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THE GENERALIZED POLARIZATION SCATTERING MATRIX

[

( 1. IN'RODUCTION

The conventional definition of the monostatic monoiromatic

polarizationmatrix is first extefided to the bis~atic case, then to

the short pulse case, and finally to the bistaticshort pulse case.

The tran formations and convolutions involved are discussed in

some detail.

'The method of determining the Least Square Best Estimate

of the Generalized Polarization matrix from a set-of measurem4:nts

is then developed.

It is shown that the Faraday r3tation angles introduced by aI magneto ionic medium intervening the radar and the target are

determinable from measured short pulse monostatic polarization

: [ matrix data.

It is then shown that the Least Square Best Estimate of the

orientation angle of a symmetric target is also determinable from

Faraday rotation contaminated short.pulse monostatic polarization

matrix data.



2. THE MONOSTAtIC MONOCHROMATIC POLARIZATION SCATTERING
MATRIX

11The monostatic monochromatic polarization scattering rn.a.t-ix
(1)'p1 is defined by the equation

where Iand S are the range normalized incident and scattered electric

(or magnetic; depending on the convention adopted) far-fields re-

spectively, the phases of which are referred to a coordinate system

11 in which the scatterer is described (See Figure 1, p. 3); i. e.,

.ik ._
Ei(x) =I e L (2)

I fk •E (x)  S e (3j

where Ei(x) and Es(x) are the incident and scattered electric fields

at the point x respectively, and ki and k are the propagation vectors

of the incident and scattered fields respectively.

The rationale of the range',normalization of the scattered

field (see equation 3) is to insur e consistency within the power

cross-section definition " )

11 4Trx (4)
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13 and the relationship:

=P PI

-where p is the Eigen Value of the polarization matrix 2'or the special
caseof certain geometries (to be discussed later) for which this

;polarization matrix is. fully degenerate; i. e.:

P = (6)

For this monostatic case, by the very definition of the mono-

static case as k. (See Figure 1, p3):

k~ =-k (7)
8~ C

k k (8)

tA A

where k is the unit vector specifying the viewing direction, the bore-

sight vector of the radar, and the aspect angles (of the radar relative
to the target) for this monostatic case (See, Figure 1, p. 3).

I /

I It shouli be noted that the matrix pp. Y is not invariant to the
choice of coordinate systems.

It should further be noted that for this monostatic case, by

virtue of the transversality of the far-fields, the matrix p., can beI 
t

fully described as a second rank matrix if x is chosen as colinear
with k (see Figure 1, p. 3); i.e., since I 3 =S3 =0 for this co-

ordinate system, it follows that p p = 0.

\
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3. THE BISTATIC GENERALIZATION

For the monostatic case equation 1, by virtue of equations 7 and 8,

can clearly be written as:

A A A

S'(k) = p (k) I (k) (9)

For the bistatic case, for which k. * "k5 , the natural gen-

eralization of the above defining equation 9 is clearly (see Figure 2,

A A A A
s (k8 ) = ft ILYkski) I (k.) (10)

Except that it is now no longer possible to find a single coordinate

system such that the rank of the matrix p, (k 5 I 1i) reduces to two.
A A L 8

for all k. i -_k. It is, however, possible to find two coordinate, systems-

such that the matrix p (ks, ki), expressed in these mixed coordinate

systems, reduces to a matrix of rank two; i.e., any two coordinate

systems x ( i ) and Z(s) chosen such that x(') and x are colinear with

ki and k s respectively. The details of the transformation of equation

10 into such a mixed coordinate system will be presented rriext.

Let T (i) aind , (s) be the coordinate transf0oition matrices
11Y ILY

from the target coorzdinate system (see Figure 1, p. 3) to the

coordinate systems x and (s) respectively (see Figure 2, p. 6);

i.e.

(I) M T7 (i) ly(1

S (S -T S) S(12)
.

55
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where (see Figure 2-, p. 6):

r-sine tnCs

IL Y n n ~ l~ nCOnS? 1  (3

Co C. n Co I1-n sin tnCi j sinqn

[ It thus- follows fromr equation 10 that (since- T for a real

unitary transformation):

The polarization matrix in the mixed coordinate -system,

say p, is thus:

P, r~D)P LM (16)

where, '.Y virtue of the transversality of the incident and scattered

L far-fields, -the matrix p' is a second rank matrix; i. e.:

LY Lct yP 3  P,

a2 LP 1,2,

LRelative to the x 3-axis, the components 1 and 2 of the primed
second rank matrix are clearly the TRANSVERSE and LONGITUDINAL

Icomponcnts respectively (see Figure 2, p. 6); e.9. , if x 3 ' is
the axis of sym-metry of an axially symmetric scatterer.i

1~ 7



4. THE SHORT PULSE GENERALIZATION

For the monochromatic case,equation I, by virtue of a~ ins

7 and 8, can clearly be written as:

For the time domain, equation 18 thus yields:

S 1t') =. M * 1 119)

where:

p M) = - je t (ca) d (20)

IL Y Zf-O ILY

S (t) = 1 7 e'iats 1c1 da (21)

.1
M I(t) - f e iWtI (w) dw (22)

-oo 7 G

In the time domain, the polarization matrix equation (equa-

tion 19) is thus a matrix- convolution equation; i.e.,iGo
II IL M ~ p (t') I *Y(t- t)dtt (23)

For finite transmitted power, i. e.

J I Mt I dt < oo(2.)Ii0

8
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rit follows that:

00

K~Y y

It thus follows that the integration and implied summati6n in

equation 23 can be intez -hanged; i. e., written out:

1 [ 1 2

ILS(t) =Y f p 0t') I (t-t') dt' (26)

1 5. THE BISTATIC SHORT PULSE GENERALIZATION

For the monostatic monochromatic case equation 1, by virtue

of equations 7 and 8, can clearly be writteii as:

A A A
(),k) p (w. k) I (wk) (27)

Thus, for the bistatic monochromatic case, by virtue of

equation 10:

A A A

' IL (u) (,k) p= WY (w k a ki) I (to.ki)1 (Z8)

tion 26:Thus, in the time domain, by virtue of the results of equa-

I i A 26:

" ~S (t, ks k ,, t s ki) I(t- t', ki) dr

. 4i l (29)

F: I.
t9
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In the mixed coordinate system discussed in Section 3,.

equation 29 yeilds: ."

where by equations 11, 12, and 17; and equations 20, 21, nd 22:

[ 1 340 t

3 * t A

s S)(tI-y 8"- (w .k

3 3

li 3 (33)
•;L M, ,T (k( ' P 0, k ki) d

where the logical notation:

7 (k) M 7 (n) n = i,s (34)
11Y T ILY

has been adopted.

Iio 10
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6. THE MEASUREMENT OF THE POLARIZATION MATRIX

A single Measurement with a monochromatic: monostatic radar

possessing polarization diversity capabilities (i. e., a radar capable

of transmitting an arbitrary incident polarization and measuring the

jscattered polarization associated with this transmission) clearly

yields knowledge of the pair of vectors I and S (see equation 1, p. 2).

For a set of such measurements, a set of pairs of vectors, say, -I (n)

and S(n) is clearly yieldet1 The Least Square Best'Estimate of the

polarizatin matrix (say p ) is thus that matrix p which best satisfies

equation 1, p. 2; i. e.. the Least Square Best Estimate of p by the

I; [equation: n

5(n) I (n): S - (35)

Defining the matrices:

S s(n) (36)

I - I (n)  (37)

|" this yields for equation 35:

.Sn IL. yn (38)

or, in pure matrix notation:

IfS PI (39)

If the matrices, I,S, and p were real, when the Least Square

Best Estimate of p would have been given by (3) :

P Si -1)-(40)p[S(II

L1
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It can rea'dily be shown (4 ) that for complex matrices I, S, and

p, the Least Square Best Estim'a'te of p is:

(] sit (I I+ - (41)

Iwhere the error associated with the Least Square Best Estimate is

calculable by the conve'tional method 5 ).

For the Bistatic Short Pulse Case (see equation 28, p. 9),

1the defining equations 36 and,37 need thus merely be extended to:

SSk) = s(n. A

^ I (,k ) (42)

A ) AII yfl(w.k 5 )=11 (ck) (43)

The additional constraining condition that the polarizationII (6)matrix is true-symmetric has not been imposed on the Least

Square Best Estimate of the polarization matrix for reasons that

will become evident in-the next Section 7.

7. THE FARADAY ROTATION ANGLE

11If a mangeto ionic medium (such as the ionosphere in the

magnetic field of the earth) is intervening between the radar and

Ii the target, then the measured monostatic monochromatic polarization
matrix is not true-symmetric because of the Faraday rotation effects

introduced by such a medium(7)

HGiven such a Faraday rotation contaminated monostatic mono-
chromatic polarization matrix, the Faraday rotation angle 0 can be

(8)
4.]] determined8; i. e.:

L{
U 12.
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tanl 26 P1 1 (44)
PlZ P22

and the uncontaminated monostatic monochromatic polarization matrix,
-say- p , (namely that matrix that should have been measured had there

been no intervening m~agneto ionic medium) can also be determine ;

i. e.

[* p. = e (45)

where:

, \-sin 0 Cos (46)

I -The rationale for not seeking a true-symmetric Least Square

Best Estimate of the polarization matrix (see Section 6)Iis"thus

•evident; namely, the asymmetric components of the Least Square
-i LBe t Estimate of the polarization matrix are utilized in equation 44.

-Since the preceding equations 44, 45, and 46 are in the fre-

. quoncy domain, it follows by an argument similar to the argumd.. of

Section 4. that for the short pulse-monostatic polarization matrix:

00'

0(t) e'tlw)dw

[ where O(w) is given by equation 44, and

p (t) = @ (t)*p(t)* G (t) (48)

I



where:.

= os 0(t) sin O(t)(

\ sin 0(t) cos e(t)(

8. THE ORIENTATION ANGLE OF A SYMMETRIC TARGET

U It has previously been shown "(1 0 ) that the orientation angle i

of a- symmetric target is related to the Faraday rotation contaminated

monostatic monochromatic polarization matrix p by:

tan 2a - Pl " (50)11l P ZZ

"II Since the above equation 50 -is in the frequency domain, it

follows by an argument similar to the argument of Section 4 that

the above equation 50 must be written as:

iz(, ) + PZ(

tan Z Ca 0 ) = " 
(51)

.°P 1()-P Z2(W )

The orientation angle a is clearly, however, not a function

of the frequency, since it is a purely geometrical quantity.

It thus immediately follows that the Least Square Best Estimate

of the orientation angle c, say , is given for the short pulse mono-

static polarization matrix case by:

WZ.

Ct W (a a(w dw (52)

U f14

Li



where:

ta- P [1(a) + 02(40J (53)

where p is given by equation 41 of Section 6.VtI
(U) It should be noted in)' conclusion that the determination of the.

Least Square Best Eiatof the orientation angle is. accomplished

directly, without first determining the Faraday rotation angle and

then removing its effects.

'iis
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