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FOREWORD

Boundary-layer conferences usually awake the interest of a large group of fluid
dynamics people. This is because boundary layer research is not only of general

scientific interest but the resulting knowledge is, to a large extent, of immediate
use for practical developments of airplanes, vehicles and missiles. Therefore, the
effort-which is expended by fluid dynamics researchers is directed, on the one hand,
towards a better understandirzg, mathematical formulation and accurate prediction of
structure, stability and transition of boundary layers and, on the other hand,
towards the practical elimination of adverse, boundary layer effects on modern vehicle
designs.

Since the first AGARD meeting on this subject in April 1960 in which progress and
results were reported, many new investigations have been carried out by the '"Secialists"
in the NATO countries. Ahe Fluid Dynamics Panel has decided, therefore, to hold this
second symposium on "Recent Developments in Boundary Layer Research". The accumulated
most interesting material for this meeting in Naples shows the timeliness and great
desire for the conference.

H. H. Kurzweg
Chairman
Fluid Dynamics Panel
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SUMMARY

This AGARDograph contains a collection of the papers presented at
the AGARD Specialists' Meeting on "Recent Developments in Boundary Layer
Research", held in Naples, Italy, 10-14 May 1965, under sponsorship of
the AGARD Fluid Dynamics Panel.

The purpose of the Specialists' Meeting was to review and discuss
in depth recent developments in selected areas of boundary layer research,
to present a good cross-section of the state-of-the-at., to point out
major problems, and to provide guidance for future research and
development.

"The collection of papers emphasizes the areas: Magneto-Fluid-Dynamic
Boundary Layers; Turbulent Boundary Layers; Stability, Transition and
Stabilization; Three-Dimensional Boundary Layers; and Interaction Effects
at Hypersonic Speeds. Contributions have come from eight NATO countries.

SOMMAIRE

COette AGARDographie riunit les exposgs prdsentha i la Rdunion des
Specialistes de 1'AGARD organisde i Naples, Italie, du 10 au 14 Mai 196'!,
par Is Groupe de Travail de la Dynamique des Pluides, sur le thame:
"Etat Actuel des Recherches Intiressant la Oouche Limite".

Cette rdunion avait pour but de passer en revue et de discuter en
profondeur les progras rdcents affectant certuins aspocts dec recherches
on couches limites, de prisenter un tableau aussi complet que possible
.de 1 •dtat d'avancement dans ce domains, de mettre en relief lea
problimes majeurs, et de donner une direction aux recherches et
diveloppemants future.

Les exposis rasaemblds ici traitent en particulier des domaines
suivants: Couches Limites en Magndto-Dynwnlque des Fluides; Couches
ILmites Turbulentes; Stabilitd et Stabilisation: Couches Limites
Tri-dimensionnellea; Effete d' Interaction aux Vitesses Hypersoniques.
Can expoads repr4sentent les contributions do huit pays de IOTAN.

532. 526
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INTRO)UCTION

The papers presented In this and related AGAROPgraphs were prepared for a specialists'
ameting on 'Recent Developuent3 in Boundary Layer Research" held at Naples, Italy
during the peftod 10 to 14 May 1965. 'The meeting was organized by the Fluid Dynamics
Panel of AGARD as one of a continuing series concerned with the scientific and
technoloel.cal aspects of fluid dynamics.

The previous AGARD meeti.g on boundary layers was held in London in 1960: the
record of that meeting is preserved in the AGARDograph series. It is the practice of
the Fluid rbnamics Panel to review at its annual executive session its program for
.he co=ing sevcral years and to take such steps as seem required to develop in an

orderly fasviion that program. Accordinigly, at Athens in August 1962. the palel
decided to anticipate another boundary layer meeting five years after the London
meeting, I.e., in the Spring of 1965. The Napltes meeting is a result of that
antizipation.

7Tha Pileid Dynamics Panel uses a variety of procedures in setting up a specialists'
iseting. Tte Naples meeting was preceded by a Rouud Table Discussion in Lisbon in
September 1964. Individual Panel members and invited specialists presented survey
pap'rs on 10 topics which seemed of most current interest to NATO research workers in
boundary layers. The purpose of the Round Table was to expose those topics of
greatest mutual interest and thereby to select three or four topics for the anticipated
specialists' meeting. It seemed to be agreed by the Panel members that the surveys
were useful and accomplished their program. Thus there were selected the following
four topics which led to the session utructure of the Naples meeting:

Turbulent Boundary Layers
Stability, Transition and Stabilization
Three-Dimensional Boundary Layers
Interaction Effects at Hypersonic Speeds.

The first three of these topics relate to classical boundary layer phenomena; they
have been the subject of investigations since the early days of bouz~dary layer research

and yet still provide a variety of problems, unsolved to some extent. Moreover, in
technicological applications of boundary layer research to aeronautics and astronautics
these topics are of great significance. The fourth toric has been of more recent

origin. having first arisen in the early 1950's when hypersonic wind tunnels came into
operation. It appears to e of f',ndamental interest because of the modifications of

classical boundary Lyar concE ,s required by the interaction of the boundary layer

and the essentially inviscid e. ,-rial flow and to be of technological interest in
connection with high-speed fligl:t at high altitudes.

There were some further results from the Lisbon Round Table Discussion. It was

established that the topic 'Separated Flows" was of sufficient interest to warrant a
specialists' meeting of its own. Arcordingly, a program committee headed by
Professor J.J.Ginoux (Belgium) was appointed in order to prepare such a meeting for

the Spring of 1966. In addition, the survey p.resented by Profes3or W.R.Sears
(United States) at Lisbon on '"agneto-Fluid-Dynamic Boundary Layers" evoked such



interest that the Program Committee for the Naples meeting (excluding Professor Sears
himself) considered it appropriate to request Professor Sears to give a more formal
version thereof to the wider audience at Naples as a general invited lecture.

An examination of the program with its large number of papers will indicate the
high level of activity in boundary layer research in the NATO countries. When the
Program Committee was organizing the meeting, there was some sentiment expressed by
the Panel members to have a shorter meeting than actually resulted. However, the
present author for one feels that with authors and audience travelling large distances
for a meeting and with a large number of submitted papers such as results when a
topic of such general interest as boundary layer research is involved, it Js
worthwhile to have a full program of five days duration. It is hoped that after the
meeting a consensus will exist to support this decision.

The program of the Naples meeting may also serve as a demonstration in 1965 of
the apparently unending impact which Prandtl's paper in 1905 has had on a variety of
fields of science and technology, clearly on fluid mechanics but on the chemical and
electrical engineering sciences, and on applied mathematics as well. It is interesting
to speculate on the extent to which Prandtl himself anticipated this impact and on
directions that boundary layer research will take in the next 20 years. Could the
developments of the last 20 years, since the end of World War II, have been foreseen?

In conclusion, the present author as Chairman of the Program Committee, gratefully
acknowledges the cooperation and efforts of the other members of the Committee,
Dr. P.Carriere (France), Prof.L.G.Napolitano (Italy), Prof.W.R.Sears (United States),
and Prof.L.Truckenbrodt (Germany). Without their prompt and efficieat colleboration
it would not have been possible to put together the program in the short time available.
Thanks are also due to other Panel members, Dr.W.J.Rainbird (Canada), Col.B.Marschner(United States), Dr.R.N.Cox and Mr.P.A.Hufton (United Kingdom) and perhaps others for

their assistance. Special thanks are due to our host member of the Program Committee,
Prof.Napolitano, who has had responsibilities far beyond the program itself. The
present author is also indebted to the Chairman of the Fluid Dynamics Panel,
Dr.H.H.Kurzweg, for his review of our activities and for his encouragement and
suggestions. Finally, on behalf of the Program Committee there is sincerely
acknowledged our debt to the Panel Executive, Lt.Col.S.C.Skemp, Jr., on whose
competent shoulders rested the responsibility of tying down loose ends, informing
anu cajoling the authors, having the papers published in AGARDograph form, and
handling the almost infinite details connected with the mechanics of the Naples
meeting.

Paul A. Libby, Chairman of "he Program Committee
Professor of Aerospace Engineering
University of California, San Diego
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SUMMARY

A simplified form of a theory for the fluctuations in the viscous
sublayer of a turbulent flow was given in a previous paper by the author.
In this paper, the analysis is extended to include additional terms in
the equations representing the convective effect of the mean flow on
the fluctuation field. This makes it possible to obtain solutions for
the elementary Fourier components at different wave numbers at all angles
of obliquity to the flow direction. It is found that there is a strong
effect of obliquity on the structure of the elementary components.
Comparisons with available experimental data indicate that the energy-
containing disturbances are strongly aligned with the flow direction.

SOIRIMAIRE

Au cours d'un expoas pr4cddent, l'auteur prdsentait une forme simplifide
do thdorie des fluctuations dans la sous-couche visqueuse d'un 4couilement
turbulent. Dana la communication prdsente, il dtend son analyse pour
inclure des termes suppldmentaires dana lea dquations reprdsentent 1'effet

i'C de convection de 1' dcoulement moyen sur le champ de fluctuation. Ceci
permet d'obtenfr des solutions pour lea parties composantes d1Mmentaires
de Fourier pour diffirents nombres d'ondes i tous les angles d'obliquitd
par rapport & la direction de 1' 6coulement. Il apparalt qu'un fort effet
d'obliquitd se fait sentir sur la structure des parties composantes
dldentaires. Ekn dtablissant des comparaisons avec lea donndes
expdrimentales dont on dispose, on s' apergoit qua lea perturbations

d~tentrices d' gnergie coinsident fortement aveclo. direction do
1° dcou lament.
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NOTATION

x coordinate in direction of mean flow

y coordinate normal to wall

z coordinate transverse to flow

U.vW fluctuating Velocities in the x , y. z direction

q fluctuation velocity in the x , z plane

p fluctuating pressure

Pe complex constant for Fourier cowDonent

f frequency, c/s

X wave length

k wave number, k = 27/%

Uw convective disturbance velocity, U,

Seangle of obliquity to flow direction in x . z plane

g.h.k complex velocity distribution functions

G.K dimensionless distribution functions, G - g/UW . K = k/Uw

KK for A2  I (Eqn.13)

UT. friction velocity

Sboundary layer thickness

0.69 S for Grant's boundary layer

1ýu-v turbulent shear stress

phase angle between u and v

y friction distance parameter, y = U./V

V kinemati; viscosity, p/p/I

p' density
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Y viscous region variable, Y = / y

%n(x, 0.,z) space correlations in the x , z direction

AIA 2  constants, Equations 12, 13

Sbscripts

1 free stream flow

E outer limit for variable Y

xz denotes x and z directions
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"TIE THREE-DIMENSIONAL STRUCTURE OF THE VISCOUS SUBLAYER

J. Sternberg

1. INTRODUCTION

.he viscous sublayer is defined as the region between the wall and the fully
turbulent part of the flow. In terms of. the friction distance parameter,
Uy/I, = y+" •, 60 , where U, is the friction velocity, y is the distance from the
wall and v is the kinematic viscosity. Perhaps the best characterization of the
viscous sublayer is to describe it as a layer in which there is dissipation of the
energy-containing eddies by direct viscous action.

If w regard a laminar flow as one in which the viscous shear stress udU/dy is
greater than the turbulent shear stress phu-. then there ib in fact a "laminar" flow
next to the wall. since at the wall the turbulent shear vanishes. Measurements show
that the viscous and ahear stresses are equal at y+ = 12 . On the other nand, the

local turbulence level u'/U , where u' is the root-mean square value of the
velocity fluctuation in the flow direction and U is the local mean velocity, rises
to a maximau value at the wall. It is clear that any theory of the viscous sublayer
must account for the measurements which show that the flow is highly disturbed all
the way to the wall.

We hold to the view that the outer flow is the principal source of the energy-
containing disturbances in the viscous sublayer. At any instant, the turbulent
fluctuation field can be represented by a distribution of disturbance vorticity
Components throughout the boundary layer. In a turbulent boundary layer about half
the energy is contained in eddies whose scale in the flow direction is more than twice
the boundary layer thickness. Most of the fluctuation energy near the wall is induced
by the large scale vorticity distributed further out in the boundary layer. Sihce
vorticity travels with the fluid particles, the disturbance field near the wall is in
effect swept downstream with the mean velocity of the turbulent outer flow. A theory
for the viscous sublayer based on this approach has been recently proposed1 .

The magnitude of this convective velocity U. for the disturbances is Important.
We have concluded that, for the larger scale motionn containing most of the turbulent
energy, the convective velocity is greater than the local mean velocity in the
sublayer (see Ref.1). There are three different typln of experimental measurements
that support this position.

(a) The data of Klebanoff 2 and others show that the energy-containing portion of
the normalized energy spectra at different points in the fully turbulert part
of the boundary layer are remarkably similar. This implies that for any
particular frequency component of the turbulence, the convective velocity does
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not vary significantly with position in the boundary layer. Otherwise

turbulence scales, of the order of many boundary layer thicknesses, would have
to vary in a special way across the boundary layer.

(b) Measurements of -ongitudinal correlations 2', 3 show a systematic divergence from
autocorrelation calculations (using the local mean velocity U for U.) at
large separations. Close to the wall the large scale motions appear to be
travelling with a velocity substantially greater than the local mean velocity.
In particular, analysis1 of the data of Favre, at y+ = 35 in the outer part
of the sublayer, indicated that U. was approximately equal to 0.78U, , where
U1 is the free stream velocity.

(c) Space-time correlation measurements of the wall pressure"is indicate that the
pressure pattern Is convected downstream with a mean speed of about 0.82U, .

The convective velocity decreases as the frequency increases, but in the
frequency range of interest it is greater than the mean velocities in the
sublayer.

For the purposes of the analysis, we have chosen to set Uw/U, = 0.80 for the
energy-coitaining eddies. In the case of Klebanoff's boundary layer frequencies
between C < f < 300 c/s account for 80% of the u fluctua.ion energy. A frequency
of 300 c/s corresponds to an eddy scale L = Uw/f - 8/2 . We then limit the condition
Uw = 0.8U to frequencies from 0 to 300 c/s. In fact theie is no single value of

the convective velocity. However, the solutions do not depend strongly on the specific
choice of Uw as long as Uw is significantly greater than the local mean velocity U.

The purpose of the theory' was to represent the fluctuation field between the wall

Suand the fully turbulent part of the flow. The mean flow in the viscous sublayer and
the turbulent field outside the sablayer were assumed to be known from experiment.

A simplified form of the linearized equations of motion for the fluctuations in a
turbulent flow was used to describe the turbulent field between the wall and the fully

-turbulent part of the flow. The sublayer is the region where the viscous terms in the
equation of motion are sipificant. The fluctuation field was made up of a superposition
of Fourier components where the mplitude of each frequency component outside the
sublayer was taken from experiment. It was found that the physical extent of the
viscous region depends on the frequency of the turbulent component, varying inversely
with iq. Low frequency components feel the wall much further out than high frequency

components. This leads to a substantial change in the spectral distributions through
the subleyer. Deep in the sublayer. the large scale motions make a much smaller
contribution to the fluctuation field than outside the sublayer. Comparisons were
made with the exter.sive hot-wire measurements of Klebanoff 2 and Laufer6. Figuras l(a)
and l(b) are taken from Reference 1, TLa calculated total extent of the sublayer and

the qualitative change of the spectra deep inside the sublayer are in rough accord
with the experiments. The thicknces of the sublayer arises naturally in the theory.

On the other hand the variation of u' in the outer part of the sublayer is not
"".counted for by the theory. It is interesting to note that although there is no
theoretical distinction between an inner "laminar" layer and a "transition" zone, the
rapid changes do primarily occur in the inner fractioc of the aublayer. Other arpects
of the fluctuation field were explored in Reference 1, but the use ob the simplified
equations limited the possible scope of thf theory.



In this paper, the analysis is extended by retaining the previously neglected
linear terms which represent the convective effect of the mean flow on the fluctuation
field. Of particular importance we are now able to consider disturbances athigh. .
obliquity to the flow direction. The manipulation of the equations is straightforward,
but difficulties arise in fixing the outer boundary condition for elementary
components. Fundamental Questions are involved and are discussed in the section on
Boundary Conditions. To a considerable extent the difficulty reflects the limitations
of the linear representation for a turbulent field. In'view of the rather ambiguous
naturc of the outer boundary conditions, consideration will be restricted to those'
aspects of the sublayer structure that do not appear to be sensitive to a change in
the outer boundary conditions. In particular, attention will be focussed on the
question of the distribution of disturbance energy with obliquity in the sublayer.
Townsend', a and Grant9 have studied the structure of the large scale motions in shear
flows by comparing correlation measurements with what would be expected from the
presence of hypothetical simple eddy structures. As Townsend notes, this procedure
is neither simple nor unique and is fairly subjective. In thWs paper, we will examine
the question of disturbamice orientation anew using Fourier components which satisfy
the dynamic equations near the wall.

2. EQUATIONS OF NOTION

The equations of motion for the fluctuation in a turbulent field can be considerably
simplified close to the wall in a mean flow where the mean velocity U U(y) only,'
and V = W = 0 , where U, V and W are the three components of the mean motion.
If u. v . and w are the disturbance velociti,3, the components of the total
velocity are U + u. v , and w , and the pressure is P + p . After linearization,
the equations become

Zu bu dU 1 ýp Blu

dy p

Zv Zv 1 ýp "62v(

i-t + U 5-x = y- +vy V3 ZY

Bw Zw I Zp 2w
P oz ay 2(3)t Xp •z iy

and the c.ontinuity equation

Zu Zv Bw
T + ;- + ; = 0. (4)
~x y ~z

Well away from the wall, the viscous terms are negligible for the large scale
turbulent motions. In the immediate vicinity of the wall, the velocity gradients are
greatly increased and the viscous terms may be of the same order as the other terms.

The form of an elementary oblique component of wave numbers k is shown in
Figure 2. The total disturbance velocity in the x, z plane is q , periodic in the
k direction with a wave length X . Along any line perpendicular to the k direction
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the phase, and hence q , is constant. In gene'-al q Is not in the k direction
but has a component normal to k . Thcn the wave length in the x direction is

x = lX/cos.

In an experiment, the one-dimensional spectrum is measured. Thus the total u' or
w- disturbance at a particular frequency or wave number k1  is made up of contributions.
from oblique components that satisfy the condition

k = k /cose.

This oblique component is carried downstream with the velocity U. in the x
direction. Introduc.ng complex potation with 2= 2,rf . = 21/A , and kz= 27rAz
the disturbance velocities can be represented as

u = Re(h(y) exp[i(k x + k z - At)]

w = Re{k(y) exp[i(k x + k z - At)]

v Rerg(y) exp[i(kxI + kiz - At)]}

and p BRe{p(y) exp[i(kxx + kz - At)]}

The functions h(y). k(y), g(y), and p(y) are complex. We proceed by substituting
these expressions for u, v. w . and p in the equations of motion and the continuity
equation (Eqns.1-4). But first a simplification will be mado.

The vertical velocity v is much smeller than q close to the wall. It follows
that Zp/Bk >> Zp/oy so that the pressjre p is almost invariant with y close to
the wall. Therefore, we set

Zp BP

' =z - tan 0 = constant, and p(y) = p, a complex constant

It is then not necessary to solve Equation (2), but instead the velocity v can be
found from the continuity equation. With Zp/Zx and 8p/az constant and Bp/ay • 0
there will be three equations for the three unknowns u, v , and w

In fact, the condition ýp/'y - 0 is not valid as 0 - 900 . Without this
simplification, a higher order set of equations must be use2. and it is much more
trouble to obtain solutions. Solutions to the more complicated equations with
p = p(y) were obtained at a representative frequency and showed good agreement with
the simpler equations up to 8 =5

The complication in solving these equations Is due to the presence of v in
Equation (1). This provides a coupling between Equations (1) and (3) and upsets the
symmetry of the equations. Nevertheless, the problem can be reduced to the solution

* of two ordinary uncoupled differential equations.

If we substitute the complex expressions for u, v , and w in Equations (1) and

(3). we obtain

I1

'4
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-iJ^~(Y) -t ik1Uh(y) + Mys) -+ I A?() 5
dy P

-+-^(y) + ik(Uk(y) ) 1 (a)P

T1he spatial derivetives ?u/?x. aw/az can be ubtained by inspection of Figure 2. or
from the u and w expressions ant are

•_• •z = Iklu ' = Ik xw ton 0 .•

Then, substituting in the continuity equation, we hate

I
b (y) -g'(y) - tanfk(y). ('7)

k,

Differentiating sith respect tc y . this becomes

i
ha(y) -• in(31 - k'(y) tan 6. (8)

We substitute the expressions for h(y) and he(y) in Equation (5). Noting that the
disturbance velocity U. - ,/k 1 . Equation (5) can be written as

(Ug-Umg' -Mg + I Pe - g" -Jifk(y) tan 0 + ikxUk(y) tan 9-vk(y) tan (.
dy p jo k

(9)

But from Equation (6). the right-hand side of Equation (9)

kx
-~ -i-k petan 2o = constant.

p -

Thus we can write Eqnations (5) and (6) as

+W Uog' + g d + IkD 9 [! + tan2o) - (10)(U Ug•+gdy /P ki

I
(Uw - U)k(y) - LO tanO = -- (11)

p, kX

The function h(y) is found from the continuity equation.

Equations (10) and (11) can be made diwensionless by intriducing

aY =V'/3/2v y G g/U,. K =k/U,.
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Then we have

U GdO+ d(U/U)i d3Id= 1 (12)WU dY dY 2 s

[1 K + A2 - (13)
UT -2 dY2

The ratio of the constants is

A 2  it~22 , sin 0 cos 0
TA :) kx

The velocity distribution functions are then

- U EG -1sn
2 )A

h(y) = i UwG' -sincOs)Akx

k k(y) =- 1•VN-2v Uw,[KsinO cos0]A,

~kx

g(y) = UwGA1

where K = iA-1v sin cosO.

- The coefficients (I - U/Uw) and d(U/Uw)/dY have been calculated for Klebmnoff' s
boundary layer. The numerical solutions to these equations have been obtained using
the digital computers of the Ballistic Research Laboratory.

3. BOUNDARY CONDITIONS

Several difficulties immediately arise in the determination of the boundury
conditions for the elementary Fourier components.

In the simplified theory, Equations (12) and (13) become

dG i d3 G
+ A = (15)

dY 2 dY'

i d2K
K + A2  - (16)

Each of the disturbance velocities u and w can be represented as the sum of an
inviscid and a viscous component. The irviscid component is constant both inside
and outside the viscous region. The viscous component then represents the effect of
the wall friction.



( 13

First, for illustration, we will consider a two-dimensional disturbance, 6 0,
and arbitrarily set A1  I , Since u = v 0 at y = 0 , we have G(i( G() =( - 0
at y = 0 . The third boundary condition can be stated as 0" -. 0 as Y -# co

Actually, the solution already satisfies the third coudition for Y < 5 independently
of f (Fig.3(a)). The variation of the viscous term I1"'I is shown in Figure 3(b).
The viscous action is effectively confined to the region 0 < Y < 5 .

When the complete linearized equations are used, all "inviscid" disturbances are
significantly altered by the mean flow and vary both inside che outside the principal
viscous region. At the some time, the viscous region is smeared out. There is now
some viscous action for Y > 5 due to the continued variation of the "inviscid"
component which the viscous solution tends to smooth out.

The con, lete equations admit solutions which diverge exponentially at large values
of the indepenJent variable with a rapid increase of the viscous term. The solution
with the desired viscous behavior (i.e. d3G/dY3 small at large Y) for a
two-dimensional disturbarce at a representative frequency f = 70 , is also shown in
Figures'3(a) and 3(b). While the distribution of IG"' is somewhat altered by the
additional terms in the equations, the extent of the main viscous region is much the
some. On the other hand, there is a large variation of 10'? in the outer part of
the viscous region. This is an important effect of the convective terms.

New features appear when we allow oblique disturbances, 0 • 00 Suppose we

consider solutions to the "inviscid" equations

dG d (UAJ?)
(1- UAJw) G+A A - 0

and (U-U/Uw)K + A2  0 with G(0)-- 0,

G'(O) = -Al , and K(O) = -A2

The inviscid variations of P and P given by these solutions are compared with
the viscous variations given by Equations (12) and (13) in Figure 4. We somewhat
arbitrarily set Y - 4.4 as the outer edge of the viscous region. (In the simplified
theory, at Y = 4.4 , u2 is within 1% of the u2 level outside the viscous region,)
The disturbance velocity variations in the viscous region Y < 4.4 are due as much
to the effect of the mean flow on the disturbance as to the effect of viscosity on
the disturbance. However, only part of the viscous action can be attributed to the
wall friction. The "inviscid" disturbance velocity variations due to the mean flow
can be quite large and also induce compensatory viscous action. At an obliquity of
6 800 , the wall friction itself appears to be a minor factor. These features
become even more pronounced at still lower frequencies. Actually at high obliquity
and low frequency the viscous terms in Equations (1,3) become small compared to the
velocity ternis.

Figures 3 and 4 would indicate that the edge of the region of viscous action can
still be taken as Y : 5 . However, it is clear that the behavior of these solutions
at the edge of the viscous region differs from the behavior of the turbulent field at
the edge of the sblayer (see Fig. I(b)). Calculations for a range of frequencies at

I "
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0 = 800 are show'n In Figure 5. Experimentally, 7' and ;T vary very slowly at the
edge of the sublayer, but this is certainly not the case for these linear solutions.

There Is an even more important difficulty with the outer boundary conditions for
the linear solutions. Basic to the approach of the theory, is the use of elementary
Fourier components to connect a known turbulence field to the wall. A characteristic
property of the turbulence in a shear flow is the correlation coefficient T-l/u'v' of
the turbulence. Townsend 7 has shown that a homogeneous turbulence subjected to a
prolonged uniform strain approaches an equilibrium anisotropic structure and that an
analogous equilibrium structure would be expected in an ordinary shear flow. The
equilibrium structure depends on a balance between the effect of the sustained
shearing action of the mean flow and some sort of nonlinear energy transfer between
the fluctuating components. Now there is a direct connection between the correlation
coefficient and the anisotropy of the turbulence10 . Thus we cannot expect the
correct value of the correlation coefficient to arise naturally from a linear theory.
Instead; the experimental value would have to be put in as part of the outer boundary
condition. Unfortunately solutions where u and v are forced to have the
experimental phase angles at Y = 4.4, exhibit a rising rather than a vanishing
viscous action near the end point. In effect, viscous action is being used to alter
the phase angle between u and v instead o1' nonlinear inertia terms. However, it
is of considerable interest to note that these solutions indicate that the phase angle
between u and v at the edge of the viscous region has a strong effect on the
"velocity distribution in the viscous region.

This is illustrated in Figure 6 for a two-dimensional disturbance (8 - 0°). Two
conditions are applied at the edge of the viscous region.

* (a) dU 2 /dy 0

(b) Uv/u'v' = cosn where 6 is the phase angle between u and v

"Klebanoff' s measurements indicate cos 6 = -0.54 outside the sublayer1 for f 70
The velocity distribution in the outer part of the viscous region varies markedly with
the phase angle although the outer boundary condition does not have much effect on the
soilutions for 0 < Y < 2 . Quite possibly the experimental increase in u; after
entering the sublayer is related to the behavior exhibited by these solutions.

In summary, it appears that the linear theory is not capable of giving the correct
transition at the outer edge of the sublayer. That is not to say that a useful
approximation cannot be achieved by a suitable choice of boundary conditions. Howevror,

* we will now confire our attention to those prominent features of the fluctuation field
that are insensitive to the outer boundary conditions. For thit. purpose, we will use
solutions for which the viscous effect becomes small at large Y

4. THE EFFECT OF OBLIQUITY AT THE OUTER EDGE

4.1 Thi u-2 and V components

The velocity components u- and w- are computed from the solutions to Equations
(12) and (:3) where
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S= [hey)h.(y)]

7 -- I[k(yv)k* (y)]

and the asterisk denotes the complex conjugate.

The ratio u2/q2  at Y = 4.4 as a function of 8 and for a range of frequencies
is shown in Figure 7, where q 2 = u + w2

The most striking feature of these curve" i the fact that u2/q 2 .- 1 at both

0-0 . and -900 . This result Is a onsequence of the fact that A 2 = 0 at

o 00 and 900 . If the disturbance velcc!tyq were in the k direction, normal

to the constant phase line, then the rati1, u A = cos 29 . Instead the effect of

the mean flow is toreduce the w fluctuation as 0-. 900 . It is also apparent that

the variation of ul/q 2 with o&Iquity is weakly dependent on the frequency over the
frequency range of interest.

The relative magnitude of the total u2 and w2 at the sublayer edge will then

depend on the distribution of disturbance energy with both frequency and obliquity.

If we assume that the disturbance energy at each wafe number k is uniformly

distributed with 0 , then the relative area above and below the mean curve for

u 2 /q 2  gives the relative magnitude of u2 and w2 . Under this assumption uY ; w2

whereas experimentally Klebanoff finds w /u 2 , 0.5 at the edge of the sublayer.

According to Figure 7. the experimentally observed ratio implies some concentration of

disturbances at either low or high obliquity. Consideration of the wall pressure
field In the next section indicates that the large scale disturbances are cencentrat~d

at high obliquity.

4.2 the pressure field

The boundary layer wall pressure measurements of Willmarth4 and Bulls transformed

"* to the experimental conditions of Klebanoff are compared in Figure 8. There is good

agreement for f > 50 (88*/U 1 > 0.2 , where 8 is the boundary layer displacement

thickness). Willmarth attributes his rising spectra at low frequencies to extraneous

large scale free stream disturbances rather than to the turbulence in the boundary

layer. We might then conclude that in the absence of free stream disturbances, the

pressure spectrum should decrease at low frequencies. Support for this position has

been attributed to :ree flight measurements of Hodgson. Nevertheless, since we don't

know whether extraneous disturbances were present in Klebanoff's aexperiments, some

caution has to be exercised in using the spectra in Figure 8 for Klebanoff's

experimental conditions below f = 50 . The elementary solutions give the relative

magnitude of the wall pressure field and the velocity components out in the flow
where

P2/02= U. cos611  •[si2  
(17)

2

The relative magnitude of the pressure fluctuation falls off very rapidly.at •hi

obliquitu because of the factor cosaO . As we have already discussed, Q1 -. u as

0 -90 , so (p2/pI)/u 2
-. 0 as e -. 900.

I
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If we choose y+ ; 60 for the edge of the sublayer (i.e. y18 0.2' for Klebanoff),

the correspending values of Y are

Y = 2.3 at f = 10

Y = 5.2 at f = 50

Evaluating u2  at these end pointi, the ratio (p 2 /p 2)u 2 as a function of 0 is

shown in Figure 9. At each frequency the experimental ratio can be calculated, using
the uT spectrum just outside the sublayer. These values are marked on the curves.
Clearly, agreement between theory and experiments requires disturbances concentrated
at large obliquity. Any significant disturbance energy near 9 0 would lead to
wide disagreement between theory and experiment.

Of course, the intercepts shown in Figure 9 are ,._.fiuenced to some extent by the

selection of the end point for the calculation of u2 . But p2 /p 2  falls off so
rapidly at high obliquity that an enormous change in u , far beyond what appears
possible, would be necessary to alter this result in any significant way. If we use
the value of u 2 at the edge of the viscous region then the ratio (p-/P2)/up
increases with increasing frequency. This is illustrated in Figure 9 where we have
added a curve at f = 300 which can be compared with the curve for f = 50

(i.e. YE = 5.2 for both frequencies).

Actually it is toubtfulth&t the linear theory gives a satisfactory value for p2

*here the ratio (U2/1p2 )/u 2 is very small. Under these circumstances, the pressure

terms in the momentum equations are given by the mall difference between large
velocity terms. The neglected nonlinear terms in the equations of motion will then
have a much stronger influence on the calculation of the pressure field than on the
calculation of the velocity field. This probably means that the linear theory is not

accurte at low frequencies and high obliquity, so that little weight should be given
to apecific values of obliquity at which theory and experiment coincide.

.4.3 Space correlation measurements

Grant9 has measured the nine components of the double velocIty correlation in a

boundary layer. One set of measurements was taken close to the wall in the outer
region of the sublayer y+ = 30. 60 . These correlations should relect the strongly
aligned character of the disturbances and at the sane time be consistent with the
properties of the elementary solutions. A fairly direct comparison with the u and

* w velocity correlations in the x and z directions can be made. This is because
the elementary solutions indicate that the ratio w'/u; at the edge of the sublayer
is primarily a function of obliquity and only has a weak dependence on the frequency.
Grant's results for the u and w correlations in the x and z directions are
reproduced in Figure 10. (80 = 0.698 . r the wire separation.)

These correlations indicate that the large scale components are at high obliquity.
The covariance R for u . has a large correlation distance in the x direction.
but a smuch mailer correlation distance in the z direction. Furthermore. the R33
correlation distance for w in the z direction is also considerably smaller than
for Rt 1  in the x direction. Therefore according to these correlations the large
scale disturbances have a very mall ratio, w/u , This is consistent with Figure 10
where w2/ut -0 as .- 900.
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Now the normalized w2 spectrum at the edge of the sublayer can be computed from

the R23 correlation In the x direction where

m2 rw i
F-w2(kx) = w2 _ R3 3 (r, 0,0) cosk.rdr

This can be converted to a frequency spectrum using the assumption that
Uw = 0.8U The u2 spectra in different boundary layers can be roughly correlated

using fUh as the dimensionless frequency and (U/8)F(f) as the spectral function.
In this way we have estimated the u2 Mectrum appropriate to Grant's boundary layer.

AssemujS that the integrated value of w2 /u 2 ^ 0.5 as for Klebanoff, we arrive at

the u2  and w2 spectra shown in Figure 11 where the u2 spectrum has been
normalized.

A few points of comparison can be made with Klebanoff's u spectrum at the edge
of the sublayer. For Grant's boundary layer an eddy scale L ; (1/2)8 corresponds
to f = 200 c/s where the frequency range 0 < f •< 200 includes 92% of the u2

energy. Based on the previoun discussion, we believe that Uw 0. 8Ut is a reasonable
approximation for f < 200 c/s . As anticipated. w2/u 2 is very small at low

frequencies.

The fluctuation velocity w2 =u 2 at f = 265 c/s , where 0 < f 4:265 c/s
includes 95% of the u 2 energy, and 40% of w2 energy. Accordingt.o Figure 10 this

cross over point is still at a fairly high obliquity. Most of the w2 energy is
found at high frequencies and lower obliquities. The comparative extent of the R3 3

covariance in the x and z direction appears to support this conclusion.

It appears then, that the pattern of the vf.locity covariances is consistent with a

strong alignment of the energy containing disturbances in the flow direction.

The pressure velocity space correlation should also have a strong dependence on

obliquity according to these solutions. The calculated variation of the correlation

coefficient XU/plu' with 1 at f = 70 , close to the wall, is shown in Figure 12.
It is important to limit the calculation to the inner portion of the viscous region
since the outer boundary condition affects the p , u correlation in the outer part
of the viscous region. Nenr 9 = 650 , the correlation coefficient changes sign.

Negative pressure-velocity correlations near the .all have been observed by
Kawamura11 Spectral measurements indicated increasingly negative correlation

coefficients with decreasing frequency. However more detailed measurements in the
sublayer would provide a better basis for comparison with the calculations.

3

5. CONCLUSIONS

The structure of the turbulence field outside the sublayer leaves its footprint
inside the sublayer and on the wall. This can be readily seen by examining the
properties of the elementary Fourier components at different wave numbers and angles

of obliquity. The relative magnitude of fluctuating quantities depends on the
obliquity of the disturbance. At high obliquity, the convecO.ve action of the mean
flow reduces the w2 fluctuation associated with a Fourier component. As a result
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as 8-_900 , w2 
-. 0 and the ratio w2/u; -. 0 . Also, the iatio of the pressure

field p2  in the sublayer to the velocity fluctuation at the edge of the sublayer
decreases drastically at high obliquity. By 9 800 . this ratio has already
dropped two orders of magnitude below the value of the ratio at 6 = 00
As -. 900 , p2 - 0 . . A detailed comparison of these theoretical results with
available experimental measrrements indicates that the energy-containing eddies in
the sublayer are strongly aligned with the flow direction.

Correlations of fluctuating quantities also depend on the obliquity. A particularly
strong case is the variation of the correlation between p and u . The correlation
coefficient F=/p'u' changes sign near 0 = 650 going from near +1 to near -1.
Additional measurements in the sublayer are needed to compare with these calculations.

7here appear to be inherent limitationh to the linear representation.
Experimentally, the variation of u2 and w2 is qmall Just outside the sublpeyer.
Purther, we regard the correlation coefficient TV/u'v' as a fundameatal property of
a fully turbulent flow. Solutions with almost vanishing viscous action outside the
sublayer, do not satisfy either of these conditions at the edge of the viscous region.
On the other hand, the solutions in the inner part of the viscous region and the more
dramatic effects of obliquity appear to be insensitive to the particular outer
boundary conditions that are used.

Our view that the principal source of the energy-conitaining disturbances in the

sublayer is the outer flcw does not preclude the presence of other disturbances in
the sublayer. The local flow of energy from the mean flow to the turbulence will
modify the fluctuation field. Also Kline et a1 1 2 have observed apparently self-excited
longitudinol flow structures in the "laminar" sublayer. y+ < 12 . However, the
spacing of these disturbances is of the order of the sublayer thickness and it seems
to us unlikely that they make eny significant contributions to the energy-containing
motions except very close to the wall.

(.

[ a
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SUMMARY

Theories to predict the rate of heat transfer and temperature
distribution re' reviewed. On the basis of these considerations.
available experimental data are compared and turbulent Prandtl numbers
are calcula.ted from the experimental survey data. As far as turbulent
boundary layers with zero heat transfer are concerned, the temperature
distributions are in good agreement with predictions from Crccco't relation.
and the integratl of total enerey is satisfied with a reasonable degree of
accuracy. The turbulent Prandtl numbers are found in agreement with
observations at subsonic and incompressible flow tests. When boundary
layers with heat transfer are considered, remarkable differences are
observed between boundary layer.; on nozzle walls and on a flat plate.
The turbulent Prandtl numbers indicate extremely low turbulent heat
transport rates in proximity of the wall whei compared with the momentum
transport. No evidence can be furnished that the Crocco relation provides
a satisfactory approximation to the temperature distribution in supersonic
turbulent boundary layers with heat transfer.

SOMMAIRE

L'aviteur passe on revue lea thiories aur lesquelles sont basdes les
pridictions de taux de transfert de la chaleur et de rdpartition des
.tempiratures. I1 compare ensuito les donndes expdrimentales existantes
et calcule les nombres de Prandtl pour les couches turbulentes & partir
des rdsultats de l'dtude expdrimentale. Pour lea rouches limites
turbulentes & transfert do chaleur nulle, lea r'partitions de tompgrature
correspondent bien aux pr~dictions basdes sur la relation de Crocco. et
lint4grale do ldnergie totale bdndficie d'un degrd d'exactitude
raisonnable. Les nombres de Prandtl pour les couches turbulentes se
rdvblent concorder avec lea observations effoctudes au cours d'essais en
dcoulement subsonique et incompressible. Lorsque V'on consid~re des
couches limites avec transfert de chalour. on observe des diffdrences
remarquables entre lea couches limites sur les parois de la tuy~re et sur
une plaque de surface plane. Lea nombres de Prandtl pour lea couches
turbulentes indiquont des taux de transfort de chaleur extr6memont faibles
au voisinnac de la Parol. en compazicon dMa transfert de quantitd de
mouvement. On ne peu. prouver quo la relattnn ee Crocco fournit une
.. rpartition des tempdratures dans les
"couthc ).hltec: turbul, :;•t¢s'-peraonilque.s.-c.'tiansfert de chaleur.
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NOTATION

CI, C• constnnts of integration. Fquation (2.16)

Cf local skin friction coefficient. Equation (2.2)

CP specific heat at constant pressure

he total enthalpy. ha = CpT + U2/2

Mai Mach number

Pr Prandtl number

Sa heat flux perpendicular to wall (rate of heat transfer)

Qt turbulent heat flux

R radius of body of revolution

r recovery factor, Equation (2.5)

St Stanton number (heat transfer coefficient), Equation (2.1)

T temperature

TO equilibrium wall temperature (zero heat transfer), Equation (2.5)

Sstagnation temperature (total temperature), T. = T + UtJ/2p

U moan velocity parallel to the surface (x-direction)

V mean velocity perpendicular to tho surftce (y-direotion)

x.y cartesian coordinates, x = distance from leading edge of plate.
y = distance from surface

y ratio of specific hents

S total boundary layer thickness

8, displacemont thicknens, Equation (2.9)

8, momentum thickness, Fquntion (2.10)

Sh total enthalpy loss thickness, Equation (2.11)

vli non I ty
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HEAT TRANSFER AND TEMPERATURE DISTRIBUTION IN TURBULENT
BOUNDARY LAYERS AT SUPERSONIC AND HYPERSONIC FLOW

J.C. Rotta

1. INTRODUCTION

The knowledge o: the boutidary layer velocity and temperature distribution is
required in order to determine the skin friction and the rate of heat transfer.
Widely different assumptions with regard to the velocity profiles of supersonic
turbulent boundary layers have been introduced with the various theories, while the
estimation of the temperature distribution rests almost exceptionally on the relation
to the velocity distribution, as is given by Crocco's solution of the energy equation.
This relation has been accepted without major criticism by many investigators. However,
recent investigations, made by Petersoni and Spalding and Ch 2, have shown again that
the prediction of skin friction in boundary layers with heat transfer is afflicted
with a considerable degree of uncertainty.

On the other hand, measurements of velocity and temperature profiles in turbulent
boundary layers on cooled surfaces at supersonic speeds require a high effort and are
time consuming and expensive. These are probably the reasons why relatively few
experimental boundary layer investigations, which Include temperature surveys, are
reported in the literature. Unfortunately, some discrepancies have been observed
among the available data and in comparison with theories. A. Walz 3 , for instance,
compared experimental temperature profiles with those calculated by the Crocco
relation and found conflicting differences. Previous comparisons made by this
autbor4* s with his theory suffer from shortcomings of the measurements.

It appears thus useful to inspect again the available information. Simple
theoretical relationships for heat transfer and temperature distribution are reviewed
and available experimental data are considered on the basis of these theories.
Particular attention is paid to the temperature distributions in relation to the
velocity distributions. No considerations about the velocity profiles (velocity as
a function of wall distance) will be made here. Only flows are treated, for which
the law of ideal gases 'Is valid.
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* THEORY

2.1 Beat trassfer coefficient

M~en the local rate of b~eat transfer q,'s nom-dire-isionally expressea by the

hcaz. tran-afer coefficient or Stazitco ntaiber

S#. q (2.-1)

end the wall shearing stress -,is expressed by t~e local skin 1rictior coefflcecnt

them Irw Rey~iolds analogy fellows

*4hholds *eu the wilecuit: udtxrlt --uUame Iqalomiy(e

c f P 3- 3

The temTeatwe recolery factor ilt the rela:lz -ir the equilibrium teaperature

Te= 7 I+r - v;(2-5)
2 /

Is usually calculated fr~m r =1" -

SpawaUs (2-3-, sad (2-4) are based on tke assnizpicin of ccatsewr presscrt Nova
am! cc~staat wril temprature. 71 -

Using Kmton~sf 2ic 2' law d Fbarler' s law of bezz cmdz.ctica, the fol lowing
rela ic r. Is ebtai zed. z 

U Z .!C Iv

- : L t - W C2-
C f EPrty - T,-L1-( (.6

~idac applies quite generally to any flow cc ziootL -arfaces, vtzn *Ae cmdit;.w ::I

Lo slip holds.-

Anoth:r reistionship between heat tra~sfer aad skiz fricetion. vbich is C211ed after
NBR Cobens -mdified Re~ipclds analogij". cat be !.-ived ny cccibi:Latiuci of --,7 Kiraii' s
acmeena eqoation ard! the i-1te~r:1ed d-ffererztial equation of te-tal znerg7 Fo:-
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axisymmetric flow (boundary lihyer on the outer surface of the body), the momentum

ectiat ion reads

dS2  r I du+ I dp+ I dR] _c
L-2 4 (..(2 +,/8 - + - + ' = _' (2.7)

dx 2112 Udx P-, -dx IRdxJ 2'

and the interrated total energy equation (total enthalpy integral) is

dvb rI dU. I dp. I dR 1 dhSC] _2
+I (2.8)

dx-- dx p. dx R dx h5h dx pmUhSCD

where

displacement thickness 2 1 -f - dy (2.9)

r ( o)
momentum loss thiokness 8 -D p iUI U (2.10)

energy loss thickness U= a ) dy"
(enthalpy convection o PU= (he.1

thickness)

Usually the flow is isoenergetic outside the boundary layer, such that the last

term in the squared brackets of Equation (2.8) can be neglected. If one introduces

h - d32 4 8d( 8 2) (2.12)

dx k 82 dx 2 dx

into equation (2.8) and eliminates d8 2 /dx and qw using Equations (2.7) and (2.1)

respectively, the following relation is then obtained (modified Reynolds analogy):

2St Te -Tw 8 h 282 d(Sh/) 28 + A I dU(1
- - --- (148/ ) -. (2.13)

Cf Ts5  82 Cf dx Cf 1 2 U. dx

Fbr a boundary layer, which develops in a constant pressure field on a surface

of constant temperature Tw , it is expected that both velocity and temperature

profiles settle to self-rreserving shapes and consequently, the ratio Sh/ 8 2 assumes

a constant value. In this case. the modified Reynolds analogy of Equation (2.13)

reduces to the simple form

2St

2St _ 8h Ts(

Cf 82 Ti Tw

The relations Equations (2.3) and (2.4) are designed to predict the heat transfer

coefficient in a given flow. Equations (2.6), (2.13), and (2.14), however, can be

applied only if the temperature distribution is known otherwise. These relations
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can be used also to prove certain properties of experimentally determined tenper-aturo
and velocity distributons. lbey will te ased in this sense !n the subsequent. s(rtion.

2.2 Temperature distribution after Crocco

Crocco's relation for the temperature distributicon is widely applied in laminar
as well as turbulent boundary layer theory. and it is gpnera" believed that it gives
a good approximation to the actual tclrerature distribution. Tbe necessary
suppositions are the saae asunderliethe relations Eqjations (2.3,. (2.4), and the
reduced form Equ:ation (2.14) of the LM.n-fied Reynolds analogy. namely constant
pressure and constant wall temperatur,. T. - in addition it is required that the
molecular and the turbulent Prmidtl number equal nearly cnity. If the Prandtl numbers
are exactly unity, the l.•al temperature can be expressed as a function of local .!low
velocity and from the boundary layer equttions one obtains

d 2T I
-+• -= 0.
d2 O2.lCp

Upon twofold integration thit relation yields

U2

T - + C'u + C2 (2.16)
2p

where C. and C2 &-r constants of integration. Usually the costants of integrztion
are determined frmt the bomdary conditions

T = Tv at U = O: T = T, at U U,.

Furthermore. the first term on the right band side of Equation (2.16) is multiplied
by the recovery factor - in order to compensate for the effect of the Prandtl
ambers shen d.iffering frcm unity. thus Zuatimn (2.16) can finally be writLen

_ TV_ Te -T- U I-l
+ ___ r - MaZ r -217

T. T. T. U. 2 (2..1"

This is the relation for the tem;*rature distributicn aost often used in bour-ary
layer calculations. Therr are, however, suae other possibilities to determ-:.e the
constents of integraticw of Equation (2.16). The tiperature distribution calculteed
frcm Equation t 2 . 1 7 ) Till be denoted as case I hereafter.

As the second possibility (case 2) tne ootindary condition T = T= at D ,I is
dropped ani instead of tbir, the constant C, is chosen as to bring the slope of the
ttperature distributiun at the surface in agreement with given values of the rate
of heat transfer and wall shearing stress

C () ? = ?r "- Pr -(2.18)
du w C w Cf U.
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If il addition the first term on the right hand side of Equation (2.16) is
multiplied by Pr . an exact solution for the temperature distribution within the
sublnyer is obtained. which is conditional only upon constancy of the shearing stress
In that rugion. This condition is, however, fulfilled with a reasonable degree of
accuracy in the sublayer. This relation can thus be used to predict the temperature
distribution near the surface, when the rate of heat transfer and skin frkction are
known.

A similar temperature distribution results (case 3), if the constant C1  is
determined from the requirement that the calculated temperature distribution meets
some experimental survey data nearest to the wall. This distribution may thus give
a physically correct extrapolution of the experimental data to the wall. provided, of
course, that the measurements are extended into the sublayer. Prom the slope of this
curve at U n 0 , the value of the ratio of 2St/cf can be calculated, using
Equation (2. 18).

PinaUy. in case 4, the boundary condition T = T, at U = U, is satisfied, but
T = TI at U = 0 is dropped. The remaining free constant can then be determined in
such a way that the calculated temperature distribution agrees with experimental
survey data of the outer part of the layer. The idea underlying this procedure is
that the condition of constant pressure is fulfilled in the neighbourhood of the
survey station, and that partially self-preserving boundary layer profiles exist in
the outer part, but the pressure and alsn Tw may change further upstream. The
slution may be interpreted also as a solution of Equation (2.17) with an apparent
surface temperature Tw, differing from the actual surface temperature Tw . The
conditions of the four versions of the Crocco solution are compiled in Table I.

3. COMPARISONS OF EXPERIMENTAL IIATA W!TII TIlE THEORY

3.1 Experimental data

The given relations are applied to available experiments. The data considered here
are the experimental results of R.K. Lobb, E.M. Winkler, J. Persh. o,1 E.M. Winkler.
M.11. Chan' I, F.K. 1ill0 "', and 0.J. Nothwangzs. In all these tests, the Mach
number distributions have been determined from the Pitot pressure surveys using the
Rayleigh formula, and the total temperature distributions have been measured with
total temperature probes.

The measurements of Reference [9), (10) have been performed in the turbulent
boundary layer on the plane watercooled nozzle wall of the NOL 12 x 12 cm Hypersonic
Tunnel. The free strean Mach numbers ranged from 5.0 to 8.2. In addition to the
surveys, the temperature gradient in the nozzle wall perpendicular to the wetted
surface has been measured, from which the rate of heat transfer could be determined.
The measurements of References (11., (12) have been made on a liquid cooled flat plate,
which was installed in the same NOI, Iypersonic Tunnel, in which the aforementioned
tests were carried out. The Mach number is about 5.2. Boundary layer surveys were
taken at four different distances x from the leading edge of the plate for three
different conditions of heat transfer. As with the measurements described before, heat
transfer rates have been determined from measured wall temperature gradients.
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F.K. Iiii)1. investigated the tur'h:lent boundary layer on the wall of a conical

nozzle with 150 mm exit diameter. Nitrogen gas was ns.d as flow medium. abile the
mentioned iOL--easuri,-ents aere conducted In air flow. Only for ore !oundary layer

profile. rcestred near the nozzle exit at a nominal Uach n~mber of 9.0Y7, were the

given data sufficiently complete to be -3e1 for the purpose intended in th-s report.

The ratio of specific heats is assumed -y = 1.4 for both air and nitrogen. The
Prandtl number was put Pr = 0.72 . although molecular nitrogen has a s,3ewhat lower

Prandtl number.

G.J. Nothwangis conducted measurements in the boundaiy layer aith zero heat trrnsfer

on a flat steel plate, which was placed in the air stream oi ;:h number Ma. = 3.03
through an 8 x 8-inch supersonic nozzle.

3.2 Heat trans~er daLa

7her-_ are three different ways to determine the heat transfer coefficient from the

measurements, namely de~eruination from (i) the beat trinsfer measurements. (iH) the

survey data of the sublayer (using the solution case 3 of Table I). and ,'iii) the
modified Reynolds analo gy. Equation (2.14). The latter relp-tnon is evaluated, after

the momentum and energy loss thickness were calculated Afrm the experimental survey

data. The density ratio follcws from the perfect gas law and constancy of pressure

throut the layer

P TOI;=- T .(3.1)

SFor an ideal gas. which is assumed from now on. the enthalpy values my be
replaced by the corresponding temperatures. The results are compiled in Table II and

III. and may be compared with eaczh other and with the results using Colburn's version

of Reynolds wnajogy.

[� he rates of heat transfer, determined from the survey data of the sublayer

(column b in Table II and I11) should be in agreement with the results of heat transfer

.measurements %column a). But marked discrepancies are observed. 1ith the nozzle wall

boundary layers, much lower rats. uf heat transfer are obined from the wall slopes

of the surveys. With two of the test series even negative values resuLea. which are

very unlikely to occur actually. In contrast with this. the heat transfer rates
det..rmined from the wall slope are in most of the cases of the flat plate cmpcriments

appreciably higher than thosz obtained from the wall temperature measurement., _s

follows from Table HI. These observations raise some doubts with respect to the
accuracy of the experiments.

On the other hand, the measured heat transfer rates (column a) are In good
agreement with the va).ues predicted from Colburn's version of Reynolds avalogy

1column d). They are on the average 3 p.c. higher for the flat plate boundary layers.

whereas the measured heat tfansfer rates of the nozzle wall layers are on the average

2 p.c. below those resulting from Colburn' s Reynolds analogy.

From E, theoretical point of view, the interest exists, in the first place, in

boundary layers on a flat plate with conr.ant prescure and constant surface temperature.

for whih self-preserving velocity ano temperature profiles are sug, ested frum
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theoret~cal arg=eits. if this cond'tion is fulfilled. the rate of beat transfer
calculated fron th~e slope at the wall (cpse 3 of Table 1. rust agree with ths! fira
the tnoc~il'e- R;eynolds ar-ilory Etrutioo i2.14*. The arguents for the existenie of
self-preservint prnfiles are strocC enough. that. in the casp of discrepanc~es, the
ef~erinents are suspoctc-d ratter tbarz the theory. Tbe equality of the two Taliies I..
howver.r a strp±-g criterric~a. tzc3use it requires very accurate results for the *bole
profile. The heat transfer data, as detervined fim- the subla~yer suzrrey data, are
plotted versus the :atio (3,- (-,T,:) mn Figure 1. It is seen that V~ie said
c-iterjon is ve~rifie~d rith r ns,.nabie accuracy only by a few of the flat plate pr'ifiles.
The noz=.i' wall hocadpry layver ;rnfiles do rcot comply witli this conditioni.

3-3 llood&.ry layers with zero beat transfer

Then tb? tp-nperature distribu~tic-,s calculated Afroar the relations of Table I are
coapared with the ý!xp-erlirental res-:lts. it. sho~d be kept in nind that the experipe~ital
data ccasisl of two indepeadent sets~ of neasureents. viz-, the Pitot surveys. frmi.
which the Vach ta~ber distributions are de;tintined. xund the stagnation temperm.nre
surveys%, It appeared suitable fc~r *01is reason to plot the local stagnat-ion teaperatz~re
ratio T r 1.vrsus the lcocal Maech. naber ratio Mait'!a.. The zeasuremert, coa&.xted
by G-J. iNothtrng 5 in the turoulent 'Layer on a flat plattL at Ma- is shown in
Figure 2. The experimental data are slightly above the cirve calculscei fF01!
Equation (2.17), vwhich appears to br reasonalole. The v'alue of tieM ene;iu loss
thickness .is indeed not exact:,,- zero, ass is required by the total energy integr~al.
It has a slightly ncative ralue, viz. (t hT .J(S2 ,l) =-0.043 .The NOLJ measurements
include only one case. In which the heat trznsfer to the wail was era. This ease,
labelled as hc-l in Table 111. shows excellent agreexent with the Crocco solution,
cas2 1. Its val:;e of (3,T,=/0 ,, given in Table III edwin c. is small enough to
be considered in fair agreement with the requirenamn-. Othier experirertal (e.g. a test
by Spivac quoted in Ref. L16!) and theoretical (see Ref. L17 1 ) studies confirm that
the actual temperature distribution dces not differ greaily firma the Croczo relation.
cese 1. 3nc tnat the entrgy irtegral is fairly well satisfied.

3.4 Bowndary layers with heat transfer on a flat plate

From the test arrangement, described in Reference [l11 it is to be expected that
the flow resi~mbles very nuc-h that of a turbulent bon -r layer on a semi-infirite

the4 ho la er celen themet ihteCoc solution, case 1inthe outer part of
thela er.Atsmllert distanens with t:hewal systematic deviations from Crocco's

soluion cae 1 inthedirctin t hihertemeraiirs ocurwith all mea~,uremrenlts.
The curves calculated fromn case S of Table I do not join the survey data smoothly,thsteIontpoiea prpit xtaoain) h uvydt oad h
wafll.I, ut oeeb ditdta h maueet r extended not very deep
into th ulxr h uvs ae2 hich are based on the experimental rate of
teat transfer, cannot be reconciled with the survey data in proximity of the wall.

The discrepancies between survey data near the wall and the heat transfer
measurements can hardly be explained with errors in the effective probe positions,

* rae available spae allows to reproduce only a few examples of the cited measurements hare.
Mlorecot~mparisons s,- given in PRcfercncca [.91.
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since relative shifts in probe positions up to 0.5 mm arc required in order to remove
the discrepancies. The probes used for Pitot pressure and local stagnation temperature
wte of similar geometry and had half-height.- between 0.1 to 0.13 ram, thus they give
little rise to suppose sub:.tantial errors in the effective probe positions.

3.5 Boundary layers ith, heat transfer on a nozzle wall

The boundary layers on a cooled nozzle wall arc obviously not representative of
boundary layers with heat `rnnsfer on a flat plate. 111e measured temperature
distributions, represented on Figure 5, exhibit systematic deviations from the Crocco
solution case 1, which increase with the rate of heat transfer, i.e. the ratio
(Te - Tw)/Te . Furthermore, the rates of heat transfer, determined from the modified
Reynolds analogy, Equation (2.14) and those determined from the sublayer survey data
(cpse 3 of Table 1) show differences which also increase with (Te - Tw)/Te 0 as is
seen from Table III and Figure 1. These deviations are not incompatible with each
other. They indicate that they must be caused essentially by the upstream history of
the boundary layer on the nozzle wall. The most likely explanation for the observed
behaviour of the temperature distributions will be that the thickness of the velocity
boundary layer grows slowly under the influence of the falling pressure in the nozzle.
the heat transfer, however, is high, such that great energy loss thicknesses and
small momentum thicknesses are expected at the same time. This development, typical
for the boundary layer on a supersonic nozzle wall, is confirmed by Hill's
experiment, the results of which are shown on Figure 6.

It is perhaps interesting to notice that the Crocco solution, case 4 of Table I,
represents L fa.r approximation to measured temprature distribution of the outer
part of the layer in most of the cases. ThVe corresponding apparent wall teoperatures

Twa are, however, considerably lower than the measured wall temperatures. In order
to approximate the outer part of Hill's measurements, oven a negative value of the
apparent surface temperature T,15  is required, which has, of course, no real physical
meanih,z.

The temperature distributions calculated from the Crocco solution, case 3 of
Table I, join the experimental survey data quite smoothly within the sublayer reglon
(which extends to about Ma/Ma. = 0.25), thus providing a good extrapolation of the
survey data towards the wall. Tley show, however, much lower rates of heat transfer
than obtained from the heat transfer measurements. In general, the survey data
cannot be reconciled with the heat transfer rates determined from wall temperature
measurements.

The flattened Pitot tube, used for the surveys of Reference [10). had a half-height
of 0.125 mm and the flattened stagnation tcmperature probe had a half-height of
0.48 mim, such that a shift of a few tenths of a millimeter in the effective positions
of temperature probe relative to those of the 11itot probe cannot le (xcluded. At some
of the boundary layers, actually relative shifts of 0.2 to 0.3 nrt are sufficient to
remove the discrepancies between survey data and the distribution calculated frtV.
case 2 of Table I. In other eases, however, greater shifts are necossary. For the
measurement at Mao -- 8.2 (not showit here) a shift of 0.8 to I ma is required to
bring the survey data of the sublayer in agreement with ths calculated corv' of
case 2. It thus tippoars doubtful that errors in probe positioninng alone are
respongilllv for the ohsorved differences. Tlie most striking lihenomenton is that the
discrepannies are in the opponite direction to those of the flat, plate houndary.
lanyrs. No plausible expllaintion can lie suresAted.
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4. TURBULI'NT PRANDII. N!'%ERS

In ordcr to supplencnt the coaptrisons and the orecedinz discussion, the turbulent
Prendtl nunber as defined by

Ut - C ! lt ' (4.1)

has been determined for so.-P of the s.Jrveys. This magnitude. which is the ratio of
the c.effcients for turbulent r.*entm and heat exchange, gives sose insight into

the tu.bulent ni'y.ng processes.

The distributions of shearing stress and heat flux can be calculated with the

assimptior. Gf seif-preserving velocity and temperature profiles from the equations

for cantinuity. mocentumn and total energy of mean flew quantities. After some
algebraic calculations, the following relatior. are Gbtained:

_r-2 U 1,p -0 dy ' - fa p 2d t + c

(4.2)

q ýf C JpUJdy' - J.'p L7, dy -U-r +c

from which the sh~aring stress and heat flux can be calculated by simple quadr ires.
The constants of integration, c1  and c 2 , are to be determined from the boundary

conditions 7- 0 , q = 0 for y : 8 . The portions produced by the turbulent

mixing process are determined from

ZU

qt : -.

only boundary layers on the flat plate have been considered. As the only exception
the nozzle wall boundary layer with zero heat transfer of Reference [10) is included.

On Figure 7 the distributinns; of -ýhe turbulent Prandtl number for the boundary layers

with zero heat transfer are plotted as a function of y/8 . and on Figure 3 the Ortvalues for the boundary layer on the flat plate at Ia. = 5.2 and (T. - Tw)/Te ' 0.35

are given. Although a smoothing procedure was applied to the experimental data before

the calculations were carried out, the results show a considerable scatter. Thne
distribution of lyt after H. Ludwieg 6, which bad been obtained from the equilibrium

temp~erature distributions in tu~rbuler-ý pipe flow at. high subsonic speeds, is indicated

bj :t dashed eui've. where the pipe radius is replaced by the boundary layer

thickness .

For the boundary" layers with zero heat transfer, crtý is on the average below unity,

however nt is greater than from Ludw,?g's results in the outer part of the layer.

Nearer to 'lie wall the flat plate measurements yield lower turbulent Pranatl numbers

than Ludwior','s experiments. The results of the nozzle wall layer are -on the average

.. ~ y I

I2
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and in particular close to the wall - higher than the flat plate results:. This mway
perhaps be caused by neglecting the slight pressure gradient In the analysis. The
rapid Increasc of c,, above unity in the vicinity of the wall has probably no real
meaning. All in all the agreement v;ith Ludwieg's results is quite good.

The turbulent Prandtl numbers of the flat plate boundary layers with heat transfer
are in most cascs lower than unity in the outer region of the layer, but show a very
pronounced tendency to rine towards the wall. At the middle of the layer oat exceeds
already unity and as.uaies extraordinarily high values in proximity of the wa1l, thus
indicatin,- an extrenziely low heat tr.nnsport compared with the momentum transport. This
is in gross contradiction to our previous experience from turbulent flow at subsonic
speeds. The author I s not aware of any other case of turbulent flow, where at
exceeds the value of unity. In view of the other defrieoncies in the experimental
data, which have been mentioned above, the result will be considered with some
reservation, as long as it is not confirmed by othf-r experiments.

The turbulent Prandtl numbers for x = 216 mm are remarkably higher than those for
the downstream stations. It might be suspected that fully turbulent flow is not
established at x - 216 nm. But this is not confirmed by the boundary layers with
lower heat transfer.

5. CONCLUSIONS

The most important results of the above investigations may be summarized as follows:

1. The measured temperature distributions in turbulent boundary layers with zero
heat transfer satisfy the requirement of vanishing energy loss tlickness with
sufficient accuracy. The Crocco relation provides a good approxikation to the
actual temperature distribution. The turbulent Prandtl numbers are in fair
agreem.,nt with observations at subsonic speeds.

2. The available temperature distributions of flat plate boundary layert- with heat
transfer are found only in moderate or poor agreement with the modified Reynolds
analogy. The measured temperature distributions display unexpected deviations
from the Crocco solution. The turbulent Prandtl numbers are greater than unity
through the inner half of the layer, and extremely low turbulent heat transpz'rt
rates are indicated near the uall.

3. The temperature distributions of boundary layers on noole walls are not
ropresentutive of those on flat plates. Obviously the temperiature dibtributions
on nozzle wall . are severely affected by the upstrewit history. The ma¢.sured
temperature distributions differ greatly from the Crocco relation. Ibis is W1
indication thut Crocco' s relation cannot le applied to boundary layers with
pressure Cradientas.

4. For the boundary layers with heat transfer (on both nory.lv tAll and flat plte)
remarkable dit•crepnncies iire observed between ,mesuredi heat transfer rates and
the heat tron~ifer, detormined from the s8blayer survey datt. The meesurd heat
transfer rat esi are fouiind, hw'ever, In agreementt with Collburn'sa \'er.,oti of
Reynolds analop.y.
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5. There is no evidence that the Crocco relation provides a satisfactory
approximation to the temperature distribution in st-personic turbulent boundaiy
layers rit, heat transfer.

The considerations revealed a nutwoer of gaps in our knowledge. In addition.
obvious shortcomings of the available experimental results shed doubts on the
reliability of the conclusions drawn. In order to obtain a more complete and firm
picture of the mechanis- of turbulent h,:at transfer, further measurements of temperature
distributions over a range of Mach numbers and wall temporatures are needed.
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TABLE I I

Heat tr•.isfer data of turbulent boundary layers on a flat -,late determined from
Reference 11

2 St(Te - T )
eftw
C fT

T -TM a e w
xM T a b c d Fig.

mm e

216 5.21 0.126 0.184 0.260 0.649 0. 173

216 5.14 0.044 - -0.089 0.829 0.051

292, 5 5.20 0.084 0. 109 0.079 0. 434 0. 108

368.5 5.26 0.062 0.084 0.123 0. 569 0.111

445 5.29 0.078 0.103 0.018 0.214 0.100

216 4.98 0.183 0.287 0.436 0.371 0.256

216 5.18 0.189 - - 0.625 0.284

292.5 5.20 0.179 0.257 0.646 0.485 0.268

368, 5 5.24 0.156 0.237 0.356 0.413 0.222

445 5.24 0.163 0.245 0.260 0.351 0,236

S216 5.17 0.331 0. 603 1.01 0.711 0.60

292.5 5.16 0.360 0. 710 1.44 0.645 0. 60

292.5 5.10 0.370 - - 0.626 0.722 4

368.5 5.20 0. 384 - - 0. 632 0. 634

368.5 5.11 0.357 0.806 1. 53 0. 750 0.76 7

445 5.12 0.340 0.657 0.83 0. 542 0. 639

a heat transfer measurements

b from wall slope of temperature profile, case 3 of rable i

c modified KRe y n old s analogy, Eq. (2. 14)

d Reynolds analogy after Colburn, I-Hqs. (2. 4) and (2. 5)
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TABLE III

Ileat transfer data of turbulent boundary layers on a nozzle wall determined from
References 10 and 13

2 St(l' - T

T -T Cf rw
No. Ma e W a b c d Fig.

Co T
e

1 4.93 - - 0. 119 -0.016

2 5.01 0.224 0.344 0. 140 0, 729 0.348

3 5.03 0.374 0. 754 0,430 1.35 0. 728

4 5.06 0.420 - 0,447 1.56 0.879

5 5.75 0.108 0.147 - 0. 168 0.474 0.147

6 5.79 0.238 0.386 - 0.063 0900 0.384 5

7 5.82 0.379 0. 732 0. 400 1. 51 0.748

8 6.83 0.326 0.579 0.728 1.14 0.591

9 6.78 0.438 0. 966 0.845 1.62 0. 956

10 6.83 0.444 0.958 0. 505 1.89 0.977

11 6.78 0.499 1.18 0.684 2.04 1.23

12 7.67 0.488 - 0.553 2.20 1.17

13 0. 18 0.495 1. 13 0. 331 2.51 1.20

14 9.07 0.438 - 0. 296 2 82 1.12 6

a heat transfer measurenmnents

b frumi wall slope of tenmperature profile, case 3 of 'lable I

c modified It c y n ool (s analogy. '(I. 14)

(It Iy n.,l, ;d na,, ifer C ol burn, E'qs. (24 4 ) and (2. 5)
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Pig. 5 Local stagnation temperature in the turbulent boundary layer on a cooled plane
i nozzle wall, Mla= - 5.8 , Reference [10]

Crocco solution, Table I

Case 1 C'•aee 2 Case 3 tCase 4

T-T 2S1(Te-Tw
No MloT'--• T/r = Tw Tw/Tco

5 5.A5 0.108 6.19 0.147 -0.168 4.99

6 5.79 0.236 5.35 0.386 -0.063 3.50

"7 5.82 0.3'79 4.,41 0.74&2 0.40) 2.46
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subsonic pipe flow, H. Ludwieg [18]
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SGMM AIRE

Lialyse des couches limites turbulentes A des temp4ratures
suffisamment dlevtes pour permettre la dissociation.

Dans une premiere partie la rdparAtion des enthalpies et la
concentration i 1' int6rieur de la couche limite d' une plaque plane scnt
dtudi4es au moyen d'une combinaison des equatlons locales de !a couche
limite dans l'hypothbse d' un gaz parfait pui.s pour un gaz rdel figd
ou i 1' 4quilibre. On en d~duit le rapport du transfert de chaleur
au frottement de la parol.

Dans la seconde partie de 1' dtude les rdsultats obtenus sont
utilisds pour le calcul du transfert de chaleur sur des avant-corps
arrondis en faisant appel A l intdgration de 1' 6quation globale de

1' dnergie.

SUMMARY

This paper is devoted to the analysis of turbulent boundary-layers
at temperatures sufficiently high for dissociation to occur.

In the first part the enthalpy distributions and the concentration
in s flat plate botuidary-layer are studied by means of a combination of
thf local boundary-layer equations in the cases of the perfect gas and
of Ahe real gas either frozen or at equilibrium. The ratio of the.heat
flux to the wall friction is thus deduced,

The results obtained are used in the second part to calculate the
hoat transfer on roundd fore-bodies by integration of the global
energy equation.
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NO)TAT ION

* -x, y coordonn~es longitudinale et normale

r rayon transversal do la paroi

J courant plan j =0

* :, ~courant do rdvolut ionj 1

u, v cornposantes de la vitesse

ue vitesse extdrieure

w vitesse rdduite, U/U e

P presslon, p1  pression d'arr~t

T ternpdrature

p masse volumique

*h enthalpie, hi enthalpie d'arret

h fenthalpie de paroi athermane

ho chaleur de formation des atomesA

CA concentration massique des atomes

Cpf chaleur slj~cifique "fig~e"

C Pf = CACpA + (1 - CA)CpA2

viscositd et viscositd turbulente

x, conductlbiliLd- et conductibilitd turbulente

D, D t diffusion et diffusion turbulente

nombreý, de Prardtl, de Lewis, de Schmidt, iwninaires, mixtes, turbulents:

- LC £ pDC~f P

(/ +-P p(D + Dt)cp P M
+ + Xx

Pt- ECf r£ -pDt C~f St

X x P x
t
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frattemcnt ~interne

q) flux de chalcur

QA flux massiqtae de diffusion

V. Ataux nasllique de formiation~ chimicjue des atomes

Cf coefficicnt de frotteinent Le __2

f TV/2 e

C-b c~toefficient de flux de chaleur (hp 1
peue (hp f)

s facteur d'analogie ChC

r factor de r~cupdration (hf - lie)/(hie -he)

S82' A. 6paisseur, de d4placement, de quantitd de iflouvement, d'6nergle

I1 dy = (1 -w) dy

8 2 j. w( - w) dy 821 w I w.=

pcararn~tre de forme 501/82,

f ~t Er fonctions Cf/Cf1  (forxnule 18)

[ mdi f es
A vtornes, A, molecules

o ~6coulcrnent amont non perturb6

conditions d'arr~t

C ~exthrieiir A la couche lirnite

p conditions 1 Ia paroi

incomnpreŽssible
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QUELQUES RESULTATS SUR LES CARACTERISTIQUES
TIIERM11IZES DES COUCHES LIMITES

TURBULENTES A TEMiPERATURE ELEVEE

R. Michel et P. Mentrd

INTRODUCTION

Le probl~me des transferts de chaleur en rdgimc turbulent, petit se trouver'pos6
d'une fagon trý.s critique dans certains cas de vol hypersoniotie, conune par exeinpie,
celul de la rentr~e d'un engin spatial dans 1'atmosph~re terrestre; 1'exp~rience
montre en effet qu'utne transition pr~inaturde petit donner lieu a' tine couche lirnite
turbulente A tine faible distance en aval du point d'arr~t des avant-corps arrondis.

On se propose ici, afin d'aboutir A tine estimation raisonnable des transferts de
chaleur qui sont alors enregistr4s A la paroi, d' ef fectuer tine analyse des propriktgs
thermiques des couches limites turbulentes A tempdrature dlevde. Une attention
spdciale doit Otre pr~te aux effets de gaz r~el, le cas envisag4 4tant celui de la
dissociatict ~'.un gaz diatomiczue.

Une premi~re phase de 1' dtude est consacr~e 'a I'analyse des propri~tds d'utne
couche liwite turbulente en 6couleinent unifornie; on y propose tin traitement s~pard
du problbme thermique et du probl~me dynamique.

Moyennant l'hypothse d' existence de relations exprimant dans la cotiche liniite
11 enihalpie et Ia concentration en fonction de Ia vitesse, tine combinaison des
dquations locales eat d' abord effectude; elle conduit A l' 6tablisseinent d' dquations
diffdrentielles ordinaires dont Ia resolution dolt fournir les relations cherch~5es;
Ia solution fait appel i l'hypoth~se d'tine distr~bution du frotteinent interne
distinguant tine loi laminaire et tine loi ttirbuleiite de paroi, et tine rdgion
turbulente externe dana laquelle le frottoernnt 6voltie piur rejoindre la valcur nulle
,1P 1l 4coulevnent extdriour. Los rdsultats concornent, pour le gaz pailait, puis pour
tin gkz r~cl fige' et A l'e'quilibre, les profils d'enthalple et do concentration; des
relations explicitos sont propose'es, qui font intci'ven~r des foncticins tabul~es do la
vitesse. On en d4duit dans los trois cas le rapport dti transfert. de chalcur aui
frottement de Ia paroi.

La dktormwAsation du frottement do paroi est basso stir le concept d' enthalpie do
r~f~rence; is re'ferencc propose'e est la valeur moyernne par rapport a Ia vitesse,
d'une fonctio&: combine'e de 1'onthalpie et de Ia concentration.

I? ~Dens le cas d'tin gradient do pression, In calcul dti transfert de chalour A la paroi
fait appel A 1'inte'gration do l'6quation globale d- l'e'ergie. L'applicat~ion on eat
effectucie A tin avxit corps he'DisptI6riqLae pour lequel sont pr&.sc,. s en jrr-'1,.tfffit
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los r~sultats relatifs i diffdrentes positions do la transition. En~ gaz rdel, le
transfcrt de~ chaleur est calcule pour tin gaz A V' dquilihre et pou~r tin gaz fi.g4; on
met en~ relief dans le second cas 1'influence du pouvoir catalytique do la paroi.

1. EQUATIONS irr DEFINITIONS GIENERALES

1.1 Ilypothhses

On so propose d' examliner la forme que pronnent 'Les dquations do la couche limit'g
pour tin gaz on rours de dissociation, 1'applioatiun pr~vue 4tant la dissociation do
l'air, consid~r6 en prcmi~re approximation comnre un gaz formd d'atonies et do
mol~cules dont los propri~t~s sont los propriftds moyennos do I'oxyg~ne et do l'azote,
compte tenti do 1Lurs concentrations. Les hypoth~ses los plus frdquentes et qui sont
retonuos ici sort los suivantes:

los effets dua rayonriement sont n6gflgeables,

1'gcoulement moyen est stationnairo,

l'~paisseur de la couche limite est faible devant los rayons de courhure de la
paroi,

la diffusion thermique dtant n6g1izAe, on so limite au cas d'une diffusion binaire,

on se limito aux cas du courant plan et du courant do rdvolution,

ln diff~rence ontre l'enthalpie spdcifique des atomes et cello des mol~cules est
suppos~e coristante et 4gale i la chaleur do formation h0

1.2 Equations Locales do la Couche Limite

Le systeire des quatro 4quations locales do la coucho limite, valable en lamlnaire,
4et en turbulent pour les caracte'ristiques mnoyonnes est le suivant:

ýu 'u '1 dp
dquation des quantit6s do mouveinent: Pu7+ Pv. - + - Ca

3h1  ___

dquation de, l'4nergie: _u (ur1-4 P (1b)

6quation de contlnuit4 du me~lange: -x+ -y (1c0

4¶quatllon do conservation des atomes: uPA+ P. WAA ' id

CA est in conevntration massique des atomes; WA est le taux massique de formation
chimique dc-s ntoriivs par unitt5 do volum~e; 1i, (f et R, sont le frottement, le flux do
chaleur. le flux de diffusion mnssiquc, par unit6 do surf.,ce au sein de la coliche
lirnite. Oni les txprimp en fonction des gradients de la vitosse, de la tompifraturo
et do In concentruttion, on faisant intervenir dans le cas turbulent los coefficients
sipptLrtIts de vistco~it , de conductibilit6. et do diffusion -E, X et D t
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Z u -6T (2)7' + C) (+ X) 4 QAhA 0 pDAt 2

Les conditions aux limites concernent & la fronti~re extdrietire do la couche
limite u, h ct CA qui doivont rejoindre les valeurs u e, he, CAe I supposdes
connues.

A la paroi, la temp~rature prend une valeur T P supposde connue. La concentration
et la diffusion dt~pendent du pouvoir catalytique de la paroi; deux cas extremes sont
gdn~ralement consid~rds:

une paroi non catalytique, constitutdo d'un mat6riaii ne dcainant lieu & aucun
phdnoin~ne de catalyse, donne la condition d'un flux de diffusion nul & la paroi:

(BCA/%y) =

une paroi totalement catalytique donne lieu 'a une catalyse amenant le gaz au
voisinage de Ia paro~k & 1'6quilibre; on a p~our une paroi froide

CAP =0

Deux cas extremes saint dgalemert consid~rds en ce qui concerne 1'dtat du gaz dans
Isl couche limite:

gaz & l'~quilibre: les vitesses de r4action chimique sont partout tre's grandes
devant Ia vitess,, de diffusion; les concentrations se ddterminent en fonction des

* enthalpies par la loi d'action de masse;

gaz figi: les vitesses de r~action chimique sont au contrt~ire faibles devant la
vitesse de diffusion et le terine wA de 1Vdquation de conservation des atomes
eat nigligg;

dj~ns le cas g4n~ral. le terme de cindtique chimique WA dfpend d'une fagon tr~s
complexe des tempdratures et des concentrations; la grande difficultg est que sa
prdsence interdit pratiquement toute solution de similitude, in6me approclide.

2. ETUDE DES COUCHES M~tITES SANS GRADIENT DE PRESSION

2.1 Principe et Plan de l'Etude Envisagh~

Le principe d'6tude qu' oi envisage d'appliquer pour aboutir aux caractdristiques
prircipales de Ia couche lirnite consiste j dissocier le probl~rne dynaminiue du prob1l're
thermique, et a en d~terminer sdpardment les solutions.

Une premi~re ddmarche, va nous conduire A combiner les 4quations locales de "a
cuuche limite de fagon i aboutir A wie lot d'dvolution do l'enthablpi et la
concentration en fonction de la vitesse dans la couche lirnite. Utilisdc avee succ~s
pour Ia plaque plane laminaire en gaz parfait, cette technique sera d' ebori ftendue
i I& plaque plane turbulente en gaz parfait; un traitemeuit tout A fait analogue
pourra ensuite etre nppliqu6 au gaz figd et. au gaz A 1'6qui~lbre. Uri resultat
pratique essentlol sera dans las trols cas la d~termiimation du rapp'ort du transfert



( 74

de chaleur au frotternent de la paroi; 11 s'obtiondra tr?~s simplement A partir des
d~rivdes A la paroi dle 1'enthalpie et de la concentration par rapport A la vitesse.

Une secondo d~marcho sorait en larninalre de traitor P dquation locale de quantitd
de mouivorent do fa~cn I d~tetrminer 1' volution du frottement de paroi en fonction des
donndes qui sont ossentiellernent le non~hre de Mach ext~¶rieur et la tempdrature de
paroi. En turbulent, tine tcll~e dvolution ne pourra Otre ktablie, qu'i partir do
relations empiriques, ba';~es sur le concept d' enthalpie de rdfdrence.

2.2 Rechierchie die Relations h(u) et CAlu)

2.2.0 L'intdret de cos relations apparaft impiddiatement lorsqu'on exprime enr ddrivation par rapport A u les rapports (f/7- et QA/T- du flux do chalour et du flux
do diffusion au frottement; introduisant pour cominoditd lea nombre caract~ristioues

mixtes do Prandtl, do Lewis et de Schmn~t, '1011 et S. on obt'ient pour
une abscisse fix,4e:

0 1 P[Lh ho - l CA-~J QA 1 - 1 A (3)

Ecrite i la paroi, la relation pour (ý/r pormettra par example de d~terminer les
conditions relatives au flux de chaleur nul de la, paroi athormane:

La relation donnera encore le rapport 0,1/T A la paroi; i1 sera commode pour
um nombre de Lewis 6gal 'a l'unit4 et spdcia~ement en gaz parfait d'en ddduire le
facteur d' analogie:

2.2.1 Etablissement des Equations Diffirentie lies N~cessaires

On envisage d' ktablir des relations entre la concentration Pt 1' enthalpic en
fonction do la vitesse, cc qul impose de discutor d' ebord des conditions sous
lesquclios cos relations peuv'ent offectivoment exister.

Au sons strict, ii no pourra exister do relations h(u) et C A(11) ind~pendantes
do 1'abscisse ciue s' il oxiste des profiles u/u ,, h'h, ' CA/CAc , eux inkmes
ind~pcndarts de V'abscisse c'est-i-l1ire sernblables. Cornpte telnu des connaissances
actuellos, on noc pout. donc esp~rer en turbulent que des solutions approch~es,
comparables aux solutions, do simil ~tude locale 4tablies dans certains cas pour lo
laiuinnir-x En laminiaire comme cin turbulent, il convient do plus quo la distribution
do In vitessc cxt(~rieirv -.e prkto & l't..poth~se envisaegt6e. Les relations pour
h et CA i~o scront ici1 recherch~ecs qua dans 1e cas d' une vitesse exthlourc twii forme
(plaque Plane).
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L'eistncede eltios hu) t A(u) nWest enfin possible quo si la
concentration et l'enthalpie de paroi sont constantes; cette condition no pout etre
satisfalto pour une paroi semi-catalytiqne, cas dans lequel il W'est encore possible
d' envisagor clue des solutions approch~es. La cornplexit6 du terine de cine'tique
chiinique, limite enf'in l'applicationi aux cas de l'dquilibre et du figeage QUi seront
seuls examiniras..

On se propose donc d'6tablir pour la plaque plane des 4quations diff~rentielles
obtenues en combin.dnt les dczuations locales, ceci grfice i l'utilisation des nombres

MPet ,dans le cas gndnral lanilnaire ou turbulent. Apr~s division respectiveinent,
par ýu/DY, D11/Dy, dOCA/Dy , les 6quations locales (1a) (1b) (1c) s'dcrivent pour la
plaque plane:

PU -- mu = -(5a)

Pu mhi = (UT -~ (5b)

A' CA' ýCA/)

Mu- mbi- MnCA sont les pentes des lignes de niveau de u(x,y), hi(x~y). CA(x,y)

nous admettons qu'il exists deux relations hi(u) et CA(u) : 1.1 en r~sulte que

MU = h I ' CA.

Compte tenu des expressions (3) pour 4)/,r at Q /T , !a combinaison de (5a) et

(5b), et celle Ce (5a) et (5c) conduit aux deux dquations

[a+ Ih C + [ + h0C + U2 0 (6a)

(L'e' T, -s 2le
C,4('U+ E) _ e0 (6b)

7T S T2A

iVaccfont signifiant une d~rivation par rapport i w = u/ue

11 s' agit bien 1A d'dquations diffe'rentielles pour l' enthalpie et la concentration
en fonction de Ia vitesse; y interviennent comnme inconnues auxiliaires, la

distribution du frottement, et cellos du nombre de Prandtl ct du nombre de Lewis
mixtes.

Z.Z.2 Gas o&a I .Relation Enthalpie - Vitcsse en Gaz Parfait

2.2.2.1 Solution Ginirole; Rappcl d~es Re'sultats dci Laminailre

11 est commode. po'ur discuter les hypothses qu'on va devair introduire sur la

distribution du frott~ecent, aussi bion quo pour dtablir un moŽde gten~ral de r~solution

utilis4 ens~iite en griz r&~el, d'eiamlner d'abord le cas d'un noribre do Lewis mixte
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dgal &± l"Unltd. L' 4quati~on diffdrentielle pour V'enthalpie p)rend alors exactement la
forme de Ve-quatlon $tablie ot re5solue par Crocco' et van Drie St 2 'inns le cas de la.
Pl.aque pla.ne laniinaire en gaz iarfait. Canservant le nombro de Prandtl mixte, on
suivre le m~me ddveloppcnie~iri

Pour I2 = , 1'4quation (6a) s'4crit:

(ti) (1 0rr)- (7)

Oquation dlffdrentielle lin6-ire Cu secund ordre dont I intdgration est 4,ffectude A
partir de la paroi (w = u/Lu, 0) oh~ 1' entchalpic hp est donnde, Tl/T- dtant tout
d'abord suppos6 connu:

I% double int~gration fait intervenir les expressions:

I [ exp(' (0m 1) )dw ------f-dw (8)

J m 1 dw JaPee-------1)-)

I& distribution d' ezt.ýalpie s' obtient d'abord sous 1B6 forme:

h e

gerite A la fronti~re (h =he), la relation donne la pente A 1'origine:

h' 'Ih - h+ U 2 J0
P ~ e P e

pour Laic distribution fix6% de Pm et de -r/-rp on en ddduit la facteur de
r~5cul-wrat ion et la fnct ~ur d' analogle:

r =-2Je (9a) S z /Ie (9b)

la forwe finale de la relation enthalpie-vitesse est. alors:

hP4(he -i j1.V up 'I J-J- (10)
e e
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La distribution d'onthalpie ost ainsi obtonue Apartir do fonctions I, J, 01, 0!!
qui snront ddtornilndes en fonction do la vitesse rdduite w ,dbs quo seror't connues
los distributions du nombre de Prandtl ot du frottoment.

Cos fonctions, ont Atd calculdes on laminaire par van Driest, pour diffdrentes
valeurs d'un nombre do Prandtl supposd constant dans la couche lirnite. LK propridtd
utilisde est *que la distribution de T-/-T en fonction do u/u. est trbs peu
influencde par la ccnipressibilitd; colle donnde en incompressible par Ia solutioir
de Blasius est retei.,o pour calculer los fonctions I, J, 01, 611 qui sont ainsi
des fonctions do w et de P calculdos ot tabuldeS2 . On los utilisera dans Ia suite.

2.2.2.2 Sche'ma Utilisg pour la Distribution dte 'r et P3 en Turbulent

La difficu~td 4vidente du probl~me turbulent ost do connaf~tre d'une fagon mgme
approchde la di3tribution du frottement et du nombre do Pranciti dans la couche limite.

Les rdsultats exp~rimentaux do 1'incompressible apportent des rensoignomonts sur
'eur comportement au volsinage de la paroi.Onamtrsgdrloetlefteet

constant et le sombre de Prandtl dgal i la valour laminaire dens le -ilin laminaire.
Le frottement demeure encore sernsiblemont constant dans la rdgion tw'!¾mlente do paroi,
P3 6tatat le plis souvent supposd constant et 4gal A une certaine valour turbulonte

V' incertitude 1% plus grave porte sur Ia rdgion turbulento oxtorne, et sur la
fagon dont 10e frottment rejoint tine valour nulle A 1'extdriour de la couche limito;
1'hypoth~sc faite par cortains 3'4, d'un nombre do Prandtl turbulent dgal 'a l'unitd,

* glude en fait la question, en rendant la solution inddpendant-a do la distribution du
* ~frotteament comme 1e montre clairement la solution gdndralo.

va se propose ici, pour aboutir A In relation h(u) do la plaque plane turbimlente
ci' utiliser un sch~ma amdliord, donnant une dvolutioii vraisomblable du frottement

turbulent dens la rdgion oxtorne, et pormettant d'utiliser un sombre do Prandtl
turbulent ulffdrent do l'unit4. Ce schdna distingue (Fig.l) dens la couche limite

* turbulento, trois rigions dont los caractdristiques sont los sulventes;

*film laminaire................ 0< w < wL......PF = P ..... . r constant

rdgion turbulonte tie paroi ... wL< w < w0  M Pt.... constant

rdgion turbulonto oxterne ... w < 1 < 1...P = Pt.....T rvariable et 'r O.

Pour ddtermIner les fronti 6res do ces domaines, il n'est d'autre recours quo do
faire appel i des connaissances exp~rimentales provettant essentlellcment 00
P' Incompressible. U idde qui vs r.ous guider pour los tdtendre au cas compressible est
basde sur 1'observation expdrimentale quo la forwe g(%ernle des profils die vito~scse
turbulents ost peu influencde pnr In compressiblllt6; on ftendra done les r,4sultats
de 1' incompressible en utilisant dos Varembtres lids i la forme du profil des vitesses
et particuliOrcment le paramktre do forme Hi

Ui cc gui concerne ainsi ia vitesso i Ia frontibrc du film laminaire, 105
r6sultats do 11 incompressible montront quo llc est fonction dui coeffici'-nt doe

frottement, dont ddppnd dgalement pour la plaque ji~law le pnram~tre do' forme. al a,
d' apr~ms Claurcr5 et Rotta6:
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wL 11.5 FZf/2 H, 1/1 .61 v/-f72-

Ces deux relations scront combindeS Dour admettre d' une faqon gdndrale:

wL = 1,884(11, - 1)/H1

H, 6tant le pararn~tre de forme "incompressible" do la couche limite.

Pour traitor la couche externe, on utiliscra un schdma qui cokisiste, en
ndgligeant en premibre approximation 1e film laminaire et la loi turbulent de paroi,
A admettre que la couche limite turbulente externe est compusde d'une rdgion A
viscositd c c',nstante. pour laquelle la vitesso en y = 0 est finie et !'rdcisdment
dgale A I& limite w, ef'i~e ci-dessus.

A cette condition lizz-.te prbs, et dans l'hypoth~se de profils de ýttesse
semblables. on trouve fR,Alemerit qus l'4quation du mouvement peut atre misc sous une
forme identique i celle do Blasius ou A cello de Crocco pour la couche limite
laminaire do la plaque plane. Clauser donne ainsi 1cm prof ils do vitesso
corresponda~nt A diffdreaiteat valeurs do w0 5. Reprenant les solutions des dquations
6crites sous la forme de Crocco, nous avons calculd pour diffdrents w, les
distributions du frottowent 7,1/r en fonct ion do w =-u/ue trois exemples sont
donnds Figure 1.

Clauser avait observ4 que 1cm profils de vitesse obtenus & diffdrentes valeurs do
w s'icartaient pcu du prof il do Blasius lorsqu'on los reprds~ntait A 1' aide do la

*variable V =(w -w0)/(i - WO ; portdes Figure 1 on fonction de V , los
distributions du frottement (c'est-i-diie do e _c/j-y ) diff~rent quelque peu do la
distribution do frotternent laminaire. Or. nddligera cot dcart pour admettre dana cc
.qui suit, que la distribution du frottement dans la couche limite turbullento externe
est donride par I& solution lamnlnaire, lorsqu' on reprdsente la variation de T/T-P

* en fonction ae V .

On utilisera enfin pour d~terminer w. , los rdsultats exp~rimentaux relatifs
A ]a fonction de dissipation, laouolle fait intervenir 1' int~grale du frottement par
rapport A la vitesse. Avec notre schdma on trouve iacilernent q'uo

J + dw =: . (I - wO) dV = .+ 0,786(1 -w,

U. eVcp~rietice montre d' autre part quo 1V intt~grale pr~ce-dcnte est tine fonction dui
parasro~r de formes pour laquelle sont disponibles en incompressible d nsscz nombroux
rdsultats. On choi-sira d'utiiiser idi la fonctioii de dissipation propost~o par Tuni7
sur-la base des profils d'Aiuilibre de Clatusor et de Ial loi de frottcment de Ludwieg
et Tilrmann.

A Li varatio desvitesses ntux frunti~rcs dcs rdgions coi~sider~ e n fonction du

Vw-arn~\re de form-e, est- ainsi repr~sent~e Figure 1. La valcur A,7-1 correspond a
un coefficient de frottemnejt n4. doic A tin nnrnbrc do Reynolds Infinli; In vitesse
4 In irozit itr dui films Inninaire y est ntiile alors quo w. est 6gel A 1' tillit d;

L ý,;t tint, f' t btr croi.'snnte do H1 aR11- quo WO diminlue quand III rugitente;
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la vitesse i la fronti~re du film amuinaire rejoint ainsi w0 pour un paranmbtre do
forme de 1,35, valour qui reprdsente la limite supdrieure d'application du schdma
proposd (il Iui-correspond en incomipressible un nornbre de Reynolds de l'ordre de 10t).

Aux valeurs supdrieures do HI # il semble qu' on doive utiliser ain sch~rna A deux
regions, 1' uno dtant le film laminaire, I' autre la rdgion turbulente a frottement
variable et nombre do Prandtl P ; il est suggdrd afin do satisfaire A ]'dvolution
exp~rirncntale do la fonction do dissipation do cnoisir pou r leur fronti~re la

2.2.2.3 Relation Enthalpie-Vitesse pour la Plaque Plane Turbulen:.c

L' introduction des hypotb~sos prdc~dentes sur 7- et sur P dans '.a solutionM
gdndrale doanne par les formulos (9) et (10) conduit pour la relation enthalpie-
vitesse de la plaque plane turbulente aux r~sultats suivants:

dwus le film laaiinaire, Venthalpij est une fonction du second dogrd de la vitesse
pour lacinelle les fonctions I et J ont la forme

w 2
I Pv P = (1a)

2

darts la rigion turbulente de paroi, 1' enthalpie est encore une fonction du secu;,:d
degrd pour laquelle:

2 (,j P 22L
WL + Pt (wL j 1 (ib2 \ 22

dons la rlgion turbulente ext erne, les fonctions I et J ont les formes:

= + Pt(Vo - UL) + :1 - a0) I(Vlpt)

w 2 w 2
(P- "L+P 2 0 2 w ,(I - a0) I(Vpt) + (1 - W0)

2 J(V.Pt) (lic)

I(V.P,) et J(VPt) itant pour la variable V = (w - wo)/(i - w.) les fonctions do
In solution Ismiunaire prises A un nombre de Prandtl dgal au noiobre do Prandtl
turbulent Pt

Le rdsultat depend ainsi de 'a valeur du paras~tre d:ý forme du prof 11 des vitesses,
et de celle d' un nombre de Frandt] turbulent supposd constant, mais qui peut Otre
cheisl au mieux des counaissances expdrimentales. Les r~sultats experimerntaux
rolatits au nombre do Prandtl turbulent lui-mfine sont maitheureusement encore
actuel leiuent des plus incerta ins; on dispose par contre do rhCultats plus SOlrs pour
le fact~eur de r~cup~ration de la parol athormane dont 'tucune vatriation tiyst~matique
avec le ntxnbre do Reynold-, et le nombre de M'ach n' est dkicel~e par 1' exp~rionce.
Ud6volution du facteur de rdcup~5ration r -- 2J. correspondant at, traitement rproPOS4
lid, cat prdsenti~e F'igure 2 pour trols valeurs de ;t 111 est cisir qu'url nombre do
Prandtl de Irordre do 0. 90 ne donne lieu dan. le domta~re co- sid~re qu' A une variation
ndgiigeable du factour de rdcup~ration. IUn wnbsre de Praw'ZI dc 0.89 dozine cxactoyrnnt
Oftc valeur de r aux doux linites H, -i H 1.35 dui don'aine c~misid6rd, le
facteur de ricup~ration conservant tr~s scns~ii.,oer.t cotte vaileur quaiid lo param~tre
de forme varie. Ce rdsultat a k6 jug4 sufflsawus'>t prcche des rstsO~ints
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expdrimentnux disponibles pour qu'un nombre de Prandtl turbulent de 0,89 suit retenu
dans la solution.

Sont dgalvenint repr~'sent~es Figure 2 los variations du factour d'analogie
S =1/le pour les nombres do Prandtl 1t= et Pt =0.89

Ern rdsurnl, iA est dono proposd d'utiliser pour la relation entre l1enthalpie et la
vitesse d'unec ouchu limite turbulente do plaque plane une formule identique 'a celle
do la couche limite laminaire.

h =hP+ (hp - he) 0 + 2aI

01 et 01I r~i~siltant des formules dtablies prdc~demment pour los fonictions I et J
avec un nombre do Prandtl turbulent de 0,89.

Les fonctions I(V) et J(V) n~cessaires sont doIndes Table 1, le nombre do Prandtl
4tant pris dgal 1 0,725. Les fonctions 01 et -911 sont dgaloment tabul~es pour 3
valeurs du parmm~tre do forme, auxquelles correspondraient dans un prof il do vitesse
en puissance les valeurs 9, 7 et 5,7 do l'exposant n - 2/H1 - 1

Une comparaison des J3istributions do l'onthalpie d'arr~t obtenues avoc le
traitemont proposd, et des r6sultats expdrinaentaux de Northwang et Kistler rogroupds
par Colesa est enfin reprdsertde Figure 3 pour la paroi athermane.

2.2.3 ;ýas oh~ Em ý 1 . Relat ions en Gaz Reel

* 2.2.3.1 R-ultats pour le Gaz Figs'

La disparition du torme do cin4tique ciiimique apporte pour le gaz figd une
simplification q,.i rend possible uno r~solution inni~diatFe du syst~rno des equations
g6ndrales (6a) et 16b). On observe alors quo I'4quation (6a) pread exactornont la
forme (7) 4crite pour le cas du gar. parfait, lorsqu' on y fait apparaftre la nouvelle

A variable.
h i = h- C

.tA = A2

hest simplement 1' enthalpie des moldeules, sensiblement proportionnelle P' la
tempdrature.

Le Vysthme des equations (Ga) et (6h) devient ains4.:

+ 2= 0 (12a)

+ -r C~, = (12b)

On rcticradr a damas 'cur int~gration les distributions du frottcrenet ot du no'nbre do
Prandt I du sch~hla ktab1i iir~cedenent..
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Lai distribution de 1' enthalpie des moldculcs est, ainsi

hi = (hi - h 0)6 + U2 6
11  (13a)

91 et 011 6tant exact;Nnent les fonctions iintroduites pour le gaz par1'ait, et donnde-s

Table 1.

La distribution des concontra Ions fait intorvonir l'lntdgralo

K WSexp(1f (S~ 1) d-)dw K [I......... J

expression identique i 1' int~grale I (Formule 8) le nombre de Prandtl 11a s'y
trouvant r~amplac6 simplement par le nombro de Schmidt Sm . On obtient ainsi:

CA "' Ae + CAe - Ap)9I avec 9111 K/Ke (13b)

los ddriv~es i 1'origine sont respectivement:

p S
P e e e A e

le rapport du flux do chaleur au frottomnert. 'a Ia paroi est donnt6 par:

e+[e eJe + !'Ah(CAe -CAp)~J(4

Le rdsultat d~pend encore du parazn~tre do f'orme, du nomibre de Prandtl turbulent
pour lequel on prendra toujours Ft = 0,99 , et d' un nornbre de Lewis turbulent
supposd constant wais dont la valeur pout encore 6tre cIhoisie au miniux dois
connatissances expdrimentales. Connie pour le nombre de Prandtl, ces connaissances
sont des plus incertainos, I' opinion prdvalant g6ndralement que le nombre de Lewis
turbulent est voisin do l'unitd. Un nombre do Lewis laminairo e , t un nombre
de Lewis turbulent I ont 6t choisis dans los applic. Ion pr~sentges.

On trouvora dans cette hypothi~so, los valeurs des fonetions 011I n~cossairos a.
Ia d6termination des distribut ions de Ia concentration (Table 1).

On observera que Ia condition concernant la d~rivde de la concentration 'a Ia. paroi
conduit pour Ia parol non catalytique A une concentration constanto dans tou-to la
couche limit et 4gale A Ia concentration oxt~irieure, L' annulation dui torme
CAe - CAp s entratnera une diminution importante do ql/7-P , et en fin do conipte du
'flux do chalour, par rapport nu cas do ha paroi cntalytique.

Pour la parol catalytique froide (CA 0) on aura -Simplement:

CA/CAO 11
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2.2.3.2 R~stltats pour le Gaz 6 l'Equilibre

Pour le gaz A I'dquilibr,', le problne est de rdsoudre l'4(quation diffdrentielle
(Oa) dans laquelle Ia concentration est tine fonction de l'enthalpie donnhe par In loi
d'action - masse diu gaz consid~r4; cette rdsoluticn devra faire appel dans le cas
gendral & des techniques nuxn~rioues qui seront appliqu*ecs pour des conditions aux
Unmites A pr~ciser.

Cependant. une solution explicite pout 6tre obtenue avec les sch~mas adcpt~s pour
l's distributions de 7- et de 2- lorsque le noznbre de Lewis turbulent est suppos6
dgal i I'unWt. Introdiivnt. aistn- Ia variable

hi + (9.+ - 1) h'CA (15)

on trouve en effet que l'dquation (6a) pzend encore, et dans les trois doinaines,
la forme:

\ r n / 'U

In solution est encore: (pour tin nombre de Lewlis lamninaire voisin de 1)

l +(he 0- 1i)O + u 26JI (16)

01 et 011 dtant toujours les fonctions de Ia Table 1.

le rapport du flux de chaleur au frottement i la paroi est donna par:

h1 -
CT (h~ - . + tieje (17)

On observera que la variable se confond avec P'enthalpie a la fronti~re
extdrieure et dans la partie turbulente de la couche lirnite. Mrie se confond encore
avec, lenthalpie a la paroi dens le cas d'une parci fro5.de (CAP = 0). Le film
lauinairc except6, la distribution de I'enthalpie est donc la M'itte qu' en gaz parfait.

II eqt encore int~ressant pour- se comparer au cas du figeage, d' exprimer 41 /T
en fonction de l'enthalpie des mol6cules h ;on obtiendra ais~ment pour une

paroi froide,
(1 1 u 2 Jlhu -JŽ - [Fi -h 5 Aui +h

eTP le P Al

alors que pour le gas fige', avec une paroi catal~tique

I Ce

P IP AKe

Les fonctions I et K et leurs valeurs ext~ricures itnnt assez pen diffdrentes, on
trouvera deli transfert~s tie chalcur du amnie ordre ai 1' 4cuilIibre et on gaz figd A

paroi catalytique.
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2.3 Concept d'Enthalpfe do Refdrence - Frottement et

Transfert do tChalcur A 'a Parol

2. 3. 1 ' Coeff ic i ent de Fro t temen t

Los relations qui prdc~dent donnant dans les diff~rents cas le rapport du flux de
chalcur au frottornent de paroi, il reste A d~terminer los lois qui. rdgissent
1' dvolution du coefficient de frottament avec le nombre do Reynolds ot avec la
vitessp de 1" dcoulement extdiieur et la tempgrature de la paroi. On appliquera dans
ce but le concept d'enthalpie de r~fdrence, d'apr6s lequol on peut utiliser en
compressible la loi. d' 4volution du ,,oefficient de frottement avec le nombre de
Reynolds do labscisse, de l'dcoulement incompressible, A condition de prendre pour
la masse voltinique et la viscositd des valeurs de r6fdrence p* et yL* corrospondant
A une certaine enthalpie h* i choisir A partir des conditions aux lirnites.

Appliqurd A la plaque plane laminaire, le concept conduit aux rdsultats:

* Cf - 'r~~~ 0,332 f -0,2205 gf -Pb(8a

2 2 /P X\ Iu
Jee

Appliqud A la plaque plane turbulente, en choisissant pour 1' incompressible la
relation en puissance proposde9, il donne:

1//5
2L (18b) (ele~ ~e

on aboutit ainsi en gaz parfait A des r4sultats remarquablcniont en accord avec los
solutions exactes on laminaire, avec I' expdrience en turbu? ent.

2.3.2 Justification et Estimation de lIT~nthalpie de Rjfe'rencc en 1raminaire

Bien que la notion d'entbalpie de -4fdrence alt dt introduite A l'origlne G.
fagon eujpiriquo, une Justification et une estimation t.'i6orique peliverit en 6tre
donn46es pour la plaque plane laminaire.

On a montr6 en effet'0 qu'une solution approche'e a pv. consitant do I'4quation do
C,,.ono camduisait au mgme r~sultat-

2 ,3

Tirpcsaflt A cette solution ar.nroch~e de satisfaire A 1'dquation globale des
quantit~s do mouvemrnt, on trouve alors quo la valour moyenne du produit PAI est
donnde par l'intdgrale:

__________________________________7___ ___________________
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Faisant. Pofin 1'hypoth?~se d' une evolution llndaire de p/t on fonction de h on
determine 1'enthalpie do r~f~rence Qui s'exprime tinalement en fonction des
conditions aux liinites par la relation liridaire:

h* -he =a(h -he) + b Le
2

a et b 6tant des coefficients num6riques faisant interveiiir des int~grales oiý
figurent les fonctions tOl et 011 do la distribution d'enthalple; its dependent de
la valeur cholise pour le nombre de Prandtl et sont donn~s10 . On a rnontrd quo cette
solution approchide donne pour Cf des r~sultats pratiqueniont confondus avoc ccux de
Crocco et van Driest.

Une autre de~termination, proposde par Monaghan'', consiste A prendre la valour
moyernce de l'enthalpie par rapport A la vitesse dang la coucho limite; l'enthalpie
de r~fdrence a tbujours la mOme fornie, avec des coefficients a et b qucique peu
diff~ronts; elle conduit encore 'a des coefficients do frctteinent trks proches deV.ceux do la solution exacte; cette coincidence est encore un argunent que nous
invoquerons pour le choix do 1'enthalpie do r~f~rence en turbulent.

2.3.3 Enthalpie de Rhftrence en Turbulent

* ~Faute de disposer d' uno 4iuation locale qui permette comme cello de Crocco de
comparer les frottements du compressible ot do 1' incompressible, on admettra donc en
turbulent quo l'enthalpie de rdf~rer~c3 est dc)nnee en gaz parfait par la valour
moyonne de 1'entha~lpie; son expression sera:

a =J( I) - dw

h*-h a(h~ ~h + b- avoc (19)

{b =f' 2611.dw

a et b sont" maint~enant des fonctions des conditions aux limites introduites pour
01 et L91 . c' est -a-dire de w. , w~ ou encore do H, , le tableau ci-dossous en
pr~cise Ic-s valeurs pour 0 0,725 et Pt 0,39

n5 5,71 7 9 11

H1  1,4 1,35 J 1,286 1,222 1,182

a 0,535 0,535 0,533 0,529 0,52F

b 0,139 0,139 0,139 0,139 0,139

a et. 1) varient tro's 1)(u avec' la forme du profil des vitessos: ils sont. tr~s proches
des vAvu~r a :-0.540 oi b :,0, 137 obtenties pour P'enthalpie nioyenne on lanIinalre
au no--ibre de Prividi 1 0,725 cons id~r6,

Rui le. ca du f-az rdcI, In variable inter%,enaint dans 2' 6quation do 1' hergie
ni'csI pltin. 0el:21 i 3) P mais un: combiniaiSO!1 h do 2'enthalpivcet do Li concentration



85

(on ddmontre facilornent que dans l'hypoth~se E£ 1I la variable iiý Pout 8tre
dgalement utilisde pour le gaz figd, la solution dtant alors en ,r identique i cello
de 1P dquilibre). Los fonctions f et g faisant intervonir dgalement par p* et ki
une covnbinaison de l~a concentration et de la tempdrature, il est sugg4rd d'appliquer
le concept de r~fdrence 'a la variaible fý. pc*, tiA, f et g seront ainsi dkterminks i
uaeo valeur de r~fdrence R* donnde tr~s exactement par la m6nie formule qu'cn gaz
parfait,

iia (h" -ifh) + u

a et b 6tant los coefficients du tableau, donnds prdc6demnient.

2.3.4 Transfer de Chaleur 'a la Paroi

11 est iwinddiat, A partir des expressions obtenues dans los diffdrerts cas pour
c0/7 et do cellos qui donnent le coefficient de frotteinent en fonction dui nombr3. do
Reynolds, do d~terminner les relations qui oxpriment le transfert do chaleur A la
parol.

Ek fonction du nombro do Reynolds do l'absctsse on obtient:

A A (Navec A O,d184 f
Peliehie (Peue0Aý L/6hjeTpJ 

(20)

\7Ae)

Il sera utile dgalement do disposer d'une relation exprimant 1e flux do chaleur en
fonction dui nombre do Reynolds do 1'6paisseur d'4Arergio. Introduisant I' expression

* ~pr~c&Iente dens l'6quation globale do l'e'nergie, h -ehidA/dx , on obtient
* apr~s int~gration:

P0iei B 1 avec B 0.0086 g ý eb61'5(21)

Ilsera commode en gaz parfait de faire intervonir le facteur d' analogie en
exprimant notammont le coefficient B sous la forme:

B = 0.0086 g ( -h hP)I

2.4 Exemple d'Application Numdrique du Traiteinent Propos4

On a effectu6, A titre do premi~re application num~rique, le calcul des
caract4ristiques d'une couche limite suppos~e turbulente, bo d~veioppant depuis
1' origine, A 1'intrados d'utne plaque 'a bord d' attaquc arrondi pir&'t6d d' uno onde do

1. 60 km. on a fait varier la vitesse do vol U. jusqu'& des valeurs assez dlevdes
phour:u normal enachde, :tloalemeos lac frntidee del ouh 15lV aiteunetat~
dissociation atvanc~e. L2~ pr,ý6%ion sur la face Inf~ricnrc a 60tt dhtcnniau par la
loi newtonicnne.

L
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La temp*!rature do paroi a 4td prise dgale & 1,0000OK. On a Zait l'hypoth~se d' un
paramhLre de forme H de 1,286 (n =7).

Les r~sultats obtenus, dont des exemples sont donn6s Figure 4 concernent lea
prof ils d' emthalpic de concentration et de tempdrature et I' 4volution avec la vitesse
de vol du transfert de chaleur i la pa~oi,

Les hypothb.ses utilisdes pour appliquer i l'air, le traitement 6tabli pour tin gaz
diatomnique ant Wt les suivantes:

Y' dcoulesnent ext4rieur dtant supposd 1 1' dquulibre, la concentration a dtd
d~terntia~e i partir des concentrations en atones de l'oxyg~ne et de I'azote;
cellos-cl ont 6td relit~es aui facteur de compressibilitd Z de 1'air A 1'dquilibre
dans Pbhypoth~se d'une dissociation de V oxyg~'ne d' 6tendant de Z I 1k AZ = 1, 2
et d' une dissociation do l'azote couvrant lo doinaine 1,42 < Z < 2

I'onthailpie de formation des atones a dt obtenu,ý en pond6rant lea valours
relatives A 1'azote eti. l'oxyg~ne, conipte tenu de leurs concentrations dans
1.' 4couleinent extirieur.

i l'4quilibre, on a n~glig6 la diff4rence entre ]'enthalpie et la variable I
dans le film laminaire.

la viscositd a 4t exprimde en fonction de la tenip~rature par la loi de Sutherland.

La Figure 4 montre que le cas de 1' dquilibre et celui du figeage avec paroi
catalytiqtue conduisont 'a des profils d' enthalpie et do concentration relativetient peti
diff~rents. rdsultat li4 A des conditions aux limites identiques. Par contre, le cas
du figeage avec paroi non catalytique, pour lequel la concentration eat constante et
hgale A Ce donne lieu, pour des tempdratures identiques, & des enthalpies tr~s
netteitent. supdrieures & celles de la paroi catalytique.

La *mew diff~rence essentielle est enregistrdo pour le flux do chaleur A la paroi;
des valeurs nettement plus fai~bles sont obtenues connie il 4-tait httendu dana 1e cas
de la parci non catalytique.

3. THANSFERT DE CIIALE~UR TURBULENT DANS UN
GRADICNT DE PRESSION

3.1 1114thade Approch~e do Ildsolutjon do 1' Equation Clobale de V Energie

On a d5ji 6t~abli en gaz parfait une m~thode do calcul approchd du transfert de
chalcur At ]n paroi, valable dans des gradients do pression rnoddr~s et plus
sp6cialow'ciit dans des gradients n~gatifs, m~thode appliquke au calcul des transterts
do chaleur tmzrbulents autour d'un av-ant corps arrondilŽ. On dtendra simplemnoit cette
technique' au cas du gaz ree'l en utilis~int les rdsultats obtenus prkcddomment pour la
plaque plane.

La mt~thode est bas~e sur 1V intdgrat ion de P 6quation globaic do 1Y 4norgie,
considt-rt'c co-ame une tsquat ion dff1erentielle pour 1' 6paisseur d' dncrgle:
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d t) d 23
pu x+ - [loge (Pe1uerj) (3

Peue hie dx d

V? hypotH~se faite est quo les profils de viftesse et do temp~rature s' dcartent
assez peti de ceux d' une plaque plane, pour qu' on puisse utiliser dans l' dquation
globa~le, 1' 'ixpression 4tablie pour la plaque plane entre le flux de chaleur et le
nombre de Reynolds de 1V dpaisseur d' Thergie, soit:

Pehehi (e~J A~/5  avec B 0086 g (,, T (21

4 ft dtant donni sclo'r le zrs con~iddr4 par la Formule (9b), (14) ou (17) et g
Spobrenant i partir du conce,;t d'enthalpie de rdfdrence.

Intdgrde i partir d'un point oti A est supposde connue, l'dquation deone
d'abord l'dpaisseur d'dnergie sous la forme

6/5 %
6/5 (APeueri) 6

(purJ) +- B,"S r6J5dx (24)
(Aeeen x 5e

On en d6duit j m~diatement le flux de clialeur en utilisant A nouveau l'hypothkse 2 l.
On obtieiit notamment, lorsque l'origine de la couche limite turbulente coIncide avec
celle des3 absciss~s:

B PeeAl (25)
hie [6JxB 1//5 uer6i/5 d 116

3.2 Application au Transfer de Chaleur d'un Avant-Corps 1I6misphe'rique

3:'2.1 Gas du Gaz Parfait. Influence de la Transition

La udthode intdgrale avait k64 appliciu~e en gaz parfait A tin avant-corps
bhiwisphdrique. l'origine do la couclie liniite turbulente 6tant supposde Co~ncider, avec
le point d'arrat12 . Nous apportons quelques rdsultats conipl~mentaires, on tenant
compte d'un d~veloppeinent laminairo prcdcdant tine transition pour laquelle sont
choisies plusietirs positions. Les conditions, pr~cise'es Figure 5, correspondent au
cas pour lequel avait dt effectudes'13 une 6tude thdorique en couche limite laminairo
et des mesures aui tube & choc.

L~hypothse faite eSL colic d'une transition ponctuelle, ati cours de laquello est
Vourtant assurie ]a continuit4 det 1l6paisseur d'dnorgic; I'dpaisseur d'6nergie
turbulente est ainsi caicul~c A partir do Ia. valeur obtenac en lamilnaire ani point de
transition supposA; i1 lui correspond une orijgi.e fictive oý elie ost nulle et le
flux de chaleur inlfin. Le transfort do chalcur so d~duisant en laiiinaire et en
turbulent de lepaisse~ur d'6nergie par das loiz- differentes, subit tine discontirnuitý
zu point de transition.
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On a reprq~scnt6 l'icure 5 lea rdsultats rclatifs h un rayon du nez do 0.2 m:
le iiomhrc de Reynolds X1 foraid avec los' conditions du point d' arrdt 6tant alors
3.10'. Le flux de chaleur eat rifpportd au flux laminaire du point d~arr~t, calculd
par la formule do Fay ot Riddell'. Le calcul confirmo quc le flux do chaleur
turbulent passe par tin maximum qul petit largoment dulpasser le flux laminaire du point
d' arret; on observera que In valour do cc maxirium ddpond sensiblomont do Is. position
do In transition at qu' tne transition produite & quelquo distance, donne lieu A des
transforts do chaleur plus importants qu'une transition & l1origine.

3.2.2 Cas dui Gaz fl'el

La mdthade lntdgrale a Wt appliqudo au ro~uo corps ot pour los m8mes conditions do
tempdratureo t do pression du point d'arrdt, la couche limito dtant supposde
turbulonte depuis l'origine.

Los hypothd~s~s du calcul ont Atd les m~mo3 quo cclles utilisdos en 2.4 pour In
plaque plane en incidence. le param~tre de formo dtant encore supriosi dgal A 1,286
(n 7) ot le gaz A la frontiare de la couche limite considdrd comme ft l'dquilibre.

Les profils h(u), T(u) et CA(u) sont donnds Figure 6 on deux abscissas
respoctivemont voisinos du point d'arrdt et do l'dpaule. On y a dgaloment reprdscntd
1' Evolution du transfort do chaleur i la paroi pour une cou-he limite & V dquilibre
et pour une coucho limito figde. Les conclusions h tirer do l'exazuen do ces rdsultats
sont identiques A cellos relatives aux calculs effoctuds prdcddommont pour Ia plaque:
on note touj ours tine diminution trbs Importante du flux de chalour A Is. parol, dons
le cas "non catalytiquc".

4. CONCLUSIONS

On a montrd qu' il eat possible, & partir dt'une hypoth~se d'oexistence do relations
entre l'cn'tialpie, In concontration at It vitosso, d' aboutlr pour Is plaque plane
turbulente A des farmes explicites potr loa distributions do llonthalpio at do I&
concentration dnns la coucho linito ot pour le rapport du flux do chalour au
frottonont do la paroi; des fonctions tabules. do Ia vitesso porinottent do
ddtcrminor con distributions pour un gaz parfait ot pour un gaz diatomique on cours
do dissociation dans lo enR do 1'dquilibro at dans celui du ficoago; limit d lt aux
parois totalenent catalytique at non catalytique, 1e traitemont dolt pouvoir Otre
appllqtii aux can intormi~diaires, A titro do solution approchide do similitude locale.

On pout astimor lo transfort do chaleur on prdsenco d'un gradient do preasson par
intdgrnrtito do l1Jquntioii glohalo do 114norgelo n y utilisant lb rolation itablie
poilr lit plaque plane entro lo coefficient. do flux do chaleur ot lo nombro do Reynolds
do 1' 6paisseur ci' 6norgio, L.' pplicntion A tin navnt-rorps h~mlspihdriquo a montrE les
etffts (itgiz rn-eel et Rphinlement colut du potivoir ontalytiquo do In parol.

11 rri-Ao pour rnuitl forer In mdthode, A oxnmiiir 1' Influenco don gradients do
protialoti tiur ion rointionti enthnlpie, conncntrntioni-vitasao ot stir lo rapport du flux

On notvri'i que. N11 ent. prtoportluuinel 4 R112 un lanninsiro, A 1& en turbultnt.
't~"R 1,~I~ioiiI,, %)' en lnminat ro. eat proptirttotinel 1 IJ1 On turbulent.
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de chaleur an frottement. Une premi~re approche effectu&e pour le gaz parfait 1 2

est & poursuivre en gaz rdel.
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SUMMARY

The measurements, taken on the sidewall of the R.A.E. 8 ft x 8 ft
Wind Tunnel, consist of surface shearing stress using a large force
balance together with velocity and temperature distributions through the

boundary layer. The maximum effective length Reynolds numbers obtained
are 2.2 x iC8 at M = 0.2 and 1.1 x 108 at M = 2.2 . The results
agree moderately well with the empirical correlation proposed by Spalding
and Chi. The variation of skin friction with Reynolds number is however
less than given by most of the accepted formulae.

SOMMAIRE

Les mesures, effectudes sur la paroi lat~rale de la soufflerie de
8 ft x 8 ft du Royal Aircraft Establishment, portaient sur les efforts
de cisaillement des surfaces. On a utilisd u~ie balance & forces de
grandes dimensions et les rdpartitions des vitesses et des tempdratures

dans la couche limite. Les nombres Je Reynolds de la longueur effectifs
maximums ont dt4 de 2.2 x 108 pour M = 0.2 et de 1.1 x 108 pour
M = 2. 2 . Ces rdsultats correspondent plus ou moins & la corrdlation
"empirique proposde par Spalding et Chi. La variation du frottement de
surface en fonction du nombre de Reynolds est cependant infdrieure ' celle
que donnent la plupart des formules courantes.
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NOTATION

A fdefined by C ARCgI/N

c 1  local skin friction coefficient

f lomean skin friction coefficient

F t parameters defined in Reference C

FR X

M free stream Mach number

N (-I/N) is exponent in mean skin friction power law

Re. unit Reynolds number (per foot)

Re1  streanwise length Reynolds number

Re, 2  monentum thickness Reynolds number

T temperature

u velocity

Ur friction velocity

x streamwise length

y distance normal to wall

viscosity

v kinematic viscosity

p density

displacement thickness dy

2 momentum thickness Pi (I u ey

ISus
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2 =

1112 = 81/82

~12 1 2

Subscripts

s referE to sublayer conditions (Ref. 4)

w refers to wall conditions

8 refers to conditions at edge of boundary layer

Superscript

* refers to intermediate temperature conditions T*= 0.28TS + 0.72TW
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MEASLRE,.uNTS OF T' !RBULENT SKIN FIICTION AT IIIGI! RE'YNOLDS
NUMBERS AT MACIH NUMBERS OF 0.2 AND 2.2

K.G. Winter, K.G. Smith, L. Gaudet

1. INTRODUCTION

As aircraft fly faster and further so there is a tendcnzy for the percentage payload

to diminish. It therefore becomes more essential to be able to estimate drag accurately

either by extrapolation from wind tunnel experiments or by di.rect calculation. In

either case more data is needed on the variation of skin friction with Reynolds number

extending up to flight Reynolds numbers which increase as aircraft become longer and

more slender. For example the flight Reynolds number based on the length of the Concord

is of the order of 350 million.

The sidewall of the R.A.E. 8 ft x 8 ft Wind Tunnel gives an effective run of

some 40 ft at subsonic speeds and 30 ft at supersonic speeds and enables Reynolds

numbers of about 200 million to be obtained in virtually incompressible flow*, and of

100 m~illion in supersonic flow. The experiments discussed in this paper were made at

Mach numbers of 0.2 and 2.2. They form part of a more extensive continuing prograrmme

for which the highest Mach number is 2.8 and which includes measurements at other inter-
mediate Mach numbers.

The experiments consist of direct measurements of surface shear using a force

balance together with explorations of velocity and temperature profiles in the boundary

layer on the tunnel sidewall.

2. DESCRIPTION OF WIND TUNNFL AND APPARATUS

Figure 1 shows the general arrangement of the working section and contraction cone

of the tunnel, which is of closed return circuit and operates continuously. The tunnel

cooler is situated at the maximum section and since it is 16 ft long with tile air

flowing through a large number of tubes (1!4 in internal diameter) can be regarded as

an effective honeycomb. Downstream of the cooler two slots are provided for screens

(not at present fitted), and there is a further row of slots to enable part off the

total flow round the circuit to bypass the working section under some conditions of

running. The settling chamber is square with corner fillets and the geometrical con-

traction ratio to the working section is about 15.6:1. The working section has rigid

parallel sidewalls with flexible roof and floor operated by hydraulic jacks. All walls

in thie working section are coated with a layer of epoxy resin giving a good surface

finish which has not been measured but which can be assumed to be of the order of

l0/iin

Hliighcr values than this could be obtained at higher subsonic speeds.
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The measurements were made on the port sidewall in the small aperture, of 18 in
diameter, shown in Figure 1 upstream of the main windows.

The balance used for the surface shear measurements is sketched in Figure 2. The
airswept surface of the floating plate is 14.5 in diameter. It has a surface finish
of better than 81 Lin . The use of a plate ,f large surface area enables the force on
the plate to be measured by normal strain gauge techniques. The g.u:es are mounted on
three parallel flexures 0.025 in thick, 0.35 in wide r--d 1 in lrng. Tho flexures carry
the floating plate and are supported from the reu:" plate of the balance P'ousing. The

housing fits into the tunnel sidewall and leaks are prevented by '0' ring,3 in appropri-
ate places. Steps on the surface between sidewall and housing, and housing and floating
plate do not exceed 0.001 in . The clearances at the edgc of the floatirg plate, and
shown in Figure 2, are such that the balance flexures cannot be overctrained either by
axial load or normal pressure load. Twelve pressure tappings are provided round the
gap to enable buoyancy corrections to be determined. In calculating the buoyancy force
the pressure has been taken as constant over the depth of the edge of the plate ( 'ab'
in Fig. 2). Any pressure difference between the free surface and the balance cavity
will be carried by viscous forces on the surfaces along 'bc'.

The balance was calibrated in situ in the tunnel using weights supported on a thread
attached to the centre of the floating plate and passing over a large diameter balanced

pulley. Because of changes of temperature in the tunnel when running there will
generally be temperature differences between the floating plate and the backplate.
The resulting differential expansion will give rise to spurious stresses within the
flexures. Provided individual sensitivities of the flexures are used, the total force
should still be given by the sum of the forces in each flexure, since the apparent

Sforces due to differential temperature will cancel. It was found, however, that the
epparent force recorded was sensitive tc differential temperature. It is presumed
that this is due to small misalignments of the gauges so that they are sensitive to

transverse stresses (in direction Z in Fig. 2) which will be high because of the
large stiffness of the flexures in this direction. Allowance was made for this effect

by suitable calibration against an effective temperature difference, which to first
order, is proportional to the difference between the apparent load in the single
flexure (3) and the sum of the apparent loads in (1) and (2). It should be remarked

that the existence of a temperature difference between the back nlate and the floating
plate does not imply that there is any significant aerodynamic heat transfer. The air
space provides good insulation and the flexures are of too small cross-sectional area

to conduct much heat.

The rake used for the boundary layer surveys is shown in Figur'e 3. It has 49 pitot
tubes and 8 static tubes. Near the wall the pitot tubes were 0.020 in o.d. and 0.010 in
i.d., and were mounted in five columns in order to avoid mutual interference in an
array of densely packed tubes. Further from the wall the size is increased to 0.039 in
o.d. and 0.024 in i.d. Static tubes are eiLher side of the main column to avoid inter-
ference. The measured static pressures have not in fact been used in the analysis.
For M = 0.2 velocitis were obtained from pitot pressure and wall static pressure
(corrected for hole size); for M = 2.2 static pressure was derived via the Mach
number given by the normal shock formila applied to total pressure and pitot pressure
readings outs' ,uuc o oundary laver. The tubes were copnected to a bank of capsule
manometers with a lepst ount of 0.005 in Hg. The some strut was also utilised to

carry temperature probes (as a separate experiment) and is shown so modified in
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Figure 4 together with a sketch sihowing the details of a probe. The probes were
cal ibrated ngainst the tunnel itintruments which measure stagnation temperature. The
recoveiy factor was found to depend upon Reynolds number but little upon Mach number.
This dependince was taken into account in determining temperature profiles.

3. RESULTS AND DISCUSSION

3. 1 General

The Mach number distribution along the tunnel sidewall is shown in Figure 5 with the
test station and effective origin of the turbulent boundary layers iisdicated. Because,
particularly at M = 2.2 , the development takes place in a favourable pressure
gradient and in the presence of transverse gradients, the question must be asked as to
whethar the profiles studied can be considered to be typical fur a flat plate or whether

there is some distortion. Using their high Reynolds number data BEjith and Walker 1

followed the approach suggested by Coles 2 and devised a semi-empirical law which they

rut forward tentatively. They tabulate the variation with Reynolds number of a number
of boundary layer parameters. Of these the variation of shape parameter H12 with the

momentum thickness Reynolds number should be a fairly critical criterion for judging

whether there is any profile distortion. Furthermore Walz 3 implies that if the shape

parameter is based on 'velocity' values of momentum and displacement thickness there

is only a very weak dependence upon Mach number. Accordingly H•) s. 8(u) is plotted

in Figure 6 against momentum thickness Reynolds number. Except for the lower Reynolds

numbers where the data is inaccurate, and where at M = 0.2 there is some anomalous
behaviour as will be shown later, the data follows closely the suggestion of Smith and
Walker. Their own data, as they point out, is it variance with the line at lower
Reynolds number. It is for this reason that they make their suggestions only

tentativgly.

3.2 Velocity Profiles

The measured velocity profiles are shown in law of the wall form in Figure 7(a) and

7(b) using the measured value of cf to define u. . The profile for I-e lowest

Reynolds number at M = 0.2 for which r point was plotted in Figure 6 is omitted.

For reference the 'law of the wall' lines accoruing to Coles* are drawn for each
profile. At M :0 0. 2 the measurements lie above this line for nearly all Reynolds
numbers. Po, the lowest Peynolds number plotted (R. = 0.47 x 106 per foot) where the
accuracy is narginal the data is so far above as to suggest that there is some error.

There is a general tendency for the curves to become -ncreasing~y flatter than the
reference liHe ais Reynolds number increases. At M = 2.2 (Fif. 7 (b)) the accuracy of

measurement is better aid the data shows less scatter. The curves again become flatter

as Rcynolds number increases.

3.3 M1omentum Thickness and Lacal Siin Friction Coefficient

The variati(n of the momentum thickness, calculated from the profiles, with unit
Reym,,lds number is .hown in Figure S. At M = 0.2 the variation is not monotonic;

thuur,.h ,ome of tl is can be attributed to lack of accuracy in pressure measurement

Colte suetgtests that tho Huwarth trimsformation for y should be used.
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repeat points confirm the general shape. It must be assumed that there is some factor,
at present undoternined, other than unit Reynolds number which affects transition.
The ,varlation of the measured local skin frictJ.on with unit Reynolds number is given
ii, Figure 9. The faired curves through the data have been assumed for subsequent
analysis. The mwny points plotted are sa•nples obtained at various tiaes during a period

of about six months. !,nuch of the data was acquired Incidcnital]y during the course of
other tests, this being possib-, as the balance produced no flow disturbance and was
sited far enough upstrewn not 1 be influeiced by the presence of a model. The read-
ings during any particular test showed considerable fluctuation, mostly fairly consis-
tently about a mean, but with occasional excursions to high values, and auL•mpts were
made to obtain readings over the full range of fluctuatio:. Some of the fluctuations
were considered genuine but some probably arisi from structural vibrations and are
aggravated by lack of damping in the balance.

The two sets of measurements are combined in Figure !0 in which cf is plotted
against the momentum thickness Reynolds number Re8 2 . ?alues of cf ar, .tken from
the mean curves of Figure 9 at the unit Reynolds number:; at which the boundary layer
surveys were made. The data from Figure 10 are replotted in three ways in Figures 11
(a), (b) and (c)0 In Figure 11(a) the intermediate temperature hypothesis of Eckert 5

i- used. Three datum curves are shown, those due to KArmin-Schoenherr, Prandtl-
Schllchting (commonly used in the U.K.) and the Smith and Walker evaluation compatible

" with the shape parameter relationship in Figure S. The latter line follows the trend
Sof the experimental points at M = 0.2 but predicts cf consistentli higher by about

0.07 x 10-3 1 The Prandtl-Schlichting curve is too steep but agrees with the data at
high Reynolds number. The K~rm'n-Schoenherr line is in best agreement but also gives

somewhat greater variation of cf with Re82  than indicated by the measurements. The
intermediate temperature hypothesis fails to correlate the data at M = 2. 2 with that
at M = 0. 2. The correlation proposed by Coles u using his sublayer concept is shown in
; 'igure 11(b) together with his proposed incompressible relationship). This relationship
is a fair fit to the data at M = 0.2 but fails to correlate the data at M .: 2.2,

"* though Coles has shown this to conform with a body of other data supersonic speeds

though at lower Reynolds nmber. Finally in Figure 11(c) the empirical factors, and
'incompressible line' of Spalding and Chi 6 are used. The fit is very much better than
in either Figure 11(a) or (b). T, data do however suggest a less rapid variation with
Reynolds number than proposed and a smaller value of either Fc or FR, for M = 2.2.

3.4 Effective Origin of Boundary Layer

From the curv.i of cf against Re8 2 the effective origin of the boundary layers

has been determined in the following way.

By definition
- 2dReS

dRex
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hence for a set of points a - I to n as in Figure 10

rCgea )s 1
Re., = Rex1 + 2 -- dRe 8 2

J(Res ,), cf

and Rex2  for any point a is determined apart from the starting value Rex1

Now If a power law variation of mean skin friction is assumed, i.e.

C = Altoe;I/N

then

cf -x (CF") = "/N_ A'Re(11N)- I - Me" / (I - I/IN)
XN X a x

also
2Re$ 2

Rex

Therefore Re8 9 1 C-Rex
ot 2 of

1 Rex

2 1 - IM

Thus if 11o0/cf is plotted against Reox " Re., and a straight line is obtained,
Rex I and N can be determined. The data of Figure 10 plotted in this fashion are
shown in Figure 12, where it can be seen that an extremely good fit to a straight line
is obtained. The straight lines drawn were found by a Ileast squores fit' and give
values of N of 7. 866 and 7.464 respectiveiy at M = 0.2 and 2.2. Knowing the
values of unit Reynolds number, the effective length x ean be obtained from Re.
and is plotted against Re. in Figure 13. The anomalous behaviour at the lower
Reynolds numbers at M = 0. 2 is shown in these plots as an apparent reversal of
transition position with increasing Reynolds number. At M r 2.2 possibly because of
the larger favourable gradients x is virtually independent of Reynolds number.

3.5 Min Friction as a Function of Length Reynolds Number

Following the procedure outlined in the previous paragraph curves for the variation
of local skin friction coefficient ef and moan coefficient Cp with length Reynolds
number Re. are plotted in Figures 14(n) and (b). The derived points are compared
with a power law in which the mean value of N for M = 0.2 and 2,2 I.e. N = 7,66S
is taken, with the value of A obtained by a least squares procedure applied to the
menasured skin friction coefficient CF . The multiplier for oa is (1 - 1/N) times
that for C, . As would be antloipated from Figure 12 the fit Is tood.
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The results are replottod Iin terms of Intermediate temperature in FIgure 15(a) and
according to Spa1ding and Chi In Figure 15(h). In Figure 15(a) the conclusion of the
previous comp-rison Figure 11(a) that the variation with Reynolds number predicted by

the Prandtl-Sc ]cliting formula is too great is reiterated. Because of this the forr.ula
in intermediate temperature terms predicts C F at h = 2.2 to within 3% over the

Reynolds number range of the experiment even though the Intermediate temperature
hypothesis in Eckert's form is not fulfilled. The final figure 15(b) shows that the
method of Spalding and Chi, which was shown to give the best fit to the basic data.

agrees quite vell with cf on an Rex basis with the mame reservations as mentioned
previously. For CF the data virtually all lie below the prediction and as in the

other comparisons have less variation with Rex than predicted. However, for Re.

of around 108 , cf and CF as measured are closely predicted for both test Mach

numbers.

Also shown on Figure 15(b) are the high Reynolds number results from Moore and
Harkness 7 which htve been reanalysed using the method of the previous paragraph.

The data, for which h varies from 2.897 to 2.669 , was first corrected (by the

intermediate temperature method) to M = 2.80. They do not confirm the trend of the

present experiments in that the variation of both cf and CF with Reynolds number

is greater than predicted by Spalding and Chi. One salient difference in the experi-

mental procedures is the omission by Moore and Harkness of measurements of temperature
distribution and the assumption in calculating 82 of constant total temperature.
The effects of this assumption will be examined in further analysis of the present
experimental results.

4. CONCLUDING REMARKS

There is a long history of measurements of skin friction in Incompressible flow on

which 1,ave been built the various current empirical relationships. It would be
presumptuous to draw any firm conclusions on the basis of this single experiment which

conflict with this vast body of data. Nevertheless it is felt that the smaller vari-

ation of skin friction with Reynolds number shown by the present data should not be

disregarded. It is aumitted that this variation could be modified by different

assumptions in deriving Rex but the authors feel that Figure .12 is very convincing.

It could be that the various accepted formulae for skin friction are biased by the

data available at low Reynolds numbers, and that of necessity this involves the use of

artificial stimulation of turbulence with some consequent distortion of the boundary

layers. No such stimulation is used in this experiment. It Is significant that the
measurements are in fair agreement with deductions from the results of %Ith and llalkýýr

at higher Reynolds numbers where the effect of their trip might be expected to have
diminished.

The same arguments can be used to explain why the results at M z 2.2 are in rather

better agreement with the statistical analysis of Spalding and Chi, In effect their

parameter FR. reduces the Reynolds number of measurements at supcrsonlc speeds to a

lower ,incompressible' value. In this Aay the compressibility parameters aro tatlored
to produce a fit to a possibly erroneous intcompreasible relationship.



109

Finally a word should be said about the effect of assumed temperature distribution
on boundary layer parnmet4.rs. A very limited analysis only has so far been undertaken.
It wats found that at M - 2. 2 there could be up to 3% difference in momentum thickness
calculated using constant total temperature compared with using the measured temperature
distribution. The further implications of this are still being examined.
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SUMMARY

The "-vo-dimensional incompressible turbulent wall jet on a plane
surface beneath a moving stream of arbitrary pressure gradient has bcen
treated -nalytical'y by integral methods. The solution has been
programmed for the IBM 1620 digital computer ard tae results ther,
obtained compared with experimental data.

SOMMAIRE

Le jet pariftal turbulent incompressible bi-dimensionnel sur une
surface plane et en prdsence d'un 4coulement & gradient de pressicn
arbitraire a dtd trait6 analytiquement par des mrthodes int~grales.
La solution a etd programmre pour le calculateur digital IBM 1620 et
les r6sultats ainsi obtenus compares avec les mesures expdrimentales.
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NOTATION

b slot width

Sskin friction coefficients cf -rw/•PV2
f 2

C1  constants

e base of natural logarithm = 2.718

Ed energy dissipation per unit time

H total encr"

k constant in Equation (19), k = log, 2 0.693

Ki constants

I Prandtl' s mixing length

L constant appe&ring in Equation (12), L = 1.01575

p static pressure

P(77) velocity distribution function in inner layer (Eqn. (21))

Q(W) velocity distribution function in outer layer (Eqn. (21))

Re. slot Reynolds number Re. = b/v

r = Sm/b

t = u I/Vj

T(ý)" shear stress function

U x-di-ectional velocity component at the edge of the shear layer
u u(y ) )

u x-direction velocity cmponent at distance y from the surface

um u at y = bf,

V slot otscharge velocity

x distance .measuved along surface from slot e.it

Xo distauce from slot exit to end of core region
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THIE TURBULENT WALL JET IN A MOVING STRL-AM

G.L. Harris

1. IKTRODUCTION

T•he quantitative understanding of the flow in a two-dimensional jet discharged
tiuzgentiafly along a plane surface beneath an external moving stream is fundamental
to the study of blowing boundary layer and circulation control systems, and wall
jet-type ejectors.

In the following pages, an approximate analytical solution of this problem which
is based on we- ow momentum and energy considerations is developed. The numerical
results thereby obi.ained are compared with experimental measurements made in the
prvzeni study and by other investigators.

2. ANALYTICAL DEELOPMENT

2.1 Model vf the Flow

The assoned structure of the flow in a two-dimensional incompressible turbulent
wLil e'- on a plane surface beneath an external stream is shown schematically in
"Figu'e 1. A number of distinct regions of the flow exist which are as follows.

2..1J The Upstream Boundary Layer Region

Due to the presence of the external stieam, a boundary layer forms urstream of
the slot exit as shown in the figure which may in some cases interfere with the jet
flow. In the present analysis, it is considered that the slot velocity and thc slot
width are sufficiently large so that the momentura deficit of the upstream boundcry
layer at the slot lip is negligible with respect to the momentum of the jrt. In view
of these conditions, it is assumed that the boundary layer is completely absorbed by
the jet immediately downstream of the slot exit and that it in no way interferes
with the flow development downstream of the slot.

2.1.2 The Potential Core Region

Downstream of the slot exit there appears for a relatively short distance (on the
order of 10 slot widths) a pote,•tial core region in which the velocity is cqual to
the slot velocity V . lie fluid in the core region has not had :,,affi-ient time to
mix with the surrourding fluid knd therelore retains its original velocity. As the

i distance from the slot increases, the mixing proc:ess penetrates more deeply into the

core region until at the print X = x 0 , (called the starting length), the potential
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sore rcgion dirappears entirely, and the peah velocity begins to decrease for
I >zo

In order to compute the jet development downstream of the point x = x. , it is
necessary to know the initial conditions 8m(X0) Mo , and 8 (x0 ) = 50 (Fig.l).
These quantities depend too heavily on the detaiis of individual slot designs to
merit involved computation, to that mean values will be selected from exieting
experimeintal data and will be assumed valid for all wall jets.

2.1.3 The Inner Layer (0 < y < SM)

The inner layer resembles a normal turbulent boundary layer or channel flow.
Defining the won-dimensional coordinate in this region 7 m , the velocity is
assumed to be given by

U
-- " P(71) (1)
ur

where P(Q) is a universal function.

2.1.4 The Outer Layer (8m < Y < Co)

The outer layer will be assumed to possess many of the chara~teristics of a plane
turbulent free jet discharging into a moving stream. Defining the non-dimensional
coordinate in the outer layer as

m 
(2)

M/2 - 8

the velocity distribution in this region is assumed to be of the form
4.

• i 1i -- l -

-- Q(M) (3)

Mhere Q(() , like P(,) . is R universal function.

?.2 Flow Similarity

Defining universal non-dimensional vasocity profiles in the inner and outer layers
of the wall jet foM > x0 is of course tantamount to assuming that flow similarity
is achieved independently in each layer evwrywnerc downstream of x. . This is not
strictly true in general.

It may be seen from the available ,xperlmental data that the shape of the nor-
dimensional velocity yzotilc in the inner layer of a wall jet flow in fact aepends
somewhat on the existing conditions external to the ohear layer. Strictly speaking
therefore, P((7) is not universal and the simil.,ily assumption for the inner layer
is invalid. On the other hard, t!ie thickness of the inner layer is always very
much smnller than the ovwrall height of the wall jet. Purtlerm- e, the variations in
P(7;) arc confined within fairly well defi:ed limits. Littie error Is therefore

likely to ancruc frum sp'lecting a single reah representative fArm of P(.Q) ind
callingr it. universal.
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In the outer layer, there exists for some distance downstream of the starting

length a traunsitional region in which the non-dimensional velocity profiles adjust to
attain the stable form Q(C) . The transitional distance is usually sufficiently
small 2 so it is reasonable to postulate that flow similarity is attained immediately
downstream of the starting length.

2,3 The Existence of a Finite Shearing Stress at y =m

In the case of a plane turbulent free jet, the shearing stress vanishes at the
peak velocity point. This same condition exists at the axis of symmetry of a plane
turbulent chaanel flow and at the edge of a turbulent boundary layer. In the first
two cases, this condition is required by symmetry, while in the latter it results
from the requirement that beyond the edge of the boundary layer, the flow is inviscid
and hence no si caring stress can exist.

At first inspection, it would appear that the shearing stress would also vanish at
the peak velocity point of a turbulent wall jet, since the derivative ýu/ýy at that
point vanishes, and according to Prandtl's mixing length theory1

p

so should the shearing stress.

If this were in fact true, one eet.ld assume that the outer layer of the turbulent
wall jet behaves exactly as a plane turbulent free jet, and that the inner layer is
in every way identical to a normal turbulent boundary layer or channel flow, since
there would be no stress interaction at their respective extremities. Solutions
could then be obtained for each case and matched at the point y= Sm"

L, number of investigators 2 ,3,' have exploited this approach in dealing analytically

with certain particular cases of wall jet flows.

"In reality however, the shearLig stress at the peak velocity point is not zero,
and in general is not small. The Atress results from the asynrotric turbulent fluid
tran-4-rt across the y = S. boundary which gives rise to a net Reynold's stress
pu'v' at y = 8. which is not zero since the velocity distribut'on about the peak
vflocity point is not symmetrical. Hot wire anemometer measurements 5 indicate that
in the case of a wall jet in still air (U = 0) on a flat surface, the shearing
stress at y = is equal and opposite to the wall sh-earing stress ( =7,

A rigorous theoretical troaiment of this phenomenon would require detailed
information as to the complex behavior of n turbulent shear flow in the vicinity of
an iiflection point. This )roblem has thus fai escaped mat hemJatical treatment and

is beYond the scope of the present study.

bRather th. ignore the existence of this stress, a first approximation to its
behavior 4ill be employed in the subsequent analytical treatment, vhich is obtained
from the following phencxnenologicia considerations.
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The turb'lent shearing stress at the maximum point of a plape turbulent wall jet

is in general negative6. 7(y) must therefore pass through zero at some point in the

inner layer. In the case of a wall jet in still air, as mentioned previously,

= .Tw Since in a plane turbulent free jet the shearing stresses are negative

and in a turbulent boundary layer or channel flow they are positive it appears that

when combined in a wall jet flow, the outer (jet) layer impfosses its influence

across the inner layer thereby overcoming the effect of the positive slope of the

velocity profile in this region (which would normally create the positive shearing

stress in the inner layer) and imposes a negative shearing stress over part of the

inner layer. The magnitude of this influence would appear to depend on the shear

stress level in the outer layer, which according to Prandtl's hypothesis is

T(y > 8 m 2 -(8 Im)2

The average slope of the velocity profile in the outer layer may be approximately

taken as (eu> - Ur-U

\a/av 8 Sm

so that 7 -T'ra (u, -U)2

It has been already noted that for a plne wall jet in still air (U = 0), Tm -•W

It is also observed that when um = U, 'Tm = 0 since the flow degenerates to that of

a normal turbulent boundary layer where the :;hear stress must vanish at the edge,

Imposing these conditions, i.e.

= "w when U = 0

T = 0 when U = Um

the shear stress at the peak velocity point becomes

UM 
(4)

mm

2.4 Shearing Stress in the Outer Layer

As mentioned previously, the outer layer of a turbulent wall jet behaves in a

manner wtich is similar to a turbulent free jet under the same conditions, In a

rletne tur lent free jet, however, the shear stress at the point y = bm is zero,

which is not the case for the ,±all jet. It is observed experimentally that the

influence of the shearing !.tress at y m on the overall shear stress distribution

in the outer lyer is reiatively snail. It is assumed therefore that its influence

may be taken into consideration by simply linearly adding a function T7'rT() to the

correspondirn• free jet shear stress distribution, i.e.
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]wall T(D free + . (5)

jet Jet

The shearing stress distribution across a turbulent free jet is given by Prandtl' s
mixing length relationship

- 2- - (6)

where, within the context o uhe present wall jet nomenclature

K(b - ýM) (7)

where K = 0.0684 (Ref.7).

The 'edge of a plane turbulent free jet mae' be defined approximately by the

rel ationsil :p
r - SM 2.25. (8,

8 M/2 - Sm

Substituting Equatiors (7) and (8) in Equation (6) gives, for the plane free jet,!T
U. 

-(9)

where K1  K2 (2.25)2 = 0.0236.

From Equation (5) then

P = K T (1

Substituting the universal velocity profile in the outer layer (Eqn. (3)) gives

- = K •(U - U)2  IQ'( •)I Q'( •) + T (11)

p p

where the primes denote differentiation with respect to .

2.5 The Hall Shearing Stress

According to Reference 5 the relationship

L pu 2.'T.:V (12)
Or-)M

describes the wall ihearing stress with good ac'uracy when L 0.01575 inci
C 0.1820
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2.6 The Integral E'luations

2.6.1 i',lomentum Integral in the Inner Layer (0 < y < 8m)

Consider a control volume of elemental width dx and height S. located within
t"e inner lawet as shown in Figure 2(a). Ba'aiiciing the x-direction momentum flux per
unit time t:C, ,i f'vi , olume against the pressure and shearing forces exerted upon
its boundaries, the following expression for momentum conservation is obtained

dr d dx ddx dx d - p +- Srp.

Substituting the assumed velocity profile (Eqn.(1)) into the above expression, and
notinr that at the adge of the wall jet (where the flow is inviscid) Bernoulli' s
equation

dp dU
dx -pud (13)

relates the local velocity to the local static pressure (which is constant across the
jet), one obtains

d d 7- * m dU

c dx mm d p p dx

where C1 = P(77)dq7 and C2 = P2(7J)d,?

Expanding the above relationship, and making the required substitutions from
Equations (4) and (12) gives

( C dum + d8, L{u2 + (uM - j) 2} dU

dx 2 ,um dx (umSm)E - dx

2.6.2 Momentum Integral in the Outer Layer (8, < y < O)

Consider aiother cn:jtrol volume of elemintal width dx , but of height (8 -8)
iocatcd in the o iter layer as shown in Figure 2(b). The principle of momentum
conservation in this lvyer gives

dx j dx y .u ,dU --d u dy - pu[ u - +- +u-dy

dJo dx dx dx

T db + p---- + d (8- 8M•p

"7= dx dx dx

whici upon substituti,:i of Equations (2), (3). (4), (12, and (13) becomes, after
expalndin;. and € mrpi fyiinr,
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8 'u-U1 "~/ )d
KiU + 2 2 (uM- U) + C / m (u U) d LM +

+ {K1U + K 2 (ur M U)}(U M - U) "M/2 - KU + K2(uM - U) -Ciur}(11M - U) dS
dx

8m){2(K 2  K2 )(ur U) + + dU L(um- U) 2

Md2 2 - )m - U) (15)

where K, = Q(ý) dý and K2 = Q2(ý) d.

2.6.3 Energy Integral in the Outer Layer

Referring to the control volume of Figure 2(c) the net flux of total energy per
unit time of the mean motion passing through the volume must equal the energy
dissipated within the volume per unit time. The energy dissipation integral is
writteni

Edu -=u
'a

If H(y) = p + 1/2 pu2 is the total mean flow energy at any point in the outer layer
and

Hm = H(y 8m)

and
He = H(y > 8)

then the principle of conservation of energy requires that,

1ejjd Y H :mu' d _ fH(Y)dY 'au.~d

which becomes, upon expansion and substitution,

{CI1S(u; - U2 ) + (1.K 1U
2 + 6K2 (u. - U)U + 3K3 (uM U)2}(8m/ 2  

8m) duM +
dx

+ {2Kj(U _ U)U2 4 IK(m- U)U K3U W)dS +

+ {C~u3 (u_2-U 2 ) + 2K1 (Um-U)t' + ~3K 2(u~ -U"2 U I K3 (u~m-U) 3 } da _.
dx

"~ (16)
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n/2-m){2U2K2 +2(3K 2 - 2KI) (um-U)U +3(K 3 -K 2 ) (um .-U)2} -(16)

0 M/2 3dx

where 
aK

K3  = fQ 3 () dt

Kt= FO Q'(tl Q'2 (ý) dý

K 5 FQ,6,)T(t) di-

2.6.4 Non-dimensional Form of the Equations

It is convenient to non-dimensionalize the equations by introducing the variables

t = um/V r Sm/b S = 8M/b

= U/Vj cf TW Re. - Vjb
"12 pVJ2 V

Equations (14), (15) and (16) become respectively

(aXt'+ a4s' + a3r -1 2 oOr 4 1
a 5 t' + os'+ cxr' as (17)

apt' + OL0' + •:rý o--- •12

and the skin friction coefficient becomes

Cf = 2Lt(Resrt)"'. (18)

In Equation (17), the primes denote differentiation with respect to , and the
variable coo! icients aL are as follows

a1I rt(C1 - 2C 2)

•2 - 0

OL t t 2 (C. - C

,•4 ( t - 5 rt) " - r.,'

CAL -- 7{KI + . t- X))(s r) + Clr(t - k)
*- (19)
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06 =(t - (){K1X + 1:2 (t - X)) (19)

6 -(t- ){K1  +K 2 (t-X) -Clt}I

= {KIX + 2(K 2 - K1)(t- X))(n - r)X' + L(t - X)2 (Resrt)y

OL 9 =C 1r(t 2 
- X2) + (S - r){2X,1X2 + 6Y2 (t - X)X + 3K3 (t - \)2

(X1o "{2K1 X2 + 3K2 (t - k) + Kj(t - X) 2}(t - X)

( i - t 2 
- X2)C1t - {2K1 X2 + 3K2(t - X)\ + K3 (t - X)2}(t- _X)

0.12 - (s - r){3(K3 - K2 )(t - X)2 + 2(3K2 - 2K1)(t - X• + 2K1X2 }X' -

- 2(t - X) 3{K KI - IIK5 (Resrt)'E}

Equations (17) may be solved simultaneously to give

?- 1(0'012 - '0.801) - U16(n.11 - 'X7o10)

0.15(0.60'11 - %C01o) - (0.'14C'510 - 60

r+ OI t + MI (20)

s t % - t ' - o 7 r r

where
, 
0. i = 0.2%O - 03.6

O: 0"1 1 0.0. -0.25

15 16 252( O L' • 0.1 -•0.0. - 0.•0.

The universal functions P(77) and Q(ý) selected to describe the velocity profiles

in the inner and outer layers are

P(7)) = 771/10 1
Q(,) C 2 (21)

These functions are compared with experimental data in Figures (3) and (4).

Using expression (21), the integrals appearing throughout the analytical
development may be evaluated as

C I = 0.909 K2 n 0.7523

C2 = 0.833 K3 = 0.6145

K, = 1.062 K4 = 0.308

KS = -0.10
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where K which corresponds to the integral of the unknown shear stress correction
functioiv T(Z) in the outer layer has been ovaluated experimentally.

The representative initial conditi s selected from experimental data are

60 = 12.0

ro = 0.235

so = 1.30

If the initial conditions are known beforehand, they should of course replace the

above values.

The IBM Fortran program for the simultaneous solution of Equations (20) is
presented in thu Appendix for those who might be interested in making similar

calculations.

3. EXPERIMENTAL INVESTIGATION

An experimental investigation was carried out to verify the analytical results
obtained in the last sectinn.

The experiments were performed in the ;.1I low speed two dimensional wind tunnel
L-2B at stream Reynolds numbers based on 1.est section height ranging nominally

between 2 and 5 x WO5 and slc.t Reynolds nvatLrs between 5 and 8 x 10i.

The object of the experiments was to measure by means of pitot tube exploration
the development of a turbulent wall jet along a flat surface in both zero and adverse

pressure gradient.

The jet was issued tangentially along the flat upper wall of the test section
through a slot which completely spanned the tunnel test section and the air was
supplied frotn a high pressure reservoir.

The adverse pressure gradient in the tunrel was preduced by installing a curved

surface op the wall of the tunnel oppCsitr The test wall. The general arrangemenc
is shown schematically in Figure S.

4. DISCUJSSION OF RESULTS,

The tatalytical metho6 o" :,ect ior 2 will be com!nared with experimental results

obtained not only in the present -tudy, tut also with measurements made by other

invest igators undcr diffcrat con,1.tiins.

Figtir.,r. 6 and 7 der"•stiate the validity of the theory in the case c.f a plane
turbul,'t W:ý1 I 't in still aii. (\, U/Vs = 0). It is i.c•ted that under these
treldltiotvs tc r" t:i cf both the hulf-maximum velociLy point s = 80/:/b and the
max initmi ;' city point it,. If r -- ,*!b is linear.
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Figures 8and9 contain data for the case of a wall jet in a moving strea'.! witn
zero pressure giadiont (V = 0). It is observed that while the growth of the peak

velocity point r is still linear, this is no longer true for the half-maximum
velocity point s

Figures 10, 11 and 12 show the experimental and theoretical jet developent in

adverse pressure gradients (X' < 0). The variations of X along the test surface
are also included in the figures. Ever under these conditions, the growth of r is
still effectively linear.

Figures 13, 14 and 15 show the measured and predicted variations of the skin
friction coefficient cf = 'rJ/2pV2  with distance from the slot for wall jets in
still air, and in moving streams with V = 0 and V < 0

5. CONCLUSIONS

An approximate method for computing the development of a plane turbulent wall jet
under an external stream of arbitrary pressure gradient has been developed. The
analytical results compare favorably with experimental measurements obtained at VKI
and by other investigators under varying conditions. The computer program presented
in the Appendix permits the rapid computation of the jet development (i.e. peak
velocity decay and growth of the peak velocity and half-peak velocity points) and the
skin friction. It has been demonstrated that the wall jet velocity profile exhibits
downstream similarity, so that all of the jet properties at any point on the surface

may be obtained once these parameters have been computed.

rI
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ArPPCNDIX: DIGITAL COMPU'TER PROGRAMI

c INCO4PRESSIdLE TURBULENT WALL JET IN AP.RITRARf PRESSURE GR.'.D!EJ,.,

1: KSIDISTANCE FIt-ri SLOI.X/13
c LAMiCJA-VELOCI TY PAY!3.U/VJ

r RHEIGHT ('W POINT OF MAXIMUJM VELOCITY.OM/8
c SHEIGHT -If POINT OF 1/2 MAX.VELOCITY
C I-VILOC17Y RATI0-U(4lVJ

I CC2PT TAPE 2 S R T Cl C2 3,ELLE,EPS,IIKI,RE,DX,X,XF,K,Ht
3 FORMAT(.3r5.gaý6.O, 3f3.6, i 2,r5.4)

ACCEPT TAPE 3(),UK DK TK U14 f't4,TM,UN,DN,TN,HKAPA, SIC., $
3ri rORKATt F5 FI7~j.COJ2:O)

ACCEPT TAPE 33,H2,H3,H14,T1,T2,T3,T4
33 FCRMAM(F5.I4.,4-1.8)

*4-0.

EL-I ,T2*X+T3*X*X+TL,*X**3
E .P-T 2+2.* 3*X+ 3. *T4*X*X
IF (11-!) 10, 10, 13

:3 tot.S-R
-1 2.T-E I

b4ý:V17+EL)
A42-EiLLE/ (RE*R*T )**EPS
EC-EL*EL
:L-2.*EL*82
DR-2 .*R*82

TH-0.
IF(SI )31,32.31

31 PHB1/%'SIGSI*S)
11H.R1C2.*SIG#,SI*R)

32 G-B)*DK+DL*UK+2.5*EC^
9; 9.8~~3*LP D*D4C*TI4

W-UN*BztB34EL*113*( 2,*DN+UM),EC*82*(TN+2.*OM4)+EC*EL*TM
A1.!t*T*( Cl-2 .*C2)+4 .*C3*R*T*TH+PH*OR*DK+2.*UK*r.*PH*EL
D1-G*P/81
A3:T*I*(Cl.C2.4.*C3*TH-.2.*C3*SI*TH**2)..PH*O1
£2.0 1PH*DR(DK.-S I *L*2*HUKS*H1.)EPP4*TTHK*3

AS-B1*( 2.*82*DK+UK*EL-2.*PH*(Li2*LItisEL*Dl4t))+C1*R*B2

A7.-62*(DK~t2..UK*EL-,C1*T )-PH*(G-2.*B)

A8.ELP"B1*( 2*B2*(OK-UJK+UK*EL-..*PH*(B2I(UM-DM4)+EL*(OM-TM) )ý
AS.AtO+AJ.2*HKI *B3
A9-3.*3.3*(TK-2. *UN*Pil),2.*UK*EC-DL*( 2.*PH*-2.*DN+UM)-3.*LmK)
A9.C1*R* (Y*T-ECC2.*PH*G)+(A9-2.*PH*EC*(TN+2.*DM))*B I
AI-28*X3*LC!*,2U*LD-.WP+.WS *PH**2
Al l.-C1*T*( 2.*PH*G-84) -TK*B2*L33-3.*DK*EL*B3-VL*EL*UK+4.*W*PH
A12.3.*B3*(TK-DK-2.*UN,*PH)+OL*(3.*DK-2.*UK)+2.*PH*83*(2.*DN+UM)
A!ll.,A12+2..*(EC*UK-PH*EC*( TN+2.*D.i )+PH*DL*(TN+',.*DM )+3.*PH*EC*TM)
A1-2*2B*HA(IS**HH2S**HEw38)A2H*K)
A12-BI*A12*ELP+A13
H.A42*? ,TT*T
CP-2 .*(2.*Cl *T*T*TH+PH*G)

A14=A2*A7-A3*A6

R P ( A 1+A 1S*T P)/A14
S P-(A8-A5*r P-A7*RP )/A6
S-S+SP*kDX
T.T.T P*DX
R-R+RP*DX
K'-K+l
IF(K-10)9, 11,10

11 K.-0
10) PRINT IL.,X,EL,S,T,R.H,CP
14 FORM.AT(F6.1,F9.5,3F1, .S,2E16.8)
9 fi-2

X-X+DX
IF(X-XF)7,7, I
END
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NOTE: 1. -1f the 1620 has to print the results for every value of 4,

Shas to be > 10,0.

If the 1620 has to print the results only every tenth 4,

K has to be < 9 and equal to the urnit digit '! o
00

2. -AOO 9 A01, A02, A03 are the coefficients of the polynomial

expansaon for X.

3. -At is a step in the step by step solutioa.

SYMBOLS SYMBOLS SYMBOLS

PROGRAM ANALYSIS PROGRAM ANALYSIS PROGRAM ANALYSIS

S S UK Kilof062 H2 1.0

R Ro DK K2 w0,7523 H3 1.0
T TO TK K3=0.6145 H4 K5 u -0.10

C1 C1 uO.909 UM i.0 T1 A AOO

C2 C2 .O-833 DM 1.0 T2 AOl

C3 C3 L;.0 TM 1.0 T3 A02

ELLE L-O.01575 UN 1.0 T4 A03

EPS to0.182 DN 1.0 See Note 2

HKI xal.O TN 1.0

RE REs FKA K-0.0238

DX AA A0
X a Initial SIG 1,0

XF ; Final 8I 0.0

K See Note I

_ _HI '44=0-308

PRO)GRAM AAN
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MOMENTUM CONSERVATION IN THE INNER LAYER
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6• ... .I

Imj I I
momentumi forces

f I Pm

rm 1 1 ,

Ip, u2dylAu.d u2dydx]
dx ,

"dx -T

Fig. 2(o)

MOMENTUM CONSERVATION IN THE OUTER LAYER

"Gm 61 dx

I o Adx d6 d
d"x uy dx• " -- I

SF"' I, - ,x ri

/ momentumI 2 d p12dd i6 flux Ipl\ u'dy+, -- udyd II
_p 1 m= xV forces I p(6-6m).*-p(6-8m)dxp d-y IIL~re Um.J force dx

p ~u 6M -.

mjI P(86-6mA I
I I d6m

6 m -. d_ , . xp d"- -PUm S udy 
4 i-dx'p r di o

rig. 2(b)

ENERGY CONSERVATIONi IN THE OUTER LAYER

1. dxy

He -a- udy udy ] d

l energy a 6 6

1dissipoted iHdy •Hdydx
dy , witin dy x

I d•-I- u
0

Fig. 2 (c)

Fig. 2 Momentum and enery conservation acr'osh jet
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SUMMARY

The predictions of shape-factor development given by existing auxiliary
equations are shown to vary widely and are in some cases very inaccurate.
Head's entrainment equiation is the most generally satisfactory.

A new entrainment equation is described and is shown to give improved
agreement with experimenit, especially in equilibrium conditions. An
important feature of this new approach is the use of an explicit term to
account for the effects of small three-dimensional flovs that appear to
be present in measured layers, as indicated by the disagreement between
measured growth of momentum thickness and the predictions of the
two-dimensional momentum equation even far from separation.

Finally, the entrainment methods are shown to be distinctly superior,
in conditions of distributed suction or blowing, to the method of Pechau.

SOMMAIRE

On montre que les prdvisions concernant l'dvolution d'un facteur de
forme obtenues au moyen des dquations auxiliaires existantes varient
tr&s considdrablement et qu'elles sent deans certains cas trbs inexactes.
L'4quation d'Wntratnement de Head est la plus g~ndralement satisfaisante.

Une nouvelle 4quation d'entrvinement est ddcrite et on montre qu'elle
permet de r~aliser un meilleur accord avec les rdsultats d'expdrimentation
et plus particulibrement dans les conditions d'dquilibre. Une
caracthristique importante de cette nouvelle m6thode consiste dans l'emploi
d'un terme explicite prlr tenir compte des effets de petits dcoulements

tri-dimensionnels qui semblent so pr6senter dons les couches mesur~es,
comme I' indique le d6saccord qui existe entre I' amplification inesurde de
l'ipaisseur de quantitd de mouvement et les pr~visions pour l'dquation de
la quantitj de mouvement bi-dimensioinelle m~me loin du ddcollement.

Knfin, il est proui'6 quo les meithodes d'entrainement so.nt nettement

sup6riurers a In mithade Pechau lorsqu' il y a une aspiiation ou une
inject ion. dist ribuce.
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NOTATION

c aercfoil chord length

Cf local skin-friction coefficient

F entrainment function of Head

H , III profile shape-factors: I1 ; H , - 0

k(x) term In the momentum integral equation representing tho departure
from two.diNnsional conditions

Q volume flux in the boundary layer

Qt volume flux of turbulent fluid in the boundary layer

R local radius of curvature of the surface (in the x-y plane)

R6, Re Reynolds numbers: R,9 Re =
f V

t turbulent flux thickness (y

'•t, 12spanwise turbulence flux thickness (= i:-t dyI

t tl 2  shape-factors appearing in the new entrainment equation

*12

u, v, w components of velocity In the boundary layer in the x, y, z
direc.ious respectively

UI component of velocity in the free stream in the x-direction

Uref reference value of U0 , shown in Figure 21

ut, wt mean velocity components nf turbulent fluid over "time turbulent",
ir the x, z directions ,espactively

up mean velocity of irrotaticanl fluid over "timc potential"

v 0 local transpiration velocity at the surface (positive for injection)

ve. r--. vet •rntrainw.,,nt velocities
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x, y, z localised rectangular Cartesian coordinates; x is measured
longitudinally along the surface; y is the distance perpendicular
to the surface, and 2 is the spanwise diitance

Y height of turbulence front above surface

al universal constant in Equation (6)

ie., /3 entrainment coefficients used in the new auxiliary equations

Y Intermittency factor (ratio L. "time turbulent" to total time)

u
8, 81 boundary layer thicknesses; 8 y at - = 1.00 , used by the

u U1

present author; S = y at - = 0.995 , used by Head
U1

u 8 velocity defect and len6 scales, re pectively,. oi the flow at

or near tL thp turbulence iront

displacement thickness (= IO (l ) )

AU
velocity defect parameter

U1

0 mo-entum ';s thickness (= Jf2 ( -

spanwise momentum loss thickness ( 1 u dy)

kinematic viscosity

m • m • •, •m m M
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THE CAriCULATION OF SHAPE-FACTOR DEVELOPVIFNT IN
INCOM1PRESSIBLE TURBULENT BOUNDARY LAYERS W'ITHi

OR %ITHOUT TRANSPIRATION

B.G.J. Thompson

1. INTRODUCTION

A recent review' by the present author h.s shown that, in most cases, the exis-.-ing
measurements of nominally two-dimensional turbulent boundary layers are affected by
the presence of small three-dimensional flows, as indicated by the disagreement (even
far from separation) found between the measuzed developm~ent.s of momentum thickless
(0) and those calculated from step-by-step solntions of the two-dimensional momentum
integral.equation using measured H values and values of skin-friction1 3 similar to
those obtained from the law of Ludwieg and TillmanlnlU. The mo're important examples
are shotn here as Figures 1, 2 and 3.

The construction of a satisfactory shape-tactor equation is in principle a
difficult problem due to the absence of a satisfactory (known) general relationship
between the turbulent shear stress and the mean velocity distribution. the results
of the momentum calculations show that this problem is further complicgted, at present,
by the necessity of using data obtained in three-dimensional la)ers which are not
properly specified by the measured boundary conditions, as the latter art appropriate
only to the strictly two-dimensional flow assumed. However, when auxiliaiy equations
are tested against experiment, the calculations of H development can be .ade using
the measuredl development of momentum thickness in each case as this provides an
additional boundary condition accounting to some extent for the influence of the
cross-flows on the shape-fartor growth. Comparisons, on-this basis, have been made'

between the predictions of several of the better known auxiliary equations (from
Refs.2 to 6) and experiment. Some typical examples are shown here in Figures 4 to 10,
for the measured layers of References 7 to 12.

The different equations usually predict widely differing H developments in _.Y
given pressure distribution and arc often inaccurate. The results obtained from the
entrainment equation of Head2 are, however, generally much better than the remainder
especially for the equilibrium layers of Clauser7 shown in Fig .'es 4 and 5; also for
the layer of Schubauer and Spangenberg9 shown in Figure 7. The agreement with
experiment is still unsatisfactory in some cases, however, particularly tbOce shown
in Figures 5 and 6, and so an improved equation hats bcen developed and is described
in the following sections.

The new auxiliary equation was developed from Head' s or!ginal approach but uses a
revi3ed physical picture of the turbuleAt boundary layer and of the entrainment process.
By incorporating an explicit allowance for the cross-flow this has resulted in an
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equatton riving- rather better aCreeze;%t with e perbi'nt except for one leyer, and so.
by eqwativg 0-e cross-flcow tero to zero it aay be used for calculations of scbape-factor
develorr.ent in tvo-dizeesiocal zonditions with were confidence chen the earlier
equationts whi:h have not taken account of three-dizensionl effects.

tie entrai.r:.ent approach was dsa~en not emiy btcause of the saperlorlty of Head's
or1ginal eMatii tut also because of the belief that the entra;=ent relatianships.

obtelned fo layers oc solid surfv.-es. would be very little affei-ted by trmspiiration.
whereas tVc iliect effect of the suctim or injection an the whole of the shear-stress
distributic. thraugh the layer aight make the enerly equation, fcr exiple. more
difficult to extend to such rpysical situations.

Encuraging results. usinC the entralnment equations, have been obtained on a
provtsioual basis fci. layers inith distributm.d suctiwi er injection k.nd are described
at the end oi ttis paper.

2. TRE ")TRAI.NUINT EQUATION OF HEAD

SIeWd2 equated the rtte c! increase of quantity low (Q) in the boundary layer to

the n.rainAit velocity ('e). and amns-ed that the etntr-icnent was controlled by the
largest tvrblent eddies characterised -oj the scales U, - 5'. and a shtae-factor

H, -

I. Hence.

S d[U1(S - S=) F(H)
dx = ve I (1'd dz-

where S = y at, utU, = 0.995 . Etpatin.o il) ,.s -_sed in calctlations in the form.

dK.:H. U,
"- LF() - (2)

The singla-cm-rre ri-lationshir P(H.) is sonereet arbitrarily drawn between the

data of Refereun-s S mid 2ad cand a e ec:-e log:cclly derive! by aswm-ming that Y
is prcirtic.zl to scae scale relzcity defect of the xtter region; in additio, the
original a. roach suff-rs ir- the dizf•t.•. y of deflining• the bcfindary layer thickress

Ccmsek tly, at :-. ,*_-a-' s s5gestic%,. a rerised cnrtrainaent appreach was

adopted where the tutrt;ent oiunda.-y layer was no longer considereC as pcrely a region
of defect cf tean ve!cit:-.

L
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3. TIlE NEM ENTRAINMIENT EQUATION 
A

3.1 The basic physical model

The Investigations of Corrsin and Kistler' 5 and others, show that tile turbulent
layer consists of a body of turbulent fluid. adjacent to the wall, possessing both
meau and fluctuating oi -icity and separated, at any instant, from the external
potential flow by ar, aeparently continuous interface (or turbulence front) that is
strongly di3torted in three-dimensions by the action of the largest scales of the
underlying turnulence.

The turbulence front is continuously propagating into the external flow, converting
potential fluid to a rotational state and enabling the transfer of mean-flow kinetic
energy to the retarded turbulent region to occur. This appears to be the essential
rechaniso by which the layer gro..• and, together with the clearly defined extent of
the fully turbulent flow (see Fig.ll). provided the main physical reasori. _'cr

developing the new auxiliany equation by equating the rate of increase :. fluz )

of turbulent fluid to the mean entrainment rte 7et . Now. if u, ýs th.l average
velocity of the turbulent fluid taken over "time turbulent" and u, i. t.i ea ,
velocity of the irrotational fluid over "time potential".

u = 1U1t A. (I -y)u3

where y is the fraction of the time for vbich the f-ow is turbulent n. a %artV ilat

posit•on and is called the "intermittency factor". Hence.

Qt Fyutdy = Ult (4

where t is the "turbulence flux thickness", and the basic equation therefore jecomes,

•,d~t Mdo t d ,o(t/m

dx dx dx (5)

3.2 The velocity-defect hypothesis for entrainment

The local rate of vorticity difftsion per unit area of the interface will depend
solely cn local conditions and. in t.ne mean for a1 tines at which the turbulence front
is at heio.t Y this rate (vey) will dcpend only on the average velocity defect
scale (8i(Y•) provided the overall Reyiolds number of the flow is not too small.

That is.

-- OL (P universal constLnt). (6)

The overall enti.-:t ra'e (v-t w411 dependl on the way in which the larger
scales of the turbui.ence govern the shape of the interface (Paud hc.•e the "area" over
Thich Ve- may be assumed to a.'t) and the probability distribution of Y . If.
therefrore. there is an overall seiiarity of the flow as in equil'briua layers a
simple relationship might be expected of the forn-
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S- NAu (7)Vet ,

where Au is so.me suitable scale of velocity defect to the turbulent region, and ad

Ibis does not rule out,
a priori, the possibility that oe should be insensitive to departures from similarity
and the new equation was used initially in the form, from (5) and (7),

dRO(t/i) Au U(dx = --z . (8)
dx U1 vj

In the absence of more detailed measurements it was necessary to assume that

(a) up = U1

(b) y was a universal function of y/1 given by the measurements of Klebanoff1 7

for zero pressure gradient, where k1 = y at u/U1 = 1.00

The velocity-defect parameter was chosen as

(9)
U1 = -[ MAX

This is shown, together with other features of the new approach, in Figure 12. The
shape factors

Au 
d(y/9I and (t/0) = -1+

were found as functions of H and R6 , using a new two-parameter velocity profile

family13 similar to Coles familyle in many respects, and these relationships are shown
in Figures 13 and 14.

3.3 Results of calculations using the new equations

It was found that with a value of oe = 0.09 , EqVation (8) gave good agreement with

the equilibrium layers but this value of ae was much too large for the other layers.
d(t/6)

Therefore it was assumed that 6 W- could be used as a measure of the departure
dx

from similarity and, for simplicity in computation, it wrs assumed also that

d (/(10)cx = .l (10)
dx

Equation (8) thus took the form

U Au dRd~iO) - -1 - (t/&)dR
d { - v U1 dx

dx /I)
R'9 (I
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whore by trial and error it was fcuid that x = 0.09 ,- 1.0 gave better agreement
than Head' s equation for tl'e layers on flat walls, except. for layer "D" cf Schubauer
and Spangenberg where Hlead' s excellent result couJd not be matched, unfortunately.
Fbr layers developing along corve curved surfaces the entrainment %as too large,
however, resulting in values of H that were too small and separations that were
delayed.

3.4 The additional effect of wall curvature on entrainment

Thd additional streamline curvature (in the x-y plane) imposed due to convex
wall curvature may be expected to reduce the intensity of turbulent mixing and to
decrease the entrainment. The largest scales of the turbulence will be affected most
strongly and so it was assumed that a depended upon S1/R , where S, is the
boundary layer thickness for u/U 1 = 1.00 defined by a relationship of the form

81/0 = f(H, RO) (12)
13

obtained from the new profile family13

Equation (11) was solved for a(81 /R) using the data of References 10 and 12 and
one layer from Reference 11. On recalculation for the H developments in these and
in two additional layers from Reference 11, good agreezent with experiment was now

"* obtained. The extent of this improvement may be gauged from the typical example shown
in Figure 15.

Although, at this stage, the overall agreement with experiment was very satisfactory,
except for Schubauer and Spangenberg "D" it was not certain that the influence of the
cross-flows in the measured layers had been eliminated and so an explicit allowance
for these was added to give the final equation suitable for use in two-dimensional
conditions.

3.5 The inclusion of a term to allow for the effects of cross-flow
The only available measure of the magnitude of the cross-flow in nominally

two-dimensional layers is the difference (k(x)), locally, between the measured rate of
change of momentum thickness (used in dimensionless form as R8 ) and that calculated
frotu the two-dimensional fcrm of the momentum equation as described in the Introduction;

That is,

k(x) •- [.EXPT - (13)

dx

The inclusion of the cross-flow term in the momentum integral equation gives,
neglecting the Reynolds stress terms,

_ _R c RU dU U 1 's 2
(H + 1) U dx (14)D x 2 v U, dx V ýz
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and thus

"k(x) - U (15)
V a

where L9 (o • - dy. (16)

The corresponding form of the entrainment equatior -is

1 U Z 1)Ut, Au U
I 8 --t + I = 1 (17)

where the spanwise flux

UIt12 = ywtdy (18)

and ywt is the overall time mean value of the spanwise (z) component of velocity
within the turbulent fluid.

i1 t12 U1 12(t 12/012 ) 912 t 1 U U1 , t
Now, -z 1 1 12 + 2121+ 2 12 (19)

V 12 V 12

Hence, assuming that the measurements have been made at or near a plane of symmetry of
the flow the third term 3n the right-hand side predominates and the entrainment
equation becomes, from (15), (07) and (19),

a R9(t/9) Au U tI 2ax -- + k(x) 12 (20)

The foin of the spanwise velocity profile cannot be determined in general for the
nominally two-dimensional layers And so it was assumed that the effects of spanwise
pressure gradients predominated over those due to divergence or convergence of the
external streamlines. A cross-flow profile family was accordingly constructed from

the new two-parameter streamwlse profile family' 3 and the triangular polar model of
Johnston" 9 . This gave a relationship for t 12/a12 , which was closely approximated by

t _(21)
12z H I

where the cross flow had been assumed to occur entirely within the fully turbulent
region (w y= -wt).

The new Equation (20) was solved for oL , using Equation (21) and the measured
developments of References 7, 8. 9, 10, 11 and 12, and the resulting correlations were
approximrated by
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%( t3 0 (22)

where

(• 1)0" 167911

= 0.02 + 0.02194 (8-1 + 0.00 (23)

d(tlO)

= 1.0 for e ýD O -) 0.003 (24)

Z(t/L)
and / = 2.0 for 0 < 0.003 . (25)

3.6 The new auxiliary equation

Combining Equations (20), (21) and (22) the new auxiliary equation, in the form
suitable for calculations, becomes

-U, - (tAe) x -+ H k(x)

axt/__ - U (26)

This was used, together with Equations (23), (24), (25) and the charts for t/,
AuAj1 and 8 /6, to give the predictions for H shown in Figures 4 to 10 and
labelled "NEW EQUATION".

Starting values of h and R9 , and distributions of k(x), R., U1/v, ZR9/ax were

obtaincd from experiment.

3.7 The results of the calculations

The new equation gives better results than the existing equations, except for
Schubauer and Spangenberg '13" (Fig.'7). The improvement in agreement with the
equilibrium layers of Clauser (Figs.4 and 5) is very satisfactory. However, for
Newman's aerofoil layer (Fig.6) dH/dx is underestimated near to separation because
k(x) has been calculated from the momentum equation without allowing for the measured
normal-stress terms (see Fig.3); otherwise agreement with experiment is excellent.

3.8 Discussion

Figures 16 and 17 compare the resulLs given by the new equation with and without
its cross-flow term. The addition of a cross-flow term to the equation should,
intuitively, result in a lowering of H in the divergent flow conditions of Clauser I
(Pig. 16) and correspondingly, an increase of H would be expected for the convergent
flow conditions of Clauser II (Fig. 17). In fact, the observed effect on the predicted
H development is in the opposite direction, with H values being raised for Clauser I
and lowered for Clauser If. Therefore, when attempting to derive an auxiliary equation
from the present data or to use it to seek agreement with the present measurements of
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I1 development, these results show that the use ot the measured momentum thickness
alone, without the inclusion of an explicit cross-flow term leads to an overestimate
of the effect of the cross-flow term on the H development, although the conclusions

dranwn in Section 1, regarding the usefulness of the earlier auxiliary equations, do
not depend critically on the use of measured R8 (x) (see Ref.1).

The present assumptions for the form of the cross-flow profile underestimate the
true value of t1 2/0 1 2 and the use of a profile based upon the assumption of a local

radial flow as attempted by Rotta 2 0 and Norbury21 should be tried. Re-analysis of the
existing data assuming that measurements were made in a plane of symmetry might offer

16further improvements

More. detailed measurements of y, ut. and up are needed to establish the new
physical model on a fiimer basis, particularly as regards the influence of wall
curvature.

The energy equation, or any alternative having a clear physical significance, would
almost certainly have given an equally trustworthy equation for solid surface two-
dimensional lay2rs, provided a proper numerical analysis of the data had been made
and three-dimensional flows had been accounted for. Purely empirical equations,
bowever, are unlikely to be as satisfactory in this respect even if they predict the
present measurements accurately, and they would b3 more difficult to extend to new
physical situations. The question will remain open, however, until measurements have
been made in accurately two-dimensional conditions or in layers where the three-
dimensional flow is properly determined.

4. SHAPE-FACTOR CALCULATIONS FOR LAYERS WITH DISTRIBUTED SUCTION OR

INJECTION

* -4.1 The equations

Equations (2) and (26) become

dHiRo [F(1;) + ..2. (27)

dx U H

SIs)Au + 1 (t/0) + k(x)
and (28)

where it is assumed that the entrainment functions F(1ll), (S/R•) and /•are

unaffected by transpiration provided that suction ra~es are not high enough to produce
a reversion townrds laminar flow. Figures 18 and 19 show the curves used with
Equation (27) and it is seen that the solid surface profile shape-factor relationship
is only satiisfactory for injection profiles 2 2 ' . The solid surface values of
t/O, Zu/U have been used in Equation (28), provisionally, although the new profile
family can now account lor the effects of transpiration and the full relationships
will be available soun.
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4.2 Results of calculations

A typical result for the injection layers of Mickley and Davis 2 2 is shown in
Figure 20, where the good agreement obtained using the entrainment equations may be
contrasted with the poor result given by the equation of Pechau 2 .

Figure 21 shows that the entrainment approach gives reasonably good results with
suction especially when the correct shape-factor relationship is used. Pechau's
results are again unsatisfactory.

The k(x) values of these layers were found to be negligible using a new skin
friction relationship (which accounts for the direct effects of transpiration on the
inner profile) in the calculations of momentun thickness development. (See Figs. 22
and 23).

5. CONCLUSIONS

(i) Existing shape-factor equations give widely differing results in any given
pressure distribution and are sometimes very inaccurate. Head' s equation
is rather better than the remainder.

(ii) Auxiliary equations for predicting H in two-dimensional conditions can only
be satisfactorily derived on the basis of the present experiments if direct
account is taken of the cross-flows that appear to be present in most
measured boundary layers.

(iii) A new form of entrainment equation has been evolved and shown to give improved
agreement with experiment except for one layer measured by Schubauer and
Spangenberg .

i (iv) The physical basis of the new approach needs to be more firmly established,
by additional measurements of intermittency and by measurement of comparative
velocities in the fully turbulent and potential flow regimes.

(v) The entrainment equations give much better agreement with H development in
layers with transpiration than does the published method of Pechau.

(vi) There remains an urgent need for measurements in accurately two-dimensional
or in known three-dimensional conditions.
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SVNSARY

It is shown that forml, relations exist betar-en tt.e -ezitrtinmeni
funcion. ai-erin inthetheo? of Head (1960) and ctners. and the

CAVj55jpatjif i~!tegrai" appearing in tr!: t~heories Af Potta (1950).
Truckernbrodt (1951) and others. Use of .he reia~iors. anid of kn""ledge
of free turbulent loirs. permits ip-exexpzessio-is to t-e recocer.ded
for the dissipation integral. '-a1id fCr natr-flat-rjatc ficiýs. lor
nearly-sepaating bo~zdary layvers, andJ for flous "rr zhic!h the vslocity
profiles % hibit -axima. 'The relatioas also indicate a non-arbitrary
definition zof the outer 'edve' of the . 'rylayer for use with the
cutrsimnent func,:irAs. Firther research will be neele.± tL, verily and
im..rrve the recosmendations which hzaý been ~- an-! to extenc. ther to
sitaations of greater complexity; soee suiggestionxs -re sade coz-cerning
these extensions.

SOMMAIRE

V auteur de cet exposi amotre V existence de relations formelles entre
la -faocliom dentratnes.~ent-. apparaissant dans In th~orie de Head (!.460)
et dons T' autres th~orles. et 'T intigrale de eissirpat jou". apparaissant
dans les theories de Rotta (1950). de Truckenbrodt (1951) etc. En
utilisarit ces relations et. les donnl~es que 1' on possi~de sur les icoulements
libres turbulents, on peut recoonander, pour Y int~grale de dissipation,
des expressions amiliories. valables pour des &couleaen-Cs sur plaques
pre~sque planes. pour des couches limites proches de' d6collement. et pour
des- 6coulemcnts oiý les profils de vitesse pr~srzatez.t des maxim~a. Ces
relations conduisent aussi a une ddf-ini-tion non arbitraire du -bord"
externe de la couche limite, i utiliser avec la "fcnction d'entra!.nement".
Un compliment de recherches s' imposer& pour crnfirmer et am~1iorer les
recomumandations qui ont ht4 formule'es. et pour dtendre leur application
cies situations d'une plus grande complexit.•; l'auteur exprime quelqtes
snugestions concernant cette derni~re possibilit4.



193

CONTENTS

Fage

SUMMARY 192

SONNAIRE 192

;1ST OF FIGURES 194

NOTATION 19C

1. INTRODUCTION 199

1.1 The problem considered 199

1.2 Outline of the present paper 200

2. MATHEMATICAL DEVELOPMENT 200

2.1 The integral equations 200
2.2 The "kinetic-energy method" 2(3

2.3 The "mass-conservation method" 205

2.4 Relation between the dissipation integral and the

entrainment rx.c 206

2.5 Closure 21'

3. SURVEY OF INFORMATION ABOUT THE DISSIPATION INTEGRAL 211

3.1 Earlier theoretical proposals for boundary layers 211

3.2 Some other theoretically based exprcssions for • 213

3.3 Fxperimental data for 9 215

3.4 A preliminary recommendation about the dissipation

integral 219

4. DISCUSSION OF RESULTS 224
4.1 Comparison of the "kinetic-energy" and

"mass-conservation" methods 224

4.2 Some problems for research 226

4.3 Conclusions 228

5. ACKNOWLEDGEMENTS 229

REFERENCES 229

FIGURES 232



( 194(
LIST O FIGURES

Page

Fig. 1 Relations betw.een shape factors H and IIf for boundary lavers
having uniform density and the velocity profile

z = zE(i + (log )l'} + 1(I - zE)(l - cos,•). 232

Fig.2 Variation of shear stress with velocity for an equilibrium-flat-plate
boundary layer. 232

Fig. 3 Relation between shape factorc H and H, for boundary layers
having uniform density and the velocity profile

z = ZM{l + (loge')/1'} + 10( - ZE)(I - cos'77). 233

Fig. 4 The linear velocity profile described by Equation (2.4-6). 233

Fig. 5 Shape factors of the linear -:elocity profiles described by
Equation (2.4-6) and represented ii Figure 4. 234

Fig.6 Coefficients of -m. , m and s. ii the expression for ,
Equation (2.4-13), based on the linear velocity profile. 234

Fi&.7 Relation between shape factors for the linear velocity profile. 235

Fig.8 Coefficients of -mG, m and s in the expression for N ,
Equation (2.4-13). 235

Fig.9 Shear-stress distribution in a Couette flow with mass transfer

through the wall (where z = 0) at dimensionless rate m . 236

, Fig. 10 Recommendation for 9 made by Rubert and Persh (1951). 236

Fig. 11 Some theoretically based shear-stress distributions in free turbulent

flows, each embodying one empirical constant. 237

Fig. 12 Shear-stress distribution corresponding to the linear velocity
Sprofile of Figure 4 and the Clauser/Mellor/Gibson constant-viscosity

hypothesis. 237

Fig. 13 Some s - z distributions deduced from the measurements of
Schubauer and Klebanoff (1951). 238

Fig. 14 Snoothed data for 9 and sS deduced from che measurements of
Schubauer and Klebanoff (1954) and some theoretically based curves

for comparison, 238

Fig. 15 The s - z distributions deduced from the measurements of Sandborn
and Slogar (1955). 239



195

Page

Fig. 16. Date for 9 and s. deduced from Sandborn and Sloger (1955) with

some "heoretically based curves for comparison. 239

Pig. 17 Variations of 9 and ss with t. for equilibrium boundary kayers
on impormceble flat p1ptes. 240

Fig. 18 Setch of velocity and shear-stress profiles across a wall jet. 240

Fig. 19 Shear-str-ss versus velocity for wall jets. 24i

Fig. 20 A sketch of the probable shape of the 9(zE, 1V) function for m = 0. 241

Fig.21 -the g(zE, V') function for an impem.eable wall which corresponds to

,he proposal of Rotta (1950). 9411

Fig. 22 The 9(z5 , 1V) function for an impermeable wall which corresponds to
the proposal c.' Ti-uckenbrodt (1951). 242

Fig. 23 The F(z•, V') function for an impermeable wall which corresponds to

the prcxosil of Rubert and Persh (1951); the pressure gradient is
taken as zero. 243

Pig. 24 The i(zE, 1') function for an impermeable wall corresponding to the
constant-eddy-viscosity hypothesis, expressed by EquatIon (3.*-2). 743

Fig. 25 The s , z relation c-wresponding to the constant-viscosity
hypothesis and the line~r velocity profile of Equation (2.4-6). 244

Fig. 26 The g(z., 1V) function for an impermeable wall deduced from
Equation (3.4-5) and the entrainment law of Equation (3.4-4). 244



S~196

NOTATION

Equations of

First Mention

C constant in entrainment law (2.4-18)

H displacement thickess divided by momentum
thickness (2.1-21)

HI another shape factor (2.1-22)

H1.0 value of H, at blow-off from the wall
(ZE = 0) (2.4-4)

H3 kinetic-energy thickness divided by momentum

thickness (2.1-23)

H3 0 value of H3 at blow-off from the wail

(zE 0) (2. 44)

I0o I, 12' 13 various integrals involving the velocity and

density profiles (2.1-16 to 19)

1' the logarithm of the boundary layer thicktess
divided by the length scale of the turbulence

in the near-wall region (3.1-1)

m mass-transfer rate through the wall into the

boundary layer, divided by pGuG (2.1-14)

MG rate of transfer of mass from the mainstream

into the boundary layer, divided by pGuG (2.1-15)

RG, Pw R 2, R3, RX various Reynolds numbers (2.1-24 to 28)

s non-dimensional shear stress (2,1-13)

ss value of s at the wall (=- cf/2 in
conventional notation) (2.1-30)

j average value of s on a velocity basis (2.1-20)

u velocity of fluid along the wall (ft/s) (2.1-1)

v velocity of fluid normal to and away from

4 the wall (ft/s) (2. 1-1)

w width of stream (ft) (2.1-1)
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Equations of
First Mention

x distance along wall in mainstream
direction (ft) (2.1-1)

X a property of the boundary layer which
influences the value of 9 Section 4.21

y distance from wall in direction towards the
fluid

Y(; value ef y at the outer "edge" of the

boundary layer %ft) (2.1-3)

z non-dimensional velocity u/u. (2.1-11)

i dynamic viscosity of fluid..(ib/ft s) (2.2-2)

dimensionless distance from the wall Y/Y, (2.1-12)

p fluid density (Ib/ft3) (2.1-1)

7 shear stress in fluid times constant in
Newtoi's Second Law of Motion (lb/ft s 2) (2.1-2)

Subscripts

0 apperta-ni-:it to conditions in the main stream

S appertainir.- to conditions in the fluid close
to the wall
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THE KINETIC-ENERGY-DEFICIT EQUATION OF

THE TURBULENT BOUNDARY LAYER

D.B. Spalding

1. INTRODUCTION

1.1 The problem considered

Since, the 1920' s, theories of the boundary layer based on the integral momentum-
deficit equation (von Karman, 1921) have been in c~mmon use. In the early 1950' s*
several authors (Rotta, 1950; Truckenbrodt, 1951; Tetervin and Lin, )951; Rubert and
Persh, 1951) proposed the use, in addition, of the integral kinetic-energy-deficit
equation, more commonly t called "the energy equation". In the form advocated by
Truckenbrodt, tae method has become widely known, partly through the textbook of
Schlichting (1960'.

The status of the kinetic-energy equation is the 3ame as that of the momentum
equation: being derived rigorously from the partial differential equations of motion
and continuity, the equation itself is a firm foundation for any theory of the
boundary layer. If prodicticns based on it aee in error, the cause must lie with
auxiliary assumptions and not with the equation.

Nevertheless, methods based on the energy equation have not been especially
successful for the turbulent boundary layer; Thompson's (1963,1964) review of most
available methods showed that only that of Head (1960) ýrovided even tolerable
predictions over the whole range of conditions tested. Head's method did not employ
the kinetic-energy equation at all, but was based on the integral mass-conservation
equation, conjoined with an "entrat.nment law". The present author has shown that this
starting point permits the prediction of many features of the properties and heitaviour

of the turbulent boundary layer (Spaldtng, 1964).

All theoris which employ the integral equations mentioned above, in place of the
partial differential equations, necessarily involve assumptions about the shape of the
velocity profile (u -y relation). This requirement presents little difficulty in
practice, becai"e, for turbulent flow, the velocity profiles can te satisfectoflry

regarded as bzlonging to a single-parameter family. The analytical expressions contain

'The equation %as derived earlier by Wieghardt (X,•5).

fAlthough the Aord "deficit" can he eropi'ed without loss, it Is wnwlse to delete the
qualitic-tt ion "kin4-tic", lest the equation should be confused with the quite separate nee,
Involving vnttbalilet. which is based on the Firs.t Law of Thermnodynamics.
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a certain degree of arbitrariness; but considerable changes in analytical form prove
to cause but snall changes in the resulting predictions. However, it must be
admitted that the method based on the mass-conservation equation contains more
arbitrariness than tl.e others: for it alone necessitates the prescription of a definite
outer limit, to the boundary layer, which cannot be detected by measurements.

Two questions therefore arise:- (i) Viby, nevertheless, have methods based on the
kinetic-energy equation proved less successful than those based on the mass-conservation
equation? And: (ii) 1-i it possible to devise a new method which combines the
advantages of both but lacks the disadvantages? It is these questions which will be
discussed in the present paper. Provisional answers will be suggested, but final ones
must await the execution of more research, some of which is suggested in the paper.

1.2 Outline of the present paper

Section 2 of this paper presents the mathematicil basis of the argument. The
derivation of the integral equations in Section 2. 1 is conveat.•onal and can probably
be skipped by most readers. Section 2.4 contains the-most important theoretical
results; these are Equation (2.4-3) which connects the shear-stress integral with the
entrainment function, and Equation (2.4-4) which provides a non-arbitrary definition
of the outer edge of the boundary layer.

Section 3 surveys the information, theoretical and experimental, which 6xists
concerning tha shear-stress integral. Although this information proves to be scanty,
it suffices to demonstrate the inadequacies of earlier propos Is for its form and to
suggest a recommendation which has better prospects of success and a wider range of
application. This recommendation is contained in Section 3.4.6.

Section 4 discusses the question of which of the two methods, after necessary
amendment, will be the more convenient to use; the tentative conclusion is in favour
of the method based on the kinetic-energy method. Thereafter some of the outstanding
questions of turbulent-boundary-layer research are brought under review, and some
suggestions are made for means of tackling them.

2. MIATI'EMATICAL DEVELOPMENT

P.1 The integral equations

The partial differential equations governing the steady two-dimensional converging
or diverging flow of a Uuid along a surface are as follows:.

Mass conservation:

(pwu) + -7- (pwv) 0 (2.1-1)
Zx Oy

Momentum:

"au Zu duc 6



where: I Is tttl dlst tee in the m13strean directlen along the nrf~ace

Y is the dist.-.et fr= =d -rma.1 to the s,.rface
w is th-, vidth serattnr in4inzry -strema-plaes" 4hir{t &re normal to theI svrfwe*-

The inw-gral &ass-conze rmtio-, eoa-tior. is obtained froK (2-1-1) by direct
integration in t1 y direction frc• the wall to the (arb~trarily specified) outer
liait of the oxxdary layer. a distmnce y fr--z the wall.. ere u = u. and

,C These ~~~s

.ý;{1:r Vuy 't1 pSyS -PT Q-(21-3)

Here subscripts S d&nots cvnmditiros at the sur-fare (wall) which no be p.rous
(TS not nec.ss3r:ly ectual to zero). Tfe f.'_na! ter- on the right-hand side arises
because wG will erdinarily rary with Y

The integral nzentvtu-drfi.it eqauation is obtained from (2-1-I) and (2.1-2) as
foilovs. The rule for difterentiatior by parts perptts (2.1-2) to be re-iritten thus:

') - U + v.. - =+ - . (21)

But iml-l) implies (since a depends on x alone):

{' (pl) •(p•) d-

S 0 2.1-5)
"dx

Crobtrnatiio of Equations (2.1-4) and (2.1-5). tegether with integration with
respect to y yields:

I d~ { 1 :6 TG =ud PG UG 2 dY (2.1-6)Sw dx o xd

where we have put u equal to zero at the wall and r equal to zero in the main

strpam.

Finally, Equation (2.--3) is multiplied throughi by uG and Equation (2.1-6) is
subtracted fr-ea it with the result:

dr d" I.'
1 dUGG d

, l w: G - u)dy. + 22 J' (p~ u -,.)dy Psvsu + 7- (2.1-7)
Lw Tx N dx

""dw/di thus measures the extent to which the flow diverges. w is independent of y. If the
flow is constrained so that all streamlines are parallel to a single plane, w is a constant

wbhich can be ejiminated from the equations.
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The intcgre• Linetic-cnergy-deficit equotion is obtained by multiplying Equation
(2.1-2) by u and then applyinr the rule for differentiation by parts. There reEults:

{u~~~(~~~3~~) (7-}+{ (u- 7,PA P UG{~-T

(2.1-8)

Integration with re.pect to y now yields, in view of Equation (2.1-, and the fact
that u. equals zero:

1 J 2J 6  2 dx JOdx

(2.1-9)

Finally, this equation Is subtracted from the equation formed by multiplying each
term of (2. 1-3) by u2/2 . There resultc"

1 d IV U dup (pG-p)uy = psVs ++ J.dy

(2.1-10)

Wo nc-w extress "he h:quation in dimensionless forms in accordance with the practice

a of the author' k earlier paper (Spalding, 1964). The following definitions are used:-

Variables: z - u/uG (2.1-11)

""YIY (2.1-12)

s A T/(p2u•) (2..1-12)

m psvs/(PGuG) (2.1-14)

PvGV7 PrUrdYrG/dx
G. m - (2.1-15)

"G p0 u .. . .

Integrals:
10 - zd• (2.1-16)fo'

f I (p/p,)zdý (2.1-17)

12 -- (plp0)z7dý (2.1 18)
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J0 I (plpt;) Z 3dý (2.1-19)

S s d (2.1-20)

Shape factors: H = (1 - I15/(Ii - 12) (2.1-21)

HI a II/(II - IP) (2.1-22)

H3 r (I1 I3)/(I1 - 12) (2.1-23)

Reynolds numbers: RG e PGuGyG/lref (2.1-24)

Rm I1 R0  (2.1-25)

R2  (I - I2)YR. (2.1-26)

R - (IU, I2 SR6 A (2.1-27)

u (l4 Lref) JPGuGdx (2.1-28)

Here /Aret is a reference value of the fluid viscosity, for example, the viscosity in
the stagnation state of the main stream.

Substitution of the above definitions in the three inlt gral equations yiilds:

Mass:
dR2 + Rm d(logw)- - (2.1-29)
dRx dRx

Momentum:
dft. d(logew) d(logeu.)
- 4 R2 (1 + I')R2 -=n + ss (2.1-30)
dRx dRX dRx

Kinetic-energy:

dR3  d(logew) 21(In - Iy)!R d(lotgeU)
-~ ~ ~ ~ R L_.) +2 2.-1

dRx dR1  P1  13)I R

Of course, other forms are possible. For example, we might eliminate all but one
of R.. R 2 and P 3; H could be expressed in terms of II and I and new eqiuations
could bt *erli-e' by co-mbination of +he ubove three.

2.2 The "kinetic-enet gy method"

By the "'kinetic-energy method" we here mean the method of predic-tIng boundary layer
behavivur *hich is based on the siaultancot, sjlu.iot of 'he integral kinetir-energy-
deficit Equation (2.1-31) and of the integral nmonentum-def.cit Equation '2.1-30).
To bring out the specJa! nature of the methid, aLad to facl•itate 1-ter comparison with
the method based on the mass-conservetion equation, we siall re-write tW kinetlc-energy



204

equation in terms of the shape factor 113 . Trom Equations (2.1-31) and (2.1-30) and
the definition of H3, we can derive:

-. 2ý -mH - 1)" 11 4' + 1i -_I- 0 1 Rdlou)

dRx (I3 3 U1 1 2 2 dRx

(2.2-1)

This equation, together with the momentum equation, permits the development of the
boundary layer to b'i predicted, provided that it is possible to relate all the
quantities appearing on the right-hand side to the two dependent variables of the
differential equations, R2 and H13 - and to the independent variable Rx . There are
various ways' in which these relations can be obtained; thus the assuimption that the
velocity profile belongs to a one-parameter family, together with a related assumption
about the density, may link H. I0, Il and 12 to H3 ; sS may be connected with
Rf2 and H by way of the Ludwieg-Tillmann drag lar (Ludwieg and Tillmann, 1949); and
m and d(logeur)/dRx may be specified in terms of Rx. Only 9 requires special
treatment, slime examples of which will be discussed in Section 3; for the time being
we shall merely suppose that i can also be expressed as a function of Rf2' H3  and
of other locally determined properties.

Before proceeding further, it will be useful to discuss various implications of
Equation (2.2-1), namely:-

(i) It is possible to contrive experimental conditions such that the shape of the
velocity profile varies but slowly. Then the left-hand side of Equation (2.2-1) can
be placed equal to zero, and the equation ceases to be a differential equation at all.
Boundary layers of this kind have been studied by Clauser (1954), among others; they
are often called "equilibrium boundary layers".

(iH) The quantity H 3 - which appears in the coefficients of m and of s , is
plotted in Figure 1 versus the more familiar shape factor H boundary layers
possessinf the velocity profile of the author's earlier paper (Spalding, 1964),
i.e., one comprising a logarithmic "wall" component and a sinusoidal "wake" component
(see Eqn.(3.3-1) overleaf). The parameter V' , lies between 7 and 12 for common
values of the Reynolds nusber. The curves are valid for the uniform-density boundary
layers on which the majority of experiments have been carried out. For such bouadary
layers, the quantitlies I0 and I are equal; the coefficient of ?2 d(logeuG)/dRx
is therefore equal to (H - 1)H3 . This quantity is also plotted in Figure 1 for
the family of velocity profiles just mentioned.

(iii) For an equilibrium boundary layei on an impermeable (m = 0) wail in the
absence of pressure gradient, Equation (2.1,1) implies:

5 = (H3 /2)ss . (2.2-2)

Since for such boundary layers H is arnund 1.3 and so (Fig. 1) H1 is aroud 1.8,
is slightly less than ss ; in other words the average shear stress in the boundary



(° 205(
layer is slightl:' less than the shear stress at the wall. This result is in accordance
with experJmeita• information, for example that of Klebanoff (1954) which is illustrated
in Figure 2. It should be noted that it is the average of s with respect to velocity
that is in question (see Eqn. (2.1-20)), not that with respect to distance.

(iv) A turbulent boundary layer may be "blown away" from a wall, in the absence of
a pressure gradient, if the wall is porous and m is large enough. The experiments
of Hacker (1958) suggest that m must lie between 0.02 and 0.04 for this to occur;
this finding accoe-ds with the fact that the velocity of entrainment into a free
turbulent mixing layer from a fluid at rest is about 0.03 times the velocity of the
entraining fluid (Reichardt, 1942; Liepmnann and Laufer, 1947). Since, under this
condition, all terms in Equation (2.2-1) are zero except those containing 1 and imi
and sirze also 113 must be about 1.5 (for a b~ausoidal velocity profile, we deduce
that i must be about 0. 0075 for the "blown away" boundary layer).

(v) A sirdlar condition of incipient separation of the boundary layer from the wall
can, in principle at least, be caused by an adverse pressure gradient on an impermeable
wall. The corresponding value of the quantity R-d(logeUa)/dR% is therefore
(with 9 = 0.0075 , and with H = 4 and H13 = 1.5 for the sinusoidal profile) about
-0.0033. This is not necessarily the greatest adverse pressure gradient which the
boundiary layer can sustain, but is almost certainly is if the order of magnitude of
that which will precipitate separation.

(vi) These cinsiderations are, of course, not sufficient for the complete
determination cf the i function. However, we have seen two conditions which the
function must satisfy (paragraphs (.ii) and (iv)); and the experimental study of
equilibrium boundary layers with adverse pressure gradients and/or blowing through the
wall would clearly permit values of 9 to be deduced.

2.3 The "mass-conservation method"

We shall now present the method of Head (1960), as developed by the present writer,
in a similar manner. The two equations which are used in this method are (2.1-29) and
(2.1-30). Leaving the latter as it is, we shall re-write the former so as to make HI
the dependent variable. From Equations (2.1-30), (2.1-29) and the definition of Hi
we derive:

R, in m(H -) - H s + (1 + H)H R2  . (2.3-1)d % Gd S1 d R x

This •quation, waich is the counterpart to Equation (2.2-1) of the kinetic-energy
method, iorms with the mocntum equation an adequate foundation for the prediction of
boundary layer devulopment., provided that the quantities appearing on the right-hand
side can be expressed in terms of RV, It and Rx . Here, once a reasonable family
of velocity ipriles has been selected, the sole uncertainty pertains to the quantity -

mG . the entrainment function; Head (1960) determined this empirically as a function
of III ; the present author (Spalding, 1964) expressed - in terms of a different
property of the veloclty profile, zE . which will be discussed below (Sections 2.4,
3.1 and 3.3), avd used knowledge of free turbulent flows for its determination.
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Equation (2.3-1) is similar in form to Equation (2.2-1), thus:

(i) For equilibrium boundary layers (dii 1 /dRx = 0), the equation ceases to be a
differential one.

(ii) The quantities H, and (I + H)lSI , appearing in the equation, arc plotted
versus It in Figure 3, V' again being the parameter, and the velocity-profile
assumption being that of the author's earlier paper (Eqn.3.3-1) below. The curves
are valid for uniform-density flows.

(iMi) For equilibrium boundary layers on an impermeable wall in the absence of a
pressure gradient, Equation (2.3-1) implies:

-mo = Hiss. (2.3-2)

Evidently, sizice s. is of the order of 0.001 for such flows while HI is of the
order of 10, the dimensionless entrainment rate - m. -will be about 6.01.

(iv) When the boundary layer is "blown away" by mass transfer through a P.krous
wall, in the absence of pressure gradient, we have (since both ss and d(logeuo)/dRx
are zero):

-m 0 = (H] - l)m . (2.3-3)

If the value of 0.03 is accepted as the corresponding mass-transfer rate, and H, is
taken as 4 under this condition (see Fig.3), we deduce that - m0  is equal to 0.09.
This is probably the maximum rate of entrainment into a boundary oaye, which does not
exhibit reverse flow or a velocity maximum. It should be noted, however, that both
Hi and - m. depend on the arbitrary choice of the outer limit of the boundary layer;
in deriving the values of Figure 3, this limit was taken as the point where the tangent
of the sinusoidal velocity profile is horizontal.

(v) If we consider incipient separation of an equilibrium boundary layer from an
impermeable wall with a pressure gradient, and suppose - mG to have the value of
0.09, as Just calculated, we deduce that R2d(logeUG)/dRx must have the value of
- 0.0045. This is of the same order as the value obtained by consideration of the
kinetic-energy equation; the difference in value, which can be regarded as minor for
present purposes, presumably results from the arbitrary choice of outer limit, referred
to in the immediately preceding paragraph.

(vi) We have now learned that - mo is likely to vary between 0.01 for equilibrium
boundary layers on a flat plate and about 0.09 for a separating boundary laver.
Complete information about the entrainment function must be obtained, however, in other
ways, for example from experiment.

2.4 Relation between the dissipation integrHI aud the entrainment rate

Vie quantity 9 in the kinetic-energy method is similar in nature to tne quantity
- In the mass-conservation method: both must, at the pre-nt "me be determined
empirically. However, if one of the quantities is knovn, the other cn;. be deduced,
as fellows:
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Equatior (2.2-1) and (?.3-1) must be valid simultaneously. By division, therefore,

:e deduce:

m2 -m( - I + (I1 - I) d(logec)
{HlS(II ~ I jj32 dR1

- m3 -m(Hz 1) -HissS + 0 + H)HiR2 .~oeu

dlH dRx

(2.4-1)

Here dH 3/dH1  is a quantity which can be evaluated by reference to the prescribed
family of velocity profiles.

Let us now assume that the quantities 9 , - ma and s. depend on only the
velocity profile, the local mass-transfer rate through the wall m , and the Reynolds
number R2 ; i.e. we suppose that the pressure gradient has no direct influence on ar.y
of these quantities. It follows that the coefficient of d(logeU0 )/dR. in Equation
(2.4-1) must be zero, i.e., that:

(I - I1) dH1

Let us now restrict considerat'on to the case of uniform density, so that 1o and
1, are equal. Then substitution of (2.4-2) into (2.4-I) yields*:

2 ___ f (Hi - I) (H3 - 1)) 2(- mG) + m s -0.
(H - 1)H 3 H(H + 1)[ (n + 1)H- (H - 1)H3j (H + 1)(H - 1)

(2.4-3',

Equation (2.4-3) permits the dissipation integral 9 to be calculated if the velocity-
profile family and the entrainment law are known; alternatively the entrainment rate
can be calculated if i and the velocity profile are known.

It should be remarked that Equation (2.4-2) is a conditions which the velocity-
profile family musr satisfy if 1. m0 , etc., are to be independent of prEssure gradient.
This equation permits the removal of the arbitrariness concerning the definition of
entraLinment. Instead of defining H, by way of Equation (2.1-22), which contains
the integral I having an arbitrary uppr limit, we cen define H, via Eqtation
(2.4-2), which may be re-written:

"Equation (2.4-3) way be derived in an alternative manner, viz. by considering equilibrium
boundary layers for which the left-hand sides of Equationi (2.2-1) and (2.3-I) vannish. and
then elininatirg the pressure-gradient term. The use of the equation as generally valid
follows again from the assumption that all the quantities in the equation depend on the
velocity profile, m end R1 alone.

4 -
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Hi H1, oexp , ( 12)] dH3 (2.4-4)

d 3. 0 (

The following points should be noted about this result:

(a) The quantity Hi o is the value of Hi for some arbitrary condition, for
example that of incipient boundary layer separation, where H3 equals h3, 0 . For
this case s. equals zero. If we put s. equal to zero in Equation (2.4-3) and then
postulate that 9 and (- m.) have the same values, regardless of whether the separation
is caused by blowing or by a pressure gradient, we deduce that the coefficient of m
in this equation must be zero. Hence:

H1, = H o(Ho - 1) (2.4-5)1 + Ho - 2H 3,0o

where Ho is, of course, the value of H at separation.

(b) Although, if Equations (2.4-4) and (2.4-5) are used, the definition (2.1-2,
must be abandoned, there is no objection to other uses of the quantity Ii . For
example, the quantities 10 - I, and Ii - 12 1 since their integrands vanish at the
outer limit of the boundary layer, are not affected by the arbitrary specificatinn of
the position of this limit.

(c) If a one-parameter family of profiles is used, for example the power-law family,
there is no doubt about the significance of the quadrature of Equation (2.4-4). If,
however, as in the author's earlier work, a two-parameter family is used, one of them
must be kept constant in the integration; this should be the one which varies the more
slowly. If ZE and V' are the quantities in question (see Figs.1 and 3, and
Sections 3.1 and 3.3 below), 1V should be regarded as a constant in the integration.

In order to male the above conclusions more concrete, a simple example will now be
considered, narkely that for which the fluid density is uniform and the velocity profile
is the linear one shown in Figure 4 and represented by:

0: z

0 : z = + (I zE) (2.4-6)

• >1: z 1

It is easy to show that, for this case:

10 1,I ( = -10 4?+) (2.4-7)

Z2 (+? Z +7- (2. 4-8)
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3 - (i Z' + (2.4-9)

and so: H 3/(1 = 2zE) (2.4-10)

H3 1.6(1 + zE)2/(1 + 2 zE). (2.4-11)

These equations have been derived from Equations (2.1-16, 17, 18, 19, 21) and
(2.1-23). No use has, however, so far been made of Equation (2.1-22).

At the point of incipient separation, characterised by zE = 0 , we easily deduce
that H equals 3 and H13 equals 1.5. Equation (2.4-5) then yields the value 3 for
H1.0 . Substitution in Equation (2.4-4) leads, after streightforward algebra, to:

Hi - 3( + Zp) (2.4-12)

(1 - z%)(I + 2z%)

By coincidence, this expression is the same as would have been obtained by the use
of the equation which we have abandoned, namely (2.1-22). Howeve-', this would not
generally be the case; it is not so, for example, for the profile:
Z = zz + 0.5(1 - z,)(1 - cos7T,). Nor is it true for the profiles according to
Equation (3.3-1) below, the corresponding shape factors of which have been plottnd in
Figures 1 and 2. and which is used extensively later in this paper.

Pigure 5 displays the values of H, H13 and H, graphically for the linear profile.

JAt us now return to the consideration of the relation between i and -m,

inserting into Equation (2.4-3) the expression valid for the linear velocity profile.
We obtain:

(1 + zE)(l + (3 + 8z E + 24) m+ 31 + 2s4 ( 2 +zE) 4(l + 2%)(2 - zE) 4(2 + zE)

(2.4-13)

The coefficients of - mG, m and sS , appearing in this equation, are plotted
versus ZN in Figure 6. Since the quantity vE is less familiar and more "artificial"
than the quantity H , we also plot the contents of Figures 5 and 6 versus H in
Figures 7 and 8.

A fee remarke about Equation (2.4-13) may ba helpful at the present stage.
nese are:

(a) 1hen zg tends to unity the entrainment term vanishes; there reswlts:

z-r 1 : i -m/2 as. (2.4-14)

This result is easily w:dcrstood if we recollect that, if the Couette-flow assumptions
were made. • ocal dimensionless sne:ir ;tress in the boundnry layer, s . would be
given by



210

s = ss + mz. (2.4-15)

Figure 9 iliustrntes this. The z-based average of s is clearly m/2 + s.

(b) fhen z. tends to zero, the mass-transfer term vanishes. Under these conditions
(incipient soaration) ss is also zero. Hence:

Z -, 0 mG/8 (2.4-16)

There is. therefore, a close numerical connection between the two empirical functions
which appear respectively in the kinetic-energy and the mass-conservation equations.

(c) Au approximate form of Equution (2.4-13), which fits the extreme values just
mentioned and doý's not give large errors even for intermediate values of zE is:

: _- w(l -- zE)/8 + zm/2 + •y . (2.4-17)

(d) Experience with many free turbulent flows, together with the more detailed

studies of the author's eariier paper (Spalding, 1964), suggest that the entrainment
law has some such form -s, for zE < 1 :

-mG ý C(1 - zE) (2.4-18)

where C is a constant equal to, say, 0.08. If this is the case, an appro,'imate
equation for the dissipation integral 9 would be:

00zE 1: 0.01(1 - zE)3 + zm/2 + s. (2.4-19)

The first term on the right-hand side can be interpreted as being associated with the
free-turbulence portion of the velocity profile, i.e., the so-called "wake" component;
the second and third terms can be regarded as arising by reason of processes occurring
very close to the wall.

(e) Of course, ZE may exceed unity, as in the case of the "wall-jet". and in
flows associated with film-cooling devices and blown flaps. Let us consider the extreme
case In which 2ý tends to infinity, i.e. that in which the main stream has a very
much lower velocity than the fluid in the boundary layer. Equation (2.4-13) now
yields:

-D o : s/z• -. (- mG/z)/4 + (m/zE)/ 4 + 3(ss/z5 ) (2.4-20)

Experimental data on entrainment into sý.ch boendary layers sugge:.. (Spalding, ! 9 611
that (- m ZE) is approximately equal to 3,03; s,/z under such conditions is around
0.001, when in is zero and less when m is positive. We might therefore - •ect

3 to have the value of abtut 0.0075,

2.5 Closure

In the present scction it has been shown that there are close conner'.ions between
the dissipation integral of the kinetic-ener&Y method and the entrainn;e t function of
the mass-conservation method. We have alao seen how to eliminate the t"11itrariness
which has beset the latter method in respect of the outer limit of the boundary layer.
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The Inst two equationIs in the section, developed by consideration of a linear
veloczty prc'file (Fig. 4) and simpi. fonrs of entrainment law, have already provided
suggestion.s for the vay in which C dissipation integral should depend on the wall
shear stress, the rmss-transfer rate through the wall, and the magnitude of the "wake"
component of the velocity profile. The importance of the 5 - function i-, such as
to demwad n more comprehensive treatment. This is provided in Section 3, at the end
of which we return to the derivation of the 5 - function from entrainment data.

3. SUR%'IV or IOi,'OR Rl'ON ABOUT TIlE DISSIPATION INTEGRAL

3.1 Earlier theoretical proposals for boundary layers

(a) Hotta (1950, 1952, 1961) was %mong the first to suggest how i might be
related to the velocity profile. He supposed the velocity profile, in the absence of
mass transfer, to have the form:

2 = z7{(l + l/l')•} + 1 -z). (3.1-i)

This profile is a more general version of that of Eauation (2.4-6) andIFigure 4, to
which it reduces for If equal to infinity. I' is equal to 0.4zEs_1 and, for a
smooth wall, to loge(7.7y,1,•s3/v). The proposal was made for flo'ws of uniform
density.

Rotta's expression for W&.3:

3
s = s.11 + 0.30(1 - Zl)) - 5.55s' + 0.0736s2(l - zE)2 (3.1-2)

The wall shear-stress factor sS , it is implied above, is equal to 0"16zi/(l') 2

and 1' can be related to the momentum-thickiiess Reynolds number R2 by:

I' = logO (3.1-3)

+zE V I. ,- .

Here the dn,:ri4nator 1 the square bracket Is tV'P expression for I - 12 which
corresponds to Equatio, t3. 1-1).

I;e shall di,:cuss the correctness of Hotta's proposal for 9 later. Here it is
merely opprojriate to rite its inpliicetions that:-

(0) A• 1, ;s equal to Ps(I - 5.554). i.e. slightly less than s.
This is in ql.::litative accnrdance with experimental information (Pig.2).

(ii) At 4. 0 . sinc, the wali shear-stress ss equals zer:. under this cundition,

is 0, ,,, to zv'ro.

(iii! Pis rat be det,'rined by differeitiation, 9 does not vary rapidly with 7I
Ah-P. ;-. is in :hv, ziethb(Kxrhood of unity and I' lies In its us'&al range (7 to 12).
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(b) T-uckenbrodt (1951) examined the implications of Rotta's proposal and decided
that the variations of i with shipe factor vere small enough to be ignored, lie
therefore recommendod the use of the following relation:

0. 00561(/6 (3.1-4)

For tii3 evaluation of s. , the wall shear stress, Truckenhrodt advocated the use of
the Ludwieg-Tillmann relatior, namely:

sS 0. 123 x 1006' R01 (3.1-5)S 2

It may be verified that these recommendations lead to the approximate equality of i
and s. under conditions appropriate to an equilibrium boundary layer on an impermeable
flat plate. Under adverse-pressure-gradient conditions (large Ii), ss goes to zero
while 9 is unaffected.

Most experimental data are valid for R, between 10' and 104. Equation (3.1-4)
therefore implies that i lies between 0.00177 and 0.001209. If we take the values
of H3 and H for the uniform.density separating boundary layer with a sinusoidal
velocity profile (Fig.1), namely 1.5 and 4, the ar~ument of sub-section 2.2 can be
employed to show that Truckenbrodt's a recomrendation implies that separation would
occur for valuej of R 2d(loge U)/dRx betweepi - 0.000786 and - G.0C0537, for an
equilibrP.um boundary layer on an impermeable wall; these values are appreciably lower
than (about one eihth of) those whirh prevail in practice. "Blow-off" as a result
of mass trm.nsfer in the absence of pressure gradient would occur, it may be similarly
argued, at values of m between 0.00709 and 0.00483; these values are appreciably
lower than those in the already-mentioned experiments of Hacker (L)•3).

(c) ibbert and Persh (1951) deduced an expression for 9 by evaluating all the
other terms in Equation (2.2-1) from various experimental measurements. In principle,
of course, this method is a very reliable one; in practice, however, the credibility
of the results is influenced by limitations on the accuracy and range of the
experiments, by assumptions made about velocity profiles, and by other factors.

Rubert and Persh expressed their recommendations in the form of a graph, reproduced
here as Figure 10; since they also recommended the Ludwieg-Tillmnn formula (Eqn. 3. 1-5)
for the wall shear stress, the ordinate of the graph can be recognised to be:

0.123(9/s.) [(311 - 1)2 /{H(3H - 0.9) - 0.1}]

The function of H appearing in the square brackets doe.; not vary greatly within the
practical range; it may be seen from Figure 10, therefore, that, according to Rubert.
and Persh, the main factor causing ý to differ from s is the pressure gradient
R 2d(logeuG)/dRX , It is a consequence of the recommendation that the di•,,ipvtioli
integral is ze-o whenever the shear stress at the wall is zero.

Since the pressure gradient is held to influn:.-o the o ,
Integral, Rubert and Persh clearly do not reiz:rd ,ho si, .S. ,:e .s
being fixed when the velocity disiribution is fl ox. ,t, J ire

presumnbly dissent from the hypothesis which leui (o IVu '' .
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A propc-sal of T.ni (1956) has similar Implications to these of RUbert and Persh;
it will therefore not be discussed scearately.

(d) Other related recc.n.i.•erations. Although lludinoto (1951) did riot explicitly

calculate the eissipation integral, the shea, -stress distribution which he recommended

is worthy of citation here. This was:

S= ZNf 1 (ý) + (1 - zE)f 2(•)l 2  (3.1-6)

vhere f, and f 2 are functions of the dimensionless wall distance •(y/yG), and

7,,. reprvsints, as in Equations (2.4-6) and (3.1-1) the relative magnitudes of wall-law
and wakc-lav cocponents of the velocity profile. Obviously, when zE = I (roughly

speaking. the flat-plate case), s is equal to f when 0 (the separating

hundary layer), s is equal to f 2

The lattcr case (z. - 0) deserves particular study. liudimoto's proposals reduce to:

s 0.0734e(I _..j)2 (3.1-7)

and

z = g3/2(2.5- 1.5•) .(31-8)

From thcse two results it is easy to calculate that 9 must be equal to 0.00715.

This, of course, is appreciably greater than Truckenbrodt's values for this *ondition

(between 0.00177 and 0.001209), greater still than Rotta's and Rubert and Persh's
valuer (which were zero), and of the order of magnitude deduced in sub-sc';ions 2.2

and 2.4 for the separating boundary layer.

3.2 Some other theoreiically based expressions for 9

(a) Expressions derived from the theory of free turbulent flowE. Rotta (1950),

"Ross and Pojbertson (1951), Hudimoto (1951), Coles (1956) and Spalding (1954) have all

implicitly or explicitly postulated that the outer part of a boundary layer obeys

similar laws to those governing free-turbulent flows: the plane tixing layer, the

tio-dimensional wake, or the two-dimensional jet. Let us therefore summarise the

informtoion; which exists concerning the dissipation integral for such flows.

Tollmier. (1926) made use of the Prandtl mixing-length hypothesis, and the
assutnpt;oh Lhat the mixing-length was constmt across the width of the layer, to
calculate velocity and shear-stress distributions in the free turbulent mixing layer

formed at the edge of a stream ,hich enters a reservoir of fluid at rest. The variation

of s versus z obtained by Tollmien is plotted in Figure 11 (curle 1); here an

experimentally-based constant has been incorporated (a = 0.09 , in the notation of

Abramovich (1963), who sunmarises available information); and the quantity z is

interpreted :as the ratio of the local velocity u to the free-stream velocity uG

as ior boundary layers. The corresponding value of s is 0.008. The flow pattern
is aki'n to tha, of a separating boundary layer.

Toll!'Iien madc a similar analysis of the two-dimensional jet emerging into a sta.gnant

fluid. His resulting s z relation, (with the empirical constan t .a, 0.11 , quoted
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by Abramovich (1963), is shown as curve 2 in Figure 11. In the definitions of s and
z , the local velocity on the jet axis is substituted for u0 . The corresponding
value of E is 0.0145 . Thus the shear stresses are nearly twice as great as these
appearing in the free mixi;ig layer, when both are normalised with respect te the
greatest dynamic pressure which is present at the section.

Schlichtiiig (1930) used the Prandtl mixing-length theory in a similar manner to
rredict the velocity distribution in the wake, far downstream of a rod held
transversely to a stream of otherwise uniform velocity. Incorporation into this theory
of a necessary constant deduced frcm Schlichting's experimental data, and interpretation
of uG as the maximum velocity difference which is present in the stream, yields the
curve shown as curve 3 in Figure 11; tlio corresponding value of E is 0.044. This is
three times as great as the value appropriate to the two-dimensional jet, and five
times as great as the value appropriate to the plane mixing layer. The reason for
the differences is not known; it maiy be connected 'with the fact that, in contrast to
the two previous cases, the velocity differences which are responsible for the shear
stress are differences imposed on a general stream velocity of much greater magnitude.

(b) The constant-eddy-viscosity hypothesi,. CJlauser (1954), has deduced, from
measurements made on turbulent boundary layers, that the eddy viscosity (a shear stress
divided by product of density and velocity gradibnt) can be taken as equal, in the
outer regions of the layer, to a constant times the product of fluid density,
mainstream velocity and displacement thtckness. Clauser reported a constant of 0.018,
but a later examination of the experimental data by Mellor and Gibson (1965) led to
0.016. Let us accept the latter; then:

* s 0.016 T (1 U I) (3.2-1)

Let us now suppose, for the sake of siiuplicity, that the velocity profile is given
by Equation (2.4-6) and Figure 4; the average dimensionless shear stress in the
infinitely thin region adjacenL to the wall will be taken as (ss + mz%/2); in the
remainder of the region s will be given by Equation (3.2-1). Figure 12 illustrates
the corresponding s -- z relation.

Now I, is given by Equation (2.4-7). It is easy therefore to deduce that:

= (ss + mzE/ 2 )zE + 0.008(1 - zE) 3  (3.2-2)

Obviously, according to this equation, E and ss are equal when zE equals unity,
i.E. when the "wake component" of the boundary layer is absent: when zE equals zero,
on the other hand, as for a separating boundary layer, ý is equal to 0.008.

Equation (3.2-2) is qu•.te remarkably similar to Equation (2.4-19), which was
derived, it may be remembered, from the assumption of a particular entrainment law.

In the special case in chich zE equals zero, Equation (3.2-1) yields:
s - i = 0.008 . This is the case of the free turbulent mixing layer -Irendy referred
to; the corresponding (horizontal) s - z line has been added to Figure 11, as
curve 4. It is Interesting to note that the area beneath it is precisely the same as
that beneath curvt 1, which is Tollmien's version of the shear-tress distribution in
a free mixing layer.
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3.3 Experimental data for ,

(a) The investigation of Schubauer and Klebanoff (1951). The most comprehensive
of the few experimental studies of the shear-stress distribution in turbulent boundary
layers is that of Schubauer and Klebanoff (1951) A,,o made their measurements on a
single flow past a smooth convex wall. The authors reported velocity distributions
at various stations along the wall, aid also distributions of shear-stress measured
by means of hot wires.

The experimental data can be replotted so as to yield plots of s versus z for
various stations. A few such plots are shown in Figure 13; the re-plotting procedure
has eliminated the rather considerable scatter which characterises the original data.
The curves may be compared with that of Figure 2, which was valid for a uniform-
pressure boundary layer; in contrast to these, those of Figure 13 exhibit "humps"
which may be regarded as rounded-off versions of the distribution shown in Figure 12.

It it is assumed that the velocity profiles can be described by particular
algebraic expressions, the constants in these expressions which are appropriate to
aach profile can be deduced from the measured values of, say, the shape factor H and
the momentum-thickness Reynolds number R2. The Schubauer/Klebanoff profiles have
been processed in this way, that value of zE" being obtained for each profile which
accords with the assumption of the author's earlier paper (Spadling, 1964), namely
that:

z zZ{1 + (loge8 )/1'} + +( - zE)(1 - cos7r7) (3.3-1)

where, since the wall is smooth,

1'=log8  .2 8 (3.3-2)
4. ~1 1i - Id)

The values of 9 appropriate to each station have been determined by measurement
of the areas beneath curves such as these of Figure 13. The resulting values have
been smoothed and then plotted, together with the values of the wall shear stress
as , versus 7. in Figure 14. It is evident that, as z decreases (as occurs with
increaring x when the pressure gradient is unfavourable), 9 increases while s.

decreases. At high z7, , it appears likely that s. will exceed 9 , as was found
to be true for Figure 2, the points for which are added to Figure 14 for comparison.
The values of momentum-thickness Reynolds number corresponding to a few of the points
are indicated on the graph; the value of V' was close to 10 throughout.

In order to provide a means of comparison with the 9 functions which have been
mooted above, a broken curve is provided which corresponds to Equation (3.2-2), based,
it will be rz•called on the constant-eddy-viscosity hypothesis, with empirical

additions; the experimental values of s. are employed, and m is naturally put
equal to zero. It will hc seen that Equation (3.2-2) predicts values of i which are
of the right order of magnitude; however, the experimental values of 9 exceed those
predicted by Lquation (3.2-2) over most of the range.

Also sho•,n on Pigure 14, as horizontal chain-dotted lines, are the values of is

which correspond to the recommendation of Truckenbrodt (1951), expre:seJ by
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Equation (3.1-4); momwntix'--thickness Reynolds numbers are 2 , 10" (upper line) and
7.5 x 104 (lower line), which are about the extreme values of the Schubauer/Klebanoff

data. It is quite clear that Equation (3.1-4) agrees with the experimental data only
where zE has a high value; at moderate and low values of zE , such as tend to occur
when the pressure gradient is adverse, Equation (3.1-4) greatly under-estimates the
value of the dissipation integral.

(b) The investigation of Sandborn and Slogar (1955). These authors made measurements
of the velocity and shear-stress profiles on one smooth imrpermeable wall of a two-
dimensional diffuser. Thetr data have been treated in the same way as these of
Schubauer mid Klebanoff. Figure 15 displays the s - z distributions for the four
stations which were investigated; and Figure 16 displays the 9 - zE and s. - zE

curves.

The conclustins to be drpwn from Figures 15 and 16 are similar to those drawn from
Figures 13 and 14; the quantitative differences can in part be attributed to the
lower Reynolds numbers; V' lay between 8 and 9. The s - z curves exhibit "humps"
for the smaller values of . The prediction of Ejiation (3.2-2) gives fairly good
agreement with the data, but tends to underestimate i for zE less than 0.8. The
Truckenbrodt prediction also gives fairly good agreement in the region of the
experiments; there are no data in the low - zE region where discrepancies might be
expected.

The Sandborn - Slogar data in Figure 16 also illustrate the difficulty of estimating
the form of the s(zE, R2) function from experimental data covering only a limited
range, and in the absence of theoretical guidance. By themselves, these data would
give no hint that i will rise to high values as zE tends to zerc; they might be
regarded as demonstrating the validity of Equation (3.1-4). However, the existence
of the Schubauer/Kiebanoff datL, together with the theoretically based Equation (3.2-2),
make it reasonable to suppose that, had Sandborn and Slogar continued their experiments
to lower values of Z., 1 would have begun to rise.

(c) Shape factors and velocity profiles for the equilibrizun boundary layer on a
flat p'ate. Further information concerning the dissipation integrel may be obtained
from knowledge of the velocity profiles which prevail on smooth and rough impermeable
plates in the absence of pressure gradient. As shown in the author's earlier paper,

he data collected by Schultz-Grunow (1940) and Hama (1947) imply that, for such
boundary layers:

I
1 -I 2.342s' . (3.3-3)

This result is valid when the velocity profile is supposed to obey Equation (3.3-1).

Now V' is defined, in general, by:

, E- O.1:;(s + mz•)" (3.3-4)

Since m is equal to zero for an impermeable wall, we may deduce from E(jutions (3.3-3)
and (3.2-4) that. for an equilibrium impermeable-flat-plntc boundary 1layer:

0.94z,/(0 - ZE) . (3.3-5)
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Now it is a natter of mere ilgebra to show that the velocity profile of
Equation (3.3-1), together with thoŽ assumption that the density is uniform and with
the definitions of I, 12 ' and 113 , imples ýhat:

I = 0.5 + z%(0.5 - 1/i1) (3.3-6)

12 = 0.375 + Z0(O. 2 5  0.411/i') + z4{0.375 - 1.589/1' + 2/(11)2) (3.3-7)

and

1s 3 0.3125 + rE(0.1875 - 0.1567/I1) + zE{0.1875 - 2.0804/1' + 4.116/(1')')

+ z•{O. 3125 - 1.3433/1' + 1.8843/(l1 )2_6/(1I)3}

(3.3-8)

Substitution of Equation (3.3-5) into these relations, and neglect of terms embodying
higher powers of (1 - zE) yields, by way of Equat-ion (2.1-23):

Ze '_! 1 : H13 - 2 - 2.0(1 - zE) . (3.3-9)

Now Equation (2. 2-2) is valid for an equilibrium boundary layer on an impcrmeable
wall; combination with Equation (3.3-9) yields:

ZE ý_ 1 : V/ss "- 1 - 1. 45(1 - ze) . (3.3-10)

Finally, with the aid of Equation (3.3-3), we deduce:

a- 0.182(l - zE)2 - C. 264(1 - E)3 . (3.3-11)

Figure 17 displays a plot of 9 according to Equation (3.3-11), together with one
Sof a. according to Equation (3.3-3). Also shown are the previously cited experimental

data of Klebanoff (1954) and of Sandborn and Slogar (1955). The former points lie very
close to their respective curves: this is a confirmation of the validity of the
analysis and of the accuracy of the experimental data. Doly the upstream data points
of the Sandborn/Slogar data coincide with the equilibrium curves; this accords with
our expectations, since only at the entrance to the diffuser, which was preceded by
a uniform-pressure region, are the assumptions underlying Equation (3.3-11) likely
to be valid.

Values of V' are marked along the horizontal axis of Figure 17. If the wall is
smooth, these may be related to the momentum-thickness Reynolds number R2 by means
of Equation (3.3-2); this may be re-written, when Equation (3.3-3) is obeyed, as:

z8 ý- I R2 = 0.477 (le - 2.5853

(V' + 0.94) e ' -.

Kd) ifeasuremeyits of shear stre'sses in wall jets. The families of velocity profiles
represented by Fquations (2.4-6), (3.1-1) and (3.3-1) are !lexible enough to describe
the flows which are found downstream of slots through whi.:h fluid is injected into the

ij
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boundary layer along the surface, or which result when a jet of fluid impinges on and
is deflected by the surface. If there exists a finite main-stream velocity, smaller
in magnitude than that of the fluid emerging from the jet, the appropriate value of
719 is usually greater than unity. If the bulk of the fluid is at rest, z. takes
an infinite value.

As will be recognJsed from the foregoing survey, none of the previous users of the
kinetic-energy method has been concerned with such flows. However, as was argued in
the author's earlier paper (Spalding, 1964) there is some advantage in havi-,g a unified
theory which will apply to flows having velocity maxima, such as those mentioned
above, as well as tn the flows more conventionaly dca.t with. It is therefore
desirable to collect the information which is availabl,.. on the behaviour of the
dissipation integral 3 wh'hn z. exceedi unity.

Three sets of experimental data are available, all for the case in which the main
"stream" is at vest (zE - oD). Mathieu (1961) measured the shear stress by means of a
hot-wire instrument in the flow downstrewnr of the point of impingement of an inclined
two-dimensional jet on a plane smooth wali. Bradshaw..and Gee (1962) used a similar
technique for the flow caused by injection of air through a slot pleced flush with a
plane wail. Schwartz and Cosart (1961) employed a similar flow, but deduced the
shear-stress distribution by application of the integral momentum equation to various
parts of the flow. Each of these authors of course also measured the velocity profile.

Figure 18 contains sketches of velocity and shear-stress profiles representative
of the findings of all three investigations. The shape of the velocity profile
requires little comment. The shear-stress profile exhibits the interesting feature,
not encountered in more conventional boundary-layer flows, of a change of sign; this
occurs near to, but not usually precisely at, the location of the velocity maximum.

Figure 19 shows curves, deduced from the measurements reported in the papers of
Mathieu (1961), Bradshaw and Gee (1962) and Schwartz and Cosert (1961), of T/Pupx)
"versus U/umax, Umax being defined as the greatest velocity which is present at
the section of measurement. All three curves are qualitatively similar to each other;
they differ from those encountered earlier (e.g. in Figs. 12 and 15) in exhibiting two
values of shear-stress for every velocity, a feature that is.easily explained by
reference to Figure 18.

Now the dissipation integral appearing in the integral kinetic-energy-dificit

Equation (2.1-10) is T6 r('Cu/c?3y)dy . This quantity is proportional no longer to the

area beneath the curve representing a plot of 7r versus u(s versus z in the
dimensionless form used above) but to th'. area enclose.4 by this curve. The areas are,
for the three curves of Figure 19; 0.0128pU3  for Mathiu, 0.015517u 3  formax Max
Bradshaw and Gee. and 0.01344u:3  for Schwartz and Cosart. We may continue to use
the dimens'ionless dissipation integral i if we presume, as is surely permissible,
that the mainstream velocity u. is finite and thus capable of usc for normalisation,
but si'fficiently small not to modify the flow. Then we deduce that:

G, = 0.0128. 0.0155 or 0,0134 (3.3.13)

Umax.
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according to which investigation is considered.

It remains to relate Z7 to UG/Unlax . This may be done by suitable manipulation
of Equation (3.3-1), which has been shown (Spalding, 1964) to describe the velocity
profiles of wall jets fairly well; for the Reynolds-number range in which the above-
mentioned experiments lie, it will be sufficiently accurate simply to extract the
result:

1' - 9.94 : U z = 0.7544. (3.3-14)
UG

The result of our study of the three experimental investigations is thus:

g/3= 0.00563 for Mathieu

0.00682 for Bradshaw and Gee (3.3-15)

0. 0059 for Schwartz and CosartJ

3.4 A preliminary recommendttion about the dissipation integral

3.4.1 A resum of informaeion about the i-function

Let us now review the main facts which have been established concerning the

s-function. These are:

(i) If it is supposed, as was done explicitly in Section 2.4 and implicitly since
then, that the shear-stress distribution depends only on the velocity distribution,
and if further it is assumed that the velocity d's'ribuAon is described by some such
expression as Rotta's (Eqn. (3.1-.)), or Spaldlnf,'., (Eqn. (3.3-1)), ,e might suppose
that F is a function of two arguments, namely z% and 1' . Further thought,
however, reveals that the dimensionless mass-transfer rate m may appear as an
additional parameter; for, though the description of the velocity profile in terms
of - and I may be sufficiently accurate for the evaluation of integrals such as
Il. 12 , etc., the presence of mass transfer is likely to influence the relation
between shear-stress and velocity in the thin region close to the wall. Figures 9
and 12 may be held to make this suggestion plausible, but the author's earlier
paper (Spalding, 1964) should be consulted for more rigorous justification. We
therefore conclude that our task is to establish a three-argument function;

9 = 9(zE, I , m) .(3.4-1)

(ii) wen zE equals zero, as is the case for a boundary layer separating under
the influence of pressure gradient. or blowing, we expect that 9 will have the value
which obtains in a free turbulent mixing layer, namely 0.008 approximately. The
grounds of this expectation lie in Section 3.2(a) and 3.2(b).

(iii) For an impermeable (m = 0) flat plate having an equilibrium boundary layer,
for which V' obeys Fquation (3.3-5), i Is given by Equation (3.3-1I). The
experiments on which this equation is based are valid for z. - values betwe'.a say

0.85 mud 0. 95.
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(iv) For a wall-jet (z o -. o) on an impermeable wall, with 1' in the neighbourhood
of 10, i is approximately equal to 0.006z• , as shown by Equation (3.3-15) which
sums up the measurements of Mathieu, of Bradshaw and Gee, and of Schwarz and Cosart.

(v) The data of Klebanoff (1954), Sch'ibauer and Kiebanoff (1951), and 8-uidborn and
Slogar (1955), provide a few measurements of 9 for zF values between 0 and I and
I' in the neighbourhood of 10 with m again equal to zero. The facts were xiresented
in Sections 3.3(ai ann 3.3(b).

(vi) If the Reynolds number were so high that the stress at the wall tended to
hero (1' - co), there is some reason to expect that I would te equal to about
0.008(1 - zV)3  when zE I less than unity, and 0.0 08 (z•E - 1)3 when ZE is
greater than unity. This expectation rests primarily on theoretical ideas about the
free turbulent mixing layer between two streams both of wnich are in motion, as
summarised for example by Abramovich (1963).

3.4.2 The probable qualitative form of the " function for m = 0

The data summarised above are but a flimsy foundation for the delineation of a
three-argument function. Nevertheless, they permit us to prepare the sketch of the
!-function which is shown in Figure 20 for the case of an impermeable wall. The broken
curve represents a possible relation for infinite I' ; the others 'wve been
ccnstrained to pass through the same point at zE = 0 , to have sJ7,lar tendencies at
large z. , and to pass through points obeying Equation (3.3-11).

One fact is made very clear by this diagram: that it is not possible to neglect the
influence of either zE or V' on the value of 9 ; both variables exert significant
influences. The reason is no doubt that 9 is influenced both by happenings in the
outer region of the boundary layer, for which zE is a major characteristic, and by
events closer to the wall which are measured by 1' . We therefore cannot expect a
formulation of the 9 function to be satisfactory unless it expresses both these

* •influence-

3.4.3 The unacceptability of previous theoretical proposals

(a) Figure 21 represents the g(Z%, I') function whJ ch is based on Rotta's (1950)
proposal, already given as Equation (3.1-2), with ss replaced by 0. 1G67j/(l') 2  in
accordance with Equation (3.3-4). Evidently this proposal disagrees seriously with
the expectation expressed by Figure 20 at low and moderate values of z • it implies
a zero R at Z% = 0 instead of a large one. Equation (3.3-4) therefore appears to
be unacceptable as a description of the 9-function. even for m = 0

(b) Figure 22 represents the g(?T. V) function corresponding to Truckenbrodt's
(1951) proposal already presented as Equation (3.1-4). The relation between R2• 4E
an I' 13 that which cG& responds to the velocity profile of Equation (3.3-1) on a
• )oth -.rll. We see that s is influenced but little by 71 , an implication which

.s ir .'onflict with Figure 20. It appears necessary to conclude that Equation (3.1-4)
cauiot serve as a reliable description of the 9(- . l') function.

(c) :,e recommendation for i made by Rubert and Persh (1951), expressed above by
* Figure 10. cannot be reduced to a function of 7., .nd V' alone, bccmse of the
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postulated influence of the pressure gradieit. However, this recommendatior can also
be rejected on the grounds that, like Rotta' s, it implies a zero 9 when zE is zero.
This is shown by Figure 23, which represents the Rubert/Persh recommendation for zero
pressure gradient; those for finite pressure gradients are qualitatively similar.

(d) It is not easy to deduce a d.ssipation integral from the proposal of Hludimoto
(1951), given in Equation (3.1-6), because s is not expressible explicitly in terms
of z . We may however, nte that, as pointed out in Section 3.1, this proposal
implies that 9 equals 0.00715 when z. equals 1, which is in fair agreement with the
expectation expressed by Figure 20. It may be concluded therefore that a shear-stress
integral based on Hudimoto's proposal might be acceptable; however, for this to be
useful, it would be necessary to compute the 9-integral numerically and then to devise
approximate analytical formulae. This has not been done.

In summary, it can therefore be said that none of the previous theoretical
proposals for the S-function seems likely to solve our problem. The first three
disagree strongly with experimental evidence and with theoretical expectation at .ow
Z& . while the fourth is only implicit, and difficult to use. None of the proposals
is valid for the case of the porous wall; and none is applicable to values of
greater than unity. Figure 20 is indeed already probably more reliable than the
previous recommendations, even thcugh its curves have been drawn freehand so aR to
correspond to a few known facts.

3.4.4 The constant-eddy-viscosity hypothesis

Although Equation (3.3-2) was based on the ideallsed velocity profile of Figure 4
and on the idealised s '. z relation of Figure 12, it may nevertheless be instructive
to work out the correspond'Ing i(zE, V') function for m = 0 in detail, by replacing
sS by O.16"/(/')2 . The result is shown in Figure 24. Also plotted on this diagram
are the experimental data of Klebanoff (1954) and Schubauer and Klebanoff (1951), for
which 1' had a value of about 10, and of Sandborn and Slogar (1955), for which 1'
was about 8. The curves are continued into the region for which z. exceeds unity,
but with the second term of Equation (3,2-2) written as O.00 8 (Z% - 1) because of
the change of sign of the shear-stress; for the counterpart to Figure 12, for zE in
excess of unity, is the s -,. z curve shown in Figure 25. Thus Figure 24 expresses
the relatioa, for m 0

3 0.16 + in I}+ 0.00811 - I. (3.4-2)

Figure 24 fits fairly well the main facts listed in Section 3.4.1. %hen 7.E equals
zero. i is equal to 0.008; %hen 7., tends to Infinity. 9 becomes proportional to

3 the nroportionality constant being 0.0064, for V' equal to 10, and when, for
the equilibrium flat-plate boundary layer, V' is related to z. by Fquation (3.3-5),
Equation (3.4-2) reduces to:

i = 0.182(1 - zE)2 - 0.173(1 - zE). (3.4-3)

fiiese iwplicatinns are in good rareement with the facts enumerated in Section 3.4 1
a&s (i), (iv) and (iii) respectively. It is true that the coefficient of the second
term or. the iirht of Equation (3.4-3) Is apprciably lower than that of Equation
(3.3-11)" but this t rm is in any case not of great Otportance.
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When the implications of Equation (3.4-2) are compared with the experimental data
plotted on Figure 24 it Is seen that, for the values of V' in question, the equation
predicts va',cs of zE wbhich 4re rather too low in the moderate - ZE range. It is

thereforr; rot possible to say tLat Equation (3.4-2) is entirely satisfactory as a
dissipation-integral expression, but it is certainly an improvement on the earlier
rerommendations. It agre-s well with data for separating boundary layers, for the
equilibrium flat plate an,. for the wall jet; and it expresses the influence of m
(though whether rightly or wrongly we do not yet know).

3.4.5 Deduction of the dissipation integral from an entrainment law

In Section 2 of the present paper, it was shown that there exist parallels and

relationships between the "kinetic-energy method" and the "mass-conservation laethod".
Indeed, in Equation (2.4-3), a connection was provided between the empirical functions
of thb two methods, namely the dissipation Integral R of the first method and the
entrainment function m. of the second method.

Now there is reason to believe that the entrainment function, relating as it does
to events at the outer edge of the boundary layer, 3hould not be influenced by the
values of s. and m , which exert their influence on the part of the boundary layer
close to the wall. It seems quite possible therefore that aG may depend on zE

alone.

In the author's earlier paper (Spalding, 1964), a provisional recommendation was
made for the relation between m. and zE . PFrti:er exnmination of experimental
data, though not yet sufficiently comprehensive, has suggested that the recommendations
ovei-estimated the entrainment rate; it appears that a better, but still provisional,
recoimendation is:

zE -mG = 0.06 - O.O5zE1• .(3.4-4)
"zE 1l I =0 0.03zE - 0.02

This recommend-tion is made for use with the velocity-prcfile family of Equation (3.3-1),
the outer boundary of the layer being defined, when the shape factor H, is calculated,
by the pint where e equals 1. Since, as already mentioned, this definition does

not satisfy Equation (2.4-4), some improvement remains to be made.

Equation (2.4-3) can be re-arranged as:

(H - 1)113 H3  m
S= (-a + m) + (ss + m) - - - . (3.4.5)

2(H + 1)H1 11 + 1 2

We shall zow examine some of the proportics of the 9-function given by this equation
when the shape factors corr.-spond to Equation (3.3-!) and the entrainiient function is
given by Equation (3.4-4). Attention will be restricted to the case in which n is
equal to zero.

M7en z. is zero, Equation (3.4-5) leads to:

, zc = 0: i = 0.00676 (3.4-6)
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regardless of the value of 11 This result may be thought sufficiently close to our
previous estimate for this condition, based on data for the free turbulent, mixing layer,
of about 0.008.

1Ihen z. tends to infinity, Equation (3.4-5) reduces (for m 0) to:

0 1.923 1.88 6 }03123 - -i- + -2 - t
S(1' (l

S1. 923 1.88 6 }

0.3125 - - + (+F )2 i3!_ 0.16

1.589 2 (1 ).375 - - +

(3.4-7)

If l' is given the typical value of 10, and - mG/zE is taken as 0.03 in accordance
with Equation (3.4-4), ./2!3 becomes equal to 0.0059. This value may be regarded as
sufficiently close to the experimental values cited in Equation (3.3-15).

Figure 26 contains values of 9 , calculated in accordance with Equation (3.4-5)
and the other already-stated assumptions* for various values of I' . Also plotted are
the experimental data of Klebanoff (1954), Schubauer and Klebanoff (1951) and Sandborn
and Slogar (1955). The following observations may be made:

(1) The curves have the same general form as those sketched in Figure 20 and as
those calculated from Equation (3.4-2) and plotted in Figure 24.

(.

(ii) The curves pass very close to the points correspv nding to Equation (3.3-11)
which represents experimental data for the equilibrium :;it plate.

(iii) The agreement with the other experimental Gata is rather better than that
displayed on Figure 24. but still not entirely'satisfactdry.

We may conclude that Equation (3.4-5) forms an aceptable basis for the derivation
of the i-function and that, s,,nee the entrainment function employed is still only
provisional, it may ultimately yield reliable va',:es for . . The equation gives
complete information about the effects of zN, P' and m on the dissipation integral,
but no test has so far been provided of the effect of the latter.

* Parts of the curves• for I' = 7 and 1r - 8 on Figure 26 are broken. The broken curves
bridge a region Chere the curves according to Equations (3.4-5) and (3.4-4) suddenly exhibit
lare positive and negative values of the ordinatt. These large values result from the fact
that the shape factors are extremely sensitive to profile shape when zE is slightiy greater
than unity. Since the velocity-profile assumption h-ks been made without special attention to
this region, it is the author's opinion that the broke'n curves are more to be trusted thin
those which precisly obey the equations.
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3.4.6 Provisional reco..menddation

It would oi course be premature to suppose that the problem of thc 9 - function
is now solved. In the author's view little more has been don6 than to find the
direction in which part of the truth probably lies. As a stimulus to further
research, however, it may be helpful to make the following recommendations for .

These are:

(J) Mthen a simple formaula is desired, 9 should be calculated from Equation (3.4-2).
This tends to underestimate s for values of zE around 0.5, and perhaps to

overestimate 9 for zN slightly greater than, unity. However its qualitative

correctness seems assured.

(ii) Afore accurate calculations for 9 cen ba made by way of Equation (3.4-5) and
the associated Equations (3.3-4), (3.3-6), (3.3-'1. (3.3-8) and (3.4-4). Tht latter

equation. i.e. the entrainment law, is no more than provisional; and the values of Hi

which satisfy the conditlin (2.4-4) and the velocity profile k3.3-1) remain to be
worked out. The potential of Eqaation (3.4-5) is therefore probably greater than that
of Equation (3.4-2) although its achievement is only marginally better at. present.

4. DISCUSSION OF RESULTS

4.1 Comparison of the "kinetic-energy" and "mass-conservation" methods

4.1.1 Advantages of the "mass-conservation" method

As mentioned in Section 1.1, of all methods of calculating the rate of growth of
turbulent boundary layers available until now, only that of Head (1960) yields
uniformly tolerable results. The first advantage of the method employing the
entrainment concept is therefore that it gives good predictions of boundary layer

development. As shown by the present writer (Spalding, 1964). the method can be
applied to the thole range of two-dimensional problems, including those involvir.g wall

Jets; and there is every prospect of its being successfully extended to three-dimensional
flows also.

Possibly the reason for the success of the method lies in the fact that the
entrainment function is a fairly simple one, the fc:m of which is easy to guess. Thus,
Head supposed that the dimensionless entrainment rate was a function of H alone,
and determined it by analysis of experimental data. The present writer started

independently from the postulate, derived from knowledge of free turbulent flows, that
-MG was more or less proportional to 11 - zEI , the bbsolute magnitude of the wake
or jet component of the velocity profile. Because the ideas of "entrainment" and of
"mass flow rate of boundary layer fluid" are easy ones to grasp, first guesses about

the entrainment function turned out to be quite good.

4. 1.2 Disadihun tagcs of the "mass-conservation" method

Despite its success, the "mass-conservation" method suffers from three main

disadvantages. The first concerns the location of the liter boundary of the layer,
separating the entrained fluid from that which is deemed to be outside the layer.
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In Head' s paper, and the earlier one of the present writer (Spalding, 1964), this
boundary was arbitrarily fixed; althoubh the present paper provides (in Section 2.4) a
means for the removal of this arbitrariness, the argument supporting it possesses
subtleties which may limit its acceptability.

The second disadvantage is that, whereas it was easy to guess the form of the
entrainment function for uniform-density flow, this is by no means the case for flows.
in which, perhaps becausc of kinetic heating, density variations arise. The reasons
are that there is little experimental informition about the effects of such variations
on free turbulent flows; and that no theoretical clue exists even as to the direction
of the effect of a density variation on entrainment.

The second disadvantage can be removed by the execution of a suitable experimental
programme: the third disadvantage, by contrast is irremediable. This is the
inapplicability of the concept of entrainment to flows within ducts, for example
diffusers, which are sufficiently long for the boundary layers on opposite walls of
the duct to make contact on the duct axis. Here can be no entrainment, by symmetry;
yet the'wake component of the velocity profile may well be large in such a case.

4.1.3 Disadvantages of the "kinetic-energy" method

Is the tnethod employing the dissipation integral any better? Here we must repeat
the remark made in Section 1.1: methods based on the integral k"'etic-energy-dificit
equation have not been especially successful, particularly when the pressure gradient
is adverse. The reason appears to be that the 3 - function, being as much dependent
on events near the wall as on those in the fully turbulent part of tne layer, has a
more complex structure than has the mQ - function; its form is harder to guess; and
the early guesses have been wrong.

Nevertheless, the new light which has been thrown on the dissipation integral by
v: thp present paper may be held to have changed the situation. Tndeed, although it

has Zeen necessary to draw aid from entrainment data, a new 9 - expression has been
found which seems bound to lead to predictions of boundary layer growth which are as
successful as those based on the mass-conservation equation.

4.1.4. Advantages of t;,e "kinetic-energy" method

First we note that this method does not possess any of the flaws which had to be
recorded in Section 4.1.2. The arbitrariness of the outer boundary does not arise
at ali; there exists at least a reasonable hypothesis (described in Section 4.2.2 ),
concerning the way in which density variations will influence the dissipation integral;
and 9 can be expected to be the same function of ZE, 1' and m when the boundary
layers "join up" in a duct as when only one boundary layer is present. The last of
these points is the most important, in the author's view.

The method posesses, however, furthe~r possibilities, scarcely exploited antil now.
For example, the dissipation-integral expression can reasonably be made to ,;pply to
three-dimensional flows by postulating that the eddy viscosity is proportional to the
maximum velocity difference across the shear layer, regardless of direction, and not
solely to the component of that velocity in the direction of the shear stress.

Another extention which requires little ingenuity is that which takes account of



( 226

samall-radius-of-curvature effects, as when an axially symmetrical boundary layer is
formed on a pencil-like surface. Purther, the knowledge which has been gained so far
renders iU possible at least to speculate intelligently about the way in which 9
would be influenced by velocity profiles more complex than those considered so far,
for example, profiles exhibiting reverse flows, or more than one velocity maximum.

41.1.5 A tentative recommendation

The author's present opinion is that it will ultimately be preferable to use the
"k inetic-energy" method rather than the 'mass-conservation" method. Of course, for
some time it may be necessary, when developing the 9 - function, to draw on the
store of knowledge about entrainment, and, in any case, the formal relations which
have heen proved to exist between the two methods reduce the importance of the choice.
However, it seems probably that the greater directness with which the dissipation
integral can be connected with densit--variation, radius-of-curvature and other
effects, and the conceptual difficulty which attaches to the entrainment concept in
some circumstances, will make it easier to work in terms of 9 and H13 rather than
Mt and U, . If this should cowe about, it should not be forgotten that the role of
the entrainment-based theory, thjugh perhaps brief, was a valuable one.

4.2 Some problems for research

In an earlier paper (Spalding, 1964), the present author drew attention to the
questions which arose from the achievement of a unified theory based on the entrainment
principle. One of these questions, incidentally, has been resolved by the present
paper, that of the relation of the "mass-conservation" and "kinetic-energy" equations.
Most of the other questionn remain open, but some can now be conveniently recast in
terms of the shear-stress integral in place of the entrainment function.

4•2.1 The determination of the F function

The recommendations for 9 made in Section 3.4.6 are merely provisioral and require
comprehensive experimental verification and amendment. There are two main methods:
(i) the measurement of shear-stress and velocity profiles in boundary layers and wall
Jets with the aid of hot-wire instruments; and (ii) the measurement of successive
velocity profiles and the deduction therefrom, by way of the integral kinetic-energy-
deficit equation, of the valve of 9 . Since several velocity-profile studies have
been published, the second method can be immediately applied to them; however, as has
been shown by Thompson (1964), uncertainties concerning two-dimensionality beset most
experiments.

An important question which requires an early answer is: Does 9 indeed depend only
on the local velocity distribution, as postulated in the present paper? If the
answer is negative, it should be said, the results of the present paper do not become
valueless: all that is needed is to enlarge the i function so that it becomes:
9(z7.,, !,. M, X) Where X stands for some property of the boundary layers which depends,

say, on the rate of changc of profile shape.

It is .uite likely that th2 quantity R dzY!dRx will prove to be an X , i.e., will
influeutc the value of s This possibility can be investigated by measuring i in
two or wore profiles, having the same ZF V' and m . which are situated in different
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boundary layers; thus, one might be an equilibrium layer of the Clauser (1954) type,
another might be present on an aerofoil surface, and yet another might involve
constancy of pressure along the surface with variation of profile shape resulting
from discontinuities in the degree of roughitess of the surface. The inclusion of
the influence of this or any other X in the computer programme embodying the theory
is a perfectly straightforward matter; all that is needed is a systematic.series of
experiments designed to establish the influence of the X quantitatively.

One crucial and related experiment would be the measurement of i in two separating
(ZE = 0) boundary layers, one on an impermeable wall with an adverse pressure pradient,
the other in a unform stream with mass transfer through the wall. In Sections 2.2
and 2.3 it has been regarded as probably that the 9 values are the same. Is this so?
And if not, what are the magnitude and cause of the difference? The answers to these
questions will have important implications for the future development of the theory.

4.2.2 Extension to situations having non-uniform density

As has been mentioned, it is possible to make reasonable proposals about the way
in which 9 is influenced by the non-uniformity of density which arises in problems
involving, for example: the injection of a light-gas coolant into a boundary layer,
flow at high Mach number or combustion of a fuel jet near a wall. The proposals
would be founded on the assumptions:

(1) That. the velocity profile can still be described by Equation (3.3-1), although
the relatioi, between V' and s. would be modified in accordance with some theory
of compressibility effects in a Couette flow, for example that of Spalding and Chi
(1964).

(ii) That, zE, 1' and m being fixed, the shear stress at any point is
proportional to P definite function of velocity and to the local density. The function
of velocity will be more or less complicated according to the extent of our knowledge;

"* for example, if the simple hypotheses of Section 3.2(b) were adopted, we miht take
it as a constant equal to 0.008(1 - z:)2u2

(iii) That the density at any point in the profile is deducible from the
thermodynamic properties of the fluid together with profile assumptions and
differential equations expressing conservation principles.

Some progress could be made theoretically, simply by working out the implications
of these proposals quantitatively and in detaAl. This is probably worth doing.
However, before long it will certainly be necessary to carry out experiments to check
both the assumptions and the implications. There is much work of this kind to do
because no studies have been made for compressible flows in the detail of, say, that
of Schubaner and Klebanoff (1951) for subsonic flows. Yet there are more quantities
to be measured when the density varies; and most of the measurements are more
difficult to make.

4.2.3 A short list of.further problems

In section 4.1.4 it has already been mentioned that the theory can probably be
extended to three-dimensional flows, to flows in which the distance iron the symmetry
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axis is not large compared with the boundary layer thickness, and to flows with more
complex velocity profiles than have so far been considered. It will be profitable,
in the present author's opinion, to investigate each of these lines.

Another situation which requires study is that in which transverse body forces act
on the botindary layer. There are two main types of force, those associated with
curvature of the body surface in the stream direction, and those concerned with
density variations in a gravitational fiela; thi first occurs, for example, when a jet
is blown over a flap to prevent boundary layer separation; the second occurs
predominately in the earth's atmosphere where the direction and magnitude of the
temperature gradient can vary the shear stresses in the flow by several orders of
magnitude. At present, there is no knowledge of the quantitative relationships
governing these effects; but their importance is such as to make detailed .tudy
desirable.

Finally one wight add the problem of laminarisation, i.e. the disappearance of
turbulence in the downstream region of an initially turbulent boundary layer under
the influence of a favourable pressure gradient. This process, which is of practical

importance in rocket nozzles for example, could be brought within the scope of the
present theory if the i-function were extended so as to possess a term proportional to
the fluid viscosity. If the assumptions of Section 3.2(b) are made, but the extra
effect of viscosity is added, it is not hard to show that Equation (3.2-2) should be
extended, so as to become:

S= (ss + mzE/2)zE + 0,008(1 - z6 ) 3 + 0 (4.2-1)
2HR 2

If an additional modification is made to the ss(zE. P') relationship, which causes it
to reduce to the appropriate form at low Reynolds number, we should possess a theory
which permits calculation of the transition for turbulent to laminar flow; indeed it
might serve for transition from laminar to turbulent flow also.

4.3 Conclusions

The main results of the study here reported appear to be:

(I) Formal relations exist between the entrainment function of the mass-conservation
method and the dissipation integral of the kinetic-energy method.

(ii) Use of these relations has permitted both methods to be improved: the
arbitrariness of the outer boundary of the layer can now be discarded from the
entrainment function; and a dissipation-integral expression has been discovered which
agrees better than previous expressions with experimental data for boundary layers
nearing separation, and which extends into the region, not previously charted, of flows
exhibiting velocity maxima.

(liO) Many research pioblems remain; however, the prospects of a major extension of
the scope of th( theory tnre bright.
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Pig. 1 Relations between shape factors It and H3  for boundary layers having
uniform density and the velocity profile
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The dotted curves correspond to the family of velocity profile: z =
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Fig.3 Relation between shape factors H and H, for boundary layers having
uniform density and the velocity profile

z = :({ + (1ogf)/l'} + ½(l - %)(I - Cos07T)
'The dotted curves correspond to the family of velocity profile: z
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Pig.' The linear volocity profile described by Equation (2.4-6)
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Pig.7 Relation between shape factors for the linear velocity profile. (&P.,Pot
data of Fig. 5)
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Fig.8 Coefficients of -mG. m a'id s in the expression for 9 , Equation (2.4-13).
(Replot of data of Fig.6)
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Pig. 9 Sbear stress distribution in a Couette flow with mass transfer through the wall
(where z = 0) at dimensionless rate m
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Fig.10 Recotrmendation for '9 made by Rubert and Persh (1951)
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Fig. 11 Some theoretically based shear stress distributions in free turbulent flows,
each embodying one empirical constant
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Fig. 12 Shear stress distribution corresponding to the linear velocity profile of
Figure 4 and the Clauser/Mellor/Gibson constant-viscosity hypothesis
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Fig. 13 Some s '- z distributions deduced from the measurements of Schuhauer and
Klebanoff (1951)
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Fig. 14 Smoothed data for 9 and ss deduced from the measurements of Schubauer
and Klebanoff (1954) and some theoretically based curves for comparison

m • 4



239

2-iStation 1\

103 The numbers 1,2,3 and 4

signify the station,

the higher numbers
corresponding to

downstream positions

0 0.5 z 1.0

Pig. 15 The s -. z distributions deduced from the measurements of SandIhorn and
Slogar (1955)
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Fig. 16 Data for 9 and ss deduced from Sandborn and Slogar (1955). With some
theoretically based curves for compnrison
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Pig. 17 Variations of i and ss with Z% for equilibrium boundary layers on

impermeable flat plfktes. The curves represent Equations (3.3-11) and

(3.3-3). Chain-dotted lin3s represent data of Sandborn and

Slogar (1955), from-Figure 16
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Fig.18 Sketch of velocity and shear stress profiles across a wall jet
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Fig.20 A sketch of the probable shape of the !(zF,. I') function for m = 0
Compare Figures 14,16 and 17, which contain experimental data
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Fig. 21 The N(z., 1') function for an impermeable wall which corresponds to the

proposal of Rotta (1950)
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Fig. 22 The g(zE,') function for an impermeable wall which corresponds to the
proposal of Truckenbrodt (1951)
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Fig. 23 The 9(zE, 1') function for an impermeable wMll %hich corresponds to the
proposal of Rubert and Persh '(1951); the pressure gradient is

taken as zern

20 t=7 8 10

"12

S* 15

310

10
Schubauer &
Kiebanoff

Sand born &5{ Slogar\ / / /

0 1 2

Fig. 24 The V, V') function fqr an impermeable wall corresponding to the

ici ant-eddy-viscosit;" hypothesis, expressed by Equation (3.4-2)
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SUMMARY

In addition to the Ktrmdn momentum-integral equation, two further
equations are required for the purposes of calculating the development
of the incompressible turbulent boundiary layer - a "skin-friction law"
and an "auxiliary equation". The problem of deriving a satisfactory
form of auxiliary equation is a major one. Indeed. despite the effort
devoted to this equation for many years. few derived forms of auxiliary
equation can be relied upon to account for the boundary-layer development
In more than a restricted number of cases.

As a contribution to the elucidation of the problem an examination is
made of several sets of experimental data covering different typos of
pressure distribution. Among the data certain basic types of boundary-
layer behaviour can be distinguished. The equilibrium boundary-layer may
be regarded as a datum condition and the other types of behaviour are
discussed in the context of tendencies towards, or departures from,
equilibrium.

Simple forms of auxiliary equation are postulated and an examination
is made of the extent to which they can be reconciled, even qualitatively.
with the observed types of boundary-layer behaviour. It is shown that
several forms of the equation must be rejected as inadequate. The most
economical form which appears to be capable of dercribing all the vwrious
trends of the data is a second-order differential equation involving the
shape factor. A limited nimbor of comparisons with experiment indicate
that values can be ascribed to tne free constants in the equation which
lead to quantitatively acceptable predictionS.
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TV1RU1ULENT- BOUNDARY- LAYER BEIIAVI OUR
AND TIlE AUXILIARY EQUATION

John F. Nash

I. INTRODUCTION

The purpose of this paper is to discuss the two-dimensional, incompressible

turbulent boundary-layer developing on a smooth, plane, unpermeable wall in an adverse

pressure gradient.

Basic to most methods of treating the incompressible turbulent boundary-layer is

the Kdrmdn momentum-integral equat!on which expresses the rate of change of momentum-

defect in terms of the pressure gradient and the wall shear stress:-

d dp

Tx (Pu'0) dx r

If the pressure p (or the velocity, u. , at the edge of the boundary-laver) is

given as a function of x , Equation (1) contains three unknowns: the momentum

thickness, 0 , the displacement thickness, 8" . and the local wall shear stress,

T w " Thus. for the purposes of calculating the development of the boundary layer.
two further equations involving these quantities are required. Using the conventional

nomenclature, these are referred to as the "skin-friction law", and the "auxiliary
equation" or "shape-factor equation".

As usually formulated, skin-friction laws relate the local wall shear stress to a

Reynolds number based on a length scale typical of the boundary-layer thickness and a
parameter (such as II , = w'/ hich describes the shape of the velocity profile.
A brief review of some skin-friction laws in current use was made in Reference 1.

The auxiliary equation essentially describes the effect of pressure gradients on
the shape of the mean velocity profile. Attempts have been made for more than thirty
years to derive a satisfactory form of auxiliary equation but recent reviews of this
problem2 , 3 have shoe thnt few forms of this equation can be relied upon to account
for the boundary-layer development faithfully in more than a limited number of cases.

In the next Section a brief discussion will be made of the principal forms of

auxiliary equation to be found in the literature. The point will be made that most
of these were originr.lly based on data relating to only one typo of boundary-layer
deve)oixnent. As a contribution to the general work in this field an examination is
made in Section 3 of the various types of boundary-layer behaviour which can be
distinr,uished from an analysis of existing experimental data. Finally. in Section 4
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simple forns of auxiliary equation will be discussed in relation to these types of
boaudary-layer bchavicur, and an attempt will be n~dc to find an equetlon which wili
account for them at le.at qualitatively.

2. REVIE OF EXISTING AUXILIARY EQUATIONS

2.1 Mlort Iml'ished forts of the auxiliary equation (e.g. see Ref.2) are formulated
on the ass,-zption that the mean velocity profiles in the turbulent boundary layer

reduce to a tu--paraaeter fazily. i.e. that they can be described adequately by a
thickness parameter and a single "shape factor". Thus the at'xiliaiy equation takes

the fort of an expression relating the shape factor und. usualiy. its derivatives to
the Reynolds number and the pressure gradient.

Basically. there are two types of shape factor in general use. One type is a

parameter based simply ic the geonctry of the velocity profile: the ether type
involves the wail shear stress ii addition. lbst of the auxiliary equations fourd in
the literatare are formulated in terms of the geometric tyre of shape fNctor. In scae

cases this is the ratio. H . oH displacec~ent to moment=i thickness; ic others the

shape factor is based on svch ratios as

or

There is no essential differ(nce between ay of ttese :eometric shwj factors and. in

the light f ( the assuption that t.e velocity profiles foau a tvo-j:arz*eter family.
they can all be related To one another (at least -.n principle). Accoriingly. emir

remarks will refer explicitly to auxili--ry equations bused ca H but tey can b2
taken to apply to equatiecas involeing otaer geomeeric shape factors &:so.

This interchaangeabilit. of sbze factors dles not exteud to these *_icd involve

the w3all shear stress. Aaag these are Clauser' s pi-raeter. G . 4uicb is based 'n
the velocity-lefect profile,. and Coei• •ake-comronent cefficient1 zhich is also
used by Spalding•. Reference to shape factors of t-is category ill be lef to

enc•her Secticn.

2.2 Despite tht- coifusing variety of auxiliary equations in c-rrect use. only two

basic tynes cia be distigui-s.ed. The f'rsc is represented by the method of Buri7 and
is a airect enaloeue of the Pelh-asen n-.thod fc.z the lasinar bouxdary-iy:-er and Lhe
wmergus later zetbcn& whict, owv their inspiration tz the la:ha:.sen appro-e.h

(e.g. see Ref.8). Bvri postulated th.t the shape factor. H . was a iuncwie. of the
Reynolds numbe: tnd the ;ressure graazent:-

H f f..2 (2)
\ e .

This fore of t- azxiliary equation has niever conanded much attent-cn. largely as .

result of Frandtl' s criticis=' that it i.-.red the effects of the upstrea histoz- f
the boundary layer, In the light of rarc recent knowlsdge it wouid be fairer t ;ay
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that it Is valid so long ns tM•e layei is In local equilibrium at each streamwise
statio o. Sre sill be said about this point later in the papel.

2.3 The sece'nd form of the auxiliary equation is reprecented by some thirteen methods

1lsted by R3tta' to %hich must be added recent methods such as Head' s 1 ". This fo.

can be uritten

0- = f -1iRes.-- . (3)
di ue dx/

By virtue of its being a differential equation of the first order in H . Equation (3)
requires the specification of &n initial value of H with which to start the
calculation. Thus in broad terms Equation (3) contains a mechanism by which the

upstrear history can be taken into acccu.,t in so far as It affects the velocity
profile. Consezuertly. as far as this auxiliary equation is concerned, two becndary
layers 5ith the same initial velocity vrolj1e subsequently subjected to the same

pressure distribution will develop alike whet-her or not their previous history was
the same. No provision is made for the -:ssibility that their initial -zear-stress
distributions could be dissimilar. The dlstribZtion of shear stress across the
boundary-lkver is. of course. related not to the local velocities in the layer but,
via the equation of motion, to their derivative v-to respect to x . Therefore noae

estimate of the Effect of tne initial shear dlstrIN.tiina could be made by specifying.
in addition :, H . the in.tial ralue of dI/dx . say. Equation (3) would then need
to be replaced by a second-order diferentla2 equation in H . So far as is kia,,)n to
the author, no attempt to do this has been reported.

It is not intended, here, to give a de*ailed discussion of the merits or deuerits

of the warious auxiliary equations strouped under Equaatic (3). Useful work has already

been done in this respect ty Rotta2 and Thoapsosm. Their work has s:iown that the
confidence vith chich the state of the art has been viewed in many of the text books
could not. bc substantiated arid that many of the auz1liary equations have a severely

uliited validity of application. Essentially they are correlations of experimentai
data whether or not some physical concept - for instance the kinetic energy or me-xent -

of - moment ecuations (e.r. see Ref.12). or the entrainvent equation (Refs.6,10.11) -
has been invoked as the basis for- the correlation. Consequently much depends on the
range of types of boundary-layer development zhich has been examined in thue correlation.
Nearly all the auxiliary equations ir the literature have been derived froo an
analysis of boundary-layr-rs of a single type. namely. where the shape lactor H
I-creases sith distance dozastream. This is typical ,f boundary-layers growing on

aerofoils or in diffusers. Bearing this in mind it is not difficult to see why

these aeth•.L4s are of douhtful validity when applied to either equilibr~uz boundary

layers (where H is approximately constant) or boundary-layers where H is

dp.creasir.g %ith x (see Refs.?, 3-. Even when appIied to the sane sort of boundary-

layer develc1cent as the .ines on which they were originally based. some auxiliary
equatiois tavc- exhibited limitations such as an unlikely sensitivity to initial

conditionsz. In this respect. however, it must be pointed out that there is little
expt',iental data to elucidate the question of the extent to which•initiol conditions

affect the I-isundary-layer development at appreciable distances downstream.
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3. TYPES O BOUNDfARY-LAYIR BEHAVIOUR

3.1 The equilibrium bojidary-layer

Thc first type of Lbundary-layer behaviour which we shall discuss, and the most
importtnt from a fuadamental standpollt, is thL equilibrium boundary-layer. This
topic has received co',sidprablp ottention in recent years. The early experimental
work of ClauserU. 14 and the analysis of Rottals served to demonstrate that equilibrium
bouldary-layers in non-zero pre:ýsure g.radients could e:ist (at least in an approximate
iorm) on a smooth surface. Their work has been ,dd-d to by a number of theoretical
treatments, among which those of Townsend" 6 and Mellor and Gibson1 7 are important in
the prcsent context, and by the recent experiments of Bradsh::w

The particular ,spect of equilibrium boundary-layers which is of prime .'r.portance
in our present work is the observation that a certain type of streamwise pressure
distribution caui support a boundary-. ayer growth z.aracterised by similarity of the
velocity-defect profiles. The pressure distribution is one of constant "severity"
in so far as the ratio of pressure-gradient forces to-skin-friction forces acting on
an element dx of boundary-layer is the shme at each streamwise station. The
appropriate pressure-gradient parameter which expresses this ratio is .
(e.g. see Rei.2) where

11= (4)Sdi

and H is independent of x for an equilibrium boundary-layer. Fo- a particular
value of this pressre-cradient parameter, the velocity-defect profile in the boundary-
layer bas a given shape independent of Reynolds number:-

u - u fv\(e I U

ur.

Clauser has suggested that a convenient "shape factor" for describing the velbcity-
"defect profile could be defined by

(e

F1j fd y)

G can a'so be related to the geometric shape factor P by

v-2) (1 ('7)

The value of G is about 6,5 for the flat-plate case and tends to infinity for the
equilibrium boundary-layer with zero wall shear stress•.
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Thus for equil ibrium bjundary-laycers G is a unique fuNction of So . rome
relevant exper:,eoznal data is shown in Figure 1 along %ith the relation between G and
Ni indicated by the theories of Townsend 16 and Me-lor and Gibson"7. The former is

restricted to values of H greater than about 2; the latter makes no such restriction
but states thaL no equilibritra boundary-layer can exist for valaes of n iess than
-0.5. Over the co•mon range Meller and Gibson predict higher values of 6 than are
given by Townsend' s theory. Jadging by the exper.ment of Bradshaw 8 and Clauser's
"Botuidary-layer I'". 'fo~send' s theory seties 'he more accurate. Clauser's "Boundary-
layer 11" has a measured vajue of G higher than that predictcd by either theory if
one takes the value of P ihdicated in Reference 14, namely 7. However Mellor and
Gibson found from an examination of Clauser's data that the actual value varied
between about 6 and 13 over the course of development of the layer, Thus it would
seem thzt the value of 7 is to be taken only as a guide and the discrepancy indicated

in Figure I is of little significance. For small values of R . Mellor and Gibson's
theory appears to predict values of G which agree satisfactorily with experiment.

For Lie purposes of our later calculations a relation between G and D will be

required covering the whole range of 7 . An empirical curve has therefore been dram,
In Figure 1 represen.ting a sy.thpsis of experiment and theory. This curve is given

by the function

G = 6.I(Ilt 1.81)o - 1.7 (8)

3.2 TeN ncy towards equiliLriut

If the pressure distribution appropriate to a particular equilibrium boundary-layer
Is set up bat the initial value of C( is not the equilibrium value, one of two things
can happer. If the bouadary-layer has "downstream stability" (see Ref. 2) the value
of G will approach the equilibrium value G. say, as the layer progresses downstieam;
if it is 'unstabl" the value of G will diverge from the equilibrium value. The

only direct eipeiriental evidence there is concerning the approach to equilibrium
re'ates to the flat plate case. Tillmann2v aid Klebanoff and Diehl 2 carried out
tests to observe the downstrean behaviour of constant-pressure boundary-layers which
had been disturbed initial~y riving a value of G higher than 6.5. Recently one of
Bradshaw' s experinentsIs consisted of setting up an equilibrium bounda'ry-l3 er and

subsequently (i.e.. downstream of some x-pasition) removing the pressure tradient so
that the layer could retucn to the fiat-plate type.

It might be supposed that, at least some distance dcwnstream of the disturbing
agency, the return to equilibriuT would exhibit some universality indepen-.at of the
oarticular form of the disturbance. For instanae, the rate of change of G might be
uniquely relat.ed to the amount, G - G , say. by which G was out of equilibrium,
Such corsiderations lead us tc inquire whether an expressiol. of the fonr,

dG
--- r f(G-G) (9)
dx

has any general validity. in Qluation (91 G is the particular equililrium value of
G (6.5 !or the flat-plate case) and I in sone ler.gth scnle typical of the boundery-
layer thickness. Integratii vf Equation (9) yieios an expression fcr G -
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where =

and x0  is an arbitrary constant. Three sets cf experimental data are shown ir
Figore 2 in the lor ,f •a plot of G against , using 3° for 1 , and choosing x.

such that all the curve- pass through the point "A". Fig-jre 2 indicates !ittle
evidence that a universal function of t.qe form of Equations (9) or 010) exists; now
dces It seem likely that a better correlation cotild be aciiieved by using some other
length seale in Equationp (11).

The failure of this exercise casts considerable doubt on the suggestion that
boundary layers with the same initial velocity profile will develop in tUL same way
if subjected to the same pressure distribution dowastream of the ijaitial station.
It will b• recalled that this assertion is itplicit in nearly all the auxiliary
equaticns arpearing in the literature (see Section 2 Jbove).

Before loassing to the next topic it is instructive to note from Figure 2 how icag
it can take for a disturbance to die out. The data of Klebanoff and Diehl-. and

eradshaw indicate that G is unlikely to approach the equilibrium valuc closely for
a distance of hundreds of times the displacement thickness. This observation strongly
su•p-rts the coments of Coles in Appendix A of Reference 22.

3.3 Departures from equilibrium

The equilibrium boundary-layer develups in a pressure gradient of constant severity

(see Eection 3.1 above). The parameter H (Eqn. (4)) is constant with respect to x
and the shape factor G is also constant. On the other hand, if thf severity of the
pressure gradient changes, the boundary-layer will cease to be in equilibrium and both
11 aid G will be functions of x . In a sense P, can be regarded as the independent
and G the dependent variablc, or, to use Clauser' s "black-box" terminology"1, there
is a certain response in G to n given inputi function P.(x).

The severity of the pressure gradient c=i either increase Idp,/d. • 0) or decrease
(dT.idx < 0). We shall now proceed to examine experimental data relating to each cf
these possibilities.

An incteasingly "severe" pressure ,radient is ty)ical of the boundary-layer
developing on an aerofoil surface or ir. a diffuser. The actual pressure gradient
dp/dx may be coistant but due to the increase in * and the decrease in 7 with
incre'asing x . the value of In increases with x , reaching infinity at a separation
point (zero r,). Some experinental results obtained under such conditions are shown
in Figure 30 as a plot of G against 1 . Since 5 is increasing with x each
curve represents a trajectory whose sense is indicated by the arrow head.

"To reduce the data to this form one requires values of the wall shear stress. These were
found using the skin-friction law derived in Reference 1.
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One f t.he i.portant features of the da'a in Figure 1, is the fact that the curves
lie close t.o the curve GU) which represents the locus of all possible equilibrium
boandary-laytrs. nThis curve has been dram according to Eqn.(8).I The sip__ifVcance

of a trajectory -hicI coincides with the curve G(•E) is not. of course, that -he
boundary-lr•yer is in equilibr_'-u bct that the variation in shape factor Is tiie sine

as if the layker rTere passinE through each possible eqsilibrim state. This situation

might be referrit to as "'local eqilibrium' at each stremnise etation. To illustrate
!be- point further Figure 4 shows the variations in H carrespoadizvg to the spread ef
the data in Pigure 3 about the carre G(.. the otted curves represent tbe loci of
points for e,,ch H is the given percentage aborp or below the value correspmding
to -lcaI ecuilibri-.' at a Rcynolds ntber (Red) of 10'. It will be noted that the

data lie wit-hin about 5 or 10 percent of the "eqiilibriu" values of H . One might
expect a bondary-layer trajectory to remain close to the &171) curves so long as the
value of 1: was in-.;reasing very slowly. &we-Vr this does not seem tc be a necessary

cond.ftioe, The curve in Figcre 3 ,•.riyed from Schubaner and Klebanofr s data 3 is

close to the -local equilibrium coudition alt.ough a typical value of Pdrn/dx is
0.3 (when 7 8= .

To turn to the case where the sev!:ity of the pressure giadient is decreasing.

Figure Z shows scme experimental dart presented in a similar way to that in Fig -re 3.

The data of Ludwic-g and Titlacn-' relate to the case where KT first increa.:ýs with
x asd subsequently decreabts. Bre-shau' s bomndary layer1 ' is initiall; in kiilihritm
with -= 55 ; subsemntl.y 7 falls to zero.

Compared wMth the data in Figure 3. that in Figure 5 gives a quite different

picture. Uhereas for d-/dx > 0 the trajectories were confined to a narrow cor.-idor
about the curve Ga(F. in the present e-se the trajectories diverge markedly frcm the
equilibrium locus. This -s most evident in the cases where IT is initially increasing

with x ; the subsequent reduction of 17 is accompanied by little sympathetic response

in G . Mhe impression is gained that some kind of -inertia" effect is causing G to

continue increas.ag even after di/dz has decreased to zero and is increasing
negatively. Even in the case o, the boundary-layer initially in equilibrium there is
a "sluggish" response of G to the decrease in IT to zero. Nor is [I changin.;

p'irticularly rapidly. The maximum value of -5drI/dx in the case of Bradshaw' s test
was about 0. 25; this may be compared with the value quoted above for the data of

Schubauer and Klebanoff which lay close to the conditions of "local equilibrium'.

3.4 Summary

Before proceeding to the nzxt Section it will bF useful to list the main points
which have emerged from this study of the data:-

1. The equilibrimn boundary-layer is specified by values of G(= G) snd F1 which
are independent of • . From a synthesis of experimental data and theory the

function d(F) can be defined fairly precisely.

lPor instance. the shear-stress distribution would be expected tr, differ considerably from

that In an eilllibrium houedary-layer.
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2. 'Me rate &t which an Initially-disturbed. flat-plate biundary-Iaver tends to
equilibrium is riot deteŽruined solely by the initial iz!u- of the shape ftctor
and the boundary-.ayer thickness. This mould app.-r to inlicate that In core
general cases also knowledge of t.he pressure distributi-zn dozistrean of some
fnitial stati-cn together with ýne initin' value of the sha:e factor is
insufficiert inforatibn fr'n which to compute the ty-:,rda-y-layei growth.

3. Bwomndary-lsyers in prews.r:e gradients of increasing ".severity" (d-!dx > 0)
remain close Lo the conditions of "loc"l equilibrILu,_: i.e. G I b.). ibis
appears to be true even if is changing quitt rapidly.

4. Boundary-iayers in pressure gradients of decreasing "sererity" (d--'dx < G)
depart markedl_' from the condition cf "local equilibrium". T1his is particularly
so in the case where d.-dx is initially jpnritive but subsequently changes
sign. suggestive cf sase kind of "inertia- eýfect.

4. THE AUXILIARY EQUATION

4.1 We return now to the problem of the auxiliary equation. Stated briefl3 !he
prcblm is one of finding some algebraic or differentis! equation invoiv"g the shape
factor which exhibits a response to various changes of pressure gradient which is
similar to thar observEd in the experimental data. It was seen in the previous Section
that certain basic trends can be distinguished in the datz and that these trends cra

be irterpreted in the context of tendencies towards, or departures from, a condizicn
of "local equilitrium". It would seem that this way of examining the datz is an
important one which can sake n.any of the observed trends meaningful and coherent.
Moreover it is likely to facilitate the pr cess of deriving a satisfactory auxiliary
equation.

"With the object of making naximum use of this concept of variations about an
"equilibrium state, G is selected as the appropriate shape factor, and . becomes
the corresponding pressure-gradient paramet-er. A funaamental require-~nt. of cur
auxiliary equation is that a solution must exist of the form

G = constant

11 = constant

4.2 One possibility is the algebraic auxiliary equation:-

G (12)

Clearly ttis equation satisfies the co;id'tions for equilibrium boundary-layers.
Moreover, as w's seen in Section 3.3 a)ove, it is a reasonably good approximation in

the case of boundary-layers of the "ae~ofoil" or "diffuser" type, (i.e. for which
dIl/df > 0), If a gi-,La form foi Equat'Lon (12) is assumcd - Equation (8) for exanple -

together with a suitable skin-friction law, the geometric shape factor, I1 , can be
expre.•snd as a function of Reo and tae local pressure gradient:-

H (Reo ) (13)

u d
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which Is identical tc Equation (2). if the nece~s•ry calculatio;,s are perfcued one

does r:-t arrivc at aw expression of tue sane dete'i1ed £.rm as Buri s. namely

H = 1!(14)

but one more nearly of the form

H = H1(e.e) +H4 de)" (15)

Nevertheless. in so far as Equation (13) -epresents his fundamental assumption Burl's

work appears to be confirmed.

Cka the other hand Equation (12) is incapable i. describing the return to equilibrium
following a perturbation - iudeed perturbations from equilibrium rre themselves

inadmis3ible - ncr can it account for the type of obseraved behaviour illustrated in
Figure 5 for pressure gradients of decreasing -severity'.

4.3 If Equation (15) is equivalent to Buri's approach. an auxiliary equation
corres;oding to that of wmst other Investigators (see Eqn, (3)) would be of the foim

da
- = 00.G) (16)
d-z

with • as a non-dimensional distance defined, say, by

1
di = -( dx. 17)S.

A form similar to this has been suggested by Rotta2 . If the function 4 in
Equation (IS) is of a lorm which vanishes for G = d(I) the equilibrium case would

be taken into account. Thus we might postulate some expression like

dG
- (G_6)n (18)di

Equation (18) also goes some way to accounting for a return to equilibrium following

some disturbance, with q5 and n determining the degree of downstream stability.
However the rem.arks in Section 2.2. sho.11 serve to show that no combination of values
of q5(0) and n can lead to an expression which can account quantitatively for all

the data in Figure 2. This is because the experimental results indicate different
degrees of stability for the same value of G

Passing to the cases where H is a function of x this problem of fitting either

Equation (16) or Equation (18) to tUe data becomes even more difficult. Figures 3
and 5 show that, at any given value of H , the data are not even consistent as far

as the sign of stability is concerned, at least so long as the "stability" is
interpreted in the sense of Equations (16) or (18). Furthermore Equations (16) or (18)

I.
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contain no mecPn.sm for taking into account the apparent "inertia" effect suggested
by the data in Fit, ire 5.

It soon becone-s clear that an auxiliary equation of the form of Equation (16) is
Inadequate in describing tha different types of behavio-ir which we have distinguished
in the experimental data. The bost that could be done with Equation (16) is to) ma! e
it strongly stable ateut th'. "local equilibrit.:'" condition. In this way the
advantages of the si.nple for., Equation (15). would be retained. in that the equation
would rfedict values of G close to G -hich is correct for tne "aerofoil type"
boundary-layers. anW also in that the approach to Cqc:Ilibriu:n following an initial
perturbation would be %ccounted for at least qualitatively. It is p3ssible that this
provides the explanation for the partial success of some of the -.uiliary equations in
the form of Equation (3), that of Reference 10 for example.

4.4 Some of tie disadvantages of Equvtion (16) can be ninimiseC b3 the use of an
auxiliary equation formed by a =ombination of Equations (15) and (16). In a fairly
general form this could be written as

dG dE, G)- ,(I -- u G. (19)

di di'

However, this equation still cannot accn':nt for the differnt rates of approach to
equilibrium exhibited by the data is Figure 2. nor for tie apparent iiertia effect
suggested by the data in Figure 5. For these reasons it will not be considered
further in this paper.

4.5 The two effects which it has nit been found possible to ace:-. for - the return
to equilibrium and the inertia effect - appear to demand that the a.,iiiary equation
be of the second order in G . Starting with the former, it was seer in S&ction 3.2

4. that Equation (9) was inadequate because the behaviour of a flat-plate boundary-layer
following a disturbance did not depend solely on the initial value of G . Ihis point
was mentioned in Section 2.3 also, and it was suggested that there were good grounds
for expecting that the first derivative of the shape factor might be a necessary
additional starting condition. Accordingly, we postulate that the approach to
equilibrium can be described by

dG ( dr.\
-- f , G -G (20)
di d! '0

wiiere the suffix o denotes an initial condition. Differentiating Equation (20)
throughout with respect to i and eliminating (dG/di)0 between this new equation and
Equation (20) leads to an expression of the form

d'G - d 1
•- : L (G - G) oG 0-l (21)

dsn2  LdX (G G)

since G is assumed constant.
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Ta give the function f some definite form we suggest

d = 2 jr (G -((G -G . (22)

By a suitable choice of the constants a , ' and /, Equation (22) can, in fact, be
fitted satisfactorily to the experimental data relating to the appvoach to constant-
pressure equilibrium. But what is more important, however. Equation (22) allo appears
to be capable of desciibing, at least qualitatively, each of the other types of boundary-
layer bchaviour discussed in Sectior. 3. In these latter cases, of course, G is not
constant but is a function of x by way of its relations w.t. 11(x). Thus in the
sense of Equation (22) G can be regarded as equivalent to a pressure-gradient
parameter.

By trial and error the values of the coefficients X , a and /3 in Equation (22)
have been assessed to give satisfactory agreerent with two or more sets of boundary
layer data from each class discusscd in Section 3. When a comparison is male with
more data it may be necessary to modify these assessments, but the provisional values
obtained are as follows:-

d
- (G - G)> 0

• = -0.25, a = 3. /3 - -2

d (23)

-j (G - G) < 0

K = 5 , = 2, /3 = -2

The distinction between the values of X and a, depending on the sign of
d(G - O)/di . is of prime inp-.rtance in describing the different type of response of
G according to whether dF"Jdx if positive or negative.

Since 8 is negative, Equation (22) is singular at G = T . his behaviour has
only local repercussions but it is an embarrassment for a number of reasons and it is
suggested that the term (G - a)- 2 in Equation (22) be replaced by

{(G - '+)-'

where a is some small number. Insufficient experience of the cquation has been
gained so far to estimate the precise significance of the value oi L but in the
calculations it has been taken as 0.1.

Some comparisons between the new auxiliary equation and experimental data are shown
in Figures 6 to 11. In this exercise the measured variation of l •ini 8* with x
have been assumed as data and the variation of G with x has been calculated using
Equation (22). In Figures 6 to 11 the solid curve represents the predicted values of
G , the dots showing the intervals in the computation. The measured values of G are
shown as square data points. In each case suitable initial values 3f G and dG/dx
have had to be assumed in the calculations.
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In Figures 6 and 7 two boundary-layers of the "aerofoil" type are considered.
F~quation (22) strongly portrays the tendency of boundary-layers of this type to remain
close to the "local equilibrium" condition. The initi.al conditions need to be chosen

fairly critically if the precise small departure from "local equilibrium" is to be
c-orrectly represented. If the initial values of G and dG/dx had been appreciably
higher the predicted values of G would soon have coincided with the G-curves .

As it is, the small departure from "local equilibrium" is somewhat exaggerated. The
significance of this sensitivity to init•ial conditions needs to be examined more
carefully, but allowing fur thi.s the comparisons in Figures 6 and 7 can be regarded

a:" satisfactory.
., . 25

Figure 8 shows Sa..',orn 's i~....a relating to his "zero suction" conditions. The
pressure distribution i.s o1 the same general form as that considered in Figures 6 and

7 but the initiel value of G is higher than the local value of G . Agein the
agreement between the predicted and the measured ,alues of G is very encouraging.

Figure 9 shows ýe o i the sets of data obtained by-Ludwieg and Tillmapn 2 '. This

boundary-layer vas subjected to a pressuie gradient of initially increasing, and
subsequently dL-rcasirg. "severity". Over the first part, with H increasing, the
value of G r:-ýins close to G , as was the case in Figures 6 and 7. For larger
values oi x , wl.pre IT and, consequently, 6 are decreasing, G continues to
increase - exhibiting the apparent "inertia" effect. The predicted variation of G

with x is seen to represent these different types of behaviour adequately.

Another case in which IT decreases with increasing x is illustrated in Figure 10.
This shows the data from Bradshaw's experimert in which a boundrry-layer initially

in equilibrium at 9 value of H- of about 5.5 is subsequently subjected to constant
pressue. H falls rapidly to zerc but G responds only slowly and would take a
distance of several hundreds of times the displacement thickness to approach the new
equilibrium state closely. The predicted variation of G follows the observed
"behaviour very well.

'or values of x greater than about 65 in, H = 0 , and the data in Figure 10
correspond to the case of a perturbed flat-plate boundary-layer. Figure 11 3hows

another set of dat. relating to this class of boundary-layers, namely tie results of
Klebanoff and Diehl for the 0.25 in rod (Ref.21). Again the agreement between the
measured and the predicted variation of G with x is very satisfactory.

These comparisons between calculations based on Equation (22) and experimental
data are far from exhaustive. Nevertheless they serve to show that the proposed fornm
of auxiliary equation can be fitted to a range of different types of bc-Indary-layer

developmept, and that it is probably the most economical one which can be. There is
scope for a considerable amount of further work. Comparisons must be made with a

far greatCr number of sets of data befor' Equation (22) can be used with confidence
in making boundary-layer predictions. When further comparisons have been made it

may, of course, be necessary to modify the values of the constants to give the best
overall agreement.
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5. CONCLUDING R1EMARUKS

5.1 A review, In broad terms, of existing forms of the auxiliaty equation, used in
the calculation of the incompressible turbulent boundary layer in two dimensions,
reveals two bvsic types. One is an algebraic equation involving the shape factor
(Buri); the other is the familiar first-order differential equation on which attention
has becn concentrauted for more than thirty years.

5. 2 Prom an analysis of the experimental data certain fundamental types of boundary-
layer behaviour car. be distinguished. These are

(a) The equilibrium boundary-layer which is characterised by a pressure gradient

of constant "severity" and similarity of the velocity-defect profiles.

(b) The return to equilibrium conditions following an initial perturbation.

(c) The departure from equilibrium when the "severity" of the pressure gradient
is changing with x . Two possibilities can be considered, according to
whether the "severity" of the pressure gradient is increasing or decreasing
with x .

5.3 A synthesis of experiment and theory relating to equilibrium boundary-layers
enables a relation to be defined fairly accurately between a shape factor a (based
on the velocity-defect profile) and a pressure-gradient parameter

nr = , -
-nQ %dx)

The function G = U(I) thus represents all possible equilibrium boundary layers.

5.4 At least in the particular case of rl = 0 , the rate at which the shape factor
0 approaches the equilibrium value 8 , following an initial perturbation. is not
solely determined by the initial value of U and the scale of the boundary-laytr.
From this it can be deduced that, in the general case also., knowledge of the initial
velocity profile together with the subsequent pressure distribution is insufficient
information from which to compute the development of the boundary-layer.

5.5 If the pressure-gradient parameter ]l is a function of x the "response* of
0 takes altentative forms depending on the sign of dT1/dx . In cases where 11 is
continuously increasing G remains close to the value d corresponding to an
equilibrium boundary-layer at the local value of n . This situation *uight he referred
to as "local equilibriuLm" at each stream*ise station. On the other hatd, if nI Is
decreasing with incrersing x . a departs markedly from the "local equilibrium"
condition. This type of behaviour appears to be accentuated when nl decrease%
subsequent to an initial increase, i.e. when d1/dx is first positive and then
negative. tindur such conditions G can continue increasing although the local value
of d is decrean.ig with Increasing x . Fly analogy with dynamical systems one
might. attribute this to a kind of "inertia" effect.
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5.6 The wain points which emerge from the examination of experimental data are used
as a basis for evaluating various possible forms of auxiliary equation. It is seen
that for an important class c( boundary-layers - including typical ones on aerofoils
or in diffusers - the assumption of "local equilibrium" could lead to predictions of
it which are accurate to botter than 10 percent under uost conditions. This assumption
is equivaleal to the type of algebraic auxiliary equation proposed by Buri.

The ace of an algebraic auxiliary equation implies that the upstream history of the
boundary-layer has no significant influence on the shape factor except by way of its
effect on the thickncss of the layer. To take direct account of the effect of
upstream history one requires a differential equation. But in view of the comment
in 5.4, above, it would seem that a first-order auxiliary equation involving one
initial condition (the initial value of the shape factor) must be inadequate. This
goes some way to explaining why the use of a first-order equation is only marginally
more effective in describing the various types of boundary-layer behaviour than the
algebraic auxiliary equation mentioned in the previous paragraph.

The use of a second-order differential equation offers considerably more promise

of success. Two initial conditions aie required, and these may be regarded as
specifying information about the initial velocity profile and shear-stress profile.
The demand for an additional starting condition thus has a strong physical
justification.

A tentative proposal is made as to a suitable form for a second-order auxiliary
equation. It would seem that this new auxiliary equation is capable of describing
all the types of boundary-layer behaviour listed above at least qualitatively, and a
limited number of comparisons with experiment indicate that acceptable quantitative
agreement can be obtained als(.

The work described in this pý,,er is at an interim stage. Further comparisons
between the auxiliary equation yi'oposed and experimental data will probably require
some adjustment of the constants in the equation to maintain the best overall agreement.
But in any event it is thought that the results which have already been obtained are
of sufficient interest to merit presentation at this stage. Furthermore it is
hoped that the paper will stimulate discussion of the more general points raised, and
of their relevance and possible repercussions on the current work of other
investigators.
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S UAIRI A RY

A dimensional analysis is used to indicate the equation for the mean
velocity distribution in the ouber region of incompressible turbulent
boundary layers in terms of a function, F . In the intermediate region
thiý function which occurs in boundary layers in small pressure
gradients, at separation and with transpiration is the same as that in
zero pressure gradient flow. Experiments in boundary layers in zero
prersure gradient, with injection and at separation show that F is
virtually a function of y/1 only. The similarity flow in which F
is a function of y/b only is then considered for boundary layers in
small pressure gradients.

The calculations involve the functions and constants which occur in
zero pressure gradient flow, but no other experimentally determined
constants or functions are used. .

The theoretical total shear stress variations across boundary layers
with injection and at separation are consistent with measured distributions.

SOMMAIRE

On a recours i une analyse dimensionnelle pour formuler l'Vdquation
de la distribution moyenne des vitesses dans la rigion externe de
couches limites turbulentes incompressibles; par rapport i une fonction
F . Dans la rdgion intermddiaire, cette fonction qui se prdsente dans
les couches limites aux faibles gradients de pression est la mbe au
ddcollement et avec la transpiration que d'un dcoulement i gradient de
pression nul. Des expdriences effectudes dans des couches limites
gradient de pression nul, avec injection et au ddcollement, montrent
que virtuellement, F est uniquement fonction de y/S . ua consid~re
ensuite 1' 4coulement similaire dans lequel F est uniquement fonction
de y/S , pour des couches limites aux gradients de pression faiblc.

Les calculs impliquent les fonctions et constantas qul existent en
4coulement A gradient de pression nul, mais 11 n'est falt usage
d'aucune autre constante ou fonction ddterminde exp4rimentalement.

Les variations th~oriques totales de 1' effort de clsaillemeiit - •
travers les couches limites avec injection et au d6collement sont en LI
accord avec les distributions mesurdes.
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NOTATION

B ,B1 B 2 ,B3 ,B4 functinns independent of y , Equations (2.6) to (2.10)

c1  akin friction parameter,•A/PO

Sdu
D pressure gradient parameter,'-. .

U dx

H defined by Equation (5.2) ' "

f. fit f 3  defined by Equations (A.8), (A.2) and 'A.5) respectively

FFIF3 defined by Equations (3.2), fA.I) aad (A.4) respectively

id?F2 -

F1 du

H form parameter, 81/a2

J1 1J 2  velocity profile parameters, Equation (6.3)

K von Kdrmdn's constant

*dD
* ~N -

D dx

III du1

U2 dx

P ratio of static pressure to density

P2 =uv du,

U dx

Q, Qdimensionless parameters independent of y , Equations (A.1) and
(A. 2)

function defined by Equation (3.1)

u,v velocities in x and y directions respectively

u v' components of velocity fluctuation

u, friction velocity,

u• 7velocity at y 82

pl
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xy coordinates along and normal to the wall

S boundary layer thickness (as far as possible in the calculations
8 Las been asumed to be 1.4 80)

so value of y at which F K

81 displacement thickness

2 momentum thickness

77 YlI

V kinematic viscosity

function of x only, Section 6

P density

T total shear stress, p (u '7 + , u

defined by Equation (4.6)

Subscripts

w wall conditions

conditions at outer edge of boundary layer
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THE MEAN FLOW IN THE OUTER REGION
OF TURBULENT BOUNDARY LAYERS

T. Neil Stevenson

1. INTRODUCTION

The approximate theory presented in this paper attempts to correlate the mean
velocity in the outer region of incompressible turbulent boundary layers in small
pressure gradients, at separation, and with injection zr suction through a porous
wall.

A dimensional analysis indicates that the outer region depends on a function of
the form f(ud) - f(u) and not necessarily on a velocity defect term, (u, - U),
which has been used by Clauser', Mickley and Smith 2 and Black and Sarnecki 3 .

Mickley and Smith 2 found by experiment that the mean velocity in the outer region
of turbulent boundary layers with small injection velc•ities through a porous wall,
collapsed onto one curve when (u1 - u)/u* was plotted against y/S . u* corres-
ponds to the maximum value of the Reynolds ctress which occurs in a particular profile.
This is an interesting approach but requires an accurate experimental determination
of the Reynolds stress.

Coles4 introduced a wake function, which represents the departure of the mean
velocity profile from the 'law of the wall' velocity profile. The wake function,
which is tabulated by Coles, is considered to be inC-pendent of the skin friction and
pressure gradient Coles analysed available experimental data and showed that the

wake function represented the velocity profiles- reasonably well except near separation.
Black and Sarnecki 3 were unsuccessful when they tried to use Coles' wake function when
there was suction or injection. The present theory correctly predicts that there is
no 'wake' in turbulent boundary layers over porous surfaces through which there is a
large suction velocity.

Clauser1 . realising that the past history of the boundary layer is very important.
managed to adjust the pressure gradient in his experiments so that the mean velocity
profiles at different positions along the flow collapsed onto one curve when
(U1 - u)/u, was plotted against y/1 . The present analysis reduces to that of
Clauser in a particular case.

The inner region of a turbulent boundary layer adjusts itself to the local r'all
conditions reasonably quickly whereas the outer region witn its slow rates of energy
transfer, takes sume time to relax to its new form. The theory will not hold during
this relaxation period, however it is shown to be quite i!neful when considering
non-equilibrium I yers.
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In the following sections the inner region solutions will be reviewed before the
new approach is introduced.

2. TIlE INNER REGION

The momcntum and continuity equation. for the meen flow in a two dimensional
turbulent boundary layer are approximately

ýu O~uv ý(Ul' - v') Zu'v' d 2uS~~2u--L- + + - - +V (2.1)
Tx ýy Dx b dx By

2

and

•u •v
T+- = 0 (2.2)

x By

where u and v are the mean velocity components in the x and y directions, u'
and v' are the components of the velocity fluctuations and dP/dx(= -uldu1 /dx) is
the pressure gradient. In most cases the term ý(uP - v-')/ýx is small and it will

be neglected in the following analysis. We shall assume that au/6x .. d ýv/ýy are
small compared with Bu/y in the inner region, the region close to the wall. The
momentum and continjity equations therefore simplify to

Du BUYv dIP B2u

vy dx +y 2  (2.3)Vw "• + •ydx y

in the inner region. (vw is the injection velocity normal to a porous wall.) The
equation is integrated with respect to y in order to obtain an equation for the
shear stress distribution in the inner region:

7' Tw tiP

- + VwU + -y. (2.4)

The total shear stress, r , is the sum of the viscous shear stress /Au/•y and the
Reynolds stress -pulv' .. w is the shear stress at the wall,

The momentum transfer or mixing length hypothesis of Prandtl together with the
usual assumption that the mixing length •s proportional to the distance from the wall
yields the relation between the shear stress and the velocity gradient, Cu/By

T A2 y 2 (2.5)

ithere K is vcn Kirmin's constant. This equation will not be valid in the region
• ery close to the wall where the viscous shear stress predominates.

The mixing length hypothesis Is used by Rubesin ', Dorrance and Dore' ar•; Black and
Sarneckil to derive the equations for a tzrbulent boundary layer with transpirntion
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through a porous wall. Stratford' uses the same hypothesis when considering a
turbulent boundary layer with negligible wall shear stress. However Stratford is
able to derive the same equation by dimensional arguments.

Equation (2.5) is further substantiAted by Townsend8 who considers regions of
turbulent shear flow in which there is equilibrium between the local rates of energy
production and dissipation.

Rotta? reviews the inner region approximations in detail and shows that the
available experimental results verify Equation (2.5).

The total shear stress in Equation (2.4) is eliminated by using Equation (2.5),
and the resulting equation,

dK dx

is integrated with respect to y for the iollowing cases:

Ca) When the transpiration velocity is zero,

K- = 2(py + I)I + log, - I + + Bi( ) (2.6)
UT (py + 1), + u

where p = (1/u.2r)(dP/dx), and BI is independent of y

(b) When there is no pressure gradient,

2- - ---:loge (V

where B2 is independent of y

(c) When the blowing velocity and the pressure ;radient are zero,

u I yu1.
- = -loge'-' + B (2.8)

UT K

where B is a constant. Experiment (Ref. 10) has shown that Equation (2.8),
the 'law of the wall'. is also valid in small pressure gradients. Equations
(2.8) und (2.6) will be compared in Section 5.3. Millikan1 ' derived Equation
(2.8) by a purely dimensional analysis.

(d) When the skin friction and the transpiration velocity are zero,
I

* t/'ldP
S= 2y{ -- + B( P (2.9)

t dx t e i

wherc B. is a conistant. Stratford7 was able to derive this equation by
dimc.nsionaxl arguments.
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(e) When the skin friction and pressure gradient are zero,

u \,½ I

(-9 , I: loge B. (2.10)
\YW 2K e

where B Js ;s constant.

Throughout the derivation of the above equations it has been assunmid that the
inner region is independent of the conditions at the outer edge of the boundary layer.

3. THE EQUATIONS FOR Tll'. OUTER REGION

The analysis follows that of Millikan11 but now includes an unknown function of
u/u7. and Q in place of the usual u/u l. in the zero pressure gradient equation.
Q may be a diminsionless pressu!- gradient or transpiration velocity parameter or a
combination of any other relevant parameters.

An overlap or intermediate region is defined as that region in which a solution
for the inner region of the form f,(u/u7 ,Q) = yu,/v and a solution for the outer
region of the form F1 (u/u7. ,ui/u.,Q) = y/6 are simultaneously valid.

When the inner region equations were derived in the previous section, the equation

which was integrated (Eq.(2.4)) was independent of both v and 3 . It is thervfol..
not surprising that the inner region eqrations (2.6) to (2.10) are solutions for the
intermediate region.

The details of the dimensional analysis are given in the Appendix. It is shown
that the equations for the outer region may be written in the form

S , , ) ( , - loge (3.1)

and

,= S I, , - S(, Q) (3.2)

= f ( - f )(3.3)

where S = logey/8 in the intermediate region.

It will be shown that these outer region equations are useful, because experimental

results in different turbulent boundar." layers, i.e. inl pressure gradients, with
suction Lr lijection, at se;aration, may be compar!d ty plotting either

f(u/u, . Q) - loge(bu /V) or {f(u /u, . Q) - f(u/u,,Q)} ta4:inst y/O . Vie approximate
form of the function, f , is known from the solution., in the overlap iegion which
were outlined in the previous section. By plotting experinental results in this way

it should he possible to establish the way in %hich F and S depend on u /u, and Q.



291

In The following section the equations for the overlap region will be used to
derive specific equations for the outer region which will be compered with experimental
results.

4. T'iE FUNCTIONS S AND F

4.1 Zero pressure gradient

The equations for the outer region are derived by rearranging Equation (2.8) to
give

logej = K - loge (4.1)

in the intermcdiate region, and by replacing logey/S by S to give

S = S u K - B)-loge--; (4.2)

in the outer region. When y/1 = 1 then

uS (1 Ku1 logle 1%4.3)

and therefore

SIee Srmna = = _, (4.4)

If experimental results are plotted as y/1, against (u, - u)/u. , they fall close
to a single curve (see Clauser' and Townsend" 2 ). 80 is defined as the value of y
at which F = K . Thus F is virtually independent of ul/u,. and Equation (4.4)
may be written

Y,~~. F (4.5)

This is the accepted velt.city defect law equation for the outer region of turbulent
boundary layers in zero pressure gradient aid with zero transpiration.

It is more difficult to sl.ow that S is a function of y/! only because the
equation for S includes the skin friction, the boundary layer thickness and the
constants in the law of the wall equation, all of which are difficult to determine.
Some Pxperimcntal results are plotted as S against y/1 in Figure 1. Within the
experimental accuracy S - S(y/b).

S(1) Is related to Coles' constant €'(I) by the equation

S(1) KMI(() - B) (4.6)
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Coles13 has recalculatee the majority of the published zero pressure gradient
turbulent boundary layer mean flow results and has evaluated the size of the wake
component which is related to t(1) . Coles shows that t..he wake component aod
therefore €(1) are constant above Reynolds numbers, R6 > 3,000 , in equilibrium
flows.

4.2 With Transpiration

The equations for the outer region arc obtained by rearranging Equation (2.7) to
give

loge-. 2K 1 + - - BK - loge (4.7)

in the intermediate region and thus

u .r v u " .u j
S 2K + !w- (4.8)

and

F = 2K I{ + (i /\ I )+ (~ (4.9)

in the outer region. Equation (4.9) is the modified velocity defect law with
injection (Ref.14). For high blowing velocities uI. has negligible effect on the
outer region and Equation (4.9) reduces to

=2K- (4.10)

The experimental results show that the function, F , in Equation (4.9) is virtually
Sindependent of vw/'u• and ul/u . and is the same function as that in the velocity

defect equation. Some of the experimental results reproduced from Reference 14 are
presented in Figures 2 and 3.

Some experimental results are plotted as S against y/1 in Figure 4 and,
considering the difficulties in evaluating the function S ', the results fall
reasonably close to the zero pressure gradient curve.

4.3 At separation

Stratford and Townsend show that the equation for the inner region at separatiQn

(Eq. 2.9 with B = 0 ) is

K I. 7d an

*B2 was assumed constant and equal to B
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where dP/dx Is the pressure gradient. This equation, ,'hich is valid In the
intermediatc regiorn, is rearranged:

loge 2 loge U- (4.12)

dxy

and therefore

S 21oge -- (4.13)

or

F = 2 loge (4.14)

in the outer region.

Some of the experimental result& of Schubauer and Klebanoff1 5 and Stratford' 6 are
plotted as y/ 8

0 against (2/K)loge(ui/u) in Figure 5. The results again fall
close to the zero pressure gradient velocity defect curve.

In this seztion the equations for the outer region together with the solutions for
the Intermediate region. have been compared with experimental results and it has
shown that S and F are virtually functions of y/8 only. In the remainder of
this paper we shall consider the similarity flow in which S(y/S) and F(y/S) are
universal functions. The resulting equations will then be compared with experiment.
The values for S(y/l) which are used in the calculations are given in the Table and
were evaluated using F(y/8) from the velocity defect curve together with a value of
1.P5 for S(1)

5. TURBULENT BOUNDARY LAYERS IN A PRESSURE GRADIENT

5.1 From Equ.tion (2.6) the equation for the outer region is

u [E "-1

K- 2E + loge + B, (5.1)
u1r E+ I

where

E 8 exp S(- + (5.2)
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At the outer edge of the boundary layer

K - 2E 1 + loge I + I (5.3)

u7  E1 1

where

El -(p expSi + 1)1 ; S, = S(1) (5.4)

Equation (5.1) is subtracted from Equation (5.3) in order to eliminate the unknown
function. B*I and the equation is then rearranged,

-+ = I - 2w.- E + 2 log -- 1 + 1 (5.5)

U1  Ex +1 E 1 -I K uI

E may be written in terms of the pressure gradient parameter, D[= -(S/u 1 )du1 /dxa ,

E = {D(_)expS + 1 . (5.6)

Several velocity profiles, u/u 1 against y/1 , which have been calculated from
Equation (5.5) for particular values of D , are shown in Figur 5.

5.2 Flom with negligible wall shear stress

When the skin friction is very small Equation (5.6) reduces to

- 1---- exp-- exp (5.7)
UI K 2

This equation is more general than that in Section 4.3 where B3 was assumed to be
zero.

In Figures 7, 8 and 9 Equation (5.7) is compared with some reattachment profiles
after a separation bubble (McGregor 1 7), two separation profiles (Newman 1 8 and Schubauer
and Klebanoffl 5 ) and some zero skin friction profiles (Stratford"•). The shape of the
experimental profiles are in very good agreement with the theoretical curves, and the
theoretical values cf D are reasonably close to those in the experiments.

If Equation (5.7) is used to evaluate the displacement thickness, 81 , and the
momentum thickness, 82 P it is found that the form parameter, H , is given by

I I

1 - 5.-9 D 1 - (5.8)
1 - 1. 51 .

The theoretical curves of H against ai/S ere presented in Figure 10 and are
compared with some measurements near separation reproduced from Sandborn23. The
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Equation (5.6) is now rearranged to give

U ( , E + I log. E, 1 ) (+.11)

where E = (pSexpS + 1)' This form of equation describes Clauser's equilibrium
flow providing pD is constant. This pressure gradient condition is the same as
that found by Clauser. In Figure ii it is shown that the curves representing Equation
(5.11) are the same shape as the experimental curves. There is a difference between
the theoretical and experimental values of pS and this needs further investigation.

5.5 Experiments in non-equilibrium boundary layers

Von Doenhoff and Tetervin 20 showed experimentally that curves of u/u1  against H
for particular vYlues of Y/8 2 were almost independent of the skin friction and the
pressure gradiint. The theoretical velocity profiles of Figure 5 were used to
evaluate the displacement and momentum thicknesses to enable curves of u/u1  against
H to he plotted. The curves are compared with the experimental results of
von Doenhoff and Tetervin in Figure 14 and with the results of Schubauer and
Klebanoff in Figure 15. The present theoretical curves of u 2/u, against H are
compared with the semi-empirical curves of Ludwieg and Tillma'n, and Spence 2 1 in
Figure 16. (u 2  is the value of u at y - 82)

The velocity profiles and the parameters based on the profile shapes, which are
predicted by the present analysis compare very well with previous theories and with
available experimental results.

The experimental pressure gradient is usually much higher than the theoretical
value and it is now suggested that the boundary layer adjusts itself as quickly as
possible, trying to attain an energy equilibrium state but usually not succeeding

Suntil the separation point in• reached. It is only after the boundaiy layer has

separated that it is able to modify the external flow sufficiently to reduce the
external pressure gradient and thus achieve an equilibrium state.

6. SHEAR STRESS DISTRIBUTIONS

The Inner and oute: region equations may be used together with the momentum
equatioa to derive the shear stress distribution across turbulent boundary layers.
The momentum Equation (2.1) is integrated from 0 to r7 to give

- P + vu dt t2 ud 1 - u 17' +
p, p dx f 7o

dx •1 ud• d- 7 dx Hj d7

where -r y/1 and • is a function of x only. The term ý(ul' - v' 2 )/ýx in

Equation (2. 1) is usually small and it has been neglected in the derivation of the
integrated momentum Equat ion (6. 1),
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separation criterion derived by Sandborn is also shown In Figure 10. Sandborn assumed
the velocity profile at separation to be of the form

(5.9)
U!

where m is a constant. This equation results in a unique relationship between the
momentum, displacement and boundary layer thicknesses. Sandborn shows that Equation
(5.9) is a reasonable representation of the velocity profile at separation in
Reference 15. This profile has a form parameter, II , of 2.75 and therefore corres-
ponds to the region in which the present cf 0 curve crosses that of Equation (5.10)
(see Fig. 10).

Kutateladze and Leont'ev19 express the shear stress across a turbulent boundary
layer in terms of a cubic parabola which is used together with an equation similar to
Equation (2.5) to evaluate the limiting velocity profile at the point of sepsration.
They use Equation (2.5) across the whole of the outer region but include a varying
'mixing length' evaluated at zero pressure gradient. The result is shown in Figure 10

and falls close to the curves predicted by the present analysis but is far from the
condition B3 = 0 which corresponds to a value of 2.69 for the form parameter, H

5.3 A hypothetical equation for the inner region

When p - o , Equatioz, (2.6) must reduce to the separation Equation (5.7) and when
p - 0 it must reduce to the 'law of the wall' Equation (2.8). If B3 is zero a
simple form for B1 , which satisfies the two limiting conditions is

B, = KB- 2 + loge (1 • (5.10)

"Hypothetical velocity profiles in the inner region may now be evaluated forSparticular values of cf and P [= -(V/u2 )du /dx1 . Some of the profiles when

Cf = 0.002 and 0.0002 are shown in Figures 12 and 13. The higher values of P2 in
the figures corresponds to near separation conditions. The figures are interesting
because they show that the inner region profiles with pressure gradient are almost

6 the same as those with zero pressure gradient at the same value of skin friction.
This has been shown experimentally by Ludwieg and Tillmann and it is now often
accepted that the 'law of the wall' holds in pressure gradients.

This intuitive analysis for the intermediate region In pressure gradients indicates
that the equation for tbe intermediate region, which was used in the derivation of the
equations for the outer region, is not necessarily very different from the 'law of
the nil' equation.

5.4 The experimental results of Clauser t

Clauser measured the mean velocity profiles in turbulent boundary layers subject
-o two small pressure gradients. The pressure gradients were adjusted so that the

mean velocity profiles at different positions along the flow collnpist'd onto one curve
when u1 - u/ut was plotted against y/8 . The experimn•cta, curves are shown in
Figure 11.



( 297

In the case of boundary layers with injection but no pressure gradient • was
equated to u1/u , and B2 was assumed equal to B . The shear stress across the
boundary layer was then evaluated (Ref.14) using Equation (6.1) and the results were

22found to compare favourably with that reported by Leadon

When there is a pressure gradient but no transpiration it is convenient to let

u = _ du, (6.2)
u 2 dx

ii the case of a flow with negligible skin friction Equation (6.1) reduces to

-J U. (6.
2u D -2J2 + Ju +N 2-J + + - Ju (6.3)Pu1  u 1 J[ - 1 u2 U 1 1dxL u 1 1

where

=

fo u 1 0\ul

and

8dD
N -

D dx

A shear stress profile in a flow with zero skin friction and with N 0 and with
D = 0.013 has been calculated from Equation (6.3) and is shown in Figure 17.
Schubauer and Klebanoff's measurements of the shear stress at separation compare
quite well with the theoretical shear iitress distribution. It must be remembered
that the turbulence term I(u'2 

- v x2)Z has not been included in the shear stress
calculation and this may have a.i effect at separation.

The outer region includes the logarithmic overlap region and by comparison with
experimental results, the outer region is valid for almost all the boundary layer;
all except the region very close to the wall where y/8 is less than about 0.04. :n
evaluating the integrals the errors involved in neglecting the sublayer are negligible,

7. CONCLUSIONS

A dimens 4 onal analysis has been used to indicate the form of the equations for the
mean velocity distribution in the outer region of turbulent boundary laytrs in terms
of either a function, F , or a function. S . In the intermediate region these
functions, which occur in boundary layers in small pressure gradients, at separation
and with transpiration are the same as those in zero pressure gradient flow. Towards
the outer edge of the boundary layer the functions may in general differ for the
various types of boundary layer. However by comparison with experimental results in
boundary layers in zero pre.1ure gradient, with injection and at separation, F
appe~trs to be virtually a function of y/5 only and it is the same function as that
in the velocity defect law equation.
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The velocity profiles in zero pressure giadient, with injection and Pt separation
(providing B= 0) can be expressed in terms of F , and the profiles evaluated in
this way agree reasonably well with experiment. The velocity profiles in a pressure
gradient also require a knowledge of S at the outur edge of the boundary layer. A
similarity flow has been considered in which S is assumed to be a function of y/8
only. The resulting family of velocity profiles and the parameters based on t!ie
profile shapes are in good agreement with the experimental results. However, before
any definite conclusions can be made with regard to the comparison between the
theoretical and the experimental pressure gradient parameters, more experiments are
required. To improve the analysis it may be necessary to find how S(1) varies in
different pressure gradients.
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TABLE I

The Function S(y/8)

S(y/8) y/8 S(y/S) y/5

-4.04 0.0174 -1.62 0.19

-3.68 0.0251 -1.35 0.23
-3.22 0. 0398 -0.7 0.35

-2.87 0.0575 -0.32 0.43

-2.58 0.0794 +0.175 0.55

-2.30 0.105 0.57 0.67

-2.02 0.138 0.875 0.80

-2.I 0.140 1. 0 r.0
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APPENDIX

A Dimensional Derivation of the Equations for the Outer Region

The method follows that of Millikan and Rotta but now includes a dimensionless
parameter, Q , which, is independent of y . Q can be a pressure gradient parameter.
a transpiration velocity parameter, a relaxation parameter, etc.

The influence of the kinematic viscosity, v , is restricted to a very small

sublayer region of thickness s . In the outer portion of the boundary layer,
y > 85 , it follows from the processes of turbulent energy dissipation and the diffu-
sion and convection of vorticity that the stress-producing motion is independent of

viscosity (see Rotta). The mean flow in the outer region will therefore depend on

y , u I u 1 , u. , Q and 8, so that the dimensional equation for the or er region

may be wtten in the foru

F u u (A1

A total shear stress parameter is not included because it is assumed that the shear
stress may be evaluated from the momentum equation when the shape of the velocity
profile and the conditions near the wall are known. (This implies that the turbulence

term Z(u-T- v' )/3x is negligible.) Similarly the inner region is independent of

the conditions at the edge of the boundary layer and thus

fl ,Q+) = yu (A.2)

Sin the inner region. (Q may be a functioa of S and u: Q+ may be a function
of V).

In Section 2 the momentum equation is solved approx'mately for the turbulent

region close to the rall and it is shown that the velocity gradient is independent
of the viscosity, v , and of the conditions at the edge of the boundary layer, i.e.

Bw'ay is independent of v , u 1 and 8 . This region corresponds to an overlap
between an inner region in which the total shear stress is independent of the condi-
tions at the edge of the boundary layer, and an outer region in which the shear

stress (Reynolds stress) is independent of the viscosity.

If Equations (A.1, and (A.2) are differentiated with respect to y at constant
x then

u - and du - (Ad3>

dy du dy du V
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or

du y/S V

y - = (a function independent of u1 , S and V)dy dF /du df /du

in the overlap or intermediate region. Hence

1 dF 1 df1  F

F1 du fl du 2

where PF is independent of u 1 , S and v.

Thus

loge P1  = (fF2 du) + F Q)= loge (A.4)

and

loge fl = (JF 2du) + f = loge (A. 5)

Therefore an 'overlap condition' exists of the form

3 Q! = f3 (Q+) - loge(A.6)

The solutions for the overlap region in the form of Equation (A.4) are derived in
Section 4.

The equation for the whole of the outer region may be written in the form:

S(! Q) (fF 2du)independent of u, v, 8 + 3 ( Q)

= (JFpiu) + f (Q+) - log bur (A. 7)

or

, T I u. + , - l o e ( A . 8 )

where S loge y/S in the overlap region.
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If

u ,,(A.9)
Ulf U . U~r

then

•' ~l , , =U (A. 10)

.. Q) f(~ - ) I Q4 ,) A .

Equations (A.8) and (A.10) are used in S -Lion 3.
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SUMMARY

Come properties of LurbuJent asymptotic layers in zero pressure
graO'ent with uitifriu suction, which are equilibrium layers in +ic sense
defined by Clauser, are discussed. A provisional skin friction law for
asymptotic layers Is given. It is shown that mixing length theory is
unable to account for the similarity of the experimental data. The
assumpticn of a constant eddy viscosity in the cuter part of asy-ptotic
layers leads to a fair representation of the experimental dat- The
magnitude of the eddy viscosity of asymptotic layers is only one fifth
of the eddy viscosity of turbulent boundary layers on impe- -vious .ls.

SOMMAIRE

L'auteur e, ose 3ertaines propridtds des couches turbulentes
asymptotes avec gradient ze pression nul et aspiration uniforme, c'est
Sdire des couches d'druilibre au sens ddfini par Clauser. 11 prdsente
une Ioi provisoire de frottement du rev9tement pour les couches
asyuptoter, et d~montre que la theorie de longueur du m~lange ne peut
rendre •ompte de la similitude des donnees experimentales. L'bypoth~se
d'une viscositi de tourbillon constante dans la partie extdrieure des
couches asymptotes permit de se faire une juste presentation des donnges
expdrimentales. Le degrd de viscositd de tourbillon d.s couches
"asymptotes no repres'nte qu'un cinqui~me de la viscositd de tourbillon
des couche3 limites turbultes le long de parois dtanches.
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THE TURBULENT ASYMPTOTIC LAYER

if. Tennekes

1. INTRODUCTION

Of all incompressible turbulent boundary layers flowing along a flat plate in zero

pressure giadlent with uniform suction, the asymptotic layer merits special attention.
An asymptotic layer is characterized by constant thickness and constant properties in
streamwise direction. It will be seen that asymptotic layers are "equilibrium layers"
in the sense defined by Clauser'. Some properties of this particular class of
equilibrium layers will be discussed. The discussion will be based on the similarity
laws for sucked and blown turbulent boundary-layers given in an earlier paper of the
author 2 , which contains only a brief outline of the behavior of asymptotic layers.

The similarity laws for sucked turbulent boundary layers mentioned above are based
on the concept that turbulent boundary layer flow can be described by a "law of the
wall" and a "velocity defect law" which are related through a common velocity scale
and a semi-logarithmic velocity profile in the region where these laws overlap. It
has been shown 2 that for turbulent boundary layers at moderate suction rates
(0.04 < -v 0/u. < 0.10 approximately) the two similarity laws are

S- f , (1)
U V

-- (II - U1)_ (2)

These laws are called the "limit law of the wall" and the "limit velocity defect lave,

respectively2 .

If the velocity profiles of asymptotic layers are plotted according to Equation (2).

they exhibit similarity, as is shown in Figure 1. Note that 8 is taken as the value
of x2 at which U1 = 0.99 U0 . Note also that in the innermost part of the boundary
layer Equation (2). which is a defect 'law. Is not supposed to be valid. This accounts
for the lack of similarity of the data points for x./S < 0.1 . Since the velocity
profiles of different asymptotic layers are similar in the appropriate velocity defect
law plot. asymptotic layers are equilibrium layers in the sense defined by Clauserle.

It has becn shown2 that the velocity defect law given as Equation (2) is consistent

with the equations of motion for the outer part of the boundary layer. It has been
shown also2 that at small suction rates (-vo/U, < 0.04) no asymptotic layers can
exist., since the velocity scale would then be no longer proportional to ul/vo
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3. TINE 1ND~qUCY OF NlIXING IENGTU TNEOIT

In alucst a~l! the current literature on smcks'd and bloam turbulent bomada~ry layers.
e.g. I~efere=-es 4., 5. 6. Prasdtl s makentan trzasport, versiom of sixing lengtb theory
Is used to ebtalm a predictio of 0 the sw-m of the -elocity profile. The basic
bwpthests of vcmmtu tramsort, theor is-. fcr flow near a solid szface7

Fbr the flow Is the fully t.-minuect part of amm asmutotic laethe e'yatlec~s of
notion redme tz

Sbt Atvtiw of E~tlaa (n. into C~zat oa (9) yields. after !2tegmt io

~z e.

__ carstaxt. of f"-tegratirm d in Kratii r.9) reastas as yet =ieteruxined- Simce a
s~mazd Iomritma Occnrs i3 Latio (3). it is ce.led the -bi-ligtrithmie Iaz'-'. a
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x d - 7is !.vpltes that &7-attlo (9) ca b- um-- cnstoamlized &- a~los

2 
los

to the presRzcw --f t!:e ;a.-a3ettr Y_"rL at, taz t= side It ezJ- te sS-%wn

f~tesiof cte egksal esnt - coaz xesly' t: t!:- d isz-a~ beu Lai cc 2 1 (S) is so t re-=eil e' uheM

4- T-IF EDDY VISCOSITY CONCEPT
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ill which vydoes not depend on x2 . SE~fstitit~cm of this e-y-,ressioui into tbh-
equation~ fo7 the vean flcv. Equatrioa (3). and s~sequent Integration yield

ilk which C., Is a so far arbl' -ary integration coostivit.

7be kocmdair! layer thicka-tss of the velocitz. prf Ile givs i= Ezqnat~oC (12) Is
derived a~s fallevs Ass~e that E is the value of x.at which CY= .99U1
R~ztion (12; tbm Yelds. whem m 2 is replaced N- vyU.

0.01 =C, M~- 1)

C I ai C I ei rp-lat-e4 thrzcug~ C~ezp Cz 0.01 o r SIZstttutioa Of !~cLiom (14;
Into EMUOti (IM) one omtalos

aCangaarismof f! ths velocity grefi1e witit tke temeral eivressizzi !or the Itmit defect
izu slows that C, =i4 C3  zbocdd be s..-aats. fttmermdes;t of ar"Tar~et~
CNOW13Ct C, = 0.2 amd C3 = -3 . a fair represe~tatioa of tae atztml velocity

profil~e is obtaiixed. nhis wcmelzii= is d fros ?F-rre 'Z. wh-ich- eoptres zae
velocity Prafiles giveii b~w £.zatioos (3y s= ~ It is terefc-te Tery 4e:1 ;05sible
to dezcribe the me~a flow iLv- ttt aater layer ofl msyn-.tct&i layers Ls if it re-re cars'
by a.-.ant eddly vizcosity.. *- cti otter harmd. it iýs s=-;isizz that for a .c~
Layr'--s tke segai-Io.r-ithauic relocity pretle im t-be regiomi of b~ etiee tt"
siadiiritTy lass for the oate~r :ky-er xr.- tzh-e i~er layez: coi~cides to a. lar;-e extemt,
witi the velocity Profile in the =cter lkvye- is descrihe-2 L-7 a -.;-st'Lr-t edl visCosity.Y

Moe -gitude of ti-e --6kty viscCSity is .foumd b~y sztstitatiag Cz = -3 irto
Xt i in ( 14):-

=-0-.33 v'.(16)

For trbelemt boadary layers mi isperatable valls coa the mctr&.7-. the eddyk rls&eoity
* Is givcQ- bT

V- 8.016 u .(17
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Before atte&-ttiar an interpretatict- of these dzta. Eqvatloos (15) r•nd (17) should be

rearranged in order to obtain expression which conta!n the same variables.

If Equations (16) and (17) are to be rewritten in a suitable &(t of variables. the

"lo garitbic velocity seale" (w') - has to be iitrvciuced:

w* = xz- 1,

2

takea in t'e se1i-locarlthzic part ef the velocity profile, so that w Is independent

of zz . For turbulent boundary layers on Japervlocs sarfaces

S= 2.3 u, . (1-e

uhcress for turbulent bomdary layers at wde2-te suetioo rates

2.G
a' =

Ewmt!oa (WO) cam be verified dirzctly by differeetistion of EqUation (3). Equation

(i9) is -erely the differen!Ila fck-x o." the well-kncm velocity profile for zasscked

tzrbtleot bozmda.y lW-yrs1 .

?be logsr•r etzl velocity scale can be used to define a se!table bowdezy layer

tkicimess-

V UU

WO UJ; Ue a

so tmat

= - (21)

Eq~zt!oi ;21) is raA'id for 11 tarbclet boandary layers in which a logarithmic

velozity scale cam be defi•:.

iL order to write LcAti= (I61 in a =utable form, t•e relatio beteen • sad

Sfor asyspt.:ic la:'ers is reeded. This -6tio cen ke c--lcflated by s'.bstttution of

Equatics (15) a-d (2D) into the dexi=itilo f - giver. above. ?he resmt 's

1C1 =0.2. =

= C.93. 
(22)

Set-stitrzM E£zcation (2-, into Etuatic, (16). ove Cbta_•s for asymptotic layers

= -0.3 (23)

;a-stituting na the other hard Equation (21) into EqutLion 1.17). one obtains for

turbulent bcund-.,y layers orn laperneable surfaces

A
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VT = O. O1M._Ws (24)

The final step of the "transformation" into suitable variablez can be take-. by

noticing that for turbulent boundary layers at noderate suction rates vo = -0.06 uV/w"

and that fcr nusucked boundary layers w" = 5.3 ua/w* (using Eqs. (20) and (19).

respectively). Substitution of these expressions into Equations (23) and (24) gives

for asysr.totic layers

VT= 0.Q'8-•. (25)

and for boundsry !%yers on impervicus w3lls

V7 n.035= . (26)

ftuations (25) and (2O) should be compared with the definition of '_ given in

ftnslien (11). 7he welocity cradient 2r/-x, is proportional to w-/ý. v- be-,nc

the veloit;y scale and A a clearly defined boundary layer thickness. The shear

stress -4i Is rropcrtional to the 'all shear ul . It my be coazluded that the

efd viscoMty zbhtod be propor-tional to ucr-!Žiw . so that Equations (25) and (26)

are at least dimenioazly correct. The eddy viscosity of asymptotic layers can now

be compared with the eddy visccsity of unsacked turbulent boandary layers, since both

are writtem in terms o0 the sam variables. It is seer that the eddy viscosity Pf

aM totic layers (and possibly of 1l1 equilibri-z layers at m-derate .uctiin _ates)

3s cely one fifth as large as the editir viscosity of umsccked turaeilent boundary layers.

A fiusi sugestiow. u.if now be zade coacemimg the lack of agreec,, between

Opgatioms (25) and (26). If Equation (15) is substituted int Equation (81. one
obar (Cl -- 0.2. C", = --

_ - 0- 2 exp -3 . '27)

Waid for asymptotic layers (aly. Close tti the wall tt.trefcre 0- 02 a
eaprzinately. i.e. in this cocteit the -representatiie level of shear s:rcss is

only one fifth of the wsll shear. Ot the other hind. for xnsucked bFmdary_ lyers

-u-- 2 = C& close to the -4!. If no". T-. , but (-ii-- . is used in thi •xpres-
sions for the edy viscasity. Equatiocs (25) and (26) unite. te yield apr.-oxicately

VT= 0. 09 (--U1u2) ef f-

This expression is cbTiotusly pravfsij.al. It is not presenteld as a final result, but

rather to indicate a direction in wfich further progre.ss Way be ezrected.
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Wodre ueia ehd r sdt obtain ieyusan

thetnyscji sabiityequtios. orthe inviscid equeatiovs. new
families of anpIified solutions are fo-und. The ataxism amslificatton
rttes and fre-que~cies. of these solutions are coapcied as functi-ons of
U1 . the free-sEtre= Mach amsber, and as functions of wall tepperature
(cooled wall on~ly) at k, = .8 . It is found that one of the new
families of solutions is the aosL unsteble and is destabilized by

Atoin. For finite Fxyi~olds numbei-s. neutra! sta- .'lity cunres are
computed. and at a fixed Reynolds ntnber the saximus amplification of
dCsturba'lces of constant freiqieaey is conpmted as a function of V,
and of the will teperatur'e at M, = 5.8 . 75e aixizum anplificatlon
decreases with jucreasang 91 at lew supersorn!c Xzch suabers. rise.; to
a Ve2k cm- W, 5 . and thendecreases with further inc'eases inI
Cooling the wall is foundJ to barte little effect on the uaim

amp! IfIcation.

SCIMAIRE

On Lti! ise deux nuithodes naairiQues directes pour It d'eterainat ion
des valeir-s et fonctiotts propres des icquatiotzs liniarise'es complites de
I& stabiliti ainsi que des equations de Ir. stabiliti sans frottement.
Pour les iquationrs sans frottement. on trouval de nouvelles fazilles de
solutions axplifiges. Les taux et freiquences naxinaa d'aaplificatz-on de

ce-s solutions sont calculies cc-me des fonctions de 9, le nombre de
Mach en curani libre. et come de ' fc:ctions de la tempdrature parihtale
(paroi refroinie seule-pent). pour Mf, = 5.8 . On ron.state que ] une des
nouvelles ftnilles de solutions est la plus instable, et se trouve
iloignde de la stabilit6 par le refroi-dissement. Pour les nombres de
Reyno'ds finis, on calcule les courbes de stibilit4 neutre et pcur tin
certain nombre de Reynolds i'sinplification maximale des perturbations da
fr~quence constant e est calculde comme iine fonction de Met de !a
teapgrature pariftale pour Ml = 5.8 . Ltaaplification maximale d~croft
a nesure que it. croft aux faibles nombres de Mlach supersdlniques, croft
ensuite Jtiscu A tine valeur limite aux alentours de M,= , et d~croft
de nouveau i mesuro quo M, continue de croiftre. On constate que le
re.'roidissement de la paroi a ane faible influence stir 1' amplification
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NOTATION

A disturbance amplitude

Al amplitude of constant-frequency disturbance at start of unstable region

A, disturbance amplitude at R = 100

c dimensionless complex wave velocity, cr + ici

ce phase velocity at gereralized inflection point

f amplitude function of longitudinal velocity flu.tuation

F d.mensionless frequency. "/3/U*
2

91  free-stream Mach nut:ier

U local Mach number of mean flow relative to phase velocity cr ,

U mode number

p pressure

Q typical dependent variable

r amplitude function of density fluctuation

R1 free-stream x-Reynolds number. U*x'/v*

R1  Reynolds number at start of unstable region for constant-frequency
disturbance

t time

T static temperature

Tw wall temperature

Tr temperature of insulated wall

u x-component of velocity

U free-stream velocity

v y-component of velocity

x co-ordinate parallel to Lree-stream velocity
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y co-ordinate normal to free-stream velocity

ZI dependent variable. Equation (6)

a dimensionless rave number. (2n/X*)(x*/R)

ash wave number of inviscid neutral solution with phase velocIty ca, nth

mode

OLIn wave number of inviscid singular neutral solution (cr = 1). nth mode

P circular frequency

Y ratio of specific neats

7) Blasius variable. (y*/x*)R

point in boundary layer where u = cs o

7)0 point in boundary laer where u = 1 - I/Ml

6 amplitude function of temperature fluctuation

*K wave length

v free-stream k.nematic viscosity coefficient

7T amplitude function of pressure fluctiiation

p density

* amplitude function of normal velocity fluctuation

Superscripts: An asterisk (*) refers to a dimensional quantity; primes (1)

to derivatives with respect to 7? ; a tilde () to a disturbance quantity.
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THE STABILITY OF TIHE COMPRESSIBLE LAMINAR BOUNDARY LAYER
ACCORDING TO A DIRECT NUI1ERVCAL SOLUTION

L.M. Mack

1. INTRODUCTION

The instability of the compressible laminar boundary layer is cuatomarily assumed
to play the same role in the transition process at supersonic speeds as it does in
low speed flow. However. this assumption has been made without a detailed knowledge
of the instability characteristics of the laminar boundary layer over a wide range of
Mach numbers and wall temperatures. The results presented in this paper are from an
extensive Investigation which was carried out in order to remedy this lack of
information.

Previous calculations of the stability of the compressible boun&ry layer' 2, 3 have
been hampered by the inadequacies of the asymptotic method. With the capabilities of
the present-day computer, the asymptotic method has become obsolete for the groduction
of numerical results, It is now possible to obtain the eigenvalues and eigenfunctions
of the linearized stability equations of Lees and Lin4 directly and without. having to
neglect any terms. A direct numerical method of solution and a few results were first
given by Brown5 ' 6, originally for the simplified Dunn-Lin equations7 , and later for

*i the complete equations. The method used in this paper was developed independently of
Brown's method and is described in detail elsewhere8 .

The compressible boundary layer, unlike the boundary layer at low speeds, is
dynamically unstable; i.e., it is unstable to purely inviscid disturbances. This
instability, which is slight for low Mach numbers, begins to strongly affect the
stability characteristics of the boundary layer along an insulated wall in the
Reynolds number range of interest at about hiM = 3 . In order to study the inviscid
stability separately, a socond numerical method was developed to compute the eigen-
values and elgenfunctions of the inviscid stab)ility equations.

The plan of the paper is as follows: In Section 2 a brief description is given of

the numerical methods used to produce the results to be presented in the remainder of
the paper, Section 3 is devoted to results obtained from the inviscid stability
equations. The maximum amplification rate and the frequency with the maximum amplifi-
cation rvte are given as functions of Mach number up to M, = 10 , and as funct.lons of
the wall temperature (cooled wall only) at M, = 5.8 . The results obtained at 4'inite
Reynolds numbers with the program for the solution of the complete stability equa'Aons
are given in Section 4. The effects of MLch number on the neutral-statl:,ty curve,
the maximum over-all amplification of constant-frequency disturbances at a fixed
Reynolds number, and the frequency of the disturbance with maximum amplification are
all given. The paper concludes with a presentation of the effect of cooling on the
amplification characteristics at one Reynolds number at 1 = 5.8
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2. METHODS OF SCLUTION

2.1 Comlete Stability Equations

The numerical results of Section 4 are obtained from the linearized two-dimensional
stability equations of Lees and Lin". These equations are derived from the Navier-
Stokes equations by writing each dependent variable as a steady mean-flow term plus a

time-dependent disturbance term, linearizing the resulting equations, and subtracting
out the mean-flow equations. Next, the parallel-flow assumption of no x-variation in
the mean-flow is applied, and the equations are made dimensionless with respecL to
free-stream quantities. The independent variable is taken to be

y *

I*

the Blasius boundary-layer variable, where

R = A (2)

and R. is the free-stream x-Reynolds number. Finally, the five dependent disturbance
variables a , , * . T are w.!itten as

Q(xmt) = Q(71) exp[ia(x - ct)] (3)

where Q('rj) is any of the five dimensionless complex amplitude functions f , ao,
7T , r , 9 for the above five dependent variables, respectively. The dimensionless

wave number cc is defined by

271 x*
( _-• R (4)

where X* is the wave length. An asterisk (*) refers to a dimensional quantity.
The complex velocity, which is made dimensionless with respect to the free-stream

velocity U* ,is

c = cr + ici (5)

Hence, cr is the phase velocity of the disturbance in the x-directior, and Mci

is the time rate of amplification. A positive ci means the disturbance is amplified,
and a negative ci means damping.

Z = f Z2  f/ Z =

Tt0 (6)
Z• 4 M Z5 Z S JO

The primes refer to differentiation with respect to 7 . These equations, which are
much too lengthy to write out here, are in a convenient form for numerical integration.
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The boundary conditions are that the two velocity fluctuations and the temperature
fluctuation are zero Pt the wall. 7 3 , and that all dirturbances are bounded at
inf inity.

at 7 = 0 ZI(O) O Z 3(0) = 0, Z5 (0) = 0

(7)
as 7- 0 ZI . Z 3 Z5 are bounded

The temperature boundary condition is appropriate for fluctuations whose frequency is
high enough so that the rolid material oi the wall remains at the wall temperature of
the mean boundary layer

The computer program is written in FORTRAN IV for the IBM 7094 computer. Double-
precision arithmetic (16 significant decimal digits) is used for all numerical
operations. The numerical method consists of constructing an eigensolution from
three linearly independent numerical solutions. These solutions are obtained by
first solving the equations with constant coefficients to which the stability equations
reduce outside of the boundary layer. From these six solutions, the three which are
bounded as 7 - oo are selected. The numerical integration of these three solutions
from the edge of the boundary layer to 7 = 0 yields the needed three linearly
independent solutions. An eighth-order Adams-Moulton method with fixed step size is
used for the integration. It is possible to perrorm this integration up to values of
aR in the neighborhood of 300, with the exact value dependent upon c . At 7 = 0
the three solutions are ccmbined to satisfy the two velocity boundary conditions.
The third boundary condition, Zs(O) = 0 , can only be satisfied by a non-tririal
solution when the parameters a , c , and R forta a set of eigenvalues. The eigen-
values are found by one of the three linear search procedures provided in the program.
The first of these obtains a and R for a specified c , the second c for
specified a and R , and the third c for specified F and R , where

F U*2 - (8)U. R

is the dimensionless frequency. In Equation (8), /3* is the circular frequency and

v* is the kinematic viscosity coefficient. Once the eigenvalues ar3 known, the

eigenfunctions are obtained by combining the three independent solutions at the edge
of the boundary layer and integrating the combined solution.

An important quantity in the present investigation is the over-all amplification
between two Reynolds numbers of a disturbance of c-nstant frequency. When the
amplification at a specific Reynolds number is known for several frequencie:1, the
response of the boundary layer at that Reynolds number to any known disturbance can
be computed. The time rate of amplification at a par'icular x-location in tne bouadary
layer is assumed to be the same as in the parallel fluw f the theory. From Equation
(3).

I dA** ac (9)
A* dt*

OLC
;_



(/

338

In order to convert the time rate of amplification into a space rate of amplification,
the velocity at which the disturbance actually travels through the boundary layer is
needed. Although it is customary to use the group velocity for this purpose9 . the
phase velocity has been used throughout the present computation for reasons of economy.
Also, it was later found that the dispersion (cr vs a relation) in the boundary layer
can be anomalous, "and under this circumstance the use of the group velocity is no
longer correct. The dimensionless space rate of amplification is, from Equation (9)
and with the use of the phase velocity,

I dA OCc.
S2 (10)

A dR Cr

Therefore, the ratio of the amplitude A at Reynolds number R to the amplitude A1

at Reynolds r•ir~ber R1  is

A exp2 dR (11)
AI f RI Cr

The program is ised to find aci/cr at several Reynolds numbers for a given frequency,
and the integral in Equation (11) is evaluated graphically.

2.2 Inviscid Stability Equations and Boundary-Layer Equations

The inviscid stability equations are obtained from the complete stability equations
by taking the limit R - co. The resulting equations can be written as a single
second-order equation. However, this equation is unsuitable for numerical 'integration
because the term T - M2(u - C)2 , which occurs in a denominator, can be zero (u and

4 T are the ,,ean boundary layer velocity and temperature). The two first-order
equaLions,

iM2(u - c)z - T Z3  (12)
T

u? [T - M'(u - c)']Z - Z3 + i u-c (13)3 U -C 3U - C

which were used by Lees and Lin to show that [T - M2(u - c) )] =0 is not a true
singularity, are free from this difficulty and are the equatior., selected for the
numerical integrat ion.

Equations (12', and (13) have a singularity at the point where u =- c . In order
to avoii both this singularity and the need to expand the solutions in power series
about the singularity, the equations are integrated along an indented rectangular
contour in the com'lex r plane. This methd ha: been used successfuflly by Zaati°

for the incompressible boundary la'ye. In accordance with the requirements of the
inviscid stability tbeory", the integration contour must pass below the singularity
(a result that is also obtainMd by requiring the inviscid numerical solutions to be
the R -. x: limit of the numeiical sniutions of the complete equation!-). The mean
boundary-layer qunatities u. u' and T are continued onto the indented contour by
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means of the first three terms of power-series expansions about the poirt where

u = cr - The derivatives needed in the series coefficients are obtained along with
the boundary layer solutions described below.

it sixth-order Adams-Moulton method with the integration step size controlled by

specifying the estimated truncation error per step is usud to perform the numerical
integration. Double-precision arithmetic is not necessary. The integration is
carried out from the edge of the boundary layer to the wall, with the bounded solution
as 7) - cc being used for the initial values. The boundaiy condition at 7 = 0

Z3 (0) = 0 (14)

is satisfied by using a linear search procedure to find which combinations of the
parameters oL, c are eigenvalues. When the eigenvalues are known, the eigenfunctions
are produced by a final integration.

In order to compute numerical solutions of the stability equations, it is necessary
to have mean boundary layer solutions available as input to the two programs described
above. These solutions are provided in tabular form from a separate program that

yields solutions of the flat-plate boundary layer equations. These solutions are
exact within the perfect-gas assumption. The air properties are taken from Reference

11, and the permissible temperature range is from 40 0 K to 11000K. The boundary layer
equations are integrated in a straightforward manner with the same integration sub-
routine used for the inviscid equations. The temperature level of the solutions used
in this paper is as follows: the free- stream stagnation temperature is 311 0 K, or the

*" free-stream temperature is 50 0 K, whichever gives the higher free-stream temperature.

The air properties provided in the two programs for the solution of the stability
equations are the same as in the boundary layer program except that the specific heat
is constant. The specific-heat ratio is taken equal to 1.4, and the second viscosity

coefficient is taken equal to 0.8 of the ordinary viscosity coefficient.

3. INVISCID STABILITY RESULTS

3.1 Neutral Solutions

In their detailed study of the inviscid stability theory, Lees and Lin4 considered
two types of non-superscnic* neutral disturbances. One of these was the sonic neutral
solution with the eigenvalues • 0 , cr - I/Mi . Thb other was tLe subsonic
neutral solution with the ei~nvalues a , c = cs . The phase velocity c. is
equal to the mean velocity at the generalized inflection point, .s , which is the
point in the boundary iyer where

(u'/T)' 0 . (15)

"A disturbance In sub!.oni-. sonic, or supersonic dcptiding upon w!! ther cr is greater than,
equal to, or Icss than I -I/M
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Mtt ¥, -- 0 . Equation 11--) re' _ to u' 0 and T, Is a true inflection point-
The existenw-, of in infl.ctioa point is the n'ziessary and sufficient ccaditimr for

the In ;atabtlity of the inr~e resstbl- boundary layer. For the cozpressible
boundary m-er, Lees and Reshotko: hzve co~uttd as as Dfunction of M, . The
fact that the u~iqueness proof of Lees and LID fisr a as a function Of cs .and

M, app I es anoly t.hz T - M,(u - c) < 0 1ed Lees and Reshctko to state that there
Is some question of the untiq•eness of as when T - 3 (u - c)2 > 0 . The physical
meaning of this Ineuality aky be seen more easiiv if the aean flow is viewed relative

to the phxsz velocity. The local Mach ntober of the relative flow is

- (c-u ) (6

V"T

Coesequently the uniqueness proof is valid only when the mean flow relative to the
phase velocity is subsonic throughout the boundary layer.

In the course of the present inre,,tigation it became apparent that there must be
multiple values of as . A systenatic search for additional neutral solutions of

this type yielded the results shown in Figure I for the insrtated-wall boundary layer.

The dashed curves in this figure are d.scussed later. The lowest curve, for es•

is a recalculation of the Lees-Reshotko result. The other nine curves for %n(n > 1)

are the new solutions. With cr = cs . the free-stream Mach n-rber for which M is
first equal to unity is M. = 2.2 , and no multiple s5ot.ions have been found fcr
M1 < 2.2 . A recent theory of Leos 1 2 confirms that the additional solutions are

Rssociated. with the existence in the boundary layer of a region of supersonic relative

flow. Itltiple solutions of this type have also been found by Gill' 3 in a study of
-top-bat'* jets and wakes.

The pressure-fluctuation amplitude functions of the multiple neutral solutions

reveal a regularity which suggests that these soi',tions are a sequence of vibration

modes of the boundary layer. The solution for as, , which can be called the first
mode, has no phase change in the pressure fluctuation across th3 boundary layer. The

solution for a5s . the second mode, has a single 1800 phase change. The third mode
has two 1800 phase changes, and so forth. These phase changes can be related to the

streamline pattern of the steady flow relative to the phase velocity.

In addition to the neutral solutions with eigenvalues 5sn, Cs I another sequence

of neutral solutions was fouad during the investigation. These solutions have the

eigenvalues a = a 1 n, cr "1 , anA , like the additional neutral solutions (asn' cS),

exist only when there ;s a supersonic relative-flow region in the boundary layer.

There is no neutral solution of this type for the first mode. As each of these
solutions is approachý-4 from nearby amplified solutions, the ratio of the maximum

amplitude te the amplitude at the edge of the boundary layer increases without limit.

Consequoatly, they are called singular neutral solutions. It is not possible to make

a direct numerical computation of a,,n but since a varies linearly with Cr In

Ohe limit cr - I it is possible to obtain a value of aln by extrapolation from

the nearby amplified so.utijns. The 'ew numerical results that are available for

in have been used to draw the two dashed curves in Figure 1. The dashed curves

extend to a Mach number near unity becau:;e with c r = 1 a supersonic relative-flow

region is present at a much lower Mach ,nrber than 2.2. The importance of the singular
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neutral solutions lies in the fact that. unlike the solutions (•as C5), they exist.
for all boundary layers in rhich there is a supersonic relative-flow region.

Besides the subsonic neutrel solutions just discussnd. supersonic neutral solutions
have also been found. Soire of these solutions are of a singular nature and serve as
limiting solutions for families of amplified and damped supersonic solutions as
Ci -0 . Non-singular superson c neutral solutionc which, physically, are undamped
outgoing waves have ben, found for a limitea number of cooled-wall boundary layers.

3.2 Amplified Solutions - Insulated-Wall Boundary Layer

Asscclated with each of the neutral solutions (asn' Ca), there is a family of
amplifiei and damped solutions which includes the neutral solutions. The eigenvalues
of these solution]s can be plotted in the manner shown in Figure 2 for the M, = 4.2
insulated-wall boundary layer. Each point on a curve in Figure 2 represents an.
inviscid solution, and the polnts that lie on the axis c, = 0 are the reutral
solutions. Two families of amplified solutions appear in Figure 2. The first family
connects the sonic neutral solution and the first-mode neutral solution (asl Ca).
The solutions in this family are referred to as the first-mode amplified solutions.
The solutions of the second family, which connect the singular neutral solution
(Or2- 1) and the second-r-le neutral solution (as2' ca). are referred to as the
second-mode amplifier' u.. ions. The third and higher modes also have amplified
solutions which -nnect (a,,, 1) with (aSnh CS). The amplified first-mode solutions
have only a smrll phase cha.ge i.n the pressure fluctuation in agreement with the

" behavior of the first-mode neu. 'al solution (as:,' CS). The amplified second-mode
unstable solutions have a considerable phase change, for the most part close to 1800,

S� iL agreement w.th the second-mode neutral solution (asc, C). It is not yet clear
Low to classify thi damped solutions in Figure 2, which include a family of supersonic
solitions, and the full understanding of these solutions must await a theoretical
investigat~on into the nature of the amplified and damped solutions of the inviscid
equatinn.

The eigenvalue diagrams at M, 5.8 , where a.12 < aOs, are shown in Figure 3.
At this Mach number, it is the continuation into the damped region of the family of
.mplified solutions of the first mnde, rather tlan the second mode as in Figure 2,

that lends to the supersonic damped solutions. Further increases in Mach number
bring additional changes in the eigenvalue diagrams. In particular, the first and
second-mode amplified solutions join at a ci > 0 , and the curve that starts at the
sonic neutral solution does not regain the neutral axis until it reaches the neutral
solution (aS2, CS).

It has been found that the i> ;'iscia relationship between cr and a is closely
preserved at finite Reynolds numbers. Consequently, the statement made earlier that
the dispersion in the boundary layer can be anomalous way be verified from the
e eigenvalue diagrams. It is appacent that as a increases, Cr may either in-rease
or decrease depending upon the family of solutions being followed and the range of O.

With the eigenvalues known, the maximum time rate of amplification and the

frequency of the disturbance with the maximnum amplification rate (referred to as the
most unstable frequency), can be obtained for each mode. This information Ic provided
in Figure 4 as a function of M, foi the first three modes. In diwecnoionless form
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At is necessary t9 plot, Instead of a frequency alone, the quantity PR , ,rhere R
is the Reynolds number of the boundary layer profile whose inzvisid stability is
under consideration. Figure 4 shows that the most unstable mode, at least for

Ml > 2 , is the second mode. Above M1 = 6.5 the third mode is more unstable than
the first mode. The maximum amplification rate of the second mode occurs at

N, = 4.6 , and at.M, = 10 has only one-third of its -alue at Mi = 4.6 . At

M, = 10 . the most unstable frequency of the second-mode is only 50% higher than for
the first mode, but at Mi - 3.8 this frequency is five times as large as the most
unstable first-mode frequency.

3.3 Effect of Wa!l Cooling at M1 = 5.8

One of the most interesting results of the stability theory has always been the
prediction of the stabilizing effect of cooling'. This prediction follows from an
investigation into the influence of wall cooling on the minimum Reynolds number

neutral solution, and is based upon the asymptotic theory. Consequently, it is
important to use the direct numerical methods to study the effect of cooling on both
the inviscid and finite Reynolds number stability charactei'istics. In this section,
the inviscid stability of cooled-wall boundary layers at MH = 5.8 is considered.

Cooling the wall at a fixed Mach number moves the generalined inflection point ;s
in the direction of 7)0 , the point where u = 1 - 1/Ml . When T,/Tr , the ratio of

the wall temperature to the temperature of the insulated wall, is equal Uo 0.20 at
MU = 5.8 , the two points 77s and 7e coincide. When TF/Ir = 0.15 , the point 77
vanishes. With s< oor no-existent, the subsolnic nev'ral solutions (0.sn, c• )

no longer exist. Consequently, no first-mode amplified -olutions are possible since

they are bounded by the sonic neutral solution and the nEutral solution (rsl, Cs).
However, the singular neutral solutions exist regardlesr of the wall temperature.
Further, ann does ,iot approach a0m as 77s - 0 , and c. - 1 - 1/M, rather than
"uniLy. Consequently, the vanishing of the neutral solutions (Xsn, ca) does not imply

the stabilization of the higher modes. Indeed it is found tiat the amplified solutions
of the second and higher modes exist at all wall temperatures.

When the wall is cooled so that 7a Is near 7o , a neutral supersonic solution

is found with a phase velocity slightly- less tt'n - IiM, and a wave number slightly
greater than o.s . A family of supersonic amplified solutions with small aci is
associated with this reut.'al ..olutiun. Wnen the wall is cooled further, so that 7s

is less than 7? or does n-t exist, t~e stccnd-wode amplified solutions originating
at the singular neutral solution ( ,12 1) join the sunersonic amplified solutions at

a ci > 0 . The latter" solucions eventually regain the neutral axis at a singular
supersonic neutral sol,,tinn.

The effect of cooling at h!l r 5.8 on the I.ime rate of amplification and frequency
of the most unstable di'iturbonce for the first 0hree modes Js shown in Figure 5. As
expected. the first moue is 'mnpletely stabilized by cooling at Tw/Tr = 0.20 . In
contrest, cooling destabilizes both the second and third modes. Associated with the
increase in amplificztion rate is an increase in the most unstable frequency. For
the first mode, the ozst uastablu frequency goes tc zero as stabilization takes place.

• hc oniy other Mach number at which a computation has been made of the effect of
cocling oa th! inviscid stability Is M, : 'I.(. . At thbs Mach number, cc ling has an
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even larger destabilizing effect on the second mode than at M1 = 5.8 For
Tw/Tr = 0-055 , the maximum second-mode amplification rate is increased by 80% and

the most unstable frequency is doubled as compared to the insulatcd,wall values.

4, STABILITY AT FINITE REYNOLDS NUMBERS

4.1 Neutral-Stability Curves for the Insulated-Wall Boundary Layer

It is possible to plot the eigenvalues of the complete stability equations in the
same way as was done for the inviscid eigenvalues, but with a separate diagram for
each Reynolds number. However, it is customary to represent the eigenvalues by
plotting wave number, phase 4eiocity, or frequency as functions of the Reynolds
number for constant c, or ac, . In such plots, the unstable region is separated
from the stable region by a curve of neutral stability (cxci = 0), which serves to
define the range of unstable eigenvalues. The present section is devoted to an
examination of computations of the neutral--stability curve at M= 2.2, and toa
study of the effect of Mach number on the neutrar stability curve.

The original Lees-Lin theory" was applied by Lees' to compute neutral-stability
curves up to M1 = 1.3 . The present author 2 used the Dunn-Lin theory 7 at M1 = 1.3,
1.6 and 2.2, and Lees and Reshotko 3 used an improved asymptotic method, which includes
terms neglected by Dunn and Lin, at M. = 2.2 and 5.6 . The direct numerical method

Sagrees satisfactorily with the asymptotic method at M= = 1.3 and M, = 1.6 except
* in the minimum Reynolds number region, and with the experimental neutral points of

Laufer and Vrebalovichb" at M, = 1.6 . It is at M, = 2.2 that wide disagreements
become apparent.

In Figure 6, three computed neutral-stability curves at" M1 = 2.2 are given in the
form of frequency vs Reynolds number along with the experimental points. The dashed
curve is the result computed from the Dunn-lin theory 2 . The innermost curve is

* obtained from the complete stability equations by the direct numerical method. There
is a large difference between these tio neutral curves at all Reynolds numbers. The
Lees-Reshotko neutral curve is not shown, but it is in exact agreement with the Dunn-
Lin curve on the upper branch, and is slightly-to the right of the !.41nn-Lin lower

* branch.

The third curve in Figure 6 is the neutral-stability curve obtained from the
simplified equations of Dunn and Lin by the direct numerical method. This computation
tests both the adequacy of these equations and the success of the Dunn-Lin method in
solving them. It is apparent from Figure 6 that the asymptotic theory makes a greater
numerical error in solving its system of equations than is inherun:. in the asymptotic
equations themselves. The close agreement of the Lees-Reshotko ne,,'el curve with
the Dunn-Lin neutral curve also indicates that the source of trouble with the
asymptotic method is not to be found in the equations. It is to be concluded that
the asymptotic theory is no longer adequate for numerical computations in the Reynolds
number range of interest above M, = 1.6

The experimental points in Figure 6 lie very close to the upper branch given by
the asymptotic theory. On the lower branch, they fall generally along the neutral
curve obtained from the complete equations. As a result, the exp-rimental unstable
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region is markedly larger than the computed unstable region, and associated with this

difference is almost an order of magnitude difference in the experimental and computed
amplificati3n rates. The reason for the disagreement between theory and experiment

at M 2. 2 is not known.

The dependence of the neutral-stability curve upon Mach number is best shown by
plotting the elgenvalues against l/R instead of R in order to emphasize the large

Reynolds nnmber region. In Figure 7, plots of a vs 1/R are given for M1 = 1.3,
2.2, 2.6. 3.0 and 3.8. Only the neutral-stability curve at M, = 1.6 is similar to

the familiar one at Mi = U . The increasing value of asL with increasing M,
enlarges the range of unstable wave numbers as R - 0 , and this enlargement gradually

spreads to lower Reynolds numbers as M, increases. At M1 = 3.8 , this process is

complete. The familiar maximum in a at a low Reynolds number has disappeared, and

ta increases monotonically as the neutral-stability curve is followed from the
inviscid sonic neutral point to the inviscid neutral point a., . The appearance of

the neutral-staoility curve at M, = 3.8 is reininiscent oi that for the wake, with

the difference that the minimum Reynolds number for the wake is much lower. This
type of neutral curve implies that the maximum instability occurs as R CO
Consequently, the effect of viscosity is only stabilizing, in contrast to the

situation at low Mach numbers where, without viscosity, the boundary-layer is either

stable or nearly so.

Two neutral-stability curves of a vs R are given in Figure 8 for M, = 4.5

and M, = 4.8 . These Mach i~umbers were selected because a 1 2 = as at M, 4.6
(Fig.1). At M, = 4.5 , where a 1 2 > 51 , there are two distinct unstable regions

and two distinct neutral curves. Th, l.iwer unstable region corresponds to the

* Inviscid first-mode amplified soluti ns, and the upper region to the inviscid second-

mode unstable solutions. The first-mode neutral curve is similar to the M, = 3.8
neutral curve. The lower branch approaches a = 0 as R - c , and the upper branch

approaches a. . The upper branch of the second-mode neutral curve approaches the

aecond-mode neutral solution as2 I and the lower branch presumably approaches the

singular neutral solution a12 ' Because viscosity is only stabilizing, and the

second mode has greater inviscid instability than the first mode (Fig. 4), the second-

mode unstable region extends to a lower Reynolds number than does the first mode.

At U, = 4.8 , where a1 2 < a8, , the two unstable regions have merged into a

s.ngle large unstable region enclosed by a single neutral-stability curve. This

neutral curve ex,ends from the inviscid sonic neutral point to the inviscid second-

mode neutral point a 2 . A further increase in the Mach number above 4.8 makes the

verger of the two unstable regions more complete. Also, it can be expected that the

upper brasch will tend to aS when a13 < aS2 and to a. when X14 < a8 3

4.2 Amplification in the Insulated-Wall Boundary Layer

The neutral-stability curves serve to locate the instability regions blu. :: )t

provide any information concerning the actual growth of disturbances In the boundary

* layer. The maximum rate of amplifhation can be obtained at a specified Reynolds

number. but of more interest than the rate of amplification i% the amplitude of a

disturbar.re of constant frc•quency as a function of Reynolds number. This type of

calculption has bee• performed by Lees at MN 0.7 . The relevant equation is
Equation (11), "
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It is found that the ratio of the amplitude at the end of the unstable region tc
the amplitude at the beginning increases indefinitely as the freqtuency F decreases.
Consequently, any desired amplitude is possible if sufficiently large Reynolds numbers
are permitted. A more meaningful computaticn is to find the variation with frequency
of the ratio of the ampl!tude at a fixed Reynolds number to the amplitude at the
start of the unstable region. This computation will yield the value of the maximum
amplitude ratio, or amplification, rather than the maximum amplification rate, that
is possible at a given Reynolds number, as well as the corresponding frequency. This
frequency is referred to as the mos 'unstable frequency. It differs from the inviscid
most unstable frequency, as the latter is the frequency with the maxhmum amplification
rate.

A typical result is shown in Figure 9 where the amplitude ratio A/A1 at M, = 5.8
is given as a function of frequency for four different Reynolds numbers. When the
upper branch of the neutral curve is located upstream of the specified Reynolds number
for a particular frequency, the damping downstream of the neutral curve is not
considered in computing A/A1 . Hence Figure 9 giles the available amplification at,
or upstream of, one of the four Reynolds numbers. The maximum amplification rises
from five at R z 1000 to 400 at R = 2500 . At R = 1500 , the most unstable

frequency of 1.1 x 10-4 is amplified 21 time'. For the typical wind-tunnel condi-
tion of R./in = 10' , this frequency is 42,000 cycles/rsc. The half frequency,
21,000 cycles/sec, doos not pass through the _,cond-mode unstable region and is
amplified only 2.3 times.

When the computation of Figure 9 at R = 1500 is repeated for several Mach numbers,
Figures 10 and 11 can be drayra. These figures give, respectively, the maximum ampli-
fication and the most unstable frequency at R = 1500 as functions of tiAe Mach number.
From K 3.6 , where the second-mode unstable region first appears at R = 1500,
to MI 4.6 , the merger Mach number*, there are two separate unstable regions and,
therefore, two separate curves in the figures. Computed points were available at
Ut = 0.7 (Ref.9), 1.3, 2.2, 3.8, 5.8 and 7.0. The amplitude ratios for the second-
roi.e and combined regions between M, = 3.6 and 5.8, and for the first-mode region
between 3.8 and 4.6, have been estimated from the neutral-stability curves and the
inviscid amplification rates. The estimated portions of the curves ere drawn dashed
to emphasize their tentative nature. In order to ýave a continuous second-mode curve
in the vicinity of the merger Mach number, it i. necessary to interpret A1  in the
following manner. For 3.6 < M1 < 4.25 , the mL, t unstable second-mode frequency
does not pass through any part of the first-mode unstable region. For Mi > 4.25,
this frequency passes through the first-mode region and then a damped region before
reaching the srcond-mode neutral curve. At some Mach number less than the Mach
number where thi mo-ger of the two unstable regions is completed for this frequency,
the initial amplitudf at the second-mode neutral curve will equal the initial amplitude
at the lower branch of the first-mode neutral curve. Consequently, above this Mach
number Al is taken to be the auplitude at the first-mode neutral curve rather than
the second-mode neutral curve.

As U, increases from zero to two, there is a remarkable decrease in the maximum
amplification. Indeed, at M1 = 2.2 the boundary layer at R = 1500 is almost

N1 V 4.6 in the merger Mach number at infinite Reynolds number. The actual merger Mach
number at R a !500 is slightly larger.
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stable to the assumed dioturpances, The mumerical reason for thLs decrease can be

seen by consideration of the maximum space rate of amplification aci/cr of tile

disturbance with naximium amplification at R = 1500 . In comparison with Mi = 0

a and cr at MI = 2.2 are each decreased by a factor nf 5, and cr is increased

by a iactor of 2. Consequently, the maximum amplification rate at Mi = 2.2 has

only 1/ 10 of its , aiuo at M, = 0 . The decrease is interpreted to mean the virtual

disappear ance of tne vi,.,.ous instAbillty mechanism that is responsible for the

instabili.y of the incompressible boundary layer. The gradual increase in the

amplification in the first-mode region between M1 = 2.2 and 4.6 is a consequence

of the increasing inviscid instability. This amplification increase is accompanied

by more than a four-ford increase it the most unstable frequency.

At Mi = 3.9 the second-mode amplitude ratio is equal to that of the first-mode.

-However, the most unstable second-mode frequency is almost four times the most

unstable first-moda frequency. At the merger Macb number the two frequencies differ

by Just under a factor of two. The merger Mach number is close to the Mach number at

which the second-mode has its maximum inviscid amplification rate (Fig.4). Therefore,

increasing the Machi num'c can be expected to lead to a decrease in the amplification.

The actual decrease in amplification is not as large as would be expected from

Figure 4 because the unstabl- ýegion is enlarged with increasing Mi as the upper

branch of the neutral-stabi] y curve got-.. in the limit R - o , first to as 3 at

mi, = 6.5 * ard then to os4 at some higher Mach number. It is estimated that at

MI = 10 AIA1 at R = 1500 is about 5.

Before any use can be made of the amplification results in interpreting observed

transition Reynolds numbers, two points must be kept in mind. First, at Mi = 0 the

* . experiments of Klebanofi, Tidstrom end Sargent "5 have shown that after the linear

range of the stability theory two other events precede the first appearance of

turbulence. A strongly three-dimensional development of the instability wave is

folhowed by a sudden breakdown in the most amplified portion of the three-dimensional

wave. The breakdown can perhaps be explained as a secondary linear instability of

the highly distorted time-dependent boundary layer velocity profile". If either of

these processes depends upon Mach number in a different way than does the linear

stability theory, the variation of the transition Reynolds number with Mach number

will not follow the trend of the linear theory. Thie second ioint is that the appli-

cation of the linear theory itself requires the specification of the disturbances

present in the boundary layer as to frequency spectrum and amplitude distribution in

the flow direction. If a frequency is found to be the most unstable frequency at a

certain Reynolds nunber, but the energy at this freque'icy is negligible compared to

the energy of other frequencies, then the observed dominant frequency will not be the

one calculated as the most unstable. The observed frgquency spectrum after amplifica-

tion also depends on whether or not the quantity A1 appearing in Figures 9 and 10

is a function of x . Figure 9 is the actual frequency spectrum at any of the four

Reyuohls numbers only if the initial frequency spectrum is flat and A1  is independent

of x.

4.3 Effect of Cooli|ig at M = 5.8

The effect of co3limn" on the inviscid stability at Ni1 = 5.8 has been discussed

in Section 3.3. The conclusio,, stuwnarized in Figure 5, was that cooling can com-

pletely stabilize the first-r, d!e, but destabilizes the second and higher modes. In



347

this section, the effect of cooling at M, 5.8 on ,, t,.bility characteristics at

finite Reynolds numbers is presented.

Neutral-stability curves, amplification rates, and the over-all amplification of
constant frequency disturbances have been computed for Tw/Tr = 0.65 1 0.25 and L.05.

The effect of cooling on the neutral-stability curve is to uncouple the merged first

and second-mode unstable regions, and at the same time to move the first-mode unstable

region in the direction of infinite Reynolds number. The second-mode unstable region
extends to substantially the same minimum Reynolds number for all wall temperatures

but shifts to higher values of a as Tw/Tr decreases.

The maximum amplification rate at a given Reynolds number is given within a few

percent by the inviscid theory. The maximum amplification at R = 1500 is given in

Figure 12 (upper curve) as a function of Tw/Tr I and the most unstable frequency at
R = 1500 is given in Figure 13. As shown by Figure 12, the maximum amplificaticn is

almost independent of the wall temperature. The increase in the amplification rate

with decreasing Tw/Tr is compensated for by the narrowing of the unstable region.

The most unstable frequency is increased about 757 over its insulated-wall value.

The inviscid most unstable frequency doubles over the same temperature range, and at

R = 1500 averages about 15% less than the frequency of Figure 13. Consequently,
provided the Mach number is high enough, the maximum amplification rate and even the

most unstable frequency can be obtained satisfactorily from the inviscid theory.

However, for the computation of the amplification it is necessary to carry out a

finite Reynolds-number calculation.

Figure 12. like Figure 10, gives the actual amplification at R = 1500 of a

disturbance for which Al , the initial amplitude, is independent of Reynolds number

and frequency. A different type of disturbance is one that is introduced into the

boundary layer at some ixed x-position, say at R = 100, with an amplitude A0 .

: For this disturbance, the stabilization of the first-mode by cooling replaces a region

of low amplification rate by a damped region in which the damping rate increases with
increasing cooling. This change will have a large effect on the observed amplitude

of the disturbance at a downstream location. The lower curve in Figure 13 gives the

amplitude ratio A/A0 as a function of Tw/Tr . The most unstable frequency at

R = 1500 is the same for the localized disturbance as for the uniformly distributed

disturbance. Figure 13 shows that the amplitude of the disturbance at R =.1500 is

less than its initial amplitude for Tw/Tr < 0.24 . In this special sense, cooling

has stabilized the boundary layer.
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SUMMARY

Recent theoretical progress in che field of boundary layer stability

and transition us influenced by a compliant surface is reviewed. The

mair physical mechanisms involved in boundary layer instability are

explairied, and it is demonstrated that for any stabilization method to

be effective the net dissipation associated with an instability wave

must be reduced. Results of extensive numerical calculations show that
for certain combinations of compliant surface parameters it is possible

to reduce the spatial amplification rates substantially, although the

increase in critical Reynolds nuber usually is small. The main practical
difficulty associated with this method of boundary layer stabilization is

to find a compliant surface material of low mass density.

The qualitative effects of a wall flexibility on the later non-linear

stages of transition are also discussed. It ia concluded that the direct

effect on the non-linear breakdown process is likely to be small and

that the main effect is on the primary wave whose nature may be altered

and thus the condition for the hppearance of turbulent bursts.

SOMMAIRE

Des r4cents progr~s thWoriques rdalisds dans le domaine de la

stabilitd de la couche limite et de la transition grace i 1'introduction

d'un plan souple sont passds en revue. Les principaux processus
physiques de l'instabilitd de la couche Iimite sont expliqu6s et l'on

d~montre qu'une mdthode de stabilisation n'est efficace qu'& condition

de diminuer la dissipation nette lide A une cnde d'instabilitd. Les

r~sultats de norabreux calculs numdriques montrent que pour certaines

combinaisons de paramntres des plans souples il est possible da r~duire

considdrable.nent les taux d'amplification spatiale :,uoioue I'augmentation

du rombre de Reynolds critique soit gdndralement faible. La principale

difficult6 pratique lide A cette mdthode do stabilisation de la couche

limite consiste 4 trouver un matdriau pour la plan souple possduant une

faible ,,.nsit6 massique.

Les effets qualitatifs de 1'dlasticitg de It paroi sur les stades

ultdrieurs non linkaires de la transition sont discutds. On conclut oue

l'effet direct sur le processus je dOtdrioration non linkaire est

vraisomblablement restreint et quo cet offet s'exerce surtout sur l'onde

primaire dont la nature pout se trouver modifide et ftre par la suite

la condition de 1'apparition de poussdes de turbulence.
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NOTATION

(All variables have been made dimensionless, except as stated, using as
references quantities , U. and p. Dimensional versions are denoted

by a star.)

C C r + ici complex phase speed of disturbance

C = Vi"7 wave speed on a free membrane

c 5 = . (cr. group velocity

c1  compressional wave speed in viscoelastic material

c 2  shear wave speed

d damping constant for membrane

d2 damping constant for viscoelastic material

modified Tietjens function

G shear modulus

H depth of viscoelastic layer

k spring constant of membrane support

m .uss of mcribrane per unit length

p pressure

R - 8 Reynolds number, based on boundary layer thickness

T membrane tension

U(y) velocity of parallel mean flow

UM free-stream velocity (dimensional)

u, v perturbation velocity components

Y• tangential wall admittance

Y2 normal wall admittance
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a= •r +-iIN complex wave number

frequency of disturbance (dimensional)

temporal amplification rate (dimensional)

boundary layer thickness (dimensional)

V kinematic viscosity (dimensional)

p density of fluid (dimensional)

P2 relative density of viscoelastic solid

= 0(cr - non-dimensional frequency, based on boundary layer thickness
Uw

/rv/U2 non-dimensional frequency based on viscous length scale

w0= k•" cut-off frequency of spring-supported membrane

I -
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TIHE EFFECT OF COMIPLIANT WALLS ON
BOUNDARY LAYER STABILITY AND TRANSITION

Marten T. Landahl and Richard E. Kaplan

1. INTRODUCTION

In recent years a conceptually new idea for boundary layer stabilization has
attracted great J.ite,:est. This idea, introduced by Kramer', 2, is that the dynamic
properties of a boundary layer, and hence its stability and transition characteristics,
may be influenced by coupliiig it h3droelastically" to a compliant wall. Kramer's
original hypothesis was that by distributing damping over an elastic wall that was
tuned to a frequency near that of the most unstable Tollmien-Schlichting wave, it
would be possible to add 3ufficient dissipation to the instability waves that they
would become attenuated. On this principle he designed a flexible coating that, in
some favorable circuastences, was shown to produce a substantial drag reduction for
towed underwater bodies, thus indicating a delayed transition to turbulence.
Unfortunately, subsequent attempts to veryify Kramer's findings under more controlled
circumstances have been rather unsuccessful, and no conclusive experimental results
showing extensive stabilizing effects have as yet been published. On the other hand,
theoret'cal investigations by Benjamin , Betchov", Landahls and others 6 -9 indicate
that a substantial stabilizing effect is possible, but that the physical mechanism is
rather more intricate than that originally envisaged by Kramer, and that in fact any
added di.ssipation must by itself be destabilizing. Recent extensive numerical
calculations by Kaplan 9 give a possible clue to why the experimental findings have,
so far. been largely disappointing. It turns out that large stabilizing effects are
predicted to occur only for a narrow range of parameters characterizing the flexible
wall, and a surface chosen more-or-less at random is most likely to have a
negligible or unfavorable effect. There is, of course, also the explanation that
the main effect in reality is cn the fully developed turbulent boundary layer, a
possibility that has been tentatively explored in a recent paper by Benjamin20 .

Apart from the engineering applications, which in light of the investigations
carried out so far might not seem too promising on balance, the general field of
problems involving a houndary layer or other shear flow in contact with a flexible
surface is of great general scientific interest. Such problems appear in a great
variety of physical situations as, for example. in wind induced water Aaves, panel
flutter at transonic speeds, flow of blood in arteries, etc. It should also be
emphasized that the additional "degree of freedom" introduced by the flexible wall
has made it possible to gain further insight into the physical mechanisms causing
boundary.layer instability; specifically, a completely new expl:nation of the role
of energy dissipation has been arrived at.
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37e present paper will be primarily concerned with the influence of various types

of flexible surfaces on Tollmien-Schlichtinr stability. Recent progress will be
reviewed, in particular regarding the effect on spatial (as opposite to temporal)

amuplification rates. Some discussion, mostly of qualitative nature, will be given
to the effect on secondary instability, i.e., to the later stages of transition.

2. GENERAL FORMUIUATION OF PROBLEM

The physical problem considered is illustrated in Figure 1. A parallel shear flow
of width 8 characterized by a velocity distribution U(y) such that U(y) = U, = 1

for y 3> 1 is bounded by a compliant surface which, when the system is at rest, is
located at Y = 0 . The term "compliant surface" should be understood in a very
general sense; thus it could be any elastic structure with properties homogenous
in x (for example, a membrane or a rubber coating, a water surface, or another shear
flow). The problem of the stability of this dynam'*c system to infinitesimal
disturbances may be reduced to the investigation of two-dimensional infinite
travelling waves characterized by a stream function ¶/(x,y,t) of the form

O(x,y,t) = 0(y) eia(x-ct) (1)

where cO is the wave number and c the phase velocity. The function is governed by

the familiar Orr-Sommerfeld equation

ioLR[(U - c) (0" - - = O"" - 20 2(" + WL'. (2)

The parameters appearing have been made dimensionless using as reference quantities

U, and S . Thus, the Reynolds number R is defined as

R Uw/L. (3)

The boundary conditions for the problem are determined from the following physical

conditions:

(I) the perturbations vanish far from the boundary;

(ii) the velocity and pressure perturbations at the compliant surface .iust be
compatible with the motion of the surface at the given (0c,c).

The first of these gives that

AV -- as y - co. (4)

We turn next lo the boundary conditions at the wall. The dynamic properties ef tle

flexible wall are most conveniently described by its tangential and normal travelling-
wave ndmitta:;ce, defined as follows:

Y,27P.c) = Ip, (5)

Y?2 (A,c) - -)

Ilcre u. use1(x'ct) and v s eiCxct) are the tangential end normal

c S S Semionetsrespect ively. ef the surface v'eloc Ity, and Pw j; P 0 ic('-et) the wa~ll
C~ml~oent s
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pressure. The compatibility condition (il) may be expressed as a matching of
Y,2 and Y, 2 to their corresponding "fluid admittances". Let superscript f denote
the admittances of the shear flow considering the streamline along the wall as the
flexible surface. Then

Yf u) (7)
12(7 Pw

yf V 1 (77)(822 (8)
22 

PPw

where v, is the vertical velocity of the interface streamline. Now, in linca-rized
approximation

(M = u(0) + 77•u, (9)

v(7). = vi(l - Uw/c) (10)

where subscript w drnotes values at the wall (y = 0). Normally, (w would be zero
for a solid wall but would be non-zero if the compliant wall consisted of another
shear flow. The (dimensionless) fluid pressure at the wall may be obtained from the
linearized x-momentum equation. This yields

= M10., ) + (c - U) + UwA (11)

Upon combining (7) to (11) and expressing u and v in term of • we obtain

yf O= 22U~ (12)

f W;( -U./C) (13)

22 iU•

where P' is given by (21). The second term in (12) results from replacing
77 by v1/(-i(c) and expressing vi in terms of Yf2 and p. by aid of (8). Having
thus expressed the fluid admittances in terms of : and its derivatives at the wall
we may now state the boundary conditions at the wall as follows:

Y2 Y12 (14)

Yf2 Y22 (15)

Here, the left-hand sides are functioils of the shear flow only, and the rigtht-hand
sides depend only on the properties of the flexible wall. A slight approximation is
actually involved in the above derivation in that the induced shear stress is i~mored
as far as the motion of the cc.mpliwot boundary is concerned. This is certainly an
allowable approxl ion for fluids of low viscosity.

The four boundary conditions (4), (14) and (15) are homogenous, and mon-zero
snlutions of (2) are thus possible onily for certain eigenvalue combinations of the
parameters a. c and R . The traditlicaal approach in hydrodynamiio stability is to
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consider o and R as real and given, and a = cr + 1c, as complex. Whenever the
imaginary part, c1 , is positive, the wave will grow with time (temporal
amplification case). However, in most physical situations it is actually more
informative to consider R and the (dimensionloss) frequency o = oic as given real
numbers, and a -- r + ici as complex, so that a negative oci indicates that a
disturbance of given frequency will grow in the downstream direction (spatial
amplification case). For small amplification rates the temporal and spatial eigen-
values are related by the formulasi"

(A)= OCCr a r = t

- (16)
Cg

where c -- = (ctcr) is the group velocity.

A practlcal procedure to calculate the eigenvalue it as follows. First, the two
of the four linearly independent solutions of (2) satisfying (4) are calculated.
From (14) a ratio of the two remaining solutions is next found which is substituted
into (15) giving on. single eigenvalue relation. This is then solved employing some
numerical procedure.

3. DYNAMICS OF THE COMPLIANT WALL

For a realistic evaluation of a flexible surface as a stabilizing device it is
desirable to consider simple surface modes permitting the varistion of mass density,
elasticity and damping. Two such model: have been extensively studied. One is a
stretched membrane of tension pU.,T over a continuous spring support of spring
constant kpUV/S . For this one obtai.s that

ic
S22 = -(17)

22 n~(C2 - c2  W2

where m is the mass per unit length divided by pS ; Co = the propagation
speed of free surface waves, divided by U, , d the damping constant, divided by

/UJ~m ; and &,o = vk/m the cut-off frequency divided by 8/U., . The tangential
admittance of the membrane is zero.

The second model investigated consists of a viscoelastic liyer (Voight solid) of
thickness If* = HS free to slide without friction on a rigid support. This latter
condition was chosen partly to make the results simple, partly to use this surface as
a simplifisd model of dolphin skin which is fairly loosely anchored to the underlying
muscle tissue. Aviscoelastic solid is characterized by two propagation velocities
cl,* = c . and c2, =- c2 U,. where c•, is the speed of compression waves and c2 ,
that of .hear waves. For materials like rubber and fluids like water one can
assume cl, :: x to a rood approximation, and the results for the admittances
then simplify to
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Y12 c/3/y (18)

Y -ic(r - 1)/7 (19)

where r2 1 - (c/c 2 ) 2

0- (1 + r 2) cothC.H - 2r2 coth rUYi

= PsC [(1 + r2) 2 cothbll - 4r 2 coth r 2cLH1

and c 2  (G - icd 2) 5/Ps

=. = /:6U2G being the shear modulus of the material, d2  a non-dimcnsional material
damping constant, and p, = PsP the material density.

Certain complications arise in the interpretation of the results using the above
exp,'essiors because the boundary layer thickness was used as a reference length.
This qvrtity varies with Reynolds number and hence with distance along the wall. If
one considers the effect of a compliant wall of given constant (dimensional) thickness
*. , then the non-dimensional thickness H should vary like

H = H,(80/5) H.(Ro/R) (20)

where suffix zero denotes a reference quantity. For all the cases considered, H ani
other parameters involving 8 in their non-dimensionalization were varied in this or
corresponding manner using as a reference Reynolds number Ro = 5000 .

For a lightly damped surface, the normal admittance Y2 2 is mainly imaginary with
a negative sign for small wave velocities and with a positive sign for large values
of c . Thus its effect is mainly spring-like for small c , and mass-like for
large c . The real parL is always positive, having a large value at wave velocities
near that for free-wave propagation.

4. SIMPLIFIED AEROELASTIC MODEL

It is remarkable that some very important physical features of the hydrodynamic
stability problem outlined above may be studied qualitatively without having to
consider the difficult mathematical problem of solving the Orr-Sommerfeld problem.
This was first brought out by Landahl5 and further elaborated on by Brooke Benjamin" 2

The simplified model considered is that of a potential flow over a membrane. For
such a flow one can easily obtain that

yf .. ic2- c (21)

Substitution of this into the eigenvalue relation (15) to qether with (18) (nssuming
coo = 0 for simplicity) re.,ults in a simple quadratic equation for c (considering a
as kiown, i.e. as for the temporal amplificati(n can;e), which possesses the solutions
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CA (1 4m:Y'•[ 4 }1md- (1 - q - imd)•i (22)

CB (1 +mOO)"1[i 1 ½imd + (1 - q - imd)I] (23)

where q (1 -omcc)(0 + am) + 1mOdd.

Instability is indicated whenever one of the roots has a positive imaginary part.

Three different t.ases may be distinguisaed: namely, when q < 0, 0 < q < 1 and q > 1.
In the first, the wave velocity for the first wave is negative, and both waves are

damped. In the second case both waves travel downstream and the slowest one (given

by CA ) is unstable with a growth rate approximately proportional to the
damping, d . For the third case, finally, the square root will have a large

imaginary part and one of the roots thus indicates a violent instability. Following

the terminology introduced by Brooke Benjamin 3 , 1 2 we will refer to the three

fundamentally different waves as Class A, Class E and Class C, respectively. The
most interestinf: one of these is Class A which actually is destabilized by the

damping. A physical explanation was arrived ats by calculating the total energy

level of the dynamic system considered. It was fo,,indthat for the Class A dieturbance

this level goes down with increasing amplitude*, whereas for the Class B the level
increas, s, and for the Cla;s C it essential y remains crnstant. This is illustrated

schematically in Figure 2. Since a Class A wave thus is energy deficient, any overall
decrease in the energy level caused by dissil 'ion must be compensated for by an

increase in the wave amplitude. A Class B wavw. is stshilized by damping as would
be the case for an ordinary mechanical system. Class C iitstability occurs when the
membrane becomes so flexible that there is no wave velocity for which the mechanical

restoring force is sufficient to balance the induced hydrodynamic force. For this
mode the total energy of the system is constant; there is only a redistribution from
the fluid to the wall, and damping t. , has a negligible effect.

As pointed out by hrooke Benjamin", this three-fold classification will always
apply, more or less distinctly, to the instabilities encountered by flexible bodies
Sa fluid flow. Thus, for example, Lhe viol(,nt "frequency coalescence" type flutter
so familiar to acroelasticians is of .he Class C variety13. The damping-induced

Class A type rarely occurs in fl' ter, but as shown below, will be one of main

inteiest in the present problen.

Oue can now apply the preceding discussion to the more complicated shear-flow

problem at hand simply by replacing the membrane bty the boundary layer shear flow,

bounded at y = I by a massless diaphragm of infinite flexibility and at y = 0 by
the wall (flexible ýr rigid). Using the asympt~tic theory for large R and assuming

that c is moderate and small (X < 1) so that the variation of the induced pressure
across the boundary layer akv be neglected, one can show that, to a good approximation,

ybA.l lr
22 ? 2 + U LcU;K (c) 4 1 -(z)] (24)

wherc 
LV

J (U - c)2

The exp'anmtlon •hy thi:s iy happen Is that there i.: always a net decrease in tte kinetic

e'nergy of the str, ~. becausr of an excesr of low-veiocity fluid In the waye troughs.
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and 3 is the modified Tictjcns function of argument z :- c(XR)1/3U12/3 Here

we have assumed for simplicity that the tangential surface admittance Y12 is zero.

By equating the "bowndary layer admittance" yb2. 2 to tte "fluid admittance" Yf
22

given by (21) one obtains essentially the characteristic equation considered by

Brooke Benjamin 3 and Landahls. For Y22 = 0 it reduces to the equation given by
Lin'" for a rigid wall. Of specific interest is the real part Y 22r of the boL-adary

layer admittance, because the power transfer per unit length across the diaphragm at

Y = 1 is given by

2 2 2r (25)

Taking the real part of (24) we find that

Yb1.r = r + - (26)

tllt•Cwhere VWc) = -ircUt ý (27)

The sign of the damping contributed by the shear flow is thus given by the sign of

31 - T . When this quantity is positive for the value of c for which the imagiziary

parts of the admittances balance (i. e., the pressures in phase with the deformation)

there is a net dissipaticn in the boundary layer, and Class A instability thus occurs.
If, on the other hand, yb l, is less than zero the net damping is ne.ative and the
Class A wave is hence stable. The quantity 3 1 is a measure of the difference

between energy dissipated by fluid friction and energy extracted from tie iýean flow
due to Reynolds stresses developed in the wall friction layer1 s. It is negative for

z Iess than about 2.3, has a rtximum of - 0. 58 at z •' 3.2 and tends to zero for

z -. W . Viscosity thus may cause a net negative dissipation, i. e., will be
stabilizing, for the lower Reynolds numoer range. For large Reynolds numbers the nec

viscous effect in the wall friction layer becomes dissipative, thus tending to cause

instability. The quantity V basically representsis the energy extracted from the
mean flow due to the Reynolds stresses in the outer non-viscous part of the boundary

layer. For a convex velocity profile it is always positive. If the profile 1-.s an

inflexion point, V will be negative for some range of c , and for sufficiently
large Reynolds numbers the net damping will be positive leading to instability.

The discussion makes clear that damping in the flexible wall will generally have

a destabilizing effect on the boundary layer. Nevertheless, a cnmpliant surface may
be stabilizing on Class A waves if it has large flexibility but lv damping. Then

the imaginary part of the admittances will balance at a higher wave velocity for
which V is generally larger, so that the net damping will be reduced and the

stability increased. However, an excessive flexibility may invite Class B

instability, or even the violent Class C type, and any advanitage will then be negated.

It is obvious that the present aeroelastic approach leads to completely different
conclusions regarding the role of dissipation than does the faniliar Lorentz relation

for the "energy balance" (see Lin 1 4 , page 60) which expresses the rate of change of
oa "kinetic energy of the disturbance" aa the difference between the rate at x;hilh

Reynolds stresses convert energy fr•mi the mean flow and the rate of viscous
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Cdissipatic-n- It tlc~uld be rtzarked that tae quantity catculated in tbis relation Is
act the actut: r.'rt,:rbation lz kizctitc enercv. beecause tliils should also Include the
second-order u-p&*r~tut--iun of the ze~n flow. Althoutgh the Lorentz relation, of
course. o.1111 be tirdfc-r the eirensodutions, it giies very limited in.-irratir~a

for preilict ior, for amdiiotn3 that are cff the e-ig.Pcondit~m-ib. in
parti-cular. ont, r~xy ver% likely find that a calculletion o.' the -energv bralance' for
one par t icu1li~r nt--trally stat~l. %are .'-uld ind'cite an extess of viscous dissipation
over 'wiergy pRuirtonty iiollds str-esses. shereas a corresponding calculatloi for
a slightly amp"Heim-i-se way shor a perfect baance.

.be present s-rr~ach ako allow.i a qualitative evaltvV~or. of [probably) 3a11
present and fa-! x ethe"'S (of boxl-ary layer stabilization. Sou.,dary rayer
suctiva -produces a %,ý.-laclty profile that is more convex near the wall, thus causing
an increase ia 7ij: (;..e.. in the energy converted bi Reynolds stresses) with a
resulting decre-..#e in the equ ralent beoundary layer daupiprb sr.d thus the stability.
Also, It make.; the b-ndlar2 layer thineer so that the Rkynolds rnuber decreases.
p>atting it Into & r-zion whe.-' tt!.e viscosity -&uses. a net negativwe diýssipation.
Complete stabilizaic. -,& Class A* instability xaaŽ be achieved through a-.y neans that
cause M~e net dissipatice for all wxres to hecafe zp'e-9 ci negative. For exaa-'e, a
sel] mmout of v-isc-l2st~c additive !r. a liqcuid nay zeplace the frictice loyer near
the wall by a thicker elas-Lic lkye.- Ps which 'he viscous dissijation is largely
cmc.*l led-

S. APRLiCATION OF NIERICAL CALCULATION WFTIODS

Since the- trad~tjcoal as,-ztotie rxet:tods are apt to be rather inaccurate for the
wider range of para-tnters of interest im the preseot problem. a numerical calcolatiori
method has been cde,,ecrjed a!'-icb allows a rapid and accurate estimate of the stshbili-z-
Ing effects of ar particuilar svarface. The imetbod haes betz described in detail by
Wlapln. and we will hert- ozly catlime its general teatures.

7te e-era-11 ir=ariea- prclcedbre folIaved is 411llstrzted in Figure 3. Stwring
frnthe two exact solutimrs Zor t' I tat vawuish for y -a,

= ;-3~ e-33 (28)

wh e re :?.l Ci Re$>

the COrr-Sommer~te!! Ec'ation (2- is intczrated tc the *2111 asirg a suitable nunerical
pror Lire.. Th-- natc~ný- -' *ý.jýi .tazces s1-4, the-- prodzces rhe prop-er
ec~winatian be~u'een :.&n ivzxc srbstitut-ion iztc the natching c..xditiaon
(15-' for the n:,raLI a-vr~~ea'i4s tL% -e ,si.-ed ezfgcrzalue relation. This is
r,01-ed for c r is th= cast, :~.' -;slng~ *ax ea scheme.

A spczial poce-dxre t~i be de-isc-d i taie sare th-&t the two solutions were
trully linearly iiede:a tle mi:E. 0-- to the :tzrge jparazeter x& appearing in

the dfena ;tic 't i' .grows very ra-illy 'in anr oscillatiry
.--nnr) as t!2 ;a2: ! r~--is-,:a'y bT.- se- eral c'rdirs oef rma,ýitude faster

thax . Tlh-1C'f,:e. if at some staz-I durins: tlhý rt;;t of C. Ray snaai
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portion of 13 is introduced due to numerical inaccuracy (this is inevitable due to

truncation errors), this portion will grow so much faxter than r that it eventually
will dominate the solution. Hence, the numerical integration will always produce a
solution of the q4, type, regardless of the initial conditions used. To avoid this,
a "purification schrne" was devised which at the end of each integration step

Y = YnJi removed from 0, a fraction of the solution k3 (previously computed and
stcrpd) io ma':e the relatirn

k Pc)( - - y = 0 (29)

satisfied fthis is recognized as the differential operator in the inviscid Orr-
Sommerfeld equation). In this way the initial conditions for Ct are readjusted at
each step to insure that one is always following a slowly growing solution of (2).
Hence one is shifting among neighboring solutions at each step to avoid "getting
trapped" by t3 . However, one single solution can, if desired, be easily as.embled
by using the stored "purification coefficients". (For mcre details about tile
purification scheme, see Kaplan 9.)

Using a staidard Runge-Kutta integration method with 64 steps the comput~tl3• tim,ý

on the IBM 7094 required to obtain one set of values for q5, and 3 at the wall wis
approximately 1,2 second. Less than 5 iterations were needed to find an eignwvvlue.
Originally, the eigenvalue problem for c was programmsd assuming a given r,'tl %qiu
of C. Spatial amplification rates CL , for real values of co = 0c , were Oteintd
from the temporal ones, ci , using the relations (16) and employing a valu- of -he
group relocity obtained through numerical differentiation with respect to 0L , Later
more efficient programs have been developed that solve the spatial amplificat!oa
problem directly, and excellent agreement was obtained with the earlier computed
velues of Xi . The spatial amplification rate is the more meaningful one for
tssessing the stabilizing influence of a particular flexible wall because it allows
one to calculate how much a disturbance of given frequercy will grow in the down-
stream direction. With a given (dimensional) spatial amplification rate of ai*
the total growth of the velocity amplitude betwen the stations x0 and x in a flat
plate boundary laver is given by the formula

2

lo U -~d d(R 2 ) (30)

c 0

where the constant K is defined by

K = 8,'x/U z S.

The Lion-di mensional quantity .(Iiv/U i =i/R must be detci-nined as a function of R
for a fixed value of the no.-dimensional frequency :,r Such a calculated map
of ai, for the rigid surface case is shown in Figure 4.

The accuracy of the numerical technique was judged by comparing results for a
rigid wall (Y,, = Y 0. = 0) with previous calculatior,s, both analytical and nunerival,
and with the experimental results of Schubauer anid Skranzstad'6 . As an example of the
comparisen. with experiments we show in Figure 5 the measured and calculated velocity
amplitude variaLions with x in r. -•oint in the boundary layer for various frequencies

./
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of the oscillating ribbon. The excellent agreement gives high confidence in the

developed procedure, as well as in the stability theory for parallel shear flows.

Results for the two different kinds of flexible surface models investigated are
presented in Figures 6 - 13. Hore a selection was made of those combinations of

surface parameters that were found to rroduce a large stabilizing effect and yet be
,vlthin practical limits. Only results for Class A instabilities wIll be presented,

these being of the main interest in the present context. Figures 6 -9 gives results
for some selected membraues*. In Figure 6 is illustrated the influence of membrane
damping on the stability boundary. rlearly, the damping iz destabilizing, as the
simplified aeroelastic mo•del indeed showed. It is interesting to notice that the.
curves for the lowest values of the damping apparently are closed indicating only a
finite range of unstable Reyncds numners. For the highest valne of the damping,
a second region of instability (also of COlas A type) was detected for higher fre-

6 quencies and Reynolds numbers, but an insufficient nmmber of calculated points were
available to mak) this region. Whether instability recurs for higher Reynolds numbers
also for the membranes with the lower damping values is presently not clear.

The effect of varying the membrane tension, i.e. c0 , is illustrated in Figure 7.
SGenerally, the lower value of co , the higher the stabilizing effect, up to the
point where the effective free surface wave speed, icb, +w•/U2 , becomes toc close
to the eigenvalue, in which case the real part of Y2V grows so large that the net
effect eventually becomes destabilizing. This stage was not reached for the membranes

considered in Figure 7 because of the fairly stiff spring support used.

The spatial amplification rates for one of the "best" membranes are presented in

Figure 8. Such diagrams can be used to construct curves like that given in Figure 9
which shows the spatial amplificetion rate for a disturbance of given frequency as
function of R2 . According to (30) the total amplification in a boundary layer
between two stations x is given by the area under these curves between the
corresponding Reynolds numbers, The frequency was chosed to lie near that for most
amplified disturbance in both the rigid-wall and the flexible-wall cases. As seen,
the decrease in the area under the curves, I.e., of the total amplificition, is quite

substantial.

Results for the free-sliding viscoelastic layer are shown in Figures 10 - 12.
In Figure 10 is demonstrated the influence on the stability boundary of varying the
thirIness, H , of the layer. The flexibility of the surface increases with
increasing H , and hence the stabilizing influence, but the effect of thickness
increases beyond H : 2 tended to have a minute effect, the reason being that the
surface waves in the sojid do not penetrate appreciably below this depth.

Spatial amplification rates for one of the more favorable combinations of surface
parameters considered are shown in Figure 11. The same qualitative features are
obseryed as for the membrane case, although the stabilizing effect is considerably
less than for the best membranes. Thus, the unstable range is decreased and moved to
lower wave numbers. Also, thý.re is a marked decrease in amplification rates from the

rigid-wall case coupled with a moderate increase in Reynolds number.

The calculations for membranes presented in Reference 9 are in error because a factor of
I/& was omitted in the expression for the normal admittance.
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The effect of e,,•-n small changes in the surface parameters on the stabilizing
influence is illustrated in Figure 12. The surface considered has half the thickness
of the previous one (this difference by itself has only a fairly small effect, as
seen from Figure 10),has a somewhat higher shear wave velocity (i.e., is stiffer) and
a 20% higher density. A comparison with the results for the rigid wall, Figure 4,
shows that little remains of the stabilizing effect.

The main fundamental difference between the membrane and the viscoelastic surface
is that the latter has a non-zero tangential admittance. Examination of the
expressions (18) and (19) reveals that the tangential motion is appreciable and may
for small thicknesses exceed the normal motion. That the simple aeroelastic membrane
model nevertheless seems to hold qualitatively also for this surface indicates that
the tangential motion is fairly unimportant to the problem. Application of the
asymptotic theory shows that the effect of tangential motion is usually mildly
destabilizing. This may partly explain why the viscoelastic layers were found, on
the whole, less effective than a membrane of comparable compliance.

6. FLEXIBLE SURFACES IN PRESSURE GRADIENT FLOWS

Additional calculations were performed to determine the effectiveness of compliant
surfaces in changing the stability boundaries of adverse and favorable pressure
gradient flows. Falkner-Skan similarity profiles were used to provide accurate
second derivatives for computation. The adverse pressure gradient profiles considered
hbd a Falkner-Skan parameter of / = -0.15

Calculations were performed for several different membranes. As a length scale
the ooundary layer thickness of 99. 9% free stream velocity was employed. The inter-
pretation of parameters preceeding (20) was not used for these cases of varying free
stieam velocity.

The results appear very similar to those found previously for the Blasius p:ofile,
with the following exception. The surface damping coefficient d had little or no
noticeable influence on the stability of the adverse pressure gradient Class A waves,
This is interpreted as further veiification of the energy deficient character of
these disturbances. The total level of dissipation is so high for this f*ow that a
small additional amount of dissipation in the surface causes no discernable influence.
The converse is true for favorable pressure gradients.

Figure 13 illustrates this effect. For these calculations the value of d was
found to be unimportant and was varied from +0.10 to -0.10 with no variation of
stability boundaries. The spatial amplification rates were altered slightly, however,
but not nearly as much as in the Blasius case.

7. EFFECTS OF TRANSITION

The main physical mechanisms causing transition of a boundary layer over a rigid
flat plate have been clarified and described in recent papers by Benney and Lin',''8 ,
Klebanoff, et alii' 9 , Greenspan ind fenney 20 , aid others 21 . Turbulent bursts occur
as a secondary localized instability (of presumably Class C type) in regions in the
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boundary layer transition zone where the primary Instability waves, together with

secondary moan motion caused by spanwise irregularities, produce inflexion profiles
of large instantaneous shear during the primary oscillation cycle. A pre-requisite

for transition is thus a primaiy wave of sufficiently high amplitude in the presence
of a secondary spanwise warping of the r.ean velocity profile.

The calculations presented above make clear that under favorable circumstances a

flexible wall may delay the growth of the primary wave and hence prolong the laminar
flow. The main cause is not the increase in critical Reynolds number, which is
rather insignificant, but the decrease in spatial amplification rates primarily

associated with the increase in the wave length of the most amplified disturbance.
However, in addition, one would expect that the secondary flow will be substantially
altered and hence the onset of secondary instability. No secondary-flow calculations
for a flexible wall similar to those of Benney' 8 are as yet available, but it can be
speculated that the greater primary-wave lengths encountered for the flexible wall
should have a large effect on the spanwise warping. This appears likely because the
spanwise separation between the longitudinal vortices appearing in the mean secondary
motion should depend on the wave lengths of oblique pfimary waves (see Benney 22).

The results for the eigenfunction in the flexible-wall case reveal another

possible substantial secondary effect. The strong instantaneous inflexional shear
layer in the velocity profile in which turbulent bursts arc born is produced by a
superposition of the mean profile, made weakly inflexional by the mean secondary

streamwise vortices, and the velocity perturbations due to the primary wave. In
Figure 14 are compared the u-perturbations for a typical rigid- and flexible-wall
case. It is evident that, for the same maximum amplitude, the local shear values
produced by the flexible-wall perturbation velocity profile are much smaller than for

the rigid-wall case. Hence, a much higher overall amplitude is required to attain
the same maximum local shear values. It is interesting to notice that for the ..
flexible membrane the u-perturbation velocity at y = 0 is not zero, although it is
so at the actual instantaneous position of the membrane. Hence, as pointed out by

* mBrooke Benjamin 3 and further exemplified by Landahl 5 , the flexible wall largely
cancels the need for a wall friction layer.

Finally, the possibility that wall flexibility may have a direct influence on the

secondary instabilities should be considered. It has been hypothesized by Kramer 23

that the outer layer of the dolphin's skin might have such an effect. Greenspan and
Benney 20 have shown that many of the important qualitative features of the turbulent

bursts could be described by using tbe linearized stability formulation for a non-
viscous flow (viscosity being rather unimportant for violent inflexional instability)

applied to a velocity profile consisting of the mean flow with the primary wave
superimposed. The calculation is complicated by the fact that the "mean" velccity
profile varies with time through the primary cycle, but Benney and Rosenblat 24 have

suggested that a convenient way to account for this variation is to use the method of

multiple time scales 25 with the "rapid-time" behaviour being determined by the
ordinary inviscid stability theory considering the velocity profile as quasi-steedy.

For the present purpose of determining the qualitative effects of a flexible wall on
the secondary instability, it is probably sufficient to perform just the quasi-steady
analysis without taking the "slow-time" behaviour into account. In Figure 15 are
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presented the results of such calculations based on the instantaneous velocity
profile measured by Klebanoff et alii' 9 at the onset of turbulent bursts*.

In these calculations the velocity profile was fitted in a fairly crude manner by
an exponential function plus an eighth order polynomial as illustrated in the upper
portion of Figure 15. The lower portion of the figure shows the calculated results
for the non-dimensional temporal amplification rate plotted versus the non-dimensional
frequency, both for the rigid wall case and for a sample membrane surface. The non-
dimensional frequency for the maximum temporal amplification rate is about 1.3, which
is only about 60% of the measured value1 9 of ýr/U = 2.2 . Whether this dis-
crepancy is due to inaccuracies in fitting the velocity profile, or to inadequacy of
the quasi-steady quasi-linearized model, or both, has not yet been determined. On
the other hand, the calculations give a group velocity of about 0.65 U• , which is
in good agreement with the measured value of the propagation speed of the turbulent
bursts, 0.68 U ± 0.04 U, . Nevertheless, the simplified model is probably entirely
adequate for the present purpose of estimating the effect of a flexible wall. A
membrane was chosen that had been found to give a large effect on the primary wave.
As seen from Figure 15, the stabilizing effect on' the secondary wave is noticeable,
but rather small. From this one would conclude that a flexible wall will only
slightly alter the growth rate of the secondary instability, and therefore the direct
effect on the turbulent bursts is likely to be small, at least for membranes of
moderately small density. A similar conclusion was reached by Benjamin' 0 using an
even simpler flow model.

8. CONCLUSIONS

From extensive sets of pumerical results such as those presented above a fairly
complete theoretical picture of the possibilities of a flexible wall as a laminariza-
tion device emerges. It has been definitely established that wall compliance in
certain cases can have a substantial stabilizing influence on the primary (Tollmien-

Schlichting) instability waves. The main effect is a decrease in the spatial
amplification rates and in the extent of the unstable region, rather than an increase
in the critical Reynolds number which is usually insignificant. Wall compliance also
can have an associated influence on the secondary instabilities so that an appreciable
total effect in delaying transition is theoretically possible. In order to be
effective, the surface should be highly flexible but havo low damping. A large
compliance could in principle be achieved by tuning the wall to have a characteristic
wave velocity slightly above that of the most unstable waves, but then instabilities
of Classes B and C may occur and, furthermore, the dissipation will increase, thus
producing a destabilizing influence on the energy deficient Class A waves. The
calculations show an effective characteristic velocity of about 3/4 of the free
stream velocity to be the lower practical limit. In order to achieve a large
response one must thus use a light wall, preferably one having an effective mass per
unit length not much higher than that of the fluid inside the boundary layer.
Obviously, this requirement puts very considerable limitations on the use of
compliant walls in practical application3, in particular for airborne vehicles.

7he authors are greatly indebted to Dr. L.N. Howard for very valuable assistance in
programming these calculations.
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From the broader engiveering and scientific points of view the studies of
compliant wall effects; promise to be of great value because of the new and deepened
insight Into the dynamic characteristics of both laminar and turbulent shear flows

that emerges. A compliant wall is likely to be only one of several devices that can
substantially alter the flow response to an unsteady disturbance. The use of small

quantities of chemical additives seems presently to be the most promising approach.
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SUMMARY

It is now generally accepted that one stag2 of the laminar-turbulent
transition process, which followed the region of growIng Tollmien-
Schlichting waves, is one of developing transverse variations in the

boundary a1yer .elocity and wave intensity.

These transverse variations are syst~matically observed by the author
in reattaching supersonic and hypersonic flows, with a wave-length which
was a function of the boundary layer thickness and of a characteristic

length of the separated zone. They wert also observed on supersonic
swept back wings.

Refined cetsurevents made at supersoiic speeds with small pitot-static
probes showed that these variations were caused by one or two rows of

counter-rotating streanwise vortices located generally inside the
-eattaching boundary layers. Very local heat transfer measurements
showed that large transverse variations of t.eat rates existed because of
these vortices. Although Vae mean value of the Stanton number was very

near the turbulent value. its local ralue cc-uld be much higher than the
latter. This means that aerodynamic heating, in the transition region
of a reattaching supersonic boundMry layer, can become more severe than
expected, even with a fully turbulent flow.

SOINAIRE

11 est g-i•ralement adis i prrsent qu'un stade du nrocessus de
transition de I' itat Iminf.ire i l' tat turbulent. qui suit celui de

" asplification des cundes de Tollmien-Schlichtlng, consiste dars le
d~veleppement de -ariations transversales de la vitesse et de

l'intensiti des ondes dris la couche linite.

Ces variations tranr:'rersales ont kid systmatiquesent observyes par

1" anteur dans des icoulements super- et hypersoniques recollis; leur

longaeu. d' onde dpenuant de 2" 6paisseur de la couche livite et d' une
dimens!on. casrct~rist,1que de la zone dicoli•e. Elles ont 6galevent
Wtt observies sur dc:s si.es en flche i vitesse supe•sonique.

•en resures tr~s fines effectudes avec des sondes statiques Pt
".s~es ont montrd que ces variations r6sultaient de la presence

d'mwe ou deux nsppes de tcurbillons longitudinaux alternks duns les
!c,_'ches lilites. Des itsxsures tris lotalis~es oant prouv6 P existence
de )ointes de tri.asfert de chaleur c-susdes par ces tourbilions.

Tandis que le r.o:-bre de Stanton mcyen restait proche de la valeur
turL-ulente, les valeurs locales de cc nombre dtaient nettemenc plus
6lev~eý. 11 en rds'ulte que 1' 6chauffeecnt cin~tique peut devenir
dans In r~rion Ae transition d'un 4coule.ent supersnnique recoll4

plus svv-ire qu.. prdvu me•e en supposant un 6coulement turbulent
6tabl i.
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NOTATION

x streamwiso coordinate de'ined in Figure I

y coo'::Ainatc perpendicular to the surfact of the model (see Fig. 1)

z spanwise coordinate defined in Pigure 1

1 position of the piecs of scotch tape (•-e Fig.1)

Q haat flux per unit area and unit tive

h heat transfer coefficient

St Stanton number

Stu Leasurcd Staz'-on number

Ste calculated Stanton number

TW wall tejperature

Tra adiabatic wall temperature

t tme

AH constants

Po stignation pressure

" Pb base pressuvý

P, free stream stat.c pressure
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STlREARVISE VORTICES IN LAXINAr FLOW

Jean J. Gluoux

1. INTMODUCTION

Earlier invest!gattices nmde by the aathor".? have revehled 'he existenc.o of stroof.

regular and repesatble three-disessicoulI perturbations in the b-- tdary layer of two-
divensiona! laminar reattaching flows. These gertorbatious were present in Tariou's

types of separated flows. sudch as flows over backward and forward facing stcps, rmrs
nd cavities, tnd also in shock w-'e boundiry later interactions and were observed

over a range of aich nutbe_-s from 1.5 to ..O.

By the use of a cmblimatian technique. the paenomon was detected qualitatively
In the fare of regular striation patterns at the sarfe:e of the models. It was also

studied quantitatively by transversp, i.e. spanwise, suor'es of the boundary layer

with small total bead probes which indicated rather regular variations of the pitot
pressure. The amlitude of these variations was friund to be a maxiwas In the recion

of transiti'n from Isminar to turbulent flow. near mad-height of the boundary layer.
The pressure peaks corresponded to the streaks of the striation pattern idiere the

sublima.Gin rate vae toe largest. Their spacing or wave length was appro.-i~ately
constant for given test conditions and was found to be a function of the bomnday

layer thickness at separation and of the size of the region of separated flow. The
intensity of the flow perturvations was roughly in proportion to the size of very

"a small irregularities of manufacture of the leading edge of the models, although their

spacing was not influenced by the size or distribution of these irregularities.

It wa- concluded from these eariier investigations, that the phenomenon was
essentially one of instability in the two-dimensional flow, the main triggering action
arising from small irregularities in the leading-edge. This three-dimensional

configuration which appears in the process of tranaition from laminar to turbulent

flow has been observed quite systematically at low speeds, in recent yeers, by other

investigators 3 -6 . It is generally believed that it involves the presence of counter-
rý,tating streamwise vortices. However, as far as the author is aware, it has never

been demonstrated experimentally at supersonic speeds,

The effect of streamwise vortices on flow properties, such as skin friction and
heat transfer is not fully known. From the existence of large peaks in the spanwise
pitot pressure distributions and the corresponding large sublimation rates of

chemicals sprkyed on the surface of the model, it is expected that large peaks in

* skin friction and heat transfer exist locally.

The purpose of the present investigation was first to determine, by refined
surveys of reattaching supersonic flows behind backward facing steps, the nature of
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the three dibenslon'] configuratio of the floo and second to verify, by direct
beasureaent, that large peaks in heat transfer rates were prr:sent at flob

reattacdaent.

The research was spcr.sored b.y the Air Force Office of Scle,.tific Research. O.A.R.,
thrc.gh the Eu-ro h Office, A• spac'ý Renearch, United Sates Air Forc". under

contracts %IS AF EJOA 63-45 rc.1 i v4-7.

2. DESCRIPTION OF THE EQUIPIENT

2.1 Sind Tunnel

The experiaents were coendcted in the VKW_'PI IC _-- x 16 in continuous s~perSsonic
wln.. tunnel S-i at a Macn number of 2.21. The stw-ation temerature was near the
asbiet temperature. The stagnation pressure was below ataospheric and could be
varied froa about 100 to 200 m of zercury absolute, which pressures ccrrespon-i to

free stream Reyol&ds nmbers of 0.5 x 106 an. 106 respectively, bhsed on a length
of 1 ft.

Tnh tmnel is equi.DpeC with a conyentional optical system using parabolic mirrors
[nd a spark light source.

2.2 Mdels

A smetric wedge model with backward facing steps. 8 m high, was used in this
investigation. The model almost ccapletely spanned the working :.nater of the tunnel
and was fixed to the lower vall. of t2he test section free its rear by tio straight
suiports. A portiorn of the model, indi::a'.d by ,(A) in Figure 1, was equipped fo'
static pressure and heat transfer measurements. Schlieren pbitographs sboved, as
illustrated in Figure 13, that flow reattachment occurred just upstream Cf the
"slider". This portion of the model could be moved along the spanwise direction
(z-axis), in the manner of the sliding scale of a slide rule, with a Yip. of measuring

the spanwise distributioa ot static pressure and heat flux, by reans of a discrete
numbe- of small pressure orifices and heat meters. "The sli', ionsisted of a block
of insulating material surrounded by a metallic frame.

A few tests were also made by replacigg the front part of the model by a flat plate
aligned with the rear surface, as shown by the dotted lines in Figure 1.

2.3 Test Techniques

The flow was qualitatively observed at the surface of the models by thr us• of a

sublimation technique. The indicator chosen was acenaphthene. which having a slow
response, allowed for the relatively long starting and stopping times of the wind-
tunnel. An indication of the surface flow pattern was obtained after one or two
hours running time of the tunnel.

Detailed surveys were made with total-head and static probes having an external
* diameter of 0.8 m (i.e. 0.03 in). The pitot probe was cylindrical with an internal

diameter of 0.6 um. The static probe was a cone cylinder having one single pressure
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orifice, located on its starboard side. 12 diameters behind the P-ts-. The probes were
fixed to the surveyint mechanism which permitted displacements parallel and
perpendicular to the tc'.el surf--cc at any stresawise location.

A transient calorimet-ic ttchnique "s used fo.- hestt transfer measurements in the
reattachwnt reg'cn of the flow. "Ite insulating material (bakelitel of the slider
was grooved to hold three copper bars, ,' beat-meters, 0.5 m wide. 0.5 i thick,
30 = long mid 2C an apart as shown in -gure L. This particular configuration of
the heat meters was suggested by the tj cal &spect of tic striation pattern shown by
the sublimation techniquc: (an exam:, g given In Fig.2) and also by the fact that
the mean h•eat transfer rate was found to bt approximately constant for 32 < x < 82 m
in the course of prelininary neasuret -nts.

A steel wedge (140 = spanL contaiuing an electric resistance acting as a heater,
was mounted above the model, as indicated in Figure 1. ans used to heat up the slider.
while the tunnel was running, to a teeperature c0 1000C above Its adiabatic value.
The wedgc could be removed suddenly by a pneumatic. device, at such a speed that the
tine needed to complete the exvosure of the copper bars to the airstream was about
50 mill.seconds. A Pastax schlieren motion picture cf the flow was taken while the
heater was being resnved and it did not show any unsteadiness as the flow Was
reattacaing on the surface of the model.

TIe ttmperature of each of the Individual copper bays were measured by means of
copper constantan wires having a diameter oa 0.1 am, welded near the extremities of
the bars. 7hese temperatures aere time recorded on a potentiometriz recorder having
a 20 In scale. a sensitivity cf 1 mV full scale and a response time of 1 sec full
scale. Occasionally. the temperatures were also measured using a galvanometric
recorder which had a much smaller response time than the potentiometric one; the
same results were obtained.

After ceach measurement. tne slider was moved along the spanwise direction by ;teps
of 0.5 sm (0.02 in). In this way, it was possible to get a spanwise distribution of
the heat transfer rate. downstream of reattachment for -35 < z < 35 me, where z is
the spanwise coordinate defiined in Figu-z 1. The heat 2'lui per unit time throrgh the
unit area of the model surface is given by

dT
q = ecp,

(it

where e is the thickness of the heat meter, c and p. the specific heat and
density of copper, T. the wall temperature given by the recorder and t the time.
The derivative dT,/c;t was determined at time t = 0 , where the temperature of the
heat meter started Lo drop. The inaccuracy in the measurement of the slope dTw/dt
was responsible for a scatter of the final data of about 5%. The heat transfer
coefficient kh) a-d tha Stanton number (SO were then ucmputed by

q h
h -• St =

Tw - Twa p.Urcp

where the subscript D refers to freestream conditions upstream of the model.
TW is the wall temperature measured at time t = 0 and Twa the adiabatic wall
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temperature. I,- a preliminary iievet~igation, Twa was metnured on a "thin skin"
slider wade of araldite and instrumented with thermocouples. It ras found that the
amplitude of the spanwise variations of Twa was less thta 2`C and thus T,, was
later assumed to be constant.

3. ON THE EXISTENCE OF STREA1,iISF VO•' iES

In order to ease tha experimental std•;, the amplitude (if the flow perturbations
was varied by the use of artifical irregularities at or behind the leading edge of
the model. Strips of scotch fcellilose) tape % in wide, regularly spaced by v in
were glued to the su,'face of the model, at variortz distances 1 (see Fig.1) from
the leading elge.

As an example, results obtained for 1 = 0 are given below. A subliration
licture of the flow around the vodel, tested at a stagnation pressure of 100 mmHg
absolute, is given in Figure 2(b) and compared with a sublimation picture obtained
wathout the scotch tape (Fig.2(a)). In these figures, the sublimation rate is
larger in dark regions than in light ones. It is seen that the strips of tape
modified the strla-ion p•ttern near reatzachment (for 30 < x < 80 nm; where x is
defined In Fig.l), inassuch as a pair oLE ztriations were formeJ by each piece of
tape. Purther downstream (x > 100 m) *he striations rearranged z.nemselves so as to
become similar to the pattern obtained Jn Figure 2(a).

Figure 3 shows the results of spanwise surveys made with the total head probe
having its axis at Y = 0.4 - , i.e. very close to the wall, Lid for different

* distances x downstream of the step. The spanwise locations of the scotch tapes are
ikdicated along the z-.x'Is by shaded areas. It is seen that additional pre.•sure
peaks developed as the flow moved downstream, which corresponded to the increase of
the number of striationý shown in Figure 2(b).

"Spanwise surveys made with the pitot probe, at x = 150 mm downstream of the step,
are shown in Figure 4 for different distances y , in millimeters, of the probe-axis
from the wall. These pressure variations are similar to those systematically
observed in previous investigations made without tapes•. In particular, it is found
that they have their maximum amplitude near mid-height of the boundary-layer.

Figure 5 gives the results of two streamwise surveys made with the total head probe

for two different values of z , only 4 mm (i.e. 1/6 in) apart. At z 0 , the probe
was located in between two of the striations formed by the leading edge irregularities;
while for z = -4 mm , the probe vas aligned with one of these striations. The
figures indicated give the local boundary layer thickness determined from velocity
profiles measured in the boundory layer with the same probe. These results show the
drastic spanwise change of the :low properties at reattachment and in particular the
spanwise waviness of the outer edge of the boundary layer.

By using the slider, equipped Rirh pressure orifices, it was possible to detect
for the first time spanwise variations of static pressure on the model surface in the
reattachment zoae. The results are given in Figure 6 which shows that large vari-
ations of static pressure exist near reattachment, (x - 32 ,imi) associated with each
tape, and then become weaker but also more regular further downstream (x = 82'
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Typic.l recults of a..we surveys made in the boundary layer at x = 156 mm
with the static probe are givtn in Figure 7, where the reading of the probe in =nHg
absolute is plotterd against the spanwise coordinate (z). The measurements were made
at different distances (y) from the model surface. It is seen that tlrc nearly
periodic pressure variations are characterised by "phase shifts" at certain distaices

from the wall. Indeed, the pressure peaks observed at y - 1.5 m correspond to
pressure trougs at y = 4.5 mu and vice-versa. This would Indiiate, the static
probe being sensitive to mall cross flow, that a layer of stiiamwise vortices

existed at 3.5 < y < 4.5 mm. These vortices appeared to be counter-rotating as the
mean static pressure was aprroximately the same at y z 3.5 and y = 4.5 mm.
Knowing that the pressure orifice was on the starboard side of the probe, one could
specify the sense of rotation as schematically shown in Figure 7. In the same figure,
one can see another phaase shift for 0.4 < y < 3.5 ram, iidicating possibly the
existence of a second layer of vortices, closer to the v=all. Unfortunately, it was
not possible to compare the pressure distribution at y = 0.4 mm with the wall
static pressure as the slider did not cover thrt region of the flow.

By grouping together some of the above results one can imagiae the idealized

vortex distribution shown in Figure 8.

A similar invcstigation was carried out closer to the reattachment region, i.-.
at x = 52 mm from the step. However, only one vortex layer was clearly observed as

indicated in Figure 9, where the reading of the static probe, in millimeters of
mercury, is plctted against the spanwise coordinate. (The drop in static pressure
with increasing y , shown by Figures 6 and 9, was caused by the compression wave
associated with flow reattachment.) This vortex layer was located in the region
3.5 < y < 4.5 me which is much closer tc the 3uter edge of the boundary layer than

further downstream (i.e. at x = 150 2).

In some other cases, (1 • 0), the vortices were observed slightly outside of the
boundary layer near reattachment. -t similar phenomenon was obssrv'ýd by the author
on swept back supersonic wings. A blir.tion pictu" . of tb U corresponding flow is
shown in Figure 10. In that case, Lhe vortices were definitely detected outside of
the bounciary layer. However, it was not possible to detenxine exactly their sense
of rotation and further work remains to be done in that particular case.

4. EFFECTS OF STREAMWISE VORTICES ON IPEAT TRANSFER

Repeated measurements of the spanwise distribution of the heat transfer

coefficients and Stanton nurnber biy the transient technique, with scotch tapes at the
leading edge (1 - 0). are given In Figure 11 for a stagnation pressure of 100 mmHg
i.e. for a strean Reynolds number of 0.5 x 106 based on a length of one foot. The
spanwise locations o.• the scotch tapes at the leading edge are indicated along the
z-axis by shaded areas. The figures shows the existence of large peaks in the heat

transfer rate whose locations correspond to those if the pressure peaks previously
detected in the boundary layer by the total head probe (Fig.4).

An attempt was made to compare quantitatively the spanwis'! distributions of pitot
pressure and heat transfer. Because of its small size tLe probe, when kept in
contact with the model surface, was located in the line.ai rtgion of the boundary
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given versus the pressure (p,) measured at the base of the backward facing step.
7The onre pressure Is normalized by the free stream static pressure. Different
1r7g*r(r_;ng mechanisms were used to mrve the transition region frcm downstream of
reattachment to uipstream of separation and the base preSsure was used here as the
pzrameter indicating tbh position of transition. Average values Gf St are
indicated by large dots in the figure. They are defined by

St = _i St(z) dz
z 2  z Ij

where (z 2 - z ) is the portion of the span where St(z) was measured. St is the
quarntity that would be measured by heat meters much wider than the ones ised here.
It is seen from Figure 14, that St increased gradually when reattachment changed
from laminar to turbulent. (i.e. when the base pressure decreased), then decreased
when the turbulent boundary layer thickened. it is also seen that in the case of
laminar reattachment, local St.-peaks were much larger than in the turbulent case.

it is not surpriring therefore that Miller et alii 9 observed regular striation
patteerns scorched into the stainless steel surface of their flap .models during
Hotshot wind tunnel tests at high Mach numbers.

5. CONCLUSIONS

7he present investigation showed that the three-dimensional perturbations that
were previously detected in many types of reattaching supersonic flows consisted o:f
one or two rows of counter-rotating streanwise vortices generally located in the
boundary layer.

Very local heat transfer measurements showed that the effect of these vortices was
to produce locally very large peaks in the heat rate, much larger than the usually
measured turbulent values immediately after transition. It was also found that the
flat plate Reynolds analogy was quantitatively correct with streamwise vortices
present in the flow.
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SUMMARY

Presented is a detailed analsis of a class of laminar two-dimensional

tl_-,-pendent velocity and thermal boundary layers whose free-stream
velocity is given by

U(x.t) = cxB(l + Ecoswt)

where EI F a sm'll disturbance parameter. The solutions were expanded

into power series if the disturbance parameter. The equations for the
lirst and second-order terms have been solved for small values of the
freqni2ncy w as well as for large frequency values. These two solutions

for low and high frequencies can be matched at intermediate frequencies.

The solutions show that the velocity and temperature in the different
la~efs of the boundary layer acquire oscillations which experience phase

shifts with respect to the forcinr disturbance sad to each other. Due to
the qon-linear terms iu the flow equations the fundamental oscillation
induces higher harmonies in the boLadary lAyer osciJlation and a steady-
state part, which is responsible for the alterbtivn of the mear values of
skin-friction and heat transfer coefficient by the oater flow oscillation.

In the analysis the limiting cases for very low frequency (quasi-steady
solution) and very high frequency (solutions after M.J. Lighthill and
C.C. Lin respectively) axe Llso included. Numerical results for the
flow along a flat plate aad for stagnation point flow are given.

.1
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SOMMAIRE

On prdsente une analyse ddtaillde d' une cat~gorie de temps laminaire
i deux diznensions-vitesse ddpendente et couches limites thermiques dont,
la, vitesse de courant libre est doande par l1'expression:

U(x~t) =CXm(l + ECCos wt)

dans laquelle e est un param~tre de faible perturbation. Les
solutions ont dtd dlargies i des sdries de puissances du parazn4tre
de perturbation. Les tdquations des termes du premier et du second ordre
ont dtd risolues pour de faibles et de fortes valeurs de la frJquence w .
Ces deux solutions pour lea basses et hautes frdquences peuvent peut
6tre se correspondre pour les frequences i-nterm~diaires. Les solutions
montrent que la, vitesse et la tempdrature aux diffdrents niveaux de la
couche limite acqui~rent des oscillations qui traversent des alternances
de phase par rapport A la, perturbation contraignante et lea unes ma
rapport aux autres, A cause des termes non lindaires des dquations
d'dcculement, l'oscillation fcndamentale produit des harmoniQues plus
d1avdes dans 1 oscillation de la, couche linite ainsi qu' une partie en
rdgime dtabli, A laquelle est due la modi-fi-cation des valeurs moyennes
des coefficients de frottemnet de surface et de transfert de chaleur par
suite de 1' oscillation de 1' deoulenent externe. Les cas extr6mes
de tr~s basse frdquence (solution Quasi-permanente) et de tr~s haute
frdquence (solutions de M.J. Lighthill et C.C. Lin) sont dgalement
dtudides. On donn6 des rdsultats numdriques pour P dcoulement le long
d une plaQue plane et 1' dcoulement au point d' arr~t.
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NOTATION

xy dimensional cartesian coordinates

Sdimensionless coordinate defiied by Equation (14)

x dimensionless frequency parameter defined by Es.uation (26)

dimensionless coordinate defined by Equation (20)

716 dimensionless coordinate defined by Equation (63)

Y dimensionless coordinate defired by Equation (73)

(X,8 dimensionless coordinates defined by Equatijns (99) and (73)

boundary layer thicknesses defted by Equations (65) and (64)
respectively

characteristic boundary layer thickness defined by Equation (43)

t time

co frequency

U,V velocity components in the outer f~ow

U~i) time-independent part of U = U(x,t)

u.v velocity components in the boundary layer

T temperature

8 dimensionless temperature in the boundary layer defined by
Equation (la)

Uo, vreo zero-order solutions

U l IR
U11  = -Ulj

U12  = l

11 = f~rst-order solutions defined by Equations (6), (7• and (8)

Vt2  = -l

812 = &IJ•

I ove. 820 time-independent second-order solutions defined by Equations (6),
(7) and (8)

_uI
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U1 ,VI,® 1  first-order complex solutions defined by Equations (17), (IC) and

(19)

AvC0 v-componcnt at the edge of the boundary layer, defined by

Equation (41)

stream function

f(r) dimensionless stream function dcfined by Equation (15)

g()) dimensionless temperature defined by EciEtion (15)

Y5•,71) complex dimensionless stream function defined by Equation (21)

•II(X,•7) dimensionless second-order stream function defined by Equation (27)

ai(ý.,7) complex dimensionless temperature function defined by Equation (19)

II(X,'7) dimensionless second-order temperature defired by Equation (27)

@in(7) functions defined by Equation (45)

in( functions defined by Equation (50)

GIN(?) functions defined by Equation (46)

Giin(7) functions defined by Equation (51)

( functions defined by Equation (72)

4.sn(Y) functions defined by Equation (75)

q ¢iiPn(T5 functions defined by Equation (93)

OniSn (7) 6functions defined by Equation (98)

OIPn(70) functions defined by Equation (91)

1ISn(Y functions defined by Equation (91)

0 !IPn(r) functions defi,.ed by Equation (101)

611iSn (TS finctions define.: by Equation (101N

A,(X).X,(X) functions defined by Equation (36)

A Q(X) ' q(X) functions defined by Equation (37)

A h(X>Nv(X) functions defined by Equation (42)

U shear stresE at the wall
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p density

p pressure

cm constants dofined by Equation (13)

A viscosity

kinematic viscosity

a tni.nmal diffusivity

e disturbance parameter defined by Equation (1)

Pr Prandtl number

Nu Nusselt number according to Equation (35)

Superscripts:

differentiation with respect to Y or 77s

differentiation with respect tc 77

Subscripts:

* outer flow

W at the wall

x first-order solution

II second-order solution

R.J real and imagirary part

S Stokes solution (see Sec.5)

P Prandtl solution (see Sec.5)

differentiation with respect to these variables
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HEAT TRANSFER IN LAMINAR BOUNDARY
LAYERS WITH OSCILLATING OUTER FLOW

K. Gersten

1. INTRODUCTION

The present investigation deals with the 8olution of the equations for the velocity
as well as for the temperature distribution in laminar boundary layers for the case
when small periodic perturbations are superimposed on the steady outer flow. In
order to determine the effect of the pressure gradient on the laminar heat transfer
response, the outer flows are assumud to be of the so-called wedge-type flow with the
mean velocity distribution given as U(x) = cxmx denoting the coordinate along the
wall and c being a constant. The constant m represents the pressure gradient in
the flow. Wedge-type flows are exceptional because they lead to self-similar
solutions of the boundary-layer equations. The outer flow is supposed to be
disturbed by a simple harmonic oscillation. The first fundamental theoretical
investigation on laminar boundary layers with oscillatory disturbances was pbrformed
by N.J. Lighthill' 5 who used an approximate approach to examine the effect of small
harmonic free-stream velocity perturbations on the skin-friction and heat transfer in
laminar boundary layers. In this analysis tne perturbations were assumed to be
small. Therefore the equations for the perturbation fields could be linearized. It
tu-ns jot that by this procedure the first-order equations predict no change in the
net beat transfer rate. The change in the net heat transfer rate is of the second
order, as was shown by C.C. Lin" for the case of very high frequencies. After these
fundamental papers by Lighthill1 5 and C.C. Lin"' a number of theoretical investigations
have been undertaken for more general outer flows 7 ' 1' .4, 21 as well as for stagnation
point flow1' 84120,28 and the flow past a flat plate at zero
incidence56, 9.10,13.19,25,27 With the exception of the paper by P.H. Hill and

A.H. Stenningl°. in which Lighthill's approximate method was used, all theoretical
studies attempted to find exact solutions of the boundary layer equations. A few
experimental investigations'9 10 12'1 9 on boundary layers in harmonically oscillating
outer flow streams show good agreement with the theoretical first-order solutions.
Geueral reviews on periodic laminar boundajy layers have been given by H. Schlichting2 ,
K. Stev'rtson". J.T. Stuart" ar.,- N. Rctt K

From the results of the mentionud investigations no complete picture of the
situation emerges owing to the fact that second-order terms havo been computed in a
few papers only. Therefore in the following emphasis is laid on the second-order
terms which lead to a change in net skin-friction and, especially, In the average
rate of heat tran,.fei. In the mathcn'ntical analysis ' perturbation method is used:
it leads to a series expansion for the solutions.
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After formulating the mathematical problem for an incompressible fluid in
Section 2. the boundary-layer equations of the first and second order perturbation
fieli are given in Section 3. T,:o solutions of the equations can b. represented by
a series expansion for small frequncy parameters X = ()x)/U and by a ser-,es
expansion for large frequency parameters, respectively. Both seri!'s expan:3ions are
expected to match at moderate frequency parameters. In Section 4 solutions for small
values of X are given, whereas the solutions for large values of X are given in
Section 5. Section 6 contains a discussion of numerical results for the stagnation
point flow (m = 1) and tlow past a flat plate at zero incidence (m = 0), respectively.
Finally, Section 7 contains a few critical remarks concerning the limits of validity
of the given theory.

2. FORMULATION OF THE PROBLEM AND METHOD OF SOLUTION

2.1 Boundary Layer Equations

We now proceed to consider a boundary layer along a wall, Figure 1. The coordinates
x and y are measured along the wall and perpendictilar to it, resp3ctively. The
velocity of the outer flow parallel to the wall has the form

U(x,t) M U(x)(l + ecoswt) (1)

where the second term represents the oscillatory perturbation of the steady flow

U(x) . The temperature TO of the outer flow as we I as tl,, temperature Tw at the
wall are assumed to be constant. We denote the velocity components of velocity, in
the boundary layer by u(xy,t) and v(x,y,t) , respectively, and introduce the
dimensionless temperatulre

T - Tro1S•(x,y t) -- (1la)
T1 - T•

The equation for the wi.steady incompressible, two-dimensional laminar boundary layers
can now be Tritten

•u by
-+- = 0 (2)

ýx By

+ _ {- + d
~u uu- + - V U+U ± cosa~t

at ;x ay iy 2  dx dx dx/

-((Xsinot + e -U - (1 * cos 2,•t) (3)
2 dx

+ ' + v• a (4)
Bt x 3y 12

taking Into account the form of the cuter flow field from Equation (1).
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( Th. boundary conditions are:

y 0: u 0, v 0, e
(5)

y 00 u = U(xt) , e = 0 .

Equation (4) for the temperature distribution is linear. Therefore it can be
concluded, that an os,-illatory disturbance of the outer flow temperature T would
only yield an oscillatory perturbation of the temperature distribution in the
boundary layer, but could not effect the time-averaged net heat transfer rate. In
other words, a change in the net heat transfer rate can occur only as a consequence
of a change ilA the time-averages of the velocity components. Prom Equation (3) it
cun be seen that the time-independent term due to the free-stream velocity is

1 dU
2 d'

It might, therefore, be expected that a change iu the net heat-transfer rate will be
proportional to 67

2.2 Series Expansion Method

The form of Equation (3) suggests solutions for u(x,y,t),v(x,y,t) and G(x,y,t)
of the following form:

u(x.y.t) = u0 (x.y) + rLu1 1(xy) cosat + u1 2 (x,y) sinwt] +

+ E2 [u 2 0(x.y) + u2 1 (x,y) cos PWt + u2 2(xy) sin 2wt) + er[.. . + .... (6)

v(x.yt) = v0 (xt) + E[v 1 (X,y) cosc (t+ v1 2 (x,y) sin(,t] +

+ C2[v 2 0(xy) + v2 1(xy) cos 2wt + v2 2 (x,y) sin 2cot] + E3 ... ] + .... (7)

@(x.y,t) = 8 o(X,y) + 1E[ 1 1 (x,y) coscot + e 12 (x,y) sincot) +

+ E2[e 2 0(x'y) + e 21 (x,y) cos 2wt +E, (x,y) sin 2cot] + eC...] + .... (8)

The above forms are now substituted into Equations (2), (3) and (4) and in each of
them the terms are arranged in ascending powers of 6 . Since 6 is arbitrary, the
coefficiants of en must vanish singly, and we are led to the following set of
equat ions:

zero-order, steady-state equations:

:S•u + _. A O,

Bx ýy

Bu 2u ou 0  dUu 0o•- + v° L-• 0 1.,y-- U --d (9)
ýX ý y2  dx

4 Y ý%o = a
u° 0 x () 2
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with the boundary conditions

y = 0 :u = 0 , V0 = 0, e =1

y = O: uo = U(x). 0 0

first-order equations:
terms with cos wt

+ 1 - 0
Bx 'ay

?ull dUCO u u1 1u2 +v11 -0 .3 + 2U-1 (10)

12 "x + u-x + 1 By dx

A1 + 111 + 0 "'11 + ! 011

terms with sin at

Bu12 +B 12 =

Bx ay

.Wu+ U0 +U 12u 12 (
11 12 0 12 0 -y By2  J

00o + "12 +0 V 212 a •'12-o,)@11 + u12 L +0o + V12 '1-0 0 voB Y---

with boundary conditions:

y = 0 : Ull = 0 , vi- 0 1 u 1 2 = 0, v 1 2 = 0 ,al 0 , 012 = 0

y = o u1 1 = U(x) , U1 2  0 , 11= 0, 012

second-order equations:
time-independent terms

Bu20 20+ -ýý O
-6x ay

ýuo20 0 VUU20 uo !2o 1 dU

U0 B 2 0 0 20 B2 2 dx

12 + v 112 -+ +V 1U(2
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0 20 C ~. 20 ý,, ay

(u I, I, I- + u12 ?-• + vil +-• v , 12 / (12)

with the boundary conditions:

y = 0 : J2 0, v 20  0 0, 820 = 0

y =C: u 20  - 0, v20 = 0, 820 = 0

Similar sets of equations result from multiplying cos 2&)t and sin 2wt . Owing
to the nonlinearity of the velocity Eqnation (3) combinations of first- and second-
order terms 'ill also appear. This leads to equivalent sets of third-order equations
and so on. In other words an infinite P,'aber of sets of equations for all powers of
z ia generated. Consequently the seriez expansions Equations (d), (7) and 18) of the
solutions are oi.y physically meaningful if the series converge. A general statement
about th'e convergence of these series is not now available. But from the results,
which we will present later in the analysis, it will be possible to make inferences
whiz:t will be discussed in Section 7. It seems plausible that this series expansion
is justified on condition that E is a very small parameter.

In this investigation only the first-order equations and the time-independent
second-order equations are considered. The latter are assumed to givr the eisential
part of the change in the net heat-transfer rate provoked by oscillations in the
outer flow. The difference between the exact change and that given only by the
secovd-order term will be of the order of E4 , which is negligible for small values
of f:

3. BOUNDARY LAYER EQUATIONS

3.1 Zero-Order (Steady-State) Equations

We now consider the flow past a wedge, i.e. an outer flow velocity dý tribution of
the form

U(s) = cxm. (13)

In this ctse, Eqv.atlons (9) lead to self-similar solutions23 , that is to solutions

which depend on one singie spatial variable oniy, namely on the sim'.larity vhaiable

7) y - yC (i)/2 (14)

1
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We now introdvce two functions f(77) and g(77) of the new variable 7 by the
definitions:

',0(x' y) /V-T'ui-jx) f(7)

uo(x.y) y = U(x).f'(77) cx1ýfl ))
(15)

It0(ry) _ 2 cv x(m1)/2 [(M + 1)f(77) + (m - 1)7?f'(77))
~O v° Y) g (7x 2
0
0 e(x~y) J (•

When this is done. the partial differential Aquations (9) reduce to the following
ordinary differential equations

fl +-- fft + m(l - 0

S~(16)
ml

g" + fg = 0 J
Pr 2

with the boundary conditions

77 0: f 0, ft 0, g =1

-7 = O: fV 1, g = 0.

Here Pr = W/ot is the Prandtl number. For gases it is of the order of 1 (Pr = 0.7
approximately in air). Equations ('A) are well known equations for the steady-state

i problem (0a the absence of the disturbance in the outer flow), and their solutions are
well-known i".

3.2 First-Order Equations

It is possible to combine the two sets of Equations (10) and (11) by introducing

complex functions in the following way:

UI = UIR + luij = U1 1 - iu 1 2  (17)

VI = VIR + ivIJ = V1 1 - iV1 2  (18)

e - eIR lIJ = e 1 1 -i 1 2  (19)

Introducing the similarity variable 7) from Equation (14) and a new variable
defined as

. .- x i= -x (20x (20)
I 'U(M c
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( together with the definitions

O,(x,y) = 'xU(X) ,,77)

U1 (X,y) = U(X)O7w(e, ) " xV}(7,7)ý)y
(21)

v1 (xy) = _ c x("-)/2 ((m + 1)$I + (m - 1)7i, + 2(1 - )ý
Bx 2

Oi(x,y) = (,)

we obtain the following working equations:

m+l

1!,M?) +-' f1711 ( +2mf ')OIP

3+1
+ -- f'¢I -(1 -m)f'fi 1e + (1 -- m)f"• 1i + 2m +• = 0 (22)

Pr I' 2 (

- - ('(m + 1)I + 2 (1 - m~jl(23)
2

with the boundary conditions:

7=0: P -0 , 0, 0. E) 0
~ o} (24)

71=o: W I, =1 1 , oI J0

Equations (22) and (23) admit the following solutions:

ýPI(f"77) = PIR(X,1?) + iIj(X.77)

ei(f.7 ) = OIR(xrl) + ii(X) 
(25)

where

Cox

=U(x--) (26)

is the dimensionless frequency parameter.



446

3.3 Second-Order (Time-Independent) Equations

By analogy with Equations (21) and (26) we make the following assumptions for the

second-order time-independent terms of velocities and temperature:

V/2 0 (x,y) = V X(m + 1)/2 ýJi(X,7))

u 2 0 (X.y) = exmC Jn (X,7)) (27)I -I- x (m 1
V2o(x.y) = - 2 x~ m - 1)/2 [( + 1 + (M - 1)r/71, 7 + 2(1 - m)XOIx

(z(y) = M1 (X, 7) J
Substituting these expressions into Equation (12), we get:

3+1 m +1

+ IIrm77 •- 0lim - 2mf IMl, - (a - m)f'X ,117x + (a - m)f'XiIx + M f"•Il

+ iM~+(- )XIR7) 41)X + 02 + (1 - in)XID 4 - n} P
JR71 TRX7) IJ71 IJX77- )

-+{(m 1)•R~iý + 2(1 - m)0i RX'IRIM + (m + 1)ý IYJ7 + 2(1 - m)XýJJX~IjJ7} . (28)

The temperature function OII(X,77) must satisfy the following equation:

1 m+1 1+m

+ 2 f - (1- - 2) -

3+2
M) g ( I x I l'Xx + M)( X m)X( 71•,. hx + t IJ77 0 IJx)-

m+

( IRGIRn + 'IJGIJ77) - (1 - m)X(IRX IR77 + IJXI7.) (29)

The boundary conditions for PII and 91) are

7 0 : II 0, 0 D 0. 0II I In lIX

'1 Co : =ý 7 0, 91 0.

3.4 Velocity and Temperature Field

Sumewizing the preceding results for the velocity as well as for the temperature
distributions, we obtain the following formulae:

u(x,y,t) = U(x01{ff(7)) + C[DIR,;(Nh X) coswt - tIj, (7mX) sincit] +

+ f@ 17,(?. X) + 0.. } , (30)

L______________________
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v(xy, t) _ x(M -1)/2 {(m + 1)f(7) - (m- 1)77f'(175 + 4

+ E[(m + ly)$j((7,X) + (m - 15)71 (IRI(77 ,X) + 2(1 - m)X)I 1RX(0,X)] coscot-

- i[(m + 1)3Ij(77,X) + (m - 157tIj,1Th(,X) + 2(l - m)AjjX(77,X)3 sinft +

+ E2 [(( + 15'D 11 (77,X) + (m - 1)fAI1 77(TX) + 2(1 - x)X'IIXi(7,.X)] + }
•, (31)

G(x,77, t) = g(r) + E[OIR(77,X) cosaLt - Oij(TX) sinwt) + 62'@1 (mjX) + (32)

From the derivatives at the wall we obtain for the wall shear stress:

"%r(X t) = f"(O) + C[PIR177, X5 coswot - lpIj,(O,X5 sinw.) + c 1},IM(OX) + ... (33)

and the heat transfer rate:

NU = - {g1(O) + f[11RI(0,X) coswt - EIJ7 (0,oX) sinwt] + 6
2@ 11 (O,X) + (34)

where

NU , (') (35)
k (TV TO 'T ý- - 0y

is the Nusselt number for the local heat transfer rate q(x,t) . The Equations (33)
and (34) can also be written in the following way:

0(X.t) = f"(0) + CAr(X) cos (tot + X,(X)] + E2(b (O.X (36)

V VII 
11777,

N{'(0) + CA (XM cos 4t + Xq(X)M + f29 117 (O,X) + ... ) (37)

where

A (X) = /IR,(O, X5 ,,(ox; (38)

and

tan X,(X) -= .P7(OX (39)
•R n(O, X)

with analogous expressions for A and X
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It might be worth mentioning that the velc; Ity component v does not merge into
the outer flow velocity component

V(x,t) = -mVc7 x(m - 1)/2 77(1 + 6cos Wt) (40)

There exists a certain effect on the v-component of the velocity at the outer edge

from the boundary layer flow, which is

Av.(xt) = v - V C X-0v - 0)/2 {(m + 1)f + (m - 1)77f - 2m?7 +

+ 'E(m 4 l)•IR + (m - 1)70 + 2(1 - m)X4DlRx - 2m?71 coscot -

- er(m + 1) ij + (m - i)7j',ijJ + 2(1 - m)XWijx] sinwt +

+ E62 ((m + I)p1 + (m - i)7Ip7 + 2(l - m)XViix] + .. (41)

and can also be written in the following form:

Av,,m 1 +-m7 - m- ' ... 1 f + EAv(X) cos [(t + \(X)) -

- a2 HII + m-2 70 Hr + (1 - M)XeIi] (42)

It can be shown that this velocity at the outer edge of the boundary is related to
the value of the displacement thickness 8, in steady-state boundary layers:

Av1(x, t)

S*(x.t) =x (43)
U(xt)

there

8*(xt) fc( - u(x,,t dy . (44)

F'or unsteady boundary layers, however, this quantity loses its meaning as a displace-
ment thickness; this was shown by F.K. Moore

4. SOLUTIONS FOR SIALL VALUES OF FREQUENCY PARAMETER

Since we are unable to obtain complete solutions of Equations (22), (23), (28) and

(29). we propose to establish series expansions in cerms of the ffequency parameter
X separately for small and for large values of It. These two expansi.ons are supposed
to join smoothly in the intermediate frequency range and thus to represent the required

solution over the %hole frequency range. This section will consider the series

expansion of the solution fo- small values of the frequency parameter, both for the

first-order and for the second-order equations.
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4.1 F.'st-Order Equations

We seek solutions of the first-order Equations (22) and (23) iat the following fo.m:

() = 7 E '"qn(77) . (45)
n=0

0i • • - 1 : 0 I ( 7 (46)

Substitution into Equations (22) and (23) leads to the following sets of linear
equations:

+" M + I ft" - [2m + n(l - m)]f' -+ + n(l I'nLn -- mn-f +rIn i

~In 27 In1~' n In-I mi n( -

I a•" fOn + n(hi - I) f'on - n - [ + n(1 - m g'1)

with

7- In - 0 0in = 0 (47)

7) =IP =o0 6 0S- o in ° in

where r 0  -2m , r -, r = 0 for n ,

• I -1 = 0 for n = 0 , I - 0 for n = 0 .

There exist very simple so-called quasi-steady solutions, i.e. solutions of theS~zero -order -equat ions7

•z0() =¼[f•) +•f,•)](48)

910(71) -- ,J-g '(77) (49)

where f(7) and g(7) are the solutions of Equations (16).

4.2 Second-Order Equations

We seek series expansions in powers of X 7-w x/U for the solutions of the
equations (28) and (29), respectively. It can be seen by inspection, that all terms
with odd powers of X will vanish. We assume, therefore, solutions of this form:

PI I(X. j) = o( - X2 .12,('?) + X U 11 (P?) - + ... (0)

lIIO(r) - x 11,••) - X"E0ll(7) - + ... (51)
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If we snbstittute these series into Equations (28) and (29) and collect terms, we
obtain the follcwing sets of ordinary, linear differential equations:

m + I + I m?1 + . .
o +- - f'-' 0 - -f 110 f1o 2 m + (52)

.0"•, + - fO'• -_ ( g~'• 1o + •oioi10 0  ; (53)
Fr 1 2 2 0 2

m+1 5-3m
ho f 41 - 2f1I" + - f"4, 0

P 12 2 2

fit, + m + I 1' itm 5- 3m f112 2 112 - f111 +- 2 112-

11 ~ + t1 11, 10 21 +(4

22 12 2 10 1

1 m+l 1
-r II+ -- 2 f1 1-[5 - 3m)g'•Ii 2 - 2(1 - m)C0oi2+

1 -- 2 f1' - 2(l - m)fB 1 1 2 =- -1(1

M+1 5-3m 3-im

2 2 1 2

m+1 9- 7m
+ - - " + (2m - 4)f(II +11 IN1 2 f1 114-

•i.2 2

MiF2 D 1 l+m OV 3m-5S 1
-(2 1 2(2 - 105' 4 + 2(m -2)ýP I 13 2 10 +I 2 12 12

7m - 9 m - 3 5m - 7 1+ -- " *I••- -- cI -• 'z• (56)

2 10 2 1113 2 J

I M +I
- •'x•=+ -2 fGl1 4(0 - m)f'6i!0

[7m- 9)gii. + 2(1-) 1MA 1 ++4(1-m)' 0 , -3(1 -m); 1 e1 3 +(0-m)k' 0 +

7m - 9 3m - 5 1 + M 7 - 5m 3 - m "

2 1110 2 1212 2 061" + 2 13 11 2

(57)

The scheme can be continued for ascending powers of the frequency parameter X
but we will confine ourselver to the preceding terms. In this. manner the largest
neglected term will be of the order of X6 . For •l1 equations the boundary
cotiditions are given by:
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- O •XIn = O, 40;n On = O
(58)? = " CO ; IIn •Iln -- 0

Quasi-steady solutions for Equations (52) and (53) can be easily given - they are

16 (772f" + - f)

(59)

no 16 (77, 2g1 - 77g)

4.3 Convergence of the Series

In order to justify the series expansions postulated in Equations (45), (46), (50),

(51), it is necessary to show that these series converge, at least for a certain
interval of small values of X . S.H. Lam and N. Rott' 4 were able to prove, that the

series expansion of the solution of the general equation (22) converges fo. all values

of ý , and that this is a unique solution of the-problem. It is expected that an

analogous proof of the convergence for the other series expansions might hold, but

the details of this scheme have not been worked out. In the special case of flow
along a flat plate at zero incidence S. Gilbellato5' 6 showed, that the series
Equations (45) and (46) converge absolutely for arbitrary values cf

5. SOLUTIONS FOR LARGE VALUES OF THE FREQUENCY PARAMETER

5.1 Concept of the inner ('Stokes') Boundary Layer

In order to understand the respon.e rf the flow in the boundary layer, especially

with respect to high-frequency oscil!itions in the outer flow, we will first consider

the simple case, when the outer flow has the following form:

U(xt) = ec Cos ct . (60)

This leads us .t once to the well-known exact solution of the full Navier-Stokes-

equation, which was first given by G.G. StokeS23:

u(y.t) ;= cc cos wt - e co0s (t - (61)

oil

u t" c[cos &t - e"'Scos (wt - 7?S) (62)

where

a• y
Ti: -- (3

21
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represents a dimensionless distance from the wall and

(64)

plays the role of a boundary layer thickness. In the case of an incompressible fluid

the problem is equivalfnt to the flow near an oscillat~ng flat plate in a fluid at
rest. In the literature this is referred to as 'Stokes' (second) problem. From

Equation (64) it follows that for increasing values of frequency W , the thickness
of the 'Stokes-layer' decreases and becomes very small ultimately.

If the flow equations were linear we could immediately obtain a complete solution

to our problem of a boundary layer with an oscillatory disturbance in the outer flow,

at least in the case of the flat plate (m = 0), by a linear superposition of the

steady-state solution and the oscillatory 'Stokes'-solution. It should be noted

that the boundpa layer thicknesses are different in the two solutions. The boundary

layer thickness Th the Stokes problem is given by Equation (64), whereas that for the
steady-state solu';ion is

= . (6b)

The ratio of these thicknesses

S (66)

becomes very small fLr high frequencies; in other words, for large values of the

frequency parameter X the 'Stokes' -layer is much thinner than the original boundary

layer, as shown schematically, in Figure 2.

Owing to the non-linear character of the flow equation, there will occur an inter-
acticn between the Stokes solution and the original boundary-layer solution leading

to a much more complicated solution than would be the case with a linear problem.

Nevertheless, we may expect that even in the non-linear problem the essential part

of the solution for high frequencies will be of the Stokes type. We, therefore.

represent the required solution as a sum of two parts in the following way:

4 •s + (P
(67)

e = Gs+.Op

Here 4S and e8 are functions of the Stokes type and var.) only in the small Stokes-

layer, (S-layer), whereas fP and Op represent the internation between the Stokes

flow fields and the original steady-state boundar1 layer; we shall refer to the

latter as to th- tlandtl-layer (P-layer), see also Figure 2. The necessity of

splittig the sclution for high frequencies into two parts has been mentioned by
V.S. Gibson? and by S.H. Lam and N. Rott". Owing to the postulated form of the

solution. Equation (6"). the flow equations and the temperature equations 'cre also

split into two equations, respectively: it is noted that, in generRl, the equations



447

remain coupled. The coupling of these two solutions is evidenced by the boundary
conditions at the wall, which have to be satisfied by the composite solution, but not
by each of the two constituent parts of the solutions separately. In the following
the uathematical procedtre will be described in detail separately for the first-ordcr
equations and second-order equations, respectively.

5.2 First-Order Equations

5.2.1 Velocity Ficld

The substitution of

4) = t4) ' I (68)I1 : L. " IP (

into Equation (22) and the assumption, that only the Prandtl solution tip merges
with the outer flcw oscillation, whereas the Etokes solution 4) vanishes outside
the Stokes layer, lead to the following two equations:

m+1 m+l
m) + I m~2''4 +-

t 7IP'7 - f- 2 IP 2 ft IP-

- (1 - m)f 't + (1 - m)f"'P@p - - 2m - (69)

and

tIS4 M + 1 + I 7 + 2mf')tIS4 + m + f" Is-
2 I 2

- (I - M)f i + (I- m)ft'4iS8  = 0 (70)

witt the boundary condition.

0) : 4)IS + IP = O, IS7 + tIP7 -

V7 1- 0" t IS7, = 0 t IP,' = I

In this way Eqi ations (69) and (70) satisfy the bcun.jary conditions at the outer edge
of the boundary lyVer. In order to find the soluti~cs of Equation (69) for large
values of the frequency parameter, we change the variable • to I 1/V .

S,'.stituting a series in powers of ,3 for the solutions

n+10t q tP 0b a s o e ns forPn (72)

into Equation (61), we obtain a set of equations for the functions (tiPn(77)
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If we change the variables in Equation (70) from • and 7 to j3 and Y
aucording to:

Y= y = (73)

and if we represeizt the function f in the form of a power series

-P 77 m 775
f = A2 - m +•+- A A +.... (74)21 31 2 25!

an equivalent series can be assumed for the function , namely

IS~~ (75)
U=o

Upon substituting into Equation (70), we obtain the successive equations f'r the
functions q sn(Y) , which can be easily solved.

Now the composite solutions can be written in the form of sums of the part~al
solutions 'iPn(??) and dhIsn(Y) I i.e.

r,+ E +8 _r Bn,+1 O'(77) (77),
D=O n=O

171 1 + 3I1no I'Sn(5) + 2 n+ 4 Olpn(. , (77)
n=0 11=0

= 0- - isn(y) + 1 (78)

- - Eo (n + 1),9n+ (0Isn + 4IPn) + - Y Z: "8n+3 ' 79

The boundary conditions Equation (71) allow us to establish boundary conditions
for the functions OIS(Y) and q'p(71) , which are'as follows:

iSn(0O) + Oi1 n(O) = 0, n = 0,1,2 ....

•xso(O) + = 0 , (80)

Misn(O) +OiPn- 1 (0) 0 n 1,2

1 1 l-i
Since Y = (1 + i)77 and / - = - are complex variables, the function DI

and its derivatives are complex functions. Separating into real and imaginary parts,
we obtain:
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_ - - e s(Cos'~ - sin) + O( 1(81)

+ e -Cos7s - sin-S + 0(1 ) (82)

I I--e os +0Owl) (83)

e Si TS+ x )(4

e5fl (CO r,+ (84)

- /~~(con r, sion%) + 01X (85)

*l~j =(COS -snr 2r,, sin %) +(* '86X- tr)

2V21

11%Ju - e s~27sstos - sin Oa(X1 (39)

e MIS S13, (-0

The precedizg asyrptotiz sokticm o is Tijid for large Tsines of tbte
frequency parampter sand is identi.zzi with Lighthtil's w ell knrjn soluintjC2. it
tuns out tzxat this solaticn is independent of the furrtioa UNx) [brrtheraore it
is also ideat~cm1 nl. the soizttoc which C .Lin: cbtainec. as a result of th~e
*pM1icatforL of his theory for tigt f:equeacies- Sinze C.C. Lin did rsot isstme a
series S-a~tIX!.-r pcer f f! . it can I~ ecuctded that this~ solution is the exact
soluticn f-37 t;-e CisarIhamee In other vords. !c-r high frequetacies the disrurbmze
itt Vroprti!:nai t-o t a wd all hicher hax-sxiis. --e. E2? CS"',t . f? sin 2:.t,
0' Cos; _ . 4E 4 :;--t -!- __. aze if a smaller c.-d!,r with respect to the freqency
Wrua~etter Y This will t~ae the conse-quence that the seeond-a-rder solutica, found
f::c. thE scries e~jxpa-siGn n~etl'd. swill giv-e t~ne s*ze res?.ilt for hith fre.~ueicies a-s
the mx m E-llnear theory by C-C. Lia. see Section 7-
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5.2.2 Temperature Field

In ordzr to solve Equation (23) for i-he temperature field e8 we proceed In the
same way as before. We again represent the solution as a sum of two terms

40 Q

,9 = @IS + ")IP = r [n÷3 0 n(y) + 1: /11+2 t(77) (91)
D=O I n-O

where the functions e15n(Y) and 0ip,(7i) satisfy simple differential equations and
the following boundary conditions:

0iPO(=c = 0 1 (92)

91pn(o) + 9'91Sn-(0) = 0 n = 1,2.3.

Separation of the solution into real and imaginary part gives

Pr 1:

4 1 B , Pr Il - a\ - 17si
= z-A 1ag + e'eos (COS7SV "2 1I-- •r I .Pn)

B.Pr 0-,n BI F Pr1
A (- u)one sin - +(M 1

1 Pr I - Pr LPr
""s(cosv Pr rs +s 0(X" ) . (93)

e + O(.-
e 11- -- 2~ Mg + Pr( -7

i 8ij =- -- "79'-+= ra'-P e (COS "7s - sin 77s) -

2 1V2 1 - Pr( I P

- BI-mU -n+%e cos7s1 S COS + (M s r
I -BPr I 1

e S(cs + sin 7; 5 s)} + o ; (94)

Pr =

1 e{ B 9 L4ewco'S 5 + sin%) +

V )

+ (5& I~r si % - (I 0r=i'r O 7Sl +O-(5
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i2

S 2 mgt I--1 e" [m(cos77 - sinT77) + (5M - 1)?scos -77
v2 4

- (1 - m)7(ccs 71S + sin 77s + 0O_2 (96)

The solution for Pr • 1 (Eqns. (93), (91)) agrees with the solution found by
Lighthill 15 , except tnat in Lighthili's solution the function g'(71) is replaced
by its value B, at the wall. This, houyever, has the consequence that in Lighthill's
solution the function 71 is not compensated by the function g'07) in the combination
7)g '(77) for 77 - 0. Therefore, Lighthill's temperature distribution tends to
infinity for 77 - 00 instead of tending to zero: by contrast, the solution given in
Equation (94) satisfies the proper condition at infinity.

5.3 Second-Order Equations

We consider the solution 4i,(X,71) of Equation (28) for large values of the
frequency parameter. The first-order functions on the right hand side are now known
frcic the resultG found in Section 5.2.1 (from Eqns. (76) to (90)). After substituting
these functions into Equation (28) we obtain:

M+ I( m+I
flIMMr + 2 f-1I-7M - 2mf - (1 -m ýfXl + (1 - m)f"XIiix + - ffII -

-- ii 1e"[2 + 7)S)cos% -(1- 77S)sin %] -e +0(w ). (97)

The solution is once again represented as the sum

II - 1 IP Sn(7S) + el+2 95IPn(71) (98)l US lp n=J n=0

where

C{. = i (99)

is a new variable, chosen to be analogous to the complex variable B in the first-
order solution.

I

I,
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The functiono ýp,(7)) and ¢ilSn(7s) again satisfy simple differential
equations and the following boundary conditions

=ZIPO(O) = 0 1
ýjpin(O) + iisn.l(O) = 0 , n = 1,2 . (100)

OIpn(O0)IISn = 0 n 0,1,2 ....

The analogous second-order solution for the temperature field is:

n +0 OIIn(7s) + n2" 6 (101)
n=o n=o

6. NUMERICAL RESULTS

6.1 Stagnation Point Flow, m = 1

We only consider the functions •1 i(0,X) , •i(oX) , eI'(0,X) ,'ýii17(0,X)

•ii(cD.X) and e19,,(0,X) , which are important for the shear stress at the wall,

the heat transfer and displacement thickness, respectively, according to Equations (33),
(34) and (41). All coefficients of their series for small values of Y. and for

large values of X are collected in Table I and Table 2, respectively. The functions
themselves have been plotted in Figures 3 to 8.

The results in Figure 4 for the shear stress oscillations are typical for problems
involving oscillations. The amplitude A of the oscillating shear stress at the
wall starts with its quasi-steady values at X = 0 and increases to infinity for
X -.O The phase shift X•r between the shear stress oscillation and the outer flow
velocity oscillation starts from zero for X = 0 and increases morotonically to the
asymptotic value of + 450 at very high frequencies. In other words, the phase of
the shear stress oscillations leads the fluctuations in the stream velocity. The
physical meaning of this fact is that the velocity in the boundary layer reacts much
faster to the outer flow pressure gradient than the outer flow velocity. To the
outer flow velocity there corresponds the following pressure gradient:

1Bp
- c 2x + Ec(coswt - asinct) (102)

K ax

For large values of the frequency the phase of the pressure fluctuation leads the

outer flow velocity fluctuation by 900.

The heat transfer fluctuation (Fig.6) shows a completely different characteristic.

With increasing frequency the amplitude Aq decreases and tends to zero whereas the
phase shift X tends to -900, which means that for very high frequcncies the

phase of the heat transfer fluctuations lags behind that of the outer flow velocity

ty goo.
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It can be seen from Equation (42) that the value Av, is finite and has a time-

independent as well as an oscillating part (Fig.8). For very high frequencies the
phase of the fluctuating part lags behind the phase of the outer flow velocity
U(x,t) oy 450. The boundary layer thinkness fluctuates with a constant amplitude,

i.e. one which is independent of x . In Figure 9 the different oscillatory functions
are compared for large frequency values.

The second-order time-independent parts 4'i(0, X) , Gj1(0, X) , c1 1i(cOX) (Figs.10
to 12) show a tendency to decrease to zero when the frequency increases. In the limit

of extremely high frequencies there is no effect on the net shear stress and net heat
transfer. The same ic valid for the displacement thickness. In the range of small
frequencies the shear stress is increased whereas the heat transfer decreases. The

maximum effects appear at X = 0 , i.e. in the quasi-steady case. For this case we
have:

= 1.2326 i+-- • , - 0.6482

(103)

Nu - 0.4959 ( 1 E2) Pr 0.7

6.2 Flow Past a Flat Plate, m = 0

SThe problem is more complicated than that of a stagnation point flow, because the
* frequency parameter X = (ax/i) is now variable. Since several authors calculated

some of the functions In and OIn , respectively, for comparison the most important

initial derivatives of these functions have been collected from different sources in

Tables 3 and 4. The final results are the coefficients of the series expansion given

'* in Table 5. All coefficients in the series for large values of X have been collected

in Table 6. The values at the wall (77 = 0) of the functions IIR17 ' IIJ71 1
BIJ* ' ,IR1 I III- 1 OI77 ' which give the shear stress at the wall and the heat

transfer, respectively, have been plotted in Figures 13 to 18.

The results are, in general, very similar to those for the stagnation point flow.

The only essentiul difference is the behavior of the functions for large values of X

In the flat plate case the functions tend to zero much more rapidly when X - o

than was the case in the stagnation-point flow. The effect of the outer flow

disturbance on the temperature fluctuations as well as on the net shear stress and

net heat transfer is very small for high frequencies. The only exception is the

shearing stress fluctuation, whose amplitude still tends to infinity when the frequency

increases. This means that even for small values of E the shearing stress will
vanish and even turn negative within each fluctuation period if the frequency is high

enough. The negative shearing stress at the wall is associated with reverse flow

and may lead to a certain kind of separation of the flow and the subsequent formation

of vortices or bubbles. If this were the case, the boundary layer equations would

cease to govern the process. The fact that the fluctuating disturbance of the steady-

state wall shear stiess becomes infinitely large does not violate the assumptions made

in the series-expansion analysis, because for very large frequencies the radius of
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convergence for E becomes Infinite, as will be shown in Section 7. The maximum

effect of the disturbance on the net shear stress and heat transfer again appear at

small values of X . In the limit X - 0 (quasi-steady case) we obtain

= 0.3321 1 4 - E 2 (104)

Nu - -B 1---E2) 
(105)ux616

where the values of B1 depend on Prandtl number. The form of Equations (104) and

(105) shows clearly that the Reynolds analogy ceases to apply, even in the particular

case when Pr 1=.

7. LIMITS OF VALIDITY OF THEORY

It is now useful to discuss briefly the fundamental assumptions on which the
analysis of this paper was based. This will provide an indication about the limits

of the validity of the theory.

(a) Boundary Layer Concept

By using the boundary layer equations the fundamental assumptions of boundary
layer theory have been implied. This means, that the v-component of the velocity is

assumed to be small in comparison with the mean stream velocity, that the pressure
gralient perpendicular to the wall is zero and that the wall ;urvature is negligible.

If the boundary layer thickness were to become very large, the boundary layer concept
would break down. This is especially the case near or behind a point of separation.

Since in our analysis zero or even negative wall shear stresses can occur, reverse
flow and local 'separation' render the application of the boundary layer concept at
least questionable. On the other hand, in experimental studies with free streams

involving outer disturbances, flow separation has been observed 2 '3; it was even

suggested that separation provides the essential mechanism for an increase in heat
transfer. If this is the case, it must be realized that the phenomen could not be

treated theoretically in a simple way, if at all. It might be mentioned, however,

that in the case of the stagnation point flow the boundary layer equations are

identical with the Navier-Stokes equations. Therefore, no limitations with respect

to the boundary layer concept exist as far as stagnation-point-flow is co;icorned.

(b) Series Expansion Method

In the analysis it was assumed that the flow field as well as the temperature

field can be represented by series in powers of the parameter c which multiplies
the amplitude of the disturbance. This assumption is only justified if these series

converge. No general statement about convergence can be made at present, but from a

few results which have been found in special cases, it seems plausible, that at least

for small values of 6 , convergence is assured. An outer flow described by

Ii
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Ulx,t) n cx + E coswt lead to an exact solution for all values of C . In this

particular case the series consist of one term only, and the radius of convergence is

infinite. For an outer flow considered here statements of the convergence can be made

for the limiting cases of very low and very high frequency. In the case when w = 0

the outer flow assumes the simple form

U(x) = u(i + E) (106)

which is independent of time. If we use the well-known results for the wall shear
stress and the Nusselt number in steady-state flow U(x) , we get

7___ Nu

- f"(0)(1 + E) 2  , 
91(0)(1 + 6), (107)

Expansions into binominal series will conve:'ge for e < 1 and will lead to the
quasi-steady solution. In the case of flat-plate (m = 0) flow, F.K. Moore and

S. OstrachI 7 demonstrated that the radius of convergence (E < 1) is not restricted to
the point X = (cx/U) = 0 itself, but can be extended to the solntion at least up to

the terms of order X2 . In Section 5 it was found that the first-order solution for

high frequency is the complete unsteady part-of the solution, because terms proportional
to f2cosrot , 62sin2ot , E4 cos4aot , 6 4 sin4wt were ail of a smaller order of

magnitude with respect to the reciprocal frequency parameter. Therefcre, the

second-order solution would give the exact solution for the change in net wall shear

stress and heat transfer in this limiting case of high frequency. By comparing the
16theory of C.C. Lin , which is valid for high frequencies and is not based on any

assumptions regarding the disturbance amplitude c , with our analysis, one can easily

show that C.C. Lin's final equation for It would have the same right-hand side and

the same highest order term on the left-hand side. In Lin's theory the Equation is,
however, non-linear. The method of solving will be the same, nameiy by splitting up

the solution in a Stokes part and a Prandtl part (see also W.E. Gibson7 ). For the
Stokes part only the first term of the left-hand side is important. Therefore these

two Stokes equations will be identical in Lin's theory as well as in our series
expansion method. This has the conseý,,uence that the solutions for the shear stress

and the heat transfer are identical too. Since in Lin's theory E is not
restricted, the radius of convergence is infinite for the limit of high frequencies.

In the intermediate range of frequencies it can be assumed that the radius of
convergence increases monotonically from E = 1 (X - 0) to E -m (X - co) , At

least for values of E which are very small compared with unity, the application of

the series expansion method is always justified.

8. CONCLUSIONS

1. The report analyses the two-dimensional, unsteady, laminar, incompressible

boundary layer which exists on a wall when the external, free-stream velocity

is of the form

U(x,t) - cx m (1 + Ecos60t)

The solutions are presented as series expansions in powers of the parameter 6

and the first and second-order terms in the solution are calculated.

( , . .
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2. The first-order terms are oscillatory and retain the frequency of the
disturbance but display a shift in phase within the boundary layer. The second-

order terms consist of parts oscillating with dovble the frequency and of time-
independent parts, which give a change in net wall shear stress and heat
transfer.

3. The solutions are presented as series expansions in terms of the frequency
parameter

CoX =

U

separately for small and for large values of it; these join smoothly in the

intermediate frequency range. The limiting cases X - 0 (quasi-steady
solution) and X - c (Stokes-type solution lead to comparatively simple
solutions.

4. Numerical results are presented for flow near a stagnation point and for flow
along a flat plate. The first-order terms display different characteristics
for the wall shear stress and the heat transfer rate. The amplitude of the
shear stress increases without bound with increasing values of the frequency
parameter, whereas the heat transfer-rate amplitude decreases and tends to zero
for X - c.) The phase shift for shear stress and heat transfer rate starts at

zero for X 0 and increases to 450 for shear stress and decreases to -900
for heat transfer. The second-order time-independent terms start at the value
of the quasi-steady solution, which is positive for the shear-stress (increase
in friction) and negative for the heat transfer (decrease in heat transfer)
and tend to zero for X - r The curves tend to zero much faster for flat
plate flow than for stagnation flow,

"5. A brief discussion of the fundamental assumptions used in the mathematical
analysis gives some information about the limits of the validity Cf the theory.

6. The paper is a short version of a more comprehensive investigation of this
subject 4 .
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Table 2

Stagnation Flow (m 1 1). Coefficients of the
Series Expansions for Large Values X (Pr = 0.7)

Xf X0 Xxf x I X-1 X"2

4(0) 0.7071 0 1.4142 0 -0.3094

f.(0) 0.7071 0 -1.4142 1.0785 -0.3094 0

lt(M) 0 17 -0.7071 0 42.1213 -3.7.333

Ij (O) 0 0 0.7071 -1.9437 4.2.1213 0

OIR(o) 0 0 0 0 0 40.5400

GIj(o) 0 0 0 0.2700 0 0

÷Nt (o) 0 0 0.3530 0

4z(OD) 0 0 0 .0.6084

e11 (o) 0 0 0 0.1496
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Table 3

Flat Plate Flow (m = 0). Comparison of the initial
Values of the Flow Solutions. Found by Different Authors

0.8485 P.K. Moore 1 6

0.8485 N. Rott. M.L. Rosenzweig 21

0.8485 S.H. Lem, N. Rott 1 "

0.8485 R.I. Nickerson
1 9

0.8488 C.R. Illingsworth (Journai
of Fluid Mechanics Vol.3.
1958)

0.859 A Gosh

0.838 S. Gibollatos

%1 (0) • -0.4698 P.J. Moore1 e

-0.4697 S.H. Lam, N. Rott 1"

-0.4697 R.I. Nickersoni
9

-0.468 A. Gosh 9

-0.485 S. Gibellatos

S3(0) : 0.3677 R.I. Nickersonit

0.3677 S.H. Lam, N. Rott 1"

0.380 A. Gosh 9

14(O) -0.2605 R.I. Nickerson1 9

-0.2695 S,H, Lain. N. Rott 1"

-0.282 A. Oosh'

Il(0) 0.1789 R.I. Nickersonif

0.1769 8.11, Lam, N. Rott 1 "

0.18 A. Gosh'
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Table 4

Flat Plate Flow (m n 0). Comparison of the Initial Values
of the Temperature Solutions, Found by Different Authors

for Pr = 0.7, Pr - 0.72 and Pr = 1.0

Pr 1.0 Pr 0.72 Pr = 0.70

g'(O) -0.3321 g'(O) -0.2956 g9(0) = -0.2927
(Reynolds Analogy) (Moore 1 ) (Nickerson1 9)

60o = -0.1660 1o(0) -0.1478 011o(O) -0.1464

011(0) 0.0271 611(0) 0.0205 ef (o) = 0.0199
(Ostrachle) (Nickerson

Eq 1(0) = 0.0265 811(0) = 0.0205 811(0) 0.0195
(Gibellato') (Illingworth. (Gibellatoo)

Journal of Fluid
Mechanics Vol. 3
1958)

G 2(0) 0.1470 B12(0) = 0.1251 Oe.4(o) 0.l23
(Ostrach")

01(0) 0.145 01(o) 0 o.125

(Gibellato6) (Gibellatoo)

e;3(0) -0.2303 8l3(o) = -0.1846

111(0) = 0.2176 e14(O) = 0.1695

0150 = -0.1597 50() = -0.1221

0 o = 0.0208 9Oxo(0) = 0.0185 el80(o) = 0.0183

OEI2(o) -0.1441 E112() -0.1223 0.14

Oe;I,(0) =-0.2088 114~0) =-0:.1:6421
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Table 5

Flat Plate Flow (mn 0). Coefficients of the Series
Expansions for Small Values X. (Pr = 0.7, 0.72 ond Pr = 1.0)

X0 x X2 x3  X1 X5

0.IR(0) 0.4981 0 0.4697 0 -0.2695 0

IJ7(O) 0 0.8485 0 -0.3677 0 0.1769

IR(" 77 - 0.8604 0 1.1947 0 -0.7744 0

•Ij (OD) 0 1.0284 0 -1.0577 0 0.4931

Pr = 0.7 -0.1464 -0.1234 0. 1695

elaR(O) Pr = 0.72 -0.1478 0 -0.1251 0 0

Pr = 1.0 -0.1660 -0.1470 0.2176

Pr = 0.7 0.0199 +0.1846 -0. 1221

e)IJn(O) Pr = 0.72 0 0.0205 0 0

Pr = 1.0 0. 0271 0.2303 -0.1597

0I.(0) 0.0623 -0.2168 0 0.1946 0

i(CD) 0.1076 0 -1.1103 0 0.8721 0

Pr = 0.7 0.0183 0. 1204 -0. 1642

8iin(O) Pr = 0.72 0.0185 0 0. 1223 0

Pr = 1.0 0.020P 0. 1441 -0.2068
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Table 6

Flat Plate F147% M~ 9). rVWefricieets alt%& Series

FIP@im fw Large Yalus X- (Pr- 9-7. 6-72 an pru = 19
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SUMMARY

The variation of tr-.wsition Reyaolds nimber with wall temperature
has been studicc. experimentzlly using a sha-p-edged saooth flat plate.
Early measurements ere rvade at Mach numbera of 7.5 and 10 in a conical

flow. Moze recently some experimental data at M = 8.2 have been
obtained in a sore uniform stieau. Thes,! more recent data are reported

Iin thWs Dete.

7ho transition region, is determined from focussed s!'adowgraph

pictures and checked by taking heat transfer rate Leasurements along
tie plate and pitot pressure traverses through the boundary layer.

Indications are that for a given unit Reynolds number, plate
goometry and Mach number it is possible for the transition pInt to

f:.rst move back, then adwvnce and finally .gztin recede as the wall

temperature is reduced. This iattern of movement supports the

theoretical prediction of Reshutko (1963). -

SONMAIRE

Les variations du noubre de Reynolds dans la zone de !a transition,

en fonction de !a tempirature des parois, ont dti itudiees
ex.,ri mentalement A 1' aide d' time plaqe plane, lisse et aux bords
tranchants. On a d'abord effectud des mesures, dans un dcoulement
conique, A Mach 1, 5 et 10. Plus r•cemmeht, on a obtenu dans un
dcoulement plus uniforme, des donndes ex~drimplitales pour Mr.ch 8,2,
doznndes qui sont exposdes au cours de ceraie comnunication.

La zone de traisition a dtd ddteivinhe & I' aide d'images
strioscopiques convergentes et vdrifide par des mesures dit taux de

transfert de chaleur le long de la plaque et par des prises de
pression gdndratrice indiqude & travers la couche limite.

II apparaft que, pour un nonbre de Reynolds, une gdom4trie de
plaque et un nombre de Mach donnrs, le point de transition pent tout

d'abord reculer, puis avancer, pour finalement reculer iL rouveau au
fur et A mesure que la tempdrature des parois diminue. Ce schdma de
mouvement vient confirmer les prddictions thdoriques de Reshotko (I 63).

1'
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NOTATION

coefficient in =C/W TOD

CF average skin friction coefficient

Cf local skin friction coeffic.ent

C p specific heat

M Mach number

p, pitot pressure lb/in2

Pr Prandtl number

heat transfer rate B.Th.U/ft 2 sec

Rex Reynolds number at x -

Ret transition Reynolds number - __uxt

Re crit minimum critical Reynolds number

t time

T temperature

T* reference temperature

T 0 total temperature

Tr recovery temperature

Tw wall tempc.•ature

u velocity component parallel to flat plate surface

x distance from leading edge

xt distance of transition point from leading edge as indicated by shadowgraph

xv distance from virtual origin of turbulent boundary layer

y vertical co-ordinate measured from flat plate surface
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Y ratio of specific heats

Sboundary layer thickness taken at u 0.99
Ua

/4 viscosity

p density

Subscripts

C local conditions At outer edge of boundar, layer, assumed equal to
freestream conditions

T* bas.4 on reference temperature conditions

Superscript

, denotes parameter evaluated at reference temperature T*

ii
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TRANSITION RlEVERSAI, ON A FLAT PLATE

AT 11YPERSONIC SPEEDW.

B.E. Richards and J.L. Stollery

I. INTROD)UCfTION

Jack, Wisnicwski and Diaconis (1957) obtained the first experimental Indication of
tfcnsition reversal on a cone at a Mach number of 3.1. They found that starting .1ith
a wall temperature about one quarter of the recoverv temperature the transition point
on the cone moved unexpectedly back as the wall temperature increased. Only at the

higher wall temperatures did the transition point "reverse" its direction and exhibit
the expected upstream movement with heating.

In a later paper Wisniewski and Jack (1961) report data at M = 3.8 ir. which

there are two "reversals', see Figure 6. The latter data and some more recent
results of Lyons et alii (1964) at M = 5 give some support to the theoretical
predictions of Reshot)-o (1963). Reshotko completed the extension of the Tollmie: -

Schlichting instability theory to compressible flat plate boundary layers, takinr,
irto account both temperature and velocity fluctuations and applying the appropriate
boundary conditions. He found that there were two loops in the plot of wall
temperature against Mach number (Fig.7(a)) within which the compressible lazainar
boundary layer was completely stable to small disturbances. From this result
Reshotko conjectures that the "louble reversal" pattern of transition point movement
will wall temperature at a given Mach number (Fig.7(b) r..ad (c)) is likely at super-
sonic and hypersonic 11ach numbers. More recently Lees "!954) has reported some
numerical solutions of the complete small disturbance equations, obtained by
Dr. Leslie Mack of Jet Propulsion Laboratory, which indicate that an even more
complex variation of transition point position is possible.

The complet. absence of data at Mach n1imbers greater than 5 encoulraged the alithors
to attempt measurements of transition positioi, on a highly nool,:d flat plate at Mach
numbers between 7 and JO usin:g the gun tunnel. Prelimimi2ry tezts, using a conical

nozzle, at M = 10 snd 7. 5 showed that at the lower Mact: numb,- with a unit
Re of 8.9 x 10i per in and Tw/Tr = 0,51 natural transition occurrod at

Rex = 5.3 x 106 . At the higher Mach nv;:ber the unit Reyaiolls oji.ber available was

only 5.0 x 105 per in and the boundary layer remained laminar over the entire plate
length. It was recognised that an intermittent tunnel employing a shock compression
heater was not the ideal facility for this type of investigation but the experimental

simplicity of obtaining constant temperature wall conditions at hypersonic speeds in
the range 0.50 > T /Tr > 0.05 keeping every other parameter constant suggested tnat

the transition reversal pattern should be qualitatively corrn.t. Hence a detailod
investigation was made at M = 8.2 using .. contoured noz;:K.e to proviee a more

uniform stream with no axilG pressure gradient in the test section.



2. AFPARAI.S

2.1 lbe GM TEi9

The Imperial College cm tweel bas t.tfs described by Stollery et %111 (1 906) mid
Is Need(2ha) Brlefl~y 'It Is a blow ftm t~mael wsith a sbm oauapression belter.
The shkt Is sjeeated by oeapressed air Iivinwg: a free ligh: pistam dow a 20 ft
1ong barrel filled with the test gas (air) All tests wev- as sixg a driver
prewmr af 2615 lMAO. The barrtl Ftessm- was varied betwees 15 and 100 lb/la'
to chaage the rt*'rery taivrature (T.1 am1 hemee the iait ley-molds muser.

Vie 71F Sm exit diseter contoured mozzl* &me a pmralle! f~n. ulti a 6 5a msfail
camL Am open Jet test sectilon was ssid and the asetW tamel &minag t ime urns
aremad 40 u~lllsec-oads.. Mter detzils .C. those sod earlier ceedtiams are gives Is
the table 4elow.

[ cA -moer 1 '15 - 8.2

ýYpe of no~zzle Ia~i om~tare
Raymldi raper Winc~ 3 x lo0-.cwo~ x I8 2.5 1IOS T.1lO 10
Reservoir temerature 219 2290 - 665 I220-665

Reaervair pressure lb/in? 1580 1580

Static pressare ~Winz 0.254 i0.138

Recovery temperature Or[ 1130 - 535 1030 - 535

Mxc 3=uher gradient 7. 7 t,2 8.2 over I in nowe

Static pressure gradient. 0.254 - 0-133 1c-
I over 8in

2.2 Nael Details

The f.ist plate models are show= in Figure 1. Both models were pedestal mounted at
* zero incidence in the open jet- test section below the centre line. Side curtains-

extendfasig below the model were fitted as shown in Figure 1(c) toG prevenit disturbances
fro, the lower surface influencisg conditions oni the upper test surface.

2.2.1 The Hea: Trtinsfer Model (A) - Figure 1(r.)

ithis model was a 5 in span~ 11.5 in chord flat jilat. with a leading edge thickness
of apprtximately 0.00). 1P. Forty, thin film platinum resistance ga~uges at % in
interrals were baked ca a P~rrex p~late let into the model, as shown in Figure l(a).
At the ends of each gauge a 0.02G in hole, drilled ultrasonically, allowed the lead
wirzs to be taken away utder the Pyrex plate. la order that, localised high
resistances on the gauge are iot fcrmad. due to paiating the platinum round sharp
corners, the holes were radiussed into the upper surface of the Pyrex by means of an
etching process using hydrofluoric acid. Each countersunk volum, and hole was filled
with sili'cr paint, in order to connect the platinum gauges with the lead wires,
leavlz'g the toll surface with no projections.
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Right pairs of ganes were distrit-ted alcig chordsise lines i in on either side
of the centre line to check the Zvo din-msional nature of the fiow. No provision was
3&de for eoolijg this model since its purpose was to check the photographic method
of determining 'be transition point.

22.2 TRe Cold Wall V,&l (B) - Figure 1(b)

1Ib- iecod m*de.l a 5 in span 14.26 Jn chord flat plate. had a leading edge thick-

ness of 0.0006 in ± 0.0002 &s measured by a short-fccus microscope on a S~cidt4
Gemeolse UniVersal Measuring Machiie. The test surface had a finish of 16 micro-
inches centre line average value and carried no surface instrumentation. Tlhe surface
fintis v.a measured with a Rank Taylzr-Hobson Talysurf and the reading of a centre
line ave '&ge vaThe is the average height aboe and below a mean line taken c- er a
distance of O. 03 in.

The model was constructed with coolipg passages (see Fig.l(c)) through which liquid

niftro was pravity-fed until the desired wall temperature was reached. A fixed
restrictica in the inlet pipe limited the flow of nltrogen and prevented "blow back".
Seen copper-cznstantan th,..mocouples were mounted close to the todel surface and
distributed as sbown %ie figure. It was found that for a nitrogen throughput of
approximately 0. 5 Ib/miA the model cooled steadily and uniformly at a rate of
approximia.el, 20OU/mln. T ! temipratures at the seven measuring statiuns were so

similar after steady conditi ,,s had been reached that in many laeter tests only one

cestr.l tnerL.,ouple was rep.r. For a fine temperature control the nitrogen flow wias
replaced by &, atmosherik air flow from a compressed air line.

2.3 Instrumentation

2.3,1 fHea Transfer

The heat transfer equipment was fully described by Holden (1963). The resistance
change of Pay five gauges can be measured during one run. The signals are usually

1"-d to &,,zlogue networks of the type designed by Meyer 11960) and molified by Holden
to acý;ept a 50 ms" running time. The heat transfer rate histories were displayed
on Tetr-cix 502 oscilloscopes and recorded by Land Polaroid cameras.

2.3.2 Pitot Pressu"3 Afeasureme-ts

Pitot traverses taken throngh both laminar and turbulent boundary layers were made
with flattened probes 0.016 in deep and 0.075 in wide. Two similar probe.s, % ii,
apart and at differing heights above the plate were mounted immediately behind the
trailing edge of model A for the turbulent boundary layer, and a specially constructed
short flat plate for the laminar boundary layer. Each probe projected forward a
distance of 0.85 in, and were connected to wibonded strain gauge pressure t:ýausduce:s
(Solartron type NT4-313-30) located in the pedestal mount to keep the response time
down. The pressure records were photographed in the same way as the heat transfer
rate traces.

milliseconds
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2.3.3 The Measurement of Wall Temperature

The voltage of the copper-constantan thermocouple was measured using a Cambridge
Portable Potentiometer. The standard temperature-resistance calibration curve for
this type of thermocouple being checked periodically by umoling the wbol.e model to
the accurately known boiling point temperature of liquid nitrogen at atmospheric
pressure. Wall temperature readings were normally taken after allowing at least two
rinutes for the model to "settle". Since the test section pressure was reduced to
0.3 mmHg before cooling the model, only a minute trace of frost was formed and no
significant heat transfer by convection was possible. Heat conduction from the
pedestal mount to the model was reduced by an insulating Bakelite gasket.

2.3.4 The Shadowgraph System

The knife edge of the conventional single pass schlieren system was removed to
give a focussed shadowgraph picture. The spherical mirrors were of le ft focal
length arranged to give a magnification if 0.8. Photographs were taken in a darkened
room using Ilford fast blue-sensitive plates ;type XK) with a spark source of

10 psec duration.

3. RESULTS AND DISCUSSION

31 Measurements of the Location of the Transition Region

Conventional focussed shadowgraph pictures of the flow over a flat plate will pick
out the greatest rate of change of density gradient (d 2p/dy 2) in che laminar botundary
lpyer as a thin, sharp black line lying just above the plate barface. It was noticed
that at some distance downstream this line begins to thin, loses itý sharpness and

j finally becomes so diffuse that it 's unre-obnisable -gainst. ,he grey background, see

Figure 2(c). Earlier investigators, notably Lee (1952) and Bertram (1957), have
shown that this behaviour is indicative of transition. The theoret!cal justification
for this assumption is showm in Figure k(a) by tha sketches of the d 2p/dy2 profiles
through the laminar and turbulent boundary layers prppared using the calculations of
Van Driest (1951 and 1952) with M = 8 ard T,/T, = 4 . For r laminar layer the
maximum value of d2p/dy2 occurs at about 0.958 in contrast to the turbulent layer
which has a very small change of density gradient in this region, the maximum changes
occurring close to the wall.

In order to understand the shadowgraph pictures more fu)Iý some heat transfer rate
records were taken simultar,?oisl,-. The .omnarion bctw.e'n the photographic and heat
transfer "definitionis" of tratsition region (Fig. 3) shows that the boundary layer is
fully turbulent when the shadowgraph lic *iiiiliy disappears. The point of dis-
appearance was used in this report to define transition.

3.2 Heat Transfer Results

Natural transition occurred at M = 8.2 for all three unit-Reynolds-number test
conditions. The distinct. chnger of heat t-anifer rotv distribution along the wall,
d4/dx negative for lamir.r or turbulent flow and positive in the transition egion,
made the three zones easi to define, see Figure 4.



"487

The individual heat transfer records of 6 vs. t also gave some indication of
transition by nature of their unsteadiness. Within the laminar zone the traces were
fairly smooth but throughout the transition region irregular upward spikes were
observed. These may be indicative of turbulence spots or bursts as reported by
Schubauer and Skramstad (1948) at low speeds, and more recently by Nagamatsu and
Sheer (1964) at hyperson'c speeds. The spikes gradually disappeared within the
turbulent zone and the gauges furthest downstream recorded smooth traces, similar in
shape to those situated in the laminar region.

Theoretical estimates of the heat transfer rate distribution are also shown in
Figure 4. The reference enthalpy methods of Eckert (1955) and Sommer and Short (1955)
were used for the laminar and turbulent boundary layers respectively. For the
turbulent case the Kdrmin-Schoenherr equations were used to determine the skin-
friction coefficient as indicated by Peterson (1963). The virtual origin was chosen
empirically at a point half way along the transition region as defined by the heat
transfer records. Details of the various calculptions are given in the Appendix.
Agreement between "theory" and experiment is good. In the case of the turbulert
boundary layer the position and extent of transition have to be found before the
"theory" can be applied. Measurements takon within the transition region confirm the
results of Holloway and Sterrett (1964) who found a sensibly linear increase of
Swith x

3.3 Pltot Pressure Measurements

Further proof of the nature of the boundary layer was provided by pitot traverses
made well within the laminar and turbulent regions defined by Figure 4. Results are
shown in Figures 5(a) and 5(b).

Pitot pressure records taken at stations betwcei 80 and 90% of the laminar
boundary layer thickness showed scme unsteadiness. Since at y " u.98 the pitot
pressure gradient (dpo/dy) is a maximum then disturbances from any source (including
those Introduced by the presence cf the probe) are likely to cause more noticeable
fluctuations at this station. These fluctuations might possibly be associated with
the critical layer predicted by stability theory and found experimentally at M = 8.0
by Potter and Whitfield (1960) to lie near the edge of the ltyer. Nagamatsu (1964)
found that turbulence bursts propagated with a vel')cit:' 6q ýl to 90% of the free-
stream value under his test conditions of M = 8, Tw = 290)K, Tr '- 1300 0K . This
suggests that the critical layer is approximately 0.98 from the surface.

The meae'ired uncorrected laminar data compare favourably with the theoretical
profile of Van Driest (1952). The turbulent data are similar to other experimental
-alues measured in continuous tunnels (see Fig.5) but in this case the agreement with
theory is poor. The turbulent profile was measured at ) = 10.7 in (Rex 6.7 , 106)
and heat transfer rates were recorded at the a-me time. The values of Q ')stroam of
the probe were unchangea by the presence of the probe.

3.4 Transition Reversal

Initial tests were carried out. using flat pl•.•es at room temperature only. It was
possible to alter the wal 1 lo recovery temperature ratio but only at the expense of
cha•ging the uait Reynolds ýkLaer. Since both of these parameters are very
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influential it was necessary to separate them. This was done by changing T. as
depcribed in paragraph 2.2.2.

Figure 6 shows the results of the recent tests at M = 8.2 as plots of
transition Reynolds number against TW/Tr for three values of unit Reynolds number.
Varying only the plate surface temperature, each of the three graphs exhibits.
transition reversal and re-reversal as the plate temperature is reduced. This trend
supports the conjecture of Reshotko (Fig.'7(c)) and so lends some weight to the
hypothesis that the pattern of transititn at hypersonic speeds is predictable by the
Tollmien-Schlichting instability theory. .t will be noticed that the results
indicate two regions of greater stability and that the upper region is very narrow.
At the highest unit Reynolds number •here was some suggestion of a third band of
increased stability, see Figure 7(c) series 1 data. During the series I tests the
leading edge was damaged slightly by diaphragm particles striking and chipping the
edge. When the edge was restored the series 2 data were obtained. The scatter
of the other readings is due entirely to difficulties in "reading" the photographs.

3.5 The Effect of Unit Reyaolds Number

Bertram (1957) noted the generally strong increase of transition Reynolds number
with unit Reynolds number and attributed this trend to the effect of le,-ding-edge
thickness. More recently Whitfield and Potter (1964) havf shown that even for zero
bluntness a unit Reynolds number effect is present and they have tuanaged to separate
the two effects, one due to the bluntness Reynolds number, the other due to unit
Reynolds number. In the present tests the plate georetry was fixed and so both the
above Reynolds numbers were changed simultaneosly. The Reynolds number based on
leading-edge thickness was varied between 225 and 430. According to Whitfield and
Potter such a change at constant unit Reynolds number would have moved the transition
point 0.3 in. This is negligible compared with the measured shift of 3 in and no
attempt has been made to correct for this smal] bluntness effect.

Cross plotting from the dotted mean lines through the data uf Figure 6 the effect
of unit Reynolds number at a fixed wall temperature ratio can be found as shown in
Figure 8. For the lower wall temperatures the curves in Figure 8 are very steep due
to the close proximity of the first stable band (Fig.6), However, at TW/Tr = 0.5
the unit Reynolds ,umber effect is similar to that of other investigators.

3.6 Other Factors Affecting tie Position of the Transition Point

Luxton (1964) has recently reviewed the aaiy factory afze'ting transition and re-
stated the importance of roughness. Potter and Whitfieid (1961) suggested that som,.
traasition reversal data could be explained by wall ccoling i'ducing the boundary
layer thickness and so increasing the effective roughress. The idea is that rough
elements, whi4-b under low heat transfer conditions are too small to promote transition,
could have a b•roig int2lence if the wall was highly cooled. The roughness "model"
they propose requires th,,t the roughness element must be a considerable fraction of
the displacement thickness. These r•onditions could only be satisfied in the prnsent
tests by roughness very close to the leading edge since the surfacu finish was good
to 1 16 !lin. In additicn there is present some just observable and un-measured frost.
Even if roughness is the cause of transition reversal it is difficult to see how it

could be connected with the subsequent re-zeversal phenomenon.



489

The free stream turbdilcnce level is known to affect transition and though this
level is as yet unmeasured in the gun tunnel il is thought to be high. Comparison
between different sets of transition data is almost impossible since so many
parameters are important. If the present dbta are extrapolated (heroically) to
adiabatic wall conditions and compared with the Whitfield and Potter (1964) data at
M = 8 and similar unit Re , then their measured transition Reynolds numbers are
about four times greater.

4. CONCLUSIONS

An experimental investigation hs 1been carried out in the Imperial College gun
tunnel at a Mach number of 8.2 in order to determine the separate effects of wall
temperature and unit Reynolds number on boundary layer transition. Analysis of the
experimental results and a comparison with other theoretical and experimental data
have led tj the following conclusions:

Heat transfer rate measurements hsive confirmed-that the transition region on a
flat cold wall at M = 8.2 can be satisfactorily determined from focussed shadowgraph
pictures.

The variation of transition Reynolds number with -"all temperature at M 8.2 is

similar to the tLeoretical pattern suggested by Reshocko (1963) and similar to some
of the experimental data obtained at lower Mach numbers.

Transition appears to be a gradual process occurring over a large region between
laminar and turbulent boundary layers.

The strong variation of transition Reynolds number with unit Reynolds number is
similar to that found by other investigators.
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APPENDIX

Heat Transfer Equations used for Comparison with Experiment

LAMINAR

Eckert' a reference temperature is defined by

- = 1 +0.0392 M2 + 0.5

and the heat transfer rate calculated from

0.332 . __

TURBUJLENT

For the case of turbulent boundary layers, the skin friction was determined by the
3ommer and Short T* method indicated by Peterson (19,33), i.e.

- = 1+0.035 H2 + 0.45 T )

The Kirmin-Schoenherr equations were used to determine the local skin friction
coef" ¢ilent at this reference condition. These have been plotted by Peterson (1963)
fr-m the following equations.

0.242 log ,, (Re T*) (C F, T

VCF T*

cf..r _ I1. _ f.Tf

C
,.T, 1 + 3.59 ' cT T*/T,I The heat transfer rate is given by

S= p•Cp S, (Ir*) -2/3

2

In thia paper the virtual origin, x. * vas taken to be at a position half way
along the transition region, as indicated by experimental heat transfer results.



493

TASITIONAL

A simple semi-empirical method of predicting the heat transfer during the
transition region, similar to that used by Holloway and Sterrett (1964), was used.
A linear increase of heat transfer from the end of the laminar region is assumed.
This method assumes the positions of the beginning and end of transition.

I,
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FIg. 1(a) Heat transfer model - Model A

Fig.1(b) Cold wall model -Model B

-- Path of cold nitrogen in internal cooling systemn

I Position of th~rtncoiipIOs

Fi;.l(c) Cold wall model as positioned In working section
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Fig.2(a) Density proflies through Idminar and turbulent boundary layers at

hypersonic speeds

Fig. 2(b) Typical shsdowgraph picture of laminar boundary layer
m = 8.2, Re/'in = 7.12 x 10', Tw/Tr =0.132

Fig.2(c) Typical shadowgraph picture of turbulent boundrry layer

1 3 8.2, Re/in r 7.12 x 105, Tw/Tr = 0. 280, xt = 10.5 in
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Laminar: Eckert T* Metfhod (1955)

2 Transiional 
0 - 0. 4.

Turbulen> : Sommer& Short T* Method 0" "

(Peterson, 1963)
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Tw . 0 .5 W..,, OII p , p I, I , Ii ,I I

2
• ~c) Unit Re..jin. = 7.12 x1Os0,

I , Trr 0.51 ••O.00'•.0...
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•" -- at' -- :-'•---- 4 Side gauges

0 | _ I I I i , I I f I I ,
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Distance from Leading Edge - in&.

Fig.4 Heat transfer rate along flat plate during transition M = 8.2, TV = 290 0 K
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SUMM•VR

The report describes measurements at low speeds of the transition of
a boundary-layer in a, favourable pressure-gradient, as affected by
isolated protuberaj) eos.

The roughness elements were installed on the cylindrical r.ose of a
two-dimensional streamline body. The height of the protuberances could
be varied continously and, by rotating the cylindrical nose, also the
distance between the protuberance and the stagnation point could be
changed.

This preliminary report gives a general picture of the behaviour of

four types of roughness elements. The character of the disturbance
changes markedly if the critical height of protuberances increases beyond
a crucial value which is smaller than the boundary-layer thickness. The
effect of protuberances appears in general to be very sensitive to the
shape of the top.

SOMMAIRE
I"

L' auteur expose comment certaines mesures effectudes A de faibles
vitesses de transition d'une couche limite, dans un gradient de pression
favorable, sont affectdes par des protubdrances isolees.

Les rugosit4s constituant ces protubdrances ont kt6 disposdes sur la
tte cylindrique d'un cojrps profll bi-dinensionnel. Au cours de
V expdrience on pouvait faire varier continuellement la hauteur de ce,
protub~rances ainsi que la distance les separant du point d' imphet, t-.t
derni~re variation htant obtenue en faisant effectuer un mouvement de
rotation i la tOte cylindrique.

Ce ragiport pr5liminaire donne un aperqu gdn~ral du compurtement de
qmatre types do rugcsitds. La nature de la perturbation varie do faqon
marquhe si la hauteur critique des protubtraiuces d~pnsse t'ne valeur
crijciale, inf~rieure i l'evaisseur de la couche limite. L'effet des
prnubdrances semble, en r~gle gdn~rale, Otre 4trolteme'it lid & la forme
du somnet du corps.
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NOTATION

d diameter of a protruding roughno.ss element

D diameter of the big cylinder (the cylindrical nose-piece of the
streamline model); D = 400 mm

k height of a protuberance; diameter of a two-dimensional wire

Pto undisturbed total pressure

Pw pressure on the centre of the tunniel side wall (see Fig. I)

q reference dynamic pressure = (r.to - pw) kgfiM2

Rk uk.k/V

U velocity outside the boundary layer (m/sec)

u velocity at a distance y from the surface of the big cylinder

Uk the value of u for y = k

z coordinate in vertical direction, par 'lel to the axis of the big
cylinder

z = 0 is the measuring plane at the height of the centre of the test
scction

angular position on the big cylinder, measured from the stsgnation
point: positive in the direction of the hot wire; (degrees)

value of q) for a roughness element

%hot wire = 57.30

V kineiatic viscosity = 14 x 10.6 m2/sec (mean value)

I
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BOUNDARY-LAT.ER DIS•iRBANCE BY ISOLATED PROT1!BERAiES
"OF VAIARKLE HEIGHT ON A CYLINDER NCSE

E. Dobbinsa

1. IMRT'ODUCTION

In descript'ans of the disturbing effect ol roughness elements in a aminar
bomdary-ler cftes use is being made )f a Reynolds nuaber R. as characteristic
parameter. This parmeter has the drauback. however, that the critical value of Rk
is wnt the sme for particles of diffcret shape. As ma exale reference can be made

to Pigure 2 of a report hy Braslow1 .

The cemsurements. described below have been planned to fmrnish some more information
about the icijuence of the particle shape on the distuining power. The investigation
has been arranged so that use could be made of an exnsting model. Tha-s model had been

used for an lnvestigation of the influtace of roughness particles of fixed shape cM
the flaw aroamd an airofoil =ose ir the neighbobsrhood nf the stagnation point,.

From (unmpublished) results of this work the velocity distribution and the cIlculated
bomdary-layer prof-les have been derived (Pigs.3 ard 4). The only addition to the
model has been a aechanisz liich pe-sitted the height of the roughness elements to be
chuged du_-ing the tests. Originelly it was intended to neasure only at one wind speed
and with roughness elesents at only one position en the model nose in order to get a
comparison of the criti.al dimensions of differenC particles under identical flow
conditions. The appearence of unexpected phenoment, however. led to a change in the

program. the new &in being to obtain first a general impression about the behaviour of
roughness particles in the stagnatiog flow. This preliminary report gives a survey of

some results.

2. THE DISPOSITION IN THE R3ND TUNNEL

The experizents have been Wade in the 4 x 6 ft low-turbulence wind tunr.el of the
Aeronaatical DepartSert of Delft Technical University. A sketch of the situation is

given in Figure 1.

The uodel ccnsists of a steel cylinder (400 mw dianeter). a wooden tail downstream
of the cylin,!c•r and an interchangeuble roughne-s element on 'hp cylinder.

The cylic..der is attached to the turntables in top and bottom of the test section.
By rotating the cylinder a -Tughness element could be movea from the stagnatior. point

* The idea 1-; us% a bodel of this type is due '.o Mr. J.L. -ien Ilgca of the Aeronautical
Departue:nt. wto also supervised the earl; reasuresents.
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to any other position in the boundary-layer along the frontpart of the cylinder, The

angle of rotation measured from the stagnation point t.s denoted by Tk • The influence
of the roughness element on the boundary-layer has been measured with a hot wire

(0.003 mm thick, IZ). This instrument was fixed to the tunnel sidewall; in all the
tests the hot wire was kept in the same position: in the middle of the tunnel height
"and 57.20 from the stagnation point. The distance between the wire and the cylinder
surface was sucb 'that the velocity at the wire in the undisturbed laminar boundary-
layer was about 0.9 times the speed outsico the boundary layer. The wire was kept
at a constant temperature; the output was fed into an oscilloscope.

3. TIRE ROUGHNESS ELEMENTS

Two types of disturbing elements have been tested:

(a) three-dimensional elements, consisting of the top part of thin cylindrical
elements protruding from the surface of the big cylinder.

(b) two-dimensional wires.

(a) The height of the three-dimensional elements could be varied during the tests
by means of the displacement mechanism sketched in Figure 2. The c',1indrical part of
the roughness element is soldered in a piston. By means of a spring this piston is
pressed inward against the ball-point of a displacement screw with 1 mm pitch. This
screw could be rotated from outaide the tunnel by means of a pulley and a string.

SA 10-turn potentiometer connectel to a digital voltmeter and driven by the displace-
sent screw could measure a displacemenit up to 10 mm. Displacements could be given
(acz.ording to the voltmeter) in steps of 0.001 mm. In this respect it may be noted
that in some cases marked repeatable changes in flow characteristics have been observed
"while changing the height k by not more than one micron. The protruding end of the
cylindrical roughness element passed through a brass plug. For each roughness diameter
a separate plug, fitting to this diameter, and a s,,parate piston were available.
After each assembly of the displacement mechanism In the big cylinder, the roughness
element was retracted and the outer surface of the brass plug was worked flush with
the steel cylinder. A direct calibration of the voltmeter giving the height of the

protuberance was obtained by comparinp the position of the top of the roughness element
with that of the surface of the steel cylinder Jn the immediate surroundings of the
element. The frame of the micrometer usad for this purpose carried three fixed points
%W~ch could be pressed against the cylinder surface. In each case readings have been
taken at many different values of the roughness height k

Fzirtherrnore each roughness element has been photographed by meanis of a simple long
"camera" which allowed a 15 times enlarged photograph to be taken directly on photo-
graphic paper. The comparison of the picture of the roughness element with that of a
permanent calibration wire gave a chech on the dimenbions of the element.

In some cases only the photographic method has been used, e.g. for very sharp cones
(not discussed in this report), and for disturbing elements entering into the boundary-
lawyer from outside.
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About the accuracy of the values of k measured during the experiments it can be

said that the error in the absolute value of k in a certain run may have been of the
order of 0.01 mm; in the important range of k between 0 and 0.3 mm the errors in the
differences between different values of k in the same run are probably (much)
smaller than 0.01 mm.

(b) Two-dimensional wires. For comparison a number of wires have been tested. As

indicated in Figure 1 these wires were installed at an angle of about 60 with the
direction of the cylinder axis. This made it possible to pull the wires firmly against

the cylinder surface by means of a tightening screw. Only the 0.2 mm and the 0.395 mm
wires were real solid steel wires the thicker wires: 0.305; 0.41; 0.80; 1.22 and

2.23 mm diameter, consisted in reality of 200 mm long pieces of stainless steel tube
which were pulled against the surface by means of a thin wire going through the tubes.
I3 all normal runs the middle of the tubes was placed at the centre of the tunnel
height (z = 0).

4. TIlE MEASUREMENTS

The reference dynamic pressure q is defined as the difference between the undis-
turbed total pressure and the pressure on the centre o one of the test section side
walls (see Fig.1).

During each run the value of q has been kept constant: it could be measured by
means of a Betz-type water manometer. Most of the data have been taken at

Q = 120 kgf/m2 , in these cases no deviations larger than 0.2% have occurred. Some
additional data have been obtained for q = 30 kgf/m2 

, in those cases deviations up to

to 1% have been tolerated.

The largest difference in Reynolds number due to variations of barometric pressure
and air temperature has been about 1.5%. As mentioned in the introduction, some data
about the velocity field around the cylinder (derived from earlier work) have been
presented in Figures 3 and 4.

See two methods which have been employed during the measurements are the following:

(a) The height k of the roughness element was adjusted at a certain value and
yk was varied by rotating the big cylinder. Values of cpk at which the first

turbulent spot was detected by the hot wire and (k at which the flow appeared

to be just completely turbulent have been determined.

(b) For the lower values of k it appeared to be more practical to set q9 at a
certain fixed value and to vary k until the first spot appeared and until full
turbulence was just established according to the picture on the oscilloscope.

Fo)r two-dimensional wires of course, only method (a) could be vsed.

5. RESULTS; DISCUSSION

S The investigatiorn had the character of a reconnaissance. Only sone general results
will be presented here. The character of the disturbing effect of protruding cyl'ndrical

roughness elements of varying height is shown in the Figures 5, 6 and 7 for roughness
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diameters d of 0.2; 0.4 and 3.0 mm respectively. These elements had flat tops and
a relatively sharp edge.

Figure 8 gives the measured data for two-dimensional wires. An explanation of the
symbols used can be found in the list of notations. For orientation, in each figure
also the values of 8* and S (for u/U = 0.999) as derived from earlier work, have

been indicated.

The figures show that, if the roughness element is placed at high values of cpk

where U is large, an increase of the height k gives a "normal" sequence of effects.

At low values of k the boundary layer stays laminar at the station of the hot wire.
If k becomes larger than a certain critical value, turbulent spots are detected and
if a second critical value is passed the flow around the hot wire becomes completely

turbulent. At high values of q'k the width of the region with spots increases with

the width of the roughness element; it is largest for the two-dimensional wires.

For smaller values of % (smaller values of U) the critical values of k increase.

However. only in the case of the two-dimensional wires (Fig.8) does this seem to go on
•ore or less continuously. For the protruding Elements a change in flow picture occurs

at a "crucial" value of k . At q = 120 kgf/M2 
, this crucial value is about 0.3 to

0.4 mm or about half the boundary-layer thickness. For the thin 0.2 mm element (Fig.5)

the "crucial value" of k is somewhat higher than for the thick 3 mm element but the
differences are small.

The change in flow pattern is most pronounced in the case of the thin 0.2 mm rough-

ness element (Fig. 5).

For k < 0.395 mm the transition between the laminar and the turbulent regimes is

extremely sharp; in some cases only a change in k of a few microns was sufficient
to give a complete transition. For k larger than 0.395 mm, however, in the - k

diagram an extensive regime exists in which turbulent spots appear and in which a

gradual transition occurs. The change in sharpness of the transition has been indi-

cated in the figures by means of different symbols. Filled symbols correspond to very
sharp transitions; open symbols have been used if the uncertainty in CA is of the

order of say 0.2 degrees. Symbols with broken contours refer to vague or very vague

transition boundaries with uncertainties in CPk of one or more degrees.

In the case of the 0.2 m diameter protuberance (Fig.5) the disturbing power of

the element goes down if k becomes larger than the "crucial value". If for instance,
at the station (Pk = 240. the height k is increased, the ooundary layer at q = 57, 30
wil7 be fully turbulent for k between 0.34 and 0.39 mm and laminar again for
k > 0.4 am.

For roughness elements with larger diameters and smaller value of kcrucial/d the

changes in flow pattern are less pronounced; in the case of the wires no sudden chpxge
has been observed (Fig.8).

For the 3 mm and also for the 0.4 mm diameter protruding element, a part of the
region between the fully turbulent and the fully laminar regions in the Yk - k graph

has a special character; it is called a "mixed region" (Fig.7). Mhen one passes

through this mixed repion, severaý areas of laminar (or qunsi lxminur) flow, fully
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turbulent flow and regions with spots or regions with periodic motions may be passed
successively. Oftei, , re is some hysteresis, but in some cases the different fully
turbulent regions, some of which may be as narrow as a few microns, are stable in that
respect that one can "find them again". These mixed regions have not been explored
extensively; the situation is rather confusing there.

The "crucial" value of k of about 0.35 mm (for q = 120 kgf/m2 ) appears also to be
critical for disturbances coming from outside the boundary layer. To investigate this,
a speqial disturbing element has been used consisting of a 0. 1 mm steel wire running
from a piston of the displacement mechanism inside the big cylinder to the tunnel side
wall (to the point S in Fig. 1); this wire was kept taught by means of a weight outside
the test section. Around the wire, a 200 mm long piece of stainless steel tube, having
0.41 mm outside diaumeter, was attached. If the piston was retracted, one end of this
tube could be pulled against the cylinder surface. Measurements have been made with
this "roughness element" at station yk = 300 only (q = 120 kgf/m2 ). As long as the
distance k between the near end of the 0.41 mm tube and the cylinder surface was
larger than 0.4 mm no influence on the boundary-layer could be detected at the hot
wire station, the boundary layer being completely- laminar. For k smaller than 0.4 mm
irregular bursts of turbulence were seen on the oscilloscope.

From the Figures 5 mid 6 it can be seen that at least for these particular runs the
critical values of k measured for the 0.4 mm diameter roughness element are larger
than the corresponding values for the 0. 2 mm element at the same stations Yk- . This
queer result has been checked by runs with different roughness elements of the same
diameters 0.2; 0.4 and 3 mm. The (k - k curves obtained in the check-runs showed
the same general character as the curves given in the Figures 5. 6 and 7. However, in
the level of critical values of k in the lower branch of the curves (at high values
of Vpk) shifts of a few hundredths of a millimeter and in one case (for the 0.4 mm
roughness) even up to 0.05 mm have been observed. The rather confusing data have not
yet been analysed. It is not quite clear what effect is respons.bl for the shifts in
the critical value of k . Additional tests with some elements with rounded tops
showed that the critical value of k can be extremely sensitive to the shape of the
top of the roughness element. Also thoughit has been given to the question whether the
flow conditions around the cylinder nose have been identical during all the
measurements. There is no evidence that changes in the flow have occurred. While the
value of q = Pto - p, has been kept constant during the measurements, often a watch-
ful eye has also been kept on the value of the pressure drop in the contraction of
the wind tunnel and no alarming changes in this pressur- drop have been observed.
Moreover as an extra check the 0.2 mm two-dimensional wire has been measured several
times during the course of the experiments and in each case at q = 120 kgf/mn the
first "spots" appeared at the same value of yk : 31,80 plus or minus 0.10.

This however, is not an absolute proof that the flowfield around the cylinder has
been the same in all test: during the experiments with the rotating cylinder no
pressure distributions around this cylinder have been measured.

It is felt that before a comparison of the values of the critical height of
different roughness elements can be presented some additional checks should be made.
For this reason no further analysis of the data is given in the present paper.



514

V. CONCLUSIONS

1. A "crucial" value of the critiqal height of pro*ruding roughness ieiemnts exists
beyond which a marked change in the distuirbing effect of the elements occurs.

2. In the present experiments this cruciai height was not much dependent on the
diameter of the protruding particles. The larger the width of the protuberance
the less marked the change in flowchweacteristicb appeared to be.

3.. The critical height of roughness elements is strongly affected by the shape of
the top. In this respect it can be mentJoned that at large values of % the
critical value of the diameter of two-dimensional wires which have a rounded
"top", is larger than the critical value of k of the 3 mm diameter protuberarce.
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Symbols in the Figures 5 - 8:

Triangles: first turbulent spots at station q) 57.30

Circles: boundary of region of complete turbulence at station q = 57.30

Filled symbols: sharp transition

Open symbols: less sharp (uncertainty , 0.20 in y,)

Symbols w.th broken contours: vague or very vague, (uncertainty up to several degrees

in
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Y
mm

0.5 qj12 .0kgf/M2tq= 3 ,, ,.0/

°0

0 0.5 U 1.0

Fig. 4 Velocity prr filcs of the laminar boundary-layer



518

d=0,2rmm

I

1.5 -

k
I

mm ___________
$ I

LAMINAR JTURBULENT

SPOTS.
1.0 I-

II

I
I

0.5 ~~~-/- --- --- _ _

00

10 20 30 40 50
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SUMMARY

The problems are discussed ..n the light of an experimental

investigation made in a low-speed wind tunnel on the effect of distributed

suction on the state of the boundary layer on a slender delta wing of

aspect ratio 1 with sharp leading edges. Laminar Llow at high Reynolds

numbers can be maintained on the upper surface with suction at negative

angles ef incidence where the flow is attached throughout, and at high

positive angles of incidence in areas between the secondary attachment
lines and some way outboard of them. Secondary separation is preceded

by strong cross flow and insufficient suction was available either to

eliminate separation or to avoid transition. At other incidences wedges
of turbulence appear and ways of eliminating them need to be found. 'he
phenomenon of transverse turbulent contemination associ.ated with any

excrescences near the apex and midspan remains a difficulty.

SONNA IRE

Ces probl~es sont discut4s A la lumire de recherches expdrimentales.
effectu~es dans une soufflerie A faible vitesse, sur 1 influence de la
r~partition de l'aspiration sur 1'4tat d-! !a couche limite d'une aile

delta cince dont l'aliongement est de I pour des bords d'attaque
tranchants. ,' coulement lamineire peut atre maintenu sur la surface
sup~rietre aux nobres de Mach O)ev~s par i'aspiration'sous Une

Incidence nhgative A& o0 l'6coulement est attach4 de mani're continue
et sous une forte incidence positive dans les r~gions situhes entre les
lignes drattachs! secondaires et quelque pein en dehors de celles-ci. Le
d4collement secondalre est pr&cWdE par un fort 4coulement transversal

et l'aspiration a ht4 insuffisante pour supprimer le d4collement ou
jviter la transiticn. Aux autres incidences il apparalt des pnintes de

turbulence qu' il faut trouver le noyen de supprimer. Le ph~nombne de la
contamination turbulente transversale li6 i des exeroissances eu voisinage

de Ia pointe et n mi-loný'aeur constitue uine difficultd A r~soudre.
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NOTATION

c porous-surfaced chord

a local semi-span

z chordwise distance from apex

y spanwise distance from centre-line

vo suction inflow velocity

U0  undisturbed velocity

U1 local velocity

(Xincidence

V kinematic viscosity

CD pressure coefficient

Rc = Uoc/v, chord Reynolds number

Uo x/1,' = cR

Rx = Ujx/v, local Reynolds number

RXT local Reynolds number at transition

Re = U1 G4/ boundary layer Reynolds number based on momentum thickness
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SOME PROBLEMS OF FLOW LAMINARIZATION ON A SLENDER DELTA WING

N. Gregory and E.M. Love

1. INTRODUCTION

Although supersonic aircraft have an additional contribution to their drag - the
wave drag - which is missing in subsonic aircraft, progress in design has so reduced
"wavrw drag that the skin friction drag of Mach 2 aircraft designs has again become an
important portion of the total drag. A possible figure is 40%. The payload of such
sa aircraft is a smaller proportion of the all-up-weight than is the case subsonically,
iad is also a much smaller proportion of the weight of fuel carried. These points
have been well brought out by Courtney'. A supersonic aircraft, therefore, particularly
stands to benefit from any fuel economy resulting from a drag reduction due to
laminarization.

A first step in the direction of discovering whether it is possible to laminarize
a slender delta aircraft has been taken in the experimental work described lelow, in
which distributed suction has been applied over the upper surface of a slender delta
wing with sharp leading edges at low speeds in the 13 ft x 9 ft wind tunnel of the
National Physical Laboratory. This initial experiment was undertaken at low speeds as
a matter of convenience though it may well be economically important for laminar flow
to be effective at subsonic as well as at supersonic cruising speeds. It was hoped
to ascertain what difficulties were associated with the slender planform and its
especial flow rdgimes, and to discover which forms of instability needed to be
suppressed. Following a discussion of the results of this experiment, their application
to a supersonic aircraft is considered.

2. POROUS DELTA WING

The slender delta wing was designed to be of straight conical form for a length of
6Y2 ft with bi-convex circular arc transverse sections 12% thick. Over this length the
upper surface was formed from 0. 074 in thick porous sintered stainless steel sheet,
apart fron 3 in at the apex which was solid. Aft of the 6• ft porous chord a further.-
25 in of impermeable fibreglass fairing brought the wing back to a thin unswept
trailing edge. The leading edge sweep at,gle was 760 giving an aspect ratio of 1. The
detail design and construction of the model was carried out by Messrs. Handley Page Ltd.
A general arrangoment drawing of the model is shown in Figure I and this model is shown

* installed in the NPL 13 ft x 9 ft wind tunnel in Figure 2.

The porous sheet could not be obtained in one piece so'it was necessary to accept
two straight joins es indicated in Figure 1. The surface waviness was small along
radial lines from the apex (Table I) but was much greater across the diagonal joint,

L_
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and near the edge of the model where the corrcct transverse cuivatire was not
maintained. Where the waviness of the diagonal, Joint was found to s:ect slightly the
transition position and suction requirements, the measurements were confined to the
starboard side of the wing which was virtually free from Joints.

The porous surface was divided by the supporting splines into a large centre
compartment extending over ±50% of the semi-span and three narrow compartments on
either side, from 50% to 60%, 60% to 75% and 75% tu 100% of the semi-span. The three
narrow compartments on either side of the model were connected together in pairs and
the foar distinct suction areas are referred to as the Centre, Inner, Middle and Outer
compartments.

The permeability of the basic porous sheet was everywhere less than 130% of a mean

figure, but about 12% by area *as more than 30% below the mean. This area was
effectively vinualised by spraying the wing with naphthalene and applying a uniform
mean suction iuflow rate of 0.06 ft/sec to all four compartments. The bulk of the
naphthalene sublimed in 20 minutes, but after half an hour of suction, there were
still regions of heavy coating as shown in Figure 3. This delineates the areas of low
permeability in the basic porous sheet, and also shows regions of low flow near the
edges and apex due to the tapering off the depth of the compartments. It also shows
some places where the adhesive used to bond and seal the porous sheet to the radial
splines had spread. The oblique view that was necessary ii order to photograph the
entire upper surface of the wing has resulted in pronounced distortion of the chordwise
perspective as shown. This particular oblique view has been used throughout the rest

"*of the paper for all photographs and diagrams of the upper surface of the wing.

The permeability of the wing was measured separately for each compartment. The
pressure differential required to produce 0.12 ft/sec mean inflow rate into each
compartment was shown below, and the flow rate was

Compartment Centre Inner Middle Outer

Suction, in water gauge 75 82 100 133

roughly proportional to pressure difference. The original specification for the
porous sheet demanded 0. 12 ft/sec for only 28 in water gauge and as the available
pumping system gave about 100 in of water gauge, the suction flow rates were very
limited. It was decided to test the wing in this condition to avoid further long
delays awaiting a replacement sheet. r

The nominally sharp leading edge of the wing has a thickness which lay between
extremes of 0.012 in and 0.018 in.

An imper4oable covering of 0.0005 in thick Melinex sheet was sucked down on the
upper surface to allow oil-flow techniques co be used to visualize the surface flow
streamlines on the impermeable wing. Transition was indicated at low speeds by the
sublimation of naphthalene sprayed on to the wing. This technique was used mainly on
the imnermeable covered wing: it was also used directly on the porous surface, with and
without, suction, but was not very satisfactory. At higher speeds, hot-film anemometry



531

was used, thin platinum films being plated on the leading chisel-edges of thin glass
slips taped to the surface. Comparison between the two techniques was complicated by
the fact that the transition front indicated by the sublimation technique showed a
large forward movement with increasing time of exposure to the wind because the area
of intermittent turbulence was extensive in the stream direction owing to the weakness
of the pressure gradients, as on a flat plate.

The flow observations were restricted to the upper surface, but both positive and
negative angles of incidence were used. Pressure distributions, however, were taken
at 1 and ? of the porous chord and along the centre line of the model (midspan) on
both upper and lower surfaces.

3. MEASUREMENTS WITHOUT SUCTION

3.1 Pressure Distribution

"The chordwise pressure distribution along the centre lIne of the impermeable wing
is shown in Figure 4 for R. equal to 7.5 x 106, the highest test Reynolds number,

and the spanwise pressure distribution at 1 of the porous-surface chord, c, is3shown in Figure 5. The chordwise pressure distribution suggests an induced camber due

partly to slight distortion of the model near the apex and partly to the interference
from the mounting struts and suction pipes under the wing. The transverse pressure
distribution at 1 chord therefore differs in its peak values from that at 1 chord,3 3
and has been omitted. The results given in this paper will be referred to geometric
incidence, but it will be appreciated that corresponding transition positions and
regimes of flow would be found on an uncambered delta wing free from support
interference at somewhat different incidences from those encountered here.

A further departure from conicality was noticed in the transverse pressure
distributions and is shown in Figure 6 which illustrates the pressures at 160 incidence

. at a member of wind speeds. The pressure recovery between the minimum pressure and the
noint where the pressure rise ceases is much less at the two lower speeds than at the
top speed. This is because (as was shown by hot films), at 20 and 60 ft/sec wind speeds
the separation is a laminar one. is transitional at 120 ft/sec, and is the separation
of a fully turbulent boundary layer only at 180 ft/sec. The additional pressure rise
sustainable by a turbulent boundary layer results in an outward movement of the
secondary separation line. This point is discussed further in the next section.

Approximate indications of the secondary attachment position and of secondary
separatioD have been obtained from Figure 5 and the corresponding pressure distributions
at other speeds, by noting the spanwise locations at which the pressure fall commences
and the pressure rise ceases. These positions are indicated in Figure 7 which also
shows the position of minimum pressure. The state of the boundary layer at the
approximate separation position, as indicated by hot films, is marked L (laminal),
I (intermittent) or T (turbulent) on Figure 7. Good agreement was obtained with
oil-flow observations when the flow was laminar. Ahen turbulent, however, oil-flow

*' suggested separttion a few percent of the semi-span inboard of the limit of pressure
rise.
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3.2. Transition

Observations taken over the range of incidencies -50 < a < +180 showed four

different regimes of boundary-layer flow, of which the second was an intermediate state
between the first and third and was enhanced by the induced camber effect.

First Rigime, a -110

In this rigime the entire leading edge was at a negative angle of attack to the
oncoming flow. in the absence of effective camber the rdgime should range from zero
incidence. At Rc = 2.5 x 106 the flow was laminar over most of the chord, the onset
of intermittently turbulent flow being indicated by the dotted lines in Figure 8.

The transition region was extensive because of the favourable pressure gradient,
wd on the centre line, hot-film probes at 0.67c and 0.96c showed that transition was

quite insensitive to incidence and )ielded local Reynolds numbers RxT of 2.1-2.9 x 10'
for first turbulent bursts to 3.6-4.0 x 106 for fully turbulent flow as shown Jn Table
II. These can be compared with values of R-T of 1.5-1.7 x 106 obtained in a flat

plate at zero incidence in the same tunnel.

Away from th( centre line, wedges of turbulent flow were present, as can be seen in

Figure 8, and from their mid-semi-span location are referred to hereafter as 'inboard'
wedges. These wedges appeared at local Reynolds numbers L-t'ween 16 and 2.6 x106 and
gave fully turbulent flow at about 2.5 to 3.6 x10 6 as shown in Table III. At a given

incidence, these inboard wedges appeared at a roughly constant percentage of the

semi-span independent of their chordwise origin, but when incidence and windspeed were
both varied so as to maintain the origin of the inboard wedge at a fixed chordwise

location, the spanwise origin moved further outboard with increasingly nv.xtive

incidence. Once formed, however, the wedges ran in the mainstream direcLU)n. It was
checked that these wedges if turbulent flow would have intersected on the centre line

further aft than the transition points indicated in Table II. The reasons for these
wedges of turbulent flow are still obscure.

Second PNgime, -11' < m < 30

Here, the Zorwaid portion of the leading edge was at a negative angle of atteDC! to

the local flow, but the angle changes to a positive one further aft. Laminar fLw is
obtained over the front of the wing, but is terminated by the intersection of wedges

of turbulent flow originating part way along the leading edge (Figure 8) where the

attached flow first gives way to a small separation bubble. These wedges of turbulent
flow are subse'quently referred to as 'edge' wedges. Their position is principally

determined by the effective incidence variations along the leading edge, rather than
by Reynolds number, since an increase in the latter causes the origin-of the separation

bubble to move forward but a small amount, before attached flow con,'itions are reached.

It zhould be mentioned that at wind speeds up to 80 ft/sec, striationr were present

in the sublimation pattern inboard of the edge turbulert wedges. These striations, F
indicating stationary streamwise vortices ir the boundary layer, originated along the
leading edge over 4 or 5 inches distance upstream of the point of laminar flow
breakdown and wcre visible for some 7 to 8 inches in the chordwise direction.
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Oil-flow technique showed that (in the particular case of 00 incidence at 80 ft/sec)

the 1 in long separation bubble, from which the edge wedges :f turbulent flow started.
persisted along the leading edge for about a foot but then ceased to re-attach and

rolled up so that secondary attachment and separation lires radiated from this point,

Just as happens at much higher incidences at the apex. However, at the rear of the

porous surface both attachment and separation remained within an inch or tyo of the

leading edge. The fiow inboard of this secondary attchMent remained turbulent.

At zero and -10 incidence, hct films at 0.33c revealeu transition conditions which

were constant over a ronsiderable spanwise extent inboard of the edge wedges of
turbulent flow. The transition Reynolds numbers, Table IV, are apprecin'bI less than

those of Table 11 and are also less than those for positions further aft (at lower

speeds) where laminar flow is terminated by tine intersection of wedges at values of

RxT x 10 which may rise as hifh as 3.0 to 4.0. It is possible that an indiscernible
roughness or imperfection at the apex, or indeed the n:'ex itself, was rer •nsible for

these low transition Reynolds numbers. This is suggested by a single .eak observed

in the sublimation pattern at 60 ft/sec at incidences between 10 and 40 co:ring straight
from the apex, although at these wind speeds the vortex pair thus indicFr..d did rot

interfere with the interesting wedge transition pattern. However, the whole second
rdgJxe may not be of gr-ýat practical importance for a wing without any geometric or
! "-.uced camber.

Third-Rgime 40 < a < 120

This incidence ran, ; is .,haracterised by the rolling up of the leading edge shear
layer with the occurrence of a fresh secondary attachement line whose position moves

[ InboaM with increase of incidence (Figure 711 and reaches the vicinity of the centre

line at an incidence not far above 120.

The transition pattern changes markedly with both incidence and Reynolds number.

At a fixed wind speed of 60 ft/sec. (Rc equal to 2.5 x 106) the effect of incidence
is shown by Figures 9 to 11. Inboard of the secondary attachment line the flow is

laminar except where contaminated by a pair of wedges of turbulent flow. At 40 incidence
these wedges originate from Lhe apex but owing to the small local Reyn3lds number do
not at fir:;t spread very rapidly. Purther aft, the fully turbulent core of thesŽ

wedges spreads at a semi-angle of about 70 and since the attachment line is spread~ng
at 8.80 semi-angle, there is a narrow region of intermittently turbulent flow, O.it ,,o
laminar flow. It is probable that these wedges are the edge wedges oi the second
rdgime starting inboard of a closed separation bubble very near the apex. The Chear
layer ceases to re-attach and rolls up a very short distance fron, the apex, thu's

creating sacondary attachment lines, and causing the wedges to appear between then.
At 60 inciderce the situation is similar, but the fully turbulent core of the wedge
does not occur until about 0.55 chord beck from the apex. At this incidence the
attachment lines are diverging at less than the spread angle of the fully turbulent

core of the wedge, so that at this and higher incidences these wedge:; eientually
reach the attachment line and contaminate the flow outtoard of attachment. At 60
(Figure 10) and 100 the twin wedges start intermittently at about 0.55c and the flow

upstream of this point is laminar. It is noteworthy that apart fron the 40 csse, the
wedges always seem to be about ±0.25 E from the centre line at the point where they

are first detected, though their chordwise origin varies with both incidence and
Reynoldsnumber. This is illustrated by Tables V and VI. At 120 the wedges do not
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appear, either because attachment has moved inboard of the ±0.25 semi-span position.
or because the rolling up of the leading edge shear layer continues right to the apex.

Prom -ii to 120 incidence therefore, laminar flow on the centre line Is terminated by
the Intersection of turbulent edges.

Outboard of attachment the flow near the apex Is laminar (at 60 ft/sec) at 80 and
above where the inboard wedges of turbulent flow do not spread across the flow
attachment line. %ben the flow eventually becomes turbulent further away from the
apex the flow .an stand a larger pressure rise before separation, which therefore
moves further outboard. A kink occurs in the separation line as is visualised by the

oil-flow technique. Figures 12 and 13. This phenomenon is discussed quantitatively

In the next section.

Fourth Rigime a> 120

As the twin attachment lines approach one another and completely coalesce Into a

single centre-line attachment, the troublesome turbulent wedges of the last section
are eliminated. Transition of the flow between about 10.Ss now re-appears free from

spanwise contamination and is spread (Table VII) over a local Reynolds number region
between, roughly, 2.5-3 x 106 to 3.5-4x 10,. values that agree very well with those
recorded in Table I for negative incidences.

The kink in the separation line, like the other transition phenomena, Is spread
over an appreciable chordwise extent as can be seen from oil-flow photographs., Figures
12. 13. It does not show up in the sublimation photographs, such as Figure 14 for

160 incidence, except for a very slight wave In the sublimation boundary which
indicates thechange from laminar separation near the apex to transition to turbulent

flow further aft. It so happens that these phenomena occur at much the same spanwias

position. The turbulent separation is not indicated by sublimation. The locally
streamwise boundary layer vortices which can be seen In Figure 14 cannot be used as a
guide to the kink in the separation line since they are found upstream of laminar
separation as well as upstream of transition. They do however indicate that this
transition when it occurs results from an instability of the cross flow in the boundary
layer.

The change in the type of separation results in its outward shift by about 0.05
semi-span at 80 (0.75'- 0.8s), increasing to 0.17 semi-span at 180 (0.65 - 0.82s):
the position of turbulent separation Is relatively insensitive to Incidence. The

local Reynolds number at which the kink in the separation line occurs 1a about
2.2 x 106 and is also relatively insensitive to incidence, though It Increases

slightly with increasing wind speed, Table VIII.

These observations are In broad agreement with those of Lawford' for a very much

smaller convex-surfaced model.

4. MEASUREMENTS WITH SUCTION

4.1 Transition

The effect of auction on transition can now be considered in the light of the

qualitative description of the flow over the impormeable wing given in the precoeding
section.
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The low permeability of .he porous surface limited the mean inflow rate,
TO/Uo x 10', at 180 ft/sec windspeed (Rc equal to 7.5 x 106) tc 5.5 out to 75% of tht"
semi-span and to 4 between 75% and the leading edge. Although these ratios could be
raised by lowing the wind speed, this would not have helped since the Reynolds number
and the need for suction would also have been reduced by this artifice.

First Rggime, a < -i°

As the flow was essentially streamwise, various uniform inflow rates were applied
over the whole upper surface, and the maximum wind speeds were determined at which the
flow at various semi-span locations at 0.67 and 0.96 chord were kept free from first
bursts of turbulent flow. The relation between the inflow velocity ratio vo/UO and
the Reynolds number Uox/v, for a range of semi-span positions is shown in Figure 15a
and b for -P and -110 incidence. Results for intermediate incidences also lie between
these two sets of graphs.

It should be noted in Figure 15 that at the same Reynolds number the suction velocity

ratio required is greater at 0.67c tnan at 0.96c. This follows the trend seen in

Tables II, III, V and VII where without suction, the greater wind speeds (and also
tunnel turbulence levels) result in slightly smaller critical ;transition Reynolds
numbers. This trend is also reinforced by the increasingly favourable pressure
gradients found at the rear of the model, Figure 4. An additional factor in the case
of suction is evident from Figure 3 which suggests that at a given mean inflow rate.
the local inflow towards the rear of the model is slightl' in excess of the inflow
further forward.

The inboard wedges of turbulent flow shown in Figure 8 and Table III are eliminated
by applying a considerably greater inflow rate than is necessary to maintain laminar
flow closer to the centre-line. At -11° and -20, however, the flow rate required on
the centre line itself is greater than that necessary at spanwise stations on either
side. This is the extra suction required to cope with the particular disturbances
which gave rise to the low transition Reynolds numbers of Table IV. Despite these
features, the variation of suction inflow velocity ratio required to give laminar
flow along the centre line with change of incidence appears to be a gradual process,
Figure 16.

Second Regime, -11 < a r 30

The principal feature of this rdgime is the Intersecting wedges of turbulent flow
originating at some Joint along the edge where the flow first separates. The available
suction has no effect on the origin of these turbulent wedges, and only reduced
slightly the wedge spreading angle so that only a few percent chord of extra laminar
flow can be gained by suction. The onset of the edge wedge can be seen in the suctlu.
results for -11° incidence, with hot-film gauge at x/c equal to 0.96 and y/s equal to
0.92 shown inFigure 15Nb). At -10 and a high wind speed so that centre-line transition
was ahead of the interaction of the edge wedges, and was due to the disturbance
indicated by Tuble IV, the high suction rate of vo/Uo x 10' equal to 3.3 was required
at a local Reynolds number of 2.5 x 104. compared with 0.6 requtierd out to 0.33s on
either side of the centre line.
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Third gimn:e, 40 < a < 12'

Without suction, inboard wedges of turbulent flow occur at a Reynolds number which

varies both with incidence and chordwise position (Tables V and VI). Suction (within

that available) was only able to delay the occurrence of these wedges by a limited
amount, as is instanced for 80 incidence In Figure 15c.

The flow necessary to maintain laminar flow outboard of 0.5s is discussed in the
ncitt section.

Fourth Regime, a > 120

Over the inboard half of the wing, transition without suction was due to the normal

instability of two-dimenqional flow. A small inflow rate is consequently able to
maintain laminar flow, Figure 15(d), (e), and this rate does not vary significantly
with the spanwise location.

Further outboard, difficulty was experienced in using hot films to indicate

transition where this was doie to secondary flow instability as it was initiated by

the appearance of high frequency turbulence rather than by a large increase in the

amplitude of the disturbance. In order to obtain results, hot wires were used instead,

as they had a better high frequency response. It was found that the application

suction only over the narrow compartments outboard of O.5s was ineffective. Extra

suction eliminated turbulence when applied uniformly over the whole surface, and yield

the results shcwn in Figure 15(d) and (e). Still further increase eliminated

altogether any signs of cross-flow vortices. The lack of results at high Reynolds

numbers is due to the limitation on suction flow rather than any fundamental difficulty

such as occurred in the other rdgimes.

4.2 Pressure Distribution

The available inflow was even more inadequate to eliminate secondary separation, to

do which Obordorffer 3 and MooroW had measured inflow rates in the region of

(v 0 /U0 )V'ii7_ between 30 and 50 for a slender delta wing with a thick biconvex cross-

section with leading-edge anglo in the cross-flow plane of 880. By dropping the wind

speed, suction flow rates (vr/IJ0)UvUi-xi/ up to 1.9 were obtained on the precent wing.
Transverse pressure distribittions are shown in Figure 17. The suction flow rates

quoted were the maximum attainable at the given wind speed and are for the centre and

mid:Ile compartments. The flow into the inner compartment was about 19% lower, and

into the outer compartment about 37% lower than the figures quoted. Judged by the

movement of the position of cessation of pressure rise, the flow rate (vo/UW)vUox/v

of 1.9 used at the lowest wind speed moved laminar separation outboard by about 0.13

semt-spati, the lower rate of 1.1 had a much smoller effect, and at the highest wind

speed where the flow was turbulent without suction, the available suction did not

prevent transitioti due to secondary flow instability and had iio beneficial effect on

the iub.,equent turbulent separation.
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5. DISCUSSION

5.1 Present Experimental Results

An attempt is made in Figure 18 to sunimarlse schematically the results discussed
in detail in the preceding two sections. The variation with incidence of'the spanwite
position of the various types of flow is shown and mean values are listed for the local
Reynolds numbers ULx/v for the onset of transition in each portion of the flow. The
unattached numbers are the values of v0/U0 x 104, the suction quantity necessary to
maintain laminar flow at a Reynolds number of Uox/v of 6 x 106.

Wedges of turbulent flow are found in R(gimcs II and III which are not prevented by
the application of distributed suction, and the flow outboard of secondary separation
is always turbulent. It is desirable to find out whether the inboard and edge wedges
are peculiar to the present sharp edged wing. It shcild also be es,ýablished whetber
by eliminating the effective camber of the present wing the edge wedge can be
eliminated or the incidence range over which it occurs can be reduced. A modification
that it is intended to investigate is a small radius rounding of the leading edge to
give attached flow at incidence near zero, but thl.s would introduce the likelihood of
spanwise contamination along the leading edge at high Reynolds numbers which would
require further arrangements of locallsed slot suction for control. It is also
desirable to confirm whether the inboard wedges of Rdgimes I and III are associated
with the flow at the apex as is thought to be the case, and hence to discover whether
they can be eliminated by modification of the apex, such as apex rounding, distributed
suction at the apex, or by suction at a full-span slit just aft of the apex. These
turbulent wedges appear over such a large incidence range of the present slender delta.
covering the likely range of cruising lift coefficients, as to render the present
slender delta design unsuitable for laminarization until ways of eliminating these
wedges have been found.

The maximum test Reynolds number of 8 x 10" was insufficient to allow scale effect
on suction quantity to be assessed otiing to the considerable run of natural laminar
boundary layer in the presence of favourable pressure gradients. Suction was applied
uniformly from the apex, and all tlic curves of Figure 15 show an increase in suction
with Reynolds number U0 x/V from zero at U0 x/v equal to about 2 x 10' . If constant
values of Re, the boundary layer Reynolds number were to be found far enough
downstream, and these were independent of Reynolds number and of tunnel turbulence
level, constant values vA/U0 would be required. The only signs of this occurring are
in the regions of straight forward wedge-free flow, alon7 the centre line at negative
incidences, and immediately outboard of attachment at high positive incidences, but
asymptotic values of v0/U0  cannot be determined. Any further experimental work
should be extended to higher Reynolds numbers, and it would also be desirable to
measure drag. It is encouraging to note that at a chord Reynolds number of 6 X 104
even the beat results obtained from earlier work on two-dimensional and 300 swept
laminar flow aerofoil experimentss have required suction quantities vo/Uo x 104 as
high as 4. Thus, if the rapid rise of suction quantity with increase of Reynolds
number, which is required to prevent the turbulent wedges from occurring, can be
avoided, the suction demands for a slender delta wing mk, not prove excessive.

Looking further ahead, two practical problems particulurly require investigation.
The conditions at a wing-body junction when the wing has separated flow must be
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*xminea- &*C slit £eslpa and geceetry have to be detersime4 for practical surfmces
shich wt.cI! bt effect ive for It m 4-.-.Ter flcw in the 'various directions ubich
night occuzr c~ier a si~atable incidence range.

S.1 Lanimariratim of a Soersamic Slew'dr Delta.

The var±cos; I--e cf attacbed. septnted 4ad alied flows that can be fidaround
Mol~ly swt, lee-ling eftes is supersonic tligbht are d,.zcussed 1Wy Statroo and squire'.
sh gi've criter.: icr the oiccurence of varioss 'tYW3e of flow-. Me sepa~rated f low
oczmrs at tOe leadift cdge the 7artex lies ftrtber iiihoaxd thm at low speeds I. Th-s
xmgavsts that it wculd bc mwe wotmtkwkile tc sack safficienztly to minatain tke flor,
lenalar against crows-f low instability aa the extent of flow afteoted xceId b~e wafr
larger tha In the icowvpressible csse- it is aoL viear. bcrever. ubet!Ler it Umld
be easy to da so. %& the sortex is closer t~c the ma~r sarface. uhicb night possibly
-emilt In bestd ary er tramaitica doe to txr lence i.z the external flow- Im the
Xe~ swo. ex - ia~_- - 1 mizar f low was zot ebt~aimed =ti I abot X3 i-mcde~ce. bmt at the
'Saier imcidemces it is tbozt Giat the tarbalent boqecSary-Ipayer wdEr the vartex was
dwe to comttadAt~a a from pst~resit maer the *pez ratker tkam the ecamaisa jitst
SO~eSted- lit MCle:&Sily for tetsU It fali-scaLe Vad S1NhRbZ is Obri=%

5;cherp biiity L-3 attab~ed flow at tke swt edirig edg,.- wth a weak 2bL-que
shm wave fu~rktr aft whicfr deflects the flec istc the streammise directic-. or 1f
strowg em camses bouay- layer seureti ad =n Imbord relled-oW wor el sfr'et-
The latter fic~w wmu-d be siatlar iz grizciple tc tbat in:zwstipatioa eere. but th:e
altche flew deflected Wy the 3hect uwatli Cevelep a cz-c flow "asi 2lenixeoAI
riese*.-ch is reqm.ired to see metber tra-sitiom coeIlf be ymvmwted by bo=mfary 'ILayer

ftrther ccap~icatim emld arise frm the _11- over 'imes ith: c=re leaftic
efgws Saravrted flowc=1~4 oosr cr-,tboard of attachod flow, wirth tBe ;Gwibility. as
In, the presmxt tests. a., tazuxlest Contamaimtion oG-idimi±ng at the star-t of the
flow regioc "&tcfr of i:sLwf rng!Lt be Eom1ym~bte sitl laia flew is.Na~rd of seccad±ary
sep&aratloitfrLt Wmy !rr tke a;ex; Ccwmurersel. it a am opt sbae -4- Micit thke
s~et of ttt iexd.,Yg ettre .s r~e6= oetlctrd. a free wortex q~lzit leae th~e I e-din"
edVe .W s Ute V-_M1. wIntl 02 cothoa. re=O~t OXF attadc'en 3uer-sicm, fLoZW-

13 Ties o f ftese taer- ts a! flew wkick night zeei~r. arch acre ezper4weemtgl wot
is re~tirr-d, ~ar at ftil.-SCz.e =k Mher. Lefoce it WITT be -lear whether it, Is
Pcssible te azt.±e~e lm?--s flow 3m'erSLrc*ly W-a sieoudez del. trraz

rth prcfr ex of tv~ta-ect =tanimxtiom is momtered ae a sit--er delta Si"~ in a
siigýLtOS d:fferemmt f',= frcm t!he spa=wise leL-ii"'r 2dge coatmizatica ;rcblm Cm Vr'rs
of Izaer sat-t &=41e. If the It,* etdv were mad~ed. tiz p~zzcaecza iccd ococr S.s
cc a via& ýýf I:sme-e. ~tr this uomif n~ot zs-ter if the flowm =s~eqmemty se_;ra-tea
ci't-e to it.S izitial atVAo-Sx*t.. On t-e atbe: han. if t!* flca ramiaed attacthed,
t!htm tke carý-s-_es dezt!L-;ed for svept sles uet.d Usd=. be re-qt.'red-

T~-. -e -s p-ros5'xre C-tdiertt s at Lhe litzboad -eadar ata ta aresesc~ll
caited zzt2 :S.os at a Lead%-r4 ecce of smwv'z r2diKrS Gf curmttre thzt the stability
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of t&. flow u3or.g such an attacbment line is Probably not greatly different from that
of two-dimendional boundary-layer flow. and small asoents; of suction infl~ow should
keep the flow hasinar. If an isol ated sicresmece were pcesent. however. the results
are equally as serious as at the leading edge of a swept wing. for at. im-Idences
wberr one or two inboazd attacbseat lines occur on the upper surface. the flow
directionas &re such that. coupled with the natuaral srpread of turtaolence perpendIcutar
to th?. local flop. Ltrbaleace from an isla~ted .xcrescence on or near an ittadmeiat
line evaatual-ly spreads to the secona~ry ;Atparstion position Gn both sides of tne
ezutre-line of the wing- This is illusLr-.te'.d by Figure 19 which shows for 120
incidenice. cansidIersb~e aress of the Prese ft wing for wbich a single excresceacc, would
cointaminate oyer UK~ of the Mcsible -4-ain.ar area Ftpr thte sake of this calculation
It haw.. been a-se that distributed s~t..cm wuli saiit~a3n the flow lIminar as fair
-owtboard as We~ of the sevi-spw. where '.Le preirious t4!bd~ent sea~ratioa would becoat
a lamir~ar eraio

The sittation is wt a great deal b-etter at. zero incidence with israllel fla' over
the wing serfr~ee- Jut becamse the wixg is of low asMa-t ratio vith letaing edMe
dl'ergizz from the apez at. an asge less than half as nach again as the spread angle
of the turbaleat wedge. = excresence zt the apex vwld coata~ninate just over 7% *f
.be Indimar aresa. Cwutoars for the rest of the wing ar-e sbmw ia Figure MC.

If sauhatar.tiel +--" rekectioas are to be goarzateed an a slender deltuL it will
th-er'eore be a.4cesWa7 -o f it a alr of transverse s~cts orer some or all of t-he

spn Ike tb ver surface. Gver at Icast the first Wai' of the ctordL 'thse slot--
will here Vi be able 12 re=ve tfte uhr~e tizrbalemt frcamdzry layez- iff eoGrtximiatia
bat accurred. v~t.h.t unae F at less. aw4 mot to u~pset lanizar fle- if =. Szeioc,
Is reqmire-d. Alternatively, a men weld be reqruired for clemnimg the aircoraft
surfae Ir. fligt, %a as to bea able ta gV.rmtee the 2bhs~ce tf extresczm-ts

6. COMMIXSiftS
4-

Mind twel zeats at Low speeds am & slemdr delta wifng witk a skar; leadii edge
an a whr-lly pum aper sur-face baze rerailed tktut distributed suctim cam onxy

masita~v ;=, r flow at avgtive sanjies *f Inc:!desce and at kUN posit~ive angZlt3
of incidnce where the seconda-:Y a-ttaIcet 1 -mm ~cr-r imh.a~rd of 2fl sii sm
these latter cocaditions llamiar flow ebtained 0!r tt eeutr- Ti~e to abm*z W, ozf
tke smi--s&a. comtboard of wlL~ck iss~fficie2t szction was a'ia>tc sycid
transitiam fts ts strmg cioss-f~ow stich Xrecvded seccodiu-. seM-tx-=-~ -At ather
iariden'Ces. eftzes Cf tmrtclert tlow W-ere 2-res.-t Vwfr'ch Were zat eiitmatedt7 szCict
Meese wedges eitker- crigitated w- thte iteadiig edzt at. the wht were sttzcL-e'f fiow
first ga-.e way to a bubble of -azi. r appeared to be camsed ýy dlsto:-.'Q-es
4he to the apex actiaw, as a rcughrevss. Pfazther tests will be car ad~t withI tic
1L"&&Z edge =d the ape-x r-caed to estawr ihs vetht-r thes- trazblesoffe tl
vedges are pecmliar to a sbar7-edged =Pdel.

To esablish firaly the eccacy of !saina.-isatica c~f a sIemder dlelta laycat
reqwiied furt-ler experisentai wort. ?his nL-t be extended te- a hig~::tr R=yoltts
ember -a order to as.-ertain the effects =c s~rc.ion ra.y end te. tbe, fall-scale
kwh ==-er in- order to ascertain the effectst of c=;Lress~bihity- f-aturr experizz-nts
mast also we-i.sre drvtL
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A further proble= zoncerns the serious effects of turbulent contamination on wings
of low aspect ratio. -Methods west be fcamd for eoszrina that a slender delta wing
dows not lose a substanitial proport~oo 'it Its lazinar xioa owing to the presence of a
single isolateci excrescence cQ the front part of the wing.
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Table I

Whainess messured on a 3 In gsage length

SI G n.r Ae-oss :Cloe o

linii ~ diainal )Oil~t 1rldiP ged

teiul traile CO.O02 in 0. 03R in

I_______.i-.-.--- 4 ______ i ____

Transverse traverse 0.Oft in 0- 0010 i ne, It 0.

Table 11

Cestre-lime trassitica at incldeaces. -50 < a <

I Firs. 6crs t: Fully tr6ulri't I

9- fts 3 1- 65. -0 130

C

.-
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Table III

Inboard turbulent sedges at incidences. =50 O e, -110

First &--rsts

i/c 0.67 0.98

p -5 -3 -2 -1i -5 -3 -2 -1-

U. ft/sec 60 60 70 70 55 55 60

%T x 10'1 1.64 1.66 1.96 1.97 2.3 2.3 2.6

Spsa•ise pomition . 0.50(0) 0.50 0.50 0.50 0.40 0.58 0.33
-0.7"5 -0.7•5

Fully turbulent

Vic 0.67 1 0.96

-5 -3 -2 -11 5- -3 -2 -1i

go ft/sec 90 93 l10t 108 68 72 78 75

10'. . 0 2., 2.6 3.0 3.3 2.8. 3.0 3.3 3.6
femo se positio, 0.58 0.50 0.50 0.50 0-58 0.58 0.41 0.33

_0._75 -0.67 [.0.75

Table

Onatral transitint at incidences, -10 4 L f 00 at 0.33 cGrd

Firs! bursts Fully turb'uzlent "

I -1jo -i 0

U. it/sec 95 65 170 85

Spanwise extent. ±0.33 ± 0. + ±0.33 i 0.6

10-' 1.3 0.9 2.3 1.2J
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Table V

Scale effect on Inboard wedges at 80 incidence

.First ursts Fully turba-lent I B i

Uo ft/sec 60 30-50 45 110 85 65 80 120

Chordwise origin. - 0.33 0.67 0.961 0.33 0.67 0.961 0.55 0.35

KR' x 10-' 0.9 0.9-1.5 1.9 1.6 2.5 2.74 1.93 1.85

Table V¥

Incidence and scale effect oa inboard wedges.

Conditions at which fully turbulent voges originate
at 0.33 zh*rd.

Incidence 40 60 8p 10o

U. ft0 ser 25-50 8r 85-110 120-145

0-6 0.35-0.70 1.2 1.2-1.6 1.6-2.1
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Tablra VII

Transition on inner half of wing at Incidences, o >/ 12P

Where two values of U.. i/c or PxT are given, the left
hUnd value indicatee first bursts and the right hand value

fully turbulent conditions.

0& U. ft/sec x/c RXT x 10-6

12 -40-165(?) 0.33 2 14-2.52(?)
85-115 0.67 2.59-3.51

89 0.66-0.95 2.43-3.52
60 O.90->1 2.51-

14 98-118 0.61 3.03-3.64
68-83 0.96 3.07-3.74

16 180-200(?) 0.33 2.85-3.17(e)
102-115 0.67 3.16-3.55
68-85 0.96 3.10-3.87

18 100-120 0.67 3 21-3.84
-85 0.96 -3.92

80 0.89-1.0 3.06-3.84

Table VIII

Change in type of secondary seoaration

o U0 ft/sec Technique x!c CPsepn x

6 60 S 0.76 -0.41 2.26

7 60 S 0.72 -0.46 2.17
60 1 S 0.71 -0.51 2.17

10 60 S 0.67 -0.62 2.12

12 3G S 0.65 -0.72 2.12
80 S 0.60 -0.74 2.63
80 0 0.50-0.60 -0.74 2.19-2.63

120 0 Port 0.40-0.43 -0.75 2.64-2.83

Stbd a. 38-0.43 -0.75 2.50-2.83

180 0 0.23-0.28 -0.75 2.27-2.,76

14 60 S 0.65 -0.89 2.06
116 60 S 0.55 -1.02 1.95
18 80 S 0.3-0.4 -1.19 1.48-1.97

0 Port n.3-0.44 -1.19 1.48-2. 16

0 Stbdl 0.4-0.50 -1 19 1.97-2.46

S 0 sublimation
;0 = oil flow
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0 IM'lil CeteIM' 0 fCornpartmeats

\ \ ' no spline)
-- I I j- s Locctior of

Solid .firin. - . -. rodicfi splins
" t (fraction of- . ". " I semi-span)

Joint between
porous skin end - - /
solid tail fairing

1-0 -

Pressure p~otflng _ ,'Ih o le s - 0 -• 
0

(Starboard only) " Porous sk.n uoint
0.5• -,,• 

•;•"•0.5

Pressure plotting hA:zs----- Division of porous

(Starboard only) chord .roin cpex
0. irtto tenths

.. 0.

Joint between porous skin --
and solid apex at 0"037c

Fig.3 Oblique view of upper surface showing naphthalene remhining after spraying
"and sucking air through porous surface at a mean speed of 0. 06 ft/sec for

half an hour, tunnel off.
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2..1

1-4 ___ _

Upper surface

1-0 Ii__ I'-
-c P

0-9

0-6

0-41--

• ..- •--'.1"-.'-- '•: s,

1- 6- -I-'------..

-0-"41
a 0.2 0-4 y/s 0-6 0-8 I-0

Fie.5 Transverse pressure disiribiition on impermeable wing at • porous-surface
chord.



(550

60ft~t/sec I
with 'I0-036 in..dia. -

1-4- wir! c(t 0-60

0 -03 i\6 
180 fttsec

1-2 ! ZOft/sec+

0'0
08220 ftxsec "

,: • 6 0 it /s e e

"' • ! Uo'•t sec UoX/V

0.8 !/ 0 2-78xl106 • •

60 8-3 x 10
120 1"67x !06
180 2-5 x 106

OAS 050 0o60 yl, 0.70 0oo0 090

Pig.6 Scale effect on upper surface transverse pressure distribution at 3
porous-surface chord at 160 incidence
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161 ---- A
11 End of

14 •, - P.!tssure
14 rise

I11 1 L (separation)

Pressure l
minimum

10

Commencement of
pressure tall L

8 - (secondary attachment)- o,0L +

'•4 U x/0

0 0-83x 106
2 + 1-66x 106

a 2-5 xl10 6

0 0.1 0.2 0-3 0"4 0-5Y/sO'6 0.7 0-8 0-9 1.0

Fig. 7 Variation with incidence and Reynolds number of the spanwise location of the

comme:cement of pressure fall, pressure minimum, and end of pressure rise

aL porous-surface chord
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00 )
4/l, ';.

50"

Turbulent

0 o 0-5

O0(repeat)

Undisturbed IFrst bursts
flow 0-1 of turbulence

dFully developed
d1 1 1eto o 0 turbulence20

FA'g. 8 Variation of transition front with incidence in ranze -50 <1 ct < 30 at a
wUnd-.speed of 60 ft/sec. Re = 2.5 x 106. Synthesis from naphthalene

and j ot film measFrements on impermeab l l wing

turbulenc
20 30 -
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T +0./

+07
TT. T +.:7 - ' T

Secondary attachment

Secondary separation '

T IT T T

' +0.3

0'2

0.1

Indicates naphthlene /
remaining La minar

Hot film location Vortex trail
I !ntermittently turbulent

T Turbulent

PIg. E, Transition pattern at 40 incidenre and 60 ft/sec windspeed Rc = 2. 5 106
*
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+0.8

-Til
Transition

Secondary turbulent6
separation

Secondary laminar
separation

Secondary attachment---'

Secondary laminar T N
separation

Tertiary separation + 0'.2

0-1
,\\\ Indicites naphthclene

remaining
Hot film location

I Intermittently turbulent
T Turbulent

Fig. 10 Transitl.n pattern at 80 incidence and 60 ft/sec windspeed Rc = 2.5 106
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S triaztio ns -- _ _~. 0 .

Transition __.__

Secondary turbulent Tt
separation T"-

Secondary attachment

, Secondary laminar .3
separation

°'a

0T.

Fig. 11 Transition Patttrn at 120 Lilciden-ze and 60 ft/see windspeed Re = 2. 5 x 10'
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Fig. 12 Surface oil-flow pattern at ITO° incde-nce rnd 80 ft,'sec windspeed
IRc 3. 2 x In,
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.MIN

Fig. 4 Sublimation pattern at 160 Iinndencc and 03 :t/sec windspeed R 0 2. 5 x 106

cU
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Suction flow ratio

V0  4Tx 10 =-5'9

14 Uo - ft/sec

/I- Lp I / k
U0 VO

045 050 60f 040 01

1"0

"Pi---fet- Without suctionS• ---- With suction

0-6- Uo f t/sc UxlV

" Vo 420 2"78 x 105
u-XO x1 =62.9 /60 8.5 xi105

0"45 0"50 0-60 Y/s 0-70 0.80 0"90

Pig. I7 Effect of distributed suction on upper surface transverse pressure

distribution at 1 porous-surface chord and 160 incidence

|3
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L. .

-6 nboa d\ •\wedge

r- R T x 10 -6 \.
R. x 0 xl- 16- Laminar when

8-- 2 ? is laminar
a Uintersects

#& o on t behind.
\0 ~transition\

-4 .0 -.ront 1-0
RxTx 0 25 4--

0.9 -1-3

Do 4 Edge wedg N

Incidence intersects on cantre line

Suction no avail
40 'Inboard w;'dg• -

4lintersects on 0

T \~

0.9 - 14

80
f proxi .•,Suction not , , .

12° a-i\ a o6

RTrx 106 2"5 -3 o

16° " Rx,. x 16-6 = 2'2- Tub, n

t1-,
Fig. 18 Diagram showinr apo|roximate transition Reynolds numbers in various regimes of

flow• '-1 approximate suIctio:• quuntitles. vO/UO x 10", required to give
laminar flow at U 0-,"v equal to 6 x I 06.
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I SPorous-sur.face

I 
0 chord

0.9

0-011 +
08

Turbulent -wedge re_• 20.ss7d tacmn

Porous-surface area
o'6

.+ 0 .

Assumed laminar
separation

4 0"4

. 0'.

p+

I + 0.2 Incidence 120

0.

Clean wing laminar-flow area

0.1 Porous-surface area

0.1

0-84

Fig. 19 Contours showing location of a single excrescence on the upper surface of
the wing at 120 incidence to produce a given ratio:- area of turbulent

flow due to excrescence/porous-surface area
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Porous -surface chird I
% I

0 1 .0

+00

0.02 .---. -

0*5 +0.7 .

0.1 +o-E_,

+0"4
0.2

+0.4

P o. +0.3

+"63
04Incidence 00

0.

Clean wing. laminar-surface area
Li:4- 0'2 Porous surface area

0*S - 1:0

± 0.1
0-6

o07

Fig. 20 Contours showing~ location of a single excrescence on the upper surface of the
wing at effcctively zi-ri incidence (giving parallel flow) to produce a gl'.en

rat i: area of turbulent flow, due t~o cxc rcsceiice /porous -surface areA
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