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CONFIDENCE INTERVALS 

FOR INDEPENDENT EXPONENTIAL SERIES SYSTEMS 

by 

Gerald J. Lieberman and Sheldon M. Ross 

1.  Introduction and Summary 

Suppose X,,X2, ... , X  are independent identically distributed 

exponential random variables with parameter K.,    i.e.,  the density 

function is given by 

'o    , for x < 0 

fx(x) =H -X-.x 
X.e   , for x > 0 

Let   Y, ^Y2,  ...  , Y     also be independent identically distributed 

exponential random variables but with parameter   \2,    and assume 

that the   X's   and   Y's   are independent.    The problem is to estimate 

-(\ +\Jt 
R(t) = e      ■L   ^      . 

The motivation behind this is that if one has a series system with 

two independent exponential components then R(t) represents the 

reliability of the system e time t, i.e., the probability that 

the system survives until time t. 

In Section 2 we present some point estimates. In Section 5 

we present a procedure for determining an exact (l-Ct) level low-r 
-(\1+\2)t 

confidence bound for e    *' . In doing so we also obtain an 

interesting characterization of the minimum of two independent gamma 

random variables. In Section k we compare our procedure with others 

presented in the literature. We show that our procedure always gives 
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1,    if   X1 > t, Y1 > t 
z = ^ 

1 0,    otherwise 

it follows that 

-(\ +\ )t 
E(Z)  =  e      1    2       , 

i.e.,    Z    is an unbiased estimator of   e "    .    Now,  since the 

|  n m        \ 
joint statistic    I J)  X..,    E Y-i I    is bo'tl1 sufficient and complete, 

\i=l    1    i=l      I 
it fellows from the Rao-Blackwell (also referred to as the Lehmann- 
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i; 
smaller confid'-nce intervals  than the procedure presented by Kraemer 

r [2] and that it dominates  (in the sense of yielding stochastically f, 

smaller confidence intervals) a procedure due to Sarkar [k].    Other .. 

procedures are also considered.    Section 5 is concerned with the * 

same problem when the data is of a different form,  including Type II V 

censoring at    r    out of    R.    In the final section We point out that 

our results easily extend to the k-sample problem. |, 

2.      Point Estimators 
—_————^-— *• 

n ^       m 
Since   X =   £  X,/n   and   Y =   D Y-i/ra   are 'the "usual" estimators 

i=l i=l   i I. 
of    l/\,    and    i/\0    respectively, a  "reasonable" estimator (the 

maximum likelihood estimator) or    e is given by w> 

Another possible point estimator is the unique minimum variance 

unbiased estimator  (MVUE}, which can be obtained as follows: 

Letting I 

i: 

_ 

L 
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In m        t 

Z   2/  x^    E yi      is the u"1^6 MVUE-    Now' 
i=l    X    1=1      1 

In m       i f n ra      I 
Z iPl "^ i?i Yi) = P\Xl > '' Yl > ' £ Xi'  iPi Yi) 

(2) 

,    if     2)  X. < t    or     j  Y. < t 
1=1    1 1=1    x 

' n n-1 
S xrt 

1=1 
n 

.i=l       . 

m 

1=1 1 

m 

I   1=1 

m-1 

n m 
,   If    £ x. > t,    E Y. > t 

1=1 i        1=1 1 

where the last equation follows from the well known fact that given 

n 
][) X.> then X, Is distributed as the smallest of (n-l) order 
1=1 1       ■L 

statistics from a uniform distribution on 10,   J) xi r ^ similar 

statement holds, of course, for the Y's.) 

Thus, either (l) or (2) may be used as point estimators of 
-(\1+\2)t 

e  '  ^  . However, neither estimator Is useful In obtaining a 

confidence Interval for the reliability. This difficulty arises 

because the distributions of (l) and (2) depend on both ^ and \2 

and not only on A... + \p.  In other words, a nuisance parameter would 

have to be eliminated. In the next section, we present a method 
-(\ +\Jt 

for obtaining an exact confidence Interval for e 

3.  Confidence Intervals 

We shall use the notation 

V ~ Gamma {y,ß) 

to indicate that the random variable V is distributed as a gamma 
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random variable with parameters    7    and    ß,    i.e.,  its density function 

is given by 

fv(v) 

where    7,ß > 0.     Similarly, the notation 

V ~ ^ r 

will indicate that the random variable   V    is distributed as a chi- 

square random variable with    r    degrees of freedom. 

Now,  let 

m n m 
U = min   ?   X.,    %   ** 

i=l   1    i=l 

and let 

K = /largest    j < n:      S  Xi < u\ + /largest    i < m:    ^ Yi 1 U| 

Note that 

min(m,nj <K<m + n-l 

We shall show that given   K = k,    then 

U ~ Gamma  (k, \^ + Kg)   , 

or equivalents, that given K = k, then 

: ^ 0 2(^1 + ^)U ^ X2k ' 

Equation  (.5)  enables us to determine an upper confidence bound for 

I 
i; 
i 
L 

i. 

i. 
L 
I 

I 
I 
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\   + \ , with confidence coefficient l-CK, namely 

CM ^a/2u , 

2 
where    iC „.     is such that 

p{4 > xa,2kJ = a • 

From {k). we can easily obtain a lower confidence bound for   R(t) = 
-(\1+x2)t 

e ,   with confidence coefficient   l-Ct,    namely 

(5) exP(-Xa,2kt/2lj} * 

The remainder of this section will be devoted to showing that 

given   K = k,U ~ Gamma (k, \   + O.    To facilitate this we shall 

slightly change our notation and also make use of the equivalence 

between the partial sums of independent identically distributed expo- 

nential random variables and the Poisson process. 

Let    (N^t), t > 0)    and    {N2(t), t > 0}    be independent Poisson 

processes having respective rates   \.    and   \2.    Also, let   N(t) = 

N^t)  + N2(t).    It follows from known results that    {N(t), t > 0) 

is also a Poisson process but with rate   K. + \2.    Now let    T.    be 

the time between the (i-l)      and i     event in the    N(t)    process^ 

and define 

1 if the i  event in the N(t) process canes from 
the N^t) process, 

Ji =\        th 
2 if the i  event in the N(t) process comes from 

the    No(t)    process. 

Finally, consider a new Poisson process    {N*(t), t > 0],    inde- 

pendent of the above, and having rate   K,  + \p.    Let    T*   be the i 

5 
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interarriyal  time for this process and let   J*,    i = 1,2,  ...    be an 

independent  identically distributed sequence of random variables, 

independent  of the above, and such that 

' 1   with probability 

*l-{ 

{(T»,J»),  1 > 1}    have the same probability law. 

Proof: 

Let 

Now, 

J 2    if    J = 1 , 
= \l    if    J  = 2  . 

-\^ y 

■1 

{N.   (t),  t > 0].    Hence, 

I 
mm 

I 
I 
i 

2   with probability   r—T-T- • 1 

Theorem 1:    The two stochastic processes     ((T^J^,  1 > l)    and ^ 

I 
The theorem will be proven by using induction to show that I 

^h t »i- Ji = iV h i V J2 - ^'•■•'Tn i V Jn " V 1 

1 
1 

(6)    Pi'^ < a, JI = j) *  j     Pt^ < a, J1 = j|Y1 = y]^ e      c dy  , 1 

where Y,  is defined to be the first interarrival time of the process I 

1 
1 
1 
I 
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rmlfß 

KV        ^ 
?['I1 < a, ^ = J) =   f (1-e ^'jVj e   ^ dy 

+  /     (1-e    J )^ e     c dy 

(7) 
i 

dt^ 
Je 

•(X1+^)a 
) 

= Pdlf < a, J| = j}  . 

Note that the last equality follows since   T*    is Just the time of 

the first event of a Poisson process with rate   X, + Xo   an<i   J!L    
is 

\1 
J   with probability   r—J-r-   (independently of anything else).    Now 

by (7) we have that 

P{T1^V Jls Jl'---Tn^V Jn" Jn} 

= / 1 P{T2 < a2' J2 " *2""'Tn 1 V Jn s ^n'1! " a' Jl ' h* X 

Jl 

•(\1+\2)< 
da 

However, by the lack of memory of the Toisson Process it follows 

that at time   T,     (which is the first time that an event from either 

N,    or    No   occurs) both the processes    (N-^t), t > 0)   and 

{N2^t), t > 0} start over again, and hence (8) equals 

r -(\1+\2)a 
PIT, < a2, J, = J2,  ...  , V, < an, J^, = i^e ~    da 

which by our induction hypothesis equals 

m 
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a, 
-(\1+\2)a 

da 

■'0   1=1 

n  -^iVaiHJ 3
J>I 

^Je ,J1 

.(\1+\2)a 
da 

"   kt. -(VK2)ai 
1 = 1 '*! 

PIT* < a1, J* h"'"T*n'~\'J*ns*n]  ' 

Q.E.D. 

Now consider the first event in the N(t) process such that to the 

left of (and including) that event there are either n events having 

their J's equal 1 or m events having their J's equal 2. Suppose 

this is the Kth event and let u ^ Ti ^ *' * + Tv denote the time of 

this ^vent  (Note that these are the same K and U as were defined 

at the beginning of this section.) 

Theorem 2; Given K = k, U has a gamma distribution with parameters 

k and ^ -\,+- . That is, its conditional density is given by 

fuiK=^u) = 
\    k-l.-\u 

Ü^TT7" 

Proof 

Define    K*    ana    U*    in an equivalent manner for the    N*(t) 

p/or.cS5.     Since the values    J.    are determined completely at. random 

for the    N>    process the result follows  for    U*   and    K*.    The result 

must t.nen follow  for    U   and    K    by Theorem 1. 

Q..E.D. 
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Corollary 3;    Let    X - Gamma (n,\ )    and   Y ~ Gamma (rn^Xg),    where 

the   X's   and   Y's   are independent.    Then 

' 

min (X,Y) *- Gamma (K,^ + ^ 

where 

P{K = k) = 
x, yi 

n'l]\\1+X2\ 
h kk-n 

\+hl 
k-iW  xi|k-m( 
m-llj^+Xg)     ( 

\2 »m 

IV^I 

for   rain (m,n) <k<m + n-l. 

The correct way of interpreting Corollary 3 is that conditional on 

K = k,   minCx^Y) - Gamma (k,^ + \2);   i.e., letting   rk ^(a)   be 

the probability that a gamma random variable with parameters    (k,\) 

is greater than   a,    then 

m+n-1 
P{min (X,Y) > a) =       J        rv > +* (a)pfK = ^ ' 

femin(m,n)    K'V^2 

Proof; 

The proof is immediate. 

k.     Comparison with Other Procedures 

Sarkar [k] considered the case   m = n   and obtained an exact 
•f 1+\2)t 

confidence bound for    \ + ^2    (and hence for    e      "    "    )    ^y the 

following method.    He defined   Z.  = min(Xi,Y.),    i = 1,  ...   * n.,    and 

based his confidence bound on the fact that the   Z.    are independent 

identically distributed exponential random variables with mean 

n 
l/^.+xJ.    Hence.,   £   Zi ~ Gamma (n,^^)*    His UPP61* confidence 

bound for   X, + 'K2>    with confidence coefficient    1-a,    is thus 

i.    .i    1   ——Ml^, mm 
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The weakness of Sarkar's procedure is that he is throwing away a good 

deal of information.    For instance, if    X, < Y,    then he only uses 

X,    and makes no use of   Y,.    However, given that   X, < Y,    it follows 

(by the lack of memory of the exponential) that the excess,   Y,   - X,, 

is exponentially distributed with mean    l/Xo*    Hence by using the 

"excesses" one can generate more   X's    and   Y's.    This is equivalent 

to what the procedure of Section 3 does.    Let us illustrate by an 

example. 

Example;    Independent random samples of size \ are obtained on each 

of two components,   X   and   Y.    Assume that the   X's   are exponentially 

distributed with parameter   V.    and the   Y's   are exponentially dis- 

tributed with parameter \p.    Suppose the data are as follows: 

(x1,x2,x5,x^) = (2,7.1,6,3) 

CY1,Y2,Y5,Y4) = (5^,2,3.1)  . 

Sarkar would thus generate a random sample of size !<•, namely,  (2,14.,2,3) 

from an exponential distribution having mean l/(\1+\2).    Our procedure 

(described in Se-.tlon 3)  is equivalent to the following:    Determine 

the minimum of   X-,    and   Y-,    thereby obtaining the value of 2. 

tIowf;ver, note that the excess,    "¥,  - X, = 3»   yields another   Y   data 

point.    Hence, after generating the value 2 we are left with the 

"random samples" 
X:    7.1, 6,  3 

Y:    3, ^ 2, 3.1 • 

10 
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Again, we determine the minimum of the first   X   and the first   Y, 

i.e.,    min(7.1,5) = J,    thereby obtaining the "outcome" 3 and note 

that the excess,    J.l - 3 * k,l,    yields another   X   data point. 

Having generated the value J* we are left with the "random samples" 

X:   k.l, 6, 3 

Y:    k, 2, 3.1 . 

We determine the minimum of the first X and the first Y, i.e., 

min C+.l,^) = k,    thereby obtaining the "outcome" k and note that the 

excess, k.l - k  = 0.1, yields another X point. Having generated 

the value k,  we are left with the "random samples" 

X: 0.1, 6, 3 

Y: 2, 3.1 

The minimum of the first   X   and the first   Y   is 0.1, thereby obtaining 

the "outcome" 0.1.    The excess,   2 - 0.1 « 1.9*   yields another   Y 

point.    Having generated the value 0.1, we are left with the "random 

samples" 

X:   6, 3 

Y:   1.9, 3.1 . 

Since min(6,1.9) • 1.9* we obtain the "outcome" 1.9, and the excess 

of k.l yields another X point. Having generated the value 1.9, we 

are left with the "random samples" 

X: k.l,  3 

Y: 3.1 

11 
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Since    min(U. l,.5.i) =. 3.1,    we obtain the "outcome"" 3.1, and the excess 

of 1 yit'ldss another   X   point.    Having generated the value J.l, we 

are left with the "random samples" 

X:    1, 5 

Y: 

Sine«,  there are no more   Y    data points we must stop the procedure. 

If we treat the "outcomes" as the outcomes of a random sample of 

size 6 - namely 2, 3, k, 0.1, 1-9, 3.1 - from an exponential distri- 

bution with mean   l/^X.+O,    then the sum should behave as a gamma 

distributed random variable with parameters 6 and   ^ + X«.    However, 

In m       . 
5)  X. i    5} YJI 

i-1   1   Ul   ^ 

defined in Section 3» and 6 is Just the value taken on by the random 

variable    K   also defin-d in Section 3«    From the results of Section 3 

these gent-rated /alues can then, in fact, be considered as the outcomes 

of a random sample from an exponential distribution with mean 

l/(X,+;0-    As Indicated earlier our confidence bound would be arrived 

at   by using the fact that    U ~ uamma (K = 6A1
+'V^■    Kenc$> our Pr0_ 

f.-dur«: yi« Ids stochastically small«r confidence intervals than do-?6 

Sarkar's since w-, ar-:  generating a larger random sample  (i.e., 

n < K < . ■■; -1). 

The abov; rxamplf also points out some  of the wt.aknesse*1 of our 

procedure.    First, since we had no   Y   points to compare them with, 

we had to throw out th- final two   X   points.    Also   K,    the number 

of data  points used,  is a function of the ordering of the    X's    and 

Y'u.     Thus,,   for instance,  random samples    (X^X^X,),   (YwYp^Y,) 

12 
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might product a different value of K than would random samples 

Another procedure is the one due to Kraemer [2]. Kraemer uses 

tl it fact that   2 X. ~ Gamma (n,\.)    (or equivalently that 
1  1 x 

n      ^      m 
2^1 S xi "' x2r)   &nd   2 Yi "' aamma C"1*^)- Thus, since the X's 

and Y's are independent it follows that 

n ra 

hZ h + ^zZ Yi ~x: 
'2(n-Hn)  ' 

have that 
In m       » 
2 \> 2 Yi|  we 

2(VX2)U<2[xi|  Xi + X2| Y, 

However 
['  n       m  1 
\^h + ^^  YiJ ^o/ l_^ 

so th6* ari upper confidence e^n+m) 

bound for *,. + X-, with confidence coefficient at least 1-a, is 

given by 

(9) aj2(n+m) /2U . 

Equation (9) expresses the confidence bound for Kraenter's procedure, 

however, our procedure (equation ('+)) yields a smaller confidence 

interval since    K< 2(n+m).    This is intuitively clear since Kramer 

bases her estimate on   U   and gets a bound on its distribution while 

WH base our estimate on both   U   and    K   and use the exact  Joint 

distribution of   U   and   K. 

Another procedure has been suggested by Lentner and Buehler [?). 

15 
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n m 

n 
the distribution of   ^   X.    depends on    \      and   \2    only through 

X,  + \p.    They then use the Lehmann-Scheffe theory to obtain a con- 

n in 

1,1 

fo 

n n m 
Since the conditional distribution   £  X.    given   S  X.  - £  Y. 

1      1 1     X      I 

I 
I 

Their procydur^   is  bas-d on the fact that given    ), X.  - 7)  t.}    then 
i i 1. 

I 
a in r 

ditional (on 2/ %*   " E ^J uniformly most powerful unbiased test |„ 

r the hypothesis \, +• \p - c. By inverting this test they obtain 

an upper confidence bound for \1 + \p, with confidence coefficient 

1-a. I 

1 
1 
1 

I 

is somewhat complicated it is not theoretically clear how good the 

Lentner-Beuhler procedure is-    It should also be pointed out that 

their methods are computationally difficult. 

Other relevant literature that should be mentioned is a procedure 

given by Grubbs [l] which obtains fiducial intervals for the reliability. 

Anothei  possible approach to the problem would be to assume prior- 

distributions on   \,    and   \p.    It would then be straightforward to f 

obtain the posterior distribution of    X,  + Xp    and Bayesian probability 

intervals car. t.tic.n D-  obtained. 

5       Ctr-r Sampling Sehens 

\ cormrior,  i.yp-  of sampling used in practice is typt  II censoring 

at    r    out of    ft    (f < ft)      Typt  II censoring at   r    out of   R    refers 

to the  situation whert    R    items are t-sted simultaneously and the 

test is terminated wren tht. first   r    out of    R   have failed-    The 

link   of failure  of each item is recorded.    This corresponds to 

recording tne order statistics,  i.e.-.,    ^^lVXf2'',   "'   ' ^{  )'     ^n 

IK 

i 
i 

1 
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the notation of this paper put    N   units of the first component    (X) 

on test and terminate the test when the n     failure occurs.    Similarly 

put   M   units of the second component   (Y)    on test and terminate the 

test when the m     failure occurs.    Let   X/.v    and   Y/.»    be the 

respective order statistics    (i = 1,2,  ...   , n   and    J  = 1,2,  ...   , m). 

Denote by 

5i = (n-i+l)(X(i)  - X(i-1)),    i - 1, 2,  ...   , n    (X(o) > 0) 

| and 

. Tj = (m-J+l)(Y(j)  - *(.).!))*    J - li 2,  ...   , m    (Y(o) S 0)   . 

It is well known that the    6's    and   T'S   are independent and identi- 

cally distributed random variables with respective parameters   X., 

and   \p.    Hence, the procedure of Section 3 is applicable. 

Another type of sampling can be described as follows.    For the 

first component    (x)    put one item on test.    When it fails replace it. 

When this second item fails replace it.    A similar procedure is 

followed for the second component    (Y).    Terminate the test when 

there have been either   n    failures of component 1    (X's)    or   m 

failures of component 2    (Y's).    Follow the techniques outlined in 
-(\ +\2)t 

Section 3 to determine a confidence bound for   e      ^     '    .    Note 

that in this case our procedure uses all the available information. 

The data can be represented by   X,,  .. •   , X     and   Y,,   ...   , Y x r i s 

where either   r = n    or    s = m.    Consider the case    r = n,    then the 

likelihood is given by 

in a 

I 

*2 ii    ' i    "Irr. „"VilfA. e'Vi' L(x1,...,xn,y1,...,ys) = e FT ^    ^ ') (TT ^ 

15 
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where the first term arises since the next y value - namely yg+1 

mv.g 
n s 

t be greater than   2/ Ki " 1/  yr    Hence» 
1     1     1 

n 

n. s. 
-(X^® \ 

Li*^   -"   , \rtit  '•'   > yB} * ^2* 

j. 

1. 
i; 
.. 

Letting   \ = \1 + \2   and   6 = \1   we have 

L^,  ...  , xn,y1, ... , y8) 

n 
-\2 x1 

en(\.e)8e    1 

or 

log 
n 

L(x1,   ...   , xn,y1,  ...  , ys) = n log 0 + s log (\-0) - \ J xi  ' 

! 
«* 

Taking the partial derivatives and setting them equal to zero leads 

to 

n 

and 

^ l08 L ' r-TB " £ Xi 

30 
n s „ 

^ß L = e ■ r^e " 0 

Solving these equations simultaneously results in the maximum likeli- 

hood estimate    \    of   \,    i.e., 

A     s + n 
^ = n 

^x ^  i 

Also, in the case where    s = m   we have that 

A^ 
r + m 
m 

16 
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A  if 
Hence, In either case we arrive at \ - £ where U and K are as 

given In Section 5» 

6.  Final Remarks 

The results easily extend to a system consisting of C Independent 

components connected in series. In this case U is defined as 

U - min 

n n. n. 
1^ "2 "C 

1-1   ■L1    1-1   ^ 1-1   ^ 

I 

and   K   is given by 

K - /largest J < n1:     fc X11 < UV + • • • + ^largest j < nc:     £ Xci < U) . 

It can be easily shown that 

U ~ Gamma (K, ^ + X^ + • • •  + \c)  , 

so that a confidence bound on   ^i + ^o + *" + ^c   
i8 obtainable. 
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