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ABSTRACT

Non-linear homogeneous constitutive equations are developed

in this thesis for highly filled polymeric materials such as solid

propellants. In the range of strains below vacuole dilatation

these materials obey the homogeneity rule of linearity but do not

obey the superposition rule. Such materials typically exhibit an

irreversible "stress softening" called the "Mullins Effect."

The development in this dissertation stems from attempting to

mathematically describe the failing microstructure of these composite

materials in terms of a linear cumulative damage model. It is demon-
th

strated that p order Lebesgue norms of the strain history can be

used to describe the state of damage -ri these materials and can also

be used in the constitutive equation to characterize their time

dependent mechanical response to strain disturbances.

Stress analysis procedures for materials having non-linear

homogeneous constituti equations are developed for two and three

dimensional proportional boundary value problems. A series of

correspondence principles are derived wherein half of the solution,

either the stresses or the strains, can be obtained by solving an

equivalent linear elastic problem. The remaining half of the solution

can be obtained by substituting the linear elastic solution into the

non-linear homogeneous constitutive equation.

The constitutive equation has been extended to include thermo-

rheologically simple materials by defining a reduced time. It is

x



I

also demonstrated that by using weighted pth order Lebesgue norms the

constitutive equation can also contain the rehealing of damage which

is exhibited by highly filled polymeric materials.
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1.0 INTRODUCTION

This thesis deals with non-linear homogeneous constitutive equations

of degree one, a type of behavior that until now has not been mentioned

in the field of mechanics. This type of behavior satisfies one of the

two requirements for linear~ty and in the author's opinion constitutes

the simplest type of non-linear behavior. Because one of the linearity

requirements is satisfied by these materials, they are often mistaken

for linear materials [1], since the characterization procedures used by

many laboratories do not differentiate between linear and homogeneous

behavior [2]. The difficulty lies in differentiating between necessary

conditions and sufficient conditions to guarantee linear behavior. If a

material is linear, it will always have a homogeneous constitutive

equation. However, if a material has a homogeneous constitutive

of degree one, it need not be linear.

The existence of materials having a homogeneous but non-linear

constitutive equation was first discussed in the author's Master's

Thesis, "Applications of Viscoelasticity to Filled Materials" [2]. In

that thesis the problems of applying the linearity conditions to material

characterization-procedures were discussed as was the reason filled

polymeric materials exhibit this type of behavior. That thesis also

demonstrated that if meaningful stress analysis were to be performed on

propellant structures, accurate constitutive equations for these

materials must be developed.

-l -



Composite solid propellants and other highly filled polymeric

materials which exhibit "stress softening" [2-8] at strains below

detectable dewetting [6,9,10,11] appear to obey non-linear homogeneous

constitutive equations of degree one. The stress analysis of composite

propellant structures has received considerable attention in the past

decade [12-18] because grain failure generally leads to missile failure.

In the range of strain below detectable dewetting these pronellant

materials have usually been treated and thought of as linear viscoelastic

solids since they have relaxation moduli that are generally independent

of strain magnitude [1,2,19). Examination of the mathematical require-

ment for linearity indicates that the above criterion is simply a check

on the homogeneity of the constitutive equation and does not guarantee

linearity.

The purpose of this thesis is, therefore, to (a) develop non-

linear constitutive equations homogeneous to degree one for characteri-

zing highly filled polymeric materials and (b) develop methods by

which these constitutive equations can be used in solving two-and three-

dimensional boundary valued problems.

To accomplish these goals systematically, a brief discussion of

kinematic and constitutive linearity and non-linearity is introduced

in Section 2. In Section 3 it is demonstrated that the existing non-

linear constitutive equations for viscoelast'- solids do not contain

the necessary mathematical devices to describe the behavior discussed

above. In Section 4 the "stress softening" or "Mullin's Effect" [2-8]

I
is analyzed from a simple mechanical failure model of the propellant

-2-



microstructure and is seen to contain this type of non-linear behavior.

Also the pth order Lebesgue norms [20] of the strain history are

presented as being excellent memory measures of the strain history to

use in the constitutive equations.

In Section 5 the model is extended to include the general three-

dimensional constitutive equation for isotropic materials. In Section

6 it is demonstrated that the use of a weighted norm [21] in the consti-

tutive equation includes the "rehealing" of the "stress softening"

which also is exhibited by these materials. Section 7 demonstrates

that the extension to thermorheologically simple materials is valid.

Stress analysis procedures for materials having homogeneous

constitutive equations of degree one are developed in Section 8. Here

a series of correspondence principles are derived for proportional

boundary value problems demonstrating that for large classes of these

constitutive equations, a linear solution corresoonds to half (either

the stress or the strain distribution) of the actual solution. Material

characterization procedures are discussed in Section 9 where one method

is proposed for this type of material. In Section 10 the theory is

applied to experimental data and shown to yield accurate stress

predictions for a variety of strain inputs.

-3-



II. LINEARITY REQUIREMENTS

There is apparently some confusion among many practicing

engineers as to what exactly constitutes a linear constitutive

equation and how such a relation is obtained. In the literature

on linear elasticity, linear viscoelasticity and continuum mechanics,

linear constitutive laws are usually simply given and the actual

mathematical requirements for linearity are never stated [22-27].

The problem is greatly complicated when considering non-linear

behavior, or more precisely what condition or conditions must be

violated before the material is classified as non-linear. Most

non-linear theories have had their origin in the addition of second

order terms to a first order equation. Is this second order theory

then the simplest non-linear equation or are there even simpler non-

linear forms? These questions cannot be answered until the mathemati-

cal requirements for linearity are stated, for only by violating the

linearity conditions can non-linearity be defined.

When solving boundary value problems in the field of solid

mechanics, non-linearities can arise in two ways, kinematic and

material. Material non-linearities mean naturally a non-linear

stress-strain constitutive law. Kinematic non-linearities have to

do with the strain-motion relationship.

-4-



2.1 Kinematic Linearity.

Kinematic linearity has to do with motion only and has nothing

to do with the force-motion relationship. The motion of a body in

continuum mechanics is defined as the mapping of all points in the

body from some reference configuration xk to the deformed configura-!k

tion xk [25,26,27]. The continuum approach interprets this motion

in terms of a deformation gradient F, defined by

F.. = x'/xj , ij = 1,2,3 . (2.1)

Strains in continuum theory are defined in terms of the defor-

mation gradient. There are various definitions or measures of the

quantity called strain. One of the most commonly used definitions of

finite strain is the Green strain tensor E defined by

E_=f FFT 1] (2.2)

In the above equation FT denotes the transpose of F and I is the

unit tensor. In component form the Green strain tensor becomes

Epq [ x a X 6pq J where 6pq= (2.3)
pq 2 Pax q 0 if p q

In texts on elasticity [22,23,24], the definition of strain

is usually given in terms of the displacement gradients rather than

the deformation gradients. In terms of the components ui of the

-5-
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displacement vector u, which are defined by

u1 = x-x i , i = 1,2,3, (2.4)

the Green strain tensor becomes

E L + q + x xi (2.5)

pq 2 xq ax P ax q ax, P

When the displacement gradients are very small, the second

order terms in equation (2.5) can be ignored and the Green strain

tensor reduces to the Cauchy infinitisimal strain tensor tensor epq

defined by

e ~ ~ ~ -[aur .[ + F 2p (26epq 2 [axq axpJ 2 L Fpq qp j (2.6)

rhe strain-displacement gradient equation given by equation (2.6)

is linear. Linear equations are defined as having one bdsic mathe-

matical property which can be expressed as

f(al+x l,a2+x2,'') = f(al,a 2 , . . . ) + f(x 1,x2 ,. . )

(2.7)

In the above equation f is a function of the variables xl,x 2 ,..

If the function is linear then equation (2.7) will be satisfied for

all arbitrary real scalars ai, and all values of the variables xi.

Equation (2.7) is defined as the linearity condition for functions.

-6-



If the strains are given as linear functions of the displacement

gradients aui /x j , the linearity condition guarantees that the strain

due to several infinitesimal motions is simply the sum of the strain

due to each motion acting separately. Sokolnikoff has given a

mathematical proof of this superposition of strains due to several

infinitesimal motions in his treatment of infinitesimal affine

transformations [24]. Superposition of strain or displacements caused

by infinitesimal motions is therefore justified when solving boundary

value problems. Since the discussion has dealt only with motion,

the superposition of infinitesimal strains for both linear and non-linear

materials is justified and is independent of the linearity of the stress-

strain constitutive equation and other equations entering into the I
problem

Since part of this dissertation attempts to show a type of

correspondence between a linear solution of linear boundary valued

problems and an equivalent problem wherein the stress-strain constitu-

tive equation has a particular type of non-linearity, only the infini-

tesimal strain tensor epq will be used in the remainder of this

dissertation. Use of this strain tensor restricts the range of valid

application to cases when the displacement gradients are small.

2.2 Constitutive Linearity.

In the field of mathematics, the requirements for linearity are

the same whether they be applied to differential equations, functions,

operators, transforms, functionals or other mathematical operations.

The linearity requirements are basically the same as those given by

-7-



equation (2.7). When these linearity requirements are applied to con-

stitutive theories they are applied best to functional equations [28)

since in continuum mechanics a simple material is defined as a

material wherein the present state of stress can depend upon the

history of the deformation gradients [25,26,27]. Expressed mathe-

matically, a physically homogeneous simple material can be represented

as the functional equation

t

Sij(t) = Gij[ X(t=)/axq] .(2.8)

Not every relation of the form (2.8) is physically meaningful.

When an arbitrary rigid rotation of the body is superimposed on a

given deformation history, the stress field S.. must undergo an equal

rigid rotation. The form of the constitutive equation must be such

that this requirement is satisfied. Green, Rivlin, and Pipkin [29-33]

have shown that if the constitutive functional is expressed as

axI- (t 9x'.(t) t
xij(t) a x) - p[E q (t,) (2.9)Si~t  - @k  x k qT=O .

then the above mentioned restriction will be satisfied for an arbitrary

time dependent rigid body rotation. In terms of the Cauchy infini-

tesimal strain tensor equation (2.9) becomes

r t
-§ij~ = Q.k(t)Q.k M (t) ''~tQ (t) F' ep t9] (-0

-8-



In equation (2.10) -ij(t) is the stress in the rotated system,
S (t) is the stress in the reference system, and Q represents the

pq Qrpeetth

rigid rotation of the frame of reference. With respect to the

reference system the stress is given by the functional equation

Si (t) = Fi pq(t,] . (2.11)
T=O

For a constitutive equation to be linear it must satisfy the

following functional equation [28].

a t t t

(t,-) + be'_(tT) : (tT + bF ijepq(tT1iL epq, Pq T=o p T=o T=o

(2.12)

In equation (2.12) a and b are arbitrary scalars and epq and

epq are arbitrary strain histories. The measure of strain used in

equation (2.12) can be any linear or non-linear strain-displacement

gradient relationship and still yield a linear stress-strain relation-

ship. It should be pointed out however that if a non-linear strain-

displacement gradient relation is used in a linear stress-strain consti-

tutive equation, by the time some form of strain compatibility condition

is used or if the equilibrium equations are expressed in terms of the

displacement gradients, the resulting system of stress-displacement

gradient equations will be non-linear. It is for this reason the

Cauchy strain tensor epq defined by equation (2.6) wi'l be used in

the remainder of this thesis.

-9-
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2.3 Redundancy in Linearity Requirements

The linearity conditions given in equations (2.7) or (2.12)

can be written as two separate rules instead of one as

t t
F [aeq(tT) =aF (tS) and (2.13a)Fij -""r=O =aeij T=

t t
Fij[epq(tT) + e' (t,) : [epq(t) + Fij q (tT)] (2.13b)

T=q T = Fi3  +q (2.135)

where e pq(T), e' (T), a, are arbitrary.

Careful examination of these two conditions indicates that

the first rule of linearity, called scalar multiplication or homo-

geneity of degree one [28,34], is contained in the second rule

of linearity, called additivity or Boltzmann superposition

for practical purposes. This duplication can simply be shown

for all scalars that are rational numbers. The proof of this

redundancy in linearity conditions can be given as follows.

For all positive integers P equation (2.13b) gives

t t t
F .[Pe (t,T)l=Fij[e pq(tt) +...+ e (t,t)] =

ijepq J LT=O T=O pq T=O

(P times)

t tF ijepq(tt,)+. +-[e (t,) PFij[e (ttT)l (2.14)T=O " j Pq t=0J j Pq T=O j

(P times)

i.



Similarly for all positive integers Q the same equation gives

tt
S[pqt e (tT) + ... + e (tT =

1 [Q T=0 j r=0 '=0

Q times (2.15)

tt 1t
F. [e (t,) + ... + Le (t,T) QF i e (t,TFij ePqt0 +j "'" + i'  epq T=0j IQpq 0

Q times

Hence Boltzmann superposition guarantees the following two

conditions

Fij[Pepq(tT) : PFij[epq (t,)] , and (2.16a)

F. e te ( T) (2.16b)

13 I P * -F:O.j Q:pq T J

Using the principle of superposition repeatedly it can now be

shown that

t [e (t "r
Fij re pq(t,T) rFij e(t,) , (2.17)

T=O L pq T=0

where r = rational number.

Thus it is seen there is only one mathematical requirement

for linearity if a reasonable form of continuity requirement is

enforced, and that is Boltzmann superposition. It can be shown

also that scalar multiplication in no way implies su.erposition.

-11-



In fact scalar multiplication is simply a homogeneity condition

of degree one in the constitutive law, and many non-linear differential

equations, functions, and functionals are homogeneous but not

linear. By homogeneity of degree n it is meant that a mathematical

operation, say f(x,y,z), has the property [35]

f(ax,ay,az) = anf(x,y,z). (2.18)

If a function has this property, differentiation with respect

to the scalar a, and evaluation at a equal unity produces Euler's

equation [35]

nf f + - f +z f (2.19)nf= x y zo.

An example of a function that is non-linear but homogeneous

to degree one, hereafter referred to simply as homogeneous, is

f(x,y,z) = x3/(x2 + y2 + z2 ). (2.20)

Non-linear ordinary differential equations having this property

can always be separated [35] and solved quite simply by choosing

a new variable that is the ratio of the two variables in the

equation. Examples of functional equations that are homogeneous

but not linear also can be constructed [28,34]. The main difficulty

-12-
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that arises from this observation is the commonly used and stated

criteria for linearity of elastic and viscoelastic materials is,

"doubling the strain input doubles the stress output" [19). In

light of the linearity conditions it is seen that this is only a

check on the homogeneity of the materials constitutive law which

is a necessary condition for linearity, but in itself cannot

guarantee linearity. The homogeneity condition demands that the

relaxation modulus for a linear viscoelastic material be independent

of the magnitude of the applied strain, or that the first stretch

behavior of an elastic solid have a constant moduli. These are

necessary conditions for linearity but not sufficient conditions.

ilaterials that possess this homogeneity property but are still

non-linear perhaps are the simplest non-linear materials since at

least one of the conditions of linearity is satisfied. Because

one of the linearity conditions has been satisfied, the material

will possess some of the properties of linear materials. Unfortunately,

the standard characterization methods used by many laboratories

will cause all homogeneous materials, linear or non-linear, to

be characterized as linear materials [1,2]. Examples of a non-

linear viscoelastic material having a homogeneous constitutive

law are solid propellants and most highly filled polymeric materials

[1,2] such as asphalt concrete. Examples of non-linear elastic*

materials having homogeneous constitutive laws are steel wire [36],

rock [37], portland cement and masonry materials.

*Elastic is used in the classical sense which means complete recovery
of geometry when the tractions are removed.

-13-
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For non-linear elastic materials possessing homogeneous constitu-

tive laws, linear elastic analysis can be shown to be applicable

so long as the material has never been deformed, superposition is

not required, and the stresses during unloading are not required.

In other words, it is equivalent to using non-linear elastic theory

for the first stretch plasticity. Both cases should yield valid

results for the first loading but will give erroneous results

for unloading.

For non-linear viscoelastic materials possessing homogeneous

constitutive laws little can be said about the behavior as will

become evident later. If all the time effects are of the Boltzmann-

Volterra heredity integral type [29,30], then and only then will

linear viscoelasticity yield the proper results for the first

stretch behavior. If the time effects are not of the type

mentioned above, then linear viscoelastic analysis will only give

the proper solution for a single step input.

The purpose of this thesis is to develop constitutive

equations for non-linear materials having homogeneous constitutive

equations of degree one with and without time effects and to demon-

strate how simply they can be used in solving boundary valued

problems. Before proceeding, however, some discussion of the so-

called Frechet multiple integral expansion is in order since it

supposedly represents a general expansion of a simple material [29,30].

-14-



III. INADEQUACIES OF CURRENT NON-LINEAR THEORIES

3.1 The Frechet Expansion

During the last decade considerable advances have been made in

formulating constitutive equations to represent the mechanical be-

havior of non-linear viscoelastic materials [21-33,38-40]. The

foundation for the theoretical investigations of non-linear materials

with memory was first formulated by Volterra [28], Green and Rivlin [29],

Noll [38], and Pipkin [39]. This work was concerned with a class of

materials known as simple materials [26,27]. A simple material is

defined as a material in which the state of stress at time t, Si(t),

can be expressed as some functional of the deformatio. gradient. Using

arguments similar to those employed by Fr6chet [28,41] in 1910, Green,

Rivlin and Pipkin have demonstrated that a continuous tensor valued

functional, (a functional of several variables some of which are com-

ponents of a tensor) may be approximated by a functional power series

of homogeneous tensor valued functionals. Frechet's contribution is

a generalization of the Weirstrass theorem [42] stating a continuous

function may be approximated by a polynomial. Volterra [28] made use

of Frechet's work for non-linear functionals of one variable and for

linear functionals of several varicibles. In his book, Volterra [28]

suggests that all hereditary phenomenon in the mechanics of materials

could be taken into account if the constitutive equation was expressed

as

-15-
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t t t t t tS. (t) = F.

T=O T=O T=O T=O r=O T=O

t

F.[e (t,) (3.1)Fij q "=o

He indicated that this functional relationship could be expanded

in the Frechet type of multiple integral expansion. Giving only the

linear terms in the expansion Volterra indicated a general regular
linear hereditary material could be expressed as

S i(t) = A ijk(t)ekt(t) +ft Dijkz(t'T)ek( T)dT (3.2)

Equation (3.2) is an integral constitutive equation for an aging

linear anisotropic viscoelastic solid.

Green, Rivlin and Pipkin have since extended Volterra's work by

including the non-linear terms in the expansion. The resulting equation

in the case of small deformation was given as

t
S ij(t) K ijplql(t'Tl)epq, ( 1 )dT1 +

"0

f K (t )iTO (* T2dTdT9 +

+J~*fijpq.pq t **,p 1q 1Ti (tPdlqtn+

(3.3)
*1

Equation (3.2) is not the most general linear relationship, (e.g., it
does not contain the general linear differential operator equation of
linear viscoelasticity [19]). It is however the most general integral
relationship. These additional non-integral linear terms were called
"irregular" by Volterra [28].

-16-



The manner in which this equation is developed is quite simple

[29,43]. Consider that the stress S ij(t) is only a function of the

strain at N discrete points in time Tim where Tm < Tm+l , 1 < m < N,

TN = t. This function would therefore be an approximation to the be-TN
havior of a simple material. Representing this function by a general

polynomial yields

N
Sij(t) = Cjp q 1 (t,Tr)epq (Tr +

r=l

N N

l jP lqlP2q2  r, r2 p1q( r, p2q2  r2
rj=l r2=2

N N
+ " Cijp " "qn (tsT r," )e q (T )"e (TPnq n (

rj=l rn=lr

(3.4)

By letting the number of discrete times N increase to infinity,

the equation goes to the limit of complete history dependence. Thus,

the above summations become functionals over the interval 0 < 'r < t.

In addition special dependency must be allowed for the values of strain

taken at time t, e pq(t) which is called the "exceptional point" (see
Volterra [28] page 15). By allowing N to increase to infinity,

equation (3.4) becomes

-17-
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S ij(t) Aijpq (t)eplql(t) + Aijp qlp2q2(te D~q (t)e p2q2 (t) +

rt

+ ,p .ijPlql(tTl)ep1q, (TI)dTI +

0

tt

+ff CijplqlP 2q2 (t'T1,r2)e plq(T 2 )e p2q2( 2)dTldT 2 +

(3.5)

Equation (3.5) i's equivalent to equation (3.3), and one equation

can be obtained from the other by integrating by parts [44]. Both

forms will be used in this thesis, but equation (3.3) will be preferred

since it is the most compact notation.

Equation (3.3) according to Green, Rivlin and Pipkin, represents

a general simple material [38,39], providing the strain histories and

the functionals are continuous. The equation surely describes an

anisotropic non-linear time-dependent material with aging; however,

whether the expansion is useful to describe all non-linear simple

materials has not been shown. They indicate that the functional

represented by the above expansion may be approximated with any degree

of accuracy simply by adding more terms in the expansion [29], just as

the Weirstrass theorem indicates a continuous function may be approxi-

mated uniformly to any desired degree of accuracy by simply adding more

terms in the polynomial. From such statements the impression is given

that by taking a large number of terms in the expansion one might

approximate all types of behavior quite well. However, such is not the

case. Equation (3.3) was obtained by purely mathematical methods to

approximate the continuous functional given in equation (3.1), linear

-18-
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or non-linear. One simple demonstration that this particular repre-

sentation cannot approximate some types of non-linear behavior is

given below.

Mathematically, there are two requirements for linearity [28].

These requirements are homogeneity and additivity. If a constitutive

functional is lincar it must satisfy these two conditions for all

times t, all strain inputs epq(T), and all real scalars a. A func-

tional that obeys the homogeneity principle and not the additivity

principle is not linear, although it does have some properties similar

to linear functionals. Such a functional is known as a homogeneous

functional of degree one [28,23]. A homogeneous functional of degree n

would be given by [28,23]

t n - t~
F ii[a epq (t.T)] anF iie pq (t'rP =0) L~ T=o '

Iwhere n = positive integer. (3.6)

Since Volterra, Green, Rivlin, and others indicate (3.3) is a general

expansion for a continuous functional, the expansion should contain

this type of non-linearity. Solid propellant materials [1,2] and

other granular media appear to have homogeneous constitutive equations

of degree one but not linear equations. They can have relaxation

moduli that do not depend upon strain magnitude, yet these materials

do not obey the additivity requirement. Consider for simplicity the

non-linear homogeneous functional of a single variable x(t,T) given by
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t
y(t) Gx(t,)] (3.7)

which by definition obeys the homogeneity principle

t t
G[ax(tt)] = aG[x(tt)] (3.8a)

L T:O T=O

and does not obey the additivity principle

t t t t
G[x1(t,,T) + X (t9T)] G[Xi (tT)] + Gx(t)] (3.8b)

T T=O T=O "=O

Expanding the right hand side of equation (3.8a) in a Frechet expansion

aG[x(tt)] aKo(t) + a Kl(tl)(Tj)dTl +
T=O -f

04.t

+ a ] K2(tT1,T2)X(T1)X(T2)dTjdT2 +

II
..."' Kn(tTl,"Tn)k(Tl) ... k(Tn)dTj ... dTn+ .3 9

Expanding the left hand side of equation (3.8a) in a Frechet expansion

yields

a + fK(t9t )k(Tj)dj + a
Gx(t+,T)= Ko(t) + a

a2 0(K2(t'TI'"2)k(TI)k(T2)dTjdT2 +

t

+ an J Kn(t T " '' nn)dTj 1  dTn + "" (3.10)
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The second terms in equations (3.9) and (3.10) are identical, but

they are linear and obey both scalar multiplication and additivity.

To have a homogeneous functional of degree one, yet a non-linear

functional, the difference between these two equations must be

identically zero for all scalars a, for all arbitrary X(T), and for

all time t. For this condition to be satisfied requires that

0(a-l)K (t) + (a2-a) ~ffK 2(t,Tj1, 2)k(T1)k(r2)d-rjdT 2 +
t t

+ (an-a) .. n(tT1,T2**Tn)X(T1)..(Tn)dTl" dTn +

(3.11)

If a material has this property the kernel functions may be

assumed known since they are material properties. Choosing a history

xl(t) and evaluating each term at some time tj, a polynomial of

degree n is obtained assuming the original expansion is truncated at

the nth term. This truncation will give at most n values of the

scalar a for which equation (3.8a) is satisfied. Increasing the

time to t 2 or change the history to X2 (T) results in another set of

roots, presumably different from the first. Therefore if the series

is truncated, scalar multiplication can hold only for a certain number

of scalars and these will change with time. Also, it should be

pointed out that for any set of kernel functions whenever the series

is terminated a set of scalars for which scalar multiplication will

hold at some particular time can always be obtained.
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There are only two ways in which it is possible for scalar multi-

plication to hold for all scalars using the Frechet expansion. One

way is for the material to be linear and then every kernel function

in equation (3.11) is zero and superposition holds. The second way

is to admit an infinite number of terms in the expansion. In the

second case if the infinity of roots obtained fills the set of real

numbers the condition will be satisfied. This latter case is not

worth considering since the value of a series expansion is questioned

if every term must be used. The Frechet expansion is therefore not

a good approximation for the class of materials having non-linear

homogeneous constitutive equations of degree one.

It may be argued that perhaps such materials do not exist. This

argument is not valid for three reasons: (1) simple equations can be

constructed which have the indicated properties and satisfy all the

requirements stated in obtaining such an expansion; (2) the expansion

was obtained on purely mathematical grounds, and should contain this I
type of non-linearity; (3) there are materials which appear to have

the indicated properties. One interesting point about any that could

be constructed for such materials is that they are all permanent

memory constitutive equations and interestingly enough, the materials

possessinc this property also are permanent memory materials. A

permanent memory material is defined in this thesis as a material in

which the current state of stress or strain will always be deDendent

on past states.

For non-aging materials, Volterra [28] and Green and Rivlin [29]

demonstrated that the kernel functions should be of the form
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Kn(t, 192 ,''Tn) K n (t-*t-T2,''t-Tn )  (3.12)

The output for two strain inputs differing only by a time shift

also will differ by the same time shift when the kernels are written

in this manner. With reference to non-aging materials, Green and

Rivlin have assumed fading memory [29,46] kernel functions in their

alternate derivations of this theory. In these alternate derivations

the stress at time t is expressed in terms of the time derivatives of

strain evaluated at the current time. This non-linear form involving

various combinations of the derivatives is to the Frechet expansion

what the linear differential operator equation is to the Boltzmann

Integral [45,47]. To obtain these equations, Green and Rivlin

assumed that the kernel functions were zero if any of their arguments,

t-T i , became greater than some fixed time T [29]. Physically the

time T is a measure of the limits of memory. This idea describes

one concept of fading memory and is a property many materials do not I
exhibit. If the kernel functions have this property of a limited

memory and one considers the output to some input e pq(T) with the

property that

epq (T) = e pq(+h) , (3.13)

where h > T, then it can be shown that using the Frechet expansion

[28,29] the stress output has the property

Sij(t) = Sij(t+h) . (3.14)
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Physically fading memory means that there are no irreversible

physical effects caused by the history of deformation since any

uffect can be negated by simply allowing the material to rest in the

undisturbed state for a time greater than T [25,28,29,33]. Many

rheologists are under the impression that during stress relaxation

testing if the stress relaxes to come constant value, then fading

memory is implied, but this is not the case. It, like so many

things, is a necessary requirement, but not a sufficient one.

3.2 Isotropic Theories of Non-Linear Viscoelasticity

The theory of Green, Rivlin and Pipkin discussed in the previous

sections was for anisotropic solids. If the material is a non-aging

material and originally isotropic in the undeformed state, Rivlin [36]

and Pipkin [29] have shown that the equation may be expressed as

t t

S(t) JLkltr_(Tl)+ k2e(1dTi .f f Ik3 tre( )tre(T2) I
0"0 "0

+ Ik~tre(T i)Tre(Tj)tr {T) + _

+~~ k9(jtet)r1 3)+kc(i r~r )_;(T) d~

t tt+o jojoI k~ t r - ( T 1 ) t r ;- ( T2 ) t r - - T 3 ) + - k 8 t r - ( T 1 ) t r [ e-" ( T 2 ) e-" ( 3 )

t t t ,

+ 11 (Tj)e(T2 )tr (rT3) + 2 jjT2j 3)ddTT3

(3.15)
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In the above equation klk 2 are functions of (t-Tj); k3,k4,k,k 6 are

functions of (t-'cl,t-T 2 ); and k7 ,.",k 12  are functions of (t-T1 ,

t-T2 ,t-T3); etc. To obtain this equation they showed that the equation

for an isotropic material could be written as
t t t

S(t) = KoI+f Kl(t-Tl)e(T)dT+ K2(t-T+ft-T2)_(Tl)e(T2)didT2

+"" "  Kn ( t - T ' t - T 2 ' ',,t- T n ) ( T ) ' ' (T )dTj ' ' dT +

0 0
(3.16)

where the kernel function Ko,Kl,-Kn are functions of the history
t t t

of the three strain invariants Il(),I2(), and 13( ) as well as the
0 0 0

variables t-T i. Instead of using the history of the invariants which

involves combinations of the strains, they expressed these histories

in terms of the traces of the tensors which is an equivalent form since

tre, tre2, and tre3 form an integrity basis for the three scalar

invariants [29,30,44]. Then they expanded each kernel in a Frechet

expansion and equation (3.15) is what remains after all the terms are

gathered. It should be pointed out again that in the limit of small

strains, equation (3.15) reduces to linear viscoelasticity. Also it is

seen that when the kernel functions in equation (3.16) are only
functions of the current value of the invariants and not their histories,

and are also constant functions of the variables t-Ti , the integrations

can be performed giving
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S k + ke 2 +k2 e2 +kt 3 +. + ken +.. (3.17)

where the ki are functions of the three scalar strain invariants

evaluated at the current time t. Applying the Cayley-Hamilton

Theorem [25,27], which states a tensor must satisfy its own charac-

teristic equation, gives the equality

e 3 = i 2 + 12e + 13.1 (3.18)

Hence one sees that any power of the strain tensor higher than

degree two can be exoressed in terms of the e2,e, I and the scalar

invariants 11,12, and 13. Equation (3.17) can be reduced to

S 7I + ,e + 2e2  (3.19)

where 0,1,2 are arbitrary functions of the invariants of e.

Equation (3.19) is the constitutive equation describing the most

general non-linear isotropic elastic solid [26,32]. Written in

component form this becomes

Sij = oij + jeij + 42eikeki (3.20)

From this equation it can be readily seen that the principle

stresses and the principle strains have the same directions because

when all the shear strains become zero, so do the shear stresses.
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Equation (3.20) is elastic in that the stresses are only a function

of the current strain tensor and independent of any previous values

of the tensor. Elasticity is a theory with no memory of past defor-

mation states and is naturally contained in the fading memory visco-

elasticity. In equation (3.16) it was stated that the kernels were

functionals of the history of the invariants and that these functionals

were expanded by the Frechet expansion to obtain equation (3.15). As

pointed out earlier the Frechet expansion cannot simply describe some

types of non-linearities. One of the reasons the expansion is used is

that it is objective [25,26,27]. Objectivity in continuum mechanics

means that the forces acting on an element resulting from some strain

history must be invariant to arbitrary rotations and translations of

the coordinate systems. Green and Rivlin have shown that the Frechet

expansion has this property so long as the strains are given by an objec- j
tive measure of strain such as the Green or Cauchy strain tensors [29].

Since the invariants are by definition invariant with respect to

rotations and the strains are gradients of motion a translation also

has no effect on their magnitudes, so it is permissible to have the

kernels be any functional of the history of the invariants. In

particular homogeneous but non-linear integral representations of

viscoelasticity can be constructed within the framework of the Green-

Rivlin theory so long as specific functional forms are chosen.
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3.3 Other Non-Linear Constitutive Equations

There are many types of non-linear constitutive equations. For

viscoelastic phenomenon these equations are usually of the integral

type. Some of these equations are similar but are developed from

different approaches.

Herrmann recently developed an energy approach to non-linear

viscoelasticity [43]. He assumed the material was capable of instan-

taneous deformations and not capable of instantaneous energy dissi-

pation. He has shown that with these two restrictions, the stress at

time t, S i(t) is the derivative with respect to the strain eii (t) of

an energy functional. The resulting constitutive equations for both

isotropic and anisotropic material behavior are the same as those

developed by Green, Rivlin and Pipkin. The energy approach taken by

Herrmann therefore appears to restrict the valid application of the

constitutive equation discussed in sections 3.1 and 3.2 to materials

capable of instantaneous deformations but not capable of instantaneous

energy dissipation.

Schapery has derived a single integral representation [48,49] that

has proven very useful in describing some types of permanent memory

behavior. His work was founded on an irreversible thermodynamic

development and his equation has a form similar to the Boltzmann

superposition integral representation of linear viscoelasticity.

Roughly speaking, Schapery's non-linear theory incorporates all the

non-linearities in a distorted time scale. Rather than using the

current time t and the dummy time T in his integral ,representation he
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uses a reduced current time g and a reduced dummy time C'. These

reduced times are given as functior'als of the temperature-time

and strain-time histories. These equations appear to be especially

applicable for characterizing plastic type materials. Schapery has

shown that rate independent plasticity and some types of viscoplasticity

are within the range of applicability of his equations. He has also

applied them to materials such as solid propellants [16,48,49].

Analysis of his equations however indicate it would be difficult to

contain the homogeneous non-linear constitutive equation discussed

in this thesis within the framework of his theory.

Coleman and Noll [21], Lianis [50] and others [51,52,53] have

contributed considerably to the theory of non-linear viscoelasticity

as applied to solids and liquids alike. All of their theories are

based on the principle of fading memory which is valid for amorphorus

polymers or liquids but excludes a great many materials. Unlike the

work of Green and Rivlin and Pipkin, the work of Coleman, Noll, and

Lianis has been mostly concerned with non-isothermal conditions and

the additional restrictions placed on the constitutive theory from the

laws of thermodynamics. The representations used by these researchers

are in general a simplification of those proposed by Green and Rivlin.

Since this paper is not concerned with fading memory viscoelasticity,

their work on the thermoviscoelastic behavior of fading memory materials

contributes little to describing permanent memory phenomenon.

-
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IV. MODELING THE MULLINS' EFFECT IN FILLED POLYMERS

Viscoelastic materials have a "memory": that is, their present

state depends upon their entire past history. Nearly all of the

integral viscoelastic constitutive theories used to date for polymeric

materials such as solid propellants are based on the concept of

"fading memory". This means that a material is more sensitive to its

immediate past than to their distant past. A physical interpretation

of fading memory constitutive laws, both linear and nonlinear, indi-

cates that such materials tend to forget the distant past. This theory

implies no permanent change in microstructure, or damage caused by the

deformation. A fading memory material can undergo no irreversible

changes in structure and can be thought of as attributing the time

effects, such as relaxation and creeD, to internal viscosity.

Experience indicates that propellants do not fall into the cate-

gory of fading memory raterials even at small strains below detectable

dewetting [1,2] or volume dilatation. Propellants suffer from the

"Mullins' Effect" [2-8], which is a stress-softening that occurs with

deformation, and causes a permanent hysteresis on repeat loading.

There is considerable evidence that all the hysteresis effects

observed in propellants and most of the viscoelastic behavior are

caused by the time dependent failure of the polymer on a molecular

basis and are not due to internal viscosity [1,2]. At near equilibrium

rates and small strains, propellants exhibit the same type of hysteresis

that many lowly filled, highly cross-linked rubbers demonstrate at
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large strains [1-8]. This phenomenon is called the "Mullins' Effect"

and has been attributed to microstructural failure. Mullins postulated

that a breakdown of particle-particle association and possibly also

particle-polymer breakdown could account for the effect [3-5]. Later

Bueche [7,8] proposed a molecular model for the"Mullins' Effect" based

on the assumption that the centers of the filler particles are displaced

in an affine manner during deformation of the composite. Such defor-

mations would cause a highly non-uniform strain and stress gradient in

the polymer between particles, especially in the direction of stretch.

He assumed that polymer chains attached themselves at both ends to

neighboring filler particles and that these chains ruptured when the

particles were separated enough to extend the chains to near their

full elongation. He derived a model from which he could calculate the

difference in stress levels at a given elongation for the first and

second stretching cycles [7]. It is this type of model that is

generally accepted as being representative of the molecular behavior

which causes the "Mullins' Effect". Figure 4.1 illustrates this be-

havior for repetitive stretching to increasing strain levels. In highly

cross-linked rubbers, the effect only depends ,upon strain and is

generally irreversible [5,6,59]. However, if the prestressed composite

is allowed to rest for long times in the relaxed state, a portion of
|

the original stiffness might be regained [5,591. This recovery or re-

healing appears to be a complex function of the recovery temperature

and time, nevertheless, it can and does greatly influence the materials

behavior.
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A!l of the theoretical and nearly all of the experimental work

done in studying this phenomenon has been on materials similar to the

rubber found in automobile tires. These are highly cross-linked

rubbers that are usually filled to about 20 volume percent with very

fine carbon black. Propellants, on the other hand, are lowly cross-

linked and highly filled with coarse particles. The relative particle

spacing is consequently much more severe and th- plymer chains are

on the average hundreds of times longer in propellants than in tire

rubber. The probability of finding a larger portion of the chains

connecting particles would be greater in propellants and the effect

therefore should be much stronger and occur at smaller strains [1,2,6],

but the same basic mechanism proposed by Bueche still applies. This

polymeric chain failure is therefore the step which precedes the vacuole

formation process which causes the stress and dilatational non-lineari-

ties observed at larger strains [9,10]. Multiple stretch data on

propellants at large strains with and without a suDerimposed pressure

environment demonstrate that propellants also exhibit the M ullins'

type hysteresis at large strains in the absence of measurable dilata-

tion [6].

The time independent "Mullins' Effect" can account for the near

equilibrium hysteresis observed in propellants at low strains, but

cannot account for the nonlinear time effects [1,2]. There is con-

siderable evidence however, that the "Mullins' Effect" in propellants

is a very strong function of time [1,2]. Time dependent chain failure

can be readily demonstrated by simply examining some of the routine tests

run on solid propellants and also examining the influence of filler on

the viscosity of a given polymer.
-33-



One of the simplest ways of demonstrating a time dependent

"Mullins' Effect" is through the strain endurance test [1,19]. In

this test, a sample is strained to some level and held there for

several days or longer. The only measurement taken is the time to

failure, if the sample fails within the test period. The point of

interest here is that samples fail while held at conditions of con-

start strain when the stress is slowly relaxing or at most constant.

This type of failure is clear evidence of a time dependent "Mullins'

Effect" and also demonstrates that some portion of the time dependent

stress relaxation must be due to chain failure.

Another example of a time dependent "Mullins' Effect" is that of

a lowly cross-linked polymer, with little or no time dependency when

unfilled, which becomes significantly time dependent when filled [53],

as shown in figure 4.2. The more filler incorporated into the system,

the more marked the time effect. Many propellant polymers fall into

this category and nearly all propellants show time dependence over

such long times that true equilibrium data cannot be obtasined. This

time dependence in the composite material and no time dependence in

the unfilled polymer cannot be explained by the argument that the

polymeric strain rates are higher in the composite than in the pure

polymer since the time effects continue for such long times, and many

propellant binders show no time dependence even at very short times.

Tests such as those described above indicate that the constitutive

equations and degree of microstructural damage must be highly coupled

effects. One of the existing concepts now being used to predict
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failure in propellants calculates the state of stress using fading *

memory constitutive theory and then uses these calculated stresses

in cumulative damage relations to predict failure [54,55]. The

assumption that the degree of damage and the constitutive equation

are uncoupled can only lead to erroneous results for materials exhibi-

ting the "Mullins' Effect". The model discussed below describes the

"Mullins' Effect" and clearly demonstrates the coupling between the

constitutive equation and the degree of damage. The model provides

insight into the mechanism of behavior and indicates key variables or

measures that should be used in the general multidimensional consti-

tutive equation.

4.1 Modeling the Time Independent "Mullins Effect"

There have been various models and mechanisms proposed for the

"Mullins' Effect". Bueche proposed a model based on chains failing

due to physically non-homogeneous local deformations [7,8]. His

model was not sufficiently general and was designed to prove whether

the chains were unbonding from the filler or actually failing. In

this section a general one dimensional model will be developed for the

"Mullins' Effect". Before proceeding, it would be wise to clarify

the main difference between filled and unfilled polymers. The equi-

librium constitutive equation for cross-linked amorphous polymers has

been developed from the statistical theory of rubber elasticity assuming

ideal rubber behavior [56,57]. There are six basic assumptions made

in the development of the statistical theory of ideal rubber :-.ehavior.

They are:
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1. There is no change in internal energy with isothermal

deformations.

2. The end-end displacement of a polymer chain is small

compared to its actual length.

3. The relative end-end displacements (,Nx X y ,Xz) of all

polymer chains in the system are equal for homogeneous

motions.

4. The relative chain deformations occuring microscopically

are the same as the deformation of the body for homo-

geneous motions.

5. There is no interaction between polymer chains.

6. A polymer chain never fails.

These assumptions dictate that the configurational entropy

associated with a polymer chain be given by a Gaussian distribution

and enable simple addition of the contributions of each chain. The

Gaussian distribution is only valid for end-end chain displacements

that are small compared to the actual chain length since they actually

allow for end-end displacements from zero to infinity [56,57].

Corrected configurational statistics for large deformations provide

what is called the Langevin Function [57]. The Langevin Function

provides the correct configurational entropy since it limits the end-

end separation of a chain to the chains actual length [57]. The

Gaussian distribution appears as the first term in the Langevin Function

which is essentially a virial expansion. The main difference between

these two distributions is the force-deformation relation they give for
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a polymer chain [57] which is illustrated in figure 4.3. The great

stiffening experienced when a chain is near fully extended can be

simply observed by stretching a rubber band to failure.

The main difference between filled and unfilled systems is that

even under equilibrium conditions the relative end-end displacement

of all polymer chains in the system are not equal. Instead one finds,

by any form of analysis, that the local strains in a filled system

subjected to a physically homogeneous deformation are a very strong

function of filler content, position, particle shape, and the distri-

bution of chain lengths. The prime reason for the physically non-

homogeneous local deformations of the polymer is that it is the centers

of the filler particles that must undergo near affine or similar defor-

mations since they are rigid and cannot occupy similar positions at

the same time. The polymer being highly extensible and mobile is

forced to undergo large variations in local strain. It is therefore

not valid to assume the force contribution of each chain is similar,

nor is it valid to assume the end-end displacements are small since

very large strains can occur locally. Even small macroscopic strains

can cause some fraction of the material to undergo very large local

strains. For such conditions it is valid to assume that a chain will

fail if some critical condition is exceeded. It is this type of

localized failure that causes the "Mullins' Effect" in filled polymers.

Such failure must preceed vacuole formation which is common in filled

polymers. This behavior can be modeled for one dimensional behavior

in a fairly general way by making the following assumptions [1]:
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1. The relative axial deformation of any given polymer

chain is proportional to the axial applied strain, the I
proportionality constant differing fro'n chain to chain.

2. Each polymer chain has the same elastic, but not necessarily

linear, stress-strain law.

3. Each polymer chain fails and remains failed if at any

time in its history some failure criterion is exceeded.

In these assumptions physically non-homogeneous local defor-

mations, a non-linear stress-strain law for each element, and the

possibility of having some of the elements fail have all been taken

into account. Since the desired end result of this work is accurate

constitutive relations for materials exhibiting permanent memory

phenomenon that can be used in engineering analysis, emphasis will be

placed on the behavior of elements, not necessarily on polymer chains.

The resulting equations appear to be of value for describing many

materials, not only amorphous polymers.

The first assumption can be expressed mathematically as

ei(xjt) : e(t)Ti(xj) (4.1)

th
where ei = axial strain in the i element

e = applied axial strain

Ti = strain intensity factor for

the i element

xj = spatial coordinates
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Assuming the elements are elastic and the problem strictly

one dimensional and time independent, the failure criterion for an

element can be expressed either as a maximum strain or maximum stress

criterion. Assuming a chain fails when an extension emax or equi-

valently stress smax are exceeded, the following equation is obtained.

f(e.) = f(Tie) if Til etI <emax

Si = (4.2)

if Tillell > emax

In equation (4.2) f(ei) is an arbitrary function that is single

valued, and H1ell is the largest strain applied in the history of

the deformation. The reason for using h ell is it assures that

once an element fails, it remains failed.

The observed stress from such a model is simply the tctal force

divided by the total area which is given by

N N

i =l i =l

The summation in equation (4.3) can be more conveniently expres-

sed as an integral. Using distribution theory equation (4.3) becomes

emax/Ilell

S = N(T)f(Te)dT . (4.4)

0

-41-



i

In this integral N(t)dT is a weighting function that represents

the fraction of elements in a unit cross-section having strain inten-

sity factors between T and T + dT. The lower limit of integration

can be taken as zero since N(T) can be zero until some lower limit

of T is reached. The upper limit of integration is a function of the

deformation history. The resulting stress-strain equation is a func-

tion of wo variables, the current strain e, and the maximum strain

in the deformation history, h ell. Before proceeding further, it

should be pointed out that this simple stress-strain law can contain

reversible as well as irreversible elastic responses which can be

both linear and non-linear, up to and including fai'ure by proper

selection of the function N(T). For example if all elements had the

same intensity factor (e.g., rubber elasticity where Ti = 1) we obtain

N(T) = 6(T-1), where 6 is the Dirac delta functiun. The resulting

integration yields

f(e) if Heil < _ max
S :(4.5)

0 if 1 1ell > e max

Similarly reversible behavior for only some small region of

strain can be obtained by having N(T) non-zero only for the same

ran,.e o. T. An example of this case would be

g(T) T a

N(T) = (4.6)

0 T a.

-42-



The resulting integration yields

e max/II el a

S : N(T)f(te)dT : g(T)f(Te)dT : f'(a,e)

00

when allell < emax • (4.7)

The problem at hand is not reversible behavior, but instead is

irreversible phenomenon such as the "Mullins' Effect". Consider that

N(T) and f(Te) are arbitrary but non-zero, and the material was

subjected to the strain history given below, it can be shown that the

Mullins' type hysteresis is contained in equation (4.4).

e(t) I
0I

tj t2

One cycle-stretch to failure strain input.

Since Ilell is by definition the maximum strain experienced in

the deformation history, this input yields

e(t) if 0 < t <_ t

lell : e0  if tl <t <t 2  (4.8)

e(t) if t 2 < t
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The resulting stress output for this case, when the values of

range from zero to infinity would be

e max/e(t)

S(t) N()f(Te)dT G[e(t),e(t)] if 0 < t < ti, (4.8a)

0

emax/e 0

S(t) = N()f(Te)dT G[e(t),eo] if t1< t <_ t2, (4.8b)

0

e max/e (t)

S(t) = N(T)f(Te)dT = G[e(t),e(t)] if t2 _< t . (4.8c)

0

This type of behavior is illustrated in the sketch below.

G[e,e]

S

G[e,e 0

eo

Clearly equation (4.4) contains the Mullins' type hysterisis

discussed earlier. Data from tests like the one illustrated above

to increasing values of e0 can be used to determine the distribution

function N(T) independent of the local stress-strain function f(Te).

Differentiatirg z.quation (4.8a) and (4.8b) with respect to strain,
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subtracting one from the other, and evaluating each at e : eo ,

produces

N(Teax {G'[egeo] - G'[e,e] } (4.9)
N(= emax/o 0 -T

e=e0

ema
where C = emax -constant

femax)

If for example the difference between these derivatives was

found to be independent of eo, then N(T) woulc be proportional to

I/T 2 . For the general case the difference between these derivatives

could be expanded in a polynomial in e0 to obtain

N

jG[e 0 e]- G'[e,e] ia k keo0 (4.10)

ee k=0
0

where ak constants

The distribution function N(r) could be determined as a poly-

nomial in l/1r since in equation (4.9) the variable T is evaluated

at T = emax/eo. Substituting a polynomial for N(T) and f(Te) and

performing the integration, the resulting equation for the stress

output can bi expressed as

S = AjePj(e/llell) + A2e2P2(e/IleIl) + A3e3P3(e/Ilell) +

where Ai = constants
and Pi = polynomials in the variable (e/Hjell)
Pi(l) = 1 (4.11)
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There are only two possibilities for the variable liell in

equation (4.11) or its predecessors, either llel = e or llell

constant. In the first case the unique stress-strain behavior for

the first stretch is given. ir the second case a hysteresis behavior

dependent upon H1ell as well as e results.

4.2 Modeling the Irreversible Time Dependent "Mullins' Effect"

In the irreversible elastic case above a constitutive equation

was derived that was dependent upon two variables, the current strain

e, and the maximum strain in the history of the deformation, h ell.

At first, one might think that by using the history dependent equation

derived above as a multiplier to a hereditary type fading memory

viscoelastic constitutive equation, an equation describing all the

irregularities and non-linearities a filled polymer demonstrates could

be obtained. This is not the case, and can be clearly demonstrated

in a number of ways. The simplest proof is that for monotonically

increasing strains e = 11ell, and the equation would contribute

nothing new and no permanent memory phenomenon. Yet, filled polymers

exhibit non-linearities of the type that cannot be handled by tile

Frechet integral for such cases. Other features that must be contained

in an accurate coupled constitutive equation is the concept of time

dependent failure of elements and ultimately the material. These two

possibilities clearly negate the possibility of so simple an equation

of state.
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There are two likely possibilities for incorporating time

dependent failures. The first is to apply a kinetic reaction rate

theory to the elastic elements, [1,55] and the second is to apply a

cumulative damage law [45,54] to the elastic elements. The first of

these approaches is inconsistent with the time independent case and

leads to very cumbersome mathematics [1]. The cumulative damage

concept on the other hand appears to be a natural extension of the

time independent case since it contains equation (4.4) as a special

case. it is this type of model that will be pursued here.

Linear cumulative damage theory based on Miners' law [1,54]

requires that

M
D(t) = (tk/tfk) . (4.12)

k=

In the above equation tk is the time the material is held in

the kth state of stress or strain, tfk is the time to failure for the

material if this kth state of stress or strain were acting alone, and

D(t) is the measure of damage. For such a theory, failure occurs when

D(t) = 1. Since the elements of our model are elastic, it makes no

difference if a stress or strain damage formulation is assumed. It

simplifies the mathematics however if a strain cumulative damage

criterion is assumed since our model expresses stress in terms of

the strain history.

Using a power law strain-time to failure relation [54] for

the singly applied strain gives for the ith element
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tfk = Clei1 - P , (4.13)

where I I indicates absolute value or magnitude,

and P = material property,

C = constant,

the damage equation becomes

M

CDi(t) = I tk leil. (4.14)

k=l

Equation (4.14) like equation (4.3) can be more conveniently

expressed as the integral

CDi(t) le i (C)IPd , where = dummy time. (4.15)

0

JRecalling the e1 is the local strain in the i th element and that

this strain is related to the applied strain by Te, the equation for

the stress becomes

T c(t)

S(t) N(T)f(Te)dT, (4.16)

where T  = maximum permissible value of T, and

t1
T(t) /[CDi(t), je(r'jPd • (4.17)

Jo
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The maximum permissible value of t, can be obtained by maxi-

mizing the numerator and minimizing the denominator in equation (4.17),

or equivalently answering the question, what must the intensity

factor T on an element be such that its time to failure is the current

time t? Upon setting Di(t) = 1, equation (4.17) becomes

1 1/

Tc(t) = le()IPdld P C'/IjeII p  (4.18)

where C'= constant

Mathematically the quantity h1ell is called the Dth order

Lebesgue norm [20,21] LP. The LP norm has properties that are

worth noting and these are listed below.

liifl p =1 f f(c) Pd{j/

a) lafilp - lallfl lp

d) hif-hil p I Jf-gi1 I+I ig-hjj l

P-+C I I 0

+lg~ i/p t

e) IlfiKl =<-IrfIxipnum l(p)I.

In the above equations f,, g. and h are time functions, p and a are

scalars, and c is a dummy time.
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Thus for the time dependent case with permanent hysteresis our stress-

strain equation becomes

c'/Ile!lp '

S(t) : f N(T)f(Te)dT • (4.19)

0

If N(T) is non-zero in the range 0 < T < o, then it can be

expanded as suggested by equation (4.9) and (4.10). If f(Te) is

similarly expanded in a polynomial a form similar to equation (4.11)

is obtained, the only difference being the replacement of 1hell,

which was defined as what is now known to be jjejj , by 1ell . The
po

resulting stress-strain equation is

2

S(t) :AjePj(ellej p) + A2e P2(e/hjeljp) + A3e3P3(e/Ijeljp)+ ,

(4.20)

where A1 = constants 1
Pi polynomials in the variables (e/j lejlp) •

The use of pth order Lebesgue norms in the constitutive equations

is not original to this thesis. Fitzgerald [58] has proposed a j
constitutive equation wherein the stress is a functional of the present

th
value of the deformation gradient and its p order Lebesgue norm.

Coleman, Noll and Mizel have also proposed using these norms as i
approximations to the constitutive functionals [21,60]. Certain re-

stricted forms of the constitutive equations developed in this study

can be shown to be contained in these earlier works. The development I
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herein however was not motivated by the earlier works which were

developed from a pure mathematical continuum approach. Instead the

development in this dissertation stems from attempting to mathemati-

cally model the microstructural behavior of highly filled polymeric

materials. Key variables, which were measures of microstt'uctural

damage, that were obtained from these models so happened to have the

exact same mathematical definition as LP norms and was brought to the

author's attention by Fitzgerald. This work may therefore in some

way physically justify the use of norms in constitutive theory.

It is clear that equation (4.19) and (4.20) contain the time

independent behavior given by equations (4.4) and (4.11) as special

cases by letting p = -.

In order to obtain equation (4.18) and therefore equations (4.20)

and (4.21), it was assumed that tfk in the cumulative damage relations

was given by a simple power law. Equivalently this meant that the

damage relation, D(t), for this special case could be expressed in

terms of the LP norm as

[Di(t)] I / p = aeiI p = Di(t) , (4.21)

where a is a constant and D'(t) is some new measure of damage. Since
failure was defined to occur when D.(t) = 1, failure also occurs when

DI(t) = 1 for all p. Although D.(t) is a non-linear damage measure

whenever D(t) is linear, it has more useful properties than D(t). An

example of this is that by using equation (4.21) instead of equation

(4.12) for this simple power law case, the strain cumulative damage
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criterion contains the maximum strain failure criterion simply by

letting p =. Also equation (4.21) and equation (4.12) predict

precisely the same time to failure for all arbitrary strain histories I
providing tfk is given by a simple power law. Since any monotonically

increasing function can be approximated in terms of LP norms, cases

when tfk is not a simple power law can also be handled. Consider the

case when Di(t) can be given by

D'(t) : alleilll + a2IleiI12 + + apIleillp. (4.22)

For a simple step strain of magnitude eio, the time to failure, tf, is

given by the equation

eio = altf + a2tf + .. + a tf , (4.23)

Letting e i = Te as before the critical value of T at any time t

becomes

-1
Tc(t) = ajije!12 + a2 1jejI2 + .. + apI eIIp. (4.24)

Equation (4.24) could be used to give the upper limit of integra-

tion in equation (4.16) and equations similar to equation (4.20) could

be generated. This approach is not necessary since in the next section

the approach given here is generalized to obtain three dimensional

constitutive equations with permanent memory phenomenon. The importance
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of the model approach selected is to shed light on key variables or

measures to use in the constitutive equations.

Before proceeding further it would be wise to point out some of

the behaviors possible using equation (4.19) or (4.20). Earlier in

this thesis existing integral viscoelastic constitutive theories

were criticized as being of limited value since they did not contain

the special case of a homogeneous non-linear constitutive equation of

degree one. Equation (4.19) clearly satisfies the concept of a simple

material since if the history of the strain is known, the stress can

be computed. To see if the homogeneity condition can be satisfied,

the history ae(T) is substituted for the history e(T) and the two

equations can be compared. Doing so we find after using the properties

of LP norms given above that

C'/Ialllell I

F[ae( )] N(T)f(aTe)dT . (4.25)
0

t
For the homogeneity condition to hold we must recuire for all e(,) and

0
all scalars a

C'/Ilell p C'/Jalllel Ip

a N(T)f(Te)dT = N(T)f(aTe)dT .(4.26)

Replacing the dummy variable T in the left hand side of equation (4.26)

by aT, equation (4.26) becomes
-C'/al lel IP /C'/IalllellD

a2 J N(aT)f(aTe)dT J N(T)f(aTe)dT . (4.27)

0 0
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Observe that if a2N(aT) = N(T) and if the indefinite integral involves

only even powers of T, then the homogeneity condition will be satisfied.

Note that Nkr) l/T2  meets the first requirement and the second

requirement is satisfied simply by making the function f odd.

Before generalizing this method it should be shown that N(T) l !/T2

is representative of filled systems. This conclusion can be readily

demonstrated by examining the distribution of effective gage lengths

between two particles in a filled system. Recalling that N(T) was

the fraction of elements in a unit cross-section having intensity

factors between i and T + dT, the proof proceeds as follows. Consider,

for simplicity's sake, an array of evenly spaced, rigid spherical

particles embedded in a polymer matrix. From symmetry conditions,

only one cell from such an array must be analyzed. The cell selected

below is adequate for this purpose and can be thought of as a cube

with sides d, having protuding half-spheres from the uppe" and lower

faces as sketched below.

If the material is deformed, the distance d can be thought zof as

increasing from d to d + s. Observe that the relative deformation
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between points aa is considerably different from that at bb-. Defining

the local strain as being

ei = ai ) a-aa (4.28)

where aa,aia i re considered functions of r.

The spacing between similar points on adjacent particles before

deformation becomes

d if r> .

aa =(4.29)

d-2pcos if r < p,

and after detormation the spacing becomes

aia i  a a + s. (4.-0)

rhe local strain in this one dimensional model is given by

sl/ d if r >

ei(r) = (4.31)
s6/(d-2pcos p) if r < p.

The observable mi.,'.roscopic strain e, for such a deformation would

simply be 4/d.

Defining the intensity factor - as being the ratio of local to

measured strain,, one obtains
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ei (r) 1 if r > p
- :_ (4.32)

e 1-cos) if r < p.

The distributing function N(&) can be found by integrating over

the middle cross-section those elements having intensity factors T.

This computation may be carried out more easily by expressing the

incremental cross-sectional area in terms of r and *. To accomplish

this, note that those elements having constant T are on a circle of

constant r. The elemental strip of area is 2'rrdr, where r = psino.

The incremental strip of area can be expressed as

dA(T) = 2Trp 2sinocosodo for r < p (4.33)

Differentiating equation (4.32) to obtain the value of sine and solvinq

equation (4.32) for the value of cost equation (4.33) becomes

dA(& ) .. d2 1 1 '1
- 2 (Ty* -T )' r < p (4.34)

Assuming the elements are distributed uniformly over the section,

yields N(T) = dA(T). Accounting also for the portion where r > p in

which T = 1, completes the computation. The final relation for N(t)

from the simple model described above is I

N(T) = (l-(p/d)2) 6(T-I) + 7 ( 1
2 T-

where 1< T < (l-2p/d) "1  (4.35)

6(r-l) = Dirac Delta Function.
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The volume fraction of filler of this model system can be expressed

in terms of the parameters p and d as Vf = 4 T(r/d) 3 , where Vf is the3f

volume fraction of filler in the composite model. The maximum value

of T therefore becomes

T a x : - 2 (\ 4 [ ) ( 4 .3 6 )

Equation (4.36) indicates that as Vf increases even to modest

values, rmax becomes quite large and in fact approaches infinity for

this simple model as Vf + 0.52. Clearly when T is large equation (4.35)

becomes N(T) I/T2 . The main difference is that the lower limit of

in the calculated distribution is 1 whereas in equation (4.19) it was

taken as zero. In filled polymers exhibiting the "Mullins' Effect",

this is of no concern, since the stress-strain behavior of an element

is very non-linear as indicated by the Langevin statistic and nearly

all of the stress is being supported only by a small fraction of the

polymer chains. Equation (4.19) can contain the types of behavior

exhibited by solid propellants and other filled polymers and also the

forms N(T) and f(TE) must take on are consistent with propellant

mi crostructure.

Before proceeding further to the development of three dimensional

constitutive equations, considerable insight into the problems of

mechanical characterization of materials can be obtained by analyzing

the simple one dimensional equation given in equations (4.19) and

(4.20). To restrict this equation to homogeneous functionals of degree
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one a sufficient condition is to require that equation (4.19) have

the form

S(t) = AieP((e/I lelJ p)2) • (4.37)

In the above equation P is a polynomial in the variable

(e/ tel p)2. This condition is necessary if scalar multiplication is

to hold for all scalars, positive or negative. A special case of this

equation is

S(t) = lOe[l + (e/Iell )n], where n is an even integer. (4.38)
p

Equation (4.38) gives a relaxation modulus that is independent of

the applied strain magnitude, and will obey the homogeneity require-

ment of linearity for all scalars, with any arbitrary strain input.

Equation 4.38 is not linear however as norms are not superposable

except in the most trivial examples. The material represented by

equation (4.38) is therefore non-linear, but for many types of tests

used for material characterization it could not be distinguished from

a linear viscoelastic material. In fact, the parameters n and P

appearing in this constitutive equation can be adjusted so that the

derivative of the constant strain rate test is proportional to the

relaxation modulus; a commonly cited property of a linear viscoelastic

material [19,45]. Careful examination of the stress output to various

strain inputs confirms the non-linear nature of this equation and
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indicate it is within the range of this simple equation to d-1scribe

the one-dimensional response of solid propellants at small strains.

To demonstrate this ability, the stress output for a variety of

strain inputs have been determined for different values of n and P.

These data are illustrated in figure 4.4 through 4.9. In these

calculations the ratio n/P has been kept constant; therefore all of

the materials would exhibit the same relaxation modulus. However as

clearly indicated by these figures, the behavior to other inputs is

diffe.nt for the different values of n and P. This feature of

giving the same output for one test, yet a different output for other

tests, is characteristic of non-linear systems. If the material were

linear, this feature would be impossible since one test dictates the

results of all other tests for linear systems. Characterization of

non-linear materials is therefore a difficult task as many tests must

be used. Individuals familiar with the behavior of linear viscoelastic

materials and the non-linear behavior of composite solid propellants

will observe great similarity between the data illustrated in

figures 4.4 through 4.9 and the behavior of these materials.

-59-



Co LU

.03 0

IV)
LUJ

LUI

C-

LUJ

C~V)

0 C) C
t- LC)

M0

-60-



4-)t

LU
EH

44-)

C)

E <.

zJ

a))
01 0

LOU

V)l~ r- CLj

44

C a-

C)4~ C) ) C
U

_ _ _ _ _ Isasa)

-61-.



Cl(Y) WL

u 4-) C)-

4-) c

00

C)

'U-U

0- S 0

C),

MTv,

CL L

LL'I

C))

LO LU c

-6-



c a)

LO

E '

C,..: w

CD

* Hn

4-)

1-71

CC

C:) LA
0)

C+ C DC )f
k.0 LO Cw

Lsd Hs'LP

-63



UC/

QJJ

4)!

CO

EA

.-- ILl

L()d

ClC)

w

4-) wi

QLi

Li

-- 01,

I

-.

CD)

w -
la),

al

CD
I I'II H •

CD0 0 C) 0 CD

Wo LO

.Lsd I s I ssea; s

-64-



00

4-)-

4) ) Z:

4-)-

V) C)0

r- *r- 0
> 4-) V)

'UU

S.- 0) -

C:)A

'U O
F-

U)

C) L<)

00)

-65-



V. THREE DIMENSIONAL CONSTITUTIVE EQUATIONS

In section 3 it has been demonstrated that the Frechet expansion

provides a constitutive equation that is of little value for materials

with non-linear homogeneous constitutive equations. In order to

develop a general non-linear constitutive eq,;ation with homogeneity

of degree one, the restrictions imposed by this expansion must be

circumvented. The main difficulty lies in the fact that the Frechet

multiple integral expansion represents a time-memory mechanism. In

section 4 it was demonstrated that if the so called LP norms of the

deformation history could appear in the constitutive equation, then

many of these difficulties could be eliminated. It should be pointed

out that the LP norms yield a strain-memory mechanism and not just a

time-memory mechanism. This section will primarily deal with consti-

tutive equations for non-linear materials having homogeneous constitu-

tive equations of degree one that can describe the mechanical response

of solid propellants and are amenable to three dimensional stress

analysis.

The simplest way to proceed in the development of constitutive

equations homogeneous to degree one is to recall the stress-strain

equation for isotropic materials given by Green and Rivlin was
+

S(t) K 0o(t)I + K.(t,T)e(TI)dTI +

0t t

+f K(t'Tl T2 )e(T)(T2 )dTdt2 +

t .

+ ... . K n (t, '" , )e(T1. .e(In)d-,... dTn + .., (5.1)
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It t t]

wiere Kn(tT122)T Kn) [ Kn 112(d:I3(d),tT1," n]
0 0 0

and = dummy time*. (5.1
con' t)

In th s theory the kernels were functionals of the history of the

scalar invriants of the Cauchy infinitesimal strain tensor as well as

the generi(. and current values of time. If the form of these kernel

functionals was given again as a Frechet expansion, then the class of

materials hiving non-linear homogeneous constitutive equations was

shown not ttn be contained by the theory. There is great similarity

between equition (5.1) and the one dimensional irreversible equation

obtained fron the models in section 4, which was given as

S = AlelI(e/Jlell ) + A2e2P2(e/jjejj p) + A3e3P3(e/jjejjp) +

+ An eP n(e/j tej p) + " (5.2)

Equation (5.2) allows for no fading memory viscoelasticity, only

permanent strain-time memory. If the kernel functionals of equation

(5.1) were allowed to take on terms like (JI1111 /IIllI! q), then the
P q

equation could contain two types of memory phenomenon; the fading

memory viscoelasticity contained in the hereditary integral representa-

tion and the permanent memory behavior registered in the LP norms.

The dummy time is introduced so that no confusion can arise as to

what variables enter into the integration process.
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It is important to note here that none of the principles of iso-

thermal continuum mechanics are being violated. The only principle

that could be violated is that of objectivity which states the consti-

tutive equation should remain invariant to an arbitrary rotation or

translation of our reference frame [25,26,27]. If the strain measure

itself is objective and the stress written as a functional of the

objective measure, then the constitutive equation will automatically

be objective as shown by Green and Rivlin [29].

Before proceeding in the development of homogeneous constitutive

equations of degree one, a special case of equation (5.1) is worth

mentioning. Note that when the kernel functionals are independent of

the variables T i , i = l,-...n, then the integrations can be performed

and the result is

S(t) = Ko(t)I + Kl(t)e(t) + K2(t)e2(t) + .. + Kn (t)en(t) + "*

t t t

where Ki(t) = K i[I1(d)I2(d)I t] . (5.3)
0 0 0

Applying the Cayley-Hamilton theorem [25,27,30], equations (5.3)

can be reduced to the form

S(t) : I + Lpe(t) + 2e2 (t)

. t t t
where ,i t ] (5.4)

0 0 0
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Equation (5.4) represents a viscoelastic material where all the

time effects come from the history of the scalar invariants of strain

and also from aging effects, which can be eliminated by removing the

variable t. Depending on the form of the functionals i, this

particular constitutive equation can describe both permanent and

fading memory viscoelasticity with strain coupling. When the history

dependence is eliminated from the functionals ' then equation (5.4)

reduces to equation (3.20), the standard non-linear elastic equation

for isotropic materials.

The development of constitutive equations which are homogeneous

to degree one is quite simple and can be done by simply imposing

restrictions or constraints on equation (5.1). Recall homogeneity

of degree one simply means that scalar multiplication is valid for

all scalars. Recall also that the strain invariants are given by

, = e 11  + e22  +e33

12 = elle 22 + tlle 33 + e22e33 - e1 2
2 - el 3

2 
- I

13 = elle 22e33 + 2e12e13e23 - elle 232 - e22e132 - e33e122 (5.5)

Mathematically the homogeneous constitutif-d equation of degree

one has the property that the equation

t t
Fij [aepq (t5)]= aFij [epq(t T)] (5.6)

T=O T:O)
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holds for all real scalars, all strain inputs and all time t. Since

the first strain invariant is homogeneous to degree one, the second

to degree two, and the third to degree three, non-linear homogeneous

constitutive functionals can be constructed within the framework of

the Green-Rivlin theory.

From physical reasoning kernel functionals homogeneous to degree

less than zero cannot be admitted since they can yield unbounded

stresses or singularities which are not real. With this added restric-

tion the most general constitutive equation homogeneous to degree one

within the range of applicability of equation (5.1) is

t t t t
S. (t) 6ij K j(0),2(d5I3(d)t, ekk ()dT

01 0 0 0

+ KI I1(d9,12(d9,I3(d),t, e ( )dT
0 0 0

0

t t t
where Ki[aI1( )'a21 2 (&),a313()9t'T =

[ t t t T i
Ki [Ii(d),I2(d),I3(0),t,] • (5.7)

0 0 0

In equation (5.7) the kernel functionals are homogeneous to

degree zero. If the kernels are independent of the history of the

invariants then the equation reduces to that of linear viscoelasticity.

If the material is non-aging, equation (5.7) must reduce to [28,29]
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ot [ t t t T kTd

Sij(t) = fKo[I I )12( I3( t e )'d

In a similar manner the state of strain can be expressed in

terms of the history of the stresses for homogeneows eauations of

degree one as

6t t t

eij(t) = 6i o 1()J()J( '-Sk d

+ 1 1(),J 2 (1),J 3  t- (5.9)

0 0 0

In equation (5.9)me the the principle stress invariants, and the

kernels have the property that J
1t t t = t t t

LiLal(),a2J2 (),a3Jg(d),t-T1 = i  J1.

0 0 0 0

0(.

(A.D

Except for the case when the equations reduce to linear equations,
direct inversion from equation (5.8) to equation (5.9) appears to

be virtually impossible. Unlike the linear constitutive equations the

power of Laplace transforms cannot be applied since these transforms

can be applied only to linear functionals. This difficulty does not

mean that the inversion does not exist. In fact the homogeneity
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condition alone intuitively suggests that the inversion does exist

since scalar multiplication must hold for all scalars and this type of

one-to one behavior is characteristic of invertible systems. For the

purpose of this thesis however, equation (5.9) is given as the inverse

form of equation (5.8) when such an inverse exists.

-

-72-



VI. ANNIHILATORS, A TYPE OF FADING MEMORY

In section 4 a one dimensional permanent memory constitutive

equation was developed using LP norms as a history measure. In

section 5 the constitutive equation of Green and Rivlin was extended

to include homogeneous non-linear constitutive functionals of degree

one. This extension simply placed general restrictions on the kernel

functionals of the integral expansion representation and no particular

forms for the kernel functiouals were given. The final equations

given in section 5 contain a type of permanent memory as well as

fading memory elastic and viscoelastic behavior. The word elastic

in this sense is being used in the classical definition [22,24,36]

which states a material is elastic if it returns to its original

shape when all the tractions are removed. Fading memory implies the

material will also return to its original properties if allowed to

rest sufficiently. If the material has both fading memory and

permanent memory components that make up its total behavior, the

combined response is naturally of the permanent memory type. Some

materials exhibit a type of fading memory not contained in the conven-

tional sense of fading memory. To illustrate this more clearly, a

fading memory viscoelastic material will recover its original properties

on essentially the time scale as it can dissipate energy. Often in

the field of polymer rheology the measure relaxation times yi. or

retardation times i, are used to characterize materials in Frony

series type representations [19,61]. If a material has a single

relaxation time y, then it will recover its original properties when
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the tractions are removed if it is allowed to rest for a time, say 5Y.

Materials exhibiting the "Mullins' Effect" often exhibit no relaxation

or rate effects yet will recover all or some portion of their original

properties if allowed to rest for very long periods of time [5,6,60].

This -ehealing phenomenon, as it has often been called, implies the

reversing of permanent damage or memory and occurs on a completely

different time scale than any viscous effects. This behavior could be

viewed as some form of annihilation of the permanent memory measures

which are governing the materials response. The rehealing phenomenon

is common in solid propellants and most filled polymer materials and

must be properly accounted for in accurate constitutive equations for

these materials.

The mathematical formulation of the rehealing phenomenon into

the constitutive equations is not difficult, and in no way destroys

the homogeneity restriction placed on the kernel functions in the

latter part of section 5. There are numerous ways in which the

rehealing phenomenon can be included. In section 4 it was shown that

LP norms were convenient and realistic measures of oermanent memory

phenomenon, therefore a more general norm will be defined which

yields the behavior discussed above. In section 4 the norm IfHj

was defined as

t

Ilflp 1 f f(E)J drI (6.1)
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A weighted norm [20,21,60] I IfI h,p, is now defined as

lfIlh~p  : (If (E )I h(t- ))Pd ,P (6.2)

where h(t-E) is a positive function which weights the function f(c)

over its history as ranges from zero to t. For our purposes it

is sufficient to define the weight function as

(1 ifE=t

h(t-r) = ifE<t (6.3)

A logical choice for the weight function is a single exponential

term or perhaps a Prony series. For the purposes of this thesis it is

sufficient to demonstrate that the use of such a norm in the consti-

tutive equation yields the rehealing behavior discussed earlier. Note

that when the weight function is unity for all its arguments, then the

conventional norm is recovered; use of HlfIIh p norms in constitutive

functionals contains those functionals only using j jfj p norms.
p

As an example, consider the case when h(t-,) is defined as a

simple exponential term

h(t-E) = exp(-b(t-E)) = exp(-bt)exp(bE) , ,here b >_ 0 . (6.4)

The weighted norm now becomes

IIfh = exp(-bt) If( )IPexo(bp )dr1'P (6.5)
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This weighted norm has some interesting properties that are

discussed below which indicate it is within the capabilities of such

norms to describe the properties discussed above with reference to the

reheal ing phenomena.

1) If the constant b<<P, then the annihilation of

memory will be on a completely different time

scale than any relaxation phenomena. Hence

for short times, the IIf'h,P norm will behave

approximately as the H1flIp norm.

2) Total annihilation can only take place when the

function f() is returned to the rest state,

f = 0, the annihilation then takes place at the

rate I'If1h,p " ceb(tto) where f() = 0

when r > to.

3) If the function f(E) is held constant, say at fo, for

some long time period, the accumulation and

annihilation of the norm balance each other and a

constant norm is achieved at long times.

f exp(-bt) {f foPexp(bP)drI

expblh.ll/ 10

Jfojexp(-bt) exp(bPt)'
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or

lfo If 0 (bP) - I /  as bt -+ large valuos.

To demonstrate that in a constitutive equation the proper type

of behavior can be obtained, consider the simple one dimensional

constitutive equation of the form

S(t) = Ae(t)(I ej lh,p/I ej ih,q)

where h(t-) = exp(-bt)exp(b ), and p>q>>b . (6.6)

For short times the equation behaves exactly as it would if

unweighted norms were used. If a state of strain is held constant

for sufficiently long times, the stress will decay to some equilibrium

non-zero value directly proportional to the constant strain e0. If

allowed to recover in the rest state for some long period of time,

some or all of the original response will be recovered. These

effects are shown in figures 6.1 through 6.3 for a cyclic input with

different rest periods between cycles. It is precisely this type of

behavior that is characteristic of the rehealing phenomenon that

plagues and complicates the behavior of many filled polymeric materials.

It appears that by incorporating lfilh p norms into the kernel func-

tions of the constitutive equations proposed at the end of section 5,

constitutive equations for materials with permanent memory, fading mem-

ory, rehealable memory or any combination of these could be obtained.
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These constitutive equations are not simply curve fitting

exercises but can be used in three dimensional stress analysis in a

simple, straight-forward manner as will be demonstrated in section 8.
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VII. THERMORHEOLOGICALLY SIMPLE MATERIALS

In the previous sections homogeneous constitutive equations

were developed for materials with a large class of memories. The

equations were restricted to constant temperature conditions. It is

well known that time effects such as relaxation, creep, and the reheal- 
N

ing phenomena are strongly temperature dependent [5,59. If all the

temperature effects are of the classical thermorheologically simple

type [19,45,47,48,49] (where an equivalence between time and temperature

exists), then a constitutive equation can be obtained that accounts for

transient as well as constant temperature environments. The equivalence

between time and temperature has been well documented by a number of

researchers for polymeric materials [19,45,47], and others have given

phenomenological as well as theoretical reasons for its existence. It

can be shown for example in the spring-dashpot models of linear visco-

elasticity that if the viscosity of the dashpots all have the same

relative temperature dependence, and the spring constants are all

independent of temperature, then time-temperature superposition and hence

thermorheologically simple behavior is valid [47). The assumption of

thermorheologically simple materials is not restricted to the domain of

linear materials. It is purely a mathematical relationship between a

reduced time and the real time-temperature history at a point. The

standard definition of reduced time which will be called t' and its generic

value which will be called T' or ' are

fT
'() = T'() ()]d , and (7.1a)

0
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t

t :'(t) = f A[O( )]dC (7.1b)
f0

where o() is the temperature-time history and A is a positive function.

Providing the assuiiption of thermorheological simplicity is valid, the

homogeneous constitutive equation of degree one would now become

Sij(t') =ij K I(')'12(')5i(W)'t'-T kk(T' ) d T'

+ KI1 )I2(V'),13 ('),' (T)dT',
- 0 0 0

where Ki aIj(V)a2 12(V ' ) , a 3 1 3 ( ) ,t -T I
0 0 0

K i  I(V'),I2(V'),13(V'),tI-T 1 (7.2)
we0 0 0

Since the strain input is only a time function and

De 3-P q' d r' :-21 dr = dep (7.3)

3'r 3Tpq

the equation can also be expressed as
Lt -it' t' t' ok

S ij(t) = 6ij K 0 (I'),12(),13(),t-T' ()dT

to tO O

+ K [ Il( )s 2(W ),2 (1 ' ) ,t -Tjeij )dT • (7.4)

f0 0 0

Three reduced times were defined instead of the conventional two to

eliminate confusion as to what variables enter into the integration
process in equation (7.2).
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Equation (7.4) is often times much simpler to use than equation (7.2)

since ep(T) is controlled in some forms of experimental data.
pq

Since propellant materials tested at constant temperature normally

exhibit time-temperature superposition [15,18,45], it appears that this

form of the constitutive equation could be an excellent approximation of

their behavior. In equation (7.2) or (7.4) the form for the kernel

functions has not been specified. If the kernel functions are to be

represented as I Ifijp or I plfl norms, no complications arise as the
p h1f1p

reduced time t and its generic value C' or T' simply replace the real

time t and its generic value T or E in the equations, whether they be

norms, functionals or functions. The definition of the norm for a reduced

time scale would be

t I

r, V (If(E,)Ih(t'- '))Pd '} /p  (7.5)Ilfllh~p if

where the superscript r denotes the norm is with respect to reduced time.

From such a norm it is apparent that increasing the temperature

could greatly change the rate of annihilation of memory.

To demonstrate the simplicity and effectiveness of the reduced

time, consider again the one dimensional constitutive equation in terms

of the 11f1 r norms.
p

S(t) = B e(t)[Ijel Ip /IjeI] , where p>q (7.6)
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If the temperature is constant, the reduced time simply becomes

t' = A(e)t, and

= A(O)C . (7.7)

For the case of stress-relaxation tests it is found that

i/p

Ileor = Ie01 (A(e)t) , and
P

1/

Ieol Ir = leol (A(e)t) /q (7.8)
q

The stress-time output for this test simply becomes a power law

in the reduced time.

1 1
-n.1

S(t) = Be [A(e)t] p  q = Ae°t' where n
00 q p

(7.9)

In fact, if the material is thermorheologically simple, the stress-

real time output from two similar tests performed at different tempera-

tures can be superposed on a s(t) vs Log t plot by simply shifting along

the time axis. The amount of shift required is precisely log [A(e)/

A(e2)] , where el and 62 were the two test temperatures. This shift

ability of stress-time data for equivalent tests will be true for linear

or nonlinear materials, no matter how the stress functional is represented.
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VIII. SOLUTION OF BOUNDARY VALUED PROBLEMS

The equations developed thus far are non-linear but homogeneous

constitutive equations of degree one that describe a large class of

memory phenomena. For the special case of thermorheologically simple

materials the equations have been expressed in terms of reduced time

variables thereby encompassing an even larger class of behaviors.

The purpose of this section is to demonstrate the applicability of

this type of constitutive equation in the solution of either stress

or displacement boundary valued problems. The types of problems

considered will be proportional boundary valued problems with constant

body forces and no inertial effects. By a proportional boundary

valued problem it is meant that the conditions at the boundary sur-

face are given as a single product term involving a spatial function

and a time function. Since no inertial effects are being accounted

for, the time variance of the boundary conditions must be reasonably

slow or quasi-static to justify having no inertia terms in the equa-

tions of equilibrium. Proportional boundary value problems encompass

a majority of the engineering problems encountered since they can

allow for the boundary values to change with time. For linear

elasticity or linear viscoelasticity, the procedure for developing a

solution is straightforward since all the equations that must be

solved are linear and superposition is applicable. For non-linear

materials however, one is quite fortunate if a large class of problems

can be contained in a solution scheme. Such is the case for the

homogeneous constitutive equation of degree one.
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8.1 Proportional Stress Boundary Valued Problems

In the introduction of this section it was indicated that the

solution to proportional boundary valued problems could be obtained

for non-linear constitutive equations homogeneous to degree one.

For plane strain or plane stress problems which have proportional

stress boundary values it is found that a linear elastic solution

for the stresses is a solution for the stress-time distribution

whenever the kernel functionals of the constitutive equation can be

decomposed into a product form. The strain-time distribution for

this case will be given by substituting the linear stress solution

into the non-linear constitutive equation which is homogeneous to

degree one. That such a solution is applicable is demonstrated in

the following discussion.

By a proportional stress boundary valued problem it is meant that

the boundary conditions are space and time separable.

S ii(xk,)vj(xk ) = Sij(xk)vj(xk)f(r), all Xke boundary.

where v. = direction cosines of a unit vector normal

to the boundary

5s0j(xk) = stresses prescribed at some reference time

f( ) = time function (8.1)

In the above description it was assumed that the boundary position

does not change significantly with time which naturally restricts this

discussion to infinitesimal strain theory. Hence the strain tensor
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in the constitutive equation will be given as the Cauchy strain

tensor e.. where

e (DU./ax + ) (8.2)iij 2 ui/x + u xi .•

With this definition of strain, the constitutive equation

becomes

t t t
JI.

e ii(x 2 0 ii Ljj (x'o 9, (X k, ),J3 (XkI o ) It-] ixk9)dT

t rt t
+ L ((xk x T)dT. (8.3)

0k 0  k 0  k 0  i

The kernel functionals in equation (8.3) were specified as being

homogeneous to degree zero. Note that the kernel functionals contain

spatial measures since the invariants are simply combinations of the

stress which except in trivial cases, are functions of the spatial

coordinates xk. For the purpose of clarity, assume that a linear

elastic solution for the stresses within the body is valid. For the

proportional boundary valued problem this linear elastic solution can

be represented as

Sij(xkT) = Sij(xk)f(T)

all XkE volume, and 0 < T < t . (8.4)

-88-



8.1 Proportional Stress Boundary Valued Problems

In the introduction of this section it was indicated that the

solution to proportional boundary valued problems could be obtained

for non-linear constitutive equations homogeneous to degree one.

For plane strain or plane stress problems which have proportional

stress boundary values it is found that a linear elastic solution

for the stresses is a solution for the stress-time distribution

whenever the kernel functionals of the constitutive equation can be

decomposed into a product form. The strain-time distribution for

this case will be given by substituting the linear stress solution

into the non-linear constitutive equation which is homogeneous to

degree one. That such a solution is applicable is demonstrated in

the following discussion.

By a proportional stress boundary valued problem it is meant that

the boundary conditions are space and time separable.

S. (x ,)v.(X) = S(Xv.(x)f(T), all XkE boundary..iJ k vjk) = oik jxkf

where v. = direction cosines of a unit vector normalJ, .,.

to the boundary

sij(xk) = stresses prescribed at some reference time

f(T) = time function (8.1)

In the above description it was assumed that the boundary position

does not change significantly with time which naturally restricts this

discussion to infinitesimal strain theory. Hence the strain tensor
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in the constitutive equation will be given as the Cauchy strain

tensor eij where

e l_ (aui/axj + auj/ax) (8.2)eij 2 " "

With this definition of strain, the constitutive equation

becomes

e J(xk t) 6. L pJx
i f Lo[ (Xk')J 2 (kC) 2J3(xk' )'t- ii(xk ' T )dT

0 0 0

homogeneous to degree zero. Note that the kernel functionals contain

spatial measures since the invariants are simply combinations of the

stress which except in trivial cases, are functions of the spatial

coordinates x k. For the purpose of clarity, assume that a linear

elastic solution for the stresses within the body is valid. For the

proportional boundary valued problem this linear elastic solution can

be represented as

S ij(Xk,) = Sij(xk)f() ,

all XkE volume, and 0 < t < t . (8.4)
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In equation (8.4) Sij(xk) is the solution to the boundary valued

problem when f(T)= 1. This proportionality of the solution is a direct

consequence of the first linearity rule. If the linear elastic

solution for the stresses is valid, then the stress invariants

ii (x k') are given as

J1(xk,) = J (Xk)f(E),

J2 (Xk,) = J2 (xk ( ,  and

13 (xk, ) = J (Xk)f 3 ({), for all XkE volume and 0 _ < t.

(8.5)

In equation (8.5) the invariants J?(Xk) are simply the values of

the invariants when the time function f( ) is equal to unity. Observe

that at some particular location within the body xk=(al ,a2 ,a3) the

invariants are given as

Ji(xk, ) = J (aj,a 2 ,a3 )fi (E), I
where Jo(a 1 ,a 2,a 3) = constant function. (8.6)

Assuming now that the kernel functions can be separated into

product functions yields

r t t tLi 1 (Xk, ),J2 (Xk, ),J3(Xk,),t-T =

0 0 0

N
N Mir J(Xk' )'t Nir 2(Xk) Pi 3(X,),t-o. (8.7)

r= 00 0
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Recall that these kernel functions L and Li were homogeneous

to degree zer'o which means

Li [aJ1 (xk,),a2J2(Xk, ),a3J3(Xk, ),t-T] =

0 0 0

r t t tLJl(Xk, ),J2(X k,),J3(Xk, t - T] I

0 0 0 -

where a is an arbitrary constant and s pq(T) are arbitrary. (8.8)

Therefore, it is required that each of the components of

the kernel decomposition be likewise homogeneous to degree zero.

Substituting the invariants given by equation (8.6) into equation

(8.7) produces

t 0 t
AlirJ 1(xk' )'t-I = M i r1 (xk)f(&)It- T,

o 0

Nr[2(XkF) t]] 0  t, and
Nir [J k,),-T] = Ni  2(X if()t- ,an

oI)9 r~j k o(

t tIPir 3(Xk'&)'t'T] = Pir 3(xk)f3( )'t- " (8.9)
o0 0

The constitutive equation gives the strain at some arbitrary,

but fixed, point %'ithin the body. At some fixed point in space,

however, the functions JI(xk), J2(Xk), and j3(Xk) are simply

constants. Since the kernel functions Mir, P ir' and N ir were

specified as being homogeneous to degree zero, these constants
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have no effect on the values these kernels take on. For the special

case when a linear elastic solution is valid and the kernels can

be decomposed, the conclusion is as follows

Mirl(Xk, ),t- = Mir[4(xk)f( ),t-] : Mir( ) t-

oF 0  Ti N'f2 ) '~

Ni =(xk )t- Nir 2(Xk)f 2 ()t N 2(),t-i r 
(o.1

r (Xk')t-- = Pir Xk) f ( ) t -  = Pir 3(C),t-T .(8.10)0 0 If 0 1.

Note that the kernel functions now contain no spatial variables

and are only functions of the history of f( ) and the variable t-T.

Since the forms of these kernels are still arbitrary, there is no

loss in generality by assuming that a functional of f2(E) or f3(-)

is contained in a general functional of f( ). Therefore the

assumptions of a linear elastic solution for the stresses and

separable kernels results in

t t tL i[JI(X k, ),J2(XkC),J3(Xk, ),t-]=

0 0 0

t tt ,Li f(1),f2( ),fl(E),t-T = Li .( ),t-T (8.11)
0 00

Dropping the prime notation in the last of equation (8.11) the

constitutive equation now becomes
t

eij(xk't) = ij f L (o0),t -  Sii(xkT)dT +

t

L2  (),t- ij(xkTdT (8.12)
0
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Equation (8.12) would be identical to the linear viscoelastic

constitutive equation if the kernels L and L1 were independent

of f(). Because f(&) is present in the equation, linear transforms

cann)t be utilized on the constitutive equation to demonstrate

that the assumed linear elastic solution for the stresses is valid.

If it can be shown that equation (8.12) will satisfy the equations

of equilibrium and compatibility whenever the linear elastic solution

is valid, a type of correspondence principle will have been

developed similar to what has already been done in the theory of

linear viscoelasticity. The validity of the elastic solution can

be demonstrated by substituting the constitutive equation directly

into the equations of equilibrium and compatibility. It should

be immediately obvious that no complications can arise in such a

procedure since the only spatially dependent quantities in the

constitutive equation are the stresses si i and the strains eij.

For the two dimensional problem only one equation of compatibility*

is present,

a2e 1(xkt) + 2e22(xk,t) 2a2el2(Xk,t)+:(8.13)
X2

2  Xl2  XlOX 2

Substituting the constitutive equation directly into the

compatibility equation and interchanging the roles of integration

*There are other compatibility conditions for plane stress that a;'e

sometimes not satisfied by this method. See Timoshenko and Goodier [22],
page 25.
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and differentiation equation (8.13) becomes

+ +2

t 2S12(Xk,T)

-2LI~f (O)t-T dT = 0 .(8.14)
0 3X13X 2  I

The equilibrium equations for a two dimensional problem are

qSll(xk,T) 9Sl2(xk,T)

+ 3+ X, = 0, and

S12(xk2 ) + S2 2 (x k 2T)

3X1  + X2 = 0

where 7i are body forces and were specified as being constant.

Differentiating the first equilibrium equation with respect to xj,

the second with respect to x2 and adding the following is obtained

;2S12(Xks ) -
2S, (X k ' ) 32S 22(Xk)) (8.16)

2 -xIx 2  =- + x2
2

Substituting this result into equation (8.14) yields
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/'Lof( ),t-T V2Si(XkT) + Ll ( ),t- V2[, (Xk,T) + S22(Xk,t dT : 0,

00

where v2 = a2  a2a=x + x2 . (8.17)

8.2 Specialization to Plane Stress

For the condition of plane stress s33(XkT) = 0, with this restric-

tion equation (8.17) reduces to

t

*/I 3(Tf~)tT + ii2.(xksT )d T=0. (8.18)

A sufficient condition to make the integral in equation (8.18)

vanish is to require that

V25;0(x 0 , since Sii(Xk,T) = f(T)Sii(xk) (8.19)

Equation (8.19) is precisely the identical condition placed on the

stress distribution for a linear elastic body. The assumption made in

equation (8.4) therefore in no way violates the equations of equilibrium

or compatibility.

8.3 Specialization to Plane Strain

For the condition of plane strain e33(Xkst) = 0, therefore taking

the Laplacian of the constitutive equation produces

tt

0 v33(xk t) =f (Of( t-+]2Sii~k + L,[f(O)t-tvS3x ~T

(8.20)
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Substituting this restriction into 8.17) gives

t t

0 "T0

In order to require this integral to vanish for all times and all

space a sufficient condition is to require

v2Sii(Xk) 0, since Sii(Xk,) f(t)Sii(Xk) (8.22)

Equation (8.22) is again the exact condition placed on a plane strain

solution for a linear elastic solid.

For the case of plane strain and plane stress a type of corres-

pondence principle between the linear elastic solution and the

solution for a homogeneous but non-linear 
material has been established.

This correspondence principle can be 
stated as follows:

CORRESPONDENCE PRINCIPLE 1.

Given a plane strain or plane stress proportional boundary valued

problem of the form

i) Sij(Xk,)vj(Xk) = Sj(Xk)vj(Xk)f(t) Xke Boundary and 0 < t

for a material having a non-linear but homogeneous 
constitutive

equation of degree one of the fom
t t t t Si

ii) ei (x ,t) = 1i 3 
)  t "  d-

fo0 00

+ Ll J(X k,9(),sJ 2 kC, ),J3 (Xk' ) t- Sii(x k'9T)dT
f0i 0 0

0
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Then a plane strain or plane stress linear elastic solution for the

stress distribution is valid and when substituted into the non-linear

constitutive equation, the equations of equilibrium and compatibility

used in two dimensional elasticity will be identically satisfied

provided

1) the body forces are constant

2) the kernel functions can be decomposed into a

product fozm, each term of which only involves
t

one invariant history Ji(x k,) and the
0

variable t-T.

The strains can then be obtained by substituting the time depen-

dent elastic solution into the non-linear constitutive equation which

can be reduced to the form

t

iii) e (xk t) = 6ijSi(Xk)f Lo[f( ),t-] (T)dT

0t t
+ S ij(xk)  J0(T)dT

8.4 Correspondence Principles for Three Dimensional Problems

Other correspondence principles can be developed by the same

method by first assuming a solution of a particular form exists and

then showing what conditions are necessary to satisfy the equilibrium

and compatibility equations. In this manner the following correspon-

dence principles can be developed.
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CORRESPONDENCE PRINCIPLE 2.

Given a three dimensional proportional boundary valued problem

of the form

i) Si(xk, )vj(xk) 0 (xS k )vj(xk)f(T) Xke Boundary, and 0 < T < t

for a material having a non-linear but homogeneous constitutive

equation of degree one of the form

ii) ei(xkT) ij L° (Xk o I o ii(xk 9)dT

0o 0 0 0

tt t t+ L, Y (X k, ),J2(xC),d2(Xk, ),t-1 Sij (x kT)dT
ko 0o

Then a linear elastic solution for the stress distribution is valid

and when substituted into the non-linear constitutive equation will

satisfy identically the equations of equilibrium and compatibility

provided

1) the body forces are constant

2) the kernel functions can be decomposed

into a product form, each term of which
t

involves only one invariant history J i (xk,4)
0

and the variable t-T.

3) the two kernel functionals L° and L, are

proportional to each other, the proportion-

ality factor being a type of Poisson's

ratio. L L
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The strains can then be calculated by substituting the time de-

pendent elastic solution into the non-linear constitutive equation

which can be reduced to the form

tiii) ij (xk ,t) = iSli(Xk) ( -Sij(xk Lo (&),t-]i()dT ,

where P is Poisson's ratio.

CORRESPONDENCE PRINCIPLE 3.

Given a three dimensional proportional displacement boundary

valued! problem of the form

0

i) ui(xkT) = ui(xk)f(T) , XkE Boundary, 0 < 7 < t

for a material having a non-linear but homogeneous constitutive

equation of degree one of the form

t
ii i) ,[l ') ,12(XkE) ,I3(Xk ) ,t i X ,)dT i

Sij)xk't :I iiJ IkX

t t t tii S x(xk,&))12(x kt-T]i(Xk)dt

f 0O 0

Then a linear elastic solution for the displacements or strains is

valid and will satisfy the equations of equilibriw, and compatibility

when substituted into the non-linear constitutive equation provided
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1) there are no body forces

2) the two kernel functionals K and K, can be
0

decomposed into a product form, each term of

which involves only one-invariant history
t

Ii[xk,E] and the variable t-r.
0

3) the two kernel functionals K° and K, are

portional to each other, the proportionality

factor being a type of Poisson's ratio.

K, = (1-2p) K0

The stresses can then be calculated by substituting the elastic

strain solution into the non-linear constitutive equation which can

be reduced to

ii) ( e0t t
iii) Sij(xkt) eii(xk)6ij + (1-2u)eij(xk)f Ko[f(),t- (T)dT.

CORRESPONDENCE PRINCIPLE 4.

Given a three-dimensional proportional boundary valued problem

of the form

i) Sij(xk~t)vj(x(xk =  f(T) XkE Boundary, 0< T < t

for a material possessing a non-linear but homogeneous constitutive

equation of degree one of the form

ii) lelj(xkst) +( ) 6if ot-S*i(xk T)dT +JL,(t )ii(xkT)d4
0 

0
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Then a linear viscoelastic solution for the stress distribution is

valid and when substituted into the non-linear constitutive equation,

it will satisfy the equations of equilibrium and compatibility. The

strcrns can then be calculated by substituting the stress history into

the above constitutive equation.

CORRESPONDENCE PRINCIPLE 5.

Given a three-dimensional proportional boundary valued problem of

the form

i) ui(xk T) O f(T) Xke Boundary, 0 <_ T t

for a material having a non-linear but homogeneous constitutive

equation of degree one of the form

ii) Sij(xkt) = H[fm] 6i K0(t-T)ei (Xk T)dT TK(t-T)eij(xk T)dT

0 00of

Then a linear viscoelastic solution for the strain distribution

is valid and when substituted into the non-linear constitutive equation

satisfies all the equations of equilibrium and compatibility. The

stresses can then be calculated by substituting the strain history

into the above constitutive equation.

It has been shown that every linear elastic or linearly visco-

elastic solution to a proportional boundary valued problem corresponds

also to half of the solution (either the stresses or the strains, but

not both) to a similar problem for materials having homogeneous but

-' 00-
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non-linear constitutive equations provided certain restrictions on

the kernel functionals are imposed. For two dimensional stress

boundary valued problems no additional restrictions were imposed.

When the kernel functionals cannot be put into these forms, then it

appears that no exact correspondence between the linear and non-linear

solutions exist and other means of solution must be used. It should

be pointed out however that most complex problems are solved using

large computers whether the material be linear or non-linear. Numerical

methods for the homogeneous constitutive equations should be fairly

simple to develop or adapt to those already used for linear visco-

elastic analysis no matter what the form of the kernel functionals.

Hence structural analysis for this class of materials should be a

straightforward extension of what has already been accomplished for

linear materials. Since these correspondence principles do exist

between the non-linear and linear solutions for materials having non-

linear but homogeneous constitutive equations of degree one, they

must be the simplest form of non-linear constitutive laws that are

amendable to analytical methods.

8.5 Strain Induced Anisotropy

Often in the field of mechanics we hear the term "strain induced

anisotropy." This type of behavior is not included in the constitutive

equations proposed thus far in this thesis as the permanent memory

phenomenon is recorded in the scalar invariant histories which are

naturally the same for all directions. In order to include strain
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induced anisotropy into the constitutive equations and still retain

them homogeneous to degree one, the permanent memory measure must be

some non-scalar quantity. Note that writing the usual isotropic

constitutive equation with the kernel functionals being dependent on
t t

the history of e pq(0, or s pq(), then the equations could contain
0  p 0

strain or stress induced anisotropic behavior. However a homogeneous

constitutive equation of degree one that includes strain or stress

induced anisotropy for general non-proportional loading conditions

can be shown to reduce to the isotropic constitutive equation if a

linear solution is to be valid for a proportional problem.

For proportional problems, these kernel functions become

t
i pqksc~ (x t- =Ki~~t),--r or
0 0

Li=pq(k o) ' t 'T : L [f( ),t-] . (8.23)
0 0

Note that for proportional boundary value problems a strain or

stress-induced anisotropi constitutive equation will admit the same

elastic solution as the purely isotropic equation. Furthermore, the

strain or stress induced anisotropy has no influence on the solution

and one could not use such a test to determine if the material had

become anisotropic due to the loading. For nen-proportional boundary

value problems this type of anisotropy can greatly influence the

analysis.
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8.6 Uniqueness of Solution

Various methods of proving uniqueness of solution for the non-

linear constitutive equations homogeneous to degree one have been

attempted, but all have failed to demonstrate uniqueness of solution.

Since the boundary conditions and the equations of equilibrium and

compatibility are all linear, one can proceed in the usual manner [22-24]

by first assuming two solutions si and sij exist and attempt to

demonstrate they must be the same solution. The difference between

these solutions s = si - sij must therefore satisfy the equations

of equilibrium with zero body forces and zero boundary conditions. In

linear elasticity the proof is very simple when one postulates a

positive definite strain energy [22-24]. For linear viscoelasticity, the

proof is quite lengthy and detailed. For the non-linear constitutive

equation proposed in this thesis, which contains linear elasticity and

linear viscoelasticity as special cases, the proof appears beyond the

scope of this thesis. Intuitively the uniqueness seems obvious as zero

forces and displacements on the boundary imply no internal forces or dis-

placements from physical reasoning. In addition the homogeneity of th

constitutive law guarantees zero output for zero input. To demonstrate

this with mathematical rigor however is very difficult if not

impossible except perhaps in very restrictive cases. One possible

means of proving uniqueness is by using an extension to Eulers

theorem for homogeneous functions [35] which has been developed by

M. Freda [34].

-103-



IX. MATERIAL CHARACTERIZATION PROCEDURES

In the previous sections it has been demonstrated that homogeneous

constitutive equations are characteristic of certain materials and

even though the equations are non-linear they can often admit linear

solutions. The problem with characterizing these non-linear time

dependent materials is that it becomes a type of complex curve fitting

exercise. When the functional form is expanded as was done by Rivlin,

a fairly general characterization scheme can be worked out for the

case when the kernel functions are reduced to product functions of

time alone [44,52,62]. Lockett [62] has demonstrated how the charac-

terization procedure can be carried out to yield approximations to the

twelve kernel functions appearing in the first three integrals.

Although the constitutive equations proposed in this thesis outwardly

contain only single integrals, the kernel functions are homogeneous

functionals of degree zero of the invariant histories. Since the

forms of these kernels has not been specified, the characterization

process could be much more complex than that proposed by Lockett. In

this unspecified form, the kernels would be difficult if not impossible

to determine. Simplifications can be made to approximate their general

behavior and characterizations can be carried out. The characteri-

zation scheme described below appears to work quite well for composite

solid propellants. Extensions of this method could be applied to

other materials. For simplicity it will be assumed that the kernel

functions are of the type that will admit linear solutions and that

the only problems of interest are proportional problems. With these
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restrictions the constitutive equation homogeneous to degree one can

be expressed as

t ,.

Sij(xk't) = fi JKo[f(o)'t-T]eii(xk ' T)dT +

0

J f ,t i(xk, )dT (9.1)

0

This equation is composed of two parts, a shear term and a primarily

dilatational term. For simple shear the equation reduces to

t
S ii(x kst K, (M)t- eij (x k,-d i # j. (9.2)

0 0

For purely dilatational deformations the equation reduces to j

Sii(xkt) 3Kof ()t-] + K [f(o),t- T} ii(xk T)d& =

fK ()] ei(Xk, )d . (9.3)

0

Hence by .characterizing the behavior in pure dilatational and pure

shear tests, the total behavior under combined loadings can be

determined. The method described below is applicable toward approxi-

mating either kernel function. However, since they are of identical

form, only the shear case will be discussed below.
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As an approximation to the behavior, the kernel functions can

be expanded in a product series of the form

N
t t

If0 i=l 0

t t
where i~ a C]= Gi[f(]. (9.4)

To demonstrate the difficulty in characterizing non-linear

materials, only the first two terms in this expansion will be used.

Substituting equation (9.4) into the shear constitutive equation

produces

t ft

o f

Since the characterization is restricted to proportional tests, 2
tests having physically homogeneous strain fields can be used where

the strain input is then given by

e12(xk,t) = e12 (t) = f(t) . (9.6)

Equation (9.5) now reduces to Jot
S12 (t) =G, (o) f(t) + k,(t-T)}(T)dT (9.7)

-060
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Equation (9.7) can be looked upon as containing a permanent memory

term and a fading memory term. Tests that will separate these two

effects now need to be determined. The simplest of such tests is the

step strain, or ramp strain relaxation tests. For a jump strain of

magnitude e12 applied at time zero, an expression for the relaxation

modulus is obtained.

s12(t)
Er(t) = o =Gi[u(')] + k1(t) , (9.8)
r E

where u( ) is the unit step function.
t

For a beginning the special cases when GO[f( )], or kl(t-T) are
0

zero will be considered. The first case is trivial as the equation

reduces to linear viscoelasticity. The second case reduces to 6 time

dependent permanent memory equation.

t

In section 4 the application of the norms in aermanent memory

constitutive theory was demonstrated. A logical choice of the
t p

characterization of G1jf(E)] is therefore L norms of f(E). Since
0

the functional is homogeneous to degree zero it must be expressable as

a ratio of norms. Relaxation behavior for most materials can ba

described by a power law representation

Er(t) altf + a2t2+ . = G4Iu(~j (9.10)0
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A logical choice for the functional would therefore be

= a, a P( f. +2 +GI ( ) el il lql 'q2)

where pi > qi and ri(l L -n (9.11)' i Pi qi = - i "(.1

For a jump strain, equation (9.11) reduces identically to the

power law representation given for E (t) in equation (9.10). Ther

problem is then reduced to determining ri P, i' qi assuming all the

a1 and ni are known from curve fitting the relaxation data.

For a constant strain rate test the output cat- be shown to be

S12 (t) = e12 (t)GI[f(d0] = e12 (t) (aicitnl + a2 c2 t-n2 + .. }

ri/qjZ r./pi
Ci = (l + qi)  (I + pi)  1 (9.12)

By fitting this data in an identical power ser-es the coefficients

Ci can be determined. There now exists two equations in each of the

three unknowns, pig qi ri" Hence one more test condition will

provide the necessary equation. Since pro;pellant materials appear

to be most sensitive to the maximum strain in their history, one

could at this point simply choose pi = C and determine how well the

results fit random inputs. Note how little one test result has to do

with another for non-linear materials. If the material were linear,
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all shear test results could be predicted simply by knowing the output

to a jump input, as superposition is applicable. The simple case

discussed above appears to fit most propellant data quite well.

To characterize the kernel functions when both fading and

permanent memory behavior is present (admitting the first two terms

only) can be a very complicated task as demonstrated above. In the

theory of linear viscoelasticity the simple kernel function k(t-T) is

usually approximated by a Prony series [61] of the form

N

k(t) A exp(-t/yi), Aiy i , constants . (9.13)
i =1

In the Prony series representation the N relaxation times yi are

picked using good judgement and the A. are optimized using some form
1

of linear regression analysis. Those terms having very small Ai can

be discarded and perhaps new yi selected based on the first regression

results and the process repeated using fewer terms until one is satis-

fied. Computer programs have been developed that actually perform all

these calculations and yield optimum Ai and yi for an N term Prony

series.

A similar procedure can be used in characterizing the non-linear

but homogeneous constitutive equation of degree one. In the Prony

series representation of linear viscoelasticity the y, are estimated

and the Ai determined since attempting to determine the exponents is

a non-linear problem and can lead to great difficulties. The same

problem is present in attempting to determine the degree of the norms.
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It is therefore recommended that a similar procedure be followed in

characterizing these non-linear materials. The process given below is

only valid for materials having homogeneous but non-linear consti-

tutive equations. The homogeneity condition is very easily verified

experimentally, as is the superposition principle. If the material

obeys both the superposition and homogeneity conditions, it is li. .

and linear methods should be used as they a,e very simple.

For a general characterization procedure, it is suggested that

the kernel functions be approximated as

0i=o j=o .__O'

In the above equation the Pi, qi' ri and yj are estimated and

the A.. are determined by a regression analysis. However, unlike the U
linear constitutive law, where only the relaxator modulus or some

other convenient test is used to determine the coefficients, for the

non-linear material several different shear and dilatational tests must

be used to determine the coefficients for their anpropriate kernel

functions. This can only be accomplished by substituting the expan-

sion directly into the constitutive equation to obtain, for instance,

a pure shear input.

S12(t) = E E Ai f exp(-t/yj) exp(T/yj)f(T)dT.

(9.15)

Since the ri, pig qi' Yj and strain input f(T) are all known
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this equation can be reduced to

s(

0

where X.i. is calculatable. (9.16)

Equation (9.16) is a linear equation in the A.. and standard

regression analysis procedures can be used to determine the coefficients.

To accomplish this several different shear inputs, say fl, f2,.... fn

must be used and easch function Xi (f ,t) must be evaluated at many
13 n

times, say (ti, t2,...tn). The experimental data from these various

tests must be determined to yield the experimental values of the stress

S12  for each input fn at several times t . The resulting mass of3|
data can then be andlyzed using linear regression methods to determine

the best values of Ai. Computed values of the stress can then be

compared to observed values to determine the accuracy of the method.

To determine whether the constitutive law is of any value, it must

accurately predict the results of tests not used in the characteriza-

tion procedure. This test is the only test for the validity of a

constitutive equation. If it cannot predict with reasonable accuracy

it can lead to greatly erroneous results when used in stress analyses

as six of the system of fifteen equations in fifteen unknowns used in

structural analysis are constitutive equations.
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9.1 Non-Linear Elasticity with Permanent Memory

Many materials exhibit the so-called time independent "Mullins'

Effect". The effect is a stress-softening that appears only to

depend on the magnitude of the strain history and not on time. Love [30)

called this behavior "elastic hysteresis" and indicated it occurred

in some metal wires. The process appears to be irreversible and in

the limits of small strain is contained in the homogeneous constitu-

tive equation of degre,- one. The problem is to express the history

dependency without having time dependency. The behavior can be

represented for proportional loading conditions by

S ij(t) = 6ijK 1[(f(t)/ IfII )2]eii(t) + K2[(f(t)/Iffl.)2]eii(t)

(9.17)

This equation yields linear elasti, response on the first stretch

and a hysteresis response c- dr.y subsequent stretch. It contains no

time effects, only history effects.

1
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X. REALISTIC CHARACTERIZATION OF COMPOSITE PROPELLANTS

For nearly a decade composite solid propellant materials ha.,e

for the most part been treated as linear viscoelastic materials.

Today the propellant industry has the ability to perform complex

thermoviscoelastic stress analysis using thermorheol)gically simple

linear viscoelastic constitutive theory. Careful examination of

propellant dpta however indicates the materials are not linear

viscoelastic even at small strain. Researchers in the propellant

industry have been applying incorrect criteria of l1,;earity to their

materials [1,2,19]. Assumptions have been made that if the material

has a relaxation modulus that is independent of strain, then the

material is linear. This assumption is not correct. Having a relaxa-

tion modulus that is strain independent is but a single check of the

homogeneity condition and in no way cherks the validity of the super-

position principle which is the real test for linearity. Hence for

over a decade complex computer analyses have been performed using

linear viscoelastic theory yielding highly questionable results.

To demonstrate that propellants are non-linear materials even

at small strains, one need only check the superposition principle

experimentally. In the range of small strains below detectable de-

wetting or volumetric dilatation [9-11], most propellants have a

relaxation modulus independent of strain and in general closely obey

the scalar multiplication homogeneity rule. Yet this relaxation modulus

cannot be used to accurately predict the response due to other isother-

mal, low rate, small strain inputs. To demonstrate the inadequacies of
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liner viscoelastic predictions on solid propellants, laboratory

tests where superposition is applicable can be performed. Figure 10.1

illustrates the stress-strain-dilatational behavior of a typical com-

posite propellant. The dilatatiom-strain behavior is caused by

vacuole formation within the microstructure [9-11] and causes a stress-

softening; an obvious type of non-linearity. Below significant dila-

tation the material appears to have a relaxation modulus that is

independent of strain as illustrated in figure 10.2. To determine

if superposition is applicable, the interrupted ramp-strain stress

relaxation test can be employed. Linear viscoelastic theory would

predict the stress output for the second loading would be simply the

superposition of the initial response with the continuation of the

original stress-relaxation response. Figure 10.3 illustrates the

linear viscoelastic prediction and the actual experimental results

for this interrupted ramp strain test. From this and other tests

it is apparent errors of over plus or minus one hundred percent are

typical when linear viscoelastic theory is used to predict the response

of propellant materials. To clarify the point, the data in figure 10.3

are plotted stress against strain in figure 10.4. Here it is apparent

that when the straining is again commenced, the response rapidly

rejoins the original constant rate response, whereas the linear theory

would indicate it should parallel the original response. Figure 10.5

illustrates similar test results for the doubly interrupted ramp

test plotted stress vs strain. Again the same behavior of rejoining

the original constant rate response is shown and also that the errors
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.f linear theory grow with each cycle. Plotting the relaxation data

frim each portion of this test in figure 10.6 further demonstrates

',ut the relaxation responses for the first and second straining are

identical when time is measured from the beginning of each relaxation.

Interestingly enough this means that part of the memory of its past

has somehow been completely annihilated and that the previous relaxa-

tion history has had no influence on the second relaxation. This is

not fading memory response since all of the past has not been for- I
gotten. It does however indicate that the fading memory portion of

the viscoelastic constitutive equation is for all practical purposes

zero as long as the strain is increasing.

In figure 10.7 further verification of the homogeneity principle

for these materials is presented. In this figure the stress output

is compared for two cyclic inputs that differ in amplitude only. As

dictated by the homogeneity principle, these data indicate that the

ratio of the stress outputs is equal to the ratio of amplitudes of

the cyclic strain inputs. The data in figure 10.8 compares the linear-

viscoelastic prediction for the cyclic data presented in figure 10.7.

The agreement between the linear predictions and the experimental

data are quite good for this test whereas it was found to be poor for

the tests discussed earlier in tHis section. Good agreement between

experimental data and linear predictions might be expected for some

tests since the material has been shown to satisfy one of the con-

ditions of linearity. Furthermore the dilatation data on propellants

in this range of small strains prior to dewetting indicate near
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incompressible elastic behavior [9-11]. Incorporating these features

into the constitutive equation indicate a valid form would be

t

Sij(t) ij P + G[f(w)]eij(t)

where p is an arbitrary pressure. (10.1)

The relaxation data for most propellants obeys a simple power

law expression as indicated by these data when plotted logarithmically

in figure 10.9. From the previous discussion in section 9 dealing

with material characterization a logical choice for the functional is

where r i  n (1.2

For a jump strain equation (10.2) then reduces to

NtG[U(o)] E(t) kt Ai (0.3)

i=o

To complete the characterization process we need only determine

Ai) pis qi' and r i  The complex characterization procedure discussed

in the previous section was not used for this purpose.. Instead only

one term was taken choosing pl , A, = k and graphically determining

r, and ql to fit a few tests. The results of this very simple
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analysis is demonstrated in figures 10.10 through 10.12 which

compare calculated and observed response for several tests plotted

both stress-time and stress-strain. The close agreement between

experiment and theory for this single term representation would appear

to indicate this is a powerful method of characterization and valid

for propellant materials. However comparing the predictions with

the actual data for the cyclic tests, figures 10.13 and 10.14, shows

the agreement is not so good as demonstrated in the previous figures.

The reason for this disagreement between prediction and observation

lies in the need to have some fading memory viscoelasticity present,

since compressive stresses for the state of positive tensile strain

cannot come from the permanent memory portion of the constitutive

equation. Proper characterization procedures will bring out such de- -
fects in the chosen representation.

In an attempt to improve the characterization process a three

term expansion was chosen as suggested by the discussion in section 9.

Instead of using exponential terms however a single power of t was

chosen. The constitutive equation chosen has the form

Sijt M 6ijP + A, ifll e+ A (t-,,) -n2 (,rd- I

I  r3 -n3
+ A, + (t-) eij(()dT ,

+ I A 3(l~{)-) 

where P = arbitrary pressure, and

1'1 = absolute value. (10.4)
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A simple analysis of all the test data indicate that the material

would be well characterized if the parameters in the equation took

on the following values

n2 =n 3  0.1

r, 2.25

r 3  1.0 1.

q= 21

q3 = CO
A, = A2 = - A3 = 570

Substituting these values into equation (10.4) and rearranging terms

yields I

if 2.25 !

SiM(t) = ijP + 570 f  eiM(t) + I

, ..LfL Tt)lg .~d
+570 [1 - 1 f (1 1 T -'3 (10.5)d

For tests where the strain is never decreasing (or never in-

creasing), such as those illustrated in figures 10.10 through 10.12,

the last term in equation (10.5) contributes nothing since for these

tests Ifl equals lfiL. The data in figures 10.10 through 10.12

calculated by equation (10.5) and that calculated by equation (10.1)

is therefore identical. Comparisons between the calculated and

observed data for the cyclic strain inputs is illustrated in figures 10.15
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and 10.16. As seen by the data illustrated in these figures, the

calculated and experimental data agree quite well. Perhaps other

inputs exist, where again the agreement of even this modified consti-

tutive equation will predict poorly. The only way to be assured a

non-linear constitutive equation will predict accurately is to perform

all possible tests and compare. Naturally this is impossible,

however the least one should do is use a large number of greatly

different tests. Inputs of a similar type to those the material

in question will be subjected to in its lifetime, performed at the

same temperatures and over the same time scales should be used in

realistic characterization procedures.

In particular there are two things a rheologist attempting to

mathematically describe the behavior of materials should always

remember.

1) Simply because the chosen representation accurately

curve fits the tests used in the characterization

procedure does not guarantee accurate predictions

for other different tests.

2) If a constitutive equation cannot predict the output

to an arbitrary input, it is of little value in

general stress analysis.
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