

^/imrfiv^p'

AN ANALYSIS
of the

INSTRUCTION EXECUTION RATE
in

CERTAIN COMPUTER STRUCTURES

William Daniel Strecker

Electrical Engineering Department
Carnegie-Mellon University

June, 1970

Submitted to Carnegie-Mellon University
in partial fulfillment of the requirements

for the degree of Doctor of Philosophy D D C

SEP 16 »TO i

This work was supported by the Advanced Research Projects Agency
of the Office of the Secretary of Defence (F44620-70-C0107) and
is monitored by the Air Force Office of Scientific Research. This
document has been approved for public release and sale; its
distribution is unlimited.

; • •■-. »v

l K^ n lUfagglllgH

■~ I .U ,u,.L».Bi)l.im-.J-,l»!i.

1

ii

Abstract

The purpose of the thesis is to present a series

of models of digital computers at the level of the memory-

processor interface. A discussion of computer Instructions

Is presented and the single address format Is taken as the

prototype Instruction. The execution rate for Instructions

of this type Is then determined for several computer struc-

tures of the single processor and general multiprocessor

types. The effect on the execution rate of a specialized

processing activity, Input/output handling, is considered.

Analytic models relate the Instruction execution rate to

the memory and processor speeds, their number, and their

interconnection. Simulation studies serve to verify the

results of the analysis. A simple automatic design pro-

gram is proposed which optimally configures computer struc-

tures from a set of available components.

■..;:■■ ■ ■ ■ ■ ■■ ■

JiKuaiimrri . TI7 ■, 'ta

ill

Acknowledgements

I would like to express my appreciation to

Professor Gordon Bell for his guidance during the course

of my research and to my wife, Carole, who greatly as-

sited in the mechanical preparation of the thesis.

p «*•»«

■

BIWBifiBl^iiiiiBBwiiiiiHiiippiiBpjiiiiiiiaimitB^a

iv

Table of Contents

Page

Abstract 11

Acknowledgements 111

Figures vl

Tables vll

Chapter I Introduction 1

A. Computer Modelling 1

B. Computer Analysis 2

C. Computiar Synthesis 5

Chapter II Computer Components and Instructions 8

A. Memories 8

B. Processors 11

C. The Computer Instruction 13

D. Instruction Timing Diagram H

E. The Instruction Execution Rate 17

Chapter III Single Processor Computers 19

A. Single Memory 19

B. Interleaved Memory 21

C. Interleaved Memory--Alternative Analysis 2^.

D. Instruction Buffering 27

E. Instruction Prefetch 51

Chapter IV Multiprocessor Computers 35

A. The Multiprocessor Problem 35

B. Modified Instruction Format 58

C. Multiprocessor with t,. « t„ ^1 p w

.*...•*'» i^i»!»*»#>a«M»»»«"

■

D. Multiprocessor with t-« tw

E. Multiprocessor with t > tw

Chapter V Simulation

Ä. Seasons for Simulation

B, The Simulator

C, Results

D, A Comparison with Other Simulation Results

Chapter VI An Analysis of I/O Effects on
Processor Performance

A. I/O Activity

B. Simple I/O Handling

C. Dynamic I/O Handling

D. Example

Chapter VII Computer Design

A. Optimization Approach

B. Costs and Problem Formulation

C. Example 1: Minimization of System Cost

D. Example 2: Minimization of Cost/
Performance Ratio

Chapter VIII Conclusion

A. Summary

B. Extentions of the Models

C. A Proposal for Continued Work

Appendix

References

Bibliography

*f6

^9

5<f

5^

5^

3k

39

69

69

72

7k

77

80

80

80

8k

87

91

91

92

9k

96

100

102

a

- . .v-i^mii-u -uirt-iiji^.„«A^, J ni'iiirfiirm.-..

vl

Figures

1. General Computer Configuration

2. Synthesis Procedure

3. Instruction Timing Diagram

if. Instruction Execution Tree

5. Prefetch Execution Tree

6. Simulator

7. Results for t = tw

8. Results for t = 0.1t„ P c

9. Results for t,, = 0.2t. P c

10. Results for t,, ■ 2t,. P c

11. Results for Varying tc

12. A Comparison with Rosenfeld's Results

Page

k

7

15

26

3k

56

61

62

65

6^

65

68

MPrtwwäBW

vll

Tables
Page

1. Example 1 Costs ^5

2. Example 1 Designs 86

5. PDP-10 Costs 88

Zf. PDP-10 Designs 90

 ■ -rrrrwr^sr^^T^^^•^■'^^^^m:m^^rz^h::-f.■-^ ■ .-.,...^^. - --,-

Chapter I Introduction

■

A. Computer Modelling

The purpose of this thesis is to present a series

of analytic models of digital computers. The models relate

the performance of the computer as measured by the rate of

instruction execution to the specifications of its major

high level components, their number, and their intercon-

nection. The main components considered are memories char-

acterized by their cycle and access times and processors

characterized by the times required to perform each of their

operations. (A detailed consideration of the computer com-

ponents is given in chapter II.)

There are two reasons for doing the modelling.

The first is to gain a quantitative understanding of those

factors which govern the performance of digital computers -

analysis. The second is to assist in the design of digital

computers - synthesis.

A review of the computer literature indicates that

computer modelling at the level of the memory processor inter-

face has been neglected. The probable reason for the

neglect is the mathematical difficulties associated with

analytic solutions of suitable models, A major contribution

There has been some analysis; these earlier results are
discussed in the relevent chapters of the thesis.

...,,««*»* .■■■'«»*"■

is concurrency and contemporary large computers euch as the

CDC 6600 [Thornton, 1970] and IBM 560/91 [Anderson, et al.,

19671 use concurrency in several parts of the computer.)

Since the operations comprising a single instruc-

tion are normally intended to be carried out sequentially,

the presence of concurrent operations implies that for at

least some of the time more than one instruction is in the

process of being executed. The multiple instructions

usually appear in either of two ways: in a multiprocessor

computer (with multiple instruction streams being simul-

taneously executed) or in a single processor computer simul-

taneously executing successive instructions of a single

instruction stream.

The general class of computer structures is in-

dicated diagramatically in figure 1. A group of memories

(each indicated by an M) is connected through a switch (S)

to a group of processors (P). The memories are also connected

through the switch to a specialized processor, an input/output

channel (i/o), which is characterized by a constant memory

access rate. In the general case each of the memories and

each of the processors can be different ana the extent to

which any given memory is used by any given processor can

be specified independently. For the analysis in the thesis

we consider several special structures of this general

class. We assume that all the memories and all the pro-

cessors are alike and we assume v hat there is an equal

likelihood that any' given memory is used by any given pro-

-
+

of the thesis Is the development of reasonably simple

approximate solution methods for the models proposed. As

Is Indicated In chapter V, simulation studies suggest that

the approximate solutions are quite satisfactory.

B. Computer Analysis

The digital computer Is an Information processing

device and an appropriate measure of Its performance Is the

rate at which the Information Is processed. The primitive

computer activity (as opwjsed to computer component activity)

Is the execution of an Instruction. Xf we astume certain

things constant over a class of computer structures to be

analyzed - specifically, the Instruction set and the memory

word size - then the performance of the computers can be

taken as equal t, the IER where the IER Is the Instruction

execution rate. The IER mainly depends on two factors:

component speed and concurrency. The execution of an In-

struction (A discussion of computer Instructions appears

in chapter II) Involves a sequence of operations by a

memory and a processor. The IER Is determined not only by

how fast these operations are carried out but also by the

number of operations being carried out simultaneously. (As

a practical matter the subject of concurrency is a rather

important one. Technology Imposes, at any given time, limits

on how fast basic operations can take place and the only

remaining factor that can be used to increase performance

"■"w

is concurrency and contemporary large computers such as the

CDC 6600 [Thornton, 1970] and IBM 360/91 [Anderson, et al.,

19671 use concurrency in several parts of the computer.)

Since the operations comprising a single instruc-

tion are normally intended to be carried out sequentially,

the presence of concurrent operations implies that for at

least some of the time more than one instruction is in the

process of being executed. The multiple instructions

usually appear in either of two ways: in a multiprocessor

computer (with multiple instruction streams being simul-

taneously executed) or in a single processor computer simul-

taneously executing successive instructions of a single

instruction stream.

The general class of computer structures is in-

dicated diagrarjatically in figure 1. A group of memories

(each indicated by an M) is connected through a switch (S)

to a group of processors (P). The memories are also connected

through the switch to a specialized processor, an input/output

channel (i/o), which is characterized by a constant memory

access rate. In the general case each of the memories and

each of the processors can be different and the extent to

which any given memory is used by any given processor can

be specified independently. For the analysis in the thesis

we cc .aider several special structures of this general

class. We assume hat all the memories and all the pro-

cessors are alike and we assume that there is an equal

likelihood that any' given memory is used by any given pro-

 _ _

.*

^ .

Legend:
M— memory
P— processor
S— switch
I/o — I/o channel

Figure 1. General Computer Configuration

cessor. We divide the structures into two classes: single

processors (a single P on figure 1) and multiprocessors

and provide a different type of analysis for each. For the

single processors (analyzed in chapter III) we introduce

a notation called an instruction timing diagram and with

the aid of it directly compute the instruction execution

time and then the IER. The basic approach taken is to add

the average delay in accessing memory to the processor

time to get the total instruction execution time. This

approach, while both straightforward and conveniently

used to examine processor features in detail, is very

awkward to apply to multiprocessor computers, and another

approach is indicated. For multiprocessors (analyzed without

i/o in chapter IV and with i/o in chapter VI) we introduce

a special instruction form called a unit instruction which

allows us to determine the IER directly in terms of the.

rate of memory cycle utilization. The utilization is

determined by an approach related to the occupancy problem

of combinatorial analysis.

C. Computer Synthesis

The models developed in the thesis relate the

performance of the computer to the number, specifications,

and Interconnection of its components. These variables

are also those to which the cost of the computer is related.

If both cost and performance are related to common vari-

ables, it is possible to formulate a design procedure that

^MM«fcW«^>»*"»''"|«^ll■«|,''

■" ■ ■ ■ ■■■■■■■" ■■■: .■.....-.....

will choose comp iter configurations that are optimum with

respect to certain design criteria.

Synthesis procedures are usually Iterative as

indicated in figure 2. A series of potential design con-

figurations are generated, analyzed, and tested against

the design criteria. The best of the configurations (as

measured against the design criteria) is chosen. The

heart of the synthesis procedure is the analysis part.

The generation of the proposed configurations can be either

simple in that all configurations (in some prespeclfied

design space) are generated or more complex in that the

configurations generated are dependent on the results of

analysis and testing of earlier configurations.

The purpose of this thesis is not to consider

design procedures in detail. However, to Illustrate the

utility of the thesis analysis in design, a simple design

program is presented in chapter VII. The program chooses a

configuration (in other words, it picks the number of

memories and processors and their speeds) so as to realize

a desired IER at a minimum cost.

Begin

1
Generate a configuration

Analyze the configuration

A
Test the results of the
analysis against the
design criteria

Exit with the best configuration

Figure 2. Synthesis Procedure

, ■

___ _ „ Jt ■ liiftmii

Chapter II Computer Components and Instructions

A. Memories

The structure and organization of the digital

computer Is Influenced by both what we think the computer

should be and by the technology of the computer components.

Probably memory technology has had more Influence, histor-

ically, on computer design than any other factor.

The purpose of the memory Is to hold programs

(sets of Instructions) and the data (sets of operands)

to be processed. The time required to obtain Information

from memory thus strongly Influences (limits) the Instruction

execution rate. For economic reasons It Is generally

Impossible to provide. In a single memory, both sufficient

speed of operation to realize an adequate IER and still

have adequate memory size (number of memory words) to

hold all the programs and data associated with a computer

system. At times even a single program and Its related

data may face this limitation. Consequently» It Is conven-

tional that at least two forms of memory be present In a

computer system: primary and secondary.

The primary memory Is a relatively small but

fast storage area for Instructions and operands that can

be directly operated on by the processor. The Information

 i 1 "AH i 1 ^_^i^ „.v.„,...i^^j.M-a--ga^ . .^„^jt.^

stored in the secondary memory cannot be acted on directly

by the processor; it must first be transferred to primary

memory. The transfer of information between primary and

secondary memories is an important activity in digital

computer systems, both because it interferes with processor

access to primary memory and because there is usually a large

access time associated with secondary memories.

Because of the general difficulty (or impossi-

bility) of predicting the processor accessing pattern, an

important requirement for primary memories is a random

access characteristic. For such memories, the time required

to access any word of information is independent of its loca-

tion in memory; in particular it is independent Of the re-

lation between the location referenced and the last referenced

location.

At the time of writing the most common form of

primary memory is the magnetic core type. Magnetic core

memories typically used in computers have word sizes from

eight to over 100 bits (possibly 500 bits) and have total

word capacities from about 4K (K = 1024) to 64K. (The

sizes given are typical for single memory units. The en-

tire computer primary memory may be made up from a number

of memory units«) Core memories have complete operation or

cycle times in the range of 0.5 usec. to 10 usec. The read-

out of information in a magnetic core is inherently a des-

tructive process; that is, the contents of the memory lo-

WMMMMMi mmmmm mmmm ■■■

^
■**

10

cation are lost when read. Since this is usually uncle-

sired, the information must also be restored in the memory

after being read. This re-writing takes an additional

amount of time. Once the information is read out, however,

it is immediately available to a processor; the latter need

not wait for the restore time. The time elapsing between

the initiation of a memory request and the time the in-

formation becomes available is the access time; it is typ-

ically 50% to 30% of the cycle time.

The cost of magnetic core memories is generally

related to the cycle time and a very rough approximation

would give the cost proportional to the reciprocal of the

cycle time. Core memories are frequently of the coinci-

dent current type and in these the cost of the electronic part

of the memory is roughly proportional to the square root

of the memory size. The balance of the memory cost is

directly proportional to the memory size,, Thus, the cost

per word is lower in large memories than in small; in par-

ticular a memory of w words costs less than m memories
■- -, ■ ^

of w/m Words.

Another form of primary memory is the transistor

register type. These memories are characterized by very

fast access times of about 23 to 100 nsec. Their cost,

though, is such as to preclude their general use as pri-

mary memory. It is common, however, for contemporary

computers to provide a small amount (typically 8 to 64-

11

words) of ■primary memory in registers. The registers are

often addressable as if they were locations in core memory.

The secondary memories store the large bulk of

information in the digital computer system. The principal

types of secondary memories are rotating discs and drums and

linear magnetic tapes. The cost of storage per bit in secon-

dary memories is about 1% to 10% of that in primary memory.

The low cost and large capacity of secondary memories is due

to the fact that they are not of the random access type. The

access time is dependent on the relation between the last

and currently accessed data and the time elapsed since that

last access. The average access time for randomly located

information is half the time for a revolution (about 10 msec.)

in rotating memories and the time to search half the tape

(ei number of seconds) in magnetic tape memories. The max-

imum rate of information flow in a random access memory is

the reciprocal of the cycle time; in a non-random access

memory the maximum is obviously not the reciprocal of the

average access time. For the type of highly structured

information flows that take place between the primary and

secondary memories, the word flow rate (particularly from

drums) may appraoch that obtainable from primary memory.

B. Processors

The purpose of the processor is to obtain in-

structions and operands from memory, decode the instructions,

and perform the required operation on the operands. Often

IBiitMifi^*^w*w»^^*^

12

the speed at which arithmetic operations are carried out

strongly influences the IER, and it is fairly conventional

to characterise processors by their arithmetic capabilities.

There are two principal types of arithmetic operands: fixed

point (integer) and floating point (fraction plus exponent).

Small to medium size computers usually have only fixed point

arithmetic operations built in; floating point operations are

programmed. The smaller computers may have only fixed point

add and subtract and even fixed point multiply and divide

must be programmed. For the purpose of discussing processor

times, instruction decoding and other types of operations

implemented such as logical and control operations can be

grouped with the fixed point add and subtract instructions.

At the present time these types of operations generally re-
■ ■

quire on the order of a few tens of nsec. to a few hundred

nsec, A fixed point multiply or divide takes from a few hun-

dred nsec. to several usec. depending on the processor. Float-

ing point operations, when implemented, have execution times

in the range of about 0.^ to 15 usec. The important rela-

tions in determining IER are, as we shall see later, between

the processor times and the memory restore times. From the

proceeding discussion we surmise that for most contemporary

computers the basic fixed point operations require less time

to execute than the memory restore time. The balance of the

other operations may, depending on the particular memory and

processor, have operation times greater or less than the mem-

ory restore time.

15

C. The Computer Instruction

V/e shall take as our basic computer instruction

the implementation of a binary (two operand) operation.

A general binary operation can be represented as:

result ♦- operand 1 ["operator 1 operand 2,

In a computer we refer to information by its location in

memory (specified by a memory address) and consequently

the prototype instruction is written:

1. (A)*-(B) [operator] (C)

2. Take (D) as the next instruction.

The notation (X) means the contents of the memory location

specified by address X. Thus B and C are the operand ad-

dresses; A is the result address. The second part of the

instruction is necessary because instructions are executed

as part of a sequence; the location of the next instruction

of the sequence is specified by address D.

As we can see there are four memory addresses

(A, B, C, D) associated with the prototype instruction.

These addresses must be specified somehow, but they need not

be explicitly included in the instruction; they can be speci-

fied in an implicit manner. The reasons for preferring im-

plicit specification of addresses are due to: (1) a potential

improvement in the IER by reducing the number of memory re-

ferences which must be made to execute the instruction and

(2) a reduced amount of memory space required to hold the

instruction. (If it requires k bits to encode a memory

; , v

1*

address and j bits to encode the Instruction operation, then

an instruction with n explicit addresseü) requires n k ♦ j

bits of memory to hold it.)

In real computers a common implementation of the

basic instruction is one called the single address format.

A register called the accumulator is implicitly specified

as both the location of one of the operands and the location

of the result. The next instruction address is implicitly

taken as the address of the current instruction plus one.

The single address format requires two memory references:

one for the instruction itself and one for the operand. The

single address format is used as a prototype instruction for

the purposes of the subsequent analysis and the computer in-

struction >•;« is assumed to be made up entirely of this type

of instruction. In addition, each instruction and each

operand is assumed to occupy exactly one memory word.

D. Instruction Timing Diagram

The execution of an instruction of the single

address format involves the following steps:

1. The instruction itself is fetched from the

memory. The memory address of the instruction

is specified implicitly by the address of the

previous instruction plus one.

2. The instruction once received from memory is

decoded yielding the operation to be performed and

the addrens of the operand to be used.

15

*« t, *« *w »a.

' f
1 i '
1 '

iii1
ii

P 1 lÜd, ! 1 ^1 .- time
A

i —Ma«*- u— 3—*•-

Legend:

1 Instruction fetch

2 instruction decoding

3 operand fetch

k instruction execution

5 next instruction fetch

t memory access time

tw memory restore time

td instruction decode time

tei Pr0c®S80r execution time

Figure 3, Instruction Timing Diagram

16

3. The operand is fetched from memory,

Zf. Once the operand is received by the processor

the operation is performed.

This sequence of events may be indicated diagramatically

by plotting simultaneously against time the memory

and processor activities. See figure 3. This construction

is termed an instruction timing diagram (ITD). The ITD

will be used to visualize the instruction execution and

(as will be seen in chapter III) to compute the amount of

time required to execute the instruction. The general

approach to be taken in computing instruction execution

times from the ITD is to pick corresponding points on suc-

cessive instructions and determine the time between them,

(Such points are indicated by A 's on the ITD of figure 30

Sometimes the appropriate choice of corresponding points

facilitates the determination of the instruction execution

time.

If there is more than just one memory capable of

simultaneous operation the ITD is easily extended to handle

this case. In the following we have two memories M. and

Mpj the instruction reference goes to M- and the operand

reference to M,.

M2

M, r

. 1

r .a.

t!ä

_BL

Uli

'JL_

17

The interesting thing to note here Is that once the In-

struction Is decoded the operand reference can be Immed-

iately made to Mp. The time required to execute the In-

struction (assuming td
<t<|r) Is shortened; this Is a result

of the concurrent operation for a time of both memories.

Further discussion of this Is deferred until chapter III,

E. The Instruction Execution Hate

The computer Instruction set Is assumed to consist

of a set of Instructions Ij of the single address Instruc-

tion format each with an associated value of processor ex-

ecution time tA., The value of decode time t, Is assumed ex a

to be constant for all Instructions, By examining the ITD

we can determine a value t^ to execute I. where t. Is clearly

a function of t j, td, t , tw. In section D we saw that the

number of memories Influenced the Instruction execution

time; hence t^ Is also a function of the memory structure.

For the time being let us simply apsoclate the memory struc-

ture with a variable S, Then we can write:

\ * ^ei» td» V V S)- t2-1*

Associated with each Instruction I. Is a probability or rel-

ative frequency f. which gives the likelihood that any given

Instruction Is of type 1, The average time E(t) required

to execute an Instruction 16 computed:

E(t) = TL fit.. (2.2)
1

,;■ ■^,:..-:>^;..'-..:...--.

■ ■ ■■■ . . ■-. . ■.

v- i*

... ■■■ -'..

WPmiBPMP,"

18

The instruction execution rate is the reciprocal of the

average execution time; hence:

IKR- l/CEZVi). (2-3)

„ ,

I ^.ii^M 'i iVinimi'iiifiifliiWillt'ii ^-^^.^u^^tiimtuii

19

Chapter III Single Processor Computers

A. Single Memory

Given that we have a single processor organi-

zation and a set of Instructions In the single address

format with relative frequencies fj and processor execu-

tion times tei , we now wish to compute the IER. When

there Is a single memory the ITD Is:

t t t t
« p-8—t—*—*—a i w

P i t-1 i i ®L

Since In chapter II we Indicated that for most practical

situations td<tw , the Important timing relationship Is

that between tei and tw. The Instructions fall naturally

Into two classes:

class 1 - tei<tw

class 2 - tei>tw.

For Instructions of class 1, the execution time for Instruc-

tion 1^ Is:

hm 2ta+ 2tw8 2tc (3.1)

$^fkäiimä^<&&^^

1WWML Mj»' »WWJ» W'J-CTWjmiK^uPn

20

where t,, ■ t ♦ t,,, is the memory cycle time« For inetruc-
C Ä w

tions of class 2, the execution time is

The average execution time for an instruction is defined

as in chapter II:

set) - :q f±t±

£t\ i c i% i a w ei
(3.5)

where i*cl and i«c2 mean those subscripts which apply to

classes one and two respectively* Now let us make the

following definitions:

f 1 « ZT f.
i*c1 :L

f 2 - C fi
i*c2 1

tj » d/fi) E M^ e i«c1 1 el

t.2. = (1/f2) E f.t-. .
e i-c2 1 e:L

(5^b)

(3.4c)

(3.4d)

From these definitions, fl and f2 are the relative fre-

quencies of all instructions of class 1 and class 2 re-

spectively. Similarly, tal and t 2 are the average re- © e

spective processor execution times for instructions of

class 1 and class 2. Substituting equations 3»k in equa-

tion 3.3 gives:

E(t) = fl(2tc) + f2(2ta + tw ♦ te2). (3.5)

The form of the result suggests a simple way to compute E(t)

The average execution times (t 1 and t-2) are substituted
6 6

21

for tei In the general expressions for the instruction

execution times given by equations 5.1 and 3.2 and then

the resulting values are weighted by the respective class rel-

ative frequencies. This approach works because of the

linearity of the averaging operation and applies not only

to the results of this section but also to those of the

subsequent sections as well. Hence we can disregard the

detail of the instruction set and in the subsequent anal-

ysis perform only two computations analogous to those

represented by equations 3.1 and 3.2, The instruction

execution rate is obtained by taking the reciprocal of

E(t) as defined by equation 3.5:

IER = 1/(fl(2tc) + f2(2ta + tw + te2)). (3.6)

Since f1 + f2 = 1 and tc » t + t the latter becomes:

IER = T/(2tc + f2(te2 - tw)). (3.7)

B. Interleaved Memory

We can see from equation 3.7 that even making

the processor arbitrarily fast (which makes f2 - 0) cannot

provide an IER greater than 1/2tc . The IER could be

increased if it were possible to have the instruction and

its operand in different memories. This cannot be done

with certainty without greatly reducing the memory utility ,

The obvious way to do this is to have separate memories
for the instructions and the operands. This approach
eliminates the (little used) generality to use operands
as instructions and conversely. More importantly it elim-
inates the ability to apportion freely the memory between oper-
ands and instructions as the need arises.

■ ■ ■ ■■ :. ■-

-if^v :.-■■ ■

 ■■■- .._.__.__.._, . _^. ■■.■^^^^^-WAI.:.:.^.,.., . .^^.^ ■ ... ,^.L.,JA.^J^^,...^„,^.1

22

but we can propose a memory organization that achieves

this with a high probability. Suppose we have m inde-

pendent memories. We arrange the memory addressing so

that successive addresses are in different memories. In

particular if the memories are denoted MQ ,..., M^j and

address 0 is in MQ then address z is in M/z moau;L0 m)«

Such an addressing scheme tends to uniformly distribute

the operands and the instructions among all the memories

regardless of their particular addresses. We can then

make the reasonable assumption that the probability of

any particular memory reference being directed to any

particular memory is 1/m . Equivalently, if a memory

reference goes to M, the probability that the succeeding

reference also goes to M. is 1/m . The probability that

reference does not go to M^ is 1 - 1/m , This type of

memory organization is called an interleaved memory. The

ITD for the interleaved memory case with no addressing

conflicts is:

M t Iflu.

'JL

JL

l !

U
1

t*»i
■A

,J

- i

—4-

23

We note that the value of t* Is no longer deterministic;

rather t* is a random variable. In the following we compute

the average value of t^ ; however for simplicity there is

no new notation introduced to indicate that it is an average

value. We recall that the general idea in using the ITD

to compute instruction timing is to pick corresponding

points on successive instructions and then determine the

time elapsed between the points. On the above diagram the

points used are indicated by A's. The potential conflicts

are indicated by the numbers 1 and 2 on the ITD, The time

elapsed between the first A and point 1 is t ♦ t, . With

probability 1/m a delay of t - td is encountered at this

point. From point 1 to point 2 a time t + t j elapses.

With probability 1/m a further delay of tw - tei is en-

countered before the next instruction can begin. Hence:

ti» ta+ td> (l/m)(tw- td) + ta +

tei* (l/m)(tw- tei)
85 2ta+ td* tei* OA0(2tw. V. tei),

(5.8)

We have implicitly assumed above that the instructions were

of class 1; for instructions of class 2 no delay can be

encountered at point 2, In a manner similar to the pre-

ceding we find for instructions of class 2 that:

h" 2tai + td * tei * (l/m)(tw - td), (5.9)

E(t) is now found using the method of section A:

E(t) = f1(2ta + td ♦ tel ♦ (1/m)(2tw - td - tel))

* f2(2ta ♦ td ♦ te2 + (l/m)(tw - td))

-■

. •*

2k

- 2ta + td ♦ tem ♦ (l/m)(tw - td) ♦ (fl/mXt^ - t0l)

(5.10)

where t is the average value of processor execution time

for all Instructions:

tem » fUte1) ♦ f2(te2). (3.11)

We now compute the IER:

IER = 1/(2ta ♦ td + (l/m)(tw - td) * ten ♦

(fl/m)(tw- tel)). (3.12)

For a large value of m the IER becomes:

XERtS 1/(2ta+ td+ tem). (3.13)

Hence for an arbitrarily fast processor (td»temÄta^

the maximum IER Is about twice that obtainable with a non-

Interleaved memory system.

C. Interleaved Memory — Alternative Analysis

In the last section we considered all memory

references to be random with the probability of a reference

to a particular memory 1/m, Hence, with this definition,

there Is a non-zero probability 1/m2 that an operand refer-

ence conflicts with the Instruction reference arid that the

succeeding Instruction reference conflicts with that operand

reference. This Implies that two successive Instructions

(which occupy successive memory locations) are located in

the same memory. But the Interleaving scheme we have suggested

generally avoids this. It is of Interest then to compute

E(t) if these double conflicts were eliminated. (The

double conflicts can occur only when tei<tw and we shall

■ü

assume this for the following discussion.) Figure k shove

a tree structure of possible operation sequences. This Is

presented to aid In the analysis. The probability of get-

ting from one node of the tree to another Is the product

of the probabilities of all the branches connecting the

nodes. The probabilities of the branches are obtained as

follows:

1. The probabilities of branches 1-2 and 1-3 are

just those normally associated with the conflict

of an operand reference with the proceeding

instruction reference. Hence they are 1/m and

1 - 1/m respectively.

2. From the proceeding discussion branch 2-4

represents an impossible situation. Hence the

probability of branch 2-4 is zero and the prob-

ability of branch 2-3 la one.

3. The probability of branch 3-6 is not (as might

be expected) 1/m but rather 1/(m-1). Once an

Instruction is obtained from a memory, say M.. ,

and the operand reference is known not to conflict

with that of the instruction, the operand must

have been chosen from one of the remaining memoriet»

not including M,. . Since the next Instruction

reference is also made to one of these memories,

the probability of a conflict is 1/(m - 1). The

probability of branch 3-7 is then 1 - 1/(m - 1).

^

•f

next instruction
reference

operand
reference

instruction
reference

p-l-l/Cm-iy

Legend:

c— conflict

nc — no conflict

p — probability of branch

awe

t +t.+ t„ a d w

t +t,+ t +t. a a w e

Figure if. Instruction Execution Tree

■■ •>-■■>"<■«■■.' ^■■- 1ir.ilf .1. IIB- '■ - i' -^^ iii-ii n „.J.,.„. ..„ ■

27

The times next to the terminal nodes indicate the instruc-

tion times for the sequence ending at the node; they are

readily obtained from the ITD. We now compute ti:

tj e 2-1 (time from node 1 to node J)(probability
1 M,5,6,7

of getting from node 1 to node 3)

- (1/m)(ta + tw + tei) ♦ (1 - 1/m)(l/(m -1))

(ta + td ♦ tw) + (1 - l/m)(l - 1/(m - 1)) x

(ta ♦*<!**• * ^i)
s 2ta ♦ td ♦ tei + (l/m)(2tw - tei - td).

(3.1^)

which is exactly the same as is obtained by the previous,

simpler analysis.

D. Instruction Buffering

With an m-way interleaved memory it is possible

to simultaneously obtain the contents of m successive mem-

ory locations. Since successive instructions are normally

located in successive memory locations, it is possible to

organize the processor to perform the instruction references

for m instructions simultaneously (the current instruction

reference and the next m - 1 instruction references). Let

us assume that the m instructions obtained are stored in m

fast processor registers with an access time t <<t . The

instructions are then obtained from the registers as needed.

Now up to son instructions (why s can be less than m is

dicussed shortly) can be executed which have an ITD as

follows:

.—— _ _.. ..
■

28

M

M

R

P. |

a w

|~^~1

fej kj i^ £ei i^d

We see that (except for the first Instruction) the fetching

and decoding operations of the subsequent Instruction can

be grouped with the processor execution of the current

Instruction, This makes It appropriate to redefine (for

this section only) classes 1 and 2:

class 1: t0i + tr + td^tw

class 2: tei + tp + td>tw .

Using the approach of section B the values of ^ are readily

obtained:

t. » t + (t .. + t + t,) + (1/m)(t - t 4 - t - tj) 1 a v el r d7 v"uwv«'W ^^ "y "^z

(3.15)

for Instructions of class 1 and

tl - ta + ^ + td + tei (3.16)

for Instructions of class 2, The time required to fetch

the m Instructions Is t because the operand reference of

the first Instruction necessarily conflicts with the Instruc-

tion fetch. To compute E(t) for a single Instruction, we

29

apportion the initial instruction fetch time among the s

instructions executed. Hence using equations 3.15 and 3.16

we compute E(t):

E(t) = tc/s + f2(ta + td + te2) +

fl(ta + te1 + ^ + ^ + (1/m) x

^w" V " ta" V)
* tc/s * (ta + td + tem + tr) +

(fl/m)(tw- tel - td - tr). (3.17)

The IER is then computed:

IER = 1/(tc/s + (ta + td + tem + tr) +

(f1/m)(tw- tel - td - tr)). (5.18)

The reason that less than m instructions can be

executed is due to the presence,of branch instructions in

the instruction stream. Such instructions cause the pro-

cessor to take the next instruction from a memory location

that is not the next successive memory location after the

branch instruction. Suppose that the relative frequency

of branch instructions is f^. We shall characterize the

instruction set by assuming that there is a constant prob-

ability p^ a f^ that any given instruction is a branch

instruction. Hence there is a probability 1 - p, that an

instruction is not a branch instruction. We now compute

the probability that a sequence of k instructions are ex-

ecuted. For 1<k^a there must be k - 1 instructions that

are not branches followed by a branch instruction. Let X

be a random variable equal to the number of instructions

■uimn:>:->--^i^-- 'i.:..-.--.■■-'■■■■

^ !...:.;-,.^„. ,..

»W^F«^, iffiJMWWVU^P ■ ■ ^

30

executed. From the preceeding discussion:

p(X = k) = p(k) « (1 - Pt)11'1?!,; k = !,••.,m - 1;

(3.19)

where p(k) Is the probability of the k Instruction se-

quence. Regardless of whether the m Instruction Is a

branch Instruction or not, the execution sequence terminates

at the m instruction If It has not terminated earlier.

Thus:

p(m) = 1 - p(X<m)

= i - f: (i-p^'^b. (3.20)
k=1 D D

Using the fact that the sum of a finite geometric series

Is:

i aks (a- a
n+1)/(l - a)

k=1

we reduce equation 3.20 to

p(m) = (1 - T?Jm'\ (3.21)

The expected number of Instructions executed E(X) Is then:

E(X) = JZ kp(k)
k=l

m-1

= Zk pb(l - pb)
k-1 + m(l - Pt)01"1. (3.22)

Writing the summation as

m-1
d S^/, _ Nk pb S 21(1 - pb)

d(l-pb) k.1 h

and using the previously mentioned relation for the sum of

a finite geometric series, we reduce equation 3,22 to

51

iin. E(X) = (1 - (1 - pb)
m)/pb . (5.23)

The expression for E(X) can now be substituted for s in

equation 5.18 yielding the IER for the buffered instruc-

tion case:

\
IER =

Vc
1 - (1 - Pb)

+ t +tJ+t +t + —^-(t -t l-t,-t) m a d r em m v w e d r'

(5.24)

For large values of m and small values of td and tr ,

equation 5.25 becomes:

IER^ l/(pbtc* ta+ tem). (3.25)

Finally, for a fast processor and a lo'v value of pb (for

scientific computing pb probably lies in the range of about

0,05 to 0.5) the IER approaches 1/t which is about twice

the IER in the results of section B.

D. Instruction Prefetch

Normally computer instructions are intended to

be sequentially executed: in a stream of instructions, the

execution of instruction x + 1 does not begin until the

execution of instruction x is completed. However, it is

possible to organize the processor so that more than one

instruction is being executed at a time. It is possible

to go to processors of considerable complexity (as for ex-

ample in the CDC 6600 and the IBM 560/91) in order to max-

imize the overlapping of instruction execution. In this

liHliiiinnMwi'iiiit'i'-f«""" ' ' ^--" »■■"

32

section, however, we will discuss a modest form of con-

currency of instruction execution: the instruction pre-

fetch. The idea of the instruction prefetch is quite simple:

the overlapping of the subsequent instruction fetch with

the processor execution time of the current instruction.

The ITD for this case v/ith no addressing conflicts is:

M,

M.

M, f

A

w

üd

.a—. w

Lnext instruction begins
t. w

A

f

r- ilistlruction ends istlr

hd hi

From the ITD we observe that the value of tei is not going

to appear in the expression for t. . This perhaps sur-

prising result is a general feature of this type of con-

currency. The rate at which instructions are executed is

dependent on the time which elapses between instructions

commencing execution and not on the time required to ex-

ecute a given instruction. There are, however, some side

effects to be considered. If the value of t^ is such ei
•that it extends to overlap the processor execution time of

53

the next instruction, then multiple processor execution

units must be provided. Also there raust be checkins to

insure that the resulb of the first instruction is not an

operand of the subsequent instruction.

Since t ^ is not going to appear in the final re-

lations we do not have to consider f.. and t. and we can

compute E(t) directly. Probably the best way to find E(t)

is to use the instruction execution tree of section C,

The probabilities associated with the branches of the tree

are the sarjo; only the instruction execution times have

to be changed. The tree is presented in figure 5. We

now,using the approach of section C, compute S(t);

E(t) = 0/m)(tw + tw + ta) +

(1 - 1/m)(ta+ td + ta + tw) +

(1 - 1/ra)(ta + td + ta)

= 2ta + td ♦ (1/m)(2tw + ta - td). (5.26)

The IER can now be computed:

IER = 1/(2ta + td + (1/ra)(2tw + ta - td)) (5.2?)

which for small td and large ra goes to 1/2t ,

i ig^mmm MCAiiMMliiNßMWvnK'sieii','^ if»v* '

. ■ ■ .. .

3k

next instruction
reference

operand
reference

instruction
reference

psl-l/Cm-l)

t +t +t a w a

t +t,+ t +t a a a w

VV^

Figure 5. Prefetch Execution Tree

wsfmmßf^vmmmiKmmBßimmmim mm

35

Chapter IV Multiprocessor Computers

A. The Multiprocessor Problem

One of the main reasons for the anaylsis presented

in chapter III is to indicate some limits on the IER ob-

tainable in a single processor computer. To get a higher

IER in a single processor computer (single instruction

stream) it is probably necessary to have a definite struc-

ture in the information to be processed. For example, if

the information can be structured as n-component vectors

and we organize the processor so as to have n execution

units which are capable of performing simultaneous oper-

ations on each of the n components (and provide a suitable

memory organization), then we can obtain an IER which is

about n times that which would be obtained if the data were

treated in a scalar form. This is essentially the approach

taken in the Illiac IV (Barnes, et al., 1968). As might be

expected there are considerable difficulties in realising

an IER that high for many practical problems.

If the information to be processed cannot be so

structured, then to get a higher IER, it is necessary to go

to a multiprocessor organization (with multiple instruction

streams). We should note at this point that it is not the

purpose of this thesis to indicate how the multiprocessor

is to be used: in particular, how a single, inherently se-

quential task can be broken down into n tasks that can be

^^j^MSM^iMClWWi'iMWtta'MHnMaal

•f

36

run on an n-processor computer. For a discussion of this

see Rosenfeld (1969). A typical multiprocessor organization

is presented in figure 1 . The most important aspect of

the multiprocessor organization is the sharing of a common

memory system by all the processors. As the processors

randomly direct requests to the memories, it is inevitable

that conflicts will arise in that a processor will request

service from a memory that is busy servicing another pro-

cessor request. The function of the switch in figure 1 is

to direct processor requests to the correct memory and to

resolve conflicts by deferring requests to busy memories

to subsequent memory cycles. Since we assume that the pro-

cessor requests to the memories are random, we have what is

termed a stochastic service system. The study of such sys-

tems is called queueing theory and in queueing theory

terminology the multiprocessor system isanm-server system

with a finite service requesting population (the n proces-

sors). The servers are unique in the sense that they can

handle only requests directed specifically toward them.

(Usually an m-server system is taken to be one in which any

server can service any request.) The memories are charac-

terized by constant service time t followed by an interval

t when they are unavailable to service requests. New re-

quests for service are generated by processors after some

interval (t, or t j) has elapsed since their last request

was serviced. These combined aspects of the multiprocessor

<

do not allow It to be handled by the common models of

queueing theory. It does not appear to the author that a

rigorous solution of this queueing situation can be readily

obtained. Given this, there are basically two approaches

that can be taken: (1) simplify the model sufficiently so

that it can be solved by rigorous methods or (2) attempt

an approximate solution. The latter approach is taken in

this thesis; the analysis appears in the subsequent sec-

tions of this chapter. The former approach is taken by

Skinner and Asher (1969). They model the multiprocessor

as a discrete Markov chain. The basic time interval is a

memory cycle time. They assume a matrix of probabilities

which express the likelihood that a given processor requests

service from a given memory at the beginning of the memory

cycle. They also assume matrices of probabilities which

express the likelihood of the various outcomes that can

arise when there are simultaneous requests to one tnenory

by several processors. The states of the modelled system

are characterized by the processors delayed and the memories

for which they are delayed. A state transition matrix

is formed from the previously mentioned probabilities and

from this matrix the steady-state probabilities of the

various states are determined. With this information the

average amount of delay experienced by a processor in

making a memory request is computed.

There are two problems with this approach. The first

.ivw-wseui».-^-—■■
■

38

is that as the number of memories and processors increases,

the number of potential states of the system becomes quite

large and it is difficult to obtain other than a numerical

solution. The second problem is obtaining the required pro-

babilities. The probability that a processor directs a

request to memory during a given time interval is dependent

not only on the relation of the memory speed to the proces-

sor speed but also on the amount of delay a processor ex-

periences in getting a memory request serviced. Since, in

essence, that delay is what the analysis is supposed to

determine, it is difficult to see how the required proba-

bilities can be obtained in an analytic manner. (Skinner

and Asher obtain the probabilities that they use in their

model by first simulating the system and then making measure-

ments on the simulated system. The necessity of doing

this would seem to diminish the utility of the model.)

B. Modified Instruction Format

The previous discussion has assumed the single

address format instruction as the model of a computer

instruction. This instruction format has an ITD as follows:

t t t t a w a w
M i ! I 1 *—' 1 '

I

\ k .

59

The instruction consists of two instances of the following

operation sequence: the accessing of memory followed by an

interval of processor activity. Hence an execution of a

single address instruction can be approximated as tv/o suc-

cessive executions of a simple instruction with the fol-

lowing ITD:

M a

» V

where t ., the average processor activity time, is defined:

Si = (td + t*l)/Z- ^A)

This instruction is termed a unit instruction. The exe-

cution rate for unit instructions is termed ÜER to dis-

tinguish it from the IER. For the situation here UER = 2 x

IER. We will now average over the instruction set and com-

pute a single value tp defined:

■ ? fiV- (4.2)

We will henceforth assume that all the instructions of the

instruction Sfei. are made up of unit instructions with a

single value t . As the analysis of chapter III would

ko

suggest, the important relation to consider is that be-

tween tp and tw. There are three cases of interest and

they are discussed individually in the following sections:

1. tp = tw

2. tp < tw

To mention the unit instruction only in relation

to the single address format instruction is to overlook its

considerable generality. Obviously, instructions with no

operand reference map directly into unit instructions, but

the operation sequence of the unit instruction is suffi-

ciently basic - a memory access followed by processor ac-

tivity - that nearly any instruction format can be easily

mapped into a series of them. For example, consider a two

(operand) address instruction format which has the following

ITD:

t t t t t t a . w a w a . w

1 t
operand 1
fetch

operand 2
fetch

L!fi_

 -.,„r-i-„,,-^.™;.,,,.,. ...
■ ..

^1

This is mapped into three unit instructions each with an

average processor activity time tp= (td+ t i)/3. Since

three unit instructions are required the UER = 3 x IER.

Other instruction formats may be handled in a similar

manner.

C, Multiprocessor with t = t p w

In order to facilitate the discussion a further

change in the instruction format is indicated. Unlike the

change in section B the following is purely a conceptual

transformation which introduces no approximation in the

analysis. The ITD for the unit instruction when t = "^ is:

M

This is transformed to the following ITD:

M f
<

V .;■•

'

^2

The memory now has an access time of t and zero recycle c

time; the processor execution time is also zero. This

transformation introduces no change in the sense that the

performance of a system v/ith either ITD is the same. For

both ITD's the memory access begins at point 1 and the pro-

cessor execution and the memory recycling are completed at

point 2. With this new instruction format we are now ready

to determine the UER for the multiprocessor.

Let us assume that we have m memories (m-way inter-

leaved) denoted H.; .j = 1,,..^; and n processors denoted

P^; i = l,...,n. From the instruction format, we can see

that one unit instruction is executed for each memory cycle

which is utilized by a processor. The maximum rate at which

memory cycles are available is m/t and this represents

an upper bound on the UER. The problem of finding the UER

reduces, in essence, to that of determining that fraction

of the total number of memory cycles which are utilized by

all the processors. Notice that this represents quite a

different approach from that used in chapter III, The

analysis li chapter III might be termed processor oriented

since the time required to access memory is simply considered

a delay which is added to the processor execution times in

order to get the total instruction execution time. The

analysis of this chapter is memory oriented since the pro-

cessors are considered only to the extent that they affect

the memory utilization.

iJ-f"--JW!W...1 .1. „ J^l^|lW^^J,»'j'«l^■al%-^,M;|y^■^,l).^^^^^^l»^^■».ul-,.ll^^»l^^^.«^

■ mm

43

Wo will term a processor queued if it is either

waiting for or in the process of receiving memory service.

A memory is termed occupied if it has one or more processors

queued and unoccupied if it has no processors queued. A

processor is termed active if it is currently being ser-

viced by a memory. Let us consider an interval of time

equal to t , For each memory which is occupied at the

beginning of the interval, there is exactly one memory

request serviced during that interval and hence exactly

one unit instruction executed. For each memory that is

unoccupied at the beginning of the interval there are no

memory requests serTiced (and hence no unit instructions

executed). Becr.use the modified instruction format has

t = 0 there are always n processors queued. Let us now

define a random variable Z..; j = l,...,m; where:

{0 if M.. is unoccupied
;j (4.3)

1 if M. is occupied

If X is a random variable which takes on values equal to

the number of occupied memories, then:

The expected value of X, E(X), is the average number of

occupied memories. From the previous discussion it should

be clear that:

UER = E(X)/tc . (4.5)

kk

From equation 4.4 we have:

E(X) = E(72 ZJ = HECZJ (4.6)

where E(Z..) is the expected value of Z... Since all the

memories are identical, equation 4.6 reduces to:

E(X) = mECZj) for any J. (4.7)

We now wish to focus on one memory M.. and determine Z...

The approach used here is related to the occupancy (or

distribution) problems of combinatorial analysis (Feller,

1968). From the foregoing discussion we know that there

are always n processors queued. The probability of any

given processor memory request going to any given memory

and hence queued for that memory is, as in chapter III,

1/m, In particular,the probability that any given processor

is queued for M^ is 1/m and the probability that any given

processor is not queued for M^ is 1 - 1/m. If Y is a random

variable equal to the number of processors queued for M..,

the probability that Y = r is given by a binomial distri-

bution;

p(Y - r) - p(r) = (^)(l/m)r(l - l/m)n'-r. (4.8)

From the definition of Z. and Y we now compute E(Z^):

E(Z1) = (0)p(0) ♦ C (l)p(r)
J r=l

■ C p(r) - p(0)
r=0

= 1 - p(0). (4.9)

^5

Using equation /f.8 in equation if.9 we find:

E(Z.) = 1 - (1 - 1/m)n . (4.10)

We then use equations 4.5 and 4.10 to compute the ÜER:

TIER = (m/t)(1 - (1 - 1/m)n) . (4.11)

E(X), the average number of occupied memories, is a function

of m and n; let us call this function g(m,n):

g(m,n) = m(l - (1 - 1/m)n). (4.12)

The function g(ra,n) has certain properties of interest:

1, For m,n>1, g(m,n) is monotonically increasing

in m and n. This shows that we always get an

improvement in the TIER by adding another memory

or processor,

2, g(m,n)< minimum (m,n). The number of unit

instructions executed during an interval t can

not exceed the number of memories or processors.

We might have stated the problem of finding the

TIER as follows. Let us randomly distribute n processors

among m memories. The UER is the average number of memories

which receive processors multiplied by 1/t . Riordan (1953)

shows by quite different methods than v/e have employed

that the average number of memories v/hich would receive

processors is g(m>n), (Riordan
1 s work is in combinatorial

analysis; he speaks of balls and cells rather than processors

and memories.) This method of problem formulation shows

the approximate nature of the analysis. It has been im-

plicitly assumed that all n processors make random requests

.

-'"'- 'ta-;-;- ■.■:-.^--.

pPnll^H

46

during each interval of time t , In a real computer n^n c

processors make requests during t $ if there are several

processors queued for service at a memory, only the one

serviced during the interval t makes a new request at the

end of that interval. Consequently, unfavorable (in terms

of the effect on the UER) distributions of processors (a

number of processors queued for one memory) tend to be more

frequent in an actual computer than would be suggested by

the analysis. The result of this is that the UER specified

by equation 4.11 is somewhat higher than would be actually

observed. We might expect that the most significant devi-

ation between tho actual and the computed ÜER to be the

greatest when there is a high probability of a number of

processors being queued for a single memory. This would

occur when n/m >1 and m is small.

D. Multiprocessor with t <t

When t <t the ITD is: p w

H ,--

1 2 5

As in section C we perform a transformation on the ITD to

get:

 -. • -

 -—-■ ■inn 1 "■—' " -

k7

t' t7
M r & r-^H f

l' 2 3

t^O

The access time becomes t' = t.* t_t the memory restore a a p'
time becomes t- = t,„ - t.. and the processor execution time w w p
t goes to zero. The transformation is such that the per-

formance of a system with either ITD is the same. For both

ITD's the memory access starts at point 1, the processor

execution is through at point 2, and memory restore is com-

pleted at point 3.

We recall the definition of an active processor

as one whose memory request is currently being serviced.

When tl.at service is completed, an active processor can

make a new request to either an occupied or an unoccupied

memory. If it makes a request to an occupied memory, there

is no appreciable advantage gained from the fact that t <

t ; the processor must wait anyway. On the other hand,

if the request is made to am unoccupied memory the proces-

sor's request is serviced immediately; and there is an ad-

vantage associated with t being less than tw. The proba-

 - - — — i —-»^■»..■..^...,—-^-.^i..^. _ _

^8

bility of an active processor making a request to an oc-

cupied neiaory is defined as:

/ v average number of occupied memories

U.13)
The probability of a request to an unoccupied memory is:

p(unocc) = 1 - p(occ). C^-.l^)

Wo estimate the number of occupied memories as g(m,n). Hence:

p(occ) = 1 - (1 - l/n)n (4.15)

and

p(unocc) = (1 - 1/m)n. (^.16)

Using the ideas of chapter III, we compute the average

amount of time required to execute a unit instruction by

an active processor:

E(t) = p(occ)(t) ♦ p(unocc)(t)
C cl

= p(occ)(t) ♦ p(unocc)(t_ ♦ t_)
C 9. p

. tc ♦ (1 - l/m)n(tp - tw). (4.17)

The rate of execution R is just 1/E(t):

1 1
HE t ^T" c 1 ♦ (1 - 1/m)n V S

^c

(4.18)

Now this is the unit instruction execution rate for one of

the active processors. The UER for the multiprocessor is

Just R multiplied by the number of active processors which

Is also estimated as g(m,n). Thus:

UER . -^ LzJLz VnOn , . (^19)
c ! - d . l/n)n-H S

k9

Since the denominator of the fraction is less than one,

the TIER is greater for the case of t^ t than for the p w

case of t^ = t when m and n are the same. p w

We have used gCn^n) as an estimate of both the

average number of active processors and occupied memories.

Actually for t <: the average number would be somewhat

higher than g(m,n). The increased number of occupied mem-

ories would tend to decrease the performance (since there is

a reduced probability of a request to an unoccupied memory)

while the increased number of active processors would tend

to increase it. Simulation studies suggest that the ef-

fects almost cancel (chapter V).

E. Multiprocessor with t >t ' p w

When t >tw the following ITD applies:

M r JL

I-
This ITD can be transformed to the following:

*i

1

50

The memory access time becomes t_. the memory recycle time

goes to zero, and the processor time goes to t' ■ t - t .

Again the trsmsformation is such that the performance of

a system with either ITD is the same. For both ITD's

the memory access begins at point 1, the memory is restored

at point 2, and the processor execution is completed at

point 5.

For the previous two cases there were always n

processors queued, lor this case, because t >0, there

will be, in general, less than n processors queued. This

introduces an additional complication into the analysis.

Let us suppose that there is a constant (in other words,

independent of time and tM state of the memory queues)

probability p that a given processor is queued for memory

service. Let Q be a random variable which takes on values

equal to the number of processors so queued. The proba-

bility that k processors out of n are queued is given by

a binomial distribution:

. P(Q = k) = p(k) = (£)(Pm)
k(1 - Pm)

n"k (4.20)

When k processors are queued the average rate which at unit

instructions are executed is given by equation 4,11 with

n replaced by k. Defining this as R(k) we have:

R(k) = (m/tc)0 - (1 - 1/m)k). (4.21)

The non-zero value of t does not affect in any direct way

the rate at which instructions are executed; however its

effect is felt indirectly through its influence

51

on the value of p , We now compute tha HER as the expected

value of R. From equation 4.20 and /t.21 we have:

UER = ^ R(k)p(k),
k

■ E (m/tc)(°)(l- (1 - 1/m)k)(po)
k(l - Pm)

n-k

« (m/tc)(1 - T (£)(P0(1 - 1/m))
k(1 - pm)

n-k)
k

= (m/tc)(1 - (1 - P0/o))
n. (4.22)

frhe last result is from applying the binomial theorem to

the summation.) We note the HER specified by equation 4.22

is a function of pm. Equation 4.22 is identical to equation

4.11 except for the replacement of 1/m with Pm/ai. Since

p 41, the HER for t = t is greater than the UER for t > t ^m * p w ^ p w
assuming the same values for m and n. Because the number

of processors queued is binomally distributed, the average

number of processors queued is np . Hence:

average number of processors queued i /. ^x)

A flow diagram of the instruction execution is as follows:

Memory System
UER(pm) Processor Delay t.

%0j0£^0mimmm*M*'i

.

52

Serviced memory requests leave the memory system at a rate

specified by equation ^..22. They then experience a delay

t before making a new memory request. Let n be the

average number of processors not queued in the memory sys-

tem and n the average number queued. Necessarily:

n ♦ n^ ■ n ik.2h)

and thus substituting in equation if.23 we have:

pm - (n - np)/n. (4.25)

From the flow diagram the average number of processors

not queued must be the product of the average unit instruc-

tion processing rate and the delay t^. Thus:

np = ÜER(pm)tp. (If.26)

Using equation if.26 and the relation t = t - t we have: p p w

Pm = ' " HIT <' " t1 - Pm/In)n)(tp * V ^'Z7)
o w

or

0 = pm ♦ (m/n)(g^I w)(1 - (1 - pm/m)
n) - 1

(if.28)

which is an n order polynomial equation in pm. It must

be solved for the value of \ in the interval (0,1). That

there exists one and only one solution of equation 4.28

in (0,1) can be seen by considering equation 4.2?. As p

goes from zero to one, the left hand side of equation 4.27

increases aoaotonically ^rom zero to one while the right

hand side decreases monotonically from one. There is one

and only one value of pm in (0,1) for which the right and

left hand sides are equal. Once a value of pm is obtained.

53

it is substituted in equation if.22 to obtain the ÜER.

msmme^m. mm

■t •►■-

%

Chapter V Simulation

A. Reasons for Simulation

In the multiprocessor analysis of chapter IV

two principal approximations are made. The first is the

replacement of the single address format instruction with

two successive unit instructions and the associated aver-

aging over the instruction set to get a value of t . The

second approximation is the treating of the inherent multi-

processor queueing problem as a distribution or occupancy

problem. The intent of the simulation studies is to ascer-

tain the effects of the approximations over a limited set

of cases.

B. The Simulator

The simulator is the "next most imminent event"

type. In the simulator certain rules are applied to deter-

mine the sequence of events in the simulated system and the

timing of the events is determined accordingly. A simulator

of this type is quite simple and executes rather rapidly.

The simulator is set up to handle n processors

denoted P.; i ■ ^...n; and m memories denoted M. ;

J ■ l,..,,m; where m and n are arbitrary and specified at

run time. Associated with each memory M4 is a time t .

which is .the earliest time M.. can initiate servicing a new

55

memory request. Similarly, associated with each processor

Pj is & time t . which is the earliest time processor P^

can ioitiate a new request for memory service. The simu-

lator is arranged so that one cycle of simulation corresponds

to the execution of one unit instruction by one processor.

There are two basic rules which govern the sequence of events

in the simulator. First, the instruction unit execution of

any given simulation cycle is always associated with the

processor P. for which the value of t ^ is a minimum at the

beginning of the cycle. (If there is more than one value of

i for which t ^ is a minimum, then the largest value of i

is arbitrarily chosen.) Second, an instruction unit execution

involving Pj and M, always commences at the maximum of the

times t . and t..., since that is the earliest time at whiih pi mj

both P. and M. are available. With these rules in mind we

can follow step by step the action of the simulator whose

flowchart appears in figure 6*

1* The simulator is initialized. The values

m, n, tc, and t , are specified; t .. and t ^

are set to zero for all i and j. 7 is set to the

total number of unit instruction executions to

be simulated.

2. The value i is selected so that t . is a
Pi

minimum. This corresponds to the selection of

the processor for the current simulation cycle,

3. The value of J is selected. Similarly, this

corresponds to the selection of the memory for

. ■--.„j.-tn,-... vmMuim,

....

56

T

1.

Select ra,n,Y,t ,
t . and t«

W0 ^ 1'3

Select 1
2.

5.
Select j

Select t.

4.

VBlücCtpi,t»3)

5. t^t^+t mj e—

no J^es.

7.

8.

9.

Compute T fron

equation 5.1

UERS= Y/T

Compute pre-
dicted value
of UER

I

Figure 6. Simulator

57

the current simulation cycle. A multiplicative

congruent random number generator (Kruskal, 1969)

is used to uniformly generate integers in the

rang? 1,...,m.

If. The value of t is selected. Normally it is

a constant but in one simulation, however, it is

is selected so that for any given processor it

oscillates between two values whose average is t ,

5* A start time (for the unit instruction exe-

cution of the current simulation cycle) t is

computed as the maximum of t^. and t .. The

time t . is then set to the sum of the start mj

time and the memory cycle time tn. The time

t , is set to the sum of the start time, the

memory access time t and the processor exe-

cution time t .

6. If less than Y unit instructions have been

executed, another simulation commences at step 2.

Otherwise the computation of the results begins

at step 7.

7. The exact time at which the simulation ends

is not precise; there are m + n times in the

simulator. Probably the most reasonable estimate

of the end time is:

T ■ irhr< Z V + Z tnj).
i .i

att|^'MBa»illW»»iW*«1li1llllllll'll»lllll«WI1 rir.n.iii.ni.1. .nil—wilinin m i i ».m»..«.^.»a..».»«^»~.~-. -—«"«..MäsSfc.,

 -■■■ - i.'«V^4.-, .r^;:,.-^,:^.-,,--..i-;i. :.i..:v. .--■■..-.:..■,;,• ..■..-.■. «fa'^mSltr - i » S. ,<

-

58

8. The simulation unit instruction execution

rate ÜER„ is the ratio of the total number of s

executions to the time required to execute

them; hence:

UESg = Y/T .

9. The UER is computed from either equation

b.11, 4.19, or it,22 depending on the relation

of t to t . If equation 4.22 is approriate
Mr *

then the value of p must be computed. A Newton-

Raphson search technique (Pierre,1969) is em-

ployed; it converges rapidly to the value of p

in the interval (0,1).

As can be seen from the above, the amount of simulator activ-

ity per unit instruction execution is independent of m. The

value of n only determines the number of values of i which

must be searched to find the minimum in step 2.

The actual simulator is more involved than des-

cribed here and has provision for severA? Instruction for-

matr (including the simple unit instruction used here). It

accepts input in the form of an instruction set where the

.'ormat, execution times and relative frequency of each

instruction may be specified. The sequence of events in

the simulator when executing unit instructions is precisely

just those described above. The simulator is written in

59

Algol1 for the Univac 1108 and it simulates the execution

of about 2000 unit instructions per second.

C. Results

A set of simulation result is presented in

figures 7 through 11. The results are presented in a normal-

ized form: the performance of a one processor, one memory

system with t = t is taken to be one. We use figures 7

through 10 to verify the basic multiprocessor analysis; figure

11 is used to verify the instruction reduction. The figures

are discussed individually and represent various cases of

interest:

Figure 7: For this case t ■ t^ = 0-5tc. The

difference between the predicted and the simulated

values is small. The maximum deviation is about

85*5 with the predicted value higher than the simu-

lated and occurs when the ratio of processors to

memories is one or greater. This is in accor-

dance with the observation of chapter IV, section

C.

Figure 8: Here t = 0.1 tc and tw ■ 0.5tc. The

maximum deviation observed is about 10%; the

predicted performance again higher than the

simulated performance. The worst deviations

^A text of the simulator appears in the appendix.

.
fciiiiai*ai

-

60

occur when 3 or ^ very fast proceoßors (t =0.1t)

are used with 2 to 4 memories. (This is a situ-

ation which would not likely occur in practice

because it probably would be uneconomical to

configure a system in this fashion.) This is

again in accordance with the observation of

chapter IV, section C. The slope of the four-

processor performancd curve is still high even

when n ■ 16, suggesting that the performance of

the system can be significantly improved by

adding memories. (This may or may not be economical

though.) Although figure 8 does not show it,

the curves for the simulated and predicted results

converge for n = 3 and n = 4 when m> Sk»

Figure 9: This is the same as figure 8 except

that t = 0.2tc. Basically the same comments

apply.

Figure lOtHere t is greater than tw: t- s 2tc = iftw.

The results show excellent agreement of the simu-

lated and the predicted results. For m > 1 the

corresponding curves are nearly indistinguishable.

Figure 11:These simulation results are presented

to verify the reduction of the instruction set to a

unit instruction with a single value of t . The

curves present two different simulations. For

one the value of t oscillates between 0.1tc and

61

k"

O

O
<H

©

>
•H
+> a
H o

3-

2-

predicted

simulated

k 8
Memories

16 32

Figure 7. Results for tp=tw

^^^;.^;-,^..;;-^:.::;.-;■ ■-.,,--.:.r, yv^v^. , :' ; .^.#-j-y-'

■f"

62

k 8
Memoriee

FigureS, Results fpr t =0,1 tc

■

UPHni

65

o

predicted

simulated

Figure 9. Results for t = 0.2tc

jn "

6^

2"

predicted

simulated

o>
o

s
o
h

0)1

•H
4*
si
H
<D
K

n=if

n=5

n=1

■+■
2 ^ 8

Memories
16 32

Figure 10. Results for t =2tc

65

V 0'5tc

4
t = 50% 0.1 tc + 50% 0.9 tc

<D
O

I
o
u I
?
•H
+>
(Ö
H

Figure 11. Results for Varying t,

mmimuMim^

 ^

66

0.9tc for a given processor with a mean 0,5tc;

for the other a constant value of tp = 0.5tc

is used. The results suggest that the reduction

is probably a reasonable one. The relative per-

formance is slightly lower for the case where

t_ varies than for the case where tp is fixed;

this is generally in accordance with what we

would expect for a stochastic service system.

D. A Comparison with Other Simulation Results

By using some published multiprocessor simulation

results it is possible to provide a form of independent

verification of the analytic results of chapter IV. Rosen-

fold (1969) discusses the results of simulation of the

solution (by Qauss-Seidel iteration) of a set of simultaneous

linear algebraic equations on a multiprocessor computer.

The processors simulated have the general charac-

teristics and instruction set of the IBM 360 computer series.

Although the relative frequencies and processor execution

times for the instruction set are not given, a set of total

instruction execution times (which are presumably nominal

times for a single processor computer) are given. From

these times it appears that the instruction execution time

is roughly equal to the memory cycle time multiplied by the

number of memory cycles needed to execute the instruction.

Thus one can reasonably estimate that the average processor

67

activity time is about aqual to the memory restore time, and

hence Rosenfeld's system can be described in our termin-

ology as a multiprocessor with t = tw.

As we discussed in chapter IV the IER is directly

determined by the extent of memory cycle utilization. For-

tunately, one of the measurements Rosenfeld makes on his

simulated system is the memory cycle utilization and this

makes a direct comparison with his results quite simple.

For the multiprocessor with t- = tw the memory

cycle utilization is speciifed by the function g(m,n.) de-

fined by equation ^■•'12:

g(m,n) = m(l - (1 - 1/m)n).

Figure 12 shows Rosenfeld's observed memory utilization

(solid lines) plotted together with g(m,n) (broken lines).

The agreement between the simulated and the predicted results

is rather good with the utilization in the simulated gener-

ally somewhat higher. At least one reason may be advanced

to account for this: an incorrect assumed value of tp.

If t were assumed somewhat less than tw, the analytically pre-

dicted value of memory utilization would increase and the

curves for the simulated and the predicted results would

become nearly identical. Regardless of the value of t

assumed, the general shape of the curves reflecting the sim-

ulated and predicted results is the same.

■ .

■ p

68

7(X.

60..

50 '

h0

a o
•H
+»
at
•H

O
§20

SB

lO-

predicted

simulated

i i

1 2 8
Processors

12 16

Figure 12. A Comparison with Rosenfeld's Results

HHRHMMI

69

Chapter VI An Analysis of I/O Effects on Processor
Performance

A. I/O Activity

In chapter II we discussed the technological

reasons necessitating the presence of primary and secondary

memories in computer systems. The information stored in

a secondary memory is moved into the primary memory only

when it is actually ready to be used by the processor and

after processing it is returned to the secondary memory.

The information flow between the memories is generally

called input/output (i/o) activity and this activity has a

degrading effect on the ÜER. Each word of information

transferred between the primary and the secor dary memory

usually uses one, cycle of the primary memory. If both the

i/o and the processors are active simultaneously, conflicts

arise when both direct a request to the same memory simul-

taneously. Normally if a conflict occurs the i/o request

is served first and the processor request is deferred until

the subsequent memory cycle. In other words, an i/o service

request has a higher priority than a processor request. The

reason for granting priority to the i/o is due to the ro-

tating character of commonly used secondary memories (drums

and discs). For each i/o request that is not serviced

\
In some computers additional cycles are used to count

the number of i/o transfers and to specify the memory
locations to which the transfers go.

ailiwiiwiiiiniiiiiiniiiiiiiiinitr^'' : " ^-.-^ ------i^riirTwiimwmrii^ mn 11 i J

v*

70

sufficiently rapidly, the I/o transfer process must be

delayed by the time required for one full rotation of the

memory device thus delaying the processor waiting for the

I/o the same amount of time. For some types of I/o It Is

possible, however, to Implement a dynamic priority scheme

where sometimes a processor request has higher priority

than an I/o request and It Is shown In section C that this

approach leads to a smaller degradation In processor per-

formance than the simple priority scheme.

Several authors have given analyses of the effects

of I/o activity. Flores (196^) determines the extent of

queuelng of I/o requests on memories. (His analysis does

not consider the processors.) Flores* model Is developed

from the following Ideas. The I/o requests for memory

service are assumed to be generated by a Polsson process

with a mean request rate of BIO. The requests are considered

to be uniformly distributed among the m memories and hence

each memory has a mean request rate of RIO/m. The memory

Is considered to be a server (In a queuelng sense) with a

constant service time t-. The result Is a simple queuelng

situation with Polsson Input and constant service time.

The mean time elapsing between the Initiation of a memory

request and the time the service of that request begins Is

computed. Flores dous not propose, however, a purpose to

which that time, once computed, can be put. Shemer and

Gupta (1969) extend Flores' model to consider the effect

The notation In th? following discussion Is not that of
the original authors.

71

of I/o activity on the porformance of a single processor.

In their model a processor with an average processing

time t generates random requests to the m memories. Simul-

taneously, i/o requests generated by a Poisson process with

mean rate RIO compete with the processor for the available

memory cycles. Their rather involved analysis allows for

i/o queueing and they compute the average time required

to complete a memory request initiated by the processor.

In order to understand the relation of the above

authors' analysis to that of this chapter, it is necessary

to look at the nature of the Poisson process (Hillier and

Lieberman, 196?) used as a model of the source of i/o

requests. Each memory experiences a mean request rate of

RIO/m and hence during an interval of time t. the proba-

bility distribution for the number q of i/o request received

is:

p(,.t(:) . <RIO/(../tc))<|.-
1"0/C/V .

The average number of requests received during t is c
RIO/(m/tc), but the above equation associates a non-zero

probability for any finite number q of requests. (Although

when RIO/(m/tc) is small the probabilities associated with

large values of q fall off very rapidly.) The type of i/o

activity which is likely to use a significant portion of

the primary memory cycles (and thus significantly affect

the UER) is that from very high speed discs and drums

-

.X—_-.

72

(o' low speed core used as a secondary meaory) and each

of these is characterized by a regular periodic flow rate.

The number of such devices likely to be in simultaneous

operation in a computer system is ssjkll—often one, per-

haps as many as three or four. While the Poisson process

is a satisfactory model for representing the generation of

requests from a number of (unsynchronized) periodic sources,

probably an equally satisfactory model, when the number of

sources is small, is simply to assume that there is a pro-

bability RIO/(m/tr) that one i/o request per memory is re-

ceived during an interval t- and a zero probability of more than

one request. This is especially suitable when each of the

i/o devices has a small amount of buffering (as it usually

does). This assumption is used in section B. When there is

only one i/o device with a periodic flow rate in operation,

an advantageous i/o handling scheme can be implemented.

This situation is assumed in section C.

B. Simple I/O Handling

In at least one way the i/o activity looks like

the n ♦ t8t processor in the multiprocessor system and it

would be attractive to bo able to handle it as such. How-

ever the multiprocessor analysis is derived on the basis

of identical processors and because of the priority granted

i/o requests, the i/o activity looks rather different from

a processor. The i/o activity does, like the processors.

75

contribute to the occupancy of the memory system and hence

Increases the rate at which memory cycles are utilized.

Our general approach in the subsequent analysis is to com-

pute occupancy of the memories with i/o, determine the

rate of memory cycle utilization, and then apportion that

rate between the processors and the i/o. (We shall pre-

sent an analysis only for the multiprocessor ^ase where

t = t ; extensions to cover the other cases are not dif-

ficult.)

Let us consider a particular memory, say M... Let

A be the event that MJ is occupied by a processor request

and let B be the event that M^ is occupied by an i/o re-

quest. From the previous discussion the probability of B

is: ■ ■

P(B) = S$- (6,1)
c

where necessarily RIO must be such that p(B)<1. We will

assume that the probability of A is not affected Pignifi-

cantly by the i/o activity. This is equivalent to the

assumption that A and B are independent events. Thus when

t = tw, p(A) can be computed from equation 4.11:

p(A) s 1 - (1 - l/m)n. (6.2)

The probability of a memory being occupied by either a pro-

cessor or an i/o request is the probability of the event

A or B. When A and B are independent the probability of the

event A or B is:

p(A or B) = p(A) ♦ p(B) - p(A)p(B). (6*5)

. ,v

W*

7^

Substituting equations 6.1 and 6.2 in 6.3 we have:

p(A or B) = 1 - (1 - l/m)n - (1 - l/m)n ^ .

(6.4)

Now, having determined the probability of occupancy of one

memoryi we can determine the rate R at which memory re-

quests are serviced by multiplying by m/tc:

R « (m/t Jp(A or B)

= (m/tc)(1 - (1 - l/m)n - (1 - l/m)n J^) .
c

(6.5)

The"rate R includes the service of both i/o and processor

memory requests. But since the i/o roquests are served

first, the rate R includes exactly a rate RIO of serviced

i/o requests. Hence, the UER can then be determined by

subtracting RIO from R:

UER = R - RIO

= (m/tc)(1 - 1*0)(1 - (1 - l/m)n) • (6.6)

We note that this is just the UER that would be observed

RIO

^c
without i/o multiplied by the factor (1 - ^),

C. Dynamic Priority I/O Handling

We will assume for this analysis that the i/o

requests originate from a single periodic source, and we

will see that it is possible to specify a method of handling

i/o requests v/hich results in less degradation of the UER

75

than that specified by equation 6.6 above. In order to

simplify the discussion and the following derivation, let

us assume that the ratio (m/t)/I?IO is an integer v/hose

value is N>1, This means that exactly 1/N of the total

memory cycles of any given memory, say M-, are used by the

i/o. Furthermore, let us assume that the i/o requests are

generally for sequential memory locations and hence M.. re-

ceives an i/o request exactly once for every N cycles. Let

us assume that there is associated with each memory a one

word buffer to hold the i/o information and a control mech-

anism to implement the following strategy:

1. If less than N - 1 cycles have elapsed since

the i/o request was received, the processor re-

quests have priority; an i/o request is serviced

only if there is no processor waiting for service,

2. If N - 1 cycles have elapsed and the i/o

request has not yet been serviced,the i/6 re-

quest gets the current memory cycle.

We term this dynamic priority i/o handling.

Let us consider a sequence of N cycles for M..

The probability that a given cycle is occupied by a processor

request is p(A) specified by equation 6.2. The probability

that a given cycle is not occupied by a processor request

is .1 - p(A). In the absence of i/o requests the probability

that k of the cycles are used by processor requests is

specified by a binomial distribution:

■ . ■■■ .. . -.. - .; .■ ' . ■ ;._ . .

-.--..■....-— ... _-'tJB&imVa.::-i.....-. .■...■ „ ..■..-.; ,. -.■■.-■. . . .

76

P(k) = (£)(p(A))k(l - P(A))N"k; k=0,...,N. (6.7)

Let C be a random variable equal to the number of cycles

used to service both i/o and processor requests during the

N cycle sequence. The expected value of C is:

E(C) = 1 +
NZ: (k)(p(A))k(1 - p(A))N-kk *
k=0 K

(N - l)p(N). (6.8)

In the above expression, the first term accounts for the

cycle received by the i/o, and the second term accounts

for the cycles received by up to N - 1 processor requests.

The last arises because even if the processors request all

N cycles of the N cycle sequence, they only get N - 1; the

i/o gets the remaining one. Equation 6.8 may be rewritten:

E(C) - 1 ♦ XT (2)(p(A))k(1 - p(A))N-k - p(N).
k=0 K

(6.9)

The summation represents the expected value of the number

of processor requests during the N cycle sequence; hence

it is just Np(A). Thus:

E(C) = 1 + Np(A) - p(N). (6.10)

The average occupancy of a memory cycle over the N cycle

sequence is E(C)/N; we can then compute R for this case:

R = (m/tc)(E(C)/N)

= (m/tc)(1/N + p(A) - p(N)/N). (6.11)

Since we assumed N = (m/tc)/RI0 we have:

R = (m/tc)(i^ + (1 - (1 - l/m)n - ^S(l - (1 - l/m)n)N)

(6.12)

- ----- - - - ■ -■- - . —-^ . :...

77

As before the TIER is determined by subtracting RIO from

R:

ÜER = R - RIO

= (m/tc)(1 - J^O - (1 - l/m)11)1^1) x
c

(1 - (1 - 1/m)n). (6.13)

The latter is just the TIER without i/o multiplied by the

factor 1 - (RIO/(m/t)(1 - (1 - l/m)n)N"1. Since c

(1 - (1 - l/m)11)11""1 <1 this method of i/o handling results

in a lov/er degradation of the processor performance. If

(m/O/RIO is not an integer, then substituting for N in c

equation 6.13 the largest integer not greater than (m/t)/RIO

gives a satisfactory approximation for the TIER.

D. Example

Consider a k processor, /f memory system with

t = t = tv/ = 0.5 usec. and RIO = 10 requests/sec. The

UER without i/o is computed from equation if, 11:

UERCwithout i/o) = U/l.O x 10"6 sec.) x

(1 - (1 - Uk)k)

= 2.73 x 106/sec.

V/hen the i/o is considered without, the dynamic priority

scheme we use equation 6.6 to find:

ÜER(siraple i/o) = (1 - 1 A)(2.73 x 106/sec.)

= 2.02 x 106/Eec.

If we implement the dynamic priority i/o handling we find

N = (m/tc)/RI0 ■ If and hence using equation 6.13 we have:

. pi

78

UER(dynainic i/o) = (1 - (1A)(1 - (1 - 1A)V) X

(2.73 x 106/sec.)

= 2.52 x 106/sec.

The TIER with the dynamic priority scheme is about 2.5% higher

than that obtained v/ithout it—a substantial improvement.

Let us define a memory efficiency e as:

total memory cycles used/sec.
m total memory cycles available/sec.

.ÜER t RI0 (e.iif)
m/tc

and a processor efficiency e as:

total instructions executed/sec.

■P total number of instructions executed
if there were no memory delays/sec.

= ^P. (6,15)

We can now compute the efficiencies for the proceeding

example:

1. No i/o:

= 2.7? x TO*; = 0#67
m If.00 x 10b

. 2.7? x 10*; . 0^
p 8.00 x 10b

2. Simple i/o :

. ?.02 * IQ' . 0-75
B 4.00 X)Ob

. 2.02 x 10^ . 0#2S
p 8.00 x 10°

■ . ■ ■ . . ■ ■ . .

.

79

3. Dynamic i/o:

m 4.00 x 106
= 0.88

e , 2^2 x 10°
p 8.00 x 106

= 0.32 .

• .. «

■

80

Chapter VII Computer Design

A. Optimization Approach

The purpose of this chapter is to Indicate how

the multiprocessing models of chapter IV can be used in a

simple automatic design program. An appropriate context

in which to consider the deslgh process is that of an opti-

mization problem. The nature of the optimization problem

is to relate the costs of a proposed design to the variables

which reflect its structure and then choose the values of

the variables so that required performance is obtained and

the cost of the design is minimized. We have taken the TIER

as the basic measure of computer performance and the form-

ulas of chapter IV relate the ÜER to the variables t , t ,

tj, t , ra, and n. If we can also relate the costs of the

design to these variables we have the necessary relationships

to formulate the optimization problem and hence to Implement

an automatic design program.

B. Costs and the Problem Formulation

The three types of components whose costs we

consider to enter into the overall cost of the multiprocessor

system are memories, processors, and switches. While it

is interesting to consider the possibilities of relating

by formula the costs of the components to their specifi-

cations, the relations would be both rather difficult to

obtain and probably (because of the discrete nature of the

....
..■.,.■. . .

 .„..._._■.. _ _^ ___ _._...._ .i_

81

manufacturing process) not very meaningful. Hence we shall

assume that the costs of the components are related to the

variables In a tabulated form.

There are several considerations that enter Into

the determination of the individual component costs:

1. Switches: The switch has to connect n pro-

cessors to m memories. Hence there are m x n

potential connections implied in the structures

we are considering and if the cost to realize

a simple switch is C , the total cost for the

multiprocessor switch is about n x m x C .

2. Memories: As indicated in chapter II, the

cost per word of a coincident current magnetic

memory is lower in memories of a larger number

of words than in one of a smaller number of words.

We assume that the total memory system has been

specified in advance to have w words. If the

cost of a memory of w words and cycle time t„

is C (w ,tc),then the total memory cost with

an m- way interleaved memory is m x C (w/m,tc)

assuming that a memory is available in that size

and speed. The value of tw is determined once

t is specified and the former is not considered

a design variable.

5. Processors: The cost of the processor is

dependent on the many different speeds associated

with its .internal operations. Once an instruc-

iMIj^^llllplrtlMllillll^lllllllllllM'flilllilW'MWilllll' ' ' ' '-■""'•"'"'" -""■"—' «—«- "■■'"^,"''mMW"«*m*«*<*l*UiS^«iM;j|igjJ^gjg||

•r
y.

. ■

82

tion mix has bean specified a single value t

Is determined by equation 4*2 • The cost of

the processors is then n x C_(t),

The above relations allow the cost C of the

multiprocessor computer to be expressed as:

C « m x Cm(w/m, tc(tw)) ♦ n x Cp(tp) ♦

mxnxCs (7#1)

The performance of the multiprocessor computer is specified

by equation (4.11),Of. 19) or (If.22) depending on the re-

lationship of t^ to tw. We symbolically include all three p W
equations in the following:

ÜER = ÜER(tp, tw, tc, m, n). (7.2)

We now state the optimization problem as:

minimize C

such that UERMJERrequireci

where C and UER are specified by equations 7*1 and 7.2.

To this other constraints may be added; for example, one

limiting the number of processors or stating that the num-
■

ber of processors must be greater than two.

The approach we have taken to solve the optimi-

zation problem is an exhaustive search over the possible

values (as tabulated) of t and tc (implying tw) and over

a specified set of values for m and n. A search space of

no more than ICT* points exists if we assume about 5 to 10

values for each of the variables.

9 ■

83

in Algol prograo «as «ritten for the Univac 1108

to evaluate equations 7*1 and 7.2 over a specified set of

values of t_, t_, m, and n and pick the optimum. Despite
P c

the iract that the exhaustive search approach lacks sophis-

tication (although It 1P difficult to think of other tec-

niques that could be used) it has the definite advantage

that all potential structures are evaluated. Furthermore,

the search is carried out sufficiently rapidly (about 0.2

sec./I00 structures) that there is little incentive to

consider other methods. Thus, in addition to choosing the

optimum structure, the costs and performances of the sub-

optimal structures are also available and it is interesting

to group them according to their performance and the con-

straints violated. It is always important to the designer

to know «hat the sensitivity of a proposed design is to the

design constraints and objectives; that is, how the design

would change if the constraints and objectives were altered

somewhat. This Is readily determined if an evaluation of

all potential structures in the design space is available.

Note that the above formulation of the

optimisation problem is not the only one possible. A de-

sign goal might be to design a system that has the maximum

D5R possible but does not exceed a cost Cmav • Another

design goal might be to design a system which lias the mini-

mum cost/performance ratio (the cout of executing an in-

struction per unit time is a minimum). The reformulation

of the optimization problem to handle these cases is per-

■/

J*

84

fectly straightforward. In the subsequent sections we

present two examples: one minimizes the system cost for a

given UER; the other minimizes the cost/performance ratio.

C. Example 1: Minimization of System Cost

For this example we have the components avail-

able as listed in table 1. The design objectives and

constraints are:

1. The UER must equal or exceed 10 instructions

per second.

2. The total memory size must be Sk K words.

5. The number of processors must not exceed

four,

4. The total system cost must be minimized.

The component costs are also indicated in table 1. They

were chosen rather arbitrarily but they are probably not

unrepresentative for memories in the 18 to 2k bit per word

size and the related processors.

There are over 100 configurations which meet

constaints two and three; k9 meet constraint one, and of

these, four a^e presented in table 2. The optimum design

is indicated by an asterisk; it is a three processor system.

The other designs presented are the best (in terms of cost/

performance ratio) using one, two, and three processors.

Overall,the best cost/performance ratio is found in the

four processor system. The best single processor system

83

Memory:

Size 1.0 ueec. 2.0 ueec. if.O ueec.

ifK »4000 $3000 $2000

8K 7000 5000 3000

16K 10000 7000 4000

Processor:

0,5 usec. 1.0 ueec. 2.0 ueec.

150000 820000 «10000

Switch:

S500/coiuiec tion

Table 1. Example 1 Coste

86

Design m

1

2

5

'k

k

k

k

k

3

2

k

1

1.0

1.0

1.0

1.0

P

2.0

1.0

2.0

0.5

UER

1.15

1.25

1.^9

1.00

Cost Cost/UER

76000

8^000

88000

92000

6.61 •

6.72

5.91

9.20

Units:
t^.t^ — usec.
UER — 10 instructions/sec.
Cost — $ p
Cost/UER ~ 10" $/instruction/sec.

Table 2. Example 1 Designs

87

costs appreciably more than the best multiprocessor system

and has an appreciably highor cost/performance ratio.

D. Example 2: Minimization of Cost/Performance Ratio

For this example we use cost data from a real

computer system: ehe Digital Equipment Corporation PDP-10.

This is a 56 bit word, single address instruction format

computer which has facilities that enable it to be used

in a multiprocessor configuration. The components available

to build PDP-10 systems and their related costs are given

in table 3# In order to put the example in realistic

terms, we will deal with the actual IER of a typical but

simplified instruction mix. The mix chosen has a scien-

tific computational bias: 20% floating point multiply,

30% fixed point add, 20% branch, and 30% load/store. The

branch instruction is not in the single address format;

it has no operand reference. The PDP-10 System Manual

(Digital Equipment Corporation, 1968) gives a rather elab-

orate breakdown of the processor execution times (as dis-

tinguished from instruction execution times) for the various

instructions and the value of t for the mix above is com-
P

puted to be 1.08 usec. Taking in to account the branch

instruction, there are an average of 1.8 memory references

per instruction; hence the actual IER = UER/1.8.

The design objectives and constraints are as

follows:

■..

■ |

Memory:

Processor:

Switch:

88

Size 1,0 usec. 1.8 usec.

8K SlfOOOO

16K 51000

32K $70000

6itK 112000

128K 196000

1.08 usec,

$151000

$1500/connection

Table 5. PDP-10 Costs

(Costs obtained from "PDP-10 Pricing Summary", Digital

Equipment Corporation,Maynard, Mass., March 50, 1969)

.

. v.., ..■..-.■.....■;iJ...i..„,....,.,,.■. ,■,, .,,.■:....., .■...„...^-■^WW, -A...:.■..,..... .

■I 1»^ ■-

89

1, The main memory size must be 256K words.

2, The IER must equal or exceed 0,5 x 10

instructions per second.

3* The number of processors must not exceed

four.

^f« The cost/performance ratio must be minimized.

The eleven system configurations which meet con-

straints one, two, and three are given in table Zf. The

system which meets objective four is indicated by an aster-

isk. As in example 1, the best performance/cost ratio is

obtained with four processors. Objective two is such that

it cannot be met with less than two processors; the best

two processor organization has a cost/performance ratio

about 20% higher than the four processor organization.

jjjSägßÄaujgjii

■
- ■■ ■ .

90

sign m n 'c IER Cost

1 16 2 1.0 0.67 1.12

2 k 2 1.8 0.55 0.75

3 8 2 1.8 0.58 0.86

k 16 5 1.0 0.98 1.27

5 2 3 1.8 0.5^ 0.85

6 4 3 1.8 0.72 0.90

7 8 3 1.8 0.82 1.02

8 16 ^ 1.0 1.29 UkZ

9 2 4 1.8 0.58 1.00

10 ^ k 1.8 0.85 1.06

11 8 k 1.8 1.05 1.17

Units:
t — usec.
c r

IER — 10 ^instructions/sec.
Cost — 10b$
Cost/IER -- $/instruction/sec.

Table if. PDP-10 Designs

Cost/IER

1.67

1.38

1.Jf8

1.29

1.56

1.26

1.25

1.11 •

1.72

1.24

1.13

■

msmssammmmts - ■

mumitm

91

Chapter VIII Conclusion

A. Summary

In the preceding chapters we have presented a

series of analytic models which quantitatively relate the

performance of a certain class of computer structures to

the basic component variables. We have corroborated the

analysis with simulation studies and used it in a simple auto-

matic design program. As stated in chapter I, a major goal

of this thesis is to derive analytic models whose use would

facilitate the design of digital computers. The question now

arises: to what extent the analysis is actually useful in

the computer design process and what extentions, if any,

might be made to make it more useful? The answer is sug-

gested by a review of the design program of chapter VII,

In example 1 (of chapter VII) there are over 100 potential

computer structures which meet the processor and memory con-

straints. In less than 0.2 seconds of Univac 1108 computer

time these structures were determined, their performance and

costs evaluated, and the optimum structure picked. The

evaluations of the sub-optimal structures allow us to in-

teract with the design process in the sense that we can see

how the optimal structure changes if the design objectives

or Constraints are changed somewhat.

For the computer designer this type of activity

is an economical tool to generate an initial set of design

■■■■..... ■ ■ ■ - . ■

 . _ , | ^i^iii' ■ -

. *•■**,

92

alternatives. At the present state of development, the

design program clearly does not design computers, but it

does make some preliminary steps toward that objective.

The generation of initial design structures and the in-

sight gained from the models into how those structures

behave certainly is valuable to the computer designer and

hence this thesis has probably succeeded in its objectives.

There does remain, however, a most interesting prospect

for further automation of the computer design process and

'"r« feel that, with softie extentions of the models and the

design program, this prospect can be realized.

B. Extentions of the Models

In chapter II it was assumed that all instructions

and operands occupied one memory word and that instructions

were of the single address format type. In most real com-

puter^ such a situation does not exist. Normally there are

at least three different operand formats: fixed point

numbers, floating point numbers, and symbols (character

strings); and there are multiple instruction formats. In

general, each of the operand and instruction formats is of

a different size. Since the primary memory word size is

fixed, efficient utilization of the memory requires that

one or both of the following techniques be employed: (1)

pack more than one instruction or operand in a memory word

or (2) use more than one memory word to hold an instruction

or operand. Technique (2) usually slows down the IER re-

93

lative to the case where there Is one Instruction (or

operand) per memory word since more than two memory refer-

ences are required to execute an instruction. Technique

(1) may actually result in an increased IER. If two in-

structions are packed in a memory word, the processor can

obtain the current and succeeding instructions with just

one memory reference.

As an illustration of the foregoing^ consider a

computer which has the following formats:

1. 2if bit instructions

2. 24 bit fixed point numbers

3. A-8 bit floating point numbers

Zf. 8 bit characters.

The main memory word size for this computer might be 48, 24,

or even eight bits. The choice depends on the relative

use of the various formats and the level of performance

desired, A high performance computer with heavy floating

point usage would obviously have a 48 bit word size while a

lower performance computer primarily manipulating characters

would probably have an eight or a 24 bit memory word size.

The foregoing type of considerations represent

a major activity in the computer design process. The design

program of chapter VII could be extended to handle consider-

ations of this type if the appropriate input information

were available. This information would include the relative

!*

9^

usage of the various formats and their sizes. Various

primary memory sizes could be tried by the design program,

and for each size a relationship r between the IER and UER

would be defined (such that r x IER ■ ÜER), as well as a value

of t . These definitions would essentially be a formall-

zatlon of the Ideas that were discussed In section B of

chapter IV. The value of t would be defined as the aver-

age amount of processor time per memory reference and It Is

a function not only of the processor speed but also of the

memory organization and the Instruction and operand formats.

The value of r would, be defined as the average number of

memory references made to execute an Instruction and It Is

also a function of the way operands and data are mapped Into

the memory. With both r and t defined, the design program

would be essentially as that In chapter VII.
•

C. A Proposal for Continued Work

It Is proposed that a design program be Imple-

mented which would specify the high level structure for a

computer so that a desired IER Is realized and that the cost

of the design Is a minimum. (Other design objectives and

constraints Involving costs and performance could of course

be used.) Such a program would undoubtedly be Interactive

so that the designer could see the effect of varying the

Input design objectives and constraints. The Inputs to the

design program would be the following:

1. The component costs;

Z, The desired IER and other constraints such

as total memory size, limits on the number of

processors, and so forth; (The constraints might

be specified In complex ways. The total memory

size might be made a function of the number of

processors with the memory size Increasing as the

number of processors Increase.)

3* The Instruction and operand formats and their

associated relative frequencies;

^. The I/o activity—possibly as a function

of the total memory size and the number of pro-

cessors. (Indeed, If the I/o activity were known

as a function of memory size, the memory size

might be made a design variable rather than a

constraint.)

The design program would then pick the number of memories and

processors, the memory word size (and possibly the total

memory size), and the memory and processor speeds. Since

this design program essentially Includes the Instruction

set as one of Its Inputs, It might be possible to Inter-

connect It with a design program which specifies Instruction

sets (Haney, 1968) thus potentially extending design auto-

mation to cover several levels of the computer design pro-

cess.

-

96

Appendix

The simulator handles three classes of instruc-

tions:

1, Class 1: Siugle address format

2, Class 2: Instruction without operand reference

(like a unit instruction)

3, Class 3: Write instructions (no processor

execution time and an operand memory reference

time of t„). w

An instruction execution consits of two phases: (1) the

instruction reference and decode and (2) the operand re-

ference and execute. Class two instructions have no phase

two; for them the execute is accomplished in phase one. In

the simulator each phase is handled as the execution of a

unit instruction.

97
9 AL6 SI Mr,
CHMPILEO »t CMU I
THIS co'1PIL^TION

1

JULY A1» (VTRSION
AT istzsto«

lOAJ

BLOCK I

BLOCK 2

BLOCK 3

LEVEL
2

.1
1
5

7
n
9

»n

11
l ?
13
LEVEL

n
1!.
16
17
IP
19
20
21
22 —_
23
?H
Zb
20
77
26
29
30
31
32
33
3'»
35
36
37
38
3V
«»n
«♦i

LEVEL
'•2
'•3
MM

'*5
«♦6
H7
'♦8
«♦V
SO

51
S2

10« ALGIL l>*TCO 31

BEMN

FOKMAT FlC "» tXS.'NSX^t» fC» iK6,fT«" .XA.'TP* t

X7i»Rt|X6«,>*P,»X?» •«/•«?• »Al #21«
FORMT F2U'n3iX-H ,6l(V,,2,Xl> |M .1)*
INTEGER Nl.KiUtl.J.L,l?,S.7,Y,M,MfCC5
RFAL [;,A,r3.Trt,TA,Tt,Tn,TTn,v,X,M,T,R0,Rps

R E A 0 i NI I S

Y«204P;5
BF(, IN

COMHEHT IC 15 THE 1"STRUCT10N CLASS, FllS THE
IMSTHUCTIOM RflLATIVE rr?FQMf:NC Y, AND IT IS THE
pROCtSSM EXECUTION TlHE«
?.

INTE6ER AH«AY iCtU.Nlia
REAL ARF-AY CP »F I » I T 11 • .M 1 >«

COMMENT REAP IN fHT INSTRUCTION SET VAWIARLES»

FOR K"<I»1»NIt 00
BFF.IN
READ! IC(K) *IT(K) »Fl f KM«

A.A + FMK)«
ENDS

COfU'ENT H0KHAL1ZE RELATIVE FREOUENCIES AND
COMPUTE CUmUM.ATIVE PROB A« ? I I T 1 FSS

CP<l)«FI (1)«FI(1i/AS
FOR K*<2»l»MI» 00

BFf.Tfl
FHK)«>f 1 (K 5/A'S
CP«»1 »«CPd1-! »•♦fri (<c)«
EN OS

COMMENT Ü IS THE NUMBER OF SIMULÄTI0N3 TO BE
PIIN4

PCACMUIS.
COMMENT RFAP r.EMORY RESTORE, MEMORY CYCLE AND
INSTRUCTION OEFODE TlPFSjf

READ(TWfTC ,TD)S
TA-TC-TTS
KRiTEirns
FOR K«< 1 , l.,U) 00

BEGIN
REAOtMf NK

ÜE6IN

3
IfiTCGtP APr.'»'Y P,C(1.,N)5
REAL ARFAY TT,TP(I».N>»TM<1.♦M)*
FOR L"« I . 1 ,N) DP PU)»1»
R»S«I"1S

COMMENT CC COUNTS THE NUMBER OF UNIT
INSTRUCTION? EXECUTCD«

FOR CC"<I,I,Y) 00
BEGIN

COMMENT CHOOSE A MEMORY — DETERMINE J»
FOP L=l,2,3 DO R=M00(5»R,Z)«
j«(R»M)//z*i$

■ ■■ ■-

■

63
r^
5S
S6
•i?
58
F.9
/.0
Al
<f.?
A3
ÖH
A?>
6A
A 7
S8
A«
;T
71
72
73
7M
7b
7A
77
78
79 „..
«0
81
82
^3
IM
as
8A
87
Ofl
AV
9'I
91
92
93
9M
95
9 6

. 97 .._
91
99
100
101
102
103
104
10'i .. _
IOA
107
108
109 _.
no

98

COMMENT CHOOSE A PROCESS« -- OTERMINE IS
FOR L«(|,1,M» nO IF TPILI
LSS TP(U THEN I»L«

COMMEriT IF PHASE ONE CHOOSE * NEW INSTRUCTION.
GENERATT A RANDOM NUMBER IN (0,1) AND CHOOSE
INSTRUCTION WHOSE CUMMULATIVE PROBABILITY FIRST
EXCEEDS THAT NUMBERS

IF P(1) EQL 1 THEN
-— -~~ BEGIN - -—■-- —

FOR L«lf2»3 00 S«MOD(S«S»Z)»

L«l$
FOR L«L WHIf,E P 6TR CPCL»
00 L»L*!5
C{ I)«IC(L)$ -.-_..

COMMEUT TT-PROCFSSOR FXECUTION TIME FOR THE
SELECTED INSTRUCTION. UPOATE MEMORY AND
PROCESSOR TIMES (INSTRUCTION REFERENCE PHASE)«

TTM)-IT(L)«
TM(J)aMAXlTP(I).TMIJ))*TCS

TPJl)«TMU)-TW + TO$ — —-
COMMENT IF INSTRUCTION IS OF CLASS 2 NO
ADDITIONAL MEMORY REFERENCES NEED BE MADE»
UPDATE PROCESSOR TIME BY EXECUTE TIME. PHASE
REMAINS ONE SO THAT A NEW INSTRUCTION IS CHOSEN
FOR PROCESSOR I. IF INSTRUCTION IS NOT OF
CLASS 2, THE.PHASE IS SET TO 2S

IP CtH EQL 2 THEN TP(I)-
Tpuumn ELSE p(n«2$
ENO ELSE
BEGIN ._ ..._ _
PM)«I$

COMMENT UPDATE MEMORY AND PROCESSOR TIMES
I INSTRUCTION EXECUTION PHASE)«

IF 1 THEN

COMMEMT COMPUTE
INSTRUCTION

COMMENT COMPUTE
TIME. FORM THE
COMMENT IF D_J 5
COMPUTE RP THE
EXECUTIONS

C(l) EQL
BEGIN
TM(J)«MAXCTM|J),TP(|)
^TC«

 T P (I) • T M (J J - T I« ♦ T T (U S
END ELSE

TMCj)«MAX.(TM(J) »TP(I))*TW!
END«

ENDS .„.
A«0«

FOR L»(l,l,M) .00 .A«A*TMtL)S.
FOR L«(|,|.N) 00 A-A*TP(L)S
RO THE OBSERVED RATE QF .__

EXECUTION«

ROaY»(M + Nj/AS .1
A»OS

 FOR L»(l,1,NI) DO A»A+IT(L)S
TTP»lTD*A/NI)/2«
THE AVERAGE PROCESSOR ACTIVTY

DIFFERENCE OF TTP AND TWS
LESS THAN OR EQUAL TO ZERO

PREDICTED RATE OF INSTRUCTION

OaTTP-TwS

"■ .',.^ i.-^' "

lit
112
.113
m
115
I 16
11/
114
117
12')
\2\
l.?2
1,?J
\2'\

. IZii
\2h
127 .--.

129
tin

131
END OLOcK
132 -.
133

END «LOCK
1 3 "4

END BLOCK.
I3r>

REL\Ti;lN Xa(l-F'M/M) «»fj,
RAPHSOU SEARCH TO FINf) X

OF X 13 ONE.
iTErtATlONS MN

THE

99
IF D LEQ Q THEN

BEGIN
V«(|-1/M)««N$
«P«M*(1-V4/(TC*V«P)S
END ELSE
BEGIN

COMMEMf SOaSTlTUTE I iJ EQUATION FOR THE
EXECUTION 'HTE iVHEi?E TP IS GREATER THAN TW
..... «..-..».. ,^ T(1Erj USE NEWTON-

THE START IMG VALUE
THE SEARCH STOPS "VHEN SUCCESSIVE
X DIFFER BY LESS THAN .001$

X=lai
T»D/(M«TC>5

 .TOR H«(T*X*»N*X-1 + 1/M-T)/

(N»X»««M-I)♦!)
WHILE H GTR O.OOl DO X«X-H$
RPSM(»(J.X«*N>/TCS

END«
WR1TE(F2,M,N,TC,TW»TTP,R0IRP»

RO/RP)S . _....

ENDS
EMD'-i

ENDS
-1 ,
EIJDs

COMPILATION COHPI-LTE

■ .

-■

- ■

100

References

1, D, W. Anderson, F. J. Sparacio, and R, M. Tomasulo,
"Hachine Philosophy and Instruction Handling," IBM
J. Research and Development»vol« 11, no. 1, pp. 2*5-
35, January, 1967.

2, Q, H. Barnes, et al., "The Illlac IV Computer," IEKB
Trans. Computers,vol. C-17, no. 8, pp. 746-757, August,
I960.

3, Digital Equipment Corp., PDP-10 System Reference Manual,
Maynard, Mass., 1968.

if. F, Haney, "Using a Computer to Design Computer Instruction
Sets," Ph.D. Thesis, Computer Science Department,
Carnegie Mellon University, 1968.

5. F. S. Hillier and G. J, Lieberman, Introduction to
Operations Research.ch. 10. San Francisco: Holden-
Day, 1967. "

6. W, Feller, An Introduction to Probability Theory and
its Applications.vol. I. third edition, ch. 2t New
York: fliley, 1%S.

7. I. Flores, "Derivation of a Waiting-Time Factor for a
Multiple Bank Memory," ACMJ.,vol. T1, no. 3, pp. 265-
2Ö2, July,)96k.

8. J. B. Kruskal, "Extremely Portable Random Number
Generator," AcM Communications.vox. 12, no. 2, pp. 93-
9^-, February, 1969. " "

9. D. A. Pierre, Optimization Theory with Applications,
ch. 6, New York: Wiley, 1969.

10. J. Riordan, An Introduction to Combinatorial Analysis,
ch. 5, New York, Wiley, 1^58.

11. J. L. Rosenfeld, "A Case Study in Programming Parallel
Processors," ACM Communications,vol. 12, no, 12, pp.
6if5-655, December, '969.

12. J. E. Shemer and S. C. Gupta, "A Simplified Analysis
of Processor Look Ahead and Simultaneous Operation of
a Multimodule Main Memory," IEEE Trans. Computers,
vol. C-18, no. 1, January, 1969.

WWWMWWH

101

13. C. E. Skinner and J. R. Asher, "Effect of Storage
Contention on System Performance," IBM Systems J«.
vol. 8, no. if, pp. 319-535, 1969.

1/f. J. E. Thornton, Desian of a Digital Computer - The
Control Data 6b00.Glenview. Illinois; Scott, Foresman,
and Co., 1970.

Äsl^aiiiWJsaKMiri«»»««*
■

102

Bibliography

1. W. Bucholz. Planning a Computer System, New York:
McGraw-Hill, \%&,

2. H, Hellerman, Digital Computer Systems Principles.
New York: McQraw-öill, \%7.

3. R. S. Ledley. Digital Computer and" Control Engineering.
New York: McGraw-Hill, I960.

k» T. L. Saaty, Elements of Queueing Theory. New York:
McGraw-Hill, 1961,

flRVKMMnwannnM

UNCLASSIFIED
ScTurity Clatisificotion

DOCUMENT CONTROL DATA -R&D
(Securlly classillrallon ol lltlo, Imdy ol abulratl and Indtxlng annolollon muni be »mend when th» ovarmll taport I» e)a»aHI»d)

1 ORIGINATING *c TIVITV fCorporale »u//iofJ

Carnegie-Mellon University
Department of Computer Science
Pittsburgh, Pennsylvania 15213

2«. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2b. GROUP

) REPORT TITLE

AN ANALYSIS OF THE INSTRUCTION EXECUTION RATE IN CERTAIN COMPUTER STRUCTURES

4. UCSCRIPTIVE NOTES (Type ol report and Inclusive dales)

Scientific Interim
I *UTHOR(Sp (Firm name, middle initial, last name)

William Daniel Strecker

K HEPORT DATE

June 1970

7a. TOTAL NO. OF PAGES

JJJL
7b. NO. OF REFS

.la.
B«. CONTRACT OR GRANT NO.

6. PROJEC T NO.

F44620-70-C-0107

A0827-5

61101D

681304

9a. ORIGINATOR'S REPORT NUMBER(3)

9b. OTHER REPORT NOISI (Any other number» that may be assl/jned

miBR 70-2360TR
10. PI 5 1 «i nur ION STATEMENT

1. This document has been approved for public release and sale;
its distribution is unlimited.

11 SUPPLEMENIARY NOTES

TECH, OTHER

U. SPONSORING MILITARY ACTIVITY

Air Force Office of Scientific Research
1400 Wilson Boulevard (SRMA)
Arlington, Virginia 22209

13. AiasWiJlCT

-Ajjhe purpose of the thesis is to present a series of models of digital
computers at the level of the memory processor interface. A discussion of
computer Instructions is presented and the single address format is taken
as the prototype instruction. The execution rate for instructions of this
type is then determined for several computer structures of the single
processor and general multiprocessor types. The effect on the execution
rate of a specialized processing activity, input/output handling, is con-
sidered. Analytic models relate the instruction execution rate to the
memory and processor speeds, their number, and their interconnection.
Simulation studies serve to verify the results of the analysis. A simple
automatic design program is proposed which optimally configures computer
structures from a set of available components. T 1,

DD .3.1473 UNCLASSIFIED
Sccurilv Classification

S#WaOSt^mWT«^:^**«'Ö*W! *..

■

