

AN ANALYSIS
of the
INSTRUCTION EXECUTION RATE
in
CERTAIN COMPUTER STRUCTURES

William Daniel Strecker

Electrical Engineering Department
Carnegie-Mellon University
June, 1970

Submitted to Carnegie-Mellon University
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

D C
DD[EDBHE’J

SEP 16 1910

iU 5
— G~

This work was supported by the Advanced Research Projects Agency
of the Office of the Secretary of Defence (F44620-70-C0107) and
is monitored by the Air Force Office of Scientific Research. This

document has been approved for public release and sale; its
distribution is unlimited.

ii

Atstract

The purpose of the thesis is to present a series
of models of digital computers at the level of the memory
processor interface. A discussion of computer instructions
is presented and the single address format is taken as the
prototype instruction. The execution rate for instructions
of this type is then determined for several computer struc-
tures of the single processor and general multiprocessor
types. The effect on the execution rate of a specialized
processing activity, input/output handling, is considered.
Analytic models relate the instruction execution rate to
the memory and processor speeds, their number, and their
interconnection. Simulation studies serve to verify the
results of the analysis., A .simple automatic design pro;
‘gram 1s proposed which optimally configures qomputer struc=-

tures from a set of available components.

1i1

Acknowledgements

I would like to express my appreciation to
Professor Gordon Bell for his guidance during the course
of my research and to my wife, Carole, who greatly as-
sited in the mechanicel preparation of the thesis.

LQ!

3

-,

iv

Table of Contents

Abstract

Acknowledgements

Figures

Tatles

Chapter I Introduction

A.
B.
C.

Chapter II Computer Components and Instructions

A.
B.
C.
D.
E.

Computer Modelling
Computer Analysis
Computar Synthesis

Memories

Processors

The Computer Instruction
Instruction Timing Diagram
The Instruction Execution Rate

Chapter III Single Processor Computers

A.
B.
cC.
D.
E.

Single Memory

Interleaved Memory

Interleaved Memory--Alternative Analysis
Instruction Buffering

Instruction Prefetch

Chapter IV Multiprocessor Computers

A.
B.
c.

The Multiprocessor Problem
Modified Instruction Format

Multiprocessor with tp = tw

Page
ii

iii
vi

vii

-

o oo W N

1
13
"
17
19
19
21
2l
27
31
35
35
38
X

D.
E.

Multiprocessor with tp< tw
Multiprocessor with tp > tw

Chapter V Simulation

A.
B.
C.
D.

Reasons for Simulation

The Simulator

Results

A Comparison with Other Simulation Results

Chapter VI An Analysis of I/0 Effects on

A,
B.
C.
D,

Processor Performance
I/0 Activity
Simple I/0 Handling
Dynamic I/0 Handling
Example

Chapter VII Computer Design

A.
B.
C.
D.

Optimization Approach
Costs and Problem Formulation
Example 1: Minimization of System Cost

Example 2: Minimization of Cost/
Performance Ratio

Chapter VIII Conclusion

A.
B.
c.

Appendix

Sumnmary
Extentions of the Models
A Proposal for Continued Work

References

Bibliography

46
49
54
51
514
514
59

69
69
72
74
77
80
80
80

8L

87
91
91
92
9l

96
100

102

ot 2N siliah 3

vi

Figures

1.
2.
3.
b
5.
6.
7
8.
9,
10.
11,
12.

General Computer Configuration
Synthesis Procedure
Instruction Timing Diagram
Instruction Execution Tree

Prefetch Execution Tree

Simulator

Results for tp = tw
Results for tp = O.Itc
Results for tP 2 O.Ztc

Results for t_ = 2t
Results for Varying tc
A Comparison with Rosenfeld's Results

Page

15
26
3
56
61
62
63
64
65
68

mmﬂwm\‘mﬁmﬁ

Tables

1;
2.
3,
b

'Example 1 Costs

Example 1 Designs
PDP-10 Costs
PDP-10 Designs

vii

Page

85
86
88
90

E
|

*

t
™

Chapter I Introduction
A. Computer Modelling

The purpose of this thesis is to present a series
of analytic models of digital computers. The models relate
the performance of the computer as measured by the rate of
instruction execution to the specifications of its major
high level components, their number, and their intercon-
nection, The main components considered are memories char-
acterized by their cycle and access times and processors
characterized by the times required to perform each of their
operations. (A detailed consideration of the computer com-

ponents 3s given in chapter II.)

There are two reasons for doing the modelling,
The first is to gain a quantitative understanding of those
factors which govern the performance of digital computers -
analysis, The second is to assist in the design of digital

computers = synthesis,

A review of the computer literature indicates that

computer modelling at the level of the memory processor inter=-

face has been neglected.1 The probable reason for the
neglect is the mathematical difficulties associated with
analytic solutions of suitable models, A major contribution

T-»'I'here has been some analysis; these earlier results are
discussed in the relevent chapters of the thesis,

-l

———

= _“u'w

is concurrency and contemporary large computers such as the
CDC 6600 [Thornton, 1970) and IBM 360/91 (Anderson, et al.,

1967]) use concurrency in several parts of the computer.)

Since tne operations comprising a single instruc-
tion are normally intended to be carried out sequentially,
the presence of concurrent operations implies that for at
least some of the time more than one instruction is in the
process of being executed. The multiple iustructions
usually appear in either of two ways: in a multiprocessor
computer (with multiple instruction streems being simul-
taneously executed) or in a single processor computer simul-
taneously oxecuting successive instructions of a single

instruction strean.

The general class of computer structures is in-
dicated diagramatically in figure 1. A group of memories
(each indicated by an M) is connected through a switch (S)
to a group of processors (P). The memories are also connected
through the switch to a specialized processor, an input/output
channel (1/0), which is characterized by a constant memory
access rate, In the general case each of the memories and
each of the prdcessors can be different and the extent to
which any given memory is used by any given processor can
be specif;ed independently. For the analysis in the thesis
we considgr several special structures of this general
class. W& assume that all the memories and all the pro-
cessors are alike and we assume ' hat there is an equal

likelihood that any: given memory is used by any given pro=- ¢

of the thesis is the development of reasonably simple
approximate solution methods for the models proposed, As
is indicated in chapter V, simulation studies suggest that
the approximate sclutions are quite satisfactory.

B. Computer Analysis

The digital computer is an information processing
device and an appropriate measure of its performance is the
rate at which the information is processed, The primitive
computer activity (as opposed to computer component activity)
is the execution of an instruction. If we assume certain
things constant over a class of computer structures to be
anaiyzed - specifically, the instruction set and the memory
word size - then the performance of the computers can be
taken as equal t. the IER where the IER is the instruction
execution rata. The IER mainly depends on two factors:
component speed and concurrency. The execution of an in-
struction (A discussion of computer instructions appears
in chapter II) involves a sequence of operations by a
aemory and a processor. The IER is determined not only by
how fast these operations are carried out but also by the
number 0of operations being carried out simultaneously. (As
a practical matter the subject of concurrency is a rather
1m§ortant one, Technology imposes, at any given time, limits
on how fast basic operations can take place and the only

remaining factor that can be used to increase performance

is concurrency and contemporary large computers such as the
CDC 6600 [Thornton, 1970] and IBM 360/91 [Anderson, et al.,

1967] use concurrency in several parts of the computer.)

Since the operations comprising a single instruc-
tion are normally intended to be carried out sequentially,
the presence of concurrent operations implies that for at
least some of the time more than one instruction is in the
process of being executed, The multiple instructions
usually appear in either of two ways: in a multiprocessor
computer (with multiple instruction streams being simul-
taneously executed) or in a single processor computer simul=-
taneously executing successive instructions of a single

instruction strean.

The general class of computer structures is in-
dicated diagramatically in figure 1. A group of memories
(each indicated by an M) is connected through a switch (S)
to a group of processors (P). The memories are also comnnected
through the switch to a specialized processor, an input/output
channel (i/0), which is characterized by a constant memory
access rate. In the general case each of the memories and
each of the processors can be different and the extent to
which any given memory is used by any given processor can
be specif;ed independently. For the analysis in the thesis
we cc .3ider several special structures of this general
class., We assume -hat all the memories and all the pro=-
cessors are alike and we assume that there is an equal

likelihood that any: given memory is used by any given pro-

o o T

M P r
M P
M P
M | © .1/o
Legend:
M-= memory ’
P=~ processor
S-~ switch

i/0 == i/0 channel

Figure 1, Géneral Computer Configuration

cessor, We divide the structures into two classes: single
processors (a single P on figure 1) and multiprocessors
and provide a different type of analysis for each. For the
single processors (analyzed in chapter III) we introduce

a notation called an instruction timing diagram and with
the aid of it diréctly compute the instruction execution
time and then the IER., The basic approach taken ie to add
the average delay in accessing memory to the processor
time to get the total instruction execution time. This
4approach, while both straightforward and conveniently

used to examine processor features in detail, is very
awkward to apply to multiprocessor computers, and another
approach is indicated. For multiprocessors (analyzed without
i/o in chapter IV and with i/o in chapter VI) we introduce
a special instruction form called a unit instruction which
allows us to determine the IER directly in terms of the
rate of memory cycle utilization. The utilization is
.determined by an approach related to the occupancy problem

of combinatorial analysis.

C. Computer Synthesis

The models developed in the thesis relate the
performance of the compﬁter to the number, specificationms,
and interconnection of its components. These variables
are also those to which the cost of the computer is related.
If both cést and performance are related to common vari-

ables, it is possible to formulate a design procedure that

+ ?‘t

will choose compiater configurations that are optimum with
respect to certain design criteria.

Synthesis procedures are usually iterative as,
indicated in figure 2. A series of potential design con=-
figurations are generated, analyzed, and tested against
the design criteria. The best of the configurations (as
measured against the design criteria) is chosen. The
heart of the synthesis procedure is the analysis part.

The generation of the proposed configurat;ons can be either
simple in that all configurations (in some prespecified
design space) are generated or more complex in that the
configurationé generated are dependent on the results of

analysis and testing of earlier configurations,

The purpose of this thesis is not to consider
design procedures in detail. However, to illustﬁaté the
utility of the thesis analysis in design, a simplé design
program is presented in chapter VII. The program chooses a
configuration (in other words, it picks the number of n
memories and processors and their speeds) so as to realize

a desired IER at a minimum cost.

Begin

'

———Pp»| Generate a configuration

Analyze the configuration

Test the results of the

analysis against the
design criteria

:

Exit with the best configuration

Figure 2. Synthesis Procedure

b Fideris b

i et

L R e AR

-
RS S

» 7))

Chapter II Computer Components and Instructions

A. Memories

The structure and organization of the digital
computer is influenced by both what we think the computer
should be and by the technology of the computer components.
Probably memory technology has had more influence, histor-

ically, on'computer design than any other factor.,

The purpose of the memory is to hold programs
(sets of instructions) and the data (sets of operands)
to be processed. The time required to obtain information
from memory thus strongly influences (limits) the instruction
execution rate, For economic reasons it is generally
impossible to provide, in a single memory, bbth sufficient '
speed of operation to realize an adequate IER and still
have adequate memory size (number of memory words) to
hold all the programs and data associated with a computer
system. At times even a single program and its related-
data may face fhis limitation. Consequently, it is conven=-
tional that at least two forms of memory be present in a

computer system: primary and secondary.

The primary memory is a relatively small but

fast storage area for instructions and opérapds that can

be directly operated on by the processor. The information

stored in the secondary memory cannot be acted on directly
by the processor; it must first be transferred to primary
memory. The transfer of information between primary and
secondafy memories is an important activity in digital
computer systems, both because it interferes with processor
access to primary memory and because there is usually a large

access time associated with secondary memories.

Because of the general difficulty (or impossi-
bility) of predicting the processor accessing pattern, an
important requirement for primary memories is a random
access characteristic. For such memories, the time required
to access any word of information is independent of its loca-
tion in memory; in particular it is independent of the re-
lation between the location referenced and the last referenced

location,

At the time of writing the most common form of
‘primary memory is the magnetic core type. Magnetic core
memories typically used in computers have word sizes from
eight to over 100 bits (possibly 500 bits) and have total
word capacities from about 4K (K = 1024) to 64K. (The

sizes given are typical for single memory units. The en-
tire computer primary memory may be made up from a number

of memory units.,) Core memories have complete operation or
cycle times in the range of 0.5 usec., to 10 usec, The read-
out of information in a magnetic core is inherently a des-

tructive process; that is, the contents of the memory lo-

*

-

10

cation are lost when read. Since this is usually unde-
sired, the information must also be restored in the memory
after being read. This re-writing takes an additional
amount of time. Once the information is read out, however,
it is immediately available to a processor; the latter need
not wait for the festoreltime. The time elapsing between
the initiation of a memory request and the time the in-.
formation becomes avallable is the access time; it is typ-
ically 30% to 50% of the cycle time,

The cost of magnetic core qemories is generally
related to the cycle time and a very rough approximation
would give the cost proportionaljto the reciprocal of the
cycle time. Core memories are frequently of the coinci=-
dent current type and in these the cost of the electronic part
of the memory is roughly proportional to *he square root
of the memory size. The balance of the memory cdsf is
directly proportional to the memory size. Thus, the cost
per word is lower in large memories than in small; in par-
ticular a memory of w words costs less than m memories

of w/m words.

Another form of primary memory is the transistor
register type. These memories are characterized by very
fast access times of about 25 to 100 nsec, Their cost,
though, is such as to preclude their general use as pri-
mary memory. It is common, however, for contemporary

computers to provide a small amount (typically 8 to 64

1

words) of primary memory in registers. The registers are

often addressable as if they were locations in core memory.

The secondary memories store the large bulk of
information in the digital computer system., The principal
types of secondary memories are rotating discs and drums and
linear magnetic tapes. The cost of storage per bit in secon~
dary memories is about 1% to 10% of that in primary memory.
The low cost and large capacity of secondary memories is due
to the fact that they are not of the random acccss type. The
access time is‘dependent on the relation between the lasﬁ
and currently accessed data and the time elapsed since that
last access. The average access time for randomly located
information is half the time for a revolution (about 10 msec;)
in rotating memories and the time to search half the tape
(2 number of seconds) in magnetic tape memories. The max-
imum rate of information flow in a random access memory is
the reciprocal of the cycle time; in a non-random access
'memory the maximum is obviously not the reciprocal of the
average access time. For the typé of highly structured'
information flows that take place between the primary and
secondary.memories, the word flow rate (particularly from

drums) may appraoch that obtainable from primary memory.
B. Processors

The purpose of the processor is to obtain ine

structions and operands from memory, decode the instructionms,

and perform the required operation on the operands. Often

12

the speed at which arithmetic operations are carried out
strongly influences the IER, and it is fairly convéntional

to characterive processors by their arithmetic capabilities.
There are two principal types of arithmetic operands: fixed
point (integer) and floating point (fraction plus exponent).
Small to mediﬁm size computers usually have only fixed point
arithmetic operations built in; floating point operations are
programmed. The smaller computers may have only fixed point
add and subtract and even fixed point multiply and divide
must be programmed. TFor the purpose of discussing processor
times, instruction decoding and other typass of operations
implemented such as logical and control operations can be
grouped with the fixed point add and subtract instructions.
At the present time thése types of operations generally re=-
quire on the order of a few tems of nsec. to a few hundred
neec. A fixed point multiply or divide takes from a few hun-
dred nsec., to several usec. depending on the procéssor. Float=-
ing point operations, when implemenfed, have execution times
'in the range of about C.4 to 15 usec. The important rela-
tions in determining IER are, as we shall see later, between
the processor times and the memory restore tinmes. From the
preceeding discussion we surmise that for most contemporary
computers the basic fixed point operations require less time
to execute than the memcry restore time, The balance of the
other operations may, depending on the particular memory and
processor, have operation times greater or less than the mem=

ory restore time,

13

C. The Computer Instruction

Vie shall take as our basic computer instruction
the implementation of a binary (two operand) operation.
A general binary operation can be represented as:

result «- operand 1 [operator] operand 2,
In a computer we refer to information by its .location in
memory (specified by a memory address) and consequently
the prototype instruction is written:

1. (A)e—(B) [operator] (c)

2. Take (D) as the next instruction.
The notation (X) means the contents of the memory location
specified by address X. Thus B and C are the operand ad- %
dresses; A 1s the result addrese, The second part of the
instruction is necessary because instructions are executed

as part of a sequence; the location of the next instruction ie
of the scquence is specified by address D. j
i

A8 we can see there are four memory addresses
(A, B, C, D) associated with the prototype instruction.
These addresses must be specified somehow, but they need not
be explicitly included in the instruction; they can be speci-
fied in an implicit manner. The reasons for preferring im-
plicit specification of addresses are due to: (1) a potential
improvement in the IER by reducing the number of memory re-
ferences which must be made to execute the instruction and
(2) a reduced amount of memory space required to hold the
instruction. (If it requires k bits to encode a memory

14

address and J bits to encode the instruction operation, then
an instruction with n explicit addresses requires n k + J
bits of memory to hold it.)

'

In real computers a common impiementation of the
basic instruction is one called the single ad&ress format,
A register called the ac.umulator is implicitly specified
as both the location of one of the operands and the location
of the result. The next instruction address is implicitly
taken as the address of the current instruction plus one.
The single address format requires two memory references:
one for the instruction itself and one for. the operand. The
qingle address format is used as a prototype instruction for
the purposes of the subsequent analysis and the computer in-
struction ... ¢ is assumed to be made up entirely of this type
of instruction. In addition, each instruction and each

operand is assumed to occupy exactly one memory word.
D. Instruction Timing Diagram

The execution of an instruction of the single
address format involves the following steps:

1. The instruction itself is fetched from the

memory. The memory address of the instruction

is spocified implicitly by the address of the

previous instruction plus one.

2. The instruction once received from memory is

decoded yielding the operation to be performed and

the address of the operand to be used.

15
M ta Eﬂi ta ty ta .
f [f | 1|‘
| I
| | | | |
| ; | |
p | g | Vot U e
A A '
— 1 —l 2 i~ h—-—; —ia 4 — 5 —»
Legend:

1
2

3
L
5
ta
t

ta

instruction fetch
instruction decoding
operand fetch
instruction execution
next instruction fetch
menory access time
memory resiore time

instruction decode time

tei processor execution time

Figure 3., Instruction Timing Diagram

16

3, The operand is fetched from memory.

4, Once the operand is received by the processor

the operation is performed.
This sequence of events may be indicated diagramatically
by plotting simultaneously against time the memory
and processor activities. See figure 3, This construction
is termed an instruction timing diagram (ITD). The ITD
will be used to visualize the instruction execution and
(as will be seen in chapter III) to compute the amount of
time required to execute the instruction. The general
approach to be taken in computing instruction execution
times from the ITD is to pick corresponding points on suc-
cessive instructions and determine the time between them.
(Such points are indicated by A 's on the ITD of figure 3)
Sometimes the appropriate choice of corresponding points |
facilitates the determination of the instruction execution

time.

If there is more than just one memory capable qf
simultaneous operation the ITD is easily extended to hande
this case., In the following we have two memories Mi and
MZ; the instruction reference goes to M1 and the operand
referenéé to Ma.

M2‘ r
|
|
I

tL L' S

t t t.

a
M,

|
I
bd el

-t a— g
e ata—m — —

17

The interesting thing to note here is that once the in-
struction is decoded the operand reference can be immed-
iately made to M2‘ The time required to execute the in-
struction (assuming t;<t,) is shortened; this is a result
of the concurrent operation for a time of both memories,

Further discussion of this is deferred until chapter III.

E. The Instruction Execution Rate

The computer instruction set is assumed to consist
of a set of instructions Ii of the single address instruc-
tion format each with an associated value of processor ex=-
ecution time toi- The value of decode time tg is assumed
to be constant for all instructions, By examining the ITD
we éan determine a value ti to execute Ii where ti is clearly
a function of t_;, t4, ty, t,e In section D we saw that the
number of memories influenced the instruction execution
time; hence t; is also a function of the memory structure.
For the time being let us simply associate the memory struc-
ture with a variable S, Then we can write:

t; = h(tyy, tg, g ty S). (2.1)
Associated with each instruction I1 is a probability or rel-
ative frequency fi which gives the likelihood that any given
instruction is of type i. The average time E(t) required

to execute an instruction ik computed:
E(t) = Z fiti' (2.2)
i

18
ution rate is the reciprocal of the

The instruction exec

average execution time; hence:

IFR = 1/(‘? £1t4) o (2.3)

19

Cuapter III Single Processor Computers

A. Single Memory

Given that we have a single processor organi-

zation and a set of instructions in the single address

format with relative frequencies fi and processor execu-

tion times tei » We now wish to compute the IER,

there is a single memory the ITD is:

-

When

‘Since in chapter II we indicated that for most practical

situations td<tw , the important timing relationship is

that between tei and tw. The instructions fall naturally

into two classes:

class 1 ~ t <t

class 2 = tei>tw°

For 'instructions of class 1, the execution time for instruc-

tion Ii is:
ti = 2ta + 21:w = Ztc

(3.1)

Lw

s

20

where tc = ta + tw is the memory cycle time. For instruc=-
tions of class 2, the execution time is

ty =2t ¢t bty . (3.2)
The average execution time ror an instruction is defined

as in chapter II:

E(t) }:i £ty

oof(et)+ 3 of(2t, ¢+t + L) .
fec1 17¢ feccl & - W el

(3.3)
where ie¢cl and iec2 mean those subscripts which apply to

classes one and two respectively. Now let us make the

following definitions:

f1 = ;;21f1 (3.4a)
2. 3 f (3ub)
tyl = ﬁ/ﬂ)g;“fitei | (3.4c)
tg2 = (1/fa)i§§2fitei . (3.44)

From these definitions, f1 and f2 are the relative fre-
quencies of all instructions of class 1 and class 2 re=-
spectively., Similarly, tel and tea are the average re-
spective processor execution times for instructions of
class 1 and class 2. Substituting equations 3.4 in equa-
tion 3.3 glves:

E(t) = f1(2t,) + f2(2t, + tg + t,2) (3.5)
The form of the result suggests a simple way to compute E(t).

The average execution times (tel’and tea) are substituted

21

for ﬁei in the general expressions for the instruction
execution times given by equations 3.1 and 3.2 and then
the resulting values are weighted by the respective class rel-
ative frequencies. This approach works because of the
linearity of the averaging operation and applies not only
to the results of this section but also to those of the
subsequent sections as well. Hence we can disregard the
detail of the instruction set and in the subsequent anal-
| ysis perform only two computations analogous to those
represented by equations 3.1 and 3.2. The instruction
execution rate is obtained by taking the reciprocal of
E(t) as defined by equation 3.5:

IER = 1/(f1(2tc) + f2(2ta + tw + tea)). (3.6)
Since f1 + f2 = 1 and tc = tw + ta the latter becomes:
IER = 1/(2t, + £2(t 2 = t))). (3.7)

B. Interleaved Memory

We can see from equation 3.7 that even making
the processor arbitrarily fast (which makes f2 = 0) cannot
provide an IER greater than l/2tc . The IER could be
increased if it were possible to have the instruction and
its operand in different memories. This cannot be done

with certainty without greatly reducing the memory utilityl,

1Th'e obvious way to do this is to have separate memories

for the instructions and the operands, This approach
eliminates the (little used) generality to use operands

as instructions and conversely. More importantly it elim-
inates the ability to apportion freely the memory between oper-
ands and instructions as the need arises.

22

but we can propose a memory organization that achieves
this with a high probability. Suppose we have m-inde-
pendent memories, We arrange the memory addressing so
that successive-addrésses afe in different memories. In
particular if the memories are denoted M, ,..., M, , and
address O is in Md then address z is in M(z moéﬁlo,ﬁ5’
Such an addressing scheme tends to uniformly distribute
the operandé and the instructions among all the memories
regardless of their particular addresses.. We can then
make the reasonable assumption that the probability of
any particular memory reference being directed to any
particular memory is 1/m . Equivalently, if a memory
reference goes to M, the probability that the succeeding
reference also goes to-MJ is 1/m . The probability that
reference does not go to Mi is1 = 1/m . This,txpe of
memory organization is called an interleaved memory. The
ITD for the interleaved memory case with no’addfessing-
conflicts is: “

ftﬂ' tW4

Moty te £, ot
4‘1 ',w, g a v
I

| ||

l | 1 |

| li t 1
P L vdi el

A 1 ,2A

T TR

aids

23

We note that the value of ti is no longer deterministic;
rather ti is a random variable. In the following we compute
the average value of t; ; however for simplicity there is
no new notation introduced to indicate that it is an average
value. We recall that the general idea in using the ITD
to compute instruction timing is to pick corresponding
points on successive instructions and then determine the
time elapséd between the points. On the above diagram the
points used are indicated by A's. The potential conflicts
are indicated by the numbers 1 and 2 on the ITD, The time
elapsed between the first /\ and point 1 is t, + ty . With
probability 1/m a delay of ty - tq is encéuntered at this
point. From point 1 to point 2 a time ta + tei elapses,
With probability 1/m a further delay of ty - tgy is en-
countered hbefore the next instructicn can begin, Hence:
ty= b vty (/m)(E, - ty) + ¢, ¢
tes * (1/h)(tw" tey)
= 2b, + tg + tey + (1/m)(2t, - t, = t ,).
| (3.8)
We have implicitly assumed above that the instructions were
of class 1; for instructions of class 2 no delay can be
encouﬁtered at éoint 2. In a manner siﬁilar to the pre-
ceding we find for instructions of class 2 that:
by o= 2t ¢ by 4 by + (1/m)(E, - ty). (3.9)
E(t) is now found using the method of section A:
E(t) = fl(Zta + td + tel + (I/h)(th - td - tel))
+ rz(zta * byt tg2 4 (1/’m)(tw - td)) ‘

2L

=2t ¢ byt bt (1/m)(t, = tg) + (r1/m)(ty, = t 1)
(3.10)
where tem is the average value of processor execution time
for all instructions:
tey = L1(tg1) + £2(£,2). (3.11)
We now compute the IER:

IER = 1'/(21-.al sty + (1/m)(E, = tg) * top *

(f1/m)(tw - tel». (3.12)
For a large value of m the IER boacomes:
IER 2 1/(2t, + tq + tg,). (3.13)

Hence for an arbitrarily fast processor (t;,t,,e<t.)
the maximum IER is about twice that obtainable with a non=-

interleaved memory system.
C. Interleaved Memory =- Alternative Analyéis

In the last section we considered gll memory’
references to be random with the probability of a reference
to a particular memory 1/m. Hence, with this definition,
there is a non-zero probabllity 1/'m2 that an operand refer-
ence conflicts with the instruction reference ard that the
succeeding instruction reference conflicts with that operand
reference. This implies that two successive instructions
(which occupy successive memory locationg) afq located in
the same memory. But the interleaving scheme we have suggested
generally avoids this, It is of interest then to compute
E(t) if these double conflicts were eliminated. (The

double conflicts can occur only when tei‘tw and we shall

25

assume this for the following discussion,) Figure 4 shows

a tree structure of possible operation sequences. This is
presented to aid in the analysis. The probability of get- !
ting from one node of the tree to another is the produét
of the probabilities of all the branches connecting the
nodes, The probabilities of the branches are obtained as
follows:
1. The probabilities of branches 1-2 and 1-3 are
Just those normally associated with the conflict
of an operand reference with the preceeding
instruction reference. Hence they are 1/m and
1 =1/n respectively.
2. From the preceeding discussion branch 2-4
represents an impossible situation., Hence the
probability of branch 2-4 is zero and the prob-
ability of branch 2-5 is one.
3. The probability of branch 3-6 is not (as might
be expected) 1/m but rather 1/(m-1). Once an
instruction is obtained from a memory, say “3 9

and the operand reference is known not to conflict
with that of the instruction, the operand must

have been chosen from one of the remaining memories
_not including “3 o Since the next instruction
.reference is also made to one of these memories,
the probaﬁility of a conflict is 1/(m - 1), The
probability of branch 3-? is then 1 = 1/(m -~ 1).

s

26

next instruction

reference
Ztc
operand
reference
p=0 ¢
instruction
reference
taftwyte
O—
-taftdﬂ:w
Legend:

t +td+twﬁte

c=-- conflict a

nc == no conflict
p -- probability of branch

Figure 4, Instruction Execution Tree

27

The times next to the terminal nodes indicate the instruc-

tion times for the sequence ending at the node; they are

readily obtained from the ITD, We now compute ti:

= 2_ (time fror node 1 to node j)(probability
th'sag,Zetting from node 1 to node j)

= (1/m)(t, + tg + toy) + (1 = 1/m)(1/(m 1))
(ta + td + tw) + (1=1/m)(1 = 1/(mn - 1)) x

(tg * tq * tg * tyy)
= Zta + td + tei + (l/h)(atw - tei - td).
(3.14)
which is exactly the same as is obtained by the previous,

ty

simpler analysis.
D. Instruction Buffering

With an m-way interleaved memory it is possible
to simultaneously obtain the contents of m successive mem-
ory locations., Since successive .nstructions are normally
located in succéssive memory locations, it is possible to
organize the processor to perform the instruction references
for m.instructions simultaneously (the current instruction
reference and the next m - 1 instruction references). Let
us assume that the m instructions obtained are stored in m
fast processor registers,with an access time tr«ta o The
instructions are then obtained from the registers as needed,
Now up to s<m instructions (why s can be less than m is
dicussed shortly) can be executed which have an ITD as

follows:

a W .
M I [
| ta by
. T
|
t t
r r t
al ! u
Rt fad S
A A

We see that (except for the first instruction) the fetching
and decoding operations of the subsequent instruction can
be grouped with the processor execution of the current
instruction. This makes it appropriate to redefine (for
this section only) classes 1 and 2:

class l tei + tr + tdétw

class 2: 1:ei + tr + td>tw .
Using the approach of section B the values of ti are readily
obtained: ,

by o= by v (b + b+ ty) v (1/m)(E, =ty = t, = ty)

(3.15)

for instructions of class 1 and

by = by bt by by . (3.16)
for instructions of class 2, The time required to fetch
the m instructions is tc because the operand reference of
the first instruction necessarily conflicts with tbhe instiuce

tion fetca. To compute E(t) for a single instruction,-we:

29

apportion the initial instruction fetch time among the s
instructions executed. Hence using equations 3.15 and 3.16
we compute E(t):

E(t)

tc/s + f2(t, + ty + t2) +
f1(ta AN B P (1/m) x
(ty = Bl =ty = tg))
be/s + (b tg * bty + £+

(£1/m)(t, = £,1 = tq = t.). (3.17)
The IER is then computed:

IER = 1/(t /s + (t, + t4 + t

(£1/m)(t, - t 1 = £4 = t.)). (3.18)

+ tr) +

The reason that less than m instructions can be
executed is due to the presence.of branch instructions in
the instruction stream. Such instructions cause the pro=-
cessor to take the next instruction from a memory location
that is not the next successive memory location after the
branch instruction, Suppose that the relative freqﬁency
of branch instructions is fb‘ We shall characfefize the
instruction set by assuming that there is a constant prob-
ability Py = fb that any given instruction is a branch
instruction., Hence there is a probability 1 - Py that an
instruction is not a branch instruction. We now compute
the probability that a sequence of k instructions are ex=-
ecuted, For i<k<m there must be k - 1 instructions that
are not branches followed by a branch instruction. Let X

be a random variable equal to the number of instructions

Ly

30

executed, From the preceeding discussion:
P(X=k) = pk) = (1 = p) Tp 5 k= 1,000,m = 1
(3.19)
where p(k) is the probability of the k instruction se=-

th

quence. Regardless of whether the m™ instruction is &

branch instruction or not, the execution sequence terminates

at the mth instruction if it has not terminated earlier,
Thus:
p(m) = 1 = p(X<m)
= 1 - 1:21(1-pb) pbo (3020)

Using the fact that the sum of a finite geometric series

is:

> &= (a-a™N/0 - a)

k=1
we reduce equation 3,20 to

p(m) = (1 - p)", (3.21)
The expected number of instructions executed E(X) is then°

E(X) = Z kp(k)

=1

)k-1

Zk (1 - By . (3.22)

+ m(1 - Py

Writing the summation as

n-1
Pp 2 1 - p)k
d(1-pb) EE;(Pp)

and using the previously mentioned relation for the sum of

a finite geometric series, we reduce equation 3,22 to

31

E(X) = (1 - (1 -p.)"/p, . (3.23)
The expression for E(X) can now be substituted for s in
equation 3.18 yielding the IER for the buffered instruc-

tion case:

1

IER =
pbtc

1 - (01 -Pb)m

1
ittt eyt —Ef(tw'tel'td'tr)

(3.24)

For large values of m and small values of t; and tr 0
equation 3.25 becomes:

IER % 1/(pyt, + t, + top). (3.25)
Finally, for a fast processor and a low value of p, (for
scientific computing Py probably lies in the range of about
0.05 to 0.3) the IER appfoaches 1/ta which is about twice
the IER in the results of section B.

D. Instruction Prefetch

Normally computer instructions are intended to
be sequentially executed: in a stream of instructions, the
execution of instruction x + 1 does not begin until the
execution of instruction x is completed. However, it is
possible to organize the processor so that more than one
instruction is being executed at a time., It is possible
to éo to processors of considerable complexity (as for ex-

ample in the CDC 6600 and the IBM 360/91) in order to max~

imize the overlapping of instruction execution., In this

R i

S

32

section, however, we will discuss a modest form of con=-
currency of instruction execution: the instruction pre-
fetch. The idea of the instruction prefetch is quite simple:
the overlapping of the subsequent instruction fetch with
the processor execution time of the current instruction.

The ITD for this case with no addressing conflicts is:

t t

M ' a .. W
3 f next instruction begins
- - ta _ y
a . | . I l
a LW t
of [o E—
| | |
| S
I | | {-iksdruction enFs
| tal EJ X
7Y A

From the ITD we observe that the value of tei is not gding
to appear in the expression for ti . This perhaps sur-
prising result is a general feature of this type of con=-
currency. The rate at which instructions are executed is
dependent on the time which elapses between instructions
commencing execution and not on the time required to ex-
ecute a given instruction. There are, however, some side
effects to be considered., If the value of teqy 1s such

-that it extends to overlap the processor execution time of

[T e p——

the next instruction, then multiple processor execution
units must be provided, Also there must be checking to
insure that the result of the first instruction is not an

operand of the subsequent instruction.

Since tei is not going to appear in the final re=-
létions we do not have to consider f; and ts and we can
compute E(t) directly. Irobably the best way to find E(t)
is to use the instruction execution tree of section C,

The probabilities associated with the branches of the tree
are the saue; only the instruction execution times have

to be changed., The tree is presented in fipure 5. We
now,using the anproach of section C,coupute E(t):

E(t) = (1/m)(t, + t, + t,) +
(1 = 1/m)(t, + tg+ t, + t,)+
(1 - l/m)(ta *tgt ta)
2t + ty+ (1/m)(2t, + t, = ty). (3.26)

The IER can now be computed:
IER = 1/(2t, + tg + (1/m)(2t, + t, - t4)) (3.27)
which for small t; and large m goes to 1/2ta.

34

next instruction

reference
2tc

operand

reference
instruction
reference

1

P=1/n 0 1:a*'tw*' 1:a

O‘

p=1=-1/m O tartg*rtyt tw

p=t=1/(m~1)

Dtatty*ts

Figure 5, Prefetch Execution Tree

35

Chapter IV Multiprocessor Computers
A. The Multiprocessor Problem

One of the main reaéons er the anelsis presented
in chapter III is to indicate some limits on the IER ob-
tainable in a single processor computer. To get a higher
IER in a single processor computer (single instruction
stream) it is probably necessary to have a definite struc-
ture in the information to be processed. For example, if
the information can be structured as n-component vectors
and we organize the processor so as to have n execution
units which are capable of performing simultaneous oper-
ations on each of the n components (and provide a suitable
memory organization), then we can obtain an IER which is
about n times that which would be obtained if the data were
treated in a scalar form. This is essentially the approach
taken in the Illiac IV (Barnes, et al., 1968). As might be
expected there are considerable difficulties in realizing

an IER that high for many practical problems,

If the information to be processed cannot be so
structured, then to get a higher IER, it is necessary to go
to a multiprocessor organization (with multiple instruction
streams). We should note at this point that it is not the
purpose of this thesis to indicate how the multiprocessor
is to be used: in particular, how a single, inherently se-

quential task can be broken down into n tasks that can be

;?!t

' 36

run on an n-processor computer. For a d;scussion of this
see Rosenfeld (1969). A typical multiprocessor organization
is presentec in figure 1, The most important aspect of

the multiprocessor organization is the sharing of a common
memory system by all the processors. As the processors
randomly direct requests to the memories, it is inevitable
that conflicts will arise in that a processor will request
service from a memory that is busy servicing another pro-
cessor request. The function of the switch in figure 1 is
to direct processor requests to the correct memory and to
resolve conflicts by deferring requests to busy memories

to subsequent memory cycles. Since we assume that the pro-
cessor requests to the memories are random, we have what is
termed a stochastic service system; The study of such sys=-
tems is called queueing theory and in queueing theory
terminology the multiprocessor system is an m-server system
with a finite service requesting population (the n' proces=-
sors). The servers are unique in the sense that they can
handle only requests directed specifically toward then,
(Usually an m-server system is taken to be one ln' which any
server can service any request.) The memories are charac-
terized by constant service time ta followed by an interval
tw when they are unavailable to service requests. New re-
quests for service are generated by processors after some
interval (td or t ;) has elapsed since their last request

was serviced. These combined aspects of the multiprocessor

37

do not allow it to be handled by the common models of
queueing theory. It does not appear to the author that a
rigorous solution of this queueing situation can be readily
obtained. Given this, there are basically two approaches
that can be taken: (1) simplify the model sufficiently so
that it can be solved by rigorous methods or (2) attempt

an approximate solution. The latter approach is taken in
this thesis; the analysis appears in the subsequent sec-
tions of this chapter. The former approach is taken by
Skinner and Asher (1969). They model the multiprocessor
as a discrete Markov chain. The basic time iﬁterval is a
memory cycle time. They assume a matrix'of probabilities
which express the likelihood that a given processor requests
service from a given memory at the beginning of the memory
cycle. They also assume matrices of probabilities which
express the likelihood of the various outcomes that can
arise when there are simultaneous requests to one menmory
by several processors., The states of the modelled system
are characterized by the processors delayed and the memories
for which they are delayed. A state transition matrix

is formed from the previously mentioned probabilities and
from this matrix the steady-state probabilities of the
various states are determined, With this information the
average amount of delay experienced by a processor in

making a memory request is computed.

There are two problems with this approach. The first

38

is that as the number of memories and processors increases,
the number of potential states of the system becomes quite
large and it is difficult to obtain other than a numerical
solution. The second problem is obtaining the required pro-
babilities. The probability that a processor directs a
request to memory during a given time interval is dependent
not only on the relation of the memory speed to the proces-
sor speed but also on the amount of delay a processor ex-
periences in getting a memory request.serviced., Since, in
essence, that delay is what the analysis is supposed to
determine, it is difficult to see how the required proba-
bilities can be obtained in an analytic manner. (Skinner
and Asher obtain the probabilities that they use in their
model by first simulating the system and then making measure-
ments on the simulated system., The necessity uvf doing

this would seem to diminish the utility of the model,)

B. Modified Instruction Format

The previous discussion has assumed the single
address format instruction as the model of a computer

instruction. This instruction format has an ITD as follows:

= e A Ty g s ek S

39

The instruction consists of two instances of the following
operation sequence: the accessing of memory followed by an
interval of processor activity. Hence an execution of a
single address instruction can be approximated as two suc-
cessive executions of a simple instruction with the fol-

lowing ITD:

M a w
T
|
|

L m

where tpi’ the average processor activity time, is defined:
tpr = (tg + te3)/2. | (4.1)
This instruction is termed a unit instruction. The exe-
cution rate for unit instructions is termed UER to dis-
tinguish it from the IER. For the situation here UER = 2 x
IER. We will now average over the instruction set and com=-

pute a single value tp defined:

We will henceforth assume that all the instructions of the

instruction se. are made up of unit instructions with a

single value t As the analysis of chapter III would

p.

40

suggest, the important relation to consider is that be-
tween t, and ty. There are three cases of interest and

they are discussed individually in the following sectionms:

10 tp=tw
2. tp < ty
3. tp > tye

To mention the unit instruction only in relation
to the single address format instruction is to overlook its
considerable generality. Obviously, instructions with no
operand reference map directly into unit instructions, but
the operation sequence of the unit instruction is suffi-
ciently basic - a memory access followed by processor ac=
tivity - that nearly any instruction format can be easily
mapped into a series of them, For example, consider a two

(operand) address instruction format which has the following

PR S
——

-——— — — —

ta_ o f et

]

TIETYY

" S PR TSI Lol f S

41

This is mapped into three unit instructions each with an
average proéessor activity time t, = (td + tei)/j. Since
three unit instructions are required the UER = 35 x IER.
Other instruction formats may be handled in a similar
manner.

c. Mﬁltiprocessor with tp = tw

In order to facilitate the discussion a further
change in the instruction format is indicated. Unlike the
change in section B the following is purely a conceptual
transformation which introduces no approximation in the
analysis, The ITD for the unit instruction when tp =ty is:

ta ty

M

1
|
|

| !
t
| P
Py)

This is transformed to the following ITD:

tl

Aa
“f
|
I
|
lI

P

w3

b2

The memnory now has an access time of tc and zero recycle
time; the processor execution time is also zero. This
transformation introduces no change in the sense that the
performance of a system with either ITD is the same, For
both ITD's the memory access begins at point 1 and the pro-
cesscr execution and the memory recycling are completed at
peint 2. With this new instruction format we are now ready

to determine the UER for the nultiprocessor.

Let us assume that we have m memories (m-way inter-
leaved) denoted Mj; j=1,...,m; and n processors denoted
Pi; i=1,...,n, From the instruction format, we can see
that one unit instruction is executed for each memory cycle
which is utilized by a processor. The maximum rate at which
nemory cycles are avalilable is m/tc and this represents
an upper bound on the UER. The problem of finding the UER
reduces, in essence, to that of determining that fraction
of the total number of memory cycles which are utilized by
all the processors, Notice that this represents quite a
different approach from that used in chapter III. The
analysis i1 chapter III might be termed processor oriented
since the time required to access memory is simply considered
a delay which is added to the processor execu*ion times in
order to get the total instruction execution time. The
analysis of this chapter is memory oriented since the pro-
cessors are considered only to the extent that they affect

the menory utilization.

T pTTanE T A = o s

43

We will term a processor queued if it is either
waliting for or in the process of receiving memory service.
A memory is termed occupied if it has one or more processors
queued and unoccupied if it has no processors queued. A
processor is termed active if it is currently being ser-
viced by a memory. Let us consider an interval of time
equal to tc. For each memory which is occupied at the
beginning of the interval, there is exactly one memory
request serviced during that interval and hence exactly
one unit instruction executed. For each memory that is
unoccupied at the beginning of the interval there are no
memory requests serviced (and hence no unit instructions
executed). BecAuse the modified instruction format has
t; = 0 there are always n processors queued, Let us now
define a random variable ZJ; j=1,...,m; where:

0 if MJ is unoccupied

A (4.3)

J 1 if MJ is occupied

If X is a random variable which takes on values equal to

the number of occupied memories, then:

x = ? ZJ R (l"ol")

The expected value of X, E(X), is the average number of
occupied memories, From the previous discussion it should
be clear that:

UER = E(X)/tc . (405)

From equation 4.4 we have:

E(X) = E(2 Z) = Zn(zj) (4.6)
3 3

where E(ZJ) is the expected value of ZJ. Since all the
memories are identical, equation 4.6 reduces to:

E(X) = nE(Z4) for any J. (4.7)
We now wish to focus on one memory MJ and determine ZJ.
The approach used here is related to the occupancy (or
distribution) problems of combinatorial analysis (Feller,
1968). From the foregoing discussion we know that there
are always n processors queued. The probability of any
given processor memory request going to any given memory
and hence queued for that memory is, as in chapter III,
1/m. In particular,the probability that any given processor
is queued for MJ is 1/m and the probability that any given
processor is not queued for MJ is 1 - 1/m, If Y is a random

variable equal to the number of processors queued for MJ,
the probability that Y = r is given by a binomial distri-
bution.

p(Y = r) = p(r) = (/@O - 1/w)™T, (4.8)

From the definition of ZJ and Y we now compute E(ZJ):
n
E(ZJ) (0)p(0) + El(i)p(r)
Ir=

n
S p(r) - p(0)
r=0

1 - p(0). | (4.9)

| Nesgey

45

Using equation 4.8 in equation 4.9 we find:

E(Z;) = 1= (1 - 1/m)® . (4.10)
We then use equations 4.5 and 4,10 to compute the UER:
UER = (m/t)(1 - (1 - 1/m)™) . (4.11)

E(X), the average number of occupied memories, is a function
of m and n; let us call this function g(m,n):
g(m,n) = m(1 - (1 = 1/m)"). (4.12)
The function g(m,n) has certain properties of interest:
1. For m,n>»!, g(m,n) is monotonically increasing
in m and n. This shows that we always get an
improvement in the UER by adding another memory
or processor.
2. g(m,n) ¢minimum (m,n). The number of unit
instructions executed during an interval tc can

not exceed the number of memories or processors,

We might have stated the problem of finding the
UER as follows., Let us randomly distribute n processors
among m memories., The UER is the average number of memories
which receive processors multiplied by l/tc. Riordan (1958)
shows by quite different methods than we have employed
that the average number of memories which would receive
processors is g(m,n)., (Riordan's work is in combinatorial
analysis; he speaks of balls and cells rather than processors
and memories.) This method of problem formulation shows
the approximate nature of the analysis., It has been im=-

plicitly assumed that all n processors make random requests

B el

46

during each interval of time tc. In a real computer nén
processors make requesis during tc; if there are several
processors queued for service at a memory, only the one
serviced during the interval tc makes a new request at the
end of that interval. Consequently, unfavorable (in terms
of the effect on the UER) distributions of proceseors (a
number of processors queued for one memory) tend to be more
frequent in an actual computer than would be suggested by
the analysis. The result of this is that the UER specified
by equation 4.11 is somewhat higher than would be actually
observed. We might expect that the most significant devi-
ation between the actual and the computed UER to be ‘the
greatest when there is a high probability of a number of
processors being queued for a single memory. This would

occur when n/m» 1 and m is small.
D. Multiprocessor with tp< tw

When t_« tw the ITD is:

P
Moof a v

| |

| |

]

| |

| K
Py 5 3

As in section C we perform a transformation on the ITD to

get:

L7
t/ t/
M f 2 IL
| |
| |
| | t’=0
P | T
1 2 3

The access time becomes t; = t_+ tp, the memory restore

a
time becomes t; = tw - tp and the processor execution time
t; goes to zero, The transformation is such that the per-
formance of a system with either ITD is the same, For both
ITD's the memory access starts at point 1, the processor
execution is through at point 2, and memory restore is com-

pleted at point 3.

We recall the definition of an active processor
as one whose memory request is currently being serviced.
When tlat service is completed, an active processor can
make a new request to either an occupied or an unoccupied
nemory., If it makes a request to an occupied memory, there
is no appreciable advantage gained from the fact that t_<

p

itz the processor must wait anyway. On the other hand,

w;
if the request is made to an unoccupied memory the proces-

sor's request is serviced immediately; and there is an ad-

vantage associated with t_ being less than tw. The proba-

p

Y

48

bility of an active processor making a request to an oc-

cupied menory is defined as:
averagse nunber of occupied memories

p(occ) =

= .
(4.13)
The probability of a request to an unoccupied memory is:
p(unocc) = 1 - p(oce). (4.14)
Wle estimate the number of occupied memories as g(m,n), Hence:
p(occ) = 1 = (1 - 1/m)" (4.15)
and
p(unoce) = (1 - 1/m)", (4.16)

Using the ideas of chapter III, we compute the average
amount of time required to execute a unit instruction by
an active processor:

E(t)

p(oce)(t.) + p(unoce)(ty)

= p(occ)(t,) + p(unoce)(t, + tp)
=t (1= 1/m%t, - t,). (4.17)
The rate of execution R is just 1/E(t):
1 1
R = > (4018)
-t t_ -t

Now this is the unit instruction execution rate for one of
the active processors., The UER for the multiprocessor is
just R multiplied by the number of active processors which

is also estimated as g(m,n). Thus:

n
UER = % 1 = (1 = 1/m) . (4.19)

T -t
C 1 - -1/ B

te

T

49

Since the denominator of the fraction is less than one,

the UER is greater for the case of t_< tW than for the

p

case of tp = tw when m and n are the same,

Ve have used g(m,n) as an estimate of both the
average number of active processors and occupied memories.

Actually for t_<«< p the average number would be somewhat

P
higher than g(m,n). The increased number of occupied mem-
ories would tend to decrease the performance (since there is
a reduced probability of a request to an unoccupied memory)
while the increased number of active processors would tend
to increase it. Simulation studies suggest that the ef-

fects almost cancel (chapter V).
E, Multiprocessor with tp>-tw

When t '>tw the following ITD applies:

p
M T fa i -
l
| :
P 5 p —
This ITD can be transformed to the following:
t /
a
M i =
{ |
| |
P ! ‘_té_z
1 2

50

The memory access time becomes tc, the memory recycle time
goes to zero, and the processor time goes to t; =ty =ty
Again the transformation is such that the performance of

a system with either ITD is the same. For both ITD's

the memory access begins at point 1, the memory is restored
at point 2, and the processor execution is completed at

point 3.

For the previous two cases there were always n
processors queued, lor this case, because t;> 0, there
will be, in general, less than n processors queued., This
introduces an additional conplication into the analysis.
Let us suppose that there is a constant (in other wofds,
independent of time and tr~» state of the memory queues)
probability Pp that a glven processor is queued for memory
service. Let Q be a random variable which takes on values
equal to the number of processors so queued., The p;obé-
bility that k processors out of n are queued is given by
a binomial distribution:

P(Q=k) = p() = (B)(pp)"C1 - p)*™ (4.20)
When k processors are queued the average rate which at unit
instructions are executed is given by equation 4.11 with
n replaced by k. Defining tuis as R(k) we have:

R(k) = (w/t)(1 - (1 = 1/m)). (4.21)
The non-zero value of t; does not affect in any direct way

the rate at which instructions are executed; however its

effect is felt indirectly through its influence

5

on the value of Ppe We now compute the UER as the expected

value of R. From equation 4.20 and 4.21 we have:

UER

. R(k)p(k),
k

)_;," (m/t) (- (1 = 1/m)*)(p)01 - p)27
(/t,) (1 - 2; (@) (p, (1 = 1/@))*C1 - p)7K)

(m/t)1 - (1 - p /o))", (4.22)

ﬂhc last result is from applying the binomial theorem to
the summation.) We note the UER specified by equation 4.22
is a function of Ppe Equation 4.22 is identical to equation
4L.11 except for the replacement of 1/m with pm/m. Since
pmél, the UER for t_ = ‘.:w is greater than the UER for tp> t

P
assuming the same values for m and n. Because the number

w

of processors queued is binomally distributed, the average

number of processors queued is np, . Hence:

Py * average number of processors queued , (, 3y

n

A flow diagram of the instruction execution is as follows:

UER(p,)

Processor Delay t’

Memory System P

52

Serviced memory requests leave the memory system at a rate

specified by equation 4.22, They then experience a delay

p
average number of processors not queued in the memory sys-

t; before making a new memory request. Let n_ be the

tem and n, tke average number queued, Necessarily:

n,+ ny =n (4.24)
and thus substituting in equation 4.23 we have:
Py = (n = n;)/n. (4.25)

From the flow diagram the average number of processors
not queued must be the product of the average unit instruc-
tion processing rate and the delay tg. Thus:
/
n, = UER(p,)t;. (4.26)

p

Using equation 4.26 and the relation t; = tp - tw we have:

Py =1 - 5%: (= (1= p/m(t, -ty (4.27)
or
0=p,+ (m/n)(—tlé—tl’m = (1 = pp/m)?) =1
(4.28)

th order polynomial equation in Ppe It must

which is an n
be solved for the value of 1 98 in the interval (0,1). That
there exists one and only one solution of equation 4.28

in (0,1) can be seen by considering equation 4.27. As P
goes from zero to one, the left hand side of equation 4.27
increases monotonically from z6ro to one while the rigkt
hand side decreases monotonically from one. There is one
and only one value of p in (0,1) for which the right and
left hand sides are equal. Once a value of Pp 1s obtained,

53

it is substituted in equation 4.22 to obtain the UER.

o4

Chapter V Simulation
A. Reasons for Simulation

In the multiprocessor analysis of chapter IV

two principal approximations are made, The first is the
replacement, of the single address format instruction with
two successive unit instructions and the associated aver-
aging over the instruction set to get a value of tp. The
second approximation is the treating of the inherent multi-
processor queueing problem as a distribution or occupancy
prcblem, The intent of the simulation studies is to ascer-
tain the effects of the approximations over a limited set

of cases,
B. The Simulator

The simulator is the '"next most imminent event"
typre. In the simulator certain rules are applied to deter=-
mine the sequence of events in the simulated system and the
timing of the events is determined accordingly. A simulator
of this type is quite simple and executes rather rapidly.

The simulator is set up to handle n processors
denoted Pi; i=1,...n; and m memories denoted M‘.j 3
J=1,e00,m; where m and n are arbitrary and specified at
run time. Associated with each memory M, is a 1::ane'1:m‘.j

which is the earliest time M; can initiate servicing a.new

7O Dy, A Bl e e

55

memory request. Similarly, associated with each processor

P1 is & time tpi

can initiate a new request for memory service. The simu-

which is the earliest time processor P,

lator is arranged so that one cycle of simulation corresponds
to the execution of one unit instruction by one processor.
There are two basic rules which govern the sequence of events
in the sinmulator. First, the instruction unit execution of
any given simulation cycle is always associated with the
processor Pi for which the value of tp1 is a minimum at the
beginning of the cycle. (If there is more than one value of
i for which tpi is a minimum, then the largest value of i

is arbitrarily chosen.) Second, an instruction unit execution
involving Pi and MJ always commences at the maximum of the
times tpi
both P, and MJ are available, With these rules in mind we

i
can follow step by step the action of the simulator whose

and th since that is the earliest time at whi:h

flowchart appears in figure 6.
1. The simulator is initialized. The values

m, n, t , and tw’ are specified; th and tpi

c?
are set to zero for all i and j. Y is set to the
total number of unit instruction executions to
be simulated.

2. The value 1 is selected so that tpi is a

‘minimum, This corresponds to the selection of
the processor for the current simulation cycle.
3. The value of j is selected. Similarly, this

corresponds to the selection of the memory for

Fad

T

Select m,n%Y,tc,
p

tw, and

t_,=t .=0 all 1,]

pi "m

|

2.

4.

5.

Select i
Select j
S tt
elec P
tgmmax(t ;,tp,)
tpi=ts+ta+tp
| tagmterte

Y
instructions
executed
?

Figure 6. Simulator

Compute T fron
equation 5.1

|

UER8= Y/T°

Compute pre-
dicted value
of UER

&

57

the current simulation cycle. A multiplicative
congruent random number generator (Kruskal, 1969)
is used to uniformly generate integers in the
rang? 1,...,m.
4., The value of tp is selected. Normally it is
a constant but in one simulation, however, it is
is selected s0 that for any given processor it
oscillates between two values whose average is tp.
5. A start time (for the unit instruction exe=-
cution of the current simulatiuvn cycle) tB is
computed as the maximum of tpi apd tmj' The
time tmJ is then set to the sum of the start
time and the memory cycle time tc. The time
tp1 is set to the sum of the start time, the
memory access time ta and the processor exe-
cution time tp.
6. If less than Y unit instructions have' been
executed, another simulation commences at step 2.
‘Otherwise the computation of the results begins
at step 7.
7. The exact time at which the simulation ends
is not precise; there are m + n times in the
simulator. Prohably the most reasonable estimate
-of the end time is: |

T"'mln(iv-:tpi "'Zj tnj).

58

8. The simulaticn unit imstruction execution

rate UERB is the ratio of the total number of

executions to the time required to execute

them; hence:

UER, = /T .

9. The UER is computed from either equation

L.11, 4.19, or 4,22 depending on the relation

of tp to t'. If equation 4.22 is approriate

then the value of Py must be computed. A Newton-

Raphson search technique (Pierre,1969) is ;m-

ployed; it converges rapidly to the value of Py

in the interval (0,1).
As can be seen from the above, the amount of simulator activ-
ity per unit instruction execution is independent of m. The
value of n only determines the number of values of i which

must be searched to find the minimum in step 2.

The actual simulator is more involved than des-
cribed here and has provision for several insticuction for-
mats (including the simple unit instruction used here). It
accepts input in the form of an instruction set where the
“ormat, execution times and relative frequency of each
instruction may be specified. The sequence of events in
the simulgtor when executing unit instructions is precisely
just those described above. The simulator is written in

59

Algoil for the Univac 1108 and it simulates the execution
of about 2000 unit instructions per second.

C. Results

A set of simulation results is presented in
figures 7 through 11. The results are presented in a normal-
ized form: the performance of a one processor, one memory
system with tp
through 10 to verify the basic multiprocessor analysis; figure

= t is taken to be one. We use figures 7

) 11isused to verify the instruction reduction. The figures

are discussed individually and represent various cases of

interest:
Figure 7: For this case tp L O.5tc. The
difference between the predicted and the simulated
values is small. The maximum deviation is about
8% with the predicted value higher than the simu-
lated and occurs when the ratio of processors to
memories is one or greater. This is in accor-
dance with the observation of chapter IV, section
C.

Figure 8: Here t_ = 0.1t, and t_ = C,5t .. The

P
maximum deviation observed is about 10%; the
predicted performance again higher than the

-simulated performance, The worst deviations

TA text of the simulator appears in the appendix.

60

occur when 3 or 4 very fast processors (tp =O.1tc)
are used with 2 to 4 memories. (This is a situ-
ation which would not likely occur in practice
because it probably would be uneconomical to
configure a system in this fashion.) This is
again in accordance with the observation of
chapter IV, section C. The slope of the four-
processor performance curve is still high even
when n = 16, suggesting that the perfcrmance of

the system can be significantly improved by
adding momories. (This may or may not be economical
though.) Although figure 8 does not show it,

the curves for the simulated and predicted results
converge for n = 3 and n = 4 when m> 64,

Figure 9: This is the same as figure 8 except

that t, = 0.2t,. Basically the same comments

apply.

Figure 10:Here t_, is greater than tg: tp = 2t, = 4t,..

The resuits showpexcellent agreement of the simu=-
lated and the predicted results., For m > 1 the
corresponding curves are nearly indistinguishable.
‘Figure 11:These simulation results are presented
to verify the reduction of the inéffub%ion set to a

unit instruction with a single Valuéabf'tp. The

B

curves present two different simulations, For

one the value of tp oscillates between 0.1tc and

Relative Perforrance

A

5y

61

— —— — predicted

—— simulated

[— X W

n=1

Memories

Figure 7. Results for t

p

16 C 32

=ty

ORI

Relative Pe

rformance

62

— T predicted

- simulated

Memories

Figure 8 , Results for tp=0.1 t,

e

Relative Performanc

W

63

— —— — predicted

simulated

Memories

Figure 9. Results for tp= 0.2t

Relative Performance

64

predicted

simulated

N
=
o)
o
®

Memories

Figure 10, Results for tp=2tc

B TR area - W R Y T

65

_— tpz 0.5t,

\n

Relative Performance

Memories

Figure 11, Results for Varying t c

¥ od

66

0.9t, for a given processor with a mean 0.5t;
for the other a constant value of tp =(b.5tc

is used. The results suggest that the reduction
is probably a reasonable cne. The relative per=-
formance is slightly lower for the case where
tp varies than for the case where tp is fixed;
this is generally in acgordance with what we

would expect for a stochastic service system,
D. A Comparison with Other Simulation Resuits

By using some published multiprocessor simulation
results it is possible to provide a form of independent
verification of the analytic results of chapter IV, ‘Rosen-
feld (1969) discusses the results of simulation of the
solution (by Gauss-Seidel iteration) of a set of simultaneous

linear algebraic equations on a multiprocessor computer,

The processors simulated have thé general charac-
teristics and instruction set of the IBM 360 computer series.
Although the relative frequencies and processor exeéution
times for the instruction set are not given, a set of total
instruction execution times (which are presumably nominal
times fc; a single processor computer) are given, Ffom .
these times it appears that the instruction execution time
is 'roughly equal to the memory cycle time multiplied by the

number of memory cycles needed to execute the instruction.

Thus one can reasonably ~stimate that the average processcr

67

activity time is about squal to the memory restore time, and
hence Rosenfeld's system can be described in our termin-

ology as a multiprocessor with t t

p°~ ‘we

As we discussed in chapter IV the IER is directly
determined by the extent of memory cycle utilization. For-
tunately, one of the measurements Rosenfeld makes on his

simulated system is the memory cycle utilization and this
makes a direct comparison with his results quite simple.

For the multiprocessor with t_ = t, the memory

p
cycle utilization is speciifed by the function g(m,n) de-
fined by equation 4,122

| g(a,n) = m(1 - (1 - 1/m)").
Figure 12 shows Rosenfeld's observed memory utilization
(solid lines) plotted together with g(m,n) (broken lines).
The agreement between the simulated and the predicted results
is rather good with the utilization in the simulated gener-
ally somewhat higher. At least one reason may be advanced
to account for this: an incorrect assumed value of tp.
If tp were assumed somewhat less than t_, the analytically pre-
dicted value of memory utilization would increase and the
curves for the simulated and the predicted results would
become nearly identical. Regardless of the value of tp
assumed, the general shape of the curves reflecting the sime

ulated and predicted results is the same.

24

70}

60+

504.

£
o

W
o

Memory Utilization %

g

68

predicted

simulated

1 2 4 C 8) 12 16
Processors

Figure 12. A Comparison with Rosenfeld's Results

69

Chapter VI An Analysis of I/0 Effects on Processor
Performance

A, 1/0 Activity

In chapter II we discussed the technological
reasons necessitating the presence of primary and secondary
memories in computer systems. The information stored in
a secondary memory is moved into the primary memory only
when it is actually ready to be used by the processor and
after processing it is returned to the secondary memory.
The information flow between the memories is generally
called input/output (i/0) activity and this activity has a
degrading effect on the UER., Each word of information
transferred between the primary and the secordary meﬁory -
usually uses one, cycle of the primary memory.1 If both the
i/0 and the processors are active simultaneously, conflicts
arise when both direct a request to the same memory simul-
taneously. Normally if a conflict occurs the i/o0 request
'is served first and the processor request is deferred until
the subsequent memory cycle. In other words, an i/o service
request has a higher priority than a processor request. The
reason for granting priority to the i/o is due to the ro-
tating character of commonly used secondary memories (drums

and discs). For each i/o request that is not serviced

fIh some computers additional cycles are used to count
the number of i/o transfers and to specify the memory
locations to which the transfers go.

A

70

sufficiently rapidly, the 1/0 transfer process must be
delayed by the time required for one fuil rotation of the

memory device thus delaying the processor waiting for the
i/0 the same amount of time. For some types of i/o it is
possible, however, to implement a dynamic priority scheme
where sometimes alprocessor requést has higher priority
than an 1/0 request and it is shown in section C that this
approach leads to a smaller degradation in processor per-

formance than the simple priority scheme.

Several authors have given analyses of the effects
of 1/0 activity.2 Flores (1964) determines the extent of
queueing of 1/0 requests on memories. (His analysis does
not consider the processors.) Flores' model is developed
from the following ideas. The 1i/o0 requests‘for memory
sefvice are assuﬁed to be generated by a Poissonlprocess
with a mean request rate of RIO. The requests are considered
to be uniformly distributed among the m memories and hence
each memory has a mean request rate of RIO/m. The memory
is considered to be a server (in a queueing sense)‘with‘a
constant service time to. The result 1s a simple queueing
situation with Polsson input and constant service time.
The mean time elapsing between the initiation 6f a memory
request and the time the service of that request begins is
computed.‘ Flores dous not propose, however, a purpose to
which thap time, once computed, can be put. Shemer and

Gupta (1969) extend Flores' model to consider the effect

2LThe notation in the followingdiscussion i1s not that of
the original authors.

7n

of 1/0 activity on the performance of a single processor.

In their model a processor with an average processing
time tp generates random requests to the m memories, Simul-
taneously, 1/0 requests generated by a Poisson process with
mean rate RIO compete with the processor for the available
memory cycles, Their rather involved analysis allows for
1/0 queueing and they compute the average time required

to complete a memory request initiated by the processor,

In order to understand the relation of the above
authors! analysis to that of this chapter, it is necessary
to look at the nature of the Poisson process (Hillier and
Lieberman, 1967) used as a model of the source of i/o
requests. Each memory experiences a mean request rate of
RIO/m and hence during an interval of time t, the proba=
bility distribution for the number q of i/0 request received

is:

RIO/(m/tc))d o~RIV/(m/t.)
p(q’tc) = ‘.——L‘!L—q q!e C .

The average number of requests received during~tc is
RIO/(m/tc), but the above equation associates a non-zero
probability for any finite number q of requests. (Although
when RIO/(m/tc) is small the probabilities associated with
large valges of q fall off very rapidly.) The type of i/o
acgivity which is likely to use a significant portion of
the primary memory cycles (and thus significantly affect
the UER) is that from very high speed discs and drums

72

(0* low speed core used as a secondary mexzory) and each

of these is characterized by a regular periodic flow rate.
The number of such devices likely to be in simultaneous
operation in a computer system is s:all—often one, per-
haps as many as three or four., While the Poisson process

is a satisfactory model for representing the generation of
requests from a number of (unsynchronized) periodic sources,
probably an equally satisfactory model,yhen the number of
sources is small, is simply to assume that there is a pro-
bability RIO/(m/tc) that one i/0 request per memory is re-
ceived during an interval tc and a zero pgobability of more than
one request. This is especially suitable when each of the
i/0 devices has a small amount of buffering (as it usually
does)., This assumption is used in section B. When there is
only one i/o device with a periodic flow rate in operation,
an advantageous i/0 handling scheme can be implemented.

This situation is assumed in section C.
B. Simple I/0 Handling

In at least one way the i/o0 activity looks like
the n + 18t processor in the multiprocessor system and it
would be attractive to be able to handle it as such, How-
aver the aultiprocessor analysis is derived on the basis
of identical processors and because of the priority granted
i/0 requests, the i/o activity looks rather different from

a processor. The i/o activity does, like the processors,

7>

contribute to the occupancy of the memory system and hepce
increases the rate at which memory cycles are utilized;
Our general approach in the subsequent analysis is to com=
pute occupancy of the memories with i/o, determine the
rate of memory cyqle utilization, and then apportion that
rate between the processors and the i/o. (We shall pre-
sent an analysis only for the multiprocessor ~ase where

t. . =t extensions to cover the other cases are not dif-

p - ‘w
ficult,)

Let us consi@er a particular memory, say MJ. Let
A be the event that MJ is occupied by a processor request
and let B be the event that M:J is occupied by an i/0 re-
quest., From the previous discussion the probability of B

is:

»(B) = 37 (6.1)

where necessarily RIO must be such that p(B) <1, We will
assume that the probability of A is not affected eignifi-
cantly by the i/o0 hctivity. This is equivalent to the

assumption that A and B are independent events;' Thus when

tp =t p(A) can be computed from equation 4.11:

p(A) = 1 - (1 - 1/m)", (6.2)
The probability of a memory being occupied by either'a“prOJ
cossor‘or'an i/0 réquest is the probability of the event
A or B, When A and B are independent the probability of the
evént A or B is:
"~ p(Aor B) = p(A) + p(B) - p(A)p(B). (6.3)

74

Substituting equations 6.1 and 6.2 in 6.3 we have:

RIO
p(Aor B) =1 = (1 =1/m" - (1 - 1/m)? i

(6.4)
Now, having determined the probability of occupancy of one
memory, we can determine the rate R at which memory re-
quests are serviced by multiplying by m/tc:
R = (n/t.)p(A or B)

: ' RIO
= @)1 = (1= 1/mT = (= /)"

(6.5) . -

“ffhe Tate R includes the service of both i/o and processor

memory requests. But since the 1/0 roquests are ser&ed

first, the rate R includes exactly a rate RIO of serviced

i/o requests., Hence, the UER can then be determined by

subtracting RIO from R:

UER = R = RIO ,

(m/5) (1 = 72)01 = (1 = 1/« (6.6)

We note that this is just the UER that would be observed

without 1/0 multiplied by the factor (1 = %;[%).

c
C. Dynamic Priority I/0 Handling

We will assume for this analysis that the i/o
requests originate from a single periodic source, and we
will see that it is possiﬁle to specify a method of handling
i/0 requests which results in less degradation of the UER

75

than that specified by equation 6.6 above, In order to
simplify the discussion and the following derivation, let
us assume that the ratio Om/tc)/RIO is an integer whose
value is N>1, This means that exactly 1/N of the total
memory cycles of any given memory, say Mj, are used by the
i/0. Furthermore, let us assume that the i/o requests are
génerally for sequential memory locations and hence MJ re-
ceives an i/o request exactly once for every N cycles. Let
us assume that there is -associated with each memory a one
word buffér-to hold the i/o information and a control mech-
anism to implement the following strategy:
1. If less than N - 1 cycles have elapsed since
the i/0 request was received, the processor re-
quests have priority; an i/o request is serviced
only if there is no processor waiting for service,
2, If N - 1 cycles have elapsed and the i/o
request has not yet been serviced,the i/0 re-

quest gets the currént memory cycle.

We term this dynamic priority i/o handling.

Let us consider a sequénce of N cycles for Mj.
The probability that a given cycle is occupied by a processor
request is p(A) specified by equation 6.2, The probability
that a given cycle is not occupied by a processor request
is 1 - p(A). In the absence of i/0 requests the probability
that k of the cycles are used by processor requests is

specified by a binomial distribution:

P

i st B

T N S OSP—

Tai g

76

p(k) = (M (p(a))X(1 = PANNE; k=0,...,N. (6.7)
Let C be a random variable equal to the number of cycles
used to service both i/o0 and processor requests during the

N cycle sequence. The expected value of C is:
N=-1
BC) = 1+ 3 (D (p(aNE(1 - p(a))F e

(N - 1)p(N). (6.8)
In the above expression, the first term accounts for the
cycle received by the i/o, and the second term accounts
for the cycles received by up to N = 1 processor requests.,
The last arises because even if the processors request all
N cycles of the N cycle sequence, they only get N - 1; the
i/0 gets the remainingone. Equation 6.8 may be rewritten:

N .
E(C) = 1 + 1§o<ﬂ>'<P<A>>k<‘ - p(an™E - pw).

(6.9)
The summation represents the expected value of the number
of processor requests during the N cycle sequence; hence
it is just Np(A). Thus:
E(C) = 1 + Np(A) - p(N). (6.10)
The average occupancy of a memory cyclie over the N cycle

sequence is E(C)/N; we can then compute R for this case:

(m/t ;) (E(C)/N)
(m/t;)(1/N + p(A) - p(N)/N). (€.11)

R

Since we assumed N = (m/tc)/RIO we have: |
RIO RIO, N

R = (/te)Gpg2+ (1 - (1 - 1/m)% = g7e=(1 = (1 = V@)™,

(6.12)

77

As before the UER is determined by subtracting RIO from
R:
R - RIO

(/) (1 = SR - (1 = 1/mH*) x
c

(1 - = 1/m)"). (6.13)
The latter is just the UER without i/o multiplied by the
factor 1 - (RIO/(w/t)(1 = (1 = 1/m)™ 1, since
(1 = (1 = 1/m)®)™1 <1 this method of i/o handling results

2

in a lower degradation of the processor performance, If
(m/t_)/RIO is not an integer, then substituting for N in
equation 6.13 the largest integer not greater than (m/tc)/RIO
glves a satisfactory approximation for the UER.

D. Exanmple

Consider a 4 processor, L memory system with

6

t,=t, = t, = 0,5 usec, and RIO = 10 requests/sec, The

a

UgR without i/o is computed from equation 4,11:

UER(without 1/0) = (4/1.0 x 1070

(1 = (1 = 1/1)%)
2.73 x 106/sec.

When the i/0 is considered without the dynamic priority

sec,) X

scheme we use equation 6.6 to find:

(1 = 1/8)(2.73 x 10%/sec.)
2.02 x 108/sec.

UER(simple i/0)

If we implement the dynamic vriority i/o handling we find
N = (m/tc)/RIO = I and hence using equation 6.13 we have:

78

(1= (/w0 - (1= 147 x
(2.73 x 10%/8ec.)

2.52 x 108/sec.

The UER with the dynamic priority scheme is about 25% higher

UER(dynanmic i/0)

[}

[}

than that obtained without it-—a substantial improvement.

Let us define a memory efficiency e, as:
total memory cycles used/sec.

e =
M total memory cycles available/sec,
- UER + RIO ' (6.“]-)
m/tc
and a processor efficiency ep as:
o = total instructions executed/sec.,

p total number of instructions executed
if there were no memory delays/sec.

UER

=%t " (6.15)
Y

We can now compute the efficiencies for the preceeding
example:
1. No i/o:

6
2 x 10

e = 2 = 0067
m " .00 x 10°

_2.73 x 10°
P 8,00 x 10°
2. Sinple i/o :
6

m 4,00 x 10

e

= 0.34

_ 2,02 x 108
e e P

e
P 8,00 x 106

0.25

79

3. Dynamic¢ 1i/o0:

6
o, = LE?_E_L% = 0.88
4,00 x 10

6
o = 2:2%10) _ o35,
P 8,00 x 10

R, VPR S A i I A A 58 AN AN L o

Bt

N L N R TP § A

80

Chapter VII Computer Design
A. Optimization Approach

The purpose of this chapter 1s to indicate how
the multiprocessing models of chapter IV can be used in a
éimple automatic design program. An appropriate context
in which to consider the design process is that of an opti-
mization problem, The nature of the optimization problem
is to relate the costs of a proposed design to the variables
which reflect its structure and then choose the values of
the variables so that required performance is obtained and
the cost of the design is minimized. We have taken the UER
as the basic measure of computer performance and the form=
ulas of chapter IV relate the UER to the variables ter ta,
tqs tp, m, and n, If we can also relate the costs of the
design to these variables we have the necessary relationships
to formulate the optimization problem and hence -to implement

an automatic design program,
B. cbsts and the Problem Formulation

The three'types of components whose costsvwe
consider to enter into the overall cost of the multiprocessor
system are memories, processors, and switches, While it
is interesting to consider the possibilities of relating
by formula the costs of the components to their specifi-

cations, the relations would be both rather difficult to
obtain and probably (because ¢f the discrete nature of the

A 8

81

manufacturing process) not very meaningful, Hence we shall
assume that the costs of the components are related to the

variables in a tabulated form.

There are several considerations that enter into
the determination of the individual component costs:

1.” Switches: The switch has to connect n pro-

cessors to m memories, Hence there are m x n

potential connections implied in the structures

we ere considéring and if the cost to realize

'a simple switch 1is Cs, the total cost for the

multiprocessor'switch is about n x m x Cs.

2, Memories: As indicated in chapter II, the

cost per word of a coincident current magnetic

memory is lowér in memories of a larger number

of words than in one of a smaller number of words.,

We assume that the total memory system has been

specified in advance to have w words, If the

cost of a memory of w words and cycle time tc

is Cm(w ,t.), then the total memory cost with

an m- way. interleaved memory is m x cm(w/m,tc)

assuming that a memory is available in that size

and speed. The value of ty is deteruined once

tc is specified and the former is not considered

a design variable,

3, Processors: The cost of the processor is

dependent on the many different speeds associated

with its internal operations, Once an instruc-~

e e s o e ——

82

tion mix has been specified a single value t
is determined by equation 4.2 . The cost of

the processors is then n x*Cp(tp).

The above relations allow the cost C of the
multiprocessor computer to be expressed as:
C=mnx C (wn, tc(tw))" nxC(t) +

The performance of the multiprocessor computer is specified
by equation (4.11),(4.19) or (4.22) depending on the re-

lationshiﬁ of tp to tw. We symbolically include all three

equations in the following:

UER = UER(tp, t., t., m, n). - (7.2)

w» ‘¢
We now state the optimization problem as:
minimize C

such that UER»>

required

where C and UER are specified by equations 7.1 gnd'?.a.

To this other constralints may Ee added; for example, one
limiting the number of processors or stating that the num-

ber of processors must be greater than two,

The approach we have taken to solve the optimi=-
zation problem is an exhaustive search over the possible

values (as tabulated) of t and t, (implying t,) and over

P
a specified set of values for m and n., A search space of
no more than 10%* points exists if we assume about 5 to 10

values for each of the variables.

83
An Algol program was written for the Univac 1108

to evaluate equations 7.1 and 7.2 over a specified set of

values of tp, tc, m, and n and pick the optimum., Despite
the fact that the exhaustive search approach lacks sophis-
tication (although it is difficult to think of other tec-
niques that could be used) it has the definite advantage
that all potential structures are evaluated. Furthermore,
the search is carried out sufficiently rapidly (about 0.2
sec./100 structures) that there is little incentive to
consider other methods. Thus, in additign to choosing the
optimum structure, the costs and performances of the sub-
optimal structures are also available and it is interesting
to group them according to their performance and the con-
straints violated, It is always important to the designer
to know what the sensitivity of a proposed design is to the l
design constraints and objectives; that is, how the design i
would ch‘ngo if the constraints and objectives were altered

somevhat. This is readily determined if an evaluation of

all potential structures in the design space is available,

Note that the above formulation of the
optimization problog is not the only one possible. A de-
sign goal might be to design a system that has the maximum
UER possible but does not exceed a cost Cphax,® Another
design goal might be to design a system which has the mini-
mum cost/performance ratio (the cout of executing an in-

struction per unit time is & minimum). The reformulation
of the optimization problem to handle these cases is per- d

84

fectly straightforward. In the subsequent sections we
present two examples: one minimizes the system cost for a

given UER; the other minimizes the cost/performance ratio.
C. Example 1: Minimization of System Cost

For this examgle we have the components avail-
able as listed in table 1. The design objectives and
constraints are:

1. The UER must equal or exceed 106 instructions

per second.

2. The total memory size must be 64 K words,

3. The number of processors must not exceed

four,

4., The total system cost must be minimized.

The component costs are also indicated in table 1, They
were chosen rather arbitrarily but they are probably not
unreuresentative for memories in the 18 to 24 bit per word

size and the related processors.

There are over 100 configurations which meet
constaints two and three; 49 meet constraint one, and of
these, four are presented in table 2. The optimum design
is indicated by an asterisk; it is a three processor system.
The other designs presented are the best (in terms of cost/
performance ratio) using one, two, and three processors.
Overall,the best cost/performance ratio is found ia the

four processor system. The best single processor system

Memory:

Size

4K
8K
16K

Processor:

Switch:

1.0 usec.
$4000
7000
10000

0.5 uéec.

$50000

2.0 usec,
$3000
5000
7000

1.0 usec,

$20000

$500/connection

Table 1, Example 1 Costs

4.0 usec.
$2000
3000
4000

2.0 usec,

$10000

86

Design m n to tp UER Cost Cost/UER
1 4 3 1,0 2.0 1.15 76000 6.61 *
4 2 1.0 1.0 1.25 84000 6.72
3 4 4 1.0 2.0 1.49 88000 5.91
4 4 1 1.0 0.5 1.00 92000 9.2C
Units:

tc,tp == usec.

UER == 106 instructions/sec.
COSt - s _2 ,
Cost/UER -- 10"<$/instruction/sec.

Table 2. Example 1 Designs

87

e

costs appreciably more than the best multiprocessor system

and has an appreciably highor cost/performance ratio.

D. Example 2: Minimization of Cost/Performance Ratio

For this example we use cost data from a real
computer system: che Digital Equipment Corporation PDP-10,
This is a 36 bit word, single address instruction format
computer which has facilities that enable it to be used
in a multiprocessor configuration, The components available
to build PDP-10 systems and their related costs are given
in table 3. In order to put the example in realistic
terms, we will deal with the actual IER of a typical but
simplified instruction mix, The mix chosen has a scien=
tific computational bias: 20% floating point multiply,

30% fixed point add, 20% branch, and 30% load/store. The

- branch instruction is not in the single address format;

it has no operand reference, The PDP-10 System Manual
(Digital Equipment Corporation, 1968) gives a rather elab-
érate breakdown of the processor execution times (as dis-
tinguished from instruction execution times) for the various
instructions and the value of tp for the mix above is com=-
puted to be 1,08 usec, Taking in to account the branch

instruction, there are an average of 1.8 memory references

per instruction; hence the actual IER = UER/1.8,

The design objectives and constraints are as

follows: E

88

Memory:
Size 1.0 usec. 1.8 usec.
8K $4,0G00
16K 51000
22K $70000
64K 112000
128K 196000
Processor:
1.08 usec.
$151000
Switch:
$1500/connection

Table 3. PDP-10 Costs

(Costs obtained from "ppP-10 Pricing Summary" Digital

Equipment Corporation, Maynard, Mass., March 30, 1969)

89

1. The main memory size must be 256K words,
2., The IER must equal or exceed 0.5 x 106
instructions per second.

3. The number of processors must not exceed
four,

4, The cost/performance ratio must be minimized.

The eleven system configurations which meet con-
straints one, two, and three are given in table 4. The
system which meets objective four is indicated by an aster-~
isk., As in example 1, the best performance/cost ratio is
obtained with four processors., Objective two is such that
it cannot be met with less than two processors; the best
two processor organization has a cost/performance ratio

about 20% higher than the four processor organization.

|

1
:

90

Design m n tc
1 16 2 1.0
2 4 2 1.8
3 8 2 1.8
4 16 3 1.0
5 3 1.8
6 4 3 1.8
7 8 3 1.8
8 16 L 1.0
9 L 1.8
10 L 1.8
1 8 L 1.8

Units:

tc -= usec,

IER == 1066instructions/sec.
Cost ~-- 10°$§
Cost/IER -- $/instruction/sec.

Table 4, PDP-10 Designs

IER

0.67
0.55
0.58
0.98
0.54
0.72
0.82
1.29
0.58
0.85
1.03

Cost/IER

1,67
1,38
1.48
1.29
1.56
1.26
1.23
1,11 *
1.72
1.24
1,13

91

Chapter VIII Conclusion

A, Summary

In the preceding chapters we have presented a
series of analytic models which quantitatively relate the
performance of a certain class of computer structures to
the basic component variables., We have corroborated the
analysis with simulation studies and used it in a simple auto-
matic design program. As stated in chapter I, a major goal
of this thesis is to derive analytic models whose use would
facilitate the design of digital computers., The question now
arises: to what extent the analysis is actually useful in
the computer design process and what extentions, if any,
might be made to make it more useful? The answer is sug-
gested by a review of the design program of chapter VII,

In example 1 (of chapter VII) there are over 100 potential
computer structures which meet the processor and memory con=-
‘straints, In less than 0.2 seconds of Univac 1108 computer
time these structures were determined, their performance and
costs evaluated, and the optimum structure picked. The
evaluations of the éub-optimal structures allow us to in-
teract with the design proéess in the sense that we can see
how the aptimal structure changes if the design obJectives

or constraints are changed somewhat,

For the computer designer this type of activity
is an economical tool to generate an initial set of design

92

alternatives. At the present state of. development, the
design program clearly does not design computers, but it
does make some preliminary steps toward that objective.

The generation of initial design structures and the in-
sight gained from the models into how those structures
behave certainly is valuable to the computer designer and
hence this thesis has probably succeeded in its objectives,
There does remain, however, a most interesting prospect
for further automation of the computer design process and
we ' feel that, with some extentions of the models and the
design program, this prospecf can be realized.

B. Extentions of the Models

In chapter II it was assumed that all instructions
and operands occupied one memory word and that instructions
ﬁere of the single address format type. In most real com=-
puters, such a situation does not exist. Normally there are
at least three different operand formats: fixed point
numbers, floating point numbers, and symbols (character
strings); and there are multiple instruction formats. In
general, each of the operand and instruction formats is of
a different size. Since the primary memory word size is
fixed, efficient utilization of the memory requires that
one or both of the following techniques be employed: (1)
pack more than one instruction or operand in a memory word
or (2) use more than one memory word to hold an instruction

or operand. Technique (2) usually slows down the IER re-

95

lative to the case where there is one instruction (or
operand) per memory word since more than two memory refer-
ences are required to execute an instruction. Technique
(1) may actually result in an increased IER, If two in-
structions are packed in a memory word, the processor can
obtain the current and succeeding instructions with just

one memory reference.

As an illustration of the foregoing, consider a
computer which has the following formats:

1. 24 bit instructions

2, 24 bit fixed point numbers

3. 48 bit floating point numbers

4. 8 bit characters.
The main memory'word size for this computer might be 48, 24,
or even eight bits. The cholce depends on the relative

use of the various formats and the level of performance

desired. A high performance computer with heavy floating
poiht usage would obviously have a 48 bit word size while a

lower performance computer primarily manipulating characters

would probably have an eight or a 24 bit memory word size.

The foregoing tyﬁé of considerations represent
a major activity in the computer design process, The design
program of chapter VII could be extended to handle consider-
ations of this type if the appropriate input information

were available. This information would include the relative

LG R LT SRR e

9%

usage of the various formats and their sizes. Various
primary memory sizes could be tried by the design program,
and for each size a relationship r between the IER and UER
would be defined (such that r x IER = UER), as well as a value
of tp. These definitions would essentially be a formali-
zation of the ideas that were discussed in section B of
chapter IV. The value of tp would be defined as the aver=-
age amount of processor time per memory reference and it is
a function not only of the processor speed but also of the
memory organization and the instruction and operand formats.
The value of r would be defined as the average nﬁmber of
memory references made to execute an instfuctibn and it is
also a function of the way operands and data are mapped into
the memory. With both r and t_ defined, the design program

P
would be essentially as that in chapter VII,

C. A Proposal for Continued Work

It is proposed that a design program be imple-
mented which would specify the high level structure for a
computer so that a desired IER is realized and that the cost
of the design is a minimum. (Other design objectives and
constraints involving costs and performance could of course
be used.) Such a program would undoubtedly be interactive
80 that the designer could see the effect of varying the
input design objectives and constraints., The inputs to the
design program would be the following:

1. The component costs,

95

2. The desired IER and other comstraints such
as total memory size, limits on the number of
processors, and so forth) (The constraints might
be specified in complex ways. The total memory
size might be made a functiou of the number of
processors with the memory size increasing as the
number of processors increase.) |

3. The instruction and operand formats and their
associated relative frequencies;

L4, The i/0 activity—possibly as a function

of the total memory size and the number of pro-
cessors, (Indeed, if the i/0 activity were known
as a function of memory size, the memory size
might be made a design variable rather than a
constraint.)

The design program would then pick the number of memories and

processors, the memory word size (and possibly the total

memory size), and the memory and processor speeds. Since

this design program essentially includes the instruction

set as one of its inputs, it might be possible to inter=-

connect it with a design program which specifies instruction

‘gsets (Haney, 1968) thus potentially extending design auto-

mation to cover several levels of the computer design pro-

cess,

@ .2

96

Appendix

The simulator handles three classes of instruc-
tions:

1., Class 1: Siagle address format

2, Class 2: Instruction without operand reference

(1ike a unit instruction)

3. Class 3: Write instructions (no processor

execution time and an operand memory reference

time of t').
An instruc’ion execution consits of twu phases: (1) the
instruction reference and decode and (2) the operand re-
ference and exocute., Class two instructions have no phase
two; for them the execute is accomplished in phase one, In
the simulator each phase is handled as the execution of a

unit instruction.

@ ALG SING

97

CAMPILED AY CMU 1 inA ALGIL DATLD Al JULY 6% (VERSION 10A4)
THIS CO4PILATION “AS DONE QN 22 MAY T70 AT 57325109

}
BLACK 1 LEVEL

2

3

4

BLoCK 2 LEVEL
14
1%
- — 16
)?
18
)9
20
2)

23
24
25
2¢
27
28
29
30
3)
k¥
33
34
35
36
a7
kY
39
40,
41
BLOCK 3 LEVEL
42
“3
4y
ng
46
47
48
u9
&0
51
52

PEGIN
!
FORMAT FI1(° HQ;XS.'N'.XS.OIC',Xb.'TW'.lb.'TP'.
X7 o0 X6 "HPY X2, R/RPYA1.2)S
FARMAT F2(20134X3),6(006,2,X3),4141)F
I1NTEGER NI sKsUsl s JsLsR4Se7,Y oM N,CCH
RFE AL D.A.Q.TW.TA.TCQTUQTTﬂ.V.X.H.T.RO.RPS
READINI)S
738192
Y=R20N48%
BFEGIN
COMMENT 1€ IS THE IMSTRUCTION CLASS, Fl._15 THE
INSTRUCTION RCLATIVE FREQUENCY, AMD 1T IS THE
PROCELSS0OR EXECUTION TINES
2
IMTEGER ARRAY JC(1eeN1)S
REAL ARFKAY CPWFI131T()eaM12S

COMMENT READ 14 THL INSTRUCTION SET VARIABLESS

For Km=(1,),NI) DO
HEOGTHN .
READCICIK) o ITUK) yFI(K))S
ABA+FI(K)S)
ENDS
COMMEMT HOKRMALIZE RELATIVE FRENUENCIES AND
CONPUTE CUNNULATIVE PROBARILITIESS
CPi)=Fl{1)=Fl(1i/ns
FNR Ks(Zy) M) DO
BEGTH
FI(E)=EFI(FD)ZAS
CPIKIEeCP(K=1)aFT(XK)E
gEMDS :
COMPENT U]S THE MUMBER OF SIMULATIONS TO BE
FUNS '
PEAD(V)S

"COMMENT RFEAD MEMORY RESTORE ,MEMORY CYCLE AND

[HSTRYCTION DECODPE TIMFSS
READITY ,TC,TD)S
TA=TC=T!"S
WRYTE(FYYS
FOR K=ll,41,0) PO
" OREGIN
READIMGM)S
BEGIN
3 .
INTEGER ARNZY P,ClleoN)S
REAL ARRAY YT ,TP(leeM)yTH(LeoM)®
FOR Lm(ls1,N) DO PILY=1S
R=2S=xl=lS

" COMMENT €C COUNTS THE NUMBER OF UMIT

INSTRUCTIONS EXECUTEDS
FOR CCa(l1,1,Y) DO
BEGIN

" COMMENT CHNOSE-A MEMORY == DETERMINE J$

FOR L=1,2,3 DO R=MOD(QeR,Z)S
JE(ReM) /72415

e e -

53
a4
55
Sé
%7
58
9
60
)
62
63

55
&6

&7

458
AQ
79
71

72
73
74
75
76
77
78

79.

an
8t
a2
413
4
85
A1)
az
a8
39
LA
921
92
93
24
25
94
.92
913
29
100
191

102
103 .

104
105
106
107
108
109

1in

98

COMMEMY CHOOSE A PROCFSSR == DTERMINE 1S
FOR L=(y,1,M) NnO IF TP(L)
LSS TP(l) THEN I=sLS.
COMMENT IF PHASE ONE CHOOSE A NEW INSTRUCTION,
GENERATE A RANDOM NUMBER IN (0,1) AND CHOOSE
INSTRUCTION WHOSE CUMMULATIVE PROBABILITY FIRST
EXCEEDNS THAT HUMBERS
IF P(1) EnL | THEN
. BFGIN P -
FOR Lm),293 DO s-noo(s-s.Z)s
ON=5/2%
L=ls
FOR Lsl WHILE @ GTR CP(L)
D0 L=lLe)s
Cil)=jCc(L)S
COMMENT TT=PROCESSOR FXECUTION TIME FOR THE
SELECTCD IHNSTRUCTINNe. UPNATE MEMORY - AND
PROCESSOR TIMES (INSTRUCTION REFEREMCE PHASE)S
TT(L)=mIT(L)S- -
TutJ)aMAxsTPtl).TM(J))*TCS
TPl)mTM(J)=TW+TDS . SIS =
OMMENT !F INSTRUCTION 1S OF CLASS 2 NO
ADDITIONAL MEMORY REFERFENCES NEED BE MADE.
UPDATE PROCESSOR TIME By EXECUTE TIMF, PHASE
REMAINS OHE SO THAT A NEw INSTRUCTION.I1S CHOSEN
FOR PROCESSOR I, 1F INSTRUCTION IS NOT OF
CLASS 2, THE_PHASE_1S SET .To 2S. I I
IF Cl1) EQL 2 THEN TP(I)-
TP(IY+TT(l) ELSE pP(])m2S
END EILLSE
BEGIN .
Plli=1s)
COMMENT UPDATE. MEMORY AND PROCESSOR TIMES
(INSTRUCTION EXECUTION PHASE)S '
IF ct1) EQL. 1. THEN
BEGIN
- — . TMIJIEMAXLTMIJ) 4 TP(T))L
$1CS
— e ——— Y S S L R L AP KA EAANBSE
END ELSE
THIJISMAXSTMIJ) s TP(T))eTHS .
ENDS .
ENDS
AEmNS
e FOR L®{]1s1 M) DO _ASASTMILIS .
FOR Lm(],1,N) DO A=ASTP(L)S
COMMENT COMPUTE RO THE OBSERVED RATE. OF
INSTRUCTION EXECUTIONS
ROaY®» (MaN}/AS —3 o U
A=DS

PO e .. FOR Lm(1 1 4NI) DO A=A+LIT(L)S .

TTP=(TD+A/N])/2S
COMMENT COMPUTE THE AVERAGE PROCESSOR ACILVII
TIMEe FORM THE DIFFERENCKE OF TTP AND Tws.
COMMENT IF D_I1S LESS THAN OR _EQUAL. YO ZERO .
COMPUTE RP THE PREDICTED RATE OF INSTRUCTION
EXECUYIONS- . N L e e e e
D-TTP-Tws

99

1 _ IF D LEQ N THEN
£12 BEGIN
113 . Va(i=1/M)eeNS
114 RPaMe(1=VY/(TC+VeDIS
115 END ELSE
11e BEGIN
117 COMMENT SUISTITUTE Ul EQUATION FOR THE
1118 EXECUTION RATE WHERE TP |S GREATER THAN TW THE
119 RELATION X=(1=PM/M)sel, THEN USE NEWTON=-
121 RAPNHSON SEAPCH TO FIND xe THE STARTING VALUE
121 OF X 15 ONE. THE SEARCH STNPS WHEN SUCCESSIVE
122 ITERATITIANS IN X DUIFFER RY LESS THAN ,0N1S
123 X=11%
124 TeD/(NeTC)S
125 — — . FOR_Hm(TeXeeN+X=]1¢]/M=T)/
126 (Noxso(N=1)+])
127 AHILE H GTR 0«fI01 DO X=X=KS
123 RP=Me(1=XseN)/TCS
129 ENDS
130 WRITE(F2 M N, ,TC,T%TTP,RO4RP,
131 .. ; RO/RP)S I Lo
END 8LOCK 3
132, ... ENDS
133 EMDYS
END BILOCK 2
134 ENDS
CENDp BLocK 1. - - ‘ e - B
1an CHDs

COMPILATION COWPLETF

100

Referonces

1.

2.

10.

1.

12,

D. W, Anderson, F, J, Sparacio, and R, M, Tomasulo,
"Machine Philosephy and Instruction Handling," IBM
J. Research and Development,vol., 11, no. 1, pp. b=

55, dJanuary, 1967,

G. H. Barnes, et al., "The Illiac IV Computer," IEEE
Trans. Computers,vol. C-17, no. 8, pp. 746-757, August,

1960.

Digital Equipment Corp., PDP=10 System Reference Manual,
Maynard) MaSS. 9 1 968 .

F, Haney, ﬁUsing a Computer to Design Computer Instruction
Sets," Ph,D, Thesis, Computer Science Department,
Carnegie Mellon University, 1968.

F, S, Hillier and G. J. Lieberman, Introduction to

Operations Resecarch,ch. 10, San Francisco: Holden=-
ay .

W, Feller, An Introduction to Probability Theor§ and

its Applications,vol, 1, rd edition, ch, 2, New
York: ﬁIIey, 1963.

I. Ilores, "Derivation of a Waiting-Time Factor for a
Multivole Bank Memory," ACM J.,vol. 1, no. 3, pp. 265~
282, July, 1964.

J. B. Kruskal, "Extremely Portable Random Number

Generator," AéM Communications,voLr. 12, no. 2, pp. 93~
94, February, 1969.

D. A, Pierre, Optimization Theory with Applications,
ch. 6, New York: Viley, 1969. '

J. Riordan, An Introduction to Combinatorial Analysis,
ch. 5, New York, Wiley, 1953.

J. L, Rosenfeld, "A Case Study in Programming Parallel
Processors," ACM Communications,vol., 12, no., 12, pp.
645-655, December, 1969.

J. E, Shemer and S. C, Gupta, "A Simplified Analysis
of Processor Look Ahead and éimultaneous Operation of

a Multimodule Main Memory," IEEE Trans, Computers,
vol. C-18, no. 1, January, 1369,

101

13, C, E, Skinner and J, R, Asher, "Effect of Storage
Contention on System Performance," IBM Systems J.,

vol. 8, no. 4, pp. 319-333, 1969.

14, J. E. Thornton, Design of a Diéital Computer - The
Control Data 6@0 ,Glenview, inois: Scott, Foresman,

an o.’]

3 o

102

Bibliography

1. W. Bucholz, Planning a Computer System, New York:
McGraw-Hili, 1962,

2. H, Hellerman, Dig%tal Comguter Systems Principles,
New York: McGraw-E > .

3. R. S, Ledley, Digital Comguter and Control Engineering,
New York: McGraw-Hill, . :

L. T. L. Saaty, Elements of Queuweing Theory, New York:
McGraw=-Hill, .

UNCLASSIFIED ’
Security Classification

DOCUMENT CONTROL DATA-R&D

(Security ciassiiication of title, hody of absatract and indexing annotation must be sntered when the overali report is ciaseilisd)

1. ORIGINATING ACTIVITY (Corporate author) 28, REF‘OR"I’ SECURITY CLASSIFICATION
Carnegie-Mellon University UNCLASSIFIED
Department of Computer Science ' 26, GROUP
Pittsburgh, Pennsylvania 15213

3. REPORT TITLE

AN ANALYSIS OF THE INSTRUCTION EXECUTION RATE IN CERTAIN COMPUTER STRUCTURES o

4. DESCRIPTIVE NOTES (Type of report and inciusive dates)

Scientific) Interim

5. AUTHORI(SI (First name, middle initiat, iast name)

William Daniel Strecker

6. REPORT DATE 74, TOTAL NO. OF PAGES 7b. NO. OF REFS
1970 110 18
8a. CONTRACT OR GRANT NO. F44620-70-C-0107 %a. ORIGINATOR'S PEPORT NUMBER(S)
b, PROJECT NO. A0827 -5
e. 61101D 9b. OTHER REPORT NO(S) (Any other numbers that mny be ulalgned
thi
. 681304 AFOSR 70 -2360TR

10. DISTRIRUTION STATEMENT

1. This document has been approved for public release and sale;
its distribution is unlimited.

11. SUPRPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Air Force Office of Scientific Research
TECH, OTHER 1400 Wilson Boulevard (SRMA)

Arlington, Virginia 22209

APSTNIACT .
T&hhe purpose of the thesis is to present a series of models of digital
computers at the level of the memory processor interface. A discussion of
computer instructions is presented and the single address format is taken
as the prototype instruction. The execution rate for instructions of this
type is then determined for several computer structures of the single
processor and general multiprocessor types. The effect on the execution
rate of a speclialized processing activity, input/output handling, is con-
sidered. Analytic models relate the instruction execution rate to the
memory and processor speeds, their number, and their interconnection.
Simulation studies serve to verify the results of the analysis. A simple
automatic design program is proposed which optimally configures computer
structures from a set of available components.:)

AN

DD Feove 1473 - UNCLASSIFIED

Security Classification

