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THE GENERALIZED POLARIZATION SCATTERING MATRIX

1. INTRODUCTION

The conventional definition of the monostatic monoéromatic
polarization matrix is first exteiided to the bistatic case, then to
the short pulse case, and finally to the bistatic short pulse case.
The transformations and convolutions: involved are discussed in
some detail. \ '

“The method of determining the Least Square Best Estimate
of the Generalized Polarization matrix from a set of measureménts
is then developed.

It is shown that the ‘Faraday rotation angles introduced by a
magneto ionic medium intervening the radar and the target are
determinable from measured .short pulse monostatic polarization
matrix data.

It is then shown that the Least Square Best Estimate of the
orientation angle of a symmetric target is also determinable from
Faraday rotation contaminated short .pulse monostatic polarization
matrix data.’




“_-...1"——! e-—-;g

fderir]

2, THE‘MONOSTATIC MONOCHROMATIC POLARIZATION SCATTERING
MATRIX i

The monostatic monochromatic polarization scattering razt>ix -
Q“Y is defined by the equation(l) :

s =op 1 (1)

where T and S are the range normalized incident and scattered electric

(or magnetic; depending on the convention adopted) far-fields re-

spectively, the phases of which are referred to a coordinate system

in which the scatterer is described (See Figure 1, p. "3); i.e.,

L &%
Ef) =1’ . (2)

1 - ik _*Xx

q'4ﬂx2

where Ei(;) and Es(;) are the incident and scattered electric fields
at the point x respectively, and ')—ci and Tcs are the propagation vectors
of the incident and scattered fields respectivély.

E (x) =

Wi
o
[ ]

(3)

The rationale of the range normalization of the scattered
field (see equation 3) is to insure consistency within the power
cross-section definition

o = 4-rrx2 —5 (4)
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The Target Coordinate System
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and the relationship:

. .
0 =pp (5)

‘where p is the Eigen Value of the polarization matrix ror the special
case of certain geometries '(to be discussed later) for which this
R ?

;p’olaﬂzation matrix is_fully degenerate; i.e.:

P 0 ‘ /

Puy 7 | | (6)
o

For this monostatic case, by the very definition of the mono-

séatic case as -Es = -Ei (See Figure 1, p3):

w|
"
ole

F, - 2% | (7)
N\ / '

: - W
, L Ay

=

(8)

A
where k is the unit vector specifying the viewing direction, the bore-
sight vector of the radar, and the aspect angles (of the radar relative
to the target) for this mono;tatic case (See Figure 1, p. 3).

! ! /

) It should be noted that the matrix pHY is not invariant to the
choice of coordinate systems.

It should furthe% be noted that for this monostatic case, by
virtue of the transversality of the far-fields, the matrix p can be
fully described as a second rank matrix if x, is chosen as colinear
with k8 (see Figure 1, p. 3); i.e.’, since I,=5,=0 for this co-

ordinate system, it follows that p 3 = pp3 = 0.
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3. THE BISTATIC GENERA: JI/ATION

For the monostatic case equation 1, by virtue of equations 7 and 8,

can clearly be written as:

. Q _ A A
Su() = Py (k)IY (k) (9)

For: the ‘bistatic case, for which Ei # -Es’ the natural gen-

:x.vnv’..

eralization of the above defining equation 9 is clearly (see Figure 2,
p. 6): ‘ “

) . ;.‘TI -

’ sﬁ“'ﬁﬁl'ﬁ‘ o
] sl = e gtk 1K) (10)

' ey

Except that it is now no longer possible to fmd a 's\mgle coordinate

o U,
e §

system such that the rank of the matrix p"’.Y (k ki) reduces to two.

A A
for all ki # -ks. 1t is, hoxevxr, possible to fmd two cocrdinate systems:

_fhamany
v - ¥

such that the matrix Pp.y(k ) K. ), expressed in these mixed coordmate

systems, reduces to a matrix of rank two; i.e., any two coordmate

systems x( i) and x( ) chosen such that xgi) and. xgs) are colinear with

,’ e -

kl and ks respectwely The details of the transformatlon of equation

10 into such a mixed coordinate system will be presented mext.

!~ ‘;

p—

Let TP-Y( i) and TP-Y( ) be the coordinate transformation matrices

from the target coordinate system x (see Figure 1, p. 3) to the

(1) 2ng 3(8)

coordinate systems x' ' and x* ' respectively (see Figure 2, p. 6); _

i.e,:

- - T L anaaly g
—
Lol
e
S
-
—
g
L

. a
spfs) = TuY(S)SY (12)
1
5 ]
1
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The Mixed Coordinate System
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where (see Figure 2, p. 6):

-sin §n cos f-n 0
+ | o _sint  sinm n | :
"y cos §n sin "‘l.n‘ smgn sy, cos N, » n=i, s «(13)
cos gn cos n_ sin §n cos'n, s “n

It thus. follows from equation 10 that (since ’.l'.ﬁl =T for a real

unitary transformation):

T(s)(5) = p (D) (14)

OB I TONC (15)

The polarization matrix in the mixed coordinate system,

say p', is thus:

p' = T(s)p :l'-(‘) ' (16)

where, Ly virtue of the transversality of the incident and scattered

far-fields, -the matrix p' is a second rank matrix; i.e.:

‘

rg

p! = 'T(s) /q"(i)

kY pe 'yB Pap ()

pry = 1,2
1,2

a»p = 12,3

Relative to tl"ne Xg" axis, the components 1 and 2 of the primed
second rank matrix are clearly the TRANSVERSE and LONGITUDINAL
components respectively (sce Figur;: 2, p. 6); e.g., if X3 is
the axis of symmetry of an axially symmetric scatterer.;

I3
{




4. THE SHORT PULSE GENERALIZATICON

. ' For the monochromatic case,equation 1, by virtae of ¢cgeacians

7 and 8, can clearly be written as:

'Su(w) = Ppy(“’) IY(Q! (18)

f“"‘“ ! r— } 3

For the time domain, equation 18 thus yields:

[ 8,08 =, (0*L (0 (19)
| iy = = S, o g (20)
l ) S
1 5,00 = = 6{ e'“ftsp(w)dw (21)
3 ) S
" ENCEY / e-wtlu(w)dw (22)

for

In the time domain, the polarization matrix equation (equa-

tion 19) is thus a matrix-convolution equation; i.e.,

1 ©
S (t) = . . ! A(t-t")dt! 23
L ® N {o Py (E) L (E 2t (23)

For finite transmitted power, i.e.:

0

v * "
d 24
fly(t) MICERE (24)
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it follows that:

w .
[le, VL) e < w @3)

-0

It thus follows that the integration and implied summation in

equation 23 can be intei thanged; i.e., written out:

1 2 0 .
Yo e, 01 e)ar| (26

A ’Zn y:"l s

S’l (t) =

5. THE BISTATIC SHORT PULSE GENERALIZATION

For the monostatic monochromatic case equation 1, by virtue

of equations 7 and 8, can clearly be written as;

S (w ,l: ?(I 'l\c 27
o= W
P»( » k) ’P“Y( » k) Y(“’, ) ( )

Thus, £6r the bistatic monochromatic case, by virtue of

equation 10;

A A A A .
Sp. (w,k) = p‘FY (w, ks' ki) IY (w, ki) . (28)

Thus, in the time domain, by virtue of the results of equa-

tion 26:

R, AN
\ (£ ko k) I(e-t ,‘k.l) dt

(29)
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In the mixed coordinate system discussed m ‘-'.ectton 3,
equation 29 yeilds: ‘

| ) 1 5 (i) | |
(s - f 1 i), o 1
S t) = ! I op (") 1Y (t-t') dt 30
K ® 2w YZ.-], -c0 By Y (30)

whére by equations 11, 12, and 17; and equations 20, 21, and 22:

3 0
. 1 A : A
(i) _ T . ~iwt o, k. .
W 2 YZ=;1 PY(k‘)-'{o ¢ Lk de ey
3 R )
1 N o A
s ®)t) Lo Tk | o7 (0% a

(32)

- % A A

! ' Z: E: , k f e- W k k.) d
= T . ) W
Pp.y(t) ’2 =1 l pa yﬂ( 1)_ P p( )

~r

(33)

where the logical notation:

Tuy (k) = 1(:;) ; n o= i,s (34)

has been adopted.

10
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6. THE MEASUREMENT OF THE POLARIZATION MATRIX

A single measurement with a monochromati¢ monostatic radar

possessing polarization diversity capabilities (i.e., a radar capable

_ of transmitting an arbitrary incident polarization and measuring the

scattered polarization associated with this transmission) clearly
yields knowledge of the pair of vectors T and S {sece equation 1, p. 2).
For a set of such measurements, a set of pairs of vectors, say, 1 (n)
and S(n) is clearly yleldeu The Least Square Best ‘Estimate of the
polarxzatmn matrix (say p) is thus that matrix p which best satisfies

equation 1, p, 2; i.e,, the Least Square Best Estimate of p by the

equation:

gm) _ 5 . 4n)

, 35
b Peyly (39)
Defining the matrices:
s = s S 36
an =5, (36)
= 1(n)
IYn = I\" ' (37)
this yiélds for equation 35;
S = I 38
pn PP~Y yn ' (38)
or, in pure matrix notation:
S = pl - (39)

If the matri'ces. 1,S, and p were real, ‘when the Least Square

Best Estimate of p would have been given by(3) "

Vo el
p = SI(1]) (40)

11




It can readxly be shown( ) that for complex matrices I, S, and
P, the Least Square Best Estimate of p is:

L4

s Zsil arfy? (1)

where the error associated with the Least Square Best Estimate is
calculable Ly the conventional method®) .

For the Bistatic Short Pulse Case (see equation 28, p.9),
the defining equations 36 and 37 need thus merely be extended to:

. A e A .
S a0k = 50wk (42)
A N . .
10k, = 1¢“’ @, k) (43)

: The additional constrammg condition that the polarization
matrix is true- symmetnc( )has not been imposed on the Least
Square Best Estimate of the polarization matrix for reasons that

will become evident in-the next Section 7.

7. THE FARADAY ROTATION ANGLE

If 2 mangeto ionic medium (such as the ionosphere in the
magnetic field of the earth) is intervening between the radar and
the target, then the measured monostatic monochromatic polarization
matrix’is not true- symmetnc because of the Faraday rotation effects

introduced by such a medium (7 ).

Given such a Farad‘gy rotation contaminated monostatic mono-
chromatic polarization matrix, the Faraday rotation angle 6 can be

(8)

determined’ '; i.e.:

12 .
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o Py P
tan 26 = —2_—2L (44)
PPz

and the uncontaminated monostatic monochromatic polarization matrix,
E>3

‘say p °, (namely that matrix that should have been measured had there

been no intervening magneto ionic medium) can also be determi‘ned‘g) H

i.e.:
=90 - (45)
where: ' . - ' ~
cos J . sin 9 K
=1 ... ' (46)
-8in @ cos O

) The rationale for not seeking a true- symmetrxc Least Square
Best Estimate of the polarizition matrix (see Section 6) is thus
evident; namely, the asymmetric components of the Least Square

Bes\Estxmate of the polarization matrix are utilized in equation 44,

‘Since the preceding equations 44 45, and 46 are in the fre-
quency domain, it follows by an argument similar to the argumeé.: of

Section 4 that for the short pulse-monostatic polarization matrix:

1 .
o(t) = S e-wte(w)dw

2n
'\’ -0

where 0(w) is given by equation 44, and

pety = @ (tyrp () O (1) (48)

13




=

T T D o o v oo

v —

T e N o

o T roo w o ‘

where:

cp.s o(t) sin 0(t) .
O - : (49)
-s8in 6(¢) cos 6(t) .

8. THE ORIENTATION ANGLE OF A SYMMETRIC TARGET

It has previously been shown (10) that the orientation angle a
of a- symmetric target is related to the Faraday rotation contaminated
monostatic monochromatic pelarization matrix p by:

: Pyt Py
tan 2a = e__a (50)

Pn P22

Since the above equation 50 is in fhe frequency domain, it
follows by an argument similar to the 'argument of Section 4 that _
the above equation 50. must be written as:

Pix(0) + P 5 w)
Pn(“’) = Py»)

tan2a(0) = (51)

The orientation angle a is clearly, however, not a function

of the frequency, since it is a purely geometrical quantity.

It thus immediately follows that the Least Square Best Estimate

of the orientation angle a, say Y, is given for the short pulse mono-
static polarization matrix case by: ‘

-_1—-——-0, TR S'a(w)dw (52)

14
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where:

1 o1 | Piale) #F )
a(w) N .i tan Kn(“")"ﬁ;zz‘(“’)

(53)

where P is given by equation 41 of Section 6.

i
'y
v

(U) It should be noted irj conclusion that the determination of the.
Least Square Best Estimatd of the orientation angle is. accomplished
directly, without first determining the Faraday rotation angle and

then removing its effects.

15
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