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Foreword 

This work was performed during the period August 1967 through 
December 1969 under U.S. Army Natick Laboratories Contract No. 
DAAG-17-67-C-0189 for the Department of the Army Project No. 
1M121401 D195 entitled "Exploratory Development of Airdrop Systems" 
Task 13 - Impact Phenomena. The program is a part of continuing 
investigation directed toward obtaining improved energy dissipater 
materials for airdrop landing shock mitigation and a better under- 
standing of the response of airdroppable materiel to airdrop im- 
pact phenomena. 
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ABSTRACT 

The accelerations and displacements in a complex structure 
subjected to an impact loading are computed by treating the 
structure as a lumped parameter system. A mathematical model of 
the system consists basically of discrete masses linked by weight- 
less, elastic beams with the appropriate stiffnesses, areas, and 
moment-of-inertia properties. By specifying a proper set of in- 
dependent coordinates through which the motion of these lumped 
masses are uniquely described, and by writing equations of motion 
in terms of these coordinates, a set of equations is derived 
which represents the motion of any part of the model during im- 
pact. Using the Runge-Kutta numerical method, and a digital com- 

I puter, v;hese equations are solved. 
i 

A physical model of the lumped parameter system was built 
and cushioned with paper honeycomb. Displacements and accelera- 
tions at some points in this model were measured and compared 
with computed results. Agreement is satisfactory. 

. 
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IMPACT ON COMPLEX STRUCTURES 

1. Introduction 

This study has two objectives;  (1) to learn how to 
realistically model a vehicle using lumped masses and 
springs and to relate such computed quantities as dis- 
placement and accelerations to corresponding quantities 
in the prototype; and (2) to prepare a computer code for 
doing the necessary computations, and which is sufficiently 
flexible to serve as a design tool. 

The report consists of eight sections as follows: 

Lumped mass model 
Cushioning system design 
Analytical study 
Numerical solution 
Digital computer code 
Experimental work 
Discussion 
Conclusion 

2. Lumped Mass Model 

A complex structural body can be represented by a system of 
discrete lumped masses connected by massless beams with appropri- 
ate flexural stiffnesses. In airdrop practice the bending mo- 
ments and stresses in the structure are minimized by dividing the 
structure conceptually into free bodies, cushioning each part in- 
dependently to provide zero rigid body rotation and equal rigid 
body translatory acceleration for each part. To accomplish this, 
the cushioning forces must be distributed over the structure in 
proportion to the weight. 

The model shown in Pigs. 1 and 2 may be regarded as a highly 
simplified representation of the M37 truck. The mass distribution 
of the truck is roughly approximated, and the various elastic beam 
elements simulating the structural members are assumed to have 
equal stiffness properties. No damping has been considered. Mass 
1 can be regarded as the motor and mass 2 the load in the vehicle. 
Masses 3 and 4 hanging on springs below the main masses are like 
the wheels. Two small masses, 5 and 6, are attached in cantilever 
fashion to the main masses. These two do not represent anything 
in particular. They are included to provide Information on how 
much such masses influence the motion of the mam mass, and how 
the accelerations of the small masses are modified by their loca- 
tions within the structure. Mass 7 (Pig. 2), which is-3$ of the 

Jf 
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total model mass, has also been Included to show how a /.iall 
mass not attached directly to another mass may Influence the 
motion of the main masses. 

The mathematical model that corresponds to the physical 
model is shown in Pig. 3. If mass 7 is connected directly 
to the beam its very small mass in comparison with the 
other masses results in a large acceleration (a = P/m) which 
causes computational difficulties. To avoid these diffi- 
cultidSjx a small beam element is used to connect this mass 
to the large beam. 

3. Cushioning System Design 

a. Forces 

The overall magnitudes of the cushioning forces applied 
to the model aß shown in Pig. 3 are determined from the 
acceleration level desired during impact. For a stated 
acceleration level of G, measured in units of acceleration 
of gravity, the total force applied is 

ZP = FA + FB + Fc + PD + FE = (Wx + W2 + W3 + W4) (G + 1) 

To reduce bending moments in the long structural 
spans between masses, a vehicle that is to be cushioned 
is subdivided into free bodies, and force and moment 
balances are carried out for each section. Each free body 
has to be a statically determinate structure and no force 
rr moment is transferred to this free body through the 
point of cut.  If a cushioned point belongs to several 
free bodies then the cushioning force at that point will 
be the sum of cushioning forces of all free bodies at that 
point. For this analysis, the model has been divided into 
three sections. Free bodies of these three sections are 
shown in Fig. *i. The cushioning in the idealized mathe- 
matical model provides the forces shown. 

b. Cushioning Material Characteristics 

The material composing the cushioning system is 
idealized by assuming that it crushes at a constant strength 
and that it has no resilience. This is an idealization of 
the characteristics of paper honeycomb. The computer pro- 
gram at the present time includes only a constant crushing 
force. Time varying forces will be considered later. To 
obtain data applicable to the cushions used in the labora- 
tory model nine 3 inch x 3 inch x 3 inch paper honeycomb 
pads were tested with a drop height of 38 inches and a mass 
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VEHICLE   SUBDIVISION 
SECTION   (A) 
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FA 

M3 
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NO FORCE   OR   MOMENT        FD  ■ WS(G + I) 
TRANSFERRED  ACROSS 
THIS  POINT 

T, 
SECTION    (B) 
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» ■  
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M2. 

T    ' 
FB»FC-|W2(6TI) 
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M4 
Fe» W4(6+l) 

FIG. 4 FREE   BODY   DIAGRAMS 
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weight of 220 pounds. A typical ^ess-strain curvets 
shown in Fig. 5. The average strength is U000 !*>/«. 
This value, due to the small size of the pad, is wuch 
smaller than the normal value for paper honeycomb (6000 
psf). Based on the assumed constant crushing force oi 
the paper honeycomb the design of the cushioning system 
is as follows: 

FI6. 5 TYPICAL STRESS - STRAIN RECORO FOR 3 in. 
X 3 in. X 3 in. PAPER HONEYCOMB SAMPLES 

c. Design Procedure 

First select a design acceleration leyel G and use 
Newton's law to compute cushioning force. . 

Ma ■(I) 
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where F ■■ the resultant force applied to the mass 

M - | - Mass 

W ■ weight of mass 

a ■ acceleration of the center of gravity of the mass 

g = 32.2 ft/sec2 

Equation (1) can be rewritten as 

(2) P » WG ,  

o 
where G ■ — ■ a dimensionless number which indicates the ac- 

B  celeration in "g's." 

The relation between effective cushioning area A and the as- 
sumed acceleration level G, and the crushing strength S 
is derived as follows, referring to Fig. 6. 

LOAO-W 

♦   »   *   * 

CUSHIONING    FORCE   F s SA 

FIG. 6  IDEALIZED   CUSHIONING   SYSTEM 

or 

F - W - W(|) » WG 

F - SA « W(G + 1) 

and 

A - £(G + 1) •(3) 

Computation of the required thickness z of the cushion 
is as follows. 

V z "I 
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where V ■ required volume. 

The volume will depend on the amount of energy to be dissi- 
pated, which will, in turn, depend on the impact velocity 
or the drop height h. 

The potential energy U of the package will be 

U » W(h + ez) (4) 

where 

e » design strain. 

Since the stress-strain curve for the cushion material 
is assumed to be approximated by a rectangle, the amount 
of energy per unit volume which the pad will absorb is 

En - Se  (5) 

The required volume -'s therefore 

v » U   W{h + tz) 

and the necessary thickness is 

z - |e (6) 

The area and thickness of the required cushion stack 
thus can be obtained from Equations (3) and (6). As 
stated previously, the cushioning forces have been assumed 
constant so long as the velocity at the cushioned points 
remains negative, indicating downward, hence compressing 
movement. However, as soon as the velocity becomes zero 
or changes sign this cushion force will vanish. 

4. Analysis of the Model 

a. Equations of Motion 

The general form of the equations of motion, for the 
model in matrix notation, is : 

[M]q {q*} + [K]q {q} - {Q} (7) 

where [M] represents the generalized mass matrix, [K] 
represents the generalized stiffness matrix, and {Q} 
represents the generalized force matrix. The vector {q} 
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represents the independent generalized coordinate system 
which is sufficient to uniquely describe the positions of, 
and the motion of the entire model, while {<J> is the vector 
describing the acceleration of the model along these coor- 
dinates. The generalized coordinates for this model are 
shown in Pig. 3. 

b. Elerneut St 1 f fne s s 

The stiffness matrix for the individual elements is 
determined from elementary beam deflection theory and the 
equations representing the elastic force-deflection proper- 
ties of the elements are combined in the following matrix 
expression. 

{p} ■s [K] (u) 

where 

{P} - Force vector 

[K] a Stiffness matrix 

{u} = Displacement vector 

The coordinates of a beam element and a spring 
element are shown in Pig. 7. 

The stiffness matrix for the spring element is 

k -k 
[K] spring 

-k 

U| 

"Cf El 

us 
4 

X K 
■WWVA- 

"2 

h 
(a)   BEAM   ELEMENT (b)   SPRING  ELEMENT 

FIG. 7  ELEMENT   COORDINATES 

10 
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The element stiffness matrix for the beam is 

CK] beam 

12 -6L -12 -6L 
- 6L UL* 6L 2L 
-12 6L 12 6L 

El -  6L 2L* 6L 4L 

The generalized stiffness matrix [K] of the struc- 
ture can be generated by synthesis from all elements of 
the stiffness matrix. For example, consider the simple 
structure in Fig. 8 and the structural element in Fig. 9. 
The stiffness matrix for the element is [K]1 

TJT "GET i 

FIG. 8   SIMPLE    STRUCTURE   MODEL 

•tcj- HT i 44 M. 
kll »it k« k.4 

"a. »it kai k»4 
k» "w k»a k>4 

k« k*t k« k44 

FIG. 9 ELEMENT   NO. I 
wj. denotes the force at coordinate q. when a unit where kj 

load is Applied at coordinate q.. Elements'1^ and 3 and 
the corresponding stiffness matrices are shown in Fig. 10 
and 11. 

44 ft- nr h 4« [«]. 

k't> k.4 k>. k>« 

k'4S K'44 h'«$ k'4« 

k»i k'54 It's« k's« 

k« k«4 K« k'M 

FIG. 10 ELEMENT   NO. 2 

li 
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W» IS 

n K"T7 

FIG. II   ELEMENT   NO. 3 

Then the generalized stiffness matrix is: 

[K], 

kll k12 k13 km 0  0  0 

k21 k22 k23 k2i, 0  0  0 

k31 k32 (k33 OO    KQ^/ (k3l| + kj4) if i  k1 - k" x35 36 K37 

kl»l 
k42 ClcH3 + k*3} 

(k44 + k^) k*5 k*6 ° 

0 0 k» K53 k5*J k55 k56 ° 

0 0 k63 
k64 k65 k66 ° 

0 0 k" K73 
0 0  0 k'j7 

In most situations some coordinates are required to 
define displacements for which there are no associated 
masses. Obviously, the computational acceleration a = P/m 
will become infinite if m vanishes. To avoid this unreason- 
able result, the number of generalized coordinates must be 
reduced to the same number as the number of masses in the 
structure. 

First it Is necessary to distinguish between those 
displacements in {q} associated with the masses and those 
associated with zero masses. Thus, 

U>SS 
where 

{q}* = displacements for which masses [M]* exist 
0 

{<!} displacements for which masses are zero 

12 
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The equations of motion, Equation (7), are now rewritten 
using the above notation. 

1 r     *\ 

£MI-|-2 * {q}* 

Ltq} J 
p + 

o     ; o 
£5Jn:-|-£5J12 
[K] 21 CK] 22 {$}-{$}- (8) 

This equation is equivalent to the two following equations. 

0 
(9) [M]*{q}*  +  [K]n{q>»  +   [K]12{q}u  =   {Q}*  

CK]01{q}*  +   [K]„{q}°  =  {Q}° (10) i21i '22 
.0 The second of these equations is solved for {q} 

{q}° - CK322 (CQ>° " [K]2l{q}*) (11) 

Substituting {q} into Equation (9) gives the reduced form 

[M]*{q>* + CK]s{q}* = {P}  (12) 

where 

[K]s = [K]u - [K]12[K]22CK]21 (13) 

{P} = {Q}*_ [K]12[K]-^{Q}° (11») 

Now Equation (12) can be treated to get the displacements 
{q}* of the masses. The displacements {q}* are then sub- Q 
stituted into Equation (11) to obtain the displacements {q} 
for which the masses are zero. 

5.  Numerical Solution 

a. Equations 

The equations of motion are: 

[M]»{q>« + [K]s{q}* = {P} (15) 

This is a system of second order differential equations. 
These equations may be replaced by a system of first order 
equations. As a simple example, the second order equation 

&=f(t,y,&) 
dt*       dt 

becomes the system 

13 
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& - v 
dt 

SS » f(t,y,v) 
dt 

The two functions y(t) and v(t) are now computed simul- 
taneously. Initial conditions such as y I . m .     * yQ, 

dt 
v0 become y| t . t ■ y0. v | t - t. vQ SO that 

the generalized initial value problem is established. 

After the equations of motion are reduced to first 
order differential equations, the Runge-Kutta procedure 
can be used to solve them. The Runge-Kutta method is 
briefly discussed as follows3: 

Let the equations be 

V' » f^t.y.v), v» » f2(t,y,v) 

where 

yl . &, y . y(t), 
dt 

v(t), v» -SI 
dt 

The formulas 
ki a hfi(wv 
Ll = hf2<WV 
K2 = hfl(tn + Jh. yn + Jk1 

L2 - hf2(tn + Jh. yn + ^ 

k3 * hfl(tn + Jh, yn + Jk2 

L3 - hf2(tn + §h, yn + §k2 

ki» ' hfl(tn +    h' yn +    k3 

L4 - hf2(tn +    h,  yn +    k3 

•  vn + k> 
.    V '     n + ^i> 
»    V '     n + 

&>> 

.    V •    n 
+ ?v 

.    V '     n + V 
•  vn + V 

yn + 1 " *n + F(kl + 2k2 + 2k3 + V 
vn + 1 " vn + F(L1 + 2L2 + 2L3 + V 

where h =  step size 

1H 
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may be shown to duplicate the Taylor series for both func- 
tions up through terms of order four. For more than two si- 
multaneous equations, say n, the extension of the Runge- 
Kutta method parallels the above, with n sets of formulas 
required instead of two. 

b. Digital Computer Code 

A computer program code has been developed to solve 
the drop impact problem. This program is listed in the 
appendix. Only the lumped masses, cushioning forces, 
initial displacement and velocity and member proper- 
ties such as flexural rigidity El, spring constant k 
and member length L are required for input data. The 
computer program automatically generates the stiffness 
matrix of the structure and chen solves the equations of 
motion by the Rung'e-Kutta method. The displacement, velo- 
city and acceleration at any coordinate at any time may 
be printed out. The printed out displacement is relative 
to the position where impact begins. From these displace- 
ments the relative displacement of any two points can be 
computed. The computer code is sufficiently flexible to 
serve as a design tool. 

6. Experimental Program 

a. Model 

To evaluate the computational procedure a small model 
has been prepared and used for collecting experimental data. 
This model which is shown in Fig. 1 was designed so it would 
be relatively simple to represent with a lumped parameter 
system and at the same time to have at least 10 degrees of 
freedom. The schematic drawing of the model shown in Fig. 2 
suggests how it should be represented by lumped parameters 
and Fig. 3 shows the coordinates and the degrees of freedom. 
As indicated previously the model can be thought of as 
representing an M37 truck, although it was not designed 
specifically fo? that purpose, its primary purpose is to 
provide a specific and convenient structure for use in 
evaluating the procedure developed and previously described, 
for computing structural response to impulsive loading. 

The cushioning system for this model was designed 
to provide zero bending moment at the center of mass of 
the model. All cushioning forces are directly applied 
to the masses except forces Fß and Fc which are appllecL- 
to the structure tied to mass 2. Th? s loading is similar 

15 



to that applied to the M37 truck, since the dead load in 
the bed of the truck is not usually cushioned directly, 
but is cushioned through the structural members that support 
it. Small masses 5 and 6 are attached to the main masses 
1 and 2 respectively and are cushioned. Mass 7 is optional 
and not cushioned. 

Only vertical motion is considered. This is an over- 
simplification of the real situation because non-vertical 
motion is always possible due to wind drift and system 
oscillation. However, since the vertical motion is the most 
important factor in airdrop cushioning, it is essential that 
it be analyzed separately, and well understood before at- 
tempting a solution of the more general problem. Lateral 
and longitudinal motions of the model are minimized by 
the two vertical steel restraining rods, which can be 
seen in Pig. 1. Stability of the model is also improved 
by using clusters of 3 parallel springs instead of one 
helical spring for the support of masses 3 and 4. 

i.. Measurements 

Accelerations are measured with fluid damped resistance 
type accelerometers mounted on masses 1, 2, and 3. Dis- 
placements are measured at supports A, C, and D. 

To measure the deflections a special device* is used. 
This device which is shown in Fig. 12 consists of two U-shaped 
thin steel springs with strain gages mounted as shown. 
The legs of the U-shaped pieces can be deflected toward 
each other a considerable amount without the development 
of appreciable force or stress, and the strain gage output 
is proportional to the deflection. Other better known 
transducer types could not be used because even the small 
lateral motion that sometimes occurs might damage the transducer. 

c.  Parameter Values 

Numerical values for the model parameters are 

M1 = 20 lb 

M2 = 30 lb 

M3 « M^ - 10 lb 

M » Mg - 0.6 lb 

M? » 2.3 lb 

* Designed and developed by Dr. C. H. Yew, The University 
of Texas at Austin. 
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FIG. 12   TYPICAL   DEFLECTION    6A6E 
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K « 600 : Lb/in. 

E = 29 x 106 psi (st 

I * 0.3393 in." 

PA - 217 .0 lb 

FB * Fc ■ * 183.5 lb 

FD a FE ' "  120 lb 

Jl ■ 2.0 lb-ln.- sec 

J2 = 2.0 lb-ln.- 
2 sec 

Paper honeycomb pad sizes are 

A = 3 x 2j x 3 inches 

B = C = 2j x 2| x 3 inches 

D»E=2x2^x3 inches 

The pad sizes are selected to provide an acceleration 
of 12g, assuming a crushing strength of 4,000 psf for 
the honeycomb. This crushing strength was determined 
experimentally by making dynamic loading tests on samples 
having approximately the dimensions of these pads. 

7.  Discussion of Results 

The most recent measured and computed results are shown 
in Pigs. 13 through 20.  In comparing these results it should 
be noted that there is a difference of some significance 
between the cushioning forces in the mathematical model 
and in the laboratory model. For the former force is as- 
sumed constant from the moment of impact until it vanishes 
at the instant the velocity of the cushioned mass vanishes, 
and from that time on it remains at zero. On the other hand 
the cushioning force in the laboratory model has a modest 
initial spike and then decreases constantly until the velo- 
city of the cushioned mass vanishes. At that time, which 
incidentally does not coincide with the time the corres- 
ponding velocity in the mathematical model vanishes, the 
force does not drop immediately to zero because the cushion 
has some resiliency. The differences in the crushing forces 
are reflected by differences in the accelerations shown in 

18 
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(b)  COORDINATE     q„ 

•COMPUTATION 
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18        20        28        SO 

TIME   -    MILLISECONDS 

(c)  COORDINATE     q, 

FIG. 13    MEASURED AND COMPUTEO VALUES OF q,,q,AND ql9 

WITHOUT  THE  3% (2.31b.) UNCUSHIONED MASS AT q„ 

(DROP  HEIGHT 18 INCHES) 
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EXPERIMENTAL 

COMPUTATION 
iCONSTANT   CRUSHING   FORCE: 2470 lb) 

-L X X 
10 18        20        28        30        38 

TIME  •  MLLISECONDS 

40 

(cfl   COORDINATE     q, 

-2 

ft'* • ■ • 

COMPUTATION 
^(CONSTANT   CRUSHING FORCE: IS3.8 lb) 

-1 

0 

(-EXPERIMENTAL 

i            i           i 

i 

Q» 8 10 18 20        28        80 

TIME   -   MILLISECONDS 

38         40 

(b)   COORDINATE    q, 

-2 . 

•I  . 

■ 

COMPUTATION 
A CONSTANT CRUSHN6   FORCE ! 120 lb) 

*<"">! 

^f <xC? ^EXPERIMENTAL 

y*» £* ■ ■ 

On 8 10 S        20       28       30        38       40 

* TIME    -    MILLISECONDS 

Ul 

a! 
t 

(c)   COORDINATE   q, 

FIG. 14   MEASURED   AND  COMPUTED  VALUES  OF q, , qs AND  ql9 

WITH  3% (2.31b.) UNCUSHIONED MASS AT q„ 

(DROP HEIGHT  18 INCHES) 
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COMPUTATION 

ACONSTANT   CRUSHING   FORCE! 120 lb) 

18       20        tB        80 

TIME  -   MILLISECONDS 

(0)   WITHOUT 3% UNCUSMONED MASS AT q„ 

COMPUTATION 

/'(CONSTANT   CNUSHMG  FORCE : 120 b) 

IB       20        28       80 

TIME  -  MILLISECONDS 

40 

(a)  3% UNCUSHBNED  MASS AT q„ 

FIG. 15   MEASURED  AND COMPUTED VALUES  OF ACCELERATION 
OF q, 

(DROP   HEIGHT  18 INCHES) 
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COMPUTATION 
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4* 

to 

*     19 L 

10 

EXPENMENTAL 

COMPUTATION 
/(CONSTANT PONCE : 247.0 lb) 

(b)   C00RONATE   % 

FIG. 20   MEASURED AND COMPUTED VALUES OF q, AND qs 

WITHOUT 2.3 lb (3%) UNCUSHIONED MASS AT q„ 

(DROP HEIGHT 18 INCHES) 
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Figs. 15 and 20. The computed accelerations for ML, shown 
in Pig. 15i are almost identical in form to the assumed 
cushioning force, while the measured accelerations closely 
resemble the general form of the crushing force-time-re- 
lation for paper honeycomb usually observed. The rather 
high frequency oscillations which appear on the measure^ 
acceleration record are also somewhat typical of the oscil- 
lations seen on dynamic stress-strain curves Tor paper 
honeycomb. The source of these oscillations can not always 
be pinpointed.  In some cases they are believed to typify 
the way honeycomb actually crushes, in others they are 
believed to represent vibration of some part of the testing 
system.  In these records the frequency is much too high 
to be the uncoupled frequency of ML and its supporting spring, 
and. too low to be associated with the elastic body vibra- 
tion of the mass. . Consequently the oscillations are attri- 
buted to the crushing characteristics of the honeycomb 
cushions. 

I 
The oscillations which appear in the displacement, 

and both the measured and computed accelerations of M,  all 
have very nearly the same frequency, approximately 200 
Hertz. This is also the uncoupled frequency of M-^.  It Is 
somewhat surprising to see oscillations of a mass as large 
as M1 at 200 Hertz. If the peak accelerations associated 
with the oscillations of the mass are computed assuming 

! - a steady state harmonic oscillation they are found to be 
of the order of 2000g whereas the computed accelerations do 
not exceed peak values of about 2g, and the measured values 
are of the order of 6g. Thus the oscillations on the dis- 
placement record are not believed to be connected with ac- 
tual motion of the mass. They are believed to be a result 
of vibration of the displacement gage. The fact that they 
occur at nearly the same frequency as the oscillations in 
the acceleration records is probably Just coincidence.  If 
the oscillations are ignored, and the actual curve replaced 

i by a smoothed curve in each of the 6 records shown in Figs. 
13 and 14. the measured and computed displacements are seen 
to be in quite good agreement considering the differences 
in the crushing forces discussed above. Differences between 
the measured and computed deflections would undoubtedly be 

\ much greater if it were not for the relative insensitivity 
of displacement to the form of the acceleration curve. 

I 
i The oscillations which appear In the computed acceleration 
! record for M2(q*_) shown in Fig. 20 have a frequency which 

is nearly equal to the uncoupled frequency of NL. No mass 
I * in the system will vibrate at its uncoupled frequency since 
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there is coupling between all masses in the system. Con- 
sequently the observed frequency should not be expected 
to agree with the uncoupled frequency. The frequency of 
the oscillations in the measured acceleration is almost 
twice the frequency seen in the computed accelerations. 
No logical explanation for this discrepancy can be of- 
fered at this time. 

Although the computed and measured values of the dis- 
placements and accelerations do no4- agree precisely they 
are close enough, it is believed, to indicate that with the 
same crushing force in the two models the results could 
be brought into close agreement. This means that the con- 
tinuous laboratory system can be replaced for computations 
by a lumped parameter system which will adequately repre- 
sent the essential features of the motion of the major 
parts of the laboratory model. Hence, a vehicle could be 
represented in the same way. 

It may be further noted that the addition o** the 
small mass M., does not significantly affect the displace- 
ments and accelerations of the other masses. This means 
that only the major masses in a physical system need to 
be represented in the lumped parameter model. 

8.  Conclusions 

Although the comparisons between computed and experi- 
mental results are not exhaustive, and there is a signi- 
ficant difference in crushing forces in the two models, the 
following conclusions are believed to be justified. 

a. Displaceme ;".s, velocities, and accelerations of 
the principal parts of a laboratory model can be satis- 
factorily predicted using a lumped parameter matnematlcal 
model and a numerical computation procedure. 

b. If predictions can be made for a laboratory model, 
then predictions of comparable accuracy are possible for 
actual prototype vehicles. 

c. The computed program is simple enough, ar:d the com- 
putational time required is short enough to make the pro- 
gram a practical tool for design purposes. 

d. The insignificant effect which the small masses 
hcxve on the motions of the larger masses in the system in- 
dicates that models of prototype vehicles can be quite 
simple and still give an accurate indication of the move- 
ments of the different parts during an impact. 
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e. Procedures for establishing parameter values such 
as mass, and stiffness, for lumped parameter models to re- 
present actual vehicles are not indicated in the results of 
this study. These procedures remain to be developed. 

9. Recommendations for Purther Studies 

a. Although the results obtained for the one dimen- 
sional model were not entirely conclusive, further work 
should be concentrated on a two dimensional lumped mass 
model. For the theoretical analysis of such a model it 
is necessary only to modify the stiffness matrix as a 
grid structure. A grid structure would not only be a 
more realistic representation of a real vehicle body, it 
would also make the laboratory model more stable. This 
would improve the accuracy of measurements. 

b. The damping factor which was not considered in 
this report should be investigated in further studies. 
This can be done rather easily mathematically but the 
question of how to introduce controlled damping into 
the laboratory model requires some study. 

c. An actual vehicle for which measurement data 
are available, or can be obtained, should be modeled 
so the procedure can be tested in a real life situation. 

d. The significance of the parameters which are 
being determined should be carefully reviewed in the 
context of vehicle damage. 
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START 

SET     UP    STRUCTURAL      CONFIGURATION 

PROGRAM      ASSUME      A     SET     OP     CO- 
ORDINATES      ACC0R0IN6       TO      THE     SE- 
QUENCE        NUMBER      OF      JOINT 

INPUT      MEMBER      PROPERTIES 

' 
GENERATE      STRUCTURAL STIFFNESS     MATRIX 

REARRANGE     STIFFNESS 

NEW    COORD.     SEQUENCE 

MATRIX      FOR 

IF     NECESSARY 

REDUCE     STIFFNESS     MATRIX     TO     ONLY 

INVOLVING     COORD.    WITH     MASSES 

INPUT     MASSES,   CUSHION     FORCES     AND 
INITIAL     CONDITIONS 

COMPUTED    DISPLACEMENT,   VELOCITY     AND 

ACCELERATION     BY     RUNGE - KUTTA     METHOD 

LAST     LOADING     CONDITION     FOR    THIS 

STRUCTURE    ? 

< 

YES 

LAST  STRUCTURE ? 

YES 

STOP 

> 

NO 

NO 

FIG. 21     MAIN   PROGRAM    FLOW   CHART 
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c 
c 
c 

5010 
5020 
5040 
5050 
5060 
6010 

6020 
C — 
C 
c 
c 
c 
c 
c 
c 

NUMERICAL SOLUTION OF A LUMPED PARAMETER FOR AIRDROPPED 
VEHICLES BY USING RUNGE-KUTTA METHOD. 
CDC 6600 r  FORTRAN IV » STORAGE REQUIRED  30000 WORDS 
DIMENSION  SM30.30) .NODOO) »U< 30.30 J *C( 30.30 ) .NV( 30 ) * SQ(30) 
DIMENSION  DF(10.!00).YJ(100) .YJO(IOO) 
DIMENSION   YJ3(30).  SQ3C30) 
COMMON  N.S(30.30).GQAf30)»WM(30>.WG(30) 
FORMAT(3I10,F20.2) 
FORMAT(2I10,2F20.4) 
FORMAT(16I5) 
F0RMAT(8F10.3) 
FORMATU6F5.D 
FORMATdHl.* BEAM MBR=*.I5.2X.*SPRING N0. = * I5.2X»*TOTAL JNT NO.= 

1  .I5.2X.*E=*.F12.2) 
FORMAT( 14,12F11.0/(4X.12F11.0)) 
INITIALLY THE PROGRAM ASSIGNS  A SET OF COORD. ACCORDING TO THE 
ORDER OF JOINT NUMBER .  IT BECOMES» FOR EXAMPLE. Q(ll) AND Q(12) 
OR THE VERTICAL DISPLACEMENT  AND THE ROTATION AT JOINT NUMBER 6. 

  READ IN   NS =NO. 
Nll=NO. 
N22*NO. 
NCH* 1 . 
NCH= 0 , 

READ« 5.5040)  NS 
1     READ(5.504O)  Nll.N22.NCH 

JC=N11+N22 
C READ IN   MBR = 
C NP = 
C JNT = 
C E  = 

READ(5.5010) 

OF STRUCTURES 
OF COORD. WITH ASSOCIATED MASSES 
OF COORD. WITHOUT ASSOCIATED MASSES 

IF THE ORDER OF COORD. WILL BE REARRANGED 
NO REARRANGEMENT IN COORDINATE ORDER. 

NO. OF BEAM MEMBERS 
NO. OF SPRINGS 
TOTAL JOINT NUMBER 
MODULUS OF ELASTICITY 

MBR.NP.JNT.E 

C 
C 
c 
c 
c 
c 
c 
c 
c 
c 

c — 

WRITE (6.6010)   MBR.NP.JNT.E 
G=386.04 
N=2*N11 
MT=MBR+NP 
JM=JNT-NP 
JC=2*JNT-NP   $ JNT1=JC-1 
DO 5 1=1.JC 
DO 5 J=1.JC 
SK(I»J)=0. 
DO 100 1 = 1.MT 
READ IN MEMBER PROPERTIES. 

JOINT NUMBERS CAN BE ASSIGNED ARBITRARILY IN THE ORDER BUT 
SHOULD BE CONTINUOUS FROM 1 THROUGH THE LAST JOINT NUMBER. 
NO NUMBER IN THIS INTERVAL CAN BE OMITTED.  ALL SPRING JOINTS 
NOT ATTACHED TO BEAMS SHOULD ALSO BE NUMBERED FOLLOWING THE 
BEAM JOINT NUMBERS. 
NJ1, NJ2= JOINT NUMBERS  AT ELEMENT  ENDS 
AI= MOMENT OF INERTIA  FOR BEAM MEMBER. OR SPRING CONSTANT 
SL= LENGTH OF BEAM SEGMENT  , 
SL= 0.0  FOR SPRING 

READ55.5020)  NJ1»NJ2.AI.SL 
WRITE (6.5020)   NJ1»NJ2.AI»SL 
IF(SL)  20.20.10 
GENERATE STIFFNESS MATRIX OF STRUCTURE 

31 



10 FA=E*AI/SL**3 
S1=12.*FA $     S2=6.*SL*FA 
IF(NJ1-NJ2)      11.11.12 

11 N1=2*NJ1-1 $       N3=2*NJ2-1 
GO   TO   16 

12 N1=2*NJ2-1        S       N3=2*NJ1-1 
16 N2=Nl+i $ N4=N3+1 

SK(N1,N1) = SMN1,N1 )+Sl        $ 
SK(N1,N3!=5K(N1,N3)-S1 
SK<Nl,N4)"SK(Nl.N4)-S2      $ 
SK(N2*N3)=SK(N2,N3)+S2 
SK(N2.N4)=SK<N2.N4)+S3 
SK(N3.N3)=SK(N3.N3)+S1 
SK(N4,N4)=SK(N4,N4)+S4 
GO   TO   100 

20 IF(NJl-JM)      30.30.32 
30 N1=NJ1*2-1 

GO   TO   40 
32 N1=NJ1+JM 
40 IF(NJ2-JM)      50.50.55 
50 N2=NJ2*2-1 

GO   TO  60 
55 N2=NJ2+JM 
60 CONTINUE 

SK(N1,N1)=SK(N1,N1)+AI 
SK(N2.N2)=SK<N2.N2)+AI 

100   CONTINUE 
N1=JC-1 
IF(NCH)  280.280.210 

C   READ IN  NOD(I)=NEW ORDER 
C   ALL INPUT AND OUTPUT FROM 
C   NEW COORDINATES SYSTEM 
210   READ(5,5G40)  ( NOD( I ) ♦ I = 1 ♦ JO 

WRITE(6.5040)  (NOD!I),I=1»JC) 
!=JC 

220   J=NOD(I) 
SK(1.1)=SK<J.J) 
1 = 1-1 
IF(I )   230.230.220 

230   DO 240 1 = 1.JC 
240   SK(I»I)=SK(I.1) 

DO 260 J=1»N1 
J1=J+1 
JP=NOD<J) 
DO 260 I=J1,JC 
IP=NOD<I) 
IF(IP-JP)  251.251.252 

251 SKII,J)=SK(IP.JP> 
GO TO 260 

252 SK(I.J)=SK(JP.IP) 
260   CONTINUE 
280   CONTINUE 

DO 270  J=1.N1 
I1=J+1 
DO 270 1=11,JC 

$  S3=2.*5L*SL*FA  $  S4=2.*S3 

SK(NltN2)«SK(Nl,N2)-S2 

SK(N2,N2)=SK(N2.N2)+S4 

$  SK(N3.N4)=SK(N3.N4)+S2 

$  SK(N2.N1)=SK(N2.N1)-AI 

OF COORD. 
HERE ON ARE REFERRED TO THIS 
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1 

I 

270 

140 

310 

320 

342 

C  
C 
c 
c 
c 
c 
c 
c 
343 

344 

3f5 

346 

347 

348 

SK(J.I)»SK(I.J) 
CONTINUE 
DO 140  I-l.JC 
WRITE(6.6020)   I, ( SK( I, J ) t J»l»JO 
CALL MIV(SK»U»N11.N22) 
00 320 1 = 1.Nil 
DO 320  J=1.N22 
SUM=0. 
DO 310 K=1.N22 
K1=K+N11 
SUM»SUM+SK(I»K1)*U(K.J) 
C(I.J)=SUM 
CONTINUE 
DO 340  1=1.Nil 
DO 340  J=1,N11 
SUM=0. 
DO 330 K=1.N22 
K1=K+N11 
SUM=SUM+C(I.K)*SK(K1.J) 
S( I.J)=SK(I»J)-SUM 
DO 341 1 = 1,Nil 
WRITE (6.6020) I • (S(I .J ).J=l.Nil) 
CONTINUE 

H = TIME STEP SIZE OF INTEGRATION IN RUNGE-KUTTA METHOD. 
H = 0.0 OR BLANK FOR  STARTING NEXT STRUCTURE OR 

LAST CARD OF INPUT DATA DECK 
DT= TIME INTERVAL OF  PRINT OUT 
TEND=END OF TIME OF CALCULATION 

READ(5.5050)  H.DT.TEND 
IF(H.EQ. 0.)  GO TO 380 
READ (5.5040)  LM.LW.LT.LV.LS 
NGO=0 
IF(LM)  343.343.342 % 

NGO=NGO+l 
READ(5.5050)  (WM(I)»1=1.Nil) 

READ IN   VM(I)= MASSES (IF LM 
WG(I)=STATIC REACTION 
NT=TOTAL NUMBER OF CUSHIONED 
NV(I)=CUSHIONED COORD. 
V0=EQUIVALENT FREE FALL VELOCITY 
YJ0(I)=1.  AT ALL VERTICAL DISPLACEMENTS 
YJ0(I)=0. AT ROTATIONAL COORD. 
SQ(I)»CUSHIONING FORCES  (IF IS 

WRITE(6.5050) (WM(I)»1=1»Nil) 
IF(LW)  345.345.344 
NGO=NGO+l 

(WG(I).I=1.JC) 
(WG(I),I=1,JC) 
.346 

330 
340 

341 
339 
C READ IN 
C 
C 
C 
c 

GREATER THAN 
AT CUSHIONED 

COORD. 

0) 
COORD. (IF LW 

(IF LT .GT. 

(TF LV .GT. 0) 

.GT. 0) 
0) 

•GT. 0) 

READ( 5.5050) 
WR!TE(6.5050) 
IF(LT)  347.347 
NGO=NGO+l 
READ(5.5040) 
WRITE(6.5040) 

(NT. 
(NT. 

(NVtl).I=1.NT)) 
(NV(IJ.1=1.NT)) 

IF(LV) 
NGO=NGO+l 
READ(5,5050) 

349.349.348 

VO 

33 



WRITE(6.5050)      VO 
READ(   5.5060)      (YJO( I) » 1 = 1»JO 
DO   351     I*i.J£ 
YJ0(I)=V0*YJ0(I) 

351 YJ3(1)=YJ0(I) 
GO   TO   353 

349 DO   352     1*1.JC 
352 YJ0U)=YJ3(I) 
353 WRITE(6»5050)      (YJ0<I).I=1.JC) 

IF(LS)     355.355,354 
354 NGO=NGO+l 
350 READ (5.5050)  (SQ(I)♦I=1.JC) 

DO 359  1=1.JC 
359 SQ3(I»»SQ(I) 

GO TO 357 
355 DO 356  1=1.JC 
356 SQ(I)=SQ3(I) 
357 WRITE(6.*050)  (SQ(I).I=1♦JC) 

IF(NGO)  380,380.358 
358 CONTINUE 

DO 21  1 = 1.JC 
J = I*2 
YJ{J-1)=0. 

21    YJ(J)=YJ0(I) 
DO 370 1 = 1.Nil 
SUM=0. 
DO 360 J=1.N22 
J1=J+N11 

360 SUM=SUM+C(I.J)*SQ(Jl) 
GQA(I)=SQ(I»-SUM 

370   CONTINUE 
WRITE(6.5050)  (GQA(I),I=1»Nil) 
PRINT  385 

385   FORMAT( 1K1,//.4X ,*COORD*.10X.*DISP.*,15X.»VELOCITY*♦12X,*ACC.*) 
CALL  RKAMSB(3 ♦ 1.OE-7.1.0.1.OE-10.1.OE-8.0.0) 
ALPHA=0.0 
K5=2*JC 
DO 141  I=1»K5 

141   YJ0(I)=YJ(I) 
390   OMEGA=ALPHA+DT 

IF(OMEGA.GT.TEND)  GO TO 339 
150   CALL RKAMSB(l.ALPHA.OMEGA.H.SSE.YJ) 

PRINT U.OMEGA 
14 FORMAT120X.3H T=. F15*6) ] 

CALL DERFCN ( OMEGA.YJ,1,DF) j 
DO 15 1 = 2.N.2 
11=1/2 | 
12=1-1 ;   j 

15 WRITE(6.6001)  11 .YJ(I 2)»YJ(I).DF(1,I ) 
NI=NU + 1 - 
DO 410 I=NI.N 
SUM=0. I 
DO 400  J=1.N11 
J1=J*2-1 " i   j 

400   SUM=SUM+SK(I.J)*YJ(J1) 
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GQA(D=SQ( D-SUM 
410       CONTINUE 

DO  430   I=ltN22 
SUM=0. 
DO     420  J=1,N22 
J1=J+N11 

420       SUM=SUM+U<l.J)*GQA(Jl) 
I1=N11+I 
K1=I1*2-1 
K2=K1+1 
YJ(K1)=SUM 
YJ(K2>*(SU.4-YJ0<K1) )/DT 
DFU»I1) = (YJ(K2)-YJ0(K2))/DT 
WRITE(6.6001)        II.SUM     »YJ<K2>»DF<1,11) 

430 ONTINUE 
MQ=0 
DO 515 1 = 1.NT 
J=NV<I) 
K=J*2 

460   IF{YJ0(K}*YJ(K) )   470.515.i-15 
470   IF(SGU))   480.490.490 
480   SQ(J)=0.0 

GO TO 500 
490       SQU)=-WG(J) 
500   MQ=1 
515       CONTINUE 

IF(MQ   )   550.550.520 
520   DO 540 I=1»N11 

:    . SUM=0. 
DO  530  J=1,N22 
J1=J+N11 

I SUM*SUM+C(I»J)*SQ(J) 
5 30        CONTINUE 
540       GQAU )=SQ( D-SUM 
550       CONTINUE 

ALPHA=OMEGA 
GO TO 390 

380   CONTINUE 
NS=NS-1 
IF(NS)  26.26.1 

6001     FORMAT(5X.I4,4E20.5) 
26 STOP 

END 

•      1 
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SUBROUTINE RKAMSBtMODE.Al»A2.A3.A4.YJ) 
DIMENSION X(10).YUO» 100)»YJ(100)»DC10»100>.DF(10.100).XS<10). 

1   W(10).B(10»100).A(10).BP(10).BC(10).PHI(100)»YS<10♦100) 
DOUBLE   Y.PHI.YS 
COMMON  N.S(30.30).GQA(30).WM(30).WG(30) 
GO TO <2«2.1).MODE 

1 CONTINUE 
   COEFFICIENTS 

W( l)=W(4) = l./6. $ W12)=W(3)=l./3.     $     KK = 4 
A(2)=A(3)=.5  $  A<4)=1. 
B(2.D = B(3.2) = .5  $  B(3»1)=BI4.1>=B(4»2)=0.  $  BUi3l»l. 
IQ = 4   $   FCT = 19./270. 
BP(l)=-9./24. * BP(2)=37./24. * BP(3)=-59./24. $ BP(4)=55./24. 
BC(l)=l./24. $ BC(2)=-5./24. $ BC(3)=19./24. $ BC<4>=9./24. 
   TOLERA CES 

HMIN=A1 S   HMAX=A2 S EMIN=A3 $ EMAX=A4 $  ISKIP =1 
IF( YJdJ.EO.O.)   ISKIP -- 0 
RETURN 

2 CONTINUE 
   RKAMSUB ENTRY POINT 

CALL DERFCN(Al.YJ.l.DF) 
ALPHA = Al  $  OMEGA = A2  $  H = A3 
IF( M0DE.EQ.2 )   IQ - KK 
IQM1   =   IQ-1        $        I0P1   =   IO+l     %      ISTP=0     S     SIGN=1. 
IF{   H.LT.O.   ) SIGN   =   -1. 
X(1)   =   ALPHA 
DO   3   1=1,N 

3 VIliU   ■  YJIII 
4 MM   =   1        $        IFLG   «   0 
5 KCOUNT   =   0 
6M=MM        $        MM   =   M   +   1 

IF(   MM.GT.IQP).    )        MM   =   1 
X(MM)   =   X(M)   +   H 
TEST = OMEJA - X(MM>  $  TESU = TEST/0ME6A 
IF QUOTIENT OVERFLOW 7.8 

7 TEST1 = TEST 
8 IF( ABS(TEST1).LT.1.0E-10 >   GO TO 12 

IF( SIGN*TEST1 )   9.12.13 
9 TEST2 = OM£GA - X(M) 

IF( M0DE.EQ.2 )   GO TO 11 
IF( ISKIP.EQ.0.OR.SIGN*TEST2.LT.HMIN )   GO TO 99 
H = TEST2/IQ 
IF( SIGN*H.LT.HMIN )  GO TO 11 
M = M-l 
IF( M.EQ.O )   M=IQP1 i 
X(l) = X(M) 
DO 10 1=1.N i 

10 YlliI) * Y(MiI) 1 
GO TO 4                                                                    j 

11 H * TEST2   $   IFLG =0 
X(MM) = X(M> + H 

12 ISTP =1 
13 XJ = X(M) j 

DO 14 I«1,N j  j 
1* YJIII s YlH.I) 
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IF( MODE.EQ.l.AND.M.tQ.IQ.OR.IFLG.EQ.l )   GO TO 32 
C    RUNGE-KUTTA PROCEDURE 

DO 25 K=1»KK 
IF( K.EQ.l )   GO TO 22 
XJ = X(M) + H»A(K) 
DO 15 1 = 1,N 

15 PHI(I) a 0. 
KM] = K - 1 
DO 20 I=ltN 
DO 19 J»1.KM1 

19 PHKI) s PHI(I) + H*B(K»J)*D(J,I ) 
20 YJU ) = Y(M,I ) + PHK I) 
22 CALL DERFCN(XJ.YJtK,D) 

[ IF( IFLG.EQ.2.0R.K.NE.1 )   GO TO 25 
[               DO 23 1=1,N 

23 DF«M,I) = Dlltl I 
I            25 CONTINUE 

DO 27 1=1.N 
27 PHKI ) = 0. 

DO 30 1=1,N 
| DO 29 K=1»KK 
| 29 PHKI) = PHI(I) + H*W(K)*D(K.I) 

30 Y(MM,I) = Y(M.I ) + PHI(I ) 
IF( ISTP.EQ.l )   GO TO 100 
GO TO 6 

| -       c    ADAMS PREDICTOR-CORRECTOR PROCEDURE 
32 CALL DERFG^XJ»YJ,M,DF) 

DO 33 1=1,N 
I - 33 PHKI ) * 0. 
t DO 34 K=1,IQ 

J = K + KCOUNT 
IF( J.GT.IQP1 )   J = J - IQP1 

i DO 34 1=1,N 
34  PHKI)   =  PHKI)   +  H*BP(K)*DF(J,I) 

f DO   35   1=1,N 
! 35   YJ(I )   =   Y(M,I )   +  PHKI ) 

XJ = X(MM) 
1 CALL DERFCN(XJ,YJ,MM,DF) 
I DO 43 I=1»N 
I 43 PHK I )= 0. 
I  ' DO 44 K=1,IQ 

J = K + KCOUNT +1 
IF( J.GT.IQP1 )   J = J - IQP1 
DO 44 I=1,N 

44 PHKI) = PHKI) + H*BC(K)*DF(J,I ) 
DO 45 1=1,N 

45 Y(Mh,I) = Y(M,I) + PHI(I) 
C  SINGLE-STEP ERROR 

DLTMX = 0. 
I " DO 54 1=1,N 

DLT = ABS( Y(MM,I) - YJ(I) ) 
! IF( DLT.LE.DLTMX )   GO TO 54 
j • DLTMX = DLT   $   IDLT = I 
I 54 CONTINUE 

TEST = DLTMX/Y(MM,IDLT) 
! 
I 

i 
| 
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IF QUOTIENT OVERFLOW 55*56 
55 SSE = ABS« FCT*DLTMX )   $   GO TO 60 
56 SSE = ABS( FCT*TEST ) 
60 CONTINUE 
   ERROR ANALYSIS 

IF( ISMP.FQ.O )   GO TO 90 
IF( EMIN.LT.SSE.AND.SSE.LT.EMAX )   GO TO 90 
IF« S1GN*H.GT.HMIN.AND.SIGN*H.LT.HMAX )   65.89 

65 IF( SSE.GT.EMAX »   66*70 
66 H = H/2. 

IF( SIGN*H.LT.HMIN )  89.68 
68 IF« IFLG.EQ.O )    GO TO U 

M = M-l 
IF« M.EQ.O )   M = IQP1 
X« 1) = XlM) 
DO 69 1=1.N 

69 Yd,I ) = Y(M,I ) 
GO TO 4 

70 IF« ISTP.EO..I )   GO TO 100 
73 H = 2.*H 

IF« SIGN*« X(MM)+H-OMEGA ) )  77.75,75 
75 H = H/2.  $   GO TO 90 
77 IF« SIGN*H.GT.HMAX )  89.78 
78 IBK = IQ/2 + 1  $   L = 0 

DO 82 <=1,IBK 
J = IBK - K + 1   $   M = MM - L 
IF« M.LE.O )   79.80 

79 M = M + IQP1   S   L=0$   MM=M 
80 XS«J) = X(M) 

DO 81 1=1.N 
D(J.l) = DFIM.I ) 

81 Y S« J,I) - Y(M,I ) 
82 L = L + 2 

DO 85 K=1.IBK 
X(<) = X'.K) 
DO 85 1=1,N 
DF(K,I) = D(K,I) 

35 Y(K.I) = YS(K»I) 
MM = IBK   $   IFLG = 2   ?<   GO TO 5 

89 PRINT 511   $   GO TO 100 
90 IP« ISTP.EQ.l )   GO TO 100 

IFLG -•   1  $  KCOl'NT-KCOUNT+1 
IF« KCOUNT.EQ.IQP1 )   KCOUNT = 0 
GO TO 6 

99 MM = M 
100 CONTINUE 
   RKAMSUB EXIT POINT 

A2 = X(MM)  $  A3 = H  $  A4 = SSE 
DO 105 1=1»N 

105 YJ(I ) = Y«MM.I ) 
5 i 1 FORMAT« 1H1.5X.25H STEP SIZE OUT OF BOUNDS ) 
500 RETURN  $  END 
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SUBROUTINE  DERFCN  (XJ.YJ.M.DF) 
COMMON  N»S(30»30)»GQA(30)tWM(30)tWG(30) 
DIMENSION  DF(IO.IOO).YJUOO) 
Nl=N/2 
DO 10 U..N.2 

10    DF(M.I)*YJ(I+1) 
DO 30 I»2»N.2 
SUM=0.   $   11=1/2 
DO 20  J=1,N1 
J1=J*2-1 
J2=J1+1 

20    SUM=SUM+S(I1»J)*YJ(J1) 
30    DF(M,I)*(GQA<11)-SUM)/WMCI1) 

RETURN   $  END 

SUBROUTINE  MIV<SK.U.N11.NM) 
DIMENSION  A(30»30).U(30»30)»SK(30.30) 
DO 9001 I=1.NM 
I1=I+N11 
DO 9001 J=1.NM 
J1=J+N11 
A(I»J)=SK(I1»J1) 
U(I»J)=0. 
IF (I.EQ.J) U(I.J)=1.0 

9001  CONTINUE 
EPS=0.0000001 
DO 9C15 I--1.NM 
K*I 
IF (I-NM) 9021»9007»9021 

9021  IF (A(I.I)-EPS) 9005.9006.9007 
9005 IF(-AU.I)-EPS) 9006.9006.9007 
9006 K = K+1 

DO 9023 J=1.NM 
U(I.J)=U(I.J)+U<K.J) 

9023  A( I.J>=A(I.J)+A(K>J> 
GO TO 9021 

9007 DIV=A(I,I) 
DO 9009 J=1.NM 
U(I.J)=U(I»J)/DIV 

9009 A(I.J)=A(I»J)/DIV 
DO 9015 MM*1.NM 
DELT=A(MM»I) 
IF (ABS(DELT)-EPS) 9015.9015.9016 

9016  IF (MM-I) 9010.9015,9010 
9010 DO 9011 J=1,NM 

U(MM,J < *U(MM,J)-U(I,J >»DELT 
9 011 A(MM,J)=H(MM»J)-A(I.J)*DELT 

9015  CONTINUE 
RETURN  $  END 

39 



Security 
ÜMCLiSSIEIED 
nty Classification 

DOCUMENT CONTROL DATA -R&D 
(Sacvtlty claaalllvallon of till; body of abatmcl and Indoulnj annotation antat ka antatad whan tha oraratt rapott la ctMttM) 

I. ORIBINATINB ACTIVITY rC«porat. author; 

aaiac%tf Texas at Austin 
UNCLASSIFIED 

la. tnour 

». «WO«T TITLE 

The Effect of Airdrop Impact on Complex Structures 

4. DESCRIPTIVE HOTtt (Typa ot tapott and htclutlr» dataa) 

Final Report 
•■ AUTHOR(S) (Fltat MM, «low* Initial, laat MM) 

Song Fong Jan 
E. A. Ripperger 

•■ MPOHT OATI 

 December 1969 
7«.  TOTAL NO. OP PAOES 

39 
76. NO. OF REPS 

3 
M. CONTRACT OR SRANT NO. 

DAAG 17-67-C-018Q 
B.  PROJECT NO. 

1M121U01D195 

M. ORIBINATOR'S REPORT NUMBER!» 

•». OTHER REPORT NOW (Any Othat 
Oil» import) 

number, tttat may ba aaal0tad 

70-55-AD 
«0. DISTRIBUTION STATEMENT 

This document has been approved for public release and salej Its 
distribution is unlimited. 

II. SUPPLEMENTARY NOTES 

A. 

12. «PONSORINB MILITARY ACTIVITY 

US Army Natick Laboratories 
Natick, Massachusetts 01760 

IS. ABSTRAOT 

; The accelerations and displacements in a complex structure subjected to 
an impact loading are computed by treating the structure as a lumped parameter 
system. A mathematical model of the system consists basically of discrete 
masses linked by weightless, elastic beams with the appropriate stiffnesses, 
areas, and moment of inertia properties. By specifying a proper set of 
independent coorJinates through which the motion of these lumped masses are 
uniquely described, and by writing equations of motion in terms of these 
coordinates, a set of equations is derived which represents the motion of 
any part of the model during impact. Using the Runge-Kutta numerical method, 
and a digital computer, these equations are solved. 

A physical model of "-.he lumped parameter system was built and cusioned 
with paper honeycomb. Dj lacements and accelerations at some points in this 
model were measured and compared with computed results. Agreement is satlsfactor; 

o 
s 

I*«. Ft     *OflM     <i"J4      StULACII DO renn Uli, I J<N M. «MICH IB 
UNCLASSIFIEIJ 

BBCtirity Classification 



UNCLASSIFIED 
Security Classification 

KKV   WOMDt 
LINK   * 

Parameters 

Impact 

Airdrop operations 

Structures 

Models 

8 

6 

6 

7 

7 

UNCLASSIFIED 

Security Classification 


