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FOREWORD

A batter understanding of sound propagation ir a complex medium
like the ocean or utmosphere continues to be a goal of vital intereat
to the Navy. In many practical applications it 1s sufficient to
approximate the ocean as a gtationary medium in which the acoustic
properties vary only with depth, The theoxry then is very simple.
In a more realistic model, however, this theory is imbued with a
high degree of complexity due to generai three-dimensional inhomo-
geneities as well as motion of the medium,

This report addresses itself to the exact theory of ray acous-

tics in such a general medium, Differential equations for the

"acoustic rays are derived in two different forms, which are suitable

for implementetion on a digital computer.

This work was done in the Science Research Grcup of the Warfere
Analysis Department under Independent Research Project Number .
R360FR103/2101/R01101001. The date of completion was 1 June 1970.
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Abstract

Two different fcrmulations are presented in teims of
ordinary second-order vector differentisl equations for
acoustic rayes in a three-dimensional medium moving with an
arbitrary velocity (either subsoniclar supersonic), and having
an arbitrary index of refraction.m The first formulation has
the arc length of the ray as independent variable, while the
second ore is given in terme of a canonical variable and is
equivalent to Feller's Hamiltonian formulation [J., B. Keller,
J. Appl. Phys. 25, 938-947 (1954) 1. An explicit Lagrangian is
from which a generalized Fermat's
principle is derived. An error in an earlier publication
(P. Ugindius, J. Acoust. Soc. &mer. 37, 476-47° (1965)] is
corrected, and it is shown that this error disappears when

the velocity of the medium is small compared to the speed of

o R SR il

sound, In that case, and with the further vestriction of planar
rays, an explicit expression is derived for the curvature of the : @

rays in terms of the velocity, speed of sound, and their gradients,
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INTRODUCTION

the velocity field and index of refraction could be arbitrarsy func=
tione of position. Unfortunately nn error was made in ch;t derivation
8o that the mein result (Eq, 14, R«f, 1) 18 valid only for ticose cases
in which the velocity of thu medium is much smaller than the speed of
sound, Ia this papcr'ua cdariyve the correct equation for arbitrary
velocities, both superscnic anud subnunic. This is done in two ways:
in pert I by the meth:i of Rei, 1, and in Fart II by finding the
characteristics of tho time-independe.c eikonal equation. The second
method of derivation is impor.ant for two reasona: 1, being based
on the rigovous theory of partial differential eguations it demon-.
strates the validity of the "tricky" wmetiiod used in Pef, 1; and,
mrre important, 2, it leads to & natural (canonical) independent
variable T (different from arc length or time) in termg of which
the differential equatinn for the ray paths assumes a simpler form,
The latter method is quite analogous and equivalent to the Hamilton-
ian formalism used by Keller®, Keller's work, however, does not
finish the problem, because it does not coneider the second set of
the canonical equations for the generalized momenta,

In part III we construct an explicit Lagranglan for this
problem and derive a generalized Fermat's principle, The correct
exprassion of Fermat's principle for a moving inhomogenwecus medium *

had evidently not been known until now®.
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In pari IV the geaeral equatlious are specialiwed to planar rays in
2 med{um with small velocity, and it is shown that the results of

Ref, 1 are correct in this cass,

I. DERIVATION OF THE DIFFERENTIAL EQUATION FOR THE RAYS
Let the acoustical properties of the medium be degcribed by
the speed of sound c(p), and let its velocity be J(g), where both
¢ and i are arbitrary well-behaved functions of the position vactor
e Ve shall usa the following terminology:
&' = dp/ds = unit tangent to a ray.
n = co/c = index of refraction.
X = Yc = nondimensicnal velocity,
f‘ « Y8/p = unit normal to the wave fromt,
Here o is the arc length measured along the ray, c5 is an arbitrary
constant refarence velocity, and & is the eikonal function (phase)

of the wave fron.,

A. The Oxdinary Vector Differentiasl Equation

is weil known"', and can be derived ag the short-wavelength limit
(geometrical approximation) of the wave equation:

Ig8* = a1 - g - Z0/c)® . (1)
This can be written in terms of our terminology as

jgeimp=ztn-pye ). ()

ettt - g N 5 JEES
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We define now the direction of the acoustic ray path ' to be
the vector sum of the unit norwal, £~ J4/p and the velocity y (see
Filg. 1):

é‘"’x-q&: 3

where q will be called the (nondimensional) ray speed, (Actually the
true value of the ray speed 18 cq). This geometrical definition can
be shown® to be identical with the physical definition that the ray
path be the direction of energy transport. Multiplying Eq. 3 by p,
we have

J¢eng - N (4)

where we have introduced the two new auxiliary functions

Nmpq ; Y®py . &)

The desired differential equation for the ray paths is obtained by
taking the directional derivative of Eq, 4 in the direction of g/,
and then eliminat.ng § between these two equations®:

d ¢ d 7 e
SER - = @0 = (VT8 = x4 (6)
Note that we have interchanged the V; and ¥ cperaiors ia Bg. 6 and,

therefore, 6(;) is subject to the usual continuity restrictions.
We now substitute the i-th component of Eq. 4 into the last term

of Eq. 6:

d
%‘(N’g__.’) - l‘ = x{PMx{ - V,) = W - x/W

. (7)
as ¢ L7)
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In acriving at the last term of Bq. 7 we made uge of the fuch that
L' 18 a unit vector: x(x{ = 1 ., Equation 7 is ideutical with an
intermediary result of Ref, 1. However, at this point an arrcx wvas
made in Ref, 1 by taking dY/ds = .5-" W - p(‘&,&'):“(&) {3 an
explicit function of both the position x and the ray direction j.'

through tha. point, so that the correci expression for the directional

derivative of Y must be ,

d [4 ' 4 §

2 oy IO ®)
where ¥ is the usuel gradient oparating on the position coordinatss x,

only, while 3’ = §& d/3« operates only on the direction coordinates

x{ o Equation 7 now becomes

d ] y @? 2 I
SR - GRR X3V, - XV YN , (9)
The last two terma in the left-hand side of Eq. 9 can be combined into

a triple vector product, which ylelds as the final form of the differ-

ential equation for the rays

L) = @R X (@XD =N (10)

Comparing this wich Eq. 14 of Ref, 1 we see that the error there is the
neglect of the term (‘;"-X')X. Equation 10 is an ordinary second-order
vector differential equation which can be integrated to give the ray
path 1(s) as a function of its arc length & for any given initial

valuss £(0) and .&'(0).
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B. The Functions N z=d x‘

In ordez to integrate Eq. 10 we must exprnss the functions N and
Y (defined in Eq. 5) explicitly in terms of § and g'. Writing Eq. 3
as ﬁ = _gﬁ_’ - X and aquaring ylelds a second-degree algebraic equation

for q which can be solved to givé

Q= g'xrs ; (11)
s2[1-v?+ g;’-‘x)ajé . (12)

Note from Fig. 1 that the geometrical interpretation of 8§ is the pro-
jection of the unit vectoré‘ on the ray direction g’: § = cos(a-8) .
In terms of the absolute velocities, therefore, cS is the projection
of the wave velocity cﬁ‘ in the direction of the ray. The requirement
that q > 0 for v <1 leads from the gaometry of Fig, 1 to the conclu-
sion that only the upper (+) sign in Eq, 11 1s allowed, Similarly
for v 2 1 one can show thet the upper sign must be used whenever

cos a = (ﬁ-x)/v 2-1/v . (13)
If the inequality in Eq, 13 is reversed then the lower (=) sign should
be used in order to have q = 0, It is shown below, however, that the
reversal of this inequality is strictly forbidden by another restric=-
tion on the function p, so that the upper sign in Eq, 1l holds under
all conditions® This additional restriction can easily be shown to oe
equivalent to the physical requirement that the rays be confined

within the Mach cone

cos B = g:"'x)/v 2 (va-l)i/v . {14)
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Equation 14 also guarantees the reality of the function § defined in
Eq. 12.

To obtain p(z, 5/) we solve Eq. 2:

p= n/(x-ﬁ 1) ., (15)

which proves the restriction in Eq. 13, because we must have p > O.
Subgtituting for AL -é' from Fq, 3 (end uslng only the upper signsz

from now on) we can write Eq. 15 as

p=n/(l~-v+ q&'o‘\;) = a/[l-v®+ Q'-x)’ + (;,’.x)s]
=n/(gley+8)8 . (16)

~ This can be written in a more convenient form after multiplying

both numerator and denominator by r’ey - S and using Eq, 12:
P 4

P= n{s = i’o&),(l - Va)s o (17)

The function N of Eq. 5 obtained by multiplication of Eqs. 1l and
17 now assumes a very simple form:

N wn/s ., (18)




C. Ihe Final Equations
The functions N and Y are now expressed entirely in terms of
& m:l‘;" by Eq's. 5, 11, 12, 17, and 18, so that the differential
equation for the rays (Eq. 1l0) can be integrated for any given
velocity xg) and index of refraction n(&). For easier reference

all of the necessary equations are collectad below:

SR - EEIE R X QAW W (199)
Nen/s ; AL A | (1%b)
swf1-v%+ (,&'.;)”]i ; (19¢)
pe=n(s -z 0/-v)s . (19d)

Note that for v > 1 and for a tay close to the Mach cone (approach-
ing squality in Eq'e. 13 and 14}, S will approech zero, and therefore
both N and& will grow beyond any bound. Also, £o¢r v = 1, independent
of how close the ray is to the Mach cone, § = &'o‘g , and therefore p
and X become indeterminate. In both of these cases, therefore, one

should expect difficulties when integrating Eq. 193 numerically.

II. THE CHARACTERISTICS OF THE EIKONAL EQUATION
Courant and Hilbert® have shown that in the trivial case 40, n=l
the sound rays are the charactarietics of the eikonal equation, Eq. 1,
In this section we shall prove this to be the case also for our
general problem. Besides showing that Eq. 19a is tﬁe differential

equation for the characteristics this method will alsc give us a
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somewhat simpier equation for the rays,
The theory of partial differential equations® tells us that any
first-order ditferential equation for ¢
H(xg, Py, §) =0 p; E 3d/dx%; (20)
ie solved by a family of characteristics which are curves given by

the following system of ordinary differential equations:

dxg/dT - BH/BPg ] (21a)
dP(/dT - - (a‘l/axg + wa/a') » (21b)
de/dr = p, /%, (21¢)

where 7 is an independent parameter. The eilkonal equation (Eq. 1)
wsitten in the form of Eq. 20 becomes

H=ppy - (n-vp)®=0 , (22)
and its characteristics as given by Eq's, 2la and 21b are easily shown

to be:

% = 2[py + (n - PJVJ)W] » (23a)
$1 = 2(n - vypy) [(3n/dx;) - py(Rvy/axd] (23b)

where from now on a dot will signify differemntiation with respect to .
Equation 21lc gives the value of the eikonal function $ on the charac-
teristice which, however, is not needed for tracing the rays. The
significance of Eq. 2lc will be explored further in the Appendix.

a scale factor, equivalent to Kelleris®

Eq. 38. Keller, however, does not consider the second set of the

a1 P
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characteristic equations, Ej, 23b, which ara reeded to eliminate the
py from Eq. 23a in crder to obisin a differential equ.tion for the

rays, Equations 23 with tiis help of Eq, 22 can be wiitten more ccn-

venienciy in vector form* ™+ .
& = 2(& + px) - (24a)
b= 2(I - plvy) (24b)

Comparing 5q. 24a with Eq. 3 we sse indeed that the direction 5‘ of
the characteristics colncides witii the direction. &l of the sound

rays. It still remains co be shown, howsver, that Eq's, 24 are
identical to Eq. 10, To do this we first eliminate&between Eq's, 24

by enlving for ‘g‘ from EBq. Z4a:

A" -k By - (25)
Teking the dot product of this equation with X, and using

x L] x one-p . (26)
from Eq. 2, allows us alao to determine explicitly p (the magnitude

of the vector &):

p=(n-Liy/1 -V (27)
Substituting Eq. 25 into Eq. 24b we get

S Gi-m)c 2@ -ndy) - (28)

Equation 28 (together with Eq's, 25 and 27 which are needed for p and

p; in Eq. 28) is a single second-ovder vectoxr differential equation

10
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for the ray paths. It locke somewhat slwpler than Eq. 19 and
therafore might be preferred for practical calculations, The inte~
gration of Eq. 28, howevar, will give the rays in terms of the as yet
undefined canonical parameter 7T, whereas Eq. 19 gives them as functions
of the physical arc length 2, Whether one is to ba preferred over the
other 18 not known in genaral, and might depend on the particular
problem under considerstion, For exnmple,"‘13 in scme situationse a
constant integration etep A48 i1e deairable, in which case the formula-
tion of Eqs, 19 would be preferred, 1In other casen‘s, however, where
cthe ray might wind itself into a point of singularity, a constant As |
would be completely inadequate for numerical intagrations,

To complete the identification of Eq. 28 with Eq. 19, and at the
same time to determiie the physical meaning of the canonical variable r,
we mske a transformation of the independent variable from + to 8 in

Eqe 28, This is done easiest by substituting

i L’(da/d'r) (29)
dntc Bg, 25, solying fe!'é;', and then squaring. The result can be

simplified by noting that |y/|® = 1, and by using Eqe. 26 and 27 to
substitute for all fictore containing p or Ry A little algebra

will finally yield
ds/d7 = 2n/8 (30)
where S is the same function of j and ;" which was used in section I

and is defined in Eq, 19c, Equations 29 and 30 can now be used to

i1

e

G e 3

k..
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reéwrite Eqo, 28 and 27 with s as the indepandent varisble:

. _
(B -w)- B(-ng) (310
P = n(S - glepil-v")s . {31b)

Note that Eq., 31b agrees sxactly with Eq, 19d, and that the left side
of Eq, 3la agrees with the left side of Rq, 7. It i3 straightforward
but rather tedious to show that the right sides hf Eqs, 3ls and 7
agree alsc, Thersfore we have proven our contention that the charac-
teristices of the efkonal equation are the acoustic rays, and as a by~
product have obtained an alternative (possibly simpler) formuslation,
Bqe, 28, 25 and 27, for the ray differeantizl equution,

It is interesting to note that part of the troubles anticipated
with a numerical intesgration of Eq. 19a do not appear in the new
formulation of Eq. 28, That is, for v > 1, thers are no quantities
vhich blow up when a ray approaches the Mach cone, For v=1, however,
the game difficulty persists as in Ega, 19, because ﬁ (Eq. 27) then
becomas infinite. We can underatand batter now why tha firet diffia
culty appears in Eqs, 19 and is removed in the formulation of Eq, 28:
Eq. 30 shows that close to the Mach cone, where S approaches zero,
ds/dt approaches infinity, so that en infinitessimal integration
step 4r in terms of the canonicel variable corresponds to an infinite

- M A e -~ At . - W e
SLOp Al LG UL LOE &LC 1O9ngLhO.
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section IT is equivalent to the Hamiltonian method used by Keller®.
In fact, aince the function H of Eq. 22 does not depend explicitly v
on §, the differential equationa for the characteristica, Eqs., 21,

are precisely Hamilton's canonical equatione of motion which are

well known in classical machanics*. The function H(x,,p,),

therefore, can be regarded as the Hamiltonlan of some mechanical

system, and with it we can construct the Lagrangian from which the

ray differential equation is derivable via a varlational principle

(l.agrange's equations).
The Lagrangian L({x,,%X;) 18 given in terms of the Hamiltonian
H(x,,py) by*
L= xp;-H

= ¥py ~ PPy + (0 - Vng)a . {32)

In order to put the Lagrangian in its proper fornm (a function of the

% and %; only)w ve the system of Eqs, 232 . v the p; in
terms of the x; (without using the "energy" equatiocn, Eq. 22), and
substitute the result into Eq. 32. The algebra is rather lengthy,

s0 we shall omit it here and just give the final result:

-]
X
Li-gf 2'5'&) _i_._l'lg{i 335
1. vE L N
13




Lagrange's equations

/ ax

\
.;4;7 ) - (34)

g
R
:

can be used to derive the ray differential equation (Eq. 28) once
more, proving that Eq, 33 i{s indesd the correct Lagranglan for thias
problam.
Having obtained the Lagrangian we can now examine the varia-
tional principle
sj:x.d-r-o , (35)

(whose solution is Eq. 34) which for the case of a motionless medium
gives the well-known Fermat's principle, which states that che ray
path between any two points A,B is that curve along which the time
of travel is minimum, Kornhauser® implied that such a Fermat's
principle may not exist for a moving medium, He aleo asserted that
Rayleigh's'® contention, that the velocity to be used in Fermat's
principle is the speed of sound plus the component of the fluid
velocity in the ray direction, is incorrect, To see whether Eq, 35
is a Fermat's princivle (in the sense of minimizing a travel time)
we rewrite the Lagrangiern ir terms of the arc length variable s
(using Eqs. 29, 30 and 31b)

L=2np , (36)

14
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whereupon Eq. (35) can be written

B B B
5JI' Ld-r-bdr gnp{g-l\lsibur pSds
[ - on
- -—-1—-63--0 , 1
AS-!-‘;-‘&

where in the last step we have used Eq. (16) to substitute for p.
The denominator of this last expression is just the zay speed q

defined in Eq. 1l so that the variational integral

B
C (38)
A ©4

is indeed Fermat's principle in the strict sensa, because it mini-
mizes the ray's travel time. Referring to Fig. 1 and ueing Eq. 3
we gee that tha velocity to be used in tne denominator of Eq, 38 is
cq = ¢ coslx - B) + ¥ cos P, whereas Rayleigh's'® idea was to use

¢ + ¥V cos B. Kornhauser®, therefore, was correct in saying that
Fermat's principle with the velocity proposed by Rsyleigh is wrong.

Ve see hovever that the rays do obey Fermat's principle_  the correct

IV, THE RAY EQUATIONS FOR FLANAR RAYS IN A MEDIUM YITH v o« 1.

If the speed of the medium ¥ at every point igz mmch smaller than

the local speed of sound ¢ (which is the case for most propagation
problems in either the ocean or the atmosphere) ths differential
equations for the rays (Eqs, 19 or 28} admit considerable simplifi-

cations, Keeping only first-oxder terms in v (as compared to unity)

15
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the functione N and X.of Eq. 19 reduce to

N = n; X =n1 'L"X)& . (39)

We shall consider a further simplification by assuming that n a.d &

depend only on x and y, and that‘& lies in the x~y plana:

n=aloy) 3y v Gyl + vylxayld (40)

where 4 ’Lnre the usual Cartesian unit vectors in the x,y diroctiona,
" In that caese rays wlich start out in the x~y plana will always remain

in that plane, Such rays, therefore, cun be described by their curva-

ture », given by

fF A

& " (41)
where ﬁ is the unit normal vector,
‘g‘ ==yt xu , (42)

which is perpendicular to the unit tangent vector

&'-x'A+y1 . (43)

ure #, & defined in Rg. (41) can be chtainad
from Eq. 19a. The term (‘r"-x')x in that equation is of the order

) nv’;", and therefore, compared with the first term q&', is nagligible.

The third term can ba worked out to give )

,5.'..’.‘.@35’)- (Wyldy = avy/ax)ﬁ . ‘ (&6
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with

Vi mavi(l - ') 1=xy . (45)

The last term (§n), and part of the first term (r‘dn/Us) can be com-

bined by using the identities dn/ds = §'¥n and " +y®alto

o

yield

Jo - (dn/de)g = (x'%/dy - y'W/A0E . (46)

Eqyuation 19a then becomos

ng o (x'%/¥ - y'a:nfox+ av},/ax - avxlby)ﬁ‘ ’ N
whareupon comparison with Eq. 41 gives for the curvatura
we o t(z'am/y - y'a/ax + W/ - W /) (48)

For y = 0 this squation agrees with the result first darived in Ref. 18,
Equation 48 is still quite complicated, It is & sscond~order differen-
tial equation for x(s), y(s), which together with x™® + y'® = 1 can be

integrated to¢ obtain the ray paths in parsmetric form with the arc

length s as tha param

P [ RS |
ter, Or ocng can sliminate the parameter =, and

obtain the equation of the ray path in the form y = y(x) directly,
as the solution of a single second-order equation for y. In either
case, however, the solutions usually would have to be obtained by a

numerical integration,

P

thé medium is simplified somewhat more (as .n Ref, 1), analytical

solutiona of Eq, 48 arve possible, at least in terws of a quadrature,

17




If the index of refraction n and the velocity of tha medium y are
functions of only one coordinate, say y, and furthermore, if
o v(y)i has only a component in the x-direction, theu Eq. 48 simpli-

fies furcher:
Mo n'l(x'dn/dy - V/ey) R (49)

where

Veav(l=-vx’) (50)

Substituting Eq., 50 into Eq, 49, and using the relation
(dn/dy)/n = = (dc/dy)/c one can obtain the following expression for

the curvature:
n = c~t(dc/dy) (v-x’) + (dvray)(2x‘v-1) , (51)

which is identical” to Eq. 24 of Ref, 1. Thus, even though the
general ray differential equation in Ref, 1 is incorrect, the small=-
velocity approximation is correct, In particular, the analytic
gsolution in terms of a quadrature fcr a medium with a constant wind
(d(vc)/dy = 9), as well as the two applications (atmosphere with a
condtant speed-of-sound gradient and atmosphere with a constant tem~
perature gradient) are coirect, The reason that the sections of Ref, 1
which deal with the small~velocity approximatfon are correct is, of
courae the fact, that the term ggfux'zg,in Eq, 19a, whose omission is

the error of Ref, 1, is negligible in this approximation,

18
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PENDIX A
In this appendix a brief account is given of the theory of the
eikonal equation and of the geometry of the rays and wave normals for
subsonic as well as supersonic fiows.
The wave surfaces are described by the equation ;
&= cot , - T (AL
where ¥ is a solution of the eikcnal equation, Eq. 1, and t is the time
from an arbitrary origin. From tﬁis it easily follows that the unit
vector ﬁlpoints in the direction in which the wave moves and that p
ie the reciprocal wave speed multiplied by ¢g. Let us introduce the

following notation for the non-dimensional wave speed

w-..c.ﬂ. =2 . (A2)
cp r

It 18 & quantity which by definition 18 nonnegative. The eikonal
equation implies that

v-lx-é:t 1 (a3)
which is equivalent to Eq. 2. This equation gives the speed at which

a wavelet moves provided its normal and direction of motion are known.

One could use it in primciple to calculate the motion of a wavefront

if it were not for the ambiguity in the aign of zhe second term in the

right-hand member and the sense of the unit vector j&




To clear up these ambiguities let us investigate the Cauchy problem
of continuing 2 wave given at an instani of time, say t = 0. It is
convenient to iIntroduce a local right-handed Cartesian coordinate sya-
tem at the wave. Let n (not to be confused with the index of refraction)
be the coordinats normal to the surface, so that

n 20

-
Vo B A%

where}iis the unit vector normal teo the wave and pointing Into the half

space into which A;points‘ The eikonal equation becomes
l B af1-1
L8 (G-Livef . (A4)

This quadratic equation for @, has the asolutions

. (A5)

Therefore, provided v, - 1 # 0 on the initial surface, there are two
possible solutions to the Cauchy problem, One may introduce the con-
cept of "advancing'" and "'receding" wavelets with respect to the flow.
The plus eign refers to the advancing wavelet and the minus sign to

the receding wavelet. Equationa A5, AZ and the definition of p imply

that the wave speed is given by

w o= T;LT ~ |vp2l| (46)

This implies thar the advancing wavelet has & greater wave speed than

the receding wavelet. When v, = O there is no distinction between
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advancing and receding wavelets and the local motion of the wavelet is
1ike that in & medium at rest. Leaving aside for the moment the pos-
sibility that v, = 1 = O on the initial wave surface, one may now
determine the 2ign to be taken in Eq. A3 or equivalently Eq. 2. The
rvesults up to this point are given in Table Al ae the first four entries
for each of the four possible cases (advancing or receding wavelets in

subsonic or supersoniz flow;. It is clear that v, > 1 can occur only

in & supersonic flow, Whan.xaé >0, the fluid velocity vector points

into the half space into which the wavelet is moving, when y'§ <0 the

converse holds.

We have now determined what the sign ehould be in the eikonal
equation, Eq. 2, and the equivalent Eq., A3, which gives the wave
speed as a function of the wave normnl‘é. VWe have alsoc determined

what the sen3e of the wave normalag is in relation to the velocityqx.

21
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Instead of advancing the wave normal to itself using Eq. A3, it is
more coaveniéent ©o advance each wavelet along the rzy using the system
of ordinary differentisl equations 23s, 23b, Ws wish to study these
equations in greater detail in order tc remove ths ambiguity in the
aign of Eqa. 24a and 24b (sec Refs. 11 and 8), and also to find a
simple geometric construction relating rays, wave normals, ray speed:
and wave speeds,

To the characteristic aquations 23a, 23b one may, using Bq. 2lc¢,

add the following relation:
3

gg w 2n(n = vipy) = 22n(pp()® = 220p (A7)

wheve use has basn made of the etkonal aquation. This equation com-

bined with Eq. Al gives

St w98 a0 22n
% gr " dr - P “48)
or
. at n ,
¢ g 12 v (AS)

which, apart from the ambiguity in the eign, relatas the parameter T
to phyeically significant quantities, The rule of signs to be fol-
lowed is the same as in the eikonal equation written in the form of
Eq. A3,

One may now cast the cheractsristic squacions Z3a in a geometri-

cally persplcuous form. Introducing time as independent variable

22
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instead of T one gets from Eq. 23a

L% 1 g gz.L{Ji+ v} (a10)
Ce de c° dt nLp
or
1dx + B4,
I LM 5 (All)

In the notation of this paper this may be written
@ Ytk - (A12)

This is the generalization of Eq. 3 and applies almo to supersonic
flow. The results obtainad are collected in Table Al. This permits
us to giva the relationship butween ray, wave normal, ray speed and
wave speed in graphical form (see Figures Al and A2 for the subsonic
and supersonic cases respectively). In either case the circle 1s of
unit redius centered at O and the line 23 represents the velocity
vactor y.

In the subsoni. casa, (v < 0), which 1s normal in acoustics, the

-
situation iz quite simple as indicated in Fig. Al. The vector AR

reprasents the ray. Its lsngth is q, the dimensionless ray speed.
The ray is made up of the vector sum of the velocity X and the unit
wave normal ﬁ‘tapresented by OB (see Table Al). The projection of

X on j‘ plus unity is the wave speed represented by the length of CB.

ing wavelets and the left half receding wavelsts,
The relationships for the supersonic case (v > 1) are more

involved and ar« indicated in Fig, A2, A line drawn from A to a point

23




on the circle represents e ray as before. One has, for example, ig
and A-;’ two vays with the same direction, one fast and one slow.

—
The unit normal ﬁ pertaining to AR is OF and that pertaining to AB'
is By'-(: The wave velocity vector wipurtainmg to the two rays are
Eg and C-;’B' respectively. We see that by considering only the plus
sign in Eq. 3 we confine curselves to the fest rays in the superzonic
cage. In the supersonic case we note furthe. that the angle § between
the ray and the velocity vector must satisfy

(Bl = w

where

sin b -.% (A13)
and p 1is called the Mach angle. Thus one may not atart a ray with
an arbitraxy slope.

From the graphic representation one may derive various relation-

ships by trigonometry. We give some below.

The non-dimensional ray speed 45 a function of the angle the

ray makee with the velocity vector ie

iye
q=vcosftv (-1; - ainaﬁ>/n (Als)
v

When v €1 (subsonic flow) the plus eign is to be used. When v > 1

(supersonic flow) the two signs give the fast and slow rays respsec-

tively.
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R The cosine of the angle between ray and wave normal (it is always

an acute angle) is given by
L ia
v ~ » o
B ‘&‘.x - v( .t; - 8in ') . (ALS)

which is identical to the quantity S defined before. The dimension-
less wave speed may be found from

: v %"ﬁ. . ' (A16)

In conclusion one mgy nov see what the meaning of v, - 1 » 0 i3,
& case that was excluded from the discussion. It pertains to a

receding wavelet carriad along by the fluid sc that its normal speed

B SR T IR

vanishes. It coxresponds to the xey AB;’ in Fig. A2. Clearly on such
a vavelet |grad ] = e = @ and the ray AB;. is tangent to the wavelst.
At such a wavelet Eq. Al cannot hold. In mathematical language the
eikonal function & muet be singular thera. The surfaces on which

w = J apposr s branch surfsces of §, joining the fast and slow waves.

R L o L e T T
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a-t ; subsonic point, A, W.: advancing
wavelet. R, W,: receding wavelet,
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- Big, A-2: Relationship batwsen rays and wave normals at a
supersonic point, A, W,: advancing wavelet,
R. W,.: receding wavelet,
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