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CONFIDENCE INTERVALS

FOR INDEPENDENT EXPONENTIAL SERIES SYSTEMS

by

Gerald J. Lieberman and Sheldon M. Ross

1. Introduction and Summary

Suppose: xl,xz, 200 [ Xn are independent identically distributed
exponential random variables with parameter xl, i.e., the density

function is given by

0 ; for x<0
fX(x) = -xlg
xle s for x2>0.
Let Yl’YE’ S00 g Ym also be independent identically distributed

exponential random variables but with parameter Az, and assume
that the X's and Y's are independent. The problem is to estimate
-(A )t
R(t) =e * 2,

The motivation behind this is that if one has a series system with
two independent exponential components then R(t) represents the
reliability of the system e~ time t, 1i.e., the probability that
the system survives until time t.

In Section 2 we present some point estimates. In Section 3
we present & procedure for determining an exact (l-a) level low-r

-(xl+x2)t

confidence bound for e In doing so we also obtain an

interesting characterization of the minimum of two independent gamma
random variables. In Section 4 we compare our procedure with others

presented in the literature. We show that our procedure always gives
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smaller confidence intervals than the procedure presented by Kraemer
[2] and that it dominates (in the sense of yielding stochastically
smaller confidence intervals) & procedure due to Sarkar [4]. Other
procedures are also considered. Section 5 is concerned with the
same problem when the data is of a different form, including Type II
censoring at r out of R. In the final section we point out that

our resultvs =asily extend to the k-sample problem.

2. Point Estimators

n m
Since X = E: Xi/n and Y = 2: Yi/m are the "usual" estimators
i=1 i=1

of l/>\1 and l/,\2 respectively, & "reasonable" estimator (the

-(xl+x2)t
maximum likelihood estimator) or e ' is given by
(1) exp (- -{-—{)t
X+Y

Another possible point estimator is the unique minimum variance
unbiased estimator (MVUE,, which can be obtained as follows:

Letting

1, if Xl > %, Yl >t

0, otherwise

it follows that

(ALt
B(Z) = e T 2

-(xl+x2)t

i.e., Z 1is an unbiased estimator of e . Now, since the

n m
joint statistic ( 2; xi, Z: Yi) is both sufficient and complete,
i=1 1=l

it fcllows from the Rao-Blackwell (also referred to as the Lehmann-

Baivugons § Bovvabige §
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n m
Scheffé) theorem that E\Z 2 X Y yi) is the unique MVUE. Now,
1=1 * 1=l

S x, 5
X Y
£ Y i}

n m

=

) X Y Y. | = B(X. > t, ¥, >t
Ld ) )
AL {1 1

i
/ n m
| 0 y i Y X, <t or Py <t
(2) i=1 i=1
=| n Tn-1f m Im-1
< 13 e 1—21 Ll s <
= = 5 AT ig‘,lxi>t, 1§>1Yi>t’
E xi Z\ Yi - -
1=1 * 1 Li=1 *

where the last equation follows from the well known fact that given

n
> x
i=1

n
statistics from & uniform distribution on (o, b xi). (A similar
i=1

then X, 1is distributed as tne smallest of (n-1) order

i’ 1
statement holds, of course, for the Y's.)

Thus, either (1) or (2) may be used as point estimators of
-(xlﬂ,a)t
e . However, neither estimator is useful in obtaining a
confidence interval for the reliability. This difficulty arises
because the distributions of (1) and (2) depend on both Ay and A,
and not only on }‘l + >\2 In other words,a nuisance parameter would
have to be eliminated. In the next section, we present & method

“Oyg)t

for obtaining an exact confidence interval for e

3. Confidence Intervals

We shall use the notation

V ~ Gamma (7,B)

to indicate that the random variable V 1is distributed as a gamma
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random variable with parameters 7 and f, 1i.e., its density function

is given by

¥ -
1:%—)7 v?'le_ﬂv, for v >0
?' —

8] y for v<20,

£ (v)

where 7,B > 0. Similarly, the notation
-

will indicate that the random variable V is distributed as & chi-
square random variable with r degrees of freedom.

Now, let

and let

)C_.n.

K = (largest j < n: ), xi < U) +(largest J < m:
i=1
Note that
min(myn) < K<m+n-1.
We shall show that given K = k, then
or equivalently, that given K = k, then
) 2(n +)‘.)U~X2 .
et LRk 2k

Fquation (3) enables us to determine an upper confidence bound for
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Ayt xe, with confidence coefficient 1-@, namely

1
(4) E /20
o2k ’
here X2 is such that
E 032k =
e 2

From (h)s we can easily obtain & lower confidence bound for R(t) =
t

(Mg

e ;5 Wwith confidence coefficient 1-0¢, nemely
2

(5) exp(-&1’2kt/2U] .

The remainder of this section will be devoted to showing that
given X = k,U ~ Gamma (k, MoF AQ). To facilitate this we shall
slightly change our notation and also make use of the equivalence
between the partial sums of independent identicelly distributed expo-~
nential random variables and the Polsson process.

Let [Nl(t), t > 0} eand [Nz(t), t > 0} be independent Poisson
processes having respective rates kl and x2. Also, let N(t) =
Nl(t) + Na(t)~ It follows from known results that (N(t), t > 0}

is also a Poisson process but with rate hl + xz. Now let Ti be

the time between the (i-l)St and ith event in the N(t) process,
and define
th . .
1 if the i~ event in the N(t) process comes from
the Nl(t) process,
Iy = L th
2 if the 1 event in the N(t) process comes from

the Né(t) process.

Finally, consider a new Poisson process (N*(t), t > 0}, inde-

pendent of the above, and having rate xl + xe. Let T? be the ith

i
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interarriral time for this process and let J?, i=1,2, ... bean
{ independent identically distributed sequence of random variables,

independent of the above, and such that

i
1 with probability e
1

+ A ’

ek

Mo

2 with probability m- :

Theorem 1: The two stochastic processes [(Ti’Ji)’ i>1} and

((T{,J;), 1 > 1} have the same probability law.

Proof':

The theorem will be proven by using induction to show that
PIT) S8y, J) =315 Ty S8y Jp = JppeeenT S8, 0 = 3]

=P(T#<a, g =9, T§<ay JE=Jp sTh S8, Tt = i)

Let
g 2 iry=1,
e “\1 ir 3=2.
Now ,
o -XJ y
{\ F < - 4= < = = -
(), PlTl = a, J.]. J} L P[Tl ) a, Jl dIYl Y]che dy y

where Yl is defined to be the first interarrival time of the process

[NJ. {t), t > 0}. Hence,

e

§
+

by oy

SO




\ a 'ij ch
P(T, <8, J, = J) = L (1-e )A.J dy

A8 5
f (1-e Jn ¢ oy

-Q+&h
’xl+x2 (dze

=Pl <a, Jt=3}.

Note that the last equality follows since Ti is just the time of

the first event of a Poisson process with rate A‘l + )\2 and JI is
A

g (independently of anything else). Now

J with probability x

1 2

by (7) we have that

p{Tl <8, Jy =3y S0, T, = Jn]

a
1
= Io P{Tz s 32, J2 = dz,ann,Tn S an’ Jn = JnITl = a’ Jl = Jl] X

-(n,4),)a
Ny | €& l)‘2 da
J;

However, by the lack of memory of the Poisson Process it follows

that at time T, (which is the first time that an event from either

1

N, or N, occurs) both the processes [Nl(t), t>0) and

1l
(Ne(t), t > 0}...sta¥t over agein, and hence (8) equals

-(Alﬂ\z)ada

f P(Tl S a2’ Jl = 32, s00 Tn-l i &n, Jn-l = Jn)lee

which by our induction hypothesis equals
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1 -

] -(A1+A2)a
L S S RS L R PR *

a . A
1 n-1 -(A +A2)a, ) -(A +K2)ﬁ
T—T (1= 1 1+l) 1+l e 1 da
L 1=1 {}‘1”‘21 '11

n N -(A,+2,)a
TT b e T2

3=1 M T M

H

< =) e e *\ *= .
P[Ti = Ehb Jf Jl’ ’Tn £ %’ Jn Jn}

Q.E.D.

Now consider the first event in the N(t) process such that to the
left of (and including) that event there are either n events having
their J's equal 1 or m events having their J's equal 2. Suppos=
this is the Kth event and let U = Tl SRR TK denote the time of

this »vent  {Note that these are the same K and U as were defined

at the beginning of this section.)

Theorem 2: Given K = k, U has a gamma distribution with parameters

k and :-xlot . That is, its conditional density is given by

Ak k-1l -Au

fuig-k™ = )T U

Proct

ofine K¢ ana U¥ in an equivalent manner for the N+(t)
process. Since the values Ji are determined completely at random
for the N* process the result follows for U¥ and K¥. The result

must tnen tollow for U and K by Theorem 1.

Q.E.D.
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Corollary 3: Let X ~ Gamma (n’>‘l) and Y ~ Gamma (m,ke), where

the X's and Y's are independent. Then

min (X,¥) ~ Gamma (K,\; + A,)

1

where

RTYEECE & R G T e e IR b
PK = k] - n-l)()\.lﬂ.a) (klﬂsg i m'l)(’*f"?’ ("1”‘2)

for min (myn) <k<m+n-1.

The correct way of interpreting Corollary 3 is that conditional on

K = k, min(X,¥) ~ Gamma (k,\, + A,); i.e., letting I _(a) be
1 2 k,\

the probability that a gamma random variable with parameters (k,N)

is greater than a, then

n+n-1
Plmin (X,Y) > a} = Y r

e)P(K = k} .
k=min(m,n) k’)‘lﬂ‘?(

Proof:

The proof is immediate.

L. Comparison with Other Procedures

sarkar [4] considered the case m = n and obt”ined an exact

-l l+).2)1;

confidence bound for A; + X, (and hence for e ) by the

following method. He defined Z, = min(xi,Yi), i{=1 ... ,n, and

i
based his confidence bound on the fact that the Zi are independent

identically distributed exponential random variables with mean

n
l,/\xlﬂ.a). Hence, ? Z, ~ Gamma (n’>‘l+7‘2)' His upper confidence

is thus

with confidence coefficient -0,

bound for )"1 + xz ’
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The weakness of Sarkar's procedure is that he is throv}ing away & good 3
"
deal of information. For instance, if xl < Yl then he only uses ‘
Xl and makes no use of Yl. However, given that Xl < Yl it follows 3.
(by the lack of memory of the exponential) that the excess, Yl - Xl, o

is exponentially distributed with mean l/)\2 Hence by using the |
"excesses'" one can generate more X's and Y's. This is equivalent
to what the procedure of Section 3 does. Let us illustrate by an

example. i

Example: Independent random samples of size 4 are obtained on each
of two components, X and Y. Assume that the X's are exponentially

distributed with parameter A, and the Y's are exponentially dis-

1

tributed with paramcter xz. Suppose the data are as follows:

(xl’x2’x5’x’+) k= (2:7° 1:6:5)

(-{l’Ya)Yj)Yh) = (5)"",2,3-1) .

Sarkar would thus generate a random sample of size 4, nemely, (2,4,2,3)
from an exponential distribution having mean 1/(xl+x2). Our procedure
(described in Se~tion 3) is equivalent to the following: Determine

the minimum of X, éand Y thereby obtaining the value of 2. 1}

1 1
However, note that the excess, Yl - Xl = 3, ylelds another Y data
point. Hence, after generating the value 2 we are left with the

"random samples"

X: 7.1, 6, 3 &

g Sy 25 31 s

’—“ul
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I Again, we determine the minimum of the first X and the first Y,
g i.e., min(7.1,3) = 3, thereby obtaining the "outcome" 3 and note
2 that the excess, 7.1 - 3 = 4.1, yields another X data point.

Faving gencrated the value », we are left with the "random samples"

¥ X: 4.1, 6, 3
;”“3 Y: u, 2, 3-1 .
i“ We determine the minimum of the first X and the first Y, 1i.e.,

min (4.1,4) = 4, thereby obtaining the "outcome" 4 and note that the

excess, 4.1 -4 = 0.1, yields another X point. Having generated

b
i i the value 4, we are left with the "random samples"
|
| B
12 X: 0-l) 6) 3
‘ Y: 2, 3.1 .
i ’
i
; The minimum of the first X and the first Y 1is 0.1, thereby obtaining
| the "outcome" 0.1. Th2 excess, 2 - 0.1 = 1.9, yields another Y
F point. Having generated the value 0.1, we are left with the "random

samples”

. jn X: 6’ 3

Y: 1.9, 3.1 .

Since min(6,1.9) = 1.9, we obtain the "outcome" 1.9, and the excess
of 4.1 yields another X point. Having generated the value 1.9, we

are left with the "random samples"

x: l"ol, 5
Y: 3.1
1l




bt

Stnee min(k.1,3.1) = 3.1, we obtain the "outcome" 3.1, and the excess
of 1 yields another X point. Having generated the value 3.1, we

are left with the "random samples"”

X: 1, 53

Y: 0

Since there are no more Y data points we must stop the procedure.
If we treat the "outcomes' as the outcomes of a random sample of
size 6 - nemely 2, 3, 4, 0.1, 1.9, 3.1 - from an exponential distri-
bution with mean 1/(x1+x2), then the sum should behave as a gamma

distributed random variable with parameters 6 and kl + x2. However,

m

n
note that the sum is just the random variable U = min| )) Xy» Yi)
i=1 i=1

defincd in Section 3, and 6 is just the value taken on by the random
ariabl:- K also defin-d in S=ction 3. From the results of Section 5
these gencrated values can then, in fact, be considered as the outcomes
of a random sampl: from an exponential distribution with mean
1/(11+x2). As indicated earlier our confidence bound would be arrived
at ty uwsing the fact vnat ) ~ Jamma (K = 6,kl+32). Hence, our pro-
codurs yielas stochastically smaller confidence intervals than does
Jarkar's since w. ar: gensrating a larger random sample (i.e.,
n <K< 2ed).

The abov: cxample also points out some of the wceaknesses of our
procedure., First, since we had no Y points to compare them with,
w- had to throw out th- final two X points. Also K, the number
of data points used, is a function of the ordering of the X's and

\

y':, Tnus, for instesnce, random samples (Xl,Xe,Xj), (Yl’Y2’Y5)

12
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might produce a different value of K than would random samples

(x2’xl’x3) ) (Yz,Yl’Yj) .

Another procedur« is the one due to Kraemer [2]. Kraemer uses

n
the fact that 3, X, ~ Gamma (“”‘1) (or equivalently that
I
n m

~ 2 ~ ) !
2""1? X, Xan) and ? Y, ~ Gamme (m,?xe). Thus, since the X's

and Y's are independent it follows that
n m 5
2["1 TX A D Yi] ~ X (nem) °

n
Again, letting U = min(2 X,
1

v/ ko

Y 1) we have that

n m
2(n U < 2N ? X+ Y Yi] .

n m "
However, 2[’\1 ? xi + )\.2 ? Yi ~ x2(n+m) so that an upper confidence

bound for xl + M with confidence coefficient at least 1, is

given by

2 n
(9} Xa;e(nm)/aU .

Equation (9) expresses tre confidence bound for Kraemer's procedure.
Kowever, cur procedure (equation (4)) yields a smaller confidence
interval since K < 2(n+m)}. This is intuitively clear since Kramer
bascs her estimate on U and gets @ bound on its distribution while
we: base our estimate on both U and K and use the exact Joint
distribution of U and K.

Anotrner procedure has been suggested by Lentner and Buehler [3].

15




n m
Iheir procedur< is baszd on the fact that given 2 Xi - 2 Yi’ then
i i
n
the distribution of 2 )(i depends on >"l and :\2 only through
1

Aot N

- 5+ They then use the Lehmann-Scheffe theory to obtain a con-

ditional (on {

»--M:i

X, - E Yi) uniformly most powerful unbiased test
1

for the hypoth=sis ‘\l + ,\,2 = ¢, By inverting this test they obtain

an upper confidence tound for A, + ,\.2, with confidence coefficient

1
1.
n n m
Since the conditional distribution ? Xi given ? )(i -Zl: Y‘i

is somewtat ccmplicated it is not theoretically clear how good the
Lentner-Beuhler procedure is. It should also be pointed out that
thelr methods are computationally difficult.

Uther relevant, literature that should be mentioned is & procedure

given by Crubbs {1] which obtains fiducial intervels for the reliability.

Anothe¢: possible approach to the problem would be to assume prior

aistributionson and ,\2. It would then be straightforward to

,\l
obtain thie posterior distriounion of ,\l + ,\2 and Bayesiarn probability

intervals ca:s tt.-n o~ ottained.

5 Crr-r Sampling Schmes

A commor. typ= of samplirg used in prectice is type II censoring
at r out of k (r < R) Type Il censoring at r out of R refers
to the situwation wheps E oit.oms are t-sted simultaneously and the
test is terminated wren the first r out of R have failed. The
time of failure of =ach item is recorded. This corresponds to

recording trne order statistics, i.e., X(N,X(E\, 500 X(‘r)' In

1l

¢

I

2
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the notation of this paper put N units of the first component (X)
on test and terminate the test when the nth failure occurs. Similarly
put M units of the second component (Y) on test and terminate the
test when the mt‘h failure occurs. Let x(i) and Y(J) be the
respective order statistics (i =12, ... , n and J = 1,2, ... , m).

Denote by

8 = (n-1+1)(x(i) - x(i_l)), 1=1,2, .e. yn (x(o) s 0)
and

TJ - (m'd"'l)(Y(J) - Y(:j-l))’ J=12, ... , m (Y(O) =0) .

It is well known that the 8's and 71's are independent and identi-
cally distributed random variables with respective parameters }‘l
and >‘2‘ Hence, the procedure of Section 3 is applicable.

Another type of sampling can be described as follows. For the
first component (x) put one item on test. When it fails replace it.
When this second item fails replace it. A similar procedure is
followed for the second component (Y). Terminate the test when
there have been either n failures of component 1 (X's) or m
failures of component 2 (Y's). Follow the techniques outlined in

-(xl+x2)t

Section 3 to determine & confidence bound for e . Note
that in this case our procedure uses all the available information.
The data can be represented by xl, el y xr and Yl’ g F Ys
where either r=n or s = m. Consider the case r = n, then the
likelihood is given by

n 8

"‘2(%\ "‘i‘{-" Fﬁ)

L(xl: s s RV 5o e :Ys) = e ' -I—I- '\'le -,_T )\2e

|

'
>
%

wm

'
&
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where the first term arises since the next y value - namely y“_l -

n 8
m:st be greater than Xy = A y,+ Hence,
1l 1

n
] -(xl+x2)? X,

8
L(Xl) ey xn)Y19 ) Ys) = Klkee 3

Letting A = A, * >‘2 and 6 = >‘l we have

1
A
LY B
L(Xl; ey xn’yl’ ver ys) = 0 (K-O) e
or
n
log L(Xyy «vv 5 Xu¥ys oov ys) =n log 6 + 8 log (A-6) - k? Xy -

Taking the partial derivatives and setting them equal to zero leads

to
o 8 a )
gilong—x_e-§xi=0
and
) n 8
.7 log L = 3" %N-06 =0 .

Solving these equations simultaneously results in the maximum likeli-

A
hood estimate A of A, 1i.e.,

Also, in the case where s = m we have that

A
A=




m ——

F:

=~

Hence, in either case we arrive at &- 7 where U and K are as

given in Section 3.

6. TFinal Remarks

The results easily extend to a system consisting of C independent

components connected in series. In this case U 1is defined as

LY Ny Be
Gemtn] D0 8 M s B ()
T B P a1 ©Cl

and K is given by

t {mm e é;l s U}+ o {l"g"t I 2 %! éi Yes £ U} |

It can be easily shown that
U~ Gamma (K, My + Ay + =00 +Ag)

so that a confidence bound on xl + )‘2 + o0 4+ )"C is obtainable.

17
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