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December 1969 under U.S, Army Natick Laboratories Contract No,
DAAG-17-67-C-0189 for the Department of the Army Project No.
1M121401 D195 entitled "Exploratory Development of Airdrop Systems"
Task 13 - Impact Phenomena, The program is a part of continuing
investigation directed toward obtaining improved energy dissipater
materials for airdrop landing shock mitigation and a beétter under-

standing of the response of alrdroppable materiel to airdrop im-
pact phenomena, '
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ABSTRACT

The accelerations and displacements in a complex structure
subjected to an lmpast loading are computed by treating the
structure as a lumped parameter system. A mathematical model of
the system consists basically of discrete masses linked by welght-
less, elastic beams with the appropriate stiffnesses, areas, and
moment-of-inertlia properties. By specifying a proper set of in-
dependent coordinates through which the motion of these lumped
masses are uniquely described, and by writing equations of motion
in terms of these ccordinates, a set of equations 1s derived
which represcnts the motion of any part of the model during im-
pact. Using the Runge-Kutta numerical method, and a digital com-
puter, vhese equations are solved.

A physical model of the lumped parameter system was built
and cushioned with paper honeycomb. Displacements and accelera-
tions at some points in this model were measured and compared
with computed results. Agreement 1s satisfactory.
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IMPACT ON COMPLEX STRUCTURES

1. Introduction

This study has two objectives; (1) to learn how to
realistically model a vehicle using lumped masses and
springs and to felate such computed quantities as dis-
placement and accelerations to corresponding quantities
in the prototype; and (2) to prepare a computer code for
doing the necessary computations, and which is sufficiently
flexible to serve as a design tool.

The report consists of eight sections as follows:

Lumped mass model
Cushioning system design
Analytical study
Numerical solution
Digital computer code
Experimental work
Discussion.

Conclusion

2. Lumped Mass Model

A complex structural body can be represented by a system of
discrete lumped masses connected by massless beams with appropri-
ate flexural stiffnesses. In alrdrop practice the bending mo-
ments and stresses in the structure are minimized by dividing the
structure conceptually into free bodies, cushioning each part in-
dependently to provide zero rigid body rotation and equal rigid
body translatory avceleration for each part. To accomplish this,
the cushioning forces must be distributed over the structure in
proportion to the welght.

The model shown in Figs. 1 and 2 may be regarded as a highly
simplified representation of the M37 truck. The mass distribution
of the truck 1s roughly approximated, and the various elastic beam
elements simulating the structural members are assumed to have
equal stiffness properties. No damping has been considered. Mass
1 can be regarded as the motor and mass 2 the load in the vehlcle.
Masses 3 and 4 hanging on springs below the main masses are like
the wheels. Two small masses, 5 and 6, are attached in cantilever
fashion to the main masses. These two do not represent anything
in particular. They are included to provide information on how

-much such masses influence the motion of the main mass, and how

the accelerations of the small masses are modified by their loca-
tions within the structure. Mass 7 (Fig. 2), which is.3% cof the
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total model mass, has also been included to show how a nall
mass not attached directly to another mass may influence the
motion of the main masses.

The mathematical model that corresponds to the physical
model 1s shown in Fig, 3, If mass 7 is connected directly
to the beam its very small mass in comparison with the
other masses results in a large acceleration (a = F/m) which
causes computational difficulties, To avoid these diffi-
culties, a small beam element is used to connect thlis mass
to the large bean,

-

3. Cushloning System Design

a. Torces

The overall magnitudes of the cushioning forces applied
to the model as shown in Fig. 3 are determined from the
acceleration level desired during impact. For a stated
acceleration level of G, measured in units of acceleration
of gravity, the total force appliea is

IF = Fy + Fg+ Fo + Fp + F

=(wl+w + W +wu) (G + 1)

2 3

To reduce bending moments in the long structural
spans between masses, a vehicle that is to be cushioned
is subdivided into free bodies, and force and moment
balances are carried out for each section, Each free body
has to be a statically determinate structure and no force
“r moment 1s transferred to this free body through the
point of cut., If a cushioned point belongs to several
free bodies then the cushloning force at that point will
be the sum of cushioning forces of all free bodies at that
point, For this analysis, the model has been divided into
three sections, Free bodles of these three sections are
shown in Fig, 4, The cushioning in the idealized mathe-
matical model provides the forces shown.

C D E

b. Cushioning Material Characteristics

The material composing the cushioning system is
idealized by assuming that it crushes at a constant strength
and that it has no resilience. This is an idealization of
the characteristics of paper honevcomb. The computer pro-

. gram at the present time includes only a constant crushing
force, Time varying forces will be considered later., To
obtaln data applicable to the cushions used in the labora-
tory model nine 3 inech x 3 inch x 3 inch paper honeycomb
pads were tested with a drop height of 38 inches and a mass
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welght of 220 pounds. A typical stress-strain curveais
shown in Fig. 5. The average strength 1s 4000 1b/ft°,
This value, due to the small size of the pad, 1s much
smaller than the normal value for paper honeycomb (6000
. psf). Based on the assumed constant crushing force of

the paper honeycomb the design of the cushioning system
' is as follows: ) :

s

STRESS

12,510 Psf

| 5

) w l ;
STRAIN < !

70 %

L B

100 %

FIG. 5 TYPICAL STRESS - STRAIN RECORD FOR 3in,
X 3in. X 3in. PAPER HONEYCOMB SAMPLES

¢. Design Procedure

First select a design acceleratlon leyel G and use
Newton's law to compute cushioning force. .
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where Fr = the resultant force applied to the mass

M= I = Mass

W = welght of mass

a = acceleratlion of the center of gravity of the mass
g = 32.2 ft/sec? |
Equation (1) can be rewritten as

R R — ——— R —— (2)

where G = 2. a dimensionless number which indicates the ac-
celeration in "g's,"

The relation between effective cushioning area A and the as-
sumed acceleration level G, and the crushing strength S
is derived as follows, referring to Fig. 6.

L l LOAD=W

CUSHIONING FORCE F = SA

FIG. 6 IDEALIZED CUSHIONING SYSTEM

F-W=w2 =wae
g
or
F=3SA=WG+ 1)

and

A= S-(G + 1) ~ecvmmccaaa O -=(3)

Computation of the required thickness z of the cushion
is as follows.

z =¥

P, O !
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where V = required volunme,

The volume will depend on the amount of energy to be dlssi-
pated, which will, in turn, depend on the impact velocity
or the drop height h,

The potential energy U of the package will be

U= W(h + €2) =mmmmm e e ERR——)
where
¢ = design strain,
Since the stress-strain curve for the cushion material

is assumed to be approximated by a rectangle, the amount
of energy per unit volume which the pad will absorb is

The required volume *s therefore
v g = WShe+ £2)
n H
and the necessary thickness 1is g

Z = g'ﬁ-----'- ---------------------- SEES—_———— (6) !

The area and thickness of the required cushion stack
thus can be obtained from Equations (3) and (6). As
stated previously, the cushioning forces have been assumed
constant so long as the veloclty at the cushioned points
remains negative, indicating downward, hence compressing
movement., However, as soon as the velocity becomes zero
or changes sign this cushion force will vanish,

I, Analysis of the Model

a., Eqguations of Motion

The general form of the gquations of motion, for the i
model in matrix notation, is™:

(M), (4} + [K], {q} = {Q} ==-=---mome- —————— (7)

where [M]_ represents the generalized mass matrix, [K]q ]
0 representg the generalized stiffness matrix, and {Q} j

represents the generalized force matrix, The vector {q}




represents the independent generalized coordinate system
which 1s sufficient to uniquely describe the positions of,
and the motion of the entire model, while {§} is the vector
describing the acceleration of the model along these coor-

dinates, The generalized coordinates for this model are
shown in Fig. 3.

b, Element Stiffness

The stiffness matrix for the individual elements is
determined from elementary beam deflection theory and the
equations representing the elastic force-~deflection proper-
ties of the elements are combined in the following matrix
expression,

{F} = [K] {u}
where

{F} = Force vector

[K] = Stiffness matrix

{u} = Displacement vector

The coordinates of a beam element énd a spring
element are shown in Fig. 7.

The stiffness matrix for the spring element is

k -k
[K]spring =
-k k
Uy us
“z(‘ El !) i K vz
- ] sl o VAVAV VAV -0
Ve
et
(a) BEAM ELEMENT {b) SPRING ELEMENT

FIG. 7 ELEMENT COORDINATES
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. " Kas  Kae Kas K3
3 » Kes Kee  Nes Keg
w( ? L1 =1 Jae [, - W2  Kse Kgs  Kge

The element 3tiffness matrix for the beam is

12 -6L =12 -6L

- 6L 4.2 6L 21l

12 6L 12 6L

BT 2 2

(K] beam ~ B - 6L 2L 6L {lL
S pa—

The generalized stiffness matrix (K], 6 of the struc-
ture can be generated by synthesis from 811 eiements of
the stiffness matrix. For example, consider the simple
structure in Fig. 8 and the structural element in Fig. 9.
The stiffness matrix for the element is [K]1

5,C 1‘ m ,\“ n) gq.

k.

FIG.8 SIMPLE STRUCTURE MODEL

q qs ki iz kg ks
R
L Ke2 kes Kes

FIG.9 ELEMENT NO. |

where k1 denotes the force at coordinate qi when a unit
load 1s'ipplied at coordinate q,. Elements™2 and 3 and
the corresponding stiffness matéices are shown in Fig., 10
and 11,

Kes K'se Kes Kes

FIG. 10 ELEMENT NO. 2
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(K1, =

o—»

FIG.11 ELEMENT NO. 3

Then the generalized stiffness matrix is:

k1 Ko ky 3 kyy 0 0 0
krp kop ko3 kpy 0 0 O
" " ’ t 1 ] n

kgy k3p (kg3 + kig + k3) (kgy + k3y) kig kig k3g
kyp Ky (kyg + kj3)  (kyy + kfy) kj5 kjg O
0 0 1 1 1 1

K53 Ksy  Kig kgg O
0 0 ké3 kéu kéS kéG 0

" ”
‘0 0 k73 0 0 0 k77
In most situations some coordinates are required to
define displacements for which there are no associated
masses, Obviously, the computational acceleration a = F/m

will become infinite if m vanishes., To avoid thls unreason-
able result, the number of generallzed coordinates must be
reduced to the same number as  the number of masses 1n the
structure,

First it 1s necessary to distingulsh between those

displacements in {q} assoclated with the masses and those
assoclated with zero masses., Thus,

{q} = ) {q}*
{{q}“}

where

{q}* = displacements for which masses [M]* exist

{Q}o = displacements for which masses are zero

12




The equations of motion, Equation (7), are now rewritten
using the above notation.

(e i o {ng;},, (K1) LK), {.{_gzg}, {.{.gz*}__(g)
o 1o {q} [K1,, 1 [Kl,, {q} {Q}
This equation is equivalent to the two following equations.
[MI#(4}* + (K] (a)* + [KD pa)° = (Q}% —mmmmmmmem (9)
(Kl (ar* + [K1py0a)® = (@)% —mmmmemee (10)
The second of these equations 1s solved for {q}O
tar” = (K155 (G@° - [K1, (q)¥)--m2mm-(11)
Substituting {q}O into Equation (9) gives the reduced form
[MI*{gq}* + [K] {qQ}* = {F} ——---—--mcmmmmmmmme e (12)
where | .
[K], = [K]j, = [K]),[K155[K] ) mmmmmmmmmmmmmmmmmen (13)
(F} = {Q¥¥*- [K]},[K155{Q) 0 mmmmm oo (14)

Now Equation (12) can be treated to get the displacements
{q}¥* of the masses. The displacements {q}¥ are then sub-
stituted into Equation (11) to obtain the displacements {q}
for which the masses are zero.

B Numerical Solution

a. Equatlons
The equations of motion are:
[MI#{4}¥ + [K]_{q}* = {F} =mmmmmmcemmmmmmemmeeeee (15)

This is a system of second order differential equations.
These equations may be replaced by a system of first order
equations. As a simple example, the second order equation

2
Q_% - f(t,y,gl )
dt dt

becomes the system

13
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dt

avls f(t,y,v)
dt

The two functions y(t) and v(t) are now computed simul-
taneously., Initial conditions such as y' t =t = Yo

d

L = v, become y t=t. =Yg vl t =t

dt t = 0 0
to

the generalized initial value problem 1s established,

= Vs so that

After the equations of motion are reduced to first
order differential equations, the Runge-Kutta procedure
can be used to solve them. ghe Runge-Kutta method is
briefly discussed as follows”:

Let the equations be

v! = fl(t’ygv); v! = fz(taysv)

where
y' = Ql’ y = y(t)’ v = v(t)’ v! = gl
dt dt
The formulas
k1 = hfl(tn,yn,vn)
L1 N hf2(tn’yn’vn)
ky = hf (6, + s Vg + gy v b 5Ly)
- ! 1 1 1
L2 hfz(tn + ?h’ Yn + ?kl’ vn + l)
k3 N hfl(tn + %h’ In * %RZ’ Vn 't . 2)
. 1 ik 1,
Ly = hfy(t, + zh, v, + 3k, vy + 505)
k) = hfl(tn + h, y ¢ k3, v, + L3)
Lu = hfz(tn + h, Vo t k3, v, + L3)
Yo 41 =yt %(k1 + 2k, + 2kg + ky)
& 1
Vo4 Vi + E(Ll + 2L2 + 2L3 + Lu)

where h = step size

14
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may be shown to duplicate the Taylor series for both func-
tions up through terms of order four. For more than two si-
multaneous equations, say n, the extension of the Runge-
Kutta method parallels the above, with n sets of formulas
required instead of two,

b, Digiltal Computer Code

A computer program code has been developed to solve
the drop impact problem, This program is listed in the
appendix. Only the lumped masses, cushioning forces,
initial displacement and velocity and member proper-
ties such as flexural rigidity EI, spring constant k
and member length L are required for input data. The
computer program automatically generates the stiffness
matrix of the structure and then solves the equations of
motion by the Runge-Kuita method., The displacement, velo-
city and accelieratiocn at any coordinate at any time may
be printed out, The printed out displacement 1s relative
to the position where impact begins. From these displace-
ments the relative displacement of any two points can be
computed. The computer code 1s sufficiently flexible to
serve as a design tool,

6. Experimental Program

a, Model

To evaluate the computational procedure a small model
has been prepared and used for collecting experimental data,
This model which is shown in Fig. 1 was designed so it would
be relatively simple to represent with a lumped parameter
system and at the same time to have at least 10 degrees of
freedom, The schematic drawing of the model shown in Fig, 2
suggests how it should be represented by lumped parameters
and Fig. 3 shows the coordinates and the degrees of freedom.
As indicated previously the model can be thought of as
representing an M37 truck, although it was not designed
specifically fo. that purpose., Its primary purpose is to
provide a specific and convenient structure for use in
evaluating the procedure developed and previously described,
for computing structural response to impulsive loading.

The cushioning system for this model was designed
to provide zero bending moment at the center of mass of
the model. All cushioning forces are directly applied
to the masses except forces Fy and F, which are applieq -
to the structure tied to mass 2. Th?s loading 1s similar

15




to that applled to the M37 truck, since the dead load in

the bed of the truck is not usually cushioned directly,

but 1s cushioned through the structural members that support
it. Small masses 5 and 6 are attached to the main masses

l and 2 respectively and are cushioned, Mass 7 1is optional
and not cushioned,

Only vertical motion is considered., This is an over-
simplification of the real situation because non-=vertical
motion is always possible due to wind drift and system
oscillation, I[owever, since the vertical motion is the most
important factor in airdrop cushioning, it is essential that
it be analyzed separately, and well understood before at-
tempting a solution of the more general problem, Lateral
and longitudinal motions of the model are minimized by
the two vertical steel restraining rods, which can be
seen in Fig, 1, Stabllity of the model 1s also improved
by using clusters of 3 parallel springs instead of one
helical spring for the support of masses 3 and 4,

L. Measurements

Accelerations are measured with fluld damped resistance
type accelerometers mounted on masses 1, 2, and 3., Dis-
placements are measured at supports A, C, and D.

To measure the deflections a special device* 1s used.

This device which is shown in Fig. 12 consists of two U-shaped

thin steel springs with strain gages mounted as shown,

The legs of the U-shaped pleces can be deflected toward
each other a considerable amount without the development
of appreclable force or stress, and the strain gage output
is proportional to the deflection. Other better known
transducer types could not be used because even the small

lateral motion that sometimes occurs might damage the transducer.

c. Parameter Values

Numerical values for the model parameters are

M1 = 20 1b

M2 = 30 1b

M3 =My = 10 1b
M5 = M6 = 0,6 1b
M7 = 2,3 1b

¥ Designed and developed by Dr. C. H. Yew, The University
of Texas at Austin.
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600 1b/in.
6

29 x 10~ psi (steel beam)

4

0.3393 1in,
= 247,0 1b

Fo = 183.5 1b

FE = 120 1b

. = 2,0 1b-in.-sec®

= O W >

K
E
I
F
F
F
J
J

, = 2.0 1b-in.-sec”
Paper honeycomb bad sizes are

A=3x 2% x 3 inches
B

C = 2% X Eg X 3 inches
D =E

2 X 2% X 3 inches

The pad sizes are selected to provide an acceleration
of 12g, assuming a crushing strength of 4,000 psf for
the honeycomb, This c¢rushing strength was determined
experimentally by making dynamlic loading tests on samples
having approximately the dimensions of these pads.,

7. Discussion of Results

The most recent measured and computed results are shown
in Figs. 13 through 20. In comparing these results it should
be noted that there 1s a difference of some significance
between the cushinmning forces in the mathematical model
and in the laboratory model. For the former force is as-
sumed constant from the moment of impact until it vanishes
at the instant the veloclity of the cushioned mass vanishes,
and from that time on it remains at zero. On the other hand
the cushioning force in the laboratory model has a modest
initial spike and then decreases constantly until the velo-
city of the cushioned mass vanishes, At that time, which
incidentally does not coincide with the time the corres-
ponding velocity in the mathematical model vanishes, the
force does not drop immediately to zero because the cushion
has some resiliency. The differences in the crushing forces
are reflected by differences in the accelerations shown in

18
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FIG.13 MEASURED AND COMPUTED VALUES OF q,,q5 AND g,
WITHOUT THE 3% (2.31b.) UNCUSHIONED MASS AT g,

(DROP HEIGHT 18 INCHES)
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(a) COORDINATE g,

COMPUTATION
(CONSTANT CRUSHING FORCE :@ 2470 b)

FIG. 20 MEASURED AND COMPUTED VALUES OF q, AND q,
WITHOUT 2.3 Ib (3%) UNCUSHIONED MASS AT g,

( DROP HEIGHT 18 INCHES)
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Figs, 15 and 20, The computed accelerations for M,, shown
in Fig., 15, are almost identical in form to the aséumed
cushioning force, while the measured accelerations closely
resemble the general form of the crushing force-time-re-
lation for paper honeycomb usually observed, The rather

high frequency oscillations which appear on the measure?
acceleration record are also somewhat typilcal of the oscil-
lations seen on dynamic stress-strain curves [lor paper
honeycomb, The source of these oscillations can not always
be pinpointed. In some cases they are believed to typify

the way honeycomb actually crushes, in others they are
believed to represent vibration of some part of the testing
system., In these records the frequency is much too high

to be the uncoupled frequency of M, and its supporting spring,
and too low to be associated with the elastic body vibra-

tion of the mass, A Consequently the oscillations are attri-

 buted to the crushing characteristics of the honeycomb

cushions,

The oscillations which appear in the displacement,
and both the measured and computed accelerations of M all
have very nearly the same frequency, approximately 206
Hertz, This is also the uncoupled frequency of Ml' It 1is
somewhat surprising to see oscillations of a mass as large
as Ml at 200 Hertz. If the peak acceleratlons associated
with“the oscillations of the mass are computed assuming
a steady state harmonic oscillation they are found to be
of the order of 2000g whereas the computed accelerations do
not exceed peak values of about 2g, and the measured values
are of the order of 6g, Thus the oscillations on the dis-
placement record are not believed to be connected with ac-
tual motion of the mass, They are believed to be a result
of vibration of the displacement gage. The fact that they
occur at nearly the same frequency as the oscillations in
the acceleration records is probably Just coincidence. If
the oscillations are ignored, and the actual curve replaced
by a smoothed curve in each of the 6 records shown in Figs,
13 and 14 the measured and computed displacements are seen
to be in quite good agreement considering the differences
in the crushing forces discussed above, Differences between
the measured and computed deflections would undoubtedly be
much greater if it were not for the relative insensitivity
of displacement to the form of the acceleration curve,

The oscillations which appear in the computed acceleration
record for M (H3) shown in Fig. 20 have a frequency which
is nearly eqaal to the uncoupled frequency of M,. No mass
in the system will vibrate at its uncoupled freauency since
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there is coupling between all masses in the system., Con-~
sequently the observed frequency should not be expected
to agree with the uncoupled frequency. The frequency of
the oscillations in the measured accelervation is almost
twice the frequency seen in the computed accelerations.
No logical) explanation for this discrepancy can be of=-
fered at this time,

Although the computed and measured values of the dis-
Placements and accelerations do no* agree precisely they
are close enough, it 1s believed, to indicate that with the
same crushing force in the two models the results could
be brought inte close agreement, This means that the con-
tinuous laboratory system can be replaced for computations
by a lumped parameter system which will adequately repre-
sent the essential features of the motion of the major
parts of the laboratory model. Hence, a vehicle could be
represented in the same way,

It may be further noted that the addition of the
small mass M., does not significantly affect the displace-
ments and acgelerations of the other masses. This means
that only the major masses 1n a physical system need to
be represented in the lumped parameter model.

8. Ccnclusions

Although the comparisons between computed and experi-
mental results are not exhaustive, and there is a signi-
ficant difference in crushing forces in the two models, the
following conclusions are believed to be justified.

a. Displaceme .%“s, velocities, and accelerations of
the principal parts of a laboratory model can be satls-
factorily predicted using a lumped parameter matnhematical
model and a numerical computation procedure,

b. If predictions can be made for a laboratory model,
then predictions of comparable accuracy are possible for
actual prototype vehicles,

¢. The computed program is simple enough, ard the com-
putational “ime required is short enough to make the pro-
gram a practical tool for design purposes.

d. The insignificant effect which the small masses
have on the motions of the larger masses in the system 1in~
dicates that models of prototype vehicles can be quite
simple and still give an accurate indication of the move=-
ments of the different parts during an impact,
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e. Procedures for establishing parameter values such
as mass, and stiffness, for lumped parameter models to re-
present actual vehicles are not indicated in the results of
this study. These procedures remain to be developed.

9, TRecommendations for Purther Studies

a, Although the results obtained for the one dimen-
Sional model were not entirely conclusive, further work
should be concentrated on a two dimensional lumped mass
model, For the theoretical analysis of such a model it
is necessary only to modify the stiffness matrix as a
grid structure., A grid structure would not only be a
more reallistic representation of a real vehicle body, it
Wwould also make the laboratory model more stable., This
would improve the accuracy of measurements,

b, The damping factor which was not considered in
this report should be investigated in further studies,
This can be done rather easily mathematically but the
question of how to introduce controlled damping into
the laboratory model requires some study.

¢. An actual vehlicle for which measurement data
are available, or can be obtained, should be modeled
so the procedure can be tested in a real 1life situation,

d, The significance of the parameters which are

being determined should be carefully reviewed in the
context of vehicle damage.
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START

SET UP STRUCTURAL CONFIGURATION

PROGRAM ASSUME A SET OF CoO-
ORDINATES ACCORDING TO THE SE-
QUENCE NUMBER OF  JOINT

INPUT MEMBER PROPERTIES

GENERATE STRUCTURAL STIFFNESS MATRIX

REARRANGE ST!FFNESS MATRIX FOR
NEW COORD. SEQUENCE IF NECESSARY

;

REDUCE STIFFNESS MATRIX TO ONLY
INVOL'/ING COORD. WITH MASSES

INPUT MASSES, CUSHION FORCES AND
INITIAL  CONDITIONS

COMPUTED DISPLACEMENT, VELOCITY AND
ACCELERATION BY RUNGE - KUTTA METHOD

LAST LOADING CONDITION FOR THIS
STRUCTURE 1?7

\—
- "No

YES -

N\

LASY STRUCTURE ¢?

o

Fi1G.2|

YES

STOP
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C -

NUMERICAL SOLUTION OF A LUMPED PARAMETER FOR AIRDRGPPED
VEHICLES BY USING RUNGE-KUTTA METHOD.

CDC 6600 + FORTRAN !V , STORAGE REQUIRED 30000 WORDS
DIMENSION SK(30s30) sNOD(30)sU(30530)sC(320+30)sNV(30)s SQ(30)
DIMENSION DF(105200)9YJ(100) »YJO(100)

DIMENSION YJ3(30)s SQ3{30)

COMMON Ny»S(30930)sGQA(30)sWM(30)sWG(30)
FORMAT(3110,F20.2)

FORMAT(211092F20¢4)

FORMAT(1615)

FORMAT(8F10e3)

FORMAT(16F5.1)

FORMAT(1H1 9% BEAM MBR=%,1552Xy#SPRING NOe=% 1552Xs*TOTAL JNT N{le=¥*

1 sI592X)%E=%4F1242)
FORMAT(14312F11e0/(4X912F11,0))
INITIALLY THE PROGRAM ASSIGNS A SET OF COORDe ACCORDING TO THE
ORDER OF JOINT NUMBER « IT BECOMESs FOR EXAMPLE, Q(11) AND Q(12)
OR THE VERTICAL DISPLACEMENT AND THE ROTATION AT JOINT NUMBER 6.
READ IN NS =NOe. OF STRUCTURES
N11=NO. OF COORDe WITH ASSOCIATED MASSES
N22=NOe OF COORDe WITHOUT ASSOCIATED MASSES
NCH= 1 4 IF THE ORDER OF COORDe WILL BE REARRANGED
NCH= O 4 NO REARRANGEMENT IN COORDINATE ORDER.
READ( 5,5040) NS
READ(5+5040) N11,N22sNCH
JC=N11+N22
READ IN MBR= NOe. OF BEAM MEMBERS
NP = NO. OF SPRINGS
JNT= TOTAL JOINT MUMBER
E = MODULUS OF ELASTICITY
READ(595010) MBRINPsJINTHE
WRITE (6+6010) MBRsNP s JNTHE
G=386404 '
N=2%N11
MT=MBR+NP
JM=UNT-NP
JC=2%#JINT-NP $ UNT1=JC-1
DO 5 I=1,JC
DO 5 J=1sJC
SK(I’J)=00
DO 100 I=1MT
READ IN MEMBER PROPERTIES,
JOINT NUMBERS CAN BE ASSIGNED ARBITRARILY IN THE ORDER BUT
SHOULD BE CONTINUOUS FROM 1 THROUGH THE LLAST JOINT NUMBER,
NO NUMBER IN THIS INTERVAL CAN BE OMITTEDe ALL SPRING JOINTS
NOT ATTACHED TO BEAMS SHOULD ALSO BE NUMBERED FOLLOWING THE
BEAM JOINT NUMBERS.
NJ1ly, NJ2= JOINT NUMBERS AT ELEMENT ENDS
Al= MOMENT OF INERTIA FOR BEAM MEMBERy OR SPRING CONSTANT
SL= LENGTH OF BEAM SEGMENT
SL= 0.0 FOR SPRING
READ(5+5020) NJ1yNJ2,AIsSL
WRITE (6+5020) NJ1sNJ2sATsSL .
IF(SL) 20520510
GENERATE STIFFNESS MATRIX OF STRUCTURE
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10

11

12
16

20
30

2
&

40
50

55
60

100

C ===
c ——=
c -
210

220

230
240

251

252
260
2890

FA=E*A]/SL%%3

S1=12e.%*FA $ S2=64%SLEFA $ S3Az2.HGLASLEFA 3 54=2,%#S3
IF(NJ1-NJ2) 11911512

N1=2%NJ1-1 $ N3=2#NJ2-1

GO TO 16

N1=2#NJ2-1 $ N3=2%#NJ1-1

N2=N1+i $ N4=N3+] '
SK(N1s¢N1)=SK(N1sN1)+S1 $ SK(N1:N2)=SK{(N1:N2)~-S2
SK(N1sN31=3K(N1sN3)=~S1

SKINLsNGI=SK(N1sN4)=52 % SKINZsN2)=SK(N2sN2)+54
SKIN2eN3)=SK({N2sN3)+52

SKIN2sN4)=SK(N2sNG4)I+S3

SK{N3sN3)=SK(N3sNR)+S1 $ SKIN3sNG)I=SK{N3,N4)+52
SKINGyN4)=SK(NG+sNG4)+S4

GO T0 100

IF(NJ1-UM) 30+30,32

N1=NJ1#2=-1

GO TO 40

N1=NJ1+UM

IF(NJ2-UM) 50+50,55

N2=NJ2#2-1

GO TO 60

N2=NJ2+UM

CONTINUE .
SKIN1sN1)=SK{NL1N1)+AT 5 SK(N2sN1)=SK(N2sN1)-AI
SK(N2sN2)=SK{N2sN2)+AI

CONTINUE

Nl=JC-1

IF(NCH) 280,+280s210

READ IN NOD(I)=NEW ORDER OF COORD.

ALL INPUT AND OUTPUT FROM HERE ON ARE REFERRED TC THIS

NEW COORDINATES SYSTEM
READ(5+5040)
WRITE(6+5040)
1=JC

J=NOD ()
SK{Isl)=SKlJsJ)

I=1-1

IF(I) 23052309220
DO 240 [=1+JC
SKUIsI)=SK(Is1)

DO 260 J=1sN1

Jl=J+1

JP=NOD(J)

DO 260 1=JlsJC
IP=NODI(I)

IF(IP=JP) 25192519252
SK(IsJ)=SK(IPsJP)

GO 10O 260
SK(1sJ)=SK(JPsIP)
CONTINUE
CONTINVE
DO 270
I1=J+1
DO 270 I=11sJC

J=1eN1

(NOD(I)sI=1sJO)
(NOD!1)1,I=1,JC)
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270

140

310

320

342

C--- READ 1IN WHA(I)= MASSES (IF LM GREATER THAN 0) 1

wNANNONHANN

344
34>
346
347

348

rriee o e o S 81 EETTER

SK(Je1)aSK{IsJ)
CONTINUE
DO 140 1I=1sJC £
WRITE(656020)  I5(SK(IsJ)eJd=14JC) 5
CALL MIV{SKsUsN11sN22) :
DO 320 I=1sN11
DO 320 J=1.N22
SUM=0.
DO 310 K=1sN22
K1=K+N11
SUMTSUM+SKIT K1) #U(KeJ)
C(leJ)=SUM
CONTINUE
DO 340 [I=1.N11
DO 340 J=1,N11
SUM=0,
DO 330 K=1sN22
K1=K+N11
SUM=SUM+C( T+ K)#SK(K1sJ)
S(IeJ)=SK(IsJ)=SUM ) :
DO 341 [=1yN11
WRITE (6+6020) I9{S(19J)sJ=1sN11)
CONTINUE
READ IN H = TIME STEP SIZE QF INTEGRATION IN RUNGE-KUTTA METHOD.
H = 0.0 OR BLANK FOR STARTING NEXT STRUCTURE.OR
LAST CARD OF INPUT DATA DECK
DT= TIME INTERVAL OF PRINT OUT
TEND=END OF TIME OF CALCULATION
READ(595050) HsDTsTEND
IF(HeEQe 0Oe) GO TO 380
READ (595040) LMeLWsLToLVHLS

NGO=0 "
IF(LM) 343,343,342 ° ,
NGO=NGO+1 ¢

READ(595050) (WM(I)sI=1sN11) 4

WG(I)=STATIC REACTION AT CUSHIONED COORDe (IF LW «GTe O}
NT=TOTAL NUMBER OF CUSHIONED COORDe (IF LT «GTe 0)
NV(1)=CUSHIONED COORD.

VO=EQUIVALENT FREE FALL VELOCITY ("F LV «GTe 0)

YJO(I)=1le AT ALL VERTICAL DISPLACEMENTS

YJO(I1)=0e AT ROTATIONAL COORDe

SQ(I)=CUSHIONING FORCES (IF LS «GTe 0)
WRITE(6+5050) (WM(I)sI=1sN11)
IF(LW) 34553459344 3
NGO=NGO+1 i
READ( 5+5050) (WG(I)es1=1,JC) i
WRITE(6+5050) (WG(I)sI=1,4JC) ' :
IF(LT) 3479347,346 i

NGO=NGO+1 i
READ(555040)  (NTs (NVII)sI=1sNT)) !
WRITE(655040) (NT» (NVII)sI=14NT)) i
IF(LV) = 349,349,348 :
NGO=NGO+1 ;

READ(5+5050) VO !
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35
349
352
353

354
350

359
355
356
357

358

21

360

370

385

141
390

150

14

400

WRITE(64+5050) VO

READ( 545060) (YJO(I)s1=1sJQ)
DO 351 [J=1y0<
YJOUII=vO*YJOL(I])
yJ3atny=yJorl)

GO TO 353

DO 352 1I=1sJC

YJOU(I)=YJ3(1)

WRITE(6+5050) (YJOU(I)sI=1sJCQ)
IF(LS) 35593554354

NGO=NGO+1 :

READ (5450500 (SQ(I)sI=1sJQ)
DO 359 1I=1,UC

SQ3(1)=sQ(I)

GO TO 357

DO 356 I=1,JC

SQ(I1y=3Q3(1)

WRITE(645050) (SQUI)s1=19JQ)
IF(NGO) 380,380,358

CONTINUE

DO 21 1=1sJC

J=1#2

YJ(J-1)=0.

YJiJi=yJorl)

DO 370 I=1,sN11

SUM=0,

DO 360 J=1sN22

J1=J+N11
SUM=SUM+C(1+J)%*5Q(J1)
GQA(TI)=8SQ(1})-SUM

CONTINUE

WRITE(695050) (GQA(I}sI=1sN11)
PRINT 385

R AL g S T MR T TR RSSO BT FIRCT RN UV A S

FORMAT( 1R1s// 94X s*COORD*510X s *DISPe#* 315X 9o *VELOCITY#*,12Xs*ACCo¥)

CALL RKAMSB(351¢0E=7510091e0E=-109140E-8+0.0)

ALPHA=0,0

K5=2%JC

DO 141 1=1,K5

YJOUT)=YJ(I]}

OMEGA=ALPHA+DT

IFIOMEGA«GTSTEND)Y GO TO 339

CALL RXAMSB(1 sALPHAYOMEGAsHsSSEsYJ)
PRINT 14sOMEGA

FORMAT(20X93H T=y F15.6}

CALL DERFCN ( OMEGA»YJ»s1lsDF)

DO 15 1=29Ns2

I1=1/2

12=1-1

WRITE(6+6001) I11sYJUI2)9YJUIT1)sDF(1s1)
NI=N11+]

DO 410 I=NI1sN

SUM=0.

DO 400 J=1sN1l1

Jl=J#2-1

SUM=SUM+SK(1sJ)¥YJ(J]1}
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410

420

430

460
470
480

490
500
515

520

530
540
550

380

6001
26

GQA(I)=SQ(I)=-SUM

CONTINUE

DO 430 I=14N22

SUM=0.

DO 420 JU=1.N22

Ji=J+N1]
SUM=SUM+U( 1+ J)*GQA(J])
11=N11+1

Kl=11%#2-1

K2=K1+1

YJ(K1)=SUM
YJ(K2)=(SUA-YJO(K1))/DT
DF{1s11)=(YJ(K2)-YJO(K2))/DT

WRITE(6+6001)
ONTINUE

MQ=0

DO 515 I=1sNT
J=NV(])

K=J%2

I19sSUM  »YJ(K2)sDF(19]1)

IF(YJOUKI*YJ(K)) 47055155515

IF(SG(J)) 480494905490
SQ(J)=0,0 '

GO TO 500
SQ(J)=-WG(J)

MQ=1

CONTINUE

IF (MQ ) 55095504520
DO 540 I=1sN11
SUM=0. .

DO 530 J=1sN22
J1=J+N11
SUM=SUM+C(1+J)%#5Q(J)
CONTINUE
GQA(I)=SQ{I)~SUM
CONTINUE _
ALPHA=OMEGA

GO TO 390

CONTINUE

NS=NS-1

IF(NS) 2642691
FORMAT(5Xs I494E2045)
STOP

END
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SUBROUTINE RKAMSB{(MODE sAlsA23s2348LsYJ)

DIMENSION X(10)sY{10+100)sYJ(100)sD{10s100)sDF(10+100)sXS(10)s
W(1C)sB(10+100)sA(10)sBP(10)sBC(10)sPHI(100)5YS{10+100)

DOUBLE YsPHI»YS

COMMON N»S(30+30}sGQA(30)sWM(3D)sWG(30)

GO TO (2s2s1)+MODE

CONTINUE

------- COEFFICIENTS

W(l)=WIl4)=1e/6e B Wi2)=W(3)=1e/3s $ KK=4

Al2)=A(3)=e5 & A(4)=1.

B(291)=B(3+2)=e5 & B(351)=B(44]1)=B(4+2)=0s $ Bl4s3)=1.

IQ = 4 $ FCT = 19./270.

BP(1)=-94/24¢ % BP(2)=37e/240¢ $ BP(3)=~59¢/24¢ % BP(4)=554/24.
BC(1)=1e/24e % BC(2)=-54/24s % BC(3)=19¢/24¢ $ BC(4)=9e/2%,

------- TOLERA .CES

HMIN=A1 $ HMAX=A2 $ EMIN=A3 3 EMAX=A4 % [S5KIP =1
IF( YJU1)eEQeDe) =~ ISKIP = 0

RETURN

CONT INUE

——————— RKAMSUB ENTRY PQOINT

[o SRV TS

oo

10

11

12

14

CALL DERFCN(AlsYJUslsDF)

ALPHA = A1 % OMEGA = A2 % H = A3

IF({ MODE+EQs2 ) IQ = KK

IGM1 = 1Q-1 $ IQP1 = 10+1 $ ISTP=0 % SIGN=1,
IF{ HelLTe0e ) SIGN = =1, '

(1) = ALPHA

DO 3 I=1sN

Y{lsl) = YJU(I])

MM = 1 % IFLG = 0
KCGUNT = O

M = MM $ MM = M +
IF({ MM«GTSIQP) ) MM
X{MM) = X(M) + H

TEST = OME)A - X{(MM) $ TEST1=TEST/OMEGA

IF QUOTIENT OVERFLOW 7,8

TEST1 = TEST

IF( ABS(TEST1)elTeleOE-10 ) GO TO 12

IF{ SIGN*TESTL ) 951213

TESTZ = OMZGA - X (M)

[F( MODE+EQs2 ) GO TO 11

IF{ ISKIPJEQeDeORSSIGN®TEST24LToHMIN ) GO TO 99
H = TEST2/1Q

[IF( SIGN¥HeLTHMIN ) GO TO 11

M = M=]

IF{ MeEQsO ) M=IQP1

X(1) = X{(M)

DO 10 I=1sN

Y{lsl) = Y(Ms1)

GO TO 4

H = TESTZ2 $ iFLG = 0

X{MM) = X(M) + H

[STP = 1

XJ = X(M)

DO 14 [=1uN

YJ(II) = Y(Ms;)

" o
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15

19
20
22

23
25

27

34

35

43

54

IF( MODEeEQe 16 ANDeMeEQeIQeORIFLGeEQel ) GO TO 32
-=-  RUNGE-KUTTA PROCEDURE

DO 25 K=1y9KK

IF( KeEQel ) GO TO 22

XJ = X(M) + H¥A(K)

DO 15 1I=1sN

PHI(I) 2 Qo

KM) = K -1

DO 20 I=1sN

DO 19 JUsl,sKM1

PHI(I) = PHI(I) + H¥B(KsJ)*D(Js1)
YJ{I) = Y(MyI) + PHI(])

CALL DERFCN({XJsYJ9KsD)

IF{ IFLGeEQe2+OReKoeNES1l ) GO TO 25
DO 23 [=1sN g
DF(MsI) = D(1,1!

CONTINUE

DO 27 1=1sN

PHI(I) = 0.

DO 30 I=1sN

DO 29 K=1yKK

PHI(I) = PHI(I) + H*¥W(K)*¥D(K»sI)
Y{MMsI) = Y(MyI) + PHI(I)

IF( ISTP.EQel ) GO TO 100

GO T0 6

-=--~ ADAMS PREDICTOR-CORRECTOR PROCEDURE
CALL DERFCHNIXJrYJsM,DF)

DO 33 I=1yN

PHI(I) = O

DO 34 K=1»1Q

J = K + KCOUNT

IF( JeGTSIQP1 ) J = J - 1QP1
DO 34 I=1sN ‘

PHI(I) = PHI(I) + H*BP(K)¥DF(Js1)
DO 35 I=1sN

YJUl) = Y(MsI) + PHIU(I])

XJ = X{(MM)

CALL DERFCN(XJsYJsMM,DF)

DO 43 I=1yN

PHI(I) = 0.

DO 44 K=1,1Q

J = K + KCOUNT +1

IF( JeGT.IQP1 ) J = J - 1QP1
DO 44 I=1sN

PHI(I) = PHI(I) + H¥BC(K)*DF(Js])
DO 45 1=1sN

Y{MMmsl) = Y(MyI) + PHI(I)

~~ SINGLE-STEP ERROR

DLTMX = O,

DO 54 I=1yN

DLT = ABS({ Y(MMsI) - YJU(I) )

IF( DLTCLEDLTMX ) GO TO 54
DLTMX = DLT $ IDLT = 1
CONTINUE

TEST = DLTMX/Y(MMsIDLT)
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69

70
73

75
77
78

79
80

81

82

IF QUOTIENT OVERFLOW 55456

SSE = ABS( FCTH#DLTMX ) $ GO TO 60
SSE = ABS( FCT®TEST )

CONTINUE

-=- ERROR ANALYSIS

IF( 1SKiP«FQe0 ) GO 70 90

IF( EMINeLTeSSEeANDeSSECLT+EMAX ) GO TO 90

IF( SIGN*HeGTeHMINeANDe SIGN#HLTeHMAX )

IF({ SSE«GTEMAX ) 664970

H = H/2.

IF( SIGN*H.LToHMIN ) 894968
IF( 1FLGeEG.O ) GO TO &
M = M-1

IF( MeEQeO ) M = IQP1
X(1) = XiM)

DO 69 1I=1sN

Y(lsl) = Y(Myl)

GO TO ¢4

IF( ISTP.EQ.) ) GO TO 100
H = 2e%4

IF( SIGN*#( X(MM)+H-OMEGA ) ) T77s75,75
H = H/2. & GO TO 90

IF( SIGN#H+GTeHMAX ) 89,78

IBK = IQs2 + 1 % L =0

DO 82 K=1y1BK

J = IBK - K + 1 $ M =MM - L

IF{ MeLESsO ) 79,80

M =M+ IQP1 3 L =0 % MM = M
XS(J) = X(M]}

DO 81 I=1sN

D(Jsl) = DF(Ms 1)

YSiEdei) = Y{MyI)

L =L + 2

DO 85 K=1s1BK

X(K) = X=5.K)

DO 8% 1=1sN

DF(KsI) = D(KsI)

Y(KeI) = YS(K» 1)

MM = T[BK $ IFLG = 2 % GG TO 5
PRINT 511 $ GO TO 100

IF( 1STPeEGel ) GO TO 100

IFLG = 1 $ KCOUNT=KCOUNT+1

IF( KCOUNT.EQeIQP1 ) KCOUNT = 0
GO TO 6

MM = M

CONT INUE

--- RKAMSUB EXIT POINT

A2 = X(MM) $ A3 = H % A4 = SSE
DO 105 I=1sN

YJU1) = Y(MM,1)

FORMAT(1H1»5Xs25H STEP SIZE OUT OF BOUNDS

RETURN $& ENC
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SUBROUTINE DERFCN (XJsYJsMsDF)
COMMON N»S(30+30)sGQA(30)sWM(30)sWG(30)
DIMENSION DF(10,100),YJ(100)
N1=N/2
DO 10 I=LsN»2
10 DF(Ms1)=2YJ(I+1)
DO 30 I=2yN»y2
SUM=0. $ I1=1/2
DO 20 J=1,sN1
J1=J%#2+]
J2=J1+1 :
20 SUM=SUM+S(11yJ)#YJ(J1)
; 30 DF(MyI)=(GQA{I1)-SUM)/WM(I1)
RETURN $ END

e Ol s L

SUBROUTINE MIV(SKsUsN11sNM)
DIMENSION A(30930)sU(30+30)95K(30530)
DO 9001 I=1sNM
I1=I+N11
DO 9001 J=1sNM
J1=J+N11
All»J)=SK(I1sJ1)
U(IsJ)=0.
IF (1e€QeJ) U(IsJ)=1e0
E 9001 CONTINUE
EPS=0,0000001
DO 9C15 I=1sNM
- K=1
IF (I-NM) 9021,9007,9021
9021 IF (A(I,I)~EPS) 90059900659007
9005 IF(~A{I,1)-EPS) 900699006+9007
9006 K=K+l : a
DO 9023 J=1yNM
UlTsJ)=UlTsJ)+U(KsJ)
9023 A(lsJ)=A(lsJ)+A(K»J)
GO TO 9021
9007 DIvV=A(I,I)
DO 9009 J=1sNM
U(I»sJ)=Ull»J)/DIV
9009 A(lIs»J)=A(l9J)/DIV
DO 9015 MM=]1,NM
DELT=A(MM,y )
IF (ABS(DELT)-EPS) 90154+9015,49Q16
9016 IF (MM-1) 9010,9015,9010
9C10 DO 9011 J=1sNM
UMMy J'2U(MMy J) UG T s JIXDELT ]
9011 A(MMyJ)=a{MM,J)=A(T,J)%DELT '
9015 CONTINUE
. RETURN $ END

e pesezmv e
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