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FOREWOI D

A batter understanding of sound propagation in a complex medium

like the ocean or t.tmosphere continues to be a goal of vital interest

to the Navy. In many practical applications it is sufficient to

approximate the ocean as a etationary medium in which the acoustic

properties vary only with depth. The theory then is very simple.

In a more realistic model, however, this theory is imbued with a

high degree of complexity due to general three-dimensional inhomo-

geneities as well as motion of the medium.

This report addresses itself to the exact theory of ray acous-

tics in such a general medium. Differential equations for the

acuustic ray* are derived in two different forma, which are suitable

for implementation on a digital computer.

This work was done in the Science Research Grcup of the Warfare

Analysis Department under Independent Research Project Number

R360FR103/2101/ROl101001. The date of completion was 1 June 1970.
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Abstract

Two different fcrmulations are presented in teims of

ordinary becond-order vector differential equations for

acoustic rays in a three-dimensional medium moving with an

arbitrary velocity (either subsonic or supersonic), and having

an arbitrary index of refraction. The first formulation has

the arc length of the ray as independent variable, while the

second one is given in terms of a canonical variable and is

equivalent to Keller's Hamiltonian formulation [J. B. Keller,

J. Appl. Phys. j , 938-947 (1954)]. An explicit Lagrangian is

-ont-.'t.-r for this problem from which a senernl!4e-d FermRt'a

principle ia derived. An error in an earlier publication

[P. Ugincius, J. Acoust. Soc. 1mer. 37, 476-470 (1965)) is

corrected, and it is shown that this error disappears when

the velocity of the medium is small compared to the speed of

souad. in that case, and with the further restriction of planar

rays, an explicit expression is derived for the curvature of the

rays in terms of the velocity, speed of sound, and their gradients.
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TNTIRODUCTION

In Ref. I one of the authors derived # vector di4fferential aqltion

for the acoustic ray p~chs in a ,noving inhomogeneous medium i. which

the velocity field and index of refraction could h arbitr.- .,

tions of pobition. Unfortunately i.n error was made in that derivation

so that the main result (Eq. 14, f. 1) .s -valid only for tiiole cases

in which the velocity of tbu medium ti much smaller than the speed of

sound. Ia this paper wi earive the correct equation for arbitrary

velocities, both supersonic and subsonic. This is done in two ways-

in part I by the meth:-i of Re. 1, aid in Part I1 by finding the

characteristics of tho tincG-i,depende;c eikonal equation. The second

method of derivation is important for tuo reasons: 1. being based

on the rigorous theory of partial differential equations it demon-

strates the validity of the "tricky" method used in ?*f. 1; and,

mw~re important, 2, it leads to a natural (canonical) independent

variable T (different from arc length or time) in termg of which

the differential equation for the ray paths assumea a simpler form.

The latter method is quite analogous and equivalent to the Hamilton-

ian formalism used by Keller2. Keller's work, however, does not

finish the problem, because it does not consider the second set of

the canonical equations for the generalized momenta,

In part III we construct an explicit Lagrangian for this

problem and derive a generalized Fermat's principie. The correct

expression of Fermat's principle for a moving inhomosan ,u-, medi,-.

had evidently not been known until now.
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In parL IV the goeral equaLVLA0 art specialiked to planat rays in

*a medium with small velocity, and it is shown that the results of

Ref. I are correct in this case.

I. DEIVATION OF THE DIFFERENTIAL EQUATION FOR THE RAYS

Let the acoustical properties of the medium be described by

the speed of sound ci and let its velocity be %), where both

c and j are arbitrary well-behaved functions of the position vector

We shall use the following terminology:

X - d&/ds - unit tangent to a ray.

n - -c/c u index of refraction.

a -" c a nondimenuional velocity.

-VI/p - unit normal to the wave front.

Here s is the arc length maieured along the ray, co is an arbitrary

constant reference velocity, and # is the oikonal function (phase)

of the wave fronu.

A# MLPe A:dajXs1 Vector Differential Equskt.On

is well knowns-s, and can be derived as the short-wavelength limit

(geometrical approximation) of the vave equation:

a f l-n. c ) 2

This can be written in terms of our terminology as

t p3 (2)IJ



We define now the direcLion of Lhe acoustic ray path j to be

the vector sum of the unit normal, L f#/p and the velocity (see

Fig. 1):

a+ q& (3)

where q will be called the (nondimenstonal) aseed. (Actually the

true value of the ray specd is cq). This geometrical definition can

be shown5 to be identical with the physical definition that the ray

path be the direction of energy transport. Multiply ng Eq. 3 by p,

we have

74 a , -' (4)

where we have introduced the two new auxiliary functions

N a pq ; =pX (5)

The desired differential equatioa for the ray paths is obtained by

taking the directional derivative of Eq. 4 it, the direction of

and then eliminat~ng I between these two equationse:

- %) a ) -!LV% . (6)

Note that we have interchanged the VI and V -ar-r in Eq. 6 an,,d,

therefore, §C,) is subject to the usual continuity restrictions.

We now substitute the i-th component of Eq. 4 into the last term

of Eq. 6:

d ' ( s x- ' )  17 N x V .. . . .! . . ..= -- - _ V (7)
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In arriving at the last term of Eq. 7 we tuade use o the £c that

4s a unit vector: x xi 1 i EquatJon 7 is ide,Lical with an

intermediary result of Ref. 1. However, at this point an arror was

made in Ref. 1 by taking dA/da - * . P, ')v() is an

explicit function of both the position A and the ray direction,&'

through tha.- point, so that the correct expression for the directional

derivative of X must be

!% '. )+ *(4,y 1. (

where Z is the usual gradient operuting on the position coordLnates x,

only, while V m blb/-4 operates only on the direction coordinates

' 7
X1 0 Equation 7 now becomes

-"d ) (9)

The last two terms in the left-hand side of Eq. 9 can be combined into

a triple vector product, which yields as the final form of the differ-

ential equation for the rays

+ X (VXU0)Q

Comparing this with Eq. 14 of Ref. 1 we see that the error there is the

neglect of the term Equation 10 is an ordinary second-order

vector differential equation which can be integrated to give the ray

pathi(s) as a function of its arc length a for any given initial

i.

valuce ZO) and 4'(0).

5
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B. The Functions N :4 . I U
In order to integrate Eq. 10 we must expriss the functions N and

(defined in Eq. 5) explicitly in terms of,& and ,'. Writing Eq. 3

as L S A and squaring yields a second-degree algebraic equation

for q which can be solved to give

S ' 1-v +I (12)

Note from Fig. 1 that the geometrical interpretation of S is the pro-

jection of the unit vector on the ray direction &': S - cos(a-0)

In terms of the absolute velocities, therefore, cS is the projection

of the wave velocity cA in the direction of the ray. The requirement

that q > 0 for v < 1 leads from the geometry of Fig. 1 to the conclu-

sion that only the upper (+) sign in Eq. 11 is allowed. Similarly

for v k 1 one can show that the upper sign must be used whenever

cos a ( - )v >- 1/* . (13)

If the inequality in Eq. 13 is reversed then the lower (-) sign should

be used -in ordar to have q k 0. It is ahown below, however, that the

reversal of this inequality is strictly forbidden by another restric-

tion on the function p, so that the upper sign in Eq. 11 holds under

all conditions? This additional restriction can easily be shown to oe

equivalent to the physical requirement that the rays be confined

within the Mach cone

cos A (")/. • (v2-) Iv . (14)

6



Equation 14 also guarantees the reality of the function S defined in

Eq. 12.

To obtain p(Ap j') we solve Eq. 2:

p) (15)

which proves the restriction in Eq. 13, because we must have p > 0.

Substituting fox A . ^ from Eq. 3 (and using only the upper signs

from now on) we can write Eq. 15 as

p - n/(1 va + q . n/[1 - v' + (,) + (h. S

w n + S)S . (16)

This can be written in a more convenient form after multiplying

both numerator and denominator by '. - S and using Eq. 12:

p - n(S -'.j/(l - v2 )S . (17)

The function N of Eq. 5 obtained by multiplication of Eqs. 11 and

17 now assumes a very simple form:

N -n/S (18)

7



C. The Final Equations

The functions N andAare now expressed entirely in terms of

ard i by Eq's. 5, 11, 12, 17, and 18, so that the differential

equation for the rays (Eq. 10) can be integrated for any given

velocity AV and index of refraction no. For easier reference

all of the necessary equations are collected below:

i-N' d+ ' ~ (19a)

N-n/S ; £-p (1gb)

S- El v+ (19c)
p - n(S rs (19d)

Note that for v > 1 and for a ray close to the Mach cone (approach-

ing equality in Eq's. 13 and 14), S will approach zero, and therefore

both N andAwill grow beyond any bound. Also, f.r v - 1, independent

of how close th. ray is to the Mach cone, $ * , and therefore p

and Abecome indeterminate. In both of these cases, therefore, one

should expect difficulties when integrating Eq. 19a numerically.

Ii. THE CHARACTERISTICS OF THE KIKONAL EQUATION

Courant and Hilberto have shown that in the trivial case x-O, n-1

the sound rays are the characteristics of the eikonal equation, Eq. 1.

In this section we shall prove this to be the case also for our

general problem. Besides showing that Eq. 19a is the differential

equation for the characteristics this method will also give us a

8
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somewhat simpler equation for the rays.

LThe theory of partial differential equations'- tells us that any

first-order differential equation for t

H(7-1 # pl, 1) - 0 ; j Rt M /6x1  (20)

is solved by a family of characteristics which are curves given by

the following system of ordinary differential equations:

dx 1 /dT /bp , (21a)

dp1 /dr . - (;N/Xj + PIM/61) , (21b)

d§d PjBH/bPj (210)

where T is an independent parameter. The eikonal equation (Eq. 1)

weitten in the form of Eq. 20 becomes

H - pjpj - (n - vpj) a 0 , (22)

and its characteristics as given by Eq's. 21a and 21b are easily shown

to be:

t o b e 2 E p , + (n - p v ,)v s) (2 3 A)'I " 2(n - vjp,)[(Bn/bxl) - pj(Bvj/bx1)] p (23b)

where from now on a dot will signify differentiation with respect to r.

Equation 21c gives the value of the eikonal function 0 on the charac-

teristics which, however, is not needed for tracing the rays. The

significance of Eq. 21c will be explored further in the Appendix.

Equaton -- it, a-r- .... , a aale faCLO, equivalent to Keier's

Eq. 38. Keller, however, does not consider the second set of the

19



characteristic equaLiong, Eq. 23b, which ara needed to eliminate the

P, from Eq. 23a in c:1.er to obLain a differential equ tion for the

rays. Equations 23 with tl;iA help of Eq. 22 can be w'itten more cen-

veniently in vectoc form-'--

+ p V)(24a)

-2 p kP'n-psvs) *(264b)

Comparing Eq. 24a with Rq. 3 we &e iindeed that the direction,& of

the characteristics coincides wit. the directions' of the sound

rays. It still ranains to be showu, however, that Eq's. 24 are

identical to Eq. 10. To do thig wc first eliminate between Eq's. 24

by solving for. from Eq. 24a:

- (25)

Taking the dot product of this equation with and using

A n - p (26)

from Eq. 2, allows us also to detetmine explicitly p (the magnitude

of the vector):

p - (n - t'g)/(l - v') . (27)

Substituting Eq. 25 into Eq. 24b we get

Equation 28 (together with Eq's. 25 and 27 hiJch are needed for p and

pj in Eq. 28) is a single second-order vector df,£rential equation

10



for the ray paths. It looks somewhat simpler than Eq, 19 and

therefore might be preferred gor practical calculations. The inte-

gration of Eq. 28, however, wUll give the rays in term of the as yet

undefined canonical parameter r, whereas Eq. 19 gives them as functions

of the physical arc length a. Whether one is to bi preferred over the

other is not known In general, and might depend on the particular

problem under consideration. For example, it acme situations a

constant integration step bs ls desirable, in which case the formula-

tion of Eqs. 19 would be preferred. In other cases s, however, where

the ray might wind itself into a point of singularity, a constant As

t would be completely inadequate for numerical integrations.

To comlete the identification of Eq. 28 with Eq. 19, and at the

same time to determine the physical meariing of the canonical variable T,

we make a transformation of the independent variable from -r t a in

Eq. 28. This is done easiest by substituting

xl(ds/d') (29)

simplified by noting that - 1, and by using Eqs. 26 and 27 to

substitute for all fictos containing p orr*- . A little algebra

will finally yield

ds/dr- 2n/S (30)

where S is the same function of A andA' which was used in section I

Fand is defined in Eq. 19c. Equations 29 and 30 can now be used to

1 11



rewrite Eqs. 28 and 27 with a as the independent vaziable;

I~

n(S - )I( - v')S (31b)

Note that Eq. 31b agrees exactly with Eq. 19d, and that the left side

of Eq. 31a agrees with the left side of Eq. 7. It is straightforward

but rather tedious to show that the right sides of Eqs. 31a and 7

agree also. Therefore we have proven our contention that the charac-

teristics of the eikonal equation are the acoustic rays, and as a by-

product have obtained an alternative (possibly simpler) formulation,

Eqs. 28, 25 and 27, for the ray differential eqt-iion.

It is interesting to note that part of the troubles anticipated

with a numerical integration of Eq. 19a do not appear in the new

formulation of Eq. 28. That is, for v > 1, there are no quantities

which blow up when a ray approaches the Mach cone. For v-l, however,

the same difficulty persists as in Eqs. 19, because p (Eq. 27) then

becomes infinite. We can understand bettenr nnw. .uhv Mha f4v-t- d,4ff4.

culty appears in Eqs. 19 and is removed in the formulation of Eq. 28:

Eq. 30 shows that close to the Mach cone, where S approaches zero,

ds/dT approaches infinity, so that an infinitessimal integration

step Ar in terms of the canonical variable corresponds to an infinite

12
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I As was mentioned in the Introduction, the method of character-

V LUJ.L _L&1CL WaS US- ------------ a dffretil l- s n

section II is equivalent to the Hamiltonian method used by Keller

In fact, since the function H of Eq. 22 does not depend explicitly

on #, the differential equations for the characteristics, Eqs. 21,

are precisely Hamilton's canonical equations of motion which are

well known in classical mechanics '4 . The function H(xt,p l),

therefore, can be regarded as the Hamiltonian of some mechanical

system, and with it we can construct the Lagrangian from which the

ray differential equation is derivable via a variational principle A

(Lagrangets equations).

The Lagrangian L(xLia) is given in terms of the Hamiltonian

H(x.pl) by'

L H

In order to put the Lagrangian in its proper form (a function of the

x i 2O. ly Ilk~w =.t zov the Syste_ of Eq-,. 23a r the riin

terms of the sl (without using the "energy" equation, Eq. 22), and

substitute the result into Eq. 32. The algebra is rather lengthy,

so we shall omit it here and Just give the final result:

13
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Lagrange' s equations

can be used to derive the ray differential equation (Eq. 28) once

more, proving that Eq. 33 in indeed the correct Lagrangian for this

problm.

Having obtained the Lagrangian we can now examine the varia-

tional principle

8 fSL dT - , (35)
A

(whose solution is Eq. 34) which for the case of a motionless medium

gives the well-known Fermat's rrinciple, which states that the ray

path between any two points A,B is that curve along which the time

of travel is minin., Kornhausera implied that such a Fermat's

principle may not exist for a moving medium. He also asserted that

Rayleigh's. s contention, that the velocity to be used in Fermat's

principle is the speed of sound plus the component of the fluid

velocity in the ray direction, is incorrect. To see whether Eq. 35

is a Fermat's principle (in the sense of minimizing a travel time)

we rewrite the Lagrangiarn it terms of the arc length variable a

(using Eqs. 29, 30 and 31b)

L 2np , (36)

14



whereupon Eq. (35) can be written

B B B
aJ LT' 6 r ' 2np( ds-6 fA pSds

JA A We/ A

B8 n ds- 0 (37)

where in the last step we have used Eq. (16) to eubstitute for p.

The denominator of this last expression is just the rav speed q

defined in Eq. 11 so that the variational integral

B8S Ai. =o (38)

A 
cq

is indeed Fermat's principle in the strict sense, because it mini-

mizes the ray's travel time. Referring to Fig. 1 and using Eq. 3

we see that the velocity to be used in tue denominator of Eq. 38 is

cq - c cos(at - 0) + V cos 0, whereas Rayleigh's1 idea was to use

c + v cos P. Konthauser , therefore, was correct in saying that

Fermat's principle with the velocity proposed by Rayleigh is wrong.

We see however that the rays do obey Fermat's principle, the correct

expreszi-on of. Vhich is Eq. 36.

IV. THE RAY NQWAfTIOW FOR PLAIAR RAYS IN A MEDIUK VITH v << 1.

If the speed of the medium V at every point is much smaller than

the local speed of sound c (which is the case for most propagation

problems in either the ocean or the atmosphere) the differential

equations for the rays (Eqs. 19 or 28) admit considerable simplifi-

cations. Keeping only first-otder terms in v (as compared to unity)

t15



the functiont N and .of 1q, 19 reduce to

N-,; ,- i(1-Z'. W . (39)

We shall consider a urther simplification by assuming that n adA

depend only on x and y, and that A lis in the x-y plane:

n - n(xy) + , vK( .y)i - Vy(X 8 y) ; (40)

where J, are the usual Carteoiaxt unit vtors in the xy directions.

In that case rays wliCh start out in the x-y plane will always remain

in that plane. Such rays, therefore, c&.n be dc.cribed by their curva-

ture x, given by

KP (41)

where I is the unit normal vector,

!'" + (42)

which is perpendicular to the unit tangent vector

X • + (43)

The........u .... r,, p ,-, ca.d in Eq, (41) can be Obtai-=. -,r... -
from Eq. 19a. The term (r'oZ')X in that equation is of the order

* and therefore, compared with the first term is negligible.

The third term can be worked out to give

(bv~)Y- bvy/WO) (44)

16
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WiLh

V nv1 ( -£.'.) ; ± - x,y . (45)

The last term (n), and part of the first term (rdn/ds) can bL com-

bined by using the Identities dn/ds 4-'Vn and x'2 y * 1 to

yield

;n - (dn/de)4.' ( x'an/ay - y'/ax)$ • (46)

Equation 19a then becomes

ru" - (x'a/ay y'an/ax + - , (47)

whareupon comparison with Eq. 41 gives for the curvature

ot-nl* ~ na - y'nU+ av/x- aVx/ay) .(48)

Fork- 0 this Qquation agrees with the result first derived in Ref. 16.

Equation 48 is still quite complicated. It is a second-order differen-

tial equation for x(s), y(.), which together with x 's + y * 1 can be

integrated to obtain the ray paths in parametric form with the arc

length a as the am t ., Or c. l ua. the parameter sea, A

obtain the equation of the ray path in the form y - y(x) directly,

as the solution of a single second-order equation for y. In either

case, however, the solutions usually would have to be obtained by a

numerical integration.

If the rodium is simplified somewhat more (as .n Ref. 1), analytical

solutions of Eq. 48 are possible, at least in term of a quadrature.

17



If the index of retraction n and the velocity of the medium are

functions of only one coordinate, say y, and furthermore, if

V- v(y)i has only a component in the x-direction, thei, Eq. 48 aimpli-

fies furcher:

K * n-1(x'dn/dy - BV/ay) , (49)

where

V - nv(l - vx') . (50)

Substituting Eq. 50 into Eq. 49, and using the relation

(dn/dy)/n- - (dc/dy)/c one can obtain the following expression for

the curvature:

K - c-'(dc/dy)(v-x') + (dv/dy)(2x'v-l) , (51)

which is identicaf7 to Eq. 24 of Ref, 1. Thus, even though the

general ray differential equation in Ref. 1 is incorrect, the small-

velocity approximation is correct. In particular, the analytic

solution in terms of a quadrature fer a medium with a constant wind

(d(vc)idy - 0), as well as the two applications (atmosphere with a

constant speed-of-sound gradient and atmosphere with a constant tem-

perature gradient) are coirect. The reason that the sections of Ref. 1

which deal with the small-velocity approximation are correct is, of

course the fact, that the term 71 in Eq. 19a, whose omission

Lhe error of Ref. 1, is negligible in this approximation.

18
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APPWIIX A

In this appendix a brief account is given ot the theory of the

eikonal equation and of the geometry of the rays and wave normals for

subsonic as well as supersonic flows.

The wave surfaces are described by the equation

4 - cot ,(Al)

where 0 ia a solution of the eikonal equation, Eq. 1, and t is the time

from an arbitrary origin. From this it easily follows that the unit

vector,& points in the direction in which the wave moves and that p

is the reciprocal wave speed multiplied by ca. Let us introduce the

following notation for the non-dimensional wave speed

w-~ *~ .(A2)

cp

It is a quantity which by definition is nonnegative. The eikonal

equation implies that

1 (&3)

%.hich is equivalent to Eq. 2. This equation gives the speed at which

a wavelet moves provided its normal and direction of motion are known.

One could use it in principle to calculate the motion of a wavefront

if it were not for the ambiguity in the sign of the second term in the

riaht-hand member and the sense of the unit vector n.

I I9



To clear up these ambiguities let us investigate the Cauchy problem

of~ ~ ~ ......in awvgieat an inatuaL of rime, say t a 0. It is

convenient to introduce a local right-handed Cartesian coordinate sys-

tem at the wave. Let n (not to be confused with the index of refraction)

be the coordinate normal to the surface, so that

-n Von Z! 0

where n is the unit vector normal to the wave and pointing into the half

space into which v points. The eikonal equation becomes

This quadratic equation for 0, has the solutions

! @, .(A5)

n v. 1

Therefore, provided v. - 1 0 on the initial surface, there are two

possible solutions to the Cauchy problem. One may introduce the con-

cept of "advancing" and "receding" wavelets with respect to the flow.

The plus sign refers to the advancing wavelet and the minus sign to

the receding wavelet. Equations AS, A2 and the definition of p imply

that the wave speed is given by

WMn -Iv.±1I (A6)

This implies tha the advncng waveiet has a greater wave speed than

the receding wavelet. When v. - 0 there is no distinction between

2)



advancing and receding wavelets and the local motion of the wavelet is

like that in a medLum at rest. Leaving aside for the moment the pos-

sibility that v. - 1 - 0 on the initial wave surface, one may now

determine the sign to be taken in Eq. A3 or equivalently Eq. 2. The

results up to this point are given in Table Al as the first four entries

for each of the four possible cases (advancing or receding wavelets in

subsonic or supersonic flow). It is clear that v, > 1 can occur only

in a supersonic flow. When Z., > 0, the fluid velocity vector points

into the half space into which the wavelet is moving, when vCi < 0 the

converse holds.

We have now determined what the sign should be in the eikonal

equation, Eq. 2, and the equivalent Eq. A3, which gives the wave

speed an a function of the wave normal We have also determined

what the sen3e of the wave normal j is in relation to the velocityv.

t

I.
i2
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I. 1

Instead of advancing the wave normal to itself using Sq. A3, it is I
morc convanLea, to advance each wavelet along Lhe ray using the system

of ordinary differentiol equations 23&, 23b. We wish to st4dy these

equations in greater detail in order to remove the ambiguity in the

sign of Eqa. 24a and 24b (see Refs. 11 and 8), and also to find a

simple geometric construction relating rays, wave normals, ray speeds

and wave speeds.

To the characteristic equations 23a, 23b one may, using Eq. 21c,

add the following relation:
L

* 2n(n - v1 pl) - i2u(pipl) " *2np , (A7)
dr

where use has been made of the eikonal equation. This equation com-

bined with Eq. Al gives

c o  -±2np ,(AS)
Ca d dr A8

or

dt 12 (A)
d'r w

which, apart from the ambiguity in the sign, relates the parameter T

to physically significant quantities. The rule of signs to be fol-

lowed is the same as in the eikonal equation written in the form of

Eq. A3.

One may now ct the charactcriatir aquationa 23a in a geometri-

cally perspicuous form. Introducing time as independent variable
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instead of T one gets from Eq. 23a

Sdz . - + (AlO)
c dt c dt n p

or

Sd_ vt ± (All)
c dt p

In the notation of this paper this may be written

q,&' 11 (A12)

This is the generalization of Eq. 3 and applies also to supersonic

flow. The results obtained are collected in Table Al. This permits

I us to give the relationship butween ray, wave normal, ray speed and

wave speed in graphical form (see Figures Al and A2 for the subsonic

and supersonic cases respectively). In either case the circle is of

unit radius centered at 0 and the line A represents the velocity

vector

In the subsoui,. case, (v < 0), wbich is normal in acoustics, the

situatioi Cs ouite sim.la as itmdicatad in Via. At- The u et-nr A

represents the ray. Its length is q, the dimensionless ray speed.

The ray is made up of the vector sum of the velocity , and the unit

wave normal represented by OB (see Table Al). The projection of

,& on A plus unity is the wave speed represented by the length of CB.

&&M&& W&-MJ. LA UKL CXUD LUpV5&U C

ing wavelets and the left half receding wavelets.

The relationships for the supersonic case (v > 1) are more

involved and ar*. indicated in Fig, A2. A line drawn from A to a point

23

=iI



on the circle represents a ray as before. One has. for example, AB

and AB two rays with the same direction, one fast and one slow.

The unit normal A pertaining to A is and that pertaining to AB

is B10. The wave velocity vector wipertaining to the two rays are

CB and C'B'respectively. We see that by considering only the plus

sign i q. 3 we confine ourselves to the fast rays in the supersonic

case. In the supersonic case we note furthe that the angle 0 between

the ray and the velocity vector must satisfy

where

sin A (A13)
v

and 1 is called the Mach angle. Thus one may not start a ray with

an arbitrary slope.

From the graphic representation one may derive various relation-

ships by trigonometry. We give some below.

The non-dimensional ray speed as a function of the angle the

ray makes with the velocity vector is

q - vcosOt v in*0(A14)

When v < I (subsonic flow) the plus sign is to be used. When v > 1

(supersonic flow) the two signs Siva the fast and slow rays reapec-

tively.

24



I

The cosine of the angle between ray and wave normal (it is always I
an acute angle) is given by

which is identical to the quantity S defined before. The dimension-

less wave speed may be found from

w - a . (A16)

In conclusion one may now aee %hat the meaning of v, - 1 u 0 is,

a case that was excluded from the ditscusion. It pertains to a

receding wavelet carried along by the fluid so that its normal speed

vanishes. It corresponds to the ray AB7 in Fig. A2. Clearly on such

a wavelet grad i1 a a * and the ray AB" is tangent to the wavelet.

I At such a wavelet Eq. Al cannot hold. In mathematical language the

cilconal function # must be singular there. The surfaces on which

w - 0 appear as branch surfaces of 0, joining the fast and slow waves.

I25

I.
12

It



1. P. Uginvius, J. Acoust. Soc. Amer. 7 476-479 (1965).

2. J. B. Keller, J. Appl. Phys. 251 938-947 (1954).

3. E. T. Kornhauser, J. Acoust. Soc. Amr. 21, 945-949 (1953).

4. P. N. Horse and K. U. Ingard, Encyclopedia of 'hysics, S. Fligge,

Ed. (Springer Verlag, Berlin, 1961), Vol. 11/1, Acoustics I,

p. 80, Eq. 32.3.

5. D. I. Blokhintsev, Acouatics of a Nonhomogeneous MoNving Medium,

Natl. Adv. Comm. Aeronaut. Tech. Mom. 1399 (1956), Eq. 2.14.

6. The sumnation convention will be used throughout, Cartesian unit

vectors will be denoted by j•

7. Note that df/ds - (r'.V)I which was used to obtain Eq. 6 is correct,

since 0 being a solution of Eq. 1 is a function of A only.

8. This is not quite true. For supersonic flows the eikonal equation

has two different solutions A with different ray speeds q, both

giving the sqme ray direction,& as defined in Eq. 3. In choosing

only the upper sign in Eq. 11 we limit ourselves to the solution

with the faster ray speed. This is explained In more detail in

the Appendix.

9. R. Courant and D. Hilbert, Methods of Mathematical Physics

(Interacience Publishers, Inc., New York, 1962), Vol. 2.

10. See Ref. 9 or any other text on partial differential equations.

11. When taking the uquare root of Eq. 22 we again get a (±) sign:

n - v~pj - ip. Exactly the eame arguments as in section I apply,

however, and the lower sign, therefore, is extraneous.

26



12. H. J. LuSt and P. Ugingius, J. Acoust. Soc. Amer. 36, 689-694 (1964).

13. R. F. Salant, J. Acoust. Soc. Amer. 46, 1153-1157 (1969).

14. H. Goldstein, Classical MeHanice (Addison-Wasley, Reading, Pass.,

1959) oh. 7.

15. Lord Rayleigh, Theory of found (Dovar Publications, Now York, 1945),

Vol. 11, p. 132.

16. P. Ugincius, J. Acoust. Soc. Amer. &, 193-205 (1969), Eq. 19.

17. Note that v in Ref. 1 is the velocity of the medium, whereas here

the velocity is vc. When this is taken into account Eq. 51 agrees

exactly with 3q. 24 of Ref. 1.

27



4.4

4 4 4 "4 "4 N 4 "
M 44 r4 u-

0,
0

400
4

-I40c
>-

04 +L I~+

0~~ 11 P NI

it U

%D 04 w .0 8~'

"4 f-4 44 9- r4~5

4 4 a.

V4 r4F

I

0.v

L.



---------I
I!V-rIp

Fi.1 emtia eiiino h a ieto



710 -

\I
fI

II

at a subsonic point. A W: advaucing
wavelet. R. :eoing. W.: avelet.

vsveer..I.W. : ediu vavleI



'p \

IL

%v

fi, -2 eltinhi btwe rysad av nral a

suprsni pont A. .: adacn wavelet

R.uW.:rcedint. wae. V:avnigvv



tT'=TARRSTrn

~U~Vn~fl 'U IDL OATA*K
fS..-ufny c0aaaIjegio 111 .1 1 M0,e b~d)' of abstrc end indeatin anino~.viap naucIb n.' ~r tI overall F*pf Is elaaieiIdj

_W- UN FIGATTY rciapevhte Soms) i. mrPoRT .ECURITV CLASSIFICATION

U. S. Naval Weapons Laboratory I TINQLhSFN

I "LAOmr TITLE

ACOUSTIC RAYS IN AN ARBITRARY MOVING INHO?.1OMEJS ?9DIUM

4 DESCRIPTIVE NOTIES (?7'p of f~pweg Sld.incelaVe g@10g)

6 E P R T D A E i) . T T A L, N O . O F P A G E S 17 .N O . O F R E PS

CA. CONTRACT ot GRANT NO. SA. ORIGINATOR'S REPORT NUNSempIII

b. PROJECT NO. TR-2446

C. PC. OT*HER*REPORT 14011) (Any. othenbere 9hstr4iy bo ea aaeid

d.

0. CIS1TRIMPUTION STATEMENT

Distribution of this document is unlimited.

11- SUPPLWMENTARY NOYES IS. SPONSORING MIITANY ACTIVITY

1 ABSTACT

-Tw'o djtferent fonn2Uatiorw are Prefsented ini termx oi ordinary second-order
vectoQr differential equations for acoustic rays in a three-diensional. medium
njovLng with an arbitrary velocity (either subsonic or supersonic), and having
an arbitrary index of refraction. The first for mulation has the arc length
if the rmy as independent variable, whil.% the second oue is given in term'o~f a canonical varible and is equivalent to Keller's He.ailtonian formulation,P,~ B. Keller, J. Appl. lPiys. 938-94T (1954)).

I NCV11 7 PG )
DD catio

security07 68ft

A-_A40


