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Abstract 

The purpose of the thesis is to present a series 

of models of digital computers at the level of the memory- 

processor interface. A discussion of computer Instructions 

Is presented and the single address format Is taken as the 

prototype Instruction. The execution rate for Instructions 

of this type Is then determined for several computer struc- 

tures of the single processor and general multiprocessor 

types. The effect on the execution rate of a specialized 

processing activity, Input/output handling, is considered. 

Analytic models relate the Instruction execution rate to 

the memory and processor speeds, their number, and their 

interconnection. Simulation studies serve to verify the 

results of the analysis. A simple automatic design pro- 

gram is proposed which optimally configures computer struc- 

tures from a set of available components. 
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Chapter I Introduction 

■ 

A. Computer Modelling 

The purpose of this thesis is to present a series 

of analytic models of digital computers. The models relate 

the performance of the computer as measured by the rate of 

instruction execution to the specifications of its major 

high level components, their number, and their intercon- 

nection. The main components considered are memories char- 

acterized by their cycle and access times and processors 

characterized by the times required to perform each of their 

operations. (A detailed consideration of the computer com- 

ponents is given in chapter II.) 

There are two reasons for doing the modelling. 

The first is to gain a quantitative understanding of those 

factors which govern the performance of digital computers - 

analysis. The second is to assist in the design of digital 

computers - synthesis. 

A review of the computer literature indicates that 

computer modelling at the level of the memory processor inter- 

face has been neglected.  The probable reason for the 

neglect is the mathematical difficulties associated with 

analytic solutions of suitable models, A major contribution 

There has been some analysis; these earlier results are 
discussed in the relevent chapters of the thesis. 

...,,««*»* .■■■'«»*"■ 



is concurrency and contemporary large computers euch as the 

CDC 6600 [Thornton, 1970] and IBM 560/91 [Anderson, et al., 

19671 use concurrency in several parts of the computer.) 

Since the operations comprising a single instruc- 

tion are normally intended to be carried out sequentially, 

the presence of concurrent operations implies that for at 

least some of the time more than one instruction is in the 

process of being executed. The multiple instructions 

usually appear in either of two ways: in a multiprocessor 

computer (with multiple instruction streams being simul- 

taneously executed) or in a single processor computer simul- 

taneously executing successive instructions of a single 

instruction stream. 

The general class of computer structures is in- 

dicated diagramatically in figure 1. A group of memories 

(each indicated by an M) is connected through a switch (S) 

to a group of processors (P). The memories are also connected 

through the switch to a specialized processor, an input/output 

channel (i/o), which is characterized by a constant memory 

access rate. In the general case each of the memories and 

each of the processors can be different ana the extent to 

which any given memory is used by any given processor can 

be specified independently. For the analysis in the thesis 

we consider several special structures of this general 

class. We assume that all the memories and all the pro- 

cessors are alike and we assume v hat there is an equal 

likelihood that any' given memory is used by any given pro- 

- 
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of the thesis Is the development of reasonably simple 

approximate solution methods for the models proposed. As 

Is Indicated In chapter V, simulation studies suggest that 

the approximate solutions are quite satisfactory. 

B. Computer Analysis 

The digital computer Is an Information processing 

device and an appropriate measure of Its performance Is the 

rate at which the Information Is processed. The primitive 

computer activity (as opwjsed to computer component activity) 

Is the execution of an Instruction. Xf we astume certain 

things constant over a class of computer structures to be 

analyzed - specifically, the Instruction set and the memory 

word size - then the performance of the computers can be 

taken as equal t, the IER where the IER Is the Instruction 

execution rate. The IER mainly depends on two factors: 

component speed and concurrency. The execution of an In- 

struction (A discussion of computer Instructions appears 

in chapter II ) Involves a sequence of operations by a 

memory and a processor. The IER Is determined not only by 

how fast these operations are carried out but also by the 

number of operations being carried out simultaneously.  (As 

a practical matter the subject of concurrency is a rather 

important one. Technology Imposes, at any given time, limits 

on how fast basic operations can take place and the only 

remaining factor that can be used to increase performance 
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is concurrency and contemporary large computers such as the 
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  _ _ 

.* 



^ . 

Legend: 
M— memory 
P— processor 
S— switch 
I/o — I/o channel 

Figure 1. General Computer Configuration 



cessor. We divide the structures into two classes: single 

processors (a single P on figure 1) and multiprocessors 

and provide a different type of analysis for each. For the 

single processors (analyzed in chapter III) we introduce 

a notation called an instruction timing diagram and with 

the aid of it directly compute the instruction execution 

time and then the IER. The basic approach taken is to add 

the average delay in accessing memory to the processor 

time to get the total instruction execution time. This 

approach, while both straightforward and conveniently 

used to examine processor features in detail, is very 

awkward to apply to multiprocessor computers, and another 

approach is indicated. For multiprocessors (analyzed without 

i/o in chapter IV and with i/o in chapter VI) we introduce 

a special instruction form called a unit instruction which 

allows us to determine the IER directly in terms of the. 

rate of memory cycle utilization. The utilization is 

determined by an approach related to the occupancy problem 

of combinatorial analysis. 

C. Computer Synthesis 

The models developed in the thesis relate the 

performance of the computer to the number, specifications, 

and Interconnection of its components. These variables 

are also those to which the cost of the computer is related. 

If both cost and performance are related to common vari- 

ables, it is possible to formulate a design procedure that 

^MM«fcW«^>»*"»''"|«^ll■«|,'' 
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will choose comp iter configurations that are optimum with 

respect to certain design criteria. 

Synthesis procedures are usually Iterative as 

indicated in figure 2. A series of potential design con- 

figurations are generated, analyzed, and tested against 

the design criteria. The best of the configurations (as 

measured against the design criteria) is chosen. The 

heart of the synthesis procedure is the analysis part. 

The generation of the proposed configurations can be either 

simple in that all configurations (in some prespeclfied 

design space) are generated or more complex in that the 

configurations generated are dependent on the results of 

analysis and testing of earlier configurations. 

The purpose of this thesis is not to consider 

design procedures in detail. However, to Illustrate the 

utility of the thesis analysis in design, a simple design 

program is presented in chapter VII. The program chooses a 

configuration (in other words, it picks the number of 

memories and processors and their speeds) so as to realize 

a desired IER at a minimum cost. 



Begin 

1 
Generate a configuration 

Analyze the configuration 

A 
Test the results of the 
analysis against the 
design criteria 

Exit with the best configuration 

Figure 2. Synthesis Procedure 
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Chapter II    Computer Components and Instructions 

A. Memories 

The structure and organization of the digital 

computer Is Influenced by both what we think the computer 

should be and by the technology of the computer components. 

Probably memory technology has had more Influence, histor- 

ically, on computer design than any other factor. 

The purpose of the memory Is to hold programs 

(sets of Instructions) and the data (sets of operands) 

to be processed. The time required to obtain Information 

from memory thus strongly Influences (limits) the Instruction 

execution rate. For economic reasons It Is generally 

Impossible to provide. In a single memory, both sufficient 

speed of operation to realize an adequate IER and still 

have adequate memory size (number of memory words) to 

hold all the programs and data associated with a computer 

system. At times even a single program and Its related 

data may face this limitation. Consequently» It Is conven- 

tional that at least two forms of memory be present In a 

computer system: primary and secondary. 

The primary memory Is a relatively small but 

fast storage area for Instructions and operands that can 

be directly operated on by the processor. The Information 

  i 1 "AH i 1 ^_^i^  „.v.„,...i^^j.M-a--ga^ . .^„^jt.^ 



stored in the secondary memory cannot be acted on directly 

by the processor; it must first be transferred to primary 

memory. The transfer of information between primary and 

secondary memories is an important activity in digital 

computer systems, both because it interferes with processor 

access to primary memory and because there is usually a large 

access time associated with secondary memories. 

Because of the general difficulty (or impossi- 

bility) of predicting the processor accessing pattern, an 

important requirement for primary memories is a random 

access characteristic. For such memories, the time required 

to access any word of information is independent of its loca- 

tion in memory; in particular it is independent Of the re- 

lation between the location referenced and the last referenced 

location. 

At the time of writing the most common form of 

primary memory is the magnetic core type. Magnetic core 

memories typically used in computers have word sizes from 

eight to over 100 bits (possibly 500 bits) and have total 

word capacities from about 4K (K = 1024) to 64K. (The 

sizes given are typical for single memory units. The en- 

tire computer primary memory may be made up from a number 

of memory units«) Core memories have complete operation or 

cycle times in the range of 0.5 usec. to 10 usec. The read- 

out of information in a magnetic core is inherently a des- 

tructive process; that is, the contents of the memory lo- 

WMMMMMi mmmmm mmmm ■■■ 
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cation are lost when read. Since this is usually uncle- 

sired, the information must also be restored in the memory 

after being read. This re-writing takes an additional 

amount of time. Once the information is read out, however, 

it is immediately available to a processor; the latter need 

not wait for the restore time. The time elapsing between 

the initiation of a memory request and the time the in- 

formation becomes available is the access time; it is typ- 

ically 50% to 30% of the cycle time. 

The cost of magnetic core memories is generally 

related to the cycle time and a very rough approximation 

would give the cost proportional to the reciprocal of the 

cycle time. Core memories are frequently of the coinci- 

dent current type and in these the cost of the electronic part 

of the memory is roughly proportional to the square root 

of the memory size. The balance of the memory cost is 

directly proportional to the memory size,, Thus, the cost 

per word is lower in large memories than in small; in par- 

ticular a memory of w words costs less than m memories 
■- -, ■ ^ 

of w/m Words. 

Another form of primary memory is the transistor 

register type. These memories are characterized by very 

fast access times of about 23  to 100 nsec. Their cost, 

though, is such as to preclude their general use as pri- 

mary memory. It is common, however, for contemporary 

computers to provide a small amount (typically 8 to 64- 
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words) of ■primary memory in registers. The registers are 

often addressable as if they were locations in core memory. 

The secondary memories store the large bulk of 

information in the digital computer system. The principal 

types of secondary memories are rotating discs and drums and 

linear magnetic tapes. The cost of storage per bit in secon- 

dary memories is about 1% to 10% of that in primary memory. 

The low cost and large capacity of secondary memories is due 

to the fact that they are not of the random access type. The 

access time is dependent on the relation between the last 

and currently accessed data and the time elapsed since that 

last access. The average access time for randomly located 

information is half the time for a revolution (about 10 msec.) 

in rotating memories and the time to search half the tape 

(ei number of seconds) in magnetic tape memories. The max- 

imum rate of information flow in a random access memory is 

the reciprocal of the cycle time; in a non-random access 

memory the maximum is obviously not the reciprocal of the 

average access time. For the type of highly structured 

information flows that take place between the primary and 

secondary memories, the word flow rate (particularly from 

drums) may appraoch that obtainable from primary memory. 

B. Processors 

The purpose of the processor is to obtain in- 

structions and operands from memory, decode the instructions, 

and perform the required operation on the operands. Often 

IBiitMifi^*^w*w»^^*^ 
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the speed at which arithmetic operations are carried out 

strongly influences the IER, and it is fairly conventional 

to characterise processors by their arithmetic capabilities. 

There are two principal types of arithmetic operands: fixed 

point (integer) and floating point (fraction plus exponent). 

Small to medium size computers usually have only fixed point 

arithmetic operations built in; floating point operations are 

programmed. The smaller computers may have only fixed point 

add and subtract and even fixed point multiply and divide 

must be programmed. For the purpose of discussing processor 

times, instruction decoding and other types of operations 

implemented such as logical and control operations can be 

grouped with the fixed point add and subtract instructions. 

At the present time these types of operations generally re- 
■ ■ 

quire on the order of a few tens of nsec. to a few hundred 

nsec, A fixed point multiply or divide takes from a few hun- 

dred nsec. to several usec. depending on the processor. Float- 

ing point operations, when implemented, have execution times 

in the range of about 0.^ to 15 usec. The important rela- 

tions in determining IER are, as we shall see later, between 

the processor times and the memory restore times. From the 

proceeding discussion we surmise that for most contemporary 

computers the basic fixed point operations require less time 

to execute than the memory restore time. The balance of the 

other operations may, depending on the particular memory and 

processor, have operation times greater or less than the mem- 

ory restore time. 
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C. The Computer Instruction 

V/e shall take as our basic computer instruction 

the implementation of a binary (two operand) operation. 

A general binary operation can be represented as: 

result ♦- operand 1 ["operator 1 operand 2, 

In a computer we refer to information by its location in 

memory (specified by a memory address) and consequently 

the prototype instruction is written: 

1. (A)*-(B) [operator] (C) 

2. Take (D) as the next instruction. 

The notation (X) means the contents of the memory location 

specified by address X. Thus B and C are the operand ad- 

dresses; A is the result address. The second part of the 

instruction is necessary because instructions are executed 

as part of a sequence; the location of the next instruction 

of the sequence is specified by address D. 

As we can see there are four memory addresses 

(A, B, C, D) associated with the prototype instruction. 

These addresses must be specified somehow, but they need not 

be explicitly included in the instruction; they can be speci- 

fied in an implicit manner. The reasons for preferring im- 

plicit specification of addresses are due to:  (1) a potential 

improvement in the IER by reducing the number of memory re- 

ferences which must be made to execute the instruction and 

(2) a reduced amount of memory space required to hold the 

instruction. (If it requires k bits to encode a memory 

; , v 
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address and j bits to encode the Instruction operation, then 

an instruction with n explicit addresseü) requires n k ♦ j 

bits of memory to hold it.) 

In real computers a common implementation of the 

basic instruction is one called the single address format. 

A register called the accumulator is implicitly specified 

as both the location of one of the operands and the location 

of the result. The next instruction address is implicitly 

taken as the address of the current instruction plus one. 

The single address format requires two memory references: 

one for the instruction itself and one for the operand. The 

single address format is used as a prototype instruction for 

the purposes of the subsequent analysis and the computer in- 

struction >•;« is assumed to be made up entirely of this type 

of instruction. In addition, each instruction and each 

operand is assumed to occupy exactly one memory word. 

D. Instruction Timing Diagram 

The execution of an instruction of the single 

address format involves the following steps: 

1. The instruction itself is fetched from the 

memory. The memory address of the instruction 

is specified implicitly by the address of the 

previous instruction plus one. 

2. The instruction once received from memory is 

decoded yielding the operation to be performed and 

the addrens of the operand to be used. 
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Legend: 

1 Instruction fetch 

2 instruction decoding 

3 operand fetch 

k   instruction execution 

5 next instruction fetch 

t  memory access time 

tw memory restore time 

td instruction decode time 

tei Pr0c®S80r execution time 

Figure 3,  Instruction Timing Diagram 
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3. The operand is fetched from memory, 

Zf. Once the operand is received by the processor 

the operation is performed. 

This sequence of events may be indicated diagramatically 

by   plotting simultaneously against time the memory 

and processor activities. See figure 3. This construction 

is termed an instruction timing diagram (ITD). The ITD 

will be used to visualize the instruction execution and 

(as will be seen in chapter III) to compute the amount of 

time required to execute the instruction. The general 

approach to be taken in computing instruction execution 

times from the ITD is to pick corresponding points on suc- 

cessive instructions and determine the time between them, 

(Such points are indicated by A 's on the ITD of figure 30 

Sometimes the appropriate choice of corresponding points 

facilitates the determination of the instruction execution 

time. 

If there is more than just one memory capable of 

simultaneous operation the ITD is easily extended to handle 

this case. In the following we have two memories M. and 

Mpj the instruction reference goes to M- and the operand 

reference to M,. 

M2 

M, r 

.  1 

r .a. 

t!ä 

_BL 

Uli 

'JL_ 
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The interesting thing to note here Is that once the In- 

struction Is decoded the operand reference can be Immed- 

iately made to Mp. The time required to execute the In- 

struction (assuming td
<t<|r) Is shortened; this Is a result 

of the concurrent operation for a time of both memories. 

Further discussion of this Is deferred until chapter III, 

E. The Instruction Execution Hate 

The computer Instruction set Is assumed to consist 

of a set of Instructions Ij of the single address Instruc- 

tion format each with an associated value of processor ex- 

ecution time tA., The value of decode time t, Is assumed ex a 

to be constant for all Instructions, By examining the ITD 

we can determine a value t^ to execute I. where t. Is clearly 

a function of t j, td, t , tw. In section D we saw that the 

number of memories Influenced the Instruction execution 

time; hence t^ Is also a function of the memory structure. 

For the time being let us simply apsoclate the memory struc- 

ture with a variable S, Then we can write: 

\ *  ^ei» td» V V S)- t2-1* 

Associated with each Instruction I. Is a probability or rel- 

ative frequency f. which gives the likelihood that any given 

Instruction Is of type 1, The average time E(t) required 

to execute an Instruction 16 computed: 

E(t) = TL  fit.. (2.2) 
1 

,;■ ■^,:..-:>^;..'-..:...--. 

■ ■ ■■■ . . ■-. . ■. 
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The instruction execution rate is the reciprocal of the 

average execution time; hence: 

IKR- l/CEZVi). (2-3) 

„ , 

I ^.ii^M 'i iVinimi'iiifiifliiWillt'ii  ^-^^.^u^^tiimtuii 



19 

Chapter III Single Processor Computers 

A. Single Memory 

Given that we have a single processor organi- 

zation and a set of Instructions In the single address 

format with relative frequencies fj and processor execu- 

tion times tei , we now wish to compute the IER. When 

there Is a single memory the ITD Is: 

t       t       t      t 
« p-8—t—*—*—a   i    w 

P  i t-1 i      i ®L 

Since In chapter II we Indicated that for most practical 

situations td<tw , the Important timing relationship Is 

that between tei and tw. The Instructions fall naturally 

Into two classes: 

class 1 - tei<tw 

class 2 - tei>tw. 

For Instructions of class 1, the execution time for Instruc- 

tion 1^  Is: 

hm 2ta+ 2tw8 2tc (3.1) 

$^fkäiimä^<&&^^ 
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where t,, ■ t ♦ t,,, is the memory cycle time« For inetruc- 
C    Ä    w 

tions of class 2,  the execution time is 

The average execution time for an instruction is defined 

as in chapter II: 

set) - :q f±t± 

£t\  i  c   i% i  a   w   ei 
(3.5) 

where i*cl and i«c2 mean those subscripts which apply to 

classes one and two respectively* Now let us make the 

following definitions: 

f 1 « ZT f. 
i*c1 :L 

f 2 - C fi 
i*c2 1 

tj » d/fi) E M^ e       i«c1 1  el 

t.2. = (1/f2) E f.t-. . 
e       i-c2 1 e:L 

(5^b) 

(3.4c) 

(3.4d) 

From these definitions, fl and f2 are the relative fre- 

quencies of all instructions of class 1 and class 2 re- 

spectively. Similarly, tal and t 2 are the average re- ©     e 

spective processor execution times for instructions of 

class 1 and class 2. Substituting equations 3»k in equa- 

tion 3.3 gives: 

E(t) = fl(2tc) + f2(2ta + tw ♦ te2).      (3.5) 

The form of the result suggests a simple way to compute E(t) 

The average execution times (t 1 and t-2) are substituted 
6        6 
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for tei In the general expressions for the instruction 

execution times given by equations 5.1 and 3.2 and then 

the resulting values are weighted by the respective class rel- 

ative frequencies. This approach works because of the 

linearity of the averaging operation and applies not only 

to the results of this section but also to those of the 

subsequent sections as well. Hence we can disregard the 

detail of the instruction set and in the subsequent anal- 

ysis perform only two computations analogous to those 

represented by equations 3.1 and 3.2, The instruction 

execution rate is obtained by taking the reciprocal of 

E(t) as defined by equation 3.5: 

IER = 1/(fl(2tc) + f2(2ta + tw + te2)).   (3.6) 

Since f1 + f2 = 1 and tc » t + t the latter becomes: 

IER = T/(2tc + f2(te2 - tw)). (3.7) 

B. Interleaved Memory 

We can see from equation 3.7 that even making 

the processor arbitrarily fast (which makes f2 -  0) cannot 

provide an IER greater than 1/2tc . The IER could be 

increased if it were possible to have the instruction and 

its operand in different memories. This cannot be done 

with certainty without greatly reducing the memory utility , 

The obvious way to do this is to have separate memories 
for the instructions and the operands. This approach 
eliminates the (little used) generality to use operands 
as instructions and conversely. More importantly it elim- 
inates the ability to apportion freely the memory between oper- 
ands and instructions as the need arises. 

■  ■ ■ ■■ :. ■- 
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but we can propose a memory organization that achieves 

this  with a high probability. Suppose we have m inde- 

pendent memories. We arrange the memory addressing so 

that successive addresses are in different memories. In 

particular if the memories are denoted MQ ,..., M^j and 

address 0 is in MQ then address z is in M/z moau;L0 m)« 

Such an addressing scheme tends to uniformly distribute 

the operands and the instructions among all the memories 

regardless of their particular addresses. We can then 

make the reasonable assumption that the probability of 

any particular memory reference being directed to any 

particular memory is 1/m . Equivalently, if a memory 

reference goes to M, the probability that the succeeding 

reference also goes to M. is 1/m . The probability that 

reference does not go to M^ is 1 - 1/m , This type of 

memory organization is called an interleaved memory. The 

ITD for the interleaved memory case with no addressing 

conflicts is: 

M t Iflu. 

'JL 

JL 

l ! 

U 
1 

t*»i 
■A 
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We note that the value of t*  Is no longer deterministic; 

rather t* is a random variable. In the following we compute 

the average value of t^ ; however for simplicity there is 

no new notation introduced to indicate that it is an average 

value. We recall that the general idea in using the ITD 

to compute instruction timing is to pick corresponding 

points on successive instructions and then determine the 

time elapsed between the points. On the above diagram the 

points used are indicated by A's. The potential conflicts 

are indicated by the numbers 1 and 2 on the ITD, The time 

elapsed between the first A and point 1 is t ♦ t, . With 

probability 1/m a delay of t - td is encountered at this 

point. From point 1 to point 2 a time t + t j elapses. 

With probability 1/m a further delay of tw - tei is en- 

countered before the next instruction can begin. Hence: 

ti» ta+ td> (l/m)(tw- td) + ta + 

tei* (l/m)(tw- tei) 
85 2ta+ td* tei* OA0(2tw. V. tei), 

(5.8) 

We have implicitly assumed above that the instructions were 

of class 1; for instructions of class 2 no delay can be 

encountered at point 2, In a manner similar to the pre- 

ceding we find for instructions of class 2 that: 

h" 2tai + td * tei * (l/m)(tw - td),     (5.9) 

E(t) is now found using the method of section A: 

E(t) = f1(2ta + td ♦ tel ♦ (1/m)(2tw - td - tel)) 

* f2(2ta ♦ td ♦ te2 + (l/m)(tw - td)) 

-■ 

. •* 
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- 2ta + td ♦ tem ♦ (l/m)(tw - td) ♦ (fl/mXt^ - t0l) 

(5.10) 

where t  is the average value of processor execution time 

for all Instructions: 

tem » fUte1) ♦ f2(te2). (3.11) 

We now compute the IER: 

IER = 1/(2ta ♦ td + (l/m)(tw - td) *  ten ♦ 

(fl/m)(tw- tel)). (3.12) 

For a large value of m the IER becomes: 

XERtS 1/(2ta+ td+ tem). (3.13) 

Hence for an arbitrarily fast processor (td»temÄta^ 

the maximum IER Is about twice that obtainable with a non- 

Interleaved memory system. 

C. Interleaved Memory — Alternative Analysis 

In the last section we considered all memory 

references to be random with the probability of a reference 

to a particular memory 1/m, Hence, with this definition, 

there Is a non-zero probability 1/m2 that an operand refer- 

ence conflicts with the Instruction reference arid that the 

succeeding Instruction reference conflicts with that operand 

reference. This Implies that two successive Instructions 

(which occupy successive memory locations) are located in 

the same memory. But the Interleaving scheme we have suggested 

generally avoids this. It is of Interest then to compute 

E(t) if these double conflicts were eliminated. ( The 

double conflicts can occur only when tei<tw and we shall 
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assume this for the following discussion.) Figure k  shove 

a tree structure of possible operation sequences. This Is 

presented to aid In the analysis. The probability of get- 

ting from one node of the tree to another Is the product 

of the probabilities of all the branches connecting the 

nodes. The probabilities of the branches are obtained as 

follows: 

1. The probabilities of branches 1-2 and 1-3 are 

just those normally associated with the conflict 

of an operand reference with the proceeding 

instruction reference. Hence they are 1/m and 

1 - 1/m respectively. 

2. From the proceeding discussion branch 2-4 

represents an impossible situation. Hence the 

probability of branch 2-4 is zero and the prob- 

ability of branch 2-3 la one. 

3. The probability of branch 3-6 is not (as might 

be expected) 1/m but rather 1/(m-1). Once an 

Instruction is obtained from a memory, say M.. , 

and the operand reference is known not to conflict 

with that of the instruction, the operand must 

have been chosen from one of the remaining memoriet» 

not including M,. . Since the next Instruction 

reference is also made to one of these memories, 

the probability of a conflict is 1/(m - 1). The 

probability of branch 3-7 is then 1 - 1/(m - 1). 

^ 

•f 
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Figure if.   Instruction Execution Tree 
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The times next to the terminal nodes indicate the instruc- 

tion times for the sequence ending at the node; they are 

readily obtained from the ITD. We now compute ti: 

tj e 2-1 (time from node 1 to node J)(probability 
1 M,5,6,7 

of getting from node 1 to node 3) 

- (1/m)(ta + tw + tei) ♦ (1 - 1/m)(l/(m -1)) 

(ta + td ♦ tw) + (1 - l/m)(l - 1/(m - 1)) x 

(ta ♦*<!**• * ^i) 
s 2ta ♦ td ♦ tei + (l/m)(2tw - tei - td). 

(3.1^) 

which is exactly the same as is obtained by the previous, 

simpler analysis. 

D. Instruction Buffering 

With an m-way interleaved memory it is possible 

to simultaneously obtain the contents of m successive mem- 

ory locations. Since successive instructions are normally 

located in successive memory locations, it is possible to 

organize the processor to perform the instruction references 

for m instructions simultaneously (the current instruction 

reference and the next m - 1 instruction references). Let 

us assume that the m instructions obtained are stored in m 

fast processor registers with an access time t <<t . The 

instructions are then obtained from the registers as needed. 

Now up to son instructions (why s can be less than m is 

dicussed shortly) can be executed which have an ITD as 

follows: 

.—— _ _.. ..   
■ 
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We see that (except for the first Instruction) the fetching 

and decoding operations of the subsequent Instruction can 

be grouped with the processor execution of the current 

Instruction, This makes It appropriate to redefine (for 

this section only) classes 1 and 2: 

class 1: t0i + tr + td^tw 

class 2: tei + tp + td>tw . 

Using the approach of section B the values of ^ are readily 

obtained: 

t. » t + (t .. + t + t,) + (1/m)(t - t 4 - t - tj) 1   a  v el   r   d7  v"uwv«'W  ^^  "y  "^z 

(3.15) 

for Instructions of class 1 and 

tl - ta + ^ + td + tei (3.16) 

for Instructions of class 2,    The time required to fetch 

the m Instructions Is t   because the operand reference of 

the first Instruction necessarily conflicts with the Instruc- 

tion fetch.    To compute E(t)  for a single Instruction, we 
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apportion the initial instruction fetch time among the s 

instructions executed. Hence using equations 3.15 and 3.16 

we compute E(t): 

E(t) = tc/s + f2(ta + td + te2) + 

fl(ta + te1 + ^ + ^ + (1/m) x 

^w" V " ta" V) 
*  tc/s * (ta + td + tem + tr) + 

(fl/m)(tw- tel - td - tr).    (3.17) 

The IER is then computed: 

IER = 1/(tc/s + (ta + td + tem + tr) + 

(f1/m)(tw- tel - td - tr)).     (5.18) 

The reason that less than m instructions can be 

executed is due to the presence,of branch instructions in 

the instruction stream. Such instructions cause the pro- 

cessor to take the next instruction from a memory location 

that is not the next successive memory location after the 

branch instruction. Suppose that the relative frequency 

of branch instructions is f^. We shall characterize the 

instruction set by assuming that there is a constant prob- 

ability p^ a f^ that any given instruction is a branch 

instruction. Hence there is a probability 1 - p, that an 

instruction is not a branch instruction. We now compute 

the probability that a sequence of k instructions are ex- 

ecuted. For 1<k^a there must be k - 1 instructions that 

are not branches followed by a branch instruction. Let X 

be a random variable equal to the number of instructions 

■uimn:>:->--^i^-- 'i.:..-.--.■■-'■■■■ 
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executed. From the preceeding discussion: 

p(X = k) = p(k) « (1 - Pt)11'1?!,; k = !,••.,m - 1; 

(3.19) 

where p(k) Is the probability of the k Instruction se- 

quence. Regardless of whether the m  Instruction Is a 

branch Instruction or not, the execution sequence terminates 

at the m  instruction If It has not terminated earlier. 

Thus: 

p(m) = 1 - p(X<m) 

= i - f: (i-p^'^b. (3.20) 
k=1   D    D 

Using the fact that the sum of a finite geometric series 

Is: 

i aks (a- a
n+1)/(l - a) 

k=1 

we reduce equation 3.20 to 

p(m) = (1 - T?Jm'\ (3.21) 

The expected number of Instructions executed E(X) Is then: 

E(X) = JZ  kp(k) 
k=l 

m-1 

= Zk pb(l - pb)
k-1 + m(l - Pt)01"1. (3.22) 

Writing the summation as 

m-1 
d    S^/,  _ Nk pb  S  21(1 - pb) 

d(l-pb) k.1     h 

and using the previously mentioned relation for the sum of 

a finite geometric series,    we reduce equation 3,22 to 
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iin. E(X) = (1 - (1 - pb)
m)/pb . (5.23) 

The expression for E(X) can now be substituted for s in 

equation 5.18 yielding the IER for the buffered instruc- 

tion case: 

\ 
IER = 

Vc 
1 - (1 - Pb) 

+ t +tJ+t +t + —^-(t -t l-t,-t ) m   a d r em  m v w e  d r' 

(5.24) 

For large values of m and small values of td and tr , 

equation 5.25 becomes: 

IER^ l/(pbtc* ta+ tem). (3.25) 

Finally, for a fast processor and a lo'v value of pb (for 

scientific computing pb probably lies in the range of about 

0,05 to 0.5) the IER approaches 1/t  which is about twice 

the IER in the results of section B. 

D. Instruction Prefetch 

Normally computer instructions are intended to 

be sequentially executed: in a stream of instructions, the 

execution of instruction x + 1 does not begin until the 

execution of instruction x is completed. However, it is 

possible to organize the processor so that more than one 

instruction is being executed at a time. It is possible 

to go to processors of considerable complexity (as for ex- 

ample in the CDC 6600 and the IBM 560/91) in order to max- 

imize the overlapping of instruction execution. In this 

liHliiiinnMwi'iiiit'i'-f«""" ' '  ^--" »■■" 
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section, however, we will discuss a modest form of con- 

currency of instruction execution: the instruction pre- 

fetch. The idea of the instruction prefetch is quite simple: 

the overlapping of the subsequent instruction fetch with 

the processor execution time of the current instruction. 

The ITD for this case v/ith no addressing conflicts is: 

M, 

M. 

M, f 

A 

w 

üd 

.a—. w 

Lnext instruction begins 
t. w 

A 

f 

r- ilistlruction ends istlr 

hd   hi 

From the ITD we observe that the value of tei is not going 

to appear in the expression for t. . This perhaps sur- 

prising result is a general feature of this type of con- 

currency. The rate at which instructions are executed is 

dependent on the time which elapses between instructions 

commencing execution and not on the time required to ex- 

ecute a given instruction. There are, however, some side 

effects to be considered. If the value of t^  is such ei 
•that it extends to overlap the processor execution time of 
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the next instruction, then multiple processor execution 

units must be provided. Also there raust be checkins to 

insure that the resulb of the first instruction is not an 

operand of the subsequent instruction. 

Since t ^ is not going to appear in the final re- 

lations we do not have to consider f.. and t. and we can 

compute E(t) directly. Probably the best way to find E(t) 

is to use the instruction execution tree of section C, 

The probabilities associated with the branches of the tree 

are the sarjo; only the instruction execution times have 

to be changed. The tree is presented in figure 5.  We 

now,using the approach of section C, compute S(t); 

E(t) = 0/m)(tw + tw + ta) + 

(1 - 1/m)(ta+ td + ta + tw) + 

(1 - 1/ra)(ta + td + ta) 

= 2ta + td ♦ (1/m)(2tw + ta - td).   (5.26) 

The IER can now be computed: 

IER = 1/(2ta + td + (1/ra)(2tw + ta - td)) (5.2?) 

which for small td and large ra goes to 1/2t , 

i     ig^mmm MCAiiMMliiNßMWvnK'sieii','^ if»v* ' 
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Chapter IV Multiprocessor Computers 

A. The Multiprocessor Problem 

One of the main reasons for the anaylsis presented 

in chapter III is to indicate some limits on the IER ob- 

tainable in a single processor computer. To get a higher 

IER in a single processor computer (single instruction 

stream) it is probably necessary to have a definite struc- 

ture in the information to be processed. For example, if 

the information can be structured as n-component vectors 

and we organize the processor so as to have n execution 

units which are capable of performing simultaneous oper- 

ations on each of the n components (and provide a suitable 

memory organization), then we can obtain an IER which is 

about n times that which would be obtained if the data were 

treated in a scalar form. This is essentially the approach 

taken in the Illiac IV (Barnes, et al., 1968). As might be 

expected there are considerable difficulties in realising 

an IER that high for many practical problems. 

If the information to be processed cannot be so 

structured, then to get a higher IER, it is necessary to go 

to a multiprocessor organization (with multiple instruction 

streams). We should note at this point that it is not the 

purpose of this thesis to indicate how the multiprocessor 

is to be used: in particular, how a single, inherently se- 

quential task can be broken down into n tasks that can be 

^^j^MSM^iMClWWi'iMWtta'MHnMaal 
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run on an n-processor computer. For a discussion of this 

see Rosenfeld (1969). A typical multiprocessor organization 

is presented in figure 1 . The most important aspect of 

the multiprocessor organization is the sharing of a common 

memory system by all the processors.  As the processors 

randomly direct requests to the memories, it is inevitable 

that conflicts will arise in that a processor will request 

service from a memory that is busy servicing another pro- 

cessor request. The function of the switch in figure 1 is 

to direct processor requests to the correct memory and to 

resolve conflicts by deferring requests to busy memories 

to subsequent memory cycles. Since we assume that the pro- 

cessor requests to the memories are random, we have what is 

termed a stochastic service system. The study of such sys- 

tems is called queueing theory and in queueing theory 

terminology the multiprocessor system isanm-server system 

with a finite service requesting population (the n proces- 

sors). The servers are unique in the sense that they can 

handle only requests directed specifically toward them. 

(Usually an m-server system is taken to be one in which any 

server can service any request.) The memories are charac- 

terized by constant service time t followed by an interval 

t when they are unavailable to service requests. New re- 

quests for service are generated by processors after some 

interval (t, or t j) has elapsed since their last request 

was serviced. These combined aspects of the multiprocessor 

< 



do not allow It to be handled by the common models of 

queueing theory.  It does not appear to the author that a 

rigorous solution of this queueing situation can be readily 

obtained. Given this, there are basically two approaches 

that can be taken: (1) simplify the model sufficiently so 

that it can be solved by rigorous methods or (2) attempt 

an approximate solution. The latter approach is taken in 

this thesis; the analysis appears in the subsequent sec- 

tions of this chapter. The former approach is taken by 

Skinner and Asher (1969). They model the multiprocessor 

as a discrete Markov chain. The basic time interval is a 

memory cycle time. They assume a matrix of probabilities 

which express the likelihood that a given processor requests 

service from a given memory at the beginning of the memory 

cycle. They also assume matrices of probabilities which 

express the likelihood of the various outcomes that can 

arise when there are simultaneous requests to one tnenory 

by several processors. The states of the modelled system 

are characterized by the processors delayed and the memories 

for which they are delayed. A state transition matrix 

is formed from the previously mentioned probabilities and 

from this matrix the steady-state probabilities of the 

various states are determined. With this information the 

average amount of delay experienced by a processor in 

making a memory request is computed. 

There are two problems with this approach. The first 
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is that as the number of memories and processors increases, 

the number of potential states of the system becomes quite 

large and it is difficult to obtain other than a numerical 

solution. The second problem is obtaining the required pro- 

babilities. The probability that a processor directs a 

request to memory during a given time interval is dependent 

not only on the relation of the memory speed to the proces- 

sor speed but also on the amount of delay a processor ex- 

periences in getting a memory request serviced. Since, in 

essence, that delay is what the analysis is supposed to 

determine, it is difficult to see how the required proba- 

bilities can be obtained in an analytic manner.  (Skinner 

and Asher obtain the probabilities that they use in their 

model by first simulating the system and then making measure- 

ments on the simulated system. The necessity of doing 

this would seem to diminish the utility of the model.) 

B. Modified Instruction Format 

The previous discussion has assumed the single 

address format instruction as the model of a computer 

instruction. This instruction format has an ITD as follows: 

t       t        t      t a       w        a      w 
M i ! I 1 *—' 1 ' 

I 
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The instruction consists of two instances of the following 

operation sequence: the accessing of memory followed by an 

interval of processor activity. Hence an execution of a 

single address instruction can be approximated as tv/o suc- 

cessive executions of a simple instruction with the fol- 

lowing ITD: 

M a 

» V 

where t ., the average processor activity time, is defined: 

Si = (td + t*l)/Z- ^A) 

This instruction is termed a unit instruction. The exe- 

cution rate for unit instructions is termed ÜER to dis- 

tinguish it from the IER. For the situation here UER = 2 x 

IER. We will now average over the instruction set and com- 

pute a single value tp defined: 

■ ? fiV- (4.2) 

We will henceforth assume that all the instructions of the 

instruction Sfei. are made up of unit instructions with a 

single value t . As the analysis of chapter III would 
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suggest, the important relation to consider is that be- 

tween tp and tw. There are three cases of interest and 

they are discussed individually in the following sections: 

1. tp = tw 

2. tp < tw 

To mention the unit instruction only in relation 

to the single address format instruction is to overlook its 

considerable generality. Obviously, instructions with no 

operand reference map directly into unit instructions, but 

the operation sequence of the unit instruction is suffi- 

ciently basic - a memory access followed by processor ac- 

tivity - that nearly any instruction format can be easily 

mapped into a series of them. For example, consider a two 

(operand) address instruction format which has the following 

ITD: 

t        t       t        t        t      t a   .    w       a        w        a  .   w 

1 t 
operand 1 
fetch 

operand 2 
fetch 

L!fi_ 
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This is mapped into three unit instructions each with an 

average processor activity time tp= (td+ t i)/3. Since 

three unit instructions are required the UER = 3 x IER. 

Other instruction formats may be handled in a similar 

manner. 

C, Multiprocessor with t = t p   w 

In order to facilitate the discussion a further 

change in the instruction format is indicated. Unlike the 

change in section B the following is purely a conceptual 

transformation which introduces no approximation in the 

analysis. The ITD for the unit instruction when t = "^ is: 

M 

This is transformed to the following ITD: 

M  f 
< 

V .;■• 

' 
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The memory now has an access time of t and zero recycle c 

time; the processor execution time is also zero. This 

transformation introduces no change in the sense that the 

performance of a system v/ith either ITD is the same. For 

both ITD's the memory access begins at point 1 and the pro- 

cessor execution and the memory recycling are completed at 

point 2. With this new instruction format we are now ready 

to determine the UER for the multiprocessor. 

Let us assume that we have m memories (m-way inter- 

leaved) denoted H.; .j = 1,,..^; and n processors denoted 

P^; i = l,...,n. From the instruction format, we can see 

that one unit instruction is executed for each memory cycle 

which is utilized by a processor. The maximum rate at which 

memory cycles are available is m/t and this represents 

an upper bound on the UER. The problem of finding the UER 

reduces, in essence, to that of determining that fraction 

of the total number of memory cycles which are utilized by 

all the processors. Notice that this represents quite a 

different approach from that used in chapter III, The 

analysis li chapter III might be termed processor oriented 

since the time required to access memory is simply considered 

a delay which is added to the processor execution times in 

order to get the total instruction execution time. The 

analysis of this chapter is memory oriented since the pro- 

cessors are considered only to the extent that they affect 

the memory utilization. 
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Wo will term a processor queued if it is either 

waiting for or in the process of receiving memory service. 

A memory is termed occupied if it has one or more processors 

queued and unoccupied if it has no processors queued. A 

processor is termed active if it is currently being ser- 

viced by a memory. Let us consider an interval of time 

equal to t , For each memory which is occupied at the 

beginning of the interval, there is exactly one memory 

request serviced during that interval and hence exactly 

one unit instruction executed. For each memory that is 

unoccupied at the beginning of the interval there are no 

memory requests serTiced (and hence no unit instructions 

executed). Becr.use the modified instruction format has 

t = 0 there are always n processors queued. Let us now 

define a random variable Z..; j = l,...,m; where: 

{0 if M.. is unoccupied 
;j (4.3) 

1 if M. is occupied 

If X is a random variable which takes on values equal to 

the number of occupied memories, then: 

The expected value of X, E(X), is the average number of 

occupied memories. From the previous discussion it should 

be clear that: 

UER = E(X)/tc . (4.5) 
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From equation 4.4 we have: 

E(X) = E( 72 ZJ =    HECZJ (4.6) 

where E(Z..) is the expected value of Z... Since all the 

memories are identical, equation 4.6 reduces to: 

E(X) = mECZj) for any J. (4.7) 

We now wish to focus on one memory M.. and determine Z... 

The approach used here is related to the occupancy (or 

distribution) problems of combinatorial analysis (Feller, 

1968). From the foregoing discussion we know that there 

are always n processors queued. The probability of any 

given processor memory request going to any given memory 

and hence queued for that memory is, as in chapter III, 

1/m, In particular,the probability that any given processor 

is queued for M^ is 1/m and the probability that any given 

processor is not queued for M^ is 1 - 1/m. If Y is a random 

variable equal to the number of processors queued for M.., 

the probability that Y = r is given by a binomial distri- 

bution; 

p(Y - r) - p(r) = (^)(l/m)r(l - l/m)n'-r.  (4.8) 

From the definition of Z. and Y we now compute E(Z^): 

E(Z1) = (0)p(0) ♦ C (l)p(r) 
J r=l 

■ C p(r) - p(0) 
r=0 

= 1 - p(0). (4.9) 
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Using equation /f.8 in equation if.9 we find: 

E(Z.) = 1 - (1 - 1/m)n . (4.10) 

We then use equations 4.5 and 4.10 to compute the ÜER: 

TIER = (m/t )(1 - (1 - 1/m)n) . (4.11) 

E(X), the average number of occupied memories, is a function 

of m and n; let us call this function g(m,n): 

g(m,n) = m(l - (1 - 1/m)n). (4.12) 

The function g(ra,n) has certain properties of interest: 

1, For m,n>1, g(m,n) is monotonically increasing 

in m and n. This shows that we always get an 

improvement in the TIER by adding another memory 

or processor, 

2, g(m,n)< minimum (m,n). The number of unit 

instructions executed during an interval t can 

not exceed the number of memories or processors. 

We might have stated the problem of finding the 

TIER as follows. Let us randomly distribute n processors 

among m memories. The UER is the average number of memories 

which receive processors multiplied by 1/t . Riordan (1953) 

shows by quite different methods than v/e have employed 

that the average number of memories v/hich would receive 

processors is g(m>n), (Riordan
1 s work is in combinatorial 

analysis; he speaks of balls and cells rather than processors 

and memories.) This method of problem formulation shows 

the approximate nature of the analysis. It has been im- 

plicitly assumed that all n processors make random requests 

. 
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during each interval of time t , In a real computer n^n c 

processors make requests during t $ if there are several 

processors queued for service at a memory, only the one 

serviced during the interval t makes a new request at the 

end of that interval. Consequently, unfavorable (in terms 

of the effect on the UER) distributions of processors (a 

number of processors queued for one memory) tend to be more 

frequent in an actual computer than would be suggested by 

the analysis. The result of this is that the UER specified 

by equation 4.11 is somewhat higher than would be actually 

observed. We might expect that the most significant devi- 

ation between tho actual and the computed ÜER to be the 

greatest when there is a high probability of a number of 

processors being queued for a single memory. This would 

occur when n/m >1 and m is small. 

D. Multiprocessor with t <t 

When t <t the ITD is: p  w 

H   ,-- 

1 2  5 

As in section C we perform a transformation on the ITD to 

get: 

 -. • -        



 -—-■  ■inn 1 "■—'      " - 

k7 

t' t7 
M  r & r-^H f 

l' 2  3 

t^O 

The access time becomes t' = t.* t_t the memory restore a   a   p' 
time becomes t- = t,„ - t.. and the processor execution time w   w   p 
t goes to zero. The transformation is such that the per- 

formance of a system with either ITD is the same. For both 

ITD's the memory access starts at point 1, the processor 

execution is through at point 2, and memory restore is com- 

pleted at point 3. 

We recall the definition of an active processor 

as one whose memory request is currently being serviced. 

When tl.at service is completed, an active processor can 

make a new request to either an occupied or an unoccupied 

memory. If it makes a request to an occupied memory, there 

is no appreciable advantage gained from the fact that t < 

t ; the processor must wait anyway. On the other hand, 

if the request is made to am unoccupied memory the proces- 

sor's request is serviced immediately; and there is an ad- 

vantage associated with t being less than tw. The proba- 

 - - — — i —-»^■»..■..^...,—-^-.^i..^.   _ _ 
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bility of an active processor making a request to an oc- 

cupied neiaory is defined as: 

/  v  average number of occupied memories 

U.13) 
The probability of a request to an unoccupied memory is: 

p(unocc) = 1 - p(occ). C^-.l^) 

Wo estimate the number of occupied memories as g(m,n). Hence: 

p(occ) = 1 - (1 - l/n)n (4.15) 

and 

p(unocc) = (1 - 1/m)n. (^.16) 

Using the ideas of chapter III, we compute the average 

amount of time required to execute a unit instruction by 

an active processor: 

E(t) = p(occ)(t ) ♦ p(unocc)(t ) 
C cl 

= p(occ)(t ) ♦ p(unocc)(t_ ♦ t_) 
C 9.     p 

. tc ♦ (1 - l/m)n(tp - tw). (4.17) 

The rate of execution R is just 1/E(t): 

1  1  
HE t ^T" c 1 ♦ (1 - 1/m)n  V S 

^c 

(4.18) 

Now this is the unit instruction execution rate for one of 

the active processors. The UER for the multiprocessor is 

Just R multiplied by the number of active processors which 

Is also estimated as g(m,n). Thus: 

UER . -^  LzJLz VnOn       ,      . (^19) 
c    !  - d  .  l/n)n-H S 
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Since the denominator of the fraction is less than one, 

the TIER is greater for the case of t^ t      than  for the p  w 

case of t^ = t when m and n are the same. p   w 

We have used gCn^n) as an estimate of both the 

average number of active processors and occupied memories. 

Actually for t <:   the average number would be somewhat 

higher than g(m,n). The increased number of occupied mem- 

ories would tend to decrease the performance (since there is 

a reduced probability of a request to an unoccupied memory) 

while the increased number of active processors would tend 

to increase it. Simulation studies suggest that the ef- 

fects almost cancel (chapter V). 

E. Multiprocessor with t >t ' p  w 

When t >tw the following ITD applies: 

M r JL 

I- 
This ITD can be transformed to the following: 

*i 

1 
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The memory access time becomes t_. the memory recycle time 

goes to zero, and the processor time goes to t' ■ t - t . 

Again the trsmsformation is such that the performance of 

a system with either ITD  is the same. For both ITD's 

the memory access begins at point 1, the memory is restored 

at point 2, and the processor execution is completed at 

point 5. 

For the previous two cases there were always n 

processors queued, lor this case, because t >0, there 

will be, in general, less than n processors queued. This 

introduces an additional complication into the analysis. 

Let us suppose that there is a constant (in other words, 

independent of time and tM state of the memory queues) 

probability p that a given processor is queued for memory 

service. Let Q be a random variable which takes on values 

equal to the number of processors so queued. The proba- 

bility that k processors out of n are queued is given by 

a binomial distribution: 

.  P(Q = k) = p(k) = (£ )(Pm)
k(1 - Pm)

n"k   (4.20) 

When k processors are queued the average rate which at unit 

instructions are executed is given by equation 4,11 with 

n replaced by k. Defining this as R(k) we have: 

R(k) = (m/tc)0 - (1 - 1/m)k). (4.21) 

The non-zero value of t does not affect in any direct way 

the rate at which instructions are executed; however its 

effect is felt indirectly through its influence 
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on the value of p , We now compute tha HER as the expected 

value of R. From equation 4.20 and /t.21 we have: 

UER = ^ R(k)p(k), 
k 

■ E  (m/tc)(°)(l- (1 - 1/m)k)(po)
k(l - Pm) 

n-k 

« (m/tc)(1 - T  (£)(P0(1 - 1/m))
k(1 - pm)

n-k) 
k 

= (m/tc)(1 - (1 - P0/o))
n. (4.22) 

frhe last  result is from applying the binomial theorem to 

the summation.) We note the HER specified by equation 4.22 

is a function of pm. Equation 4.22 is identical to equation 

4.11 except for the replacement of 1/m with Pm/ai. Since 

p 41, the HER for t = t is greater than the UER for t > t ^m  * p   w   ^ p  w 
assuming the same values for m and n.  Because the number 

of processors queued is binomally distributed, the average 

number of processors queued is np . Hence: 

average number of processors queued i /. ^x) 

A flow diagram of the instruction execution is as follows: 

Memory System 
UER(pm) Processor Delay t. 

%0j0£^0mimmm*M*'i 

. 
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Serviced memory requests leave the memory system at a rate 

specified by equation ^..22. They then experience a delay 

t before making a new memory request. Let n be the 

average number of processors not queued in the memory sys- 

tem and n the average number queued. Necessarily: 

n ♦ n^ ■ n ik.2h) 

and thus substituting in equation if.23 we have: 

pm - (n - np)/n. (4.25) 

From the flow diagram the average number of processors 

not queued must be the product of the average unit instruc- 

tion processing rate and the delay t^. Thus: 

np = ÜER(pm)tp. (If.26) 

Using equation if.26 and the relation t = t - t we have: p   p   w 

Pm = ' " HIT <' " t1 - Pm/In)n)(tp * V   ^'Z7) 
o w 

or 

0 = pm ♦ (m/n)( g^I w)(1 - (1 - pm/m)
n) - 1 

(if.28) 

which is an n  order polynomial equation in pm. It must 

be solved for the value of \    in the interval (0,1). That 

there exists one and only one solution of equation 4.28 

in (0,1) can be seen by considering equation 4.2?. As p 

goes from zero to one, the left hand side of equation 4.27 

increases aoaotonically ^rom zero to one while the right 

hand side decreases monotonically from one. There is one 

and only one value of pm in (0,1) for which the right and 

left hand sides are equal. Once a value of pm is obtained. 
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it is substituted in equation if.22 to obtain the ÜER. 

msmme^m. mm 
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Chapter V    Simulation 

A. Reasons for Simulation 

In the multiprocessor analysis of chapter IV 

two principal approximations are made. The first is the 

replacement of the single address format instruction with 

two successive unit instructions and the associated aver- 

aging over the instruction set to get a value of t . The 

second approximation is the treating of the inherent multi- 

processor queueing problem as a distribution or occupancy 

problem. The intent of the simulation studies is to ascer- 

tain the effects of the approximations over a limited set 

of cases. 

B. The Simulator 

The simulator is the "next most imminent event" 

type. In the simulator certain rules are applied to deter- 

mine the sequence of events in the simulated system and the 

timing of the events is determined accordingly. A simulator 

of this type is quite simple and executes rather rapidly. 

The simulator is set up to handle n processors 

denoted P.; i ■ ^...n; and m memories denoted M. ; 

J ■ l,..,,m; where m and n are arbitrary and specified at 

run time. Associated with each memory M4 is a time t . 

which is .the earliest time M.. can initiate servicing a new 
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memory request. Similarly, associated with each processor 

Pj is & time t . which is the earliest time processor P^ 

can ioitiate a new request for memory service. The simu- 

lator is arranged so that one cycle of simulation corresponds 

to the execution of one unit instruction by one processor. 

There are two basic rules which govern the sequence of events 

in the simulator. First, the instruction unit execution of 

any given simulation cycle is always associated with the 

processor P. for which the value of t ^ is a minimum at the 

beginning of the cycle.  (If there is more than one value of 

i for which t ^ is a minimum, then the largest value of i 

is arbitrarily chosen.) Second, an instruction unit execution 

involving Pj and M, always commences at the maximum of the 

times t . and t..., since that is the earliest time at whiih pi    mj 

both P. and M. are available. With these rules in mind we 

can follow step by step the action of the simulator whose 

flowchart appears in figure 6* 

1* The simulator is initialized. The values 

m, n, tc, and t , are specified; t .. and t ^ 

are set to zero for all i and j. 7 is set to the 

total number of unit instruction executions to 

be simulated. 

2. The value i is selected so that t . is a 
Pi 

minimum. This corresponds to the selection of 

the processor for the current simulation cycle, 

3. The value of J is selected. Similarly, this 

corresponds to the selection of the memory for 

. ■--.„j.-tn,-... vmMuim, 

.... 
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T 

1. 

Select ra,n,Y,t , 
t . and t« 

W0 ^ 1'3 

Select 1 
2. 

5. 
Select j 

Select t. 

4. 

VBlücCtpi,t»3) 

5. t^t^+t mj e— 

no J^es. 

7. 

8. 

9. 

Compute T fron 

equation 5.1 

UERS= Y/T 

Compute pre- 
dicted value 
of UER 

I 

Figure 6. Simulator 



57 

the current simulation cycle. A multiplicative 

congruent random number generator (Kruskal, 1969) 

is used to uniformly generate integers in the 

rang? 1,...,m. 

If. The value of t is selected. Normally it is 

a constant but in one simulation, however, it is 

is selected so that for any given processor it 

oscillates between two values whose average is t , 

5* A start time (for the unit instruction exe- 

cution of the current simulation cycle) t is 

computed as the maximum of t^. and t .. The 

time t . is then set to the sum of the start mj 

time and the memory cycle time tn.    The time 

t , is set to the sum of the start time, the 

memory access time t  and the processor exe- 

cution time t . 

6. If less than Y unit instructions have been 

executed, another simulation commences at step 2. 

Otherwise the computation of the results begins 

at step 7. 

7. The exact time at which the simulation ends 

is not precise; there are m + n times in the 

simulator. Probably the most reasonable estimate 

of the end time is: 

T ■ irhr< Z V + Z tnj ). 
i .i 

att|^'MBa»illW»»iW*«1li1llllllll'll»lllll«WI1 rir.n.iii.ni.1. .nil—wilinin m    i   i  ».m»..«.^.»a..».»«^»~.~-. -—«"«..MäsSfc., 
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8. The simulation unit instruction execution 

rate ÜER„ is the ratio of the total number of s 

executions to the time required to execute 

them; hence: 

UESg = Y/T . 

9. The UER is computed from either equation 

b.11, 4.19, or it,22 depending on the relation 

of t to t . If equation 4.22 is approriate 
Mr * 

then the value of p must be computed. A Newton- 

Raphson search technique (Pierre,1969) is em- 

ployed; it converges rapidly to the value of p 

in the interval (0,1). 

As can be seen from the above, the amount of simulator activ- 

ity per unit instruction execution is independent of m. The 

value of n only determines the number of values of i which 

must be searched to find the minimum in step 2. 

The actual simulator is more involved than des- 

cribed here and has provision for severA? Instruction for- 

matr (including the simple unit instruction used here). It 

accepts input in the form of an instruction set where the 

.'ormat, execution times and relative frequency of each 

instruction may be specified. The sequence of events in 

the simulator when executing unit instructions is precisely 

just those described above. The simulator is written in 
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Algol1  for the Univac 1108 and it simulates the execution 

of about 2000 unit instructions per second. 

C. Results 

A set of simulation result is presented in 

figures 7 through 11. The results are presented in a normal- 

ized form: the performance of a one processor, one memory 

system with t = t is taken to be one. We use figures 7 

through 10 to verify the basic multiprocessor analysis; figure 

11 is used to verify the instruction reduction. The figures 

are discussed individually and represent various cases of 

interest: 

Figure 7: For this case t ■ t^ = 0-5tc. The 

difference between the predicted and the simulated 

values is small. The maximum deviation is about 

85*5 with the predicted value higher than the simu- 

lated and occurs when the ratio of processors to 

memories is one or greater. This is in accor- 

dance with the observation of chapter IV, section 

C. 

Figure 8: Here t = 0.1 tc and tw ■ 0.5tc. The 

maximum deviation observed is about 10%; the 

predicted performance again higher than the 

simulated performance. The worst deviations 

^A text of the simulator appears in the appendix. 

. 
fciiiiai*ai 
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occur when 3 or ^ very fast proceoßors (t =0.1t) 

are used with 2 to 4 memories.  (This is a situ- 

ation which would not likely occur in practice 

because it probably would be uneconomical to 

configure a system in this fashion.) This is 

again in accordance with the observation of 

chapter IV, section C. The slope of the four- 

processor performancd curve is still high even 

when n ■ 16, suggesting that the performance of 

the system can be significantly improved by 

adding memories. (This may or may not be economical 

though.) Although figure 8 does not show it, 

the curves for the simulated and predicted results 

converge for n = 3 and n = 4 when m> Sk» 

Figure 9: This is the same as figure 8 except 

that t = 0.2tc. Basically the same comments 

apply. 

Figure lOtHere t is greater than tw: t- s 2tc = iftw. 

The results show excellent agreement of the simu- 

lated and the predicted results. For m > 1 the 

corresponding curves are nearly indistinguishable. 

Figure 11:These simulation results are presented 

to verify the reduction of the instruction set to a 

unit instruction with a single value of t . The 

curves present two different simulations. For 

one the value of t oscillates between 0.1tc and 
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0.9tc for a given processor with a mean 0,5tc; 

for the other a constant value of tp = 0.5tc 

is used. The results suggest that the reduction 

is probably a reasonable one. The relative per- 

formance is slightly lower for the case where 

t_ varies than for the case where tp is fixed; 

this is generally in accordance with what we 

would expect for a stochastic service system. 

D. A Comparison with Other Simulation Results 

By using some published multiprocessor simulation 

results it is possible to provide a form of independent 

verification of the analytic results of chapter IV. Rosen- 

fold (1969) discusses the results of simulation of the 

solution (by Qauss-Seidel iteration) of a set of simultaneous 

linear algebraic equations on a multiprocessor computer. 

The processors simulated have the general charac- 

teristics and instruction set of the IBM 360 computer series. 

Although the relative frequencies and processor execution 

times for the instruction set are not given, a set of total 

instruction execution times (which are presumably nominal 

times for a single processor computer) are given. From 

these times it appears that the instruction execution time 

is roughly equal to the memory cycle time multiplied by the 

number of memory cycles needed to execute the instruction. 

Thus one can reasonably estimate that the average processor 



67 

activity time is about aqual to the memory restore time, and 

hence Rosenfeld's system can be described in our termin- 

ology as a multiprocessor with t = tw. 

As we discussed in chapter IV the IER is directly 

determined by the extent of memory cycle utilization. For- 

tunately, one of the measurements Rosenfeld makes on his 

simulated system is the memory cycle utilization and this 

makes a direct comparison with his results quite simple. 

For the multiprocessor with t- = tw the memory 

cycle utilization is speciifed by the function g(m,n.) de- 

fined by equation ^■•'12: 

g(m,n) = m(l - (1 - 1/m)n). 

Figure 12 shows Rosenfeld's observed memory utilization 

(solid lines) plotted together with g(m,n) (broken lines). 

The agreement between the simulated and the predicted results 

is rather good with the utilization in the simulated gener- 

ally somewhat higher. At least one reason may be advanced 

to account for this: an incorrect assumed value of tp. 

If t were assumed somewhat less than tw, the analytically pre- 

dicted value of memory utilization would increase and the 

curves for the simulated and the predicted results would 

become nearly identical. Regardless of the value of t 

assumed, the general shape of the curves reflecting the sim- 

ulated and predicted results is the same. 

■ . 

■ p 
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Chapter VI An Analysis of I/O Effects on Processor 
Performance 

A. I/O Activity 

In chapter II we discussed the technological 

reasons necessitating the presence of primary and  secondary 

memories in computer systems. The information stored in 

a secondary memory is moved into the primary memory only 

when it is actually ready to be used by the processor and 

after processing it is returned to the secondary memory. 

The information flow between the memories is generally 

called input/output (i/o) activity and this activity has a 

degrading effect on the ÜER. Each word of information 

transferred between the primary and the secor dary memory 

usually uses one, cycle of the primary memory.  If both the 

i/o and the processors are active simultaneously, conflicts 

arise when both direct a request to the same memory simul- 

taneously. Normally if a conflict occurs the i/o request 

is served first and the processor request is deferred until 

the subsequent memory cycle. In other words, an i/o service 

request has a higher priority than a processor request. The 

reason for granting priority to the i/o is due to the ro- 

tating character of commonly used secondary memories (drums 

and discs). For each i/o request that is not serviced 

\   
In some computers additional cycles are used to count 

the number of i/o transfers and to specify the memory 
locations to which the transfers go. 

ailiwiiwiiiiniiiiiiniiiiiiiiinitr^'' : " ^-.-^ ------i^riirTwiimwmrii^ mn 11 i J 
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sufficiently rapidly, the I/o transfer process must be 

delayed by the time required for one full rotation of the 

memory device thus delaying the processor waiting for the 

I/o the same amount of time. For some types of I/o It Is 

possible, however, to Implement a dynamic priority scheme 

where sometimes a processor request has higher priority 

than an I/o request and It Is shown In section C that this 

approach leads to a smaller degradation In processor per- 

formance than the simple priority scheme. 

Several authors have given analyses of the effects 

of I/o activity.  Flores (196^) determines the extent of 

queuelng of I/o requests on memories. (His analysis does 

not consider the processors.) Flores* model Is developed 

from the following Ideas. The I/o requests for memory 

service are assumed to be generated by a Polsson process 

with a mean request rate of BIO. The requests are considered 

to be uniformly distributed among the m memories and hence 

each memory has a mean request rate of RIO/m. The memory 

Is considered to be a server (In a queuelng sense) with a 

constant service time t-. The result Is a simple queuelng 

situation with Polsson Input and constant service time. 

The mean time elapsing between the Initiation of a memory 

request and the time the service of that request begins Is 

computed. Flores dous not propose, however, a purpose to 

which that time, once computed, can be put. Shemer and 

Gupta (1969) extend Flores' model to consider the effect 

The notation In th? following discussion Is not that of 
the original authors. 
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of I/o activity on the porformance of a single processor. 

In their model a processor with an average  processing 

time t generates random requests to the m memories. Simul- 

taneously, i/o requests generated by a Poisson process with 

mean rate RIO compete with the processor for the available 

memory cycles. Their rather involved analysis allows for 

i/o queueing and they compute the average time required 

to complete a memory request initiated by the processor. 

In order to understand the relation of the above 

authors' analysis to that of this chapter, it is necessary 

to look at the nature of the Poisson process (Hillier and 

Lieberman, 196?) used as a model of the source of i/o 

requests. Each memory experiences a mean request rate of 

RIO/m and hence during an interval of time t. the proba- 

bility distribution for the number q of i/o request received 

is: 

p(,.t(:) . <RIO/(../tc))<|.-
1"0/C/V . 

The average number of requests received during t    is c 
RIO/(m/tc), but the above equation associates a non-zero 

probability for any finite number q of requests.  (Although 

when RIO/(m/tc) is small the probabilities associated with 

large values of q fall off very rapidly.) The type of i/o 

activity which is likely to use a significant portion of 

the primary memory cycles (and thus significantly affect 

the UER) is that from very high speed discs and drums 

- 
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(o' low speed core used as a secondary meaory) and each 

of these is characterized by a regular periodic flow rate. 

The number of such devices likely to be in simultaneous 

operation in a computer system is ssjkll—often one, per- 

haps as many as three or four. While the Poisson process 

is a satisfactory model for representing the generation of 

requests from a number of (unsynchronized) periodic sources, 

probably an equally satisfactory model, when the number of 

sources is small, is simply to assume that there is a pro- 

bability RIO/(m/tr) that one i/o request per memory is re- 

ceived during an interval t- and a zero probability of more than 

one request. This is especially suitable when each of the 

i/o devices has a small amount of buffering (as it usually 

does). This assumption is used in section B. When there is 

only one i/o device with a periodic flow rate in operation, 

an advantageous i/o handling scheme can be implemented. 

This situation is assumed in section C. 

B. Simple I/O Handling 

In at least one way the i/o activity looks like 

the n ♦ t8t processor in the multiprocessor system and it 

would be attractive to bo able to handle it as such. How- 

ever the multiprocessor analysis is derived on the basis 

of identical processors and because of the priority granted 

i/o requests, the i/o activity looks rather different from 

a processor. The i/o activity does, like the processors. 



75 

contribute to the occupancy of the memory system and hence 

Increases the rate at which memory cycles are utilized. 

Our general approach in the subsequent analysis is to com- 

pute occupancy of the memories with i/o, determine the 

rate of memory cycle utilization, and then apportion that 

rate between the processors and the i/o.  (We shall pre- 

sent an analysis only for the multiprocessor ^ase where 

t = t ; extensions to cover the other cases are not dif- 

ficult.) 

Let us consider a particular memory, say M... Let 

A be the event that MJ is occupied by a processor request 

and let B be the event that M^ is occupied by an i/o re- 

quest. From the previous discussion the probability of B 

is: ■ ■ 

P(B) = S$- (6,1) 
c 

where necessarily RIO must be such that p(B)<1. We will 

assume that the probability of A is not affected Pignifi- 

cantly by the i/o activity. This is equivalent to the 

assumption that A and B are independent events. Thus when 

t = tw, p(A) can be computed from equation 4.11: 

p(A) s 1 - (1 - l/m)n. (6.2) 

The probability of a memory being occupied by either a pro- 

cessor or an i/o request is the probability of the event 

A or B. When A and B are independent the probability of the 

event A or B is: 

p(A or B) = p(A) ♦ p(B) - p(A)p(B).       (6*5) 

. ,v 

W* 
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Substituting equations 6.1 and 6.2 in 6.3 we have: 

p(A or B) = 1 - (1 - l/m)n - (1 - l/m)n ^ . 

(6.4) 

Now, having determined the probability of occupancy of one 

memoryi we can determine the rate R at which memory re- 

quests are serviced by multiplying by m/tc: 

R « (m/t Jp(A or B) 

= (m/tc)(1 - (1 - l/m)n - (1 - l/m)n J^) . 
c 

(6.5) 

The"rate R includes the service of both i/o and processor 

memory requests. But since the i/o roquests are served 

first, the rate R includes exactly a rate RIO of serviced 

i/o requests. Hence, the UER can then be determined by 

subtracting RIO from R: 

UER = R - RIO 

= (m/tc)(1 - 1*0 )(1 - (1 - l/m)n) •  (6.6) 

We note that this is just the UER that would be observed 

RIO 

^c 
without i/o multiplied by the factor (1 - ^ ), 

C. Dynamic Priority I/O Handling 

We will assume for this analysis that the i/o 

requests originate from a single periodic source, and we 

will see that it is possible to specify a method of handling 

i/o requests v/hich results in less degradation of the UER 
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than that specified by equation 6.6 above. In order to 

simplify the discussion and the following derivation, let 

us assume that the ratio (m/t )/I?IO is an integer v/hose 

value is N>1, This means that exactly 1/N of the total 

memory cycles of any given memory, say M-, are used by the 

i/o. Furthermore, let us assume that the i/o requests are 

generally for sequential memory locations and hence M.. re- 

ceives an i/o request exactly once for every N cycles. Let 

us assume that there is associated with each memory a one 

word buffer to hold the i/o information and a control mech- 

anism to implement the following strategy: 

1. If less than N - 1 cycles have elapsed since 

the i/o request was received, the processor re- 

quests have priority; an i/o request is serviced 

only if there is no processor waiting for service, 

2. If N - 1 cycles have elapsed and the i/o 

request has not yet been serviced,the i/6 re- 

quest gets the current memory cycle. 

We term this dynamic priority i/o handling. 

Let us consider a sequence of N cycles for M.. 

The probability that a given cycle is occupied by a processor 

request is p(A) specified by equation 6.2. The probability 

that a given cycle is not occupied by a processor request 

is .1 - p(A). In the absence of i/o requests the probability 

that k of the cycles are used by processor requests is 

specified by a binomial distribution: 

■  .  ■■■  ..   .  -..   .....    -      .;  .■  ' .     ■ ;._  .     . 
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P(k) = (£)(p(A))k(l - P(A))N"k; k=0,...,N. (6.7) 

Let C be a random variable equal to the number of cycles 

used to service both i/o and processor requests during the 

N cycle sequence. The expected value of C is: 

E(C) = 1 +
NZ: (k)(p(A))k(1 - p(A))N-kk * 
k=0  K 

(N - l)p(N). (6.8) 

In the above expression, the first term accounts for the 

cycle received by the i/o, and the second term accounts 

for the cycles received by up to N - 1 processor requests. 

The last arises because even if the processors request all 

N cycles of the N cycle sequence, they only get N - 1; the 

i/o gets the remaining one. Equation 6.8 may be rewritten: 

E(C) - 1 ♦ XT (2)(p(A))k(1 - p(A))N-k - p(N). 
k=0 K 

(6.9) 

The summation represents the expected value of the number 

of processor requests during the N cycle sequence; hence 

it is just Np(A). Thus: 

E(C) = 1 + Np(A) - p(N). (6.10) 

The average occupancy of a memory cycle over the N cycle 

sequence is E(C)/N; we can then compute R for this case: 

R = (m/tc)(E(C)/N) 

= (m/tc)(1/N + p(A) - p(N)/N). (6.11) 

Since we assumed N = (m/tc)/RI0 we have: 

R = (m/tc)(i^ + (1 - (1 - l/m)n - ^S(l - (1 - l/m)n)N) 

(6.12) 

-      -----      -   - - ■  -■-  - .  —-^ . :... 
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As before the TIER is determined by subtracting RIO from 

R: 

ÜER = R - RIO 

= (m/tc)(1 - J^O - (1 - l/m)11)1^1) x 
c 

(1 - (1 - 1/m)n). (6.13) 

The latter is just the TIER without i/o multiplied by the 

factor 1 - (RIO/(m/t )(1 - (1 - l/m)n)N"1. Since c 

(1 - (1 - l/m)11)11""1 <1 this method of i/o handling results 

in a lov/er degradation of the processor performance. If 

(m/O/RIO is not an integer, then substituting for N in c 

equation 6.13 the largest integer not greater than (m/t )/RIO 

gives a satisfactory approximation for the TIER. 

D. Example 

Consider a k  processor, /f memory system with 

t = t = tv/ = 0.5 usec. and RIO = 10 requests/sec. The 

UER without i/o is computed from equation if, 11: 

UERCwithout i/o) = U/l.O x 10"6 sec.) x 

(1 - (1 - Uk)k) 

= 2.73 x 106/sec. 

V/hen the i/o is considered without, the dynamic priority 

scheme we use equation 6.6 to find: 

ÜER(siraple i/o) = (1 - 1 A)(2.73 x 106/sec.) 

= 2.02 x 106/Eec. 

If we implement the dynamic priority i/o handling we find 

N = (m/tc)/RI0 ■ If and hence using equation 6.13 we have: 

. pi 
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UER(dynainic i/o) = (1 - (1A)(1 - (1 - 1A)V) X 

(2.73 x 106/sec.) 

= 2.52 x 106/sec. 

The TIER with the dynamic priority scheme is about 2.5% higher 

than that obtained v/ithout it—a substantial improvement. 

Let us define a memory efficiency e as: 

total memory cycles used/sec. 
m  total memory cycles available/sec. 

.ÜER t RI0  (e.iif) 
m/tc 

and a processor efficiency e as: 

total instructions executed/sec. 

■P  total number of instructions executed 
if there were no memory delays/sec. 

= ^P. (6,15) 

We can now compute the efficiencies for the proceeding 

example: 

1. No i/o: 

= 2.7? x TO*; = 0#67 
m  If.00 x 10b 

. 2.7? x 10*; . 0^ 
p  8.00 x 10b 

2. Simple i/o : 

. ?.02 *  IQ' . 0-75 
B  4.00 X  )Ob 

. 2.02 x 10^ . 0#2S 
p 8.00 x 10° 

■ . ■   ■   .  . ■   ■   .  . 
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3. Dynamic i/o: 

m      4.00 x 106 
= 0.88 

e    , 2^2 x 10° 
p      8.00 x 106 

= 0.32 . 

• .. « 
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Chapter VII Computer Design 

A. Optimization Approach 

The purpose of this chapter is to Indicate how 

the multiprocessing models of chapter IV can be used in a 

simple automatic design program. An appropriate context 

in which to consider the deslgh process is that of an opti- 

mization problem. The nature of the optimization problem 

is to relate the costs of a proposed design to the variables 

which reflect its structure and then choose the values of 

the variables so that required performance is obtained and 

the cost of the design is minimized. We have taken the TIER 

as the basic measure of computer performance and the form- 

ulas of chapter IV relate the ÜER to the variables t , t , 

tj, t , ra, and n. If we can also relate the costs of the 

design to these variables we have the necessary relationships 

to formulate the optimization problem and hence to Implement 

an automatic design program. 

B. Costs and the Problem Formulation 

The three types of components whose costs we 

consider to enter into the overall cost of the multiprocessor 

system are memories, processors, and switches. While it 

is interesting to consider the possibilities of relating 

by formula the costs of the components to their specifi- 

cations, the relations would be both rather difficult to 

obtain and probably (because of the discrete nature of the 

.... 
..■.,.■.           . . 
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manufacturing process) not very meaningful. Hence we shall 

assume that the costs of the components are related to the 

variables In a tabulated form. 

There are several considerations that enter Into 

the determination of the individual component costs: 

1. Switches: The switch has to connect n pro- 

cessors to m memories. Hence there are m x n 

potential connections implied in the structures 

we are considering and if the cost to realize 

a simple switch is C , the total cost for the 

multiprocessor switch is about n x m x C . 

2. Memories: As indicated in chapter II, the 

cost per word of a coincident current magnetic 

memory is lower in memories of a larger number 

of words than in one of a smaller number of words. 

We assume that the total memory system has been 

specified in advance to have w words. If the 

cost of a memory of w words and cycle time t„ 

is C ( w ,tc),then the total memory cost with 

an m- way interleaved memory is m x C (w/m,tc) 

assuming that a memory is available in that size 

and speed. The value of tw is determined once 

t is specified and the former is not considered 

a design variable. 

5. Processors: The cost of the processor is 

dependent on the many different speeds associated 

with its .internal operations. Once an instruc- 

iMIj^^llllplrtlMllillll^lllllllllllM'flilllilW'MWilllll' '  '       ' '-■""'•"'"'" -""■"—' «—«- "■■'"^,"''mMW"«*m*«*<*l*UiS^«iM;j|igjJ^gjg|| 
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tion mix has bean specified a single value t 

Is determined by equation 4*2 • The cost of 

the processors is then n x C_(t ), 

The above relations allow the cost C of the 

multiprocessor computer to be expressed as: 

C « m x Cm(w/m, tc(tw)) ♦ n x Cp(tp) ♦ 

mxnxCs (7#1) 

The performance of the multiprocessor computer is specified 

by equation (4.11),Of. 19) or (If.22) depending on the re- 

lationship of t^ to tw. We symbolically include all three p   W 
equations in the following: 

ÜER = ÜER(tp, tw, tc, m, n). (7.2) 

We now state the optimization problem as: 

minimize C 
    

such that UERMJERrequireci 

where C and UER are specified by equations 7*1 and 7.2. 

To this other constraints may be added; for example, one 

limiting the number of processors or stating that the num- 
■ 

ber of processors must be greater than two. 

The approach we have taken to solve the optimi- 

zation problem is an exhaustive search over the possible 

values (as tabulated) of t and tc (implying tw) and over 

a specified set of values for m and n. A search space of 

no more than ICT* points exists if we assume about 5 to 10 

values for each of the variables. 

9   ■ 
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in Algol prograo «as «ritten for the Univac 1108 

to evaluate equations 7*1 and 7.2 over a specified set of 

values of t_, t_, m, and n and pick the optimum. Despite 
P  c 

the iract that the exhaustive search approach lacks sophis- 

tication (although It 1P difficult to think of other tec- 

niques that could be used) it has the definite advantage 

that all potential structures are evaluated. Furthermore, 

the search is carried out sufficiently rapidly (about 0.2 

sec./I00 structures) that there is little incentive to 

consider other methods. Thus, in addition to choosing the 

optimum structure, the costs and performances of the sub- 

optimal structures are also available and it is interesting 

to group them according to their performance and the con- 

straints violated. It is always important to the designer 

to know «hat the sensitivity of a proposed design is to the 

design constraints and objectives; that is, how the design 

would change if the constraints and objectives were altered 

somewhat. This Is readily determined if an evaluation of 

all potential structures in the design space is available. 

Note    that the above formulation of the 

optimisation problem is not the only one possible. A de- 

sign goal might be to design a system that has the maximum 

D5R possible but does not exceed a cost Cmav • Another 

design goal might be to design a system which lias the mini- 

mum cost/performance ratio (the cout of executing an in- 

struction per unit time is a minimum). The reformulation 

of the optimization problem to handle these cases is per- 

■/ 
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fectly straightforward. In the subsequent sections we 

present two examples: one minimizes the system cost for a 

given UER; the other minimizes the cost/performance ratio. 

C. Example 1: Minimization of System Cost 

For this example we have the components avail- 

able as listed in table 1.  The design objectives and 

constraints are: 

1. The UER must equal or exceed 10 instructions 

per second. 

2. The total memory size must be Sk K words. 

5. The number of processors must not exceed 

four, 

4. The total system cost must be minimized. 

The component costs are also indicated in table 1.  They 

were chosen rather arbitrarily but they are probably not 

unrepresentative for memories in the 18 to 2k bit per word 

size and the related processors. 

There are over 100 configurations which meet 

constaints two and three; k9 meet constraint one, and of 

these, four a^e presented in table 2.  The optimum design 

is indicated by an asterisk; it is a three processor system. 

The other designs presented are the best (in terms of cost/ 

performance ratio) using one, two, and three processors. 

Overall,the best cost/performance ratio is found in the 

four processor system. The best single processor system 
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Memory: 

Size 1.0 ueec. 2.0 ueec. if.O ueec. 

ifK »4000 $3000 $2000 

8K 7000 5000 3000 

16K 10000 7000 4000 

Processor: 

0,5 usec. 1.0 ueec. 2.0 ueec. 

150000 820000 «10000 

Switch: 

S500/coiuiec tion 

Table 1. Example 1 Coste 
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Design  m 

1 

2 

5 

'k 

k 

k 

k 

k 

3 

2 

k 

1 

1.0 

1.0 

1.0 

1.0 

P 

2.0 

1.0 

2.0 

0.5 

UER 

1.15 

1.25 

1.^9 

1.00 

Cost  Cost/UER 

76000 

8^000 

88000 

92000 

6.61 • 

6.72 

5.91 

9.20 

Units: 
t^.t^ — usec. 
UER — 10 instructions/sec. 
Cost — $    p 
Cost/UER ~ 10" $/instruction/sec. 

Table 2. Example 1 Designs 
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costs appreciably more than the best multiprocessor system 

and has an appreciably highor cost/performance ratio. 

D. Example 2: Minimization of Cost/Performance Ratio 

For this example we use cost data from a real 

computer system: ehe Digital Equipment Corporation PDP-10. 

This is a 56 bit word, single address instruction format 

computer which has facilities that enable it to be used 

in a multiprocessor configuration. The components available 

to build PDP-10 systems and their related costs are given 

in table 3#  In order to put the example in realistic 

terms, we will deal with the actual IER of a typical but 

simplified instruction mix. The mix chosen has a scien- 

tific computational bias: 20% floating point multiply, 

30% fixed point add, 20% branch, and 30% load/store. The 

branch instruction is not in the single address format; 

it has no operand reference. The PDP-10 System Manual 

(Digital Equipment Corporation, 1968) gives a rather elab- 

orate breakdown of the processor execution times (as dis- 

tinguished from instruction execution times) for the various 

instructions and the value of t for the mix above is com- 
P 

puted to be 1.08 usec. Taking in to account the branch 

instruction, there are an average of 1.8 memory references 

per instruction; hence the actual IER = UER/1.8. 

The design objectives and constraints are as 

follows: 

■.. 

■ | 
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Processor: 

Switch: 
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Size 1,0 usec. 1.8 usec. 

8K SlfOOOO 

16K 51000 

32K $70000 

6itK 112000 

128K 196000 

1.08 usec, 

$151000 

$1500/connection 

Table 5. PDP-10 Costs 

(Costs obtained from "PDP-10 Pricing Summary", Digital 

Equipment Corporation,Maynard, Mass., March 50, 1969) 

. 
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1, The main memory size must be 256K words. 

2, The IER must equal or exceed 0,5 x 10 

instructions per second. 

3* The number of processors must not exceed 

four. 

^f« The cost/performance ratio must be minimized. 

The eleven system configurations which meet con- 

straints one, two, and three are given in table Zf.  The 

system which meets objective four is indicated by an aster- 

isk. As in example 1, the best performance/cost ratio is 

obtained with four processors. Objective two is such that 

it cannot be met with less than two processors; the best 

two processor organization has a cost/performance ratio 

about 20% higher than the four processor organization. 

jjjSägßÄaujgjii 
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sign m n 'c IER Cost 

1 16 2 1.0 0.67 1.12 

2 k 2 1.8 0.55 0.75 

3 8 2 1.8 0.58 0.86 

k 16 5 1.0 0.98 1.27 

5 2 3 1.8 0.5^ 0.85 

6 4 3 1.8 0.72 0.90 

7 8 3 1.8 0.82 1.02 

8 16 ^ 1.0 1.29 UkZ 

9 2 4 1.8 0.58 1.00 

10 ^ k 1.8 0.85 1.06 

11 8 k 1.8 1.05 1.17 

Units: 
t — usec. 
c      r 

IER — 10 ^instructions/sec. 
Cost — 10b$ 
Cost/IER -- $/instruction/sec. 

Table if. PDP-10 Designs 

Cost/IER 

1.67 

1.38 

1.Jf8 

1.29 

1.56 

1.26 

1.25 

1.11 • 

1.72 

1.24 

1.13 

■ 
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Chapter VIII Conclusion 

A. Summary 

In the preceding chapters we have presented a 

series of analytic models which quantitatively relate the 

performance of a certain class of computer structures to 

the basic component variables. We have corroborated the 

analysis with simulation studies and used it in a simple auto- 

matic design program. As stated in chapter I, a major goal 

of this thesis is to derive analytic models whose use would 

facilitate the design of digital computers. The question now 

arises:  to what extent the analysis is actually useful in 

the computer design process and what extentions, if any, 

might be made to make it more useful? The answer is sug- 

gested by a review of the design program of chapter VII, 

In example 1 (of chapter VII) there are over 100 potential 

computer structures which meet the processor and memory con- 

straints. In less than 0.2 seconds of Univac 1108 computer 

time these structures were determined, their performance and 

costs evaluated, and the optimum structure picked. The 

evaluations of the sub-optimal structures allow us to in- 

teract with the design process in the sense that we can see 

how the optimal structure changes if the design objectives 

or Constraints are changed somewhat. 

For the computer designer this type of activity 

is an economical tool to generate an initial set of design 

■■■■.....   ■  ■   ■ ...        . -  . ■ 
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alternatives. At the present state of development, the 

design program clearly does not design computers, but it 

does make some preliminary steps toward that objective. 

The generation of initial design structures and the in- 

sight gained from the models into how those structures 

behave certainly is valuable to the computer designer and 

hence this thesis has probably succeeded in its objectives. 

There does remain, however, a most interesting prospect 

for further automation of the computer design process and 

'"r«  feel that, with softie extentions of the models and the 

design program,    this prospect can be realized. 

B. Extentions of the Models 

In chapter II it was assumed that all instructions 

and operands occupied one memory word and that instructions 

were of the single address format type. In most real com- 

puter^ such a situation does not exist. Normally there are 

at least three different operand formats: fixed point 

numbers, floating point numbers, and symbols (character 

strings); and there are multiple instruction formats. In 

general, each of the operand and instruction formats is of 

a different size. Since the primary memory word size is 

fixed, efficient utilization of the memory requires that 

one or both of the following techniques be employed: (1) 

pack more than one instruction or operand in a memory word 

or (2) use more than one memory word to hold an instruction 

or operand. Technique (2) usually slows down the IER re- 
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lative to the case where there Is one Instruction (or 

operand) per memory word since more than two memory refer- 

ences are required to execute an instruction. Technique 

(1) may actually result in an increased IER. If two in- 

structions are packed in a memory word, the processor can 

obtain the current and succeeding instructions with just 

one memory reference. 

As an illustration of the foregoing^ consider a 

computer which has the following formats: 

1. 2if bit instructions 

2. 24 bit fixed point numbers 

3. A-8 bit floating point numbers 

Zf. 8 bit characters. 

The main memory word size for this computer might be 48, 24, 

or even eight bits. The choice depends on the relative 

use of the various formats and the level of performance 

desired, A high performance computer with heavy floating 

point usage would obviously have a 48 bit word size while a 

lower performance computer primarily manipulating characters 

would probably have an eight or a 24 bit memory word size. 

The foregoing type of considerations represent 

a major activity in the computer design process. The design 

program of chapter VII could be extended to handle consider- 

ations of this type if the appropriate input information 

were available. This information would include the relative 

!* 
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usage of the various formats and their sizes. Various 

primary memory sizes could be tried by the design program, 

and for each size a relationship r between the IER and UER 

would be defined (such that r x IER ■ ÜER), as well as a value 

of t . These definitions would essentially be a formall- 

zatlon of the Ideas that were discussed In section B of 

chapter IV.  The value of t would be defined as the aver- 

age amount of processor time per memory reference and It Is 

a function not only of the processor speed but also of the 

memory organization and the Instruction and operand formats. 

The value of r would, be defined as the average number of 

memory references made to execute an Instruction and It Is 

also a function of the way operands and data are mapped Into 

the memory. With both r and t defined, the design program 

would be essentially as that In chapter VII. 
• 

C. A Proposal for Continued Work 

It Is proposed that a design program be Imple- 

mented which would specify the high level structure for a 

computer so that a desired IER Is realized and that the cost 

of the design Is a minimum. (Other design objectives and 

constraints Involving costs and performance could of course 

be used.) Such a program would undoubtedly be Interactive 

so that the designer could see the effect of varying the 

Input design objectives and constraints. The Inputs to the 

design program would be the following: 

1. The component costs; 



Z,    The desired IER and other constraints such 

as total memory size, limits on the number of 

processors, and so forth; (The constraints might 

be specified In complex ways. The total memory 

size might be made a function of the number of 

processors with the memory size Increasing as the 

number of processors Increase.) 

3* The Instruction and operand formats and their 

associated relative frequencies; 

^. The I/o activity—possibly as a function 

of the total memory size and the number of pro- 

cessors. (Indeed, If the I/o activity were known 

as a function of memory size, the memory size 

might be made a design variable rather than a 

constraint.) 

The design program would then pick the number of memories and 

processors, the memory word size (and possibly the total 

memory size), and the memory and processor speeds. Since 

this design program essentially Includes the Instruction 

set as one of Its Inputs, It might be possible to Inter- 

connect It with a design program which specifies Instruction 

sets (Haney, 1968) thus potentially extending design auto- 

mation to cover several levels of the computer design pro- 

cess. 

- 
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Appendix 

The simulator handles three classes of instruc- 

tions: 

1, Class 1: Siugle address format 

2, Class 2: Instruction without operand reference 

(like a unit instruction) 

3, Class 3: Write instructions (no processor 

execution time and an operand memory reference 

time of t„). w 

An instruction execution consits of two phases: (1) the 

instruction reference and decode and (2) the operand re- 

ference and execute. Class two instructions have no phase 

two; for them the execute is accomplished in phase one. In 

the simulator each phase is handled as the execution of a 

unit instruction. 
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COMMENT RFAP r.EMORY RESTORE, MEMORY CYCLE AND 
INSTRUCTION OEFODE TlPFSjf  

READ(TWfTC ,TD)S 
TA-TC-TTS 
KRiTEirns 
FOR K«< 1 , l.,U) 00 

BEGIN 
REAOtMf NK 

ÜE6IN 

3 
IfiTCGtP APr.'»'Y P,C(1.,N)5 
REAL ARFAY TT,TP(I».N>»TM<1.♦M)* 
FOR L"« I . 1 ,N ) DP PU )»1» 
R»S«I"1S 

COMMENT CC COUNTS THE NUMBER OF UNIT 
INSTRUCTION? EXECUTCD« 

FOR CC"<I,I,Y) 00 
BEGIN 

COMMENT CHOOSE A MEMORY — DETERMINE J» 
FOP L=l,2,3 DO R=M00(5»R,Z)« 
j«(R»M)//z*i$ 

■  ■■ ■-  ......... 

■ 
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r^ 
5S 
S6 
•i? 
58 
F.9 
/.0 
Al 
<f.? 
A3 
ÖH 
A?> 
6A 
A 7   
S8 
A« 
;T 
71 
72 
73 
7M 
7b 
7A 
77 
78 
79 „.. 
«0 
81 
82 
^3 
IM 
as 
8A 
87 
Ofl 
AV   
9'I 
91   
92 
93 
9M 
95 
9 6 

. 97  .._ 
91 
99 
100 
101 
102 
103   
104 
10'i  .. _ 
IOA 
107 
108 
109  _. 
no 
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COMMENT CHOOSE A PROCESS« -- OTERMINE IS 
FOR L«(|,1,M» nO IF TPILI 
LSS TP(U THEN I»L« 

COMMEriT IF PHASE ONE CHOOSE * NEW INSTRUCTION. 
GENERATT A RANDOM NUMBER IN (0,1) AND CHOOSE 
INSTRUCTION WHOSE CUMMULATIVE PROBABILITY FIRST 
EXCEEDS THAT NUMBERS 

IF P(1) EQL 1 THEN 
-— -~~ BEGIN   - -—■-- — 

FOR L«lf2»3 00 S«MOD(S«S»Z)» 

L«l$ 
FOR L«L WHIf,E P 6TR CPCL» 
00 L»L*!5 
C{ I )«IC(L)$      -.-_.. 

COMMEUT TT-PROCFSSOR FXECUTION TIME FOR THE 
SELECTED INSTRUCTION. UPOATE MEMORY AND 
PROCESSOR TIMES (INSTRUCTION REFERENCE PHASE)« 

TTM )-IT(L)« 
TM(J)aMAXlTP(I).TMIJ))*TCS 

TPJl )«TMU)-TW + TO$     — —- 
COMMENT IF INSTRUCTION IS OF CLASS 2 NO 
ADDITIONAL MEMORY REFERENCES NEED BE MADE» 
UPDATE PROCESSOR TIME BY EXECUTE TIME.  PHASE 
REMAINS ONE SO THAT A NEW INSTRUCTION IS CHOSEN 
FOR PROCESSOR I.  IF INSTRUCTION IS NOT OF 
CLASS 2, THE.PHASE IS SET TO 2S       

IP CtH EQL 2 THEN TP(I)- 
Tpuumn ELSE p(n«2$ 
ENO ELSE 
BEGIN ._ ..._ _  
PM)«I$ 

COMMENT UPDATE MEMORY AND PROCESSOR TIMES  
I INSTRUCTION EXECUTION PHASE)« 

IF 1 THEN 

COMMEMT COMPUTE 
INSTRUCTION 

COMMENT COMPUTE 
TIME.  FORM THE 
COMMENT IF D_J 5 
COMPUTE RP THE 
EXECUTIONS  

C(l) EQL 
BEGIN 
TM(J)«MAXCTM|J),TP(|) 
^TC« 

  T P ( I ) • T M ( J J - T I« ♦ T T ( U S 
END ELSE 

TMCj)«MAX.(TM(J) »TP(I ) )*TW! 
END« 

ENDS      .„. 
A«0« 

FOR L»(l,l,M) .00 .A«A*TMtL)S.  
FOR L«(|,|.N) 00 A-A*TP(L)S 
RO THE OBSERVED RATE QF .__  

EXECUTION« 

ROaY»(M + Nj/AS   .1    
A»OS 

  FOR L»(l,1,NI) DO A»A+IT(L)S 
TTP»lTD*A/NI)/2« 
THE AVERAGE PROCESSOR ACTIVTY 

DIFFERENCE OF TTP AND TWS 
LESS THAN OR EQUAL TO ZERO  

PREDICTED RATE OF INSTRUCTION 

OaTTP-TwS 

"■ .',.^  i.-^' " 
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.113   
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115    
I 16 
11/ 
114 
117 
12') 
\2\ 
l.?2 
1,?J 
\2'\ 

.   IZii  
\2h 
127 .--. 

129    
tin 

131  
END OLOcK 
132 -. 
133 

END «LOCK 
1 3 "4 

END BLOCK. 
I3r> 

REL\Ti;lN Xa( l-F'M/M) «»fj, 
RAPHSOU SEARCH TO FINf) X 

OF X 13 ONE. 
iTErtATlONS MN 

THE 
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IF D LEQ Q THEN 

BEGIN 
V«(|-1/M)««N$ 
«P«M*(1-V4/(TC*V«P)S 
END ELSE 
BEGIN 

COMMEMf SOaSTlTUTE I iJ EQUATION FOR THE 
EXECUTION 'HTE iVHEi?E TP IS GREATER THAN TW 
..... ...... «..-..».. ,^ . .....   T(1Erj USE NEWTON- 

THE START IMG VALUE 
THE SEARCH STOPS "VHEN SUCCESSIVE 
X DIFFER BY LESS THAN .001$ 

X=lai 
T»D/(M«TC>5 

 .TOR H«(T*X*»N*X-1 + 1/M-T)/ 

(N»X»««M-I)♦!) 
WHILE   H   GTR   O.OOl    DO   X«X-H$ 
RPSM(»(J.X«*N>/TCS 

END« 
WR1TE(F2,M,N,TC,TW»TTP,R0IRP» 

RO/RP)S .  _.... 

ENDS 
EMD'-i 

ENDS 
-1      , 
EIJDs 

COMPILATION   COHPI-LTE 

■   . 

-■ 

-    ■ 
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