution can

be represented as

Sij(xk’r) = S;j(xk)f('f) ’

all Xie volume, and 0 < © < t . (8.4)
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8.1 Proportional Stress Boundary Valued Problems

In the introduction of this section it was indicated that the

solution to proportional boundary valued problenis could be obtained
for non-linear constitutive equations homogeneous to degree one.
For plane sirain or plane stress problems which have proportional

stress boundary values it is found that a linear elastic solution

for the stresses is a solution for the stress-time distribution
whenever the kernel functionals of the constitutive equation can be
decomposed into a product form. The strain-time distribution for
this case will be given by substituting the linear stress solution
into the non-Tinear constitutive equation which is homogeneous to
degree one. That such a solution is applicable is demonstrated in
the following discussion.

By a propcrtional stress boundary valued probiem it is meant that

the boundary conditions are space and time separable.

- ° \ <
Sij(xk’T)‘ﬁ(xk) = Sij(xk)VS(Xk)l(T), all x e boundary.

where vj direction cosines of a unit vector normal
to the boundary

§}j(xk) = stresses prescribed at some reference time

oo v

f{t) = time function (8.1)

S et

In the above description it was assumed that the boundary position §

does not change significantly with time which naturally restricts this

discussion to infinitesimal strain theory. Hence the strain tensor
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in the constitutive equation will be given as the Cauchy strain

tensor eij where

=1
& = 2 (aui/axj + 3uj/axi). (8.2)

With this definition of strain, the constitutive equation

becomes
t t t £ .
eij(xk,t) = Gij Lo[dl(xk,g),dz(xk,g),Js(xk,g),t—{]sii(xk,r)dr

0

tL St t t .
+ / l[ul(xk’g)’dz(xk’g)’J3(xk’g)’t-T]S'ij(xk’T)dT° (8-3)
0

The kernel functionals in equation (8.3) were specified as being
homogeneous to degree zero. Note that the kernel functionals contain
spatial measures since the invariants are simply combinations of the
stress which except in trivial cases, are functions of the spatial
coordinates Xy For the purpose of clarity, assume that a linear
elastic solution for the stresses within the body is valid. For the
proportional boundary valued problem this linear elastic solution can

be represented as

Sij(xk’T) = S;j(xk)f('f) ’

all x e volume, and 0 < v < t . (8.4)
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In equation (8.4) S (xk) is the solution to the boundary valued

iJ
problem when f(t)= 1. This proportionality of the solution is a direct
consequence of the first linearity rule. If the linear elastic
solution for the stresses is valid, then the stress invariants

Ji(xk,g) are given as

Jl(xk’g) = J;(Xk)f(ﬁ),
Jy (% 58) = J5(x, )2 {¢), and
35 (%, 58) = J5(x )f3(¢), for all x e volume and 0 < £ < t.
(8.5)
In equation (8.5) the invariants J;(xk) are simply the values of

the invariants when the time function f(£) is equal to unity. Observe

that at some particular location within the body xk=(a1,a2,a3) the

invariants are given as

35 (xy58) = 3302y 52,525 )F' (&),

: —

where Ji(al,az,ag) = constant function. (8.6)

Assuming now that the kernei functions can be separated into

product functions yields

t t t
Li[dl(xksg)sJZ(st€)9J3(Xk,g),t-T] =

N
ZM [ xk,g ]Nir[JZ(xk’g)’t”‘_]Pir[‘]3(xk’§)’t'T]‘ (8.7)

r=1
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Pecall that these kernel functions Lo and L, were homogeneous

to degree zero which means

t t t
2 3 -l =
Li[}dl(xk,g),a Jz(xk,g),a J3(Xk’g)’t T]

( t) ( t) ( t),

L-[\Jl X ,E; ,\JZ X ,f, ,J3 X ,E; t'T] ’

i k o k o k o

where a is an arbitrary constant and s_ (1) are arbitrary. (8.8)

Pq

Therefore, it is required that each of the components of
the kernel decomposition be likewise homogeneous to degree zero.
Substituting the invariants given by equation (8.6) into equation

(8.7) produces

t . t
Mir[dl(xk,g),t-r] - Mw[dl(xk)f(g),t-r],
-t o t -
N'”‘_Jz(xk’g)’t-T] = Nir-Jz(xk)fz(g),t-‘[; 9 and
-t - o
pir_a3(xk,g),t-r] P30T ] (8.9)

The constitutive equation gives the strain at some arbitrary,
but fixed, point \vithin the bodv. At some fixed point in space,
however, the functions J:(xk), JZ(xk), and Jg(xk) are simply
constants. Since the kernel functions Mir’ Pir’ and Nir viere
specified as being homogeneous to degree zero, these constants
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have no effect on the values these kernels take on. For the special
case when a linear elastic solution is valid and the kernels can

be decomposed, the conclusion is as follows

B t 1 & t -t
Mir Jl(xk,i),t'T = Mir Jl(xk)f(g)at‘{] = Mir f(g)at'f] )

. 0 - L. 0 L 0

B t . g N [t 7
Nipld2 (o8 )st=t | = Mo 05 (%, )F2(e) b2 | = N, f2(¢),t-<{,

L 0 . . 0 - - 0 n

- t n = t T - t -
Pir-dg(xk,g),t-r = Pir-Jg(xk)fE’(g),t-T = P f3(g),t-z. (8.10)

Note that the kernel functions now contain no spatial variables
and are only functions of the history of f(¢) and the variable t-t.
Since the forms of these kernels are still arbitrary, there is no
loss in generality by assuming that a functional of f2(g) or f3(z)
is contained in a general functional of f(g). Therefore the
assumptions of a linear elastic solution for the stresses and

separable kernels results in

Jy ( t) ( t) ( :
L~[ 1\X, 98 ,J2 X8 aJ3 X ,E),t'T] =
i k o k 0 k ]

t ot t ot
= Li[f(g),fz(g)sfa(g):t"t] = L_i [f(g),t"l'] . (8.]])

Dropping the prime notation in the last of equation (8.11) the

constitutive equation now becomes
t

t .

o 0
t

t .
0
0
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Equation (8.12) would be identical to the 1iﬁear viscoelastic
constitutive equation if the kernels LO and L, were independent
of f(£). Because f(g) is present in the equation, linear transforms
cannyt be utilized on the constitutive equation to demonstrate
that the assumed linear elastic solution for the stresses is valid.
If it can be shown that equation (8.12) will satisfy the equations
of equilibrium and compatibility whenever the linear elastic solution
is valid, a type of correspondence principle will have been
developed similar to what has already been done in the theory of
linear viscoelasticity. The validity of the elastic solution can
be demonstrated by substituting the constitutive equation directly
into the equations of equilibrium and compatibility. It should
be immediately obvious that no complications can arise in such a
procedure since the only spatially dependent quantities in the
constitutive equation are the stresses s.. and the strains e,..

1] 1J
For the two dimensional problem only one equation of compatibility*

is present,

+ = -
3X22 3X12 9X10Xo

(8.13)

Substituting the constitutive equation directly into the

compatibility equation and interchanging the roles of integration

*There are other compatibility conditions for plane stress that aie

sometimes not satisfied by this method. See Timoshenko and Goodier [22],
page 25.
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and differentiation equation (8.13) becomes

t

0

0 0

3X22 3X12

t azélz(xk,r)
AR [f(g),t-‘r] dr = 0

(8.14)
0 9X19Xo
The equilibrium equations for a two dimensional problem are
3511(Xk,r) BSIZ(Xk’T) -
3%1 + 3%z + % =0, and
8512(stT) aSZZ(XkaT) -
TR + 7%y + X, = 0, (8.15)

where 7} are body forces and were specified as being constant.

Differentiating the first equilibrium equation with respect to x;,

the second with respect to x, and adding the following is obtained

BZSIZ(XkQT) _ BZSII(Xk,T) SZSZZ(Xk’T)
2 3 X198 Xp o dX1° ¥ AXy® (8.16)

Substituting this result into equation (8.14) yields
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t

t . t . .
/{Lo[f(g),t-r]v?.Sii(Xk,r) + L1[f(g),t-r]v2[sn(xk,r) + 5.22(,<|<,T)]}c,T - o,
0
32 2
vhere ¥ = 57 * 57 (8.17)

8.2 Specialization to Plane Stress

For the condition of plane stress s33(x,,t) = 0, with this restric-

tion equation (8.17) reduces to

/_t{éo[f(g),t'r] + Ll[f(g),t-'r])%;vZSﬁ(xk,T)}dt =0. (8.18)

0

A sufficient condition to make the integral in equation (8.18)

vanish is to require that
2 (o] - . - [+]
v Sii(xk) 0, since Sii(xk’T) f(T)Sii(xk) (8.19)
Equation (8.19) is precisely the identical condition placed on the
stress distribution for a linear elastic body. The assumption made in
equation (8.4) therefore in no way violates the equations of equilibrium

or compatibility.

8.3 Specialization to Plane Strain

For the condition of plane strain e33(xk,t) = 0, therefore taking

the Laplacian of the constitutive equation produces

t
0 = T2eg;(x0t) =f{Lo[fé),t-r]vzéﬁ(xk,r) + L[#

) ,t~r] V2é33(xk’t)}d‘l‘.
0
0

(8.20)

QO Y
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.....

Substituting this restriction into 8.17) gives

£

£

fLl[f(f;),t-'c]'g—;vzsﬁ(xk,r)dt =0 . (8.21)
0

0

In order to require this integral to vanish for all times and all

space a sufficient condition is to require

Equation (8.22) is again the exact condition placed on a plane strain

solution for a linear elastic solid.

For the case of plane strain and plane stress a type of corres-

pondence principte between the linear elastic solution and the

solution for a homogeneous but non-linear materia

This correspondence principle can be stated as follows:

CORRESPONDENCE PRINCIPLE 1.

Given a plane strain or plane stress proportional bowndary valued

problem of the form

for a material having a non-linear but homogeneous constitutive

equation of degree one of the form
' t t t .
11) e‘.ij(xk;t) = (S.ijfLo[dl(xkag)s\lz(xkag)g\l;;(xk,fo;)st“T]S.H(Xk,T)dT
0
¢ t t t

+/ Ll[\]l(xksg)9\326(k’§)9J3(xksg)5t'T]S_ij(Xk,T)dT .

0
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Then a plane strain or plane stress linear elastic solution for the
stress distribution is valid and when substituted into the non-linear
constitutive equation, the equations of equilibrium and compatibility
used in two dimensional elasticity will be identically satisfied
provided
1) the body forces are constant
2) the kernel functions ean be decomposed into a
product form, each term of which only involves
one invariant history Ji(xk’g) and the
vartable t-t.
The strains can then be obtained by substituting the time depen-
dent elastie solution into the non-linear constitutive equation which

can be reduced to the form

t

o t .
iii) eij(xk,t) = Gijsﬁ(xk)/Lo[f(g)at-‘r]fh)dt
0
t

0 t !
' Sij(xk)le[f(g),t-r]f(r)dr.
0

8.4 Correspondence Principles for Three Dimensional Problems

Other correspondence principles can be developed by the same
method by first assuming a solution of a particular form exists and
then showing what conditions are necessary to satisfy the equilibrium
and compatibility equations. In this manner the following correspon-

dence principles can be developed.
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CORRESPONDENCE PRINCIPLE 2.
Given a three dimensional proportional boundary valued problem
of the foxm

i) Sij(xk”)“j(xk) =S (xk)vj(xk)f(-r) X e Boundary, and 0 < 7 < t

o
J
for a material having a non-linear but homogeneous constitutive

equation of degree one of the form

t
t t t .
i1) e.ij(xk"f) = 51’3‘fLo[‘Jl(xk’g)’Jz(xk’g)’J3(xk’€)’t'T]Sii(xk’E)dT
0 0 0
0
oot t t :
+fLl[-]l(xk9€)9J2(xksg)ad2(xkag)st'T]S.ij(Xk,T)dT .
0 ¢ 0
0
Then a linear elastie solution for the stress disiribution is valid
and when substituted into the mon-linear constitutive equation will
satisfy identically the equations of equilibrium and compatibility
provided
1) the body forces are constant
2) the kernel functions can be decomposed
into a product form, each term of which
t
involves only one invariant history Ji(xk’€>
0
and the variable t-t.
3) the two kernel functionals Lo and Ly are

proportional to each other, the proportion-

ality factor being a type of Poisson's

ratio. Ly = - [lEH]LO
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The straine can then be calculated by substituting the time de-
pendent elastic solution into the non-linear constitutive equation

which can be reduced to the form

t
o o t .
0

where u 1s Potsson's ratio.

CORRESPONDENCE PRINCIPLE 8.

Given a three dimensional proportional displacement boundary

valued problem of the form
i) ug(xy,1) = u:(xk)f(r) »  X.¢ Boundary, 0 << <t

for a material having a non-linear but homogeneous constitutive

equation of degree one of the form

t
t t t
'I:'Z:) S_ij(xk,t) = 5ij/Ko[ll(xksg)slz(xksg)aI3(stg)Qt"'l']e_i_i(xk,'f)d'l’
0

ft ( t) ( t) ( t) e +(x, ,t)d
+ KI{II X8 912 Xy, s& ’13 Xy, 98 at"T]e' Xy sT)dT
A k 0 k o k o i 'k

Then a linear elastic solution for the displacements or strains is

valid and will satisfy the equations of equilibrium and compatibility

when substituted into the non-linear constitutive equation provided
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1) there are no body forces
2) the two kermel functionals Ko and Ky can be
decomposed into a product form, each term of
which involves only one-invariant history
Ii[xk,z] and the variable t-t. .
3) the two kermel functionals Ko and Ky are
portional to each other, the proportionality
factor being a type of Poisson's ratio.
Ky = (1-2u) K
The stresses can then be calculated by substituting the elastic
strain sotution into the non-linear constitutive equation which can

be reduced to

t
111) s'ij(xk’t) ={ _”(Xk) + (1-2u)e 'IJ Xk /Ko %(T)d'l‘.

0
CORRESPONDENCE PRINCIPLE 4.

Given a three-dimensional proportional boundary valued problem

of the form
) SiJ(xk’t)vJ(xk) = S:J(xk)\)j(xk)f(‘l') Xk€ Boundar‘y, 0 <T< t

for a material possessing a non-linear but homogeneous constitutive

equation of degree one of the form

t £ : 3 :
1) eij(xk’t) = G[f(g)]{éiJfLo(t'T)sii(xk’T)dT +[L1(t-T)Sij(xk,T)dr}

0 0

-99-

L i AL i o gy S 2 . — EXP RN S SRR Sl 32 0 kit TR S S 1) SRR W e p




Then a linear viscoelasiic solution for the stress distribution is
valid and when substituted into the nom-linear constitutive equation,
it will satisfy the equations of equilibrium and compatibility. The
strains can then be calculated by substituting the stress history into

the above constitutive equation.

CORRESPONDENCE PRINCIPLE 6.
Given a three-dimensional proportional boundary valued problem of

the form
i) ulx.r) = u;(xk)f(r) X, e Boundary, 0 < v <t

for a material having a non-linear but homogeneous constitutive

equation of degree one of the form

¢ t ' t
i1) S'ij(xk’t) = H[f(g)] {éijj[ Ko(t-'r)e_ii(xk,T)dT +j[ Kl(t-'r)éij(xk,r)d'r}
0

° 0

Then a linear viscoelastic solution for the strain distribution
is valid and when substituted into the non-linear constitutive equation
satisfies all the equations of equilibrium and compatibility. The
stresses can then be calculated by substituting the strain history
into the above constitutive equation.

It has been shown that every linear elastic or linearly visco-
elastic solution to a proportional boundary valued problem corresponds
also to half of the solution (either the stresses or the strains, but

not both) to a similar problem for materials having homogeneous but
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non-linear constitutive equations provided certain restrictions on

the kernel functionals are imposed. For two dimensional stress
boundary vaiued problems no additional restrictions were imposed.

When the kernel functionals cannot be put into these forms, then it
appears that no exact correspondence between the linear and non-linear
solutions exist and other means of solution must be used. It should
be pointed out however that must compiex problems are solved using
large computers whether the material be Tinear or non-linear. Numerical
‘ methods for the homogeneous constitutive equations should be fairly
simple to develop or adapt to those already used for linear visco-
elastic analysis no matter what the form of the kernel functionals.
Hence structural analysis for this class of materials should be a
straightforward extension of what has already been accomplished for
Tinear materials. Since these correspondence principles do exist
between the non-linear and Tinear solutions for materials having non-
linear but homogeneous constitutive equations of degree one, they

must be the simplest form of non-linear constitutive laws that are

amendable to analytical methods.

8.5 Strain Induced Anisotropy

Often in the field of mechanics we hear the term "strain induced

anisotropy." This type of behavior is not included in the constitutive

equations proposed thus far in this thesis as the permanent memory
phenomenon is recorded in the scalar invariant histories which are

naturally the same for all directions. In order to include strain
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induced anisotropy into the constitutive equations and still retain
them homogeneous to degree one, the permanent memory measure must be
some non-scalar quantity. Note that writing the usual isotropic

constitutive equation with the kernel functionals being dependent on

t t
the history of e_ (¢), or s_ (£), then the equations could contain
pa‘; Pa’;

strain or stress induced anisotropic behavior. However a homogeneous
constitutive equation of degree one that includes strain or stress
induced anisotropy for general non-proportional loading conditions
can be shown to reduce to the isotropic constitutive equation if a
linear solution is to be valid for a proportional problem.

For proportional problems, these kernel functions become

t t
Ki[epq(xk,g),t-f] = Ki[f(g),t-r] , or

t

Li[Spq(xk,g),t-r] - (8.23)

[}
h
-
"'hl
—
O ™M e+
~
-
t
[}
~
| SO |

Note that for proportional boundary value problems a strain or
stress-induced anisotropi~ constitutive equation will admit the same
elastic solution as the purely isotropic equation. Furthermore, the
strain or stress induced anisotropy has no influence on the solution
and one could not use such a test to determine if the material had
become anisotropic due to the joading. For ncn-proportional boundary
value problems this type of anisotropy can greatly influence the

analysis.
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8.6 Uniqueness of Solution

Various methods of proving uniqueness of solution for the non-
linear constitutive equations homogeneous to degree one have been
attempted, but all have failed to demonstrate uniqueness of solution.
Since the boundary conditions and the equations of equilibrium and
compatibility are all linear, one can proceed in the usual manner [22-24]
?
demonstrate they must be the same solution. The difference between

by first assuming two solutions s.. and s:j exist and attempt to

these solutions Si; = Sij - Sij

of equilibrium with zero body forces and zero boundary conditions. In

must therefore satisfy the equations

linear elasticity the proof is very simple when one postulates a
positive definite strain energy [22-24]. For linear viscoelasticity, the
proof is quite lengthy and detailed. For the non-linear constitutive
equation proposed in this thesis, which contains linear elasticity and
linear viscoelasticity as special cases, the proof appears beyond the
scope of this thesis. Intuitively the uniqueness seems obvious as zero
forces and displacements on the boundary imply no internal forces or dis-
placements from physical reasoning. In addition the homogeneity of tha
constitutive law guarantees zero output for zero input. To demonstrate
this with mathematical rigor however is very difficult if not
impossible except perhaps in very restrictive cases. One possible

means of proving uniqueness is by using an extension to Eulers

theorem for homogeneous functions [35] which has been developed by

M. Freda [34].
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IX. MATERIAL CHARACTERIZATION PROCEDURES

In the previous sections it has been demonstrated “hat homogeneous
constitutive equations are characteristic of certain materials and
even though the equations are non-linear they can often admit linear
solutions. The problem with characterizing these non-linear time
dependent materials is that it becomes a type of complex curve fitting
exercise. When the functional form is expanded as was done by Rivlin,
a fairly general characterization scheme can be worked cut for the
case when the kernel functions are reduced to product functions of
time alone [44,52,62]. Lockett [62] has demonstrated how the charac-
terization procedure can be carried out to yield approximations to the
twelve kernel functions appearing in the first three integrals.
Although the constitutive equations proposed in this thesis outwardly
contain only single integrals, the kernel functions are homogeneous
functionals of degree zero of the invariant histories. Since the
forms of these kernels has not been specified, the characterization
process could be much more complex than that proposed by Lockett. In
this unspecified form, the kernels would be difficult if not impossible
to determine. Simplifications can be made to approximate their general
behavior and characterizations can be carried out. The characteri-
zation scheme described below appears to work quite well for composite
solid propeliants. Extensions of this method could be apnliied to
other materials. For simplicity it will be assumed that the kernel
functions are of the type that will admit Tinear solutions and that

the only problems of interest are proportional problems. With these
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restrictions the constitutive equation homogeneous to degree one can

be expressed as

t
t .

0 0

t 4.
f Ka[F(6), o] &5 o0 e (9.1)
0

0

This equation is composed of two parts, a shear temm and a primarily

dilatational term. For simple shear the equation reduces to

oot
S 5(0t) =le[f(g),F-T]éij(xk;)dr L i F . (9.2)

0

For purely dilatational deformations the equation reduces to

t

S35 (X, »t) =/§3Ko[f(g),t-r] + Kl[f(g),t-“r:,}éﬁ(xk,T)dt =

5 0]

t

t .
/Kz[f(g),t-r]eﬁ(xk,r)d'c . (9.3)

0

Hence by characterizing the behavior in pure dilatational and pure
shear tests, the total behavior under combined loadings can be
determined. The method described below is applicable toward approxi-
mating either kernel function. However, since they are of identical

form, only the shear case will be discussed below.
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As an approximation to the behavior, the kernel functions can

be expanded in a product series of the form

- t N t
Ky L-f(g),'c-r] =;Gi [f(g)]k#t—r)
where Gi:af(g)] = G, [f(g)] . (9.4)

To demonstrate the difficulty in characterizing non-linear
materials, only the first two terms in this expansion will be used.

Substituting equation (9.4) into the shear constitutive equation

produces
t t
S12(xy,t) = Gl[f(E)]elz(Xk»t) +fk1(t-r)elz(xk,'c)dr (9.5)
0
0

Since the characterization is restricted to proportional tests,

tests having physically homogeneous strain fields can be used where

the strain input is then given by
e12(xot) = erp(t) = £(t) . (9.6)
Equation (9.5) now reduces to

S12(t) = 6] #

¥y
Tt |
—h
———
ct
f
+
ot
2
———
‘+
[
I ]

p
-—’,
——
-t

p
o
~
—
O
~J
g
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Equation (9.7) can be looked upon as containing a permanent memory
term and a fading memory term. Tests that will separate these two
effects now need to be determined. The simplest of such tests is the
step strain, or ramp strain relaxation tests. For a jump strain of

maghi tude eiz applied at time zero, an expression for the relaxation

modulus is obtained.

S12(t) t

£ (8) = 5— = Gifule) ] + ka(t) (9.8)
€12 0

where u(g) is the unit step function.

For a beginning the special cases when G,[f(£)], or k; (t-1) are
0

zero will be considered. The first case is trivial as the equation

reduces to linear viscoelasticity. The second case reduces to & time

dependent permanent memory equation.

t .
S12(t) = Giff(e)]ers (1) (9.9)

0
In section 4 the application of the LP norms in vermanent memory

constitutive theory was demonstrated. A logical choice of the

t
characterization of G,[f(g)] 1is therefore L norms of f(g). Since

0
the functional is homogeneous to degree zero it must be expressable as

a ratio of norms. Relaxation behavior for most materials can be

described by a power law representation

-n -n t
Er(t) = a3t L+ Ayt e = Gl[ﬁ(ﬁ)] (9.10)
0
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A logical choice for the functional would therefore be

t IRITFAY, e\
Gl[f(g)] = al(ﬂTﬂ-?l-)l + az(ﬂ—ﬂ-l—ij) 2+ e

__1)\..

where p; > q., and ri(pi qi) n; . (9.11)
For a jump strain, equation (9.11) reduces identically to the

nower law representation given for Er(t) in equation (92.10). The

problem 1is then reduced to determining Pis Pys G assuming all the

a, and n, are known from curve fitting the relaxation data.

i i
For a constant strain rate test the output can be shown to be

Slz(t) elz(t)Gl[f(E)] = elz(t) {alclt"nl + azczt"nZ + ..} ,

C, = (1+ qi)ri/qj/u ; p.i)ri/pi . (9.12)
By fitting this data in an identical power series the coefficients

Ci can be determined. There now exists two equations in each of the

three unknowns, Pis Gys T Hence one more test condition will

provide the necessary equation. Since propellant materials appear

to be most sensitive to the maximum strain in their history, one

could at this point simply choose p; == and determine how well the

results fit random inputs. Note how little one test result has to do

with another for non-linear materials. If the material were Tinear,
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all shear test results could be predicted simply by knowing the output
to a jump input, as superposition is applicable. The simple case
discussed above appears to fit most propellant data quite well.

To characterize the kernel functions when both fading and
permanent memory behavior is present (admitting the first two terms
only) can be a very complicated task as demonstrated above. In the
theory of linear viscoelasticity the simple kernel function k(t-t) is

usually approximated by a Prony series [61] of the form

N
k(t) =Z Aiexp(-t/yi), A;»vy, constants . (9.13)
j=1

In the Prony series representation the N relaxation times y; are
picked using good judgement and the Ai are optimized using some form
of linear reygression analysis. Those terms having very small Ai can
be discarded and perhaps new Y; selected based on the first regression
results and the process repeated using fewer terms until one is satis-
fied. Computer programs have been developed that actually perform all
these calculations and yield optimum Ai and Y; for an N term Prony
series.

A similar procedure can be used in characterizing the non-linear
but homogeneous constitutive equation of degree one. In the Prony
series representation of linear viscoelasticity the y; are estimated
and the Ai determined since attempting to determine the exponents is
a non-linear probiem and can lead to great difficulties. The same

problem is present in attempting to determine the degree of the nomms.
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It is therefore recommended that a similar procedure be followed in
characterizing these non-linear materials. The process given below is
only valid for materials having homogeneous but non-linear consti-
tutive equations. The homogeneity condition is very easily verified
experimentally, as is the superposition principle. If the materia?
obeys both the superposition and homogeneity conditions, it is 1i. .+
and linear methods should be used as they are very simple.

For a general characterization procedure, it is suggested that

the kernel functions be approximated as

N )
p; \ i
K[f<o),t-r] Z A\ =] ewl-(td DL (914)

In the above equation the Pi’ Qis T and Y; are estimated and
the Aij are determined by a regression analysis. However, unlike the
Tinear constitutive law, where only the relaxatior. moduius or some
other convenient test is used to determine the coefficients, for the
non-linear material several different shear and dilatational tests must
be used to determine the coefficients for their aopropriate kernel
functions. This can only be acccmplished by substituting the expan-
sion directly into the constitutive equation to obtain, for instance,

a pure shear input.

|f|| r. t

N N
1 .
Sl? ZZA lf” eXp("t/Yj)feXp(T/Yj)f(T)dT.
i=0 j=o0 0
(9.15)

Since the Fis Pys G55 Yy and strain input f(r) are all known
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this equation can be reduced to

t
Sl?(t) = ATJXTJ[f(B)’pT’q'l’r'l,YJ,t)] s

where Xs 5 is calculatable. (9.16)

Equation (9.16) is a linear equation in the Aij and standard
regression analysis procedures can be used to determine the coefficients.
To accomplish this several different shear inputs, say f;, f7,0-~°fn
must be used and ezch function Xij(fn’t) must be evaluated at many
times, say {t;, tz,---tn). The experimental data from these various
tests must be determined to yield the experimental values of the stress
S1o for each input fn at several times tj. The resulting mass of
data can then be analyzed using linear regression methods to determine
the best values of Aij' Computed values of the stress can then be
compared to observed values to determine the accuracy of the method.

To determine whether the constitutive Taw is of any value, it must
accurately predict the results of tests not used in the characteriza-
tion procedure. This test is the only test for the validity of a
constitutive equation. If it cannot predict with reasonable accuracy
it can lead to greatly erroneous results when used in stress analyses

as six of the system of fifteen equations in fifteen unknowns used in

structural analysis are constitutive equations.
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9.1 Non-Linear Elasticity with Permanent Memory

Many materials exhibit the so-called time independent "Mullins'

Effect". The effect is a stress-softening that appears only to

depend on the magnitude of the strain history and not on time. Love [30]

called this behavior "elastic hysteresis" and indicated it occurred
in some metal wires. The process appears to be irreversible and in
the 1imits of small strain is contained in the homogeneous constitu-
tive equation of degre~ one. The problem is to express the history
dependency without having time dependency. The behavior can be

represented for proportional loading conditions by

Si5(t) = 65 LAY/ TR )2 e (2) + KoLUF(R)/[IF]] )2 Jey 5 (2)
(9.17)

This equation yields linear elasti- response on the first stretch

and a hysteresis response c~ ary subsequent stretch. It contains no

time effects, only history effects.
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X. REALISTIC CHARACTERIZATION OF COMFOSITE PROPELLANTS

For neariy a decade composite solid propellant materials have
for the most part been treated as linear viscoelastic materials.
Today the propellant industry has the ability to perform ccmplex
thermoviscoelastic stress analysis using thermorheolygicaily simple
linear viscoelastic constitutive theory. Careful examination of
propellant drta however indicates the materials are not linear
viscoelastic even at small strain. Researchers in the propellant
industry have been applying incorrect criteria of Tincarity to their
materials [1,2,19]. Assumptions have been made that if the material
has a relaxation modulus that is independent of strain, then the
material is linear. This assumption is not correct. Having a relaxa-
tion modulus that is strain independent is but a single check of the
homogeneity condition and in no way cherks the validity of the super-
position principle which is the real test for linearity. Hence for
over a decade complex computer analyses have been performed using
Tinear viscoelastic theory vielding highly questionable results.

To demonstrate that propellants are non-linear materials even
at small strains, one need only check the superposition principie
experimentally. In the range of small strains below detectable de-
wetting or volumetric dilatation [9-11], most propeliants have a
relaxation modulus independent of strain and in general closely obey
the scalar multiplication homogeneity rule. Yet this relaxation modulus
cannot be used to accurately predict the response due to other isother-

mal, low rate, small strain inputs. To demonstrate the inadequacies of
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line>r viscoelastic predictions on solid propellants, laboratory

tests where superposition is applicable can be performed. Figure 10.1
illustrates the stress-strain-dilatational behavior of a typical com-
posite propellant. The dilatatiot-strain behavior is caused by

vacuole formation within the microstructure [9-11] and causes a stress-
softening; an obvious type of non-linearity. Below significant dila-
tation the material appears to have a relaxation modulus that is
independent of strain as illustrated in figure 10.2. To determine

if superposition is applicable, the interrupted ramp-strain stress
reiaxation test can be employed. Linear viscoelastic theory would
predict the stress output for the second loading would be simply the
superposition of the initial response with the continuation of the
original stress-relaxation response. Figure 10.3 illustrates the
linear viscoelastic prediction and the actual experimental results

for this interrupted ramp strain test. From this and other tests

it is apparent errors of over plus or minus one hundred percent ire
typical when linear viscoelastic theory is used to predict the response
of propellant materials. To clarify the point, the data in figure 10.3
are plotted stress against strain in figure 10.4. Here it is apparent
that when the straining is again commenced, the response rapidly
rejoins the original constant rate response, whereas the linear theory
would indicate it should parallel the original response. Figure 10.5
j1lustrates similar test results for the doubly interrupted ramp

test plotted stress vs strain. Again the same behavior of rejoining

the original constant rate response is shown and also that the errors
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2f Tinear theory grow with each cycle. Plotting the relaxation data

S o et o1 s,
.M \1‘

from each portion of this test in figure 10.6 further demonstrates

“nat the relaxation responses for the first and second straining are

sl “Sastt de a2

identical when time is measured from the beginning of each relaxation.

Interestingly enough this means that part of the memory of its past

has somehow been completely annihilated and that the previous relaxa- ;

LS TT DTy JUT PO e 4

tion history has had no influence on the second relaxation. This is !

not fading memory response since all of the past has not been for-

% gotten. It does however indicate that the fading memory portion of

ek e

the viscoelastic constitutive equation is for all practical purposes

e

zero as long as the strain is increasing.

In figure 10.7 further verification of the homogeneity principle

for these materials is presented. In this figure the stress output

is compared for two cyclic inputs that differ in amplitude only. As

dictated by the homogeneity principle, these data indicate that the

stk mereiaed Sngintic ) il B 2% i iR e L

ratio of the stress outputs is equal to the ratio of amplitudes of
the cyclic strain inputs. The data in figure 10.8 compares the 1inear-
viscoelastic prediction for the cyclic data presented in figure 10.7. %

The agreement between the linear predictions and the experimental

e

data are quite good for this test whereas it was found to be poor for

the tests discussed earlier in this section. Good agreement between
experimental data and linear predictions might be expected for some

tests since the material has been shown to satisfy one of the con-

4 ditions of linearity. Furthermore the dilatation data on propellants

in this range of small strains prior to dewetting indicate near
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incompressible elastic behavior [9-11]. Incorporating these features

into the constitutive equation indicate a valid form would be

t
5;5(t) = 6P + G[f(g)]e”(t) :

where p is an arbitrary pressure. (10.1)

The relaxation data for most propellants obeys a simple power
law expression as indicated by these data when plotted logarithmically
in figure 10.9. From the previous discussion in section 9 dealing

with material characterization a logical choice for the functional is

e O I Yy
ofrte)] = 224
o =\l
where r. L U n. (10.2)
Py

N
t - = L+~N _ N
G[u(g)] = E(t) = kt™"= ¢t Z;Ai (10.3)

]

To complete the characterization process we need only determine
Ai’ Pis Q5o and rs The complex characterization procedure discussed
in the previous section was not used for this purpose.. Instead only
one term was taken choosing p; = «, A; = k and graphically determining

r; and q; to fit a few tests. The results of this very simple
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analysis is demonstrated in figures 10.10 through 10.12 which
compare calculated and observed ;espcnse for several tests plotted
both stress-time and stress-strain. The close agreement between
experiment and theory for this single term representation would appear
to indicate this is a powerful method of characterization and valid
for propellant materials. However comparing the predictions with
the actual data for the cyclic tests, figures 10.13 and 10.14, shows
the agreement is not so good as demonstrated in the previous figures.
The reason for this disagreement between prediction and observation
1ies in the need to have some fading memory viscoelasticity present,
since compressive stresses for the state of positive tensile strain
cannot come from the permanent memory portion of the constitutive
equation. Proper characterization procedures will bring out such de-
fects in the chosen representation.

In an attempt to improve the characterization process a three
term expansion was chosen as suggested by the discussion in section 9.
Instead of using exponential terms however a single power of t was

chosen. The constitutive equation chosen has the form

If " : =Nz,
Sij(t) = (S,ijP + Al -”-ﬂ—l—— e].j+A3./‘ (t-'r) eij('t)d'r

0 0

71 \"® F

-n3 |
+ Aq 'ﬂ-ﬂ—l'q— f(t-’r) e'ij(T)dT R

3 0

where P

arbitrary pressure, and

absolute value. (10.4)
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A simple analysis of all the test data indicate that the material
would be well characterized if the parameters in the equation took

on the following values

n, =ng = 0.1
rp = 2.25
r3 = 1.0
q; = 21
Q3 =
Ay = A, = - A3 = 570

Substituting these values into equation (10.4) and rearranging terms

yields

- Lf

t
+ 570 [1 - T,-L-H-l[(t-r)“‘ RO (10.5)
*o

For tests where the strain is never decreasing (or never in-

creasing), such as those illustrated in figures 10.70 through 10.12,

the last term in equation (10.5) contributes nothing since for these

tests |f| equals |[f]|_. The data in figures 10.10 through 10.12
calculated by equation (10.5) and that calculated by equation (10.1)

is therefore identical. Comparisons between the calculated and

observed data for the cyclic strain inputs is illustrated in figures 10.15
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and 10.16. As seen by the data illustrated in these figures, the
calculated and experimental data agree quite well. Perhaps other
inputs exist, where again the agreement of even this modified consti-
tutive equation will predict poorly. The only way to be assured a
non-linear constitutive equation will predict accurately is to perform
all possible tests and compare. Naturally this is impossible,
however the least one should do is use a large number of greatly
different tests. Inputs of a similar type to those the material
in question will be subjected to in its lifetime, performed at the
same temperatures and over the same time scales should be used in
realistic characterization procedures.

In particular there are two things a rheologist attempting to
mathematically describe the behavior of materials should always
remenmber.

1) Simply because the chosen representation accurately

curve fits the tests used in the characterization
procedure does not guarantee accurate predictions
for other different tests.

2) If a constitutive equation cannot predict the output

to an arbitrary input, it is of Tittle value in

general stress analysis.
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