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PREFACE 

This Memorandum,  prepared for the Advanced Research Projects Agency, 

is part  of a study of  those phenomena which affect the performance of 

optical or  infrared reconnaissance and guidance equipment.    The objec- 

tive of these studies is to provide sufficient understanding for the 

system analyst to compute performance estimates under various opera- 

tional conditions. 

A quantitative understanding of the effect of atmospheric turbu- 

lence  in reducing the lateral coherence of an initially coherent wave- 

front  is required  for the prediction of the performance of various 

devices employing lasers for target acquisition or guidance in tac- 

tical missions.     Such applications are characterized by near-horizontal 

propagation paths near the ground on the order of one to tens of kilo- 

meters  in length. 

These results should be of use to those Interested in tactical 

applications of laser renge finders,  laser line scanners,  and the vari- 

ous guidance systems employing an Illuminating or focused beam. 
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SUMMARY 

It Is shown that the most commonly used expression for the mutual 

coherence function for an optical wave propagating in a turbulent at- 

mosphere, based on an unphysical extrapolation of the Kolmogorov spec- 

trum, is incorrect.  In modifying the spectrum, it is shown that the 

corrections to the coherence function, the Implied resolution, spread- 

ing of a finite beam, and the signal-to-noise ratio using heterodyne 

detection, can be considerable. Approximate expressions for the co- 

herence function, valid over three distinct propagation distance re- 

gimes, are derived.  In general, it is shown that the field has a 

greater transverse coherence length than that predicted by other authors, 

with the difference being more pronovnced at shorter ranges. This im- 

plies that under many conditions the degradation in the performance 

of devices which depend on the above properties is less than previously 

reported. 
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I.  INTRODUCTION 

The mutual coherence function (defined as the cross-correlation 

function of the complex field In a direction transverse to the direc- 

tion of propagation) Is the quantity which describes the loss of co- 

herence of an Initially coherent wave propagating In a turbulent medium. 

As a result, the mutual coherence function Is Important for a number 

of practical applications.  It determines the slgnal-to-nolse ratio of 

an optical heterodyne detector, the limiting resolution obtainable along 

an atmospheric path, and the mean intensity distribution of an initially 

coherent wave emanating from a finite aperture.  This study demonstrates 
(1-3) 

that the most commonly used expression     for the mutual coherence 

function (given in Eq. (5) below) is, in general. Incorrect.  This ex- 
(2) 

presslon is derived from the assumption that the Kolmogorov spectrum 

of index of refraction fluctuations can be extrapolated to arbitrarily 

small wave numbers, K, for the purpose of computing the coherence func- 

tion. The apparent justification for using the Kolmogorov power law 

for K ^ L  (where L is the outer scale of turbulence) is that, al- 

though the extrapolated spectrum diverges, the integrals necessary to 

compute the coherence function from the spectrum remain convergent. 

However, the sensitivity of the result to the divergent spectrum proves 

to be considerable. 

Section II argues against the use of an unbounded spectrum (e.g., 

the extrapolated Kolmogorov spectrum) and demonstrates the insensltivity 

of the coherence function to any bounJea spectrum. Based on these con- 

siderations, a modified von Karrnan spectrum (which levels off for 

K £ L ) is examined, and the insensltivity to a number of "reasonable" 

spectra in computing the coherence functions is demonstrated.  Compari- 

son with the previously accepted result predicts an improvement in the 

implied resolution, with greater improvement over shorter paths. 

Section III shows that there exist three distinct propagation dis- 

tance regimes for which approximate expressions for the coherence func- 

tion can be found.  These formulas with the respective ranges of validity 

are presented in the table on p. 8 for the modified von Karrnan spectrum 

of Section II. 
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In Section IV we calculate the implications with regard to reso- 

lution and beam spreading of our expression for the mutual coherence 

function or modulation transfer function (MTF) for the case of homo- 

geneous Isotropie turbulence.  In particular, we show the coherence 

length (defined as the transverse separation at which the MTF is equal 

to e ) is generally greater than the previously accepted value. 

Finally, in Section V we examine the implications for coherent 

optical detection.  Comparing our results for heterodyne detection 

with those of Fried,   we predict a greater long-term average signal- 

to-noise ratio. In particular, where Fried finds a maximum useful re- 

ceiver diameter for all ranges, we find that, for distances which are 

small compared with the mean field decay length z (defined in Section 

II), the signal-to-noise ratio increases indefinitely with receiver 

size. 



-3- 

II.     THE SPECTRUM 

The analysis Is based on the expression for the mutual coherence 

function or MTF for the case of a plane wave Incident upon a homogeneous, 
(2) Isotropie turbulent medium: 

M(p,z)  ■ exp <- ATT k z \l [■ - V*»] *n(K)K dK (1) 

where k Is the optical wave number, p Is the transverse separation at 

propagation distance z, and * (K) Is the three-dimensional spectral 

density of the Index of refraction fluctuations. Equation (1) may be 

written In the form 

M(p,z) 
c 

J (Kp) * (K)K dK 
o    n 

1 - 

Jo n (K)K dK 

(2) 

where 

2 A2 V ♦n(K)K dK ^ (3) 

(2) 
can be shown   to be the propagation distance In which the mean field 

of a plane (or spherical) wave \u) decays to e  from Its vacuum value 

(the angular brackets denote an ensemble average). From Eq. (2), It 
-2z/z 

follows that as p ->• », M(p,z) -•• e    c. This expression Is In ac- 

cord with the physical picture of the light arriving at the two points 

r., Tj  being scattered through statistically Independent media when 

P - Ir, - rJ Is sufficiently large that M(p,z) Hi " £2' 
(iKr,)) (u*(r2)) . 

iKr^U (r2) 

In deriving Eq.   (1)  it has been assumed that *    Is not a function 
n 

of propagation distance. The modification of Eq. (1) to Include an ex- 

plicit dependence on range Is z* (K) ■* JQ  «^(K.z') dz'. For spherical 

wave propagation z[l - J (Kp)] /J dz' [1 - ^(KpzVz)]. 



(2) The Kolroogorov spectral density   Is most commonly used to repre- 

sent atmospheric index of refraction fluctuations: 

* (K) - 0.033C2K"11/3 (4) n n 

It is valid within the inertlal subrange XT    «  K « *" , where i    s 0  o o       o 
2vJC   and L s 2IT£ are the Inner and outer scales of turbulence, re- o    o     o 
spectlvely, and C Is the index structure constant. 

In order to compute the MTF from Eq. (1), It Is necessary to make 

certain reasonable assumptions regarding the spectrum outside of the 
(2) (1 3) inertlal subrange. Tatarskl   and others,  *  using the spectrum of 

Eq. (A) for all K, have computed an MTF given by 

Mo(p,z) ■ exp L MI v.2cyA l    « p « L o   K   o (5) 

which is used for all z, the apparent justification being that the inte- 

gral in Eq. (1) converges. However, the sensitivity of the MTF to the 

extrapolation of Eq. (A) for K < £  is considerable. This can be seen 
0 -I 

by carrying out the integration in Eq. (1) for t     < K < •, which gives 

M/(p,z) - exp j. i^ jcy" [i - O^CP/*/'3 + O(P/V2] | 

for i    « p « L o o (6) 

From Eqs.   (5)  and  (6) 

M*   - M 

Evaluating Eq. (7) at that value of p 

M is equal to e  yields 

(7) 

where 

M^ - M 

M' M -e o 
-1 

exp [o.^.v^'v'3] - 
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2        -15  -2/3 
For example, with X - 10.6 p, C • 3 * 10   cm   , L - 100 cm (in 

this case z ** 1 km), we obtain a percentage error in the MTF of 38 per- 

cent for z « 1 km and 23 percent for z ■ 10 km. 

This example reveals the sensitivity of the MTF, in the inertial 

subrange, to the physically unreasonable extrapolation of Eq. (4) for 

K < t .  Although the integral in Eq. (1) converges, an extrapolation 

would lead to divergent integrals for both the energy per unit volume 

of the fluctuations and the distance over which the mean field decays 

(i.e., z ). On physical grounds, the spectrum must begin leveling off 

for K corresponding to scales large compared with the separations over 

which the temperature fluctuations exhibit appreciable correlation, 

with a finite upper bound as K ->■ 0. Further, careful examination of 

Eqs. (1) or (2) reveals the insensitivlty of the integrals to the spec- 

tral density for any spectrum which remains bounded for K < t    ,  and 

hence, for the purpose of computing the MTF, we suggest the use of any 

bounded spectrum in this range. The spectrum falls off very rapidly 
-1 (4) 

for K > *  due to viscous daaplng, and it is customary   to use a 

gaussian decay in this region. 

An example of a spectrum which is convenient for computational 

purposes is the modified von Kanaan spectrum 

2 -(K< )2 

0.03 3(re   0 

♦n(K) " -1  o n/A W n    (K2 + t"2)1176 
0 ' 

which implies a flat spectrum for K < £ . For example, substituting 

Eq. (6) into Eq. (3) yields, for I    « I , 

c ss ^.39k
2cV/1) (9) 

Figure 1 is a graph of the mean field decay length z plotted versus 

wavelength X. for £ ■ 100 cm and tvpical values of C . 
o n 
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X(^) 

Fig. 1—Propagation distance z   as a function of wavelength 
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III. APPROXIMATE FORMULAS FOR THE MTF 

While it is a simple numerical calculation to compute the MTF di- 

rectly using the spectrum of Eq. (8) in Eq. (1), it is useful to have 

approximate formulas for estimating the coherence length at various 

ranges. Based on Eq. (8), we derive approximate expressions for the 

MTF valid over particular propagation paths. 

First, considering the inertlal subrange, substituting Eq. (8) 

into Eq. (1), assuming p » I ,  and expanding to lowest order in (p/£ ), 

we obtain (see the appendix) 

M^p.t) - exp |- ^ k2C*zp5/3ri - 0.80(p/to)
1/3ll     (10) 

Comparing Eq. (10) with Eq. (6) demonstrates the insensitivity of the 

MTF to the form of the spectrum for K < £.  provided it remains bounded 

for K ■»■ 0. At a given range, for all of the transverse separations of 

Interest to lie in the inert lal subrange it is necessary that M(£ ,z) a- 1 

and M(Lo,s) « 1. This is essentially the condition 

« « z « z (11) 
c       i 

where z is given by Eq. (9), and z., obtained by replacingJ; by-«' 

in the formula for z , is the distance at which the coherence length 

of the field is of the order of the inner scale. 

For ranges greater than z., all of the p's of Interest are small 

compared with the inner scale. The Bessel function in Eq. (1) can then 

be expanded in powers of p/C to yield 

M(p,z) a>exp (- 1.72k2cV1/3zp2J    z » zi       (12) 

Finally, for z « «c, recalling M(-,z) - e'
2z/zc = l, the MTF is 

essentially unity for all values of p, i.e.. 

M(p,z) - 1    « << «c (13) 
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In Flg.   2 we compare the MTF computed from Eq.   (5)   (curve labeled M ) 
o 

with that obtained from Eq. (1) using the spectrum given by Eq. (8) 

(curve labeled M) and Eq. (10) (curve labeled M.), taking X • 10.6 u, 

2ir m. In general, the present analysis 1 mnii and L z/z - 10, i 
c    ' o      •     o 

indicates a "more coherent" MTF 

The approximate formulas for the plane wave MTF with the respective 

ranges of validity are summarized in the table. 

APPROXIMATE EXPRESSIONS FOR THE MODULATION TRANSFER FUNCTION 

Range MTF 

z « z c 1 

z    « z « z. 
exp {- 2:91 kVzp5^!  - 0.80(p/l )1/31}  - 1.      ^            n          L                         o         JJ 

exp {- 3.72(z/zc)(p/«.o)
5/3[l - 0.80(p/«.o^1/3]} 

z » z 
exp{-1.72k2cV1/3zp2}   - 

exp {- 2.4(z/zi)(p/£o)2]- 

NOTE: The quantities z  (the distance where the average field is 
-1 c 

down by e ) and z. (the distance where the coherence length of the 

field is of the order of the inner scale of turbulence) are given by 

(o.sgkV-ty3)"1 and (o.39k2cV/3)'1, respectively. 
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IV.  RESOLUTION AND BEAM SPREADING 

There are two Important consequences of our "more coherent" MTF. 

The mean visibility is better than predicted by Fried ' for given 

turbulence parameters along a uniform atmospheric path, and the average 

amount by which a finite beam spreads is smaller. 

Defining p as the transverse separation at which the atmospheric 

MTF is reduced by e , the minimum resolvable length at a distance z 

from an observer is well known to be — z/kp . It can be shown that o 
when p Is small compared to the size of the transmitting aperture, 

the angular spread of a finite beam due to the atmosphere Is ~ 1/kp . 

It follows from the results of the previous section that, for dis- 
5 3 tances small compared with z.( » 10 z for L /l ■ 10 ), the plane 

1 COO 

wave MTF does not depend on the inner scale, and can be written as 

J_(u)u du 
M(p,z) - exp <- fi | 1 - ^ (p/t )5/3 \        2 

0  ; 5" 
0   JO [u + (p/t/] 

F(p/* ,z/z )    z « z. (U) 
O    C 1 

The modification of Eq. (14) for spherical waves is given by 

M (p.z) - exp 5- |^ 1 - f (pAt )5/3 [   du uJ (u) ( —5 § d% „ij 
) zc L   3   0   JO    0   3o [u2 + (sp/fc )2]11/6Jl 

=  F8(p/-to, z/zc) (15) 

In Figs. 3a and 3b we plot p AL versus z/z for plane and spherical oo        c _. 
waves, which are obtained by Inverting the equations F(p At , z/z ) - e 

and F (p At , z/z ) ■ e , respectively. On the same graph in each fig- s o o    c 
ure, we compare our results with that obtained using the MTF of Eq. (5) 

(dashed curve) and the corresponding expression for spherical waves 

(obtained by multiplying the exponent in Eq. (5) by 3/8). For the pur- 

poses of this computation, we have written Eq. (5) in the form 
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Fig. 3 — Normalized coherence length,   P A , as a function of z/z 
o   o c 
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Mo(p.Z) - exp [- 3.72(f-)(p/to)
5/3] 

The percentage error in each case, defined as Up' - p )/p I x 100 
. o   o  o 

where p' satisfies M (p/,z) - e , is Indicated on the scale at the o o o*      ' 
right. 

As one approaches the plane or spherical wave source, the present 

analysis indicates that the transverse coherence of the field Increases 

at a greater rate than previously predicted. The previous results are 
4 

in error by ~ 10 percent at 10 z and 100 percent at 0.5z , while for 
c -1   c 

distances < 0.5z , the "new" MTF is never down to e . For z > z. 
5        C    3 i 

(■ 10 z for L /£ - 10 ), the use of M again gives a poor approxi- 

mation to the "new" MTF, which in this region is given by Eq. (12). 
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V. SIGNAL-TO-NOISE RATIO IN HETERODYNE DETECTION 

As an additional illustration of the implications of our "more co- 

herent" MTF, we use it to compute the signal-to-noise ratio in a coherent 

detection system and compare the results with those computed by Fried. 

The signal-to-noise ratio is given by 

■^-- 4(n/e)^)D2 j xKo(x)M(Dx,z) dx (16) 

where A_ is the signal amplitude, n/e is the quantum efficiency measured 

in electrons per unit energy, D is the diameter of the collecting aper- 

ture, and 

K0(x) - j [cos^Cx) - x(l - x2)1/2] (17) 

Then Eq. (16) can be written in the form 

-^ - 4(n/e) ^)E2nA zlzc) (18) 

for 0 < z « as., where ^ - 0/2 , and 

i *(A zlzj  -■*2 \ Ä (x>F(5x, «/« ) dx (19) c     J0  o c 

The function V contains the dependence of signal-to-noise ratio on the 

collector diameter in the presence of atmospheric distortion and is 

plotted as a function of £  in Figs. 4a and 4b for various values of 

E/Z . The reduced signal-to-noise ratio V, as computed from Eq. (19) 

(solid curve), is compared with the results of Fried, ' who used the 

MTF given by Eq. (5) (dashed curve). In general, the present analysis 

predicts a somewhat larger signal-to-noise ratio. The difference is 

more pronounced for distances small compared with z , where (s)/N as 

derived here increases indefinitely with aperture size. This result 

is in contrast with that of Fried, where an effective limiting diameter 
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1s derived beyond which Increasing the diameter results In very little 

Improvement  in \S)/N  for all ranges.    For ranges very large compared 

with z     (but still small compared with z.),   the MTF of Eq.   (1)  approaches 

that of Eq.   (5), and the difference between the two slgnal-to-nolse 

ratios tends to zero.    This trend  is illustrated in Fig.  5, where the 

reduced slgnal-to-nolse ratio Is plotted as a function of z/z    for .# ■ 1. 

The solid curve is computed  from tha MTF given by Eq.   (14)  while the 

dashed curve is computed from the MTF of Eq.   (5).    The percentage error, 

defined as the difference between \S)/N using Eq.   (1) and Eq.   (5), 

o c 
i 
o 

o c 

■D 
u 
3 

■D « 
at 

10 

10 

—    80 

'    '  ' 

100 

60 | 

4) 

f 
C 
0) u 

40 fc 

20 

10" 

Fig. 5—Reduced signal-to-noise ratio at  10.6 ^.  in a heterodyne detection 
system as a function of z/z    for the diameter of the collector equal to t 
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dlvlded by (s)/N using Eq. (1), multiplied by one hundred, is also 

plotted in Fig. 5 (referring to the right-hand ordinate). We see that 

a maximum percentage error of 53 percent is obtained for z/a "4.  In 

general, the range corresponding to maximum percentage error will of 

course vary with the ratio D/£ . 
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Appcndlx 

EVALUATION OF AN INTEGRAL 

Consider the integral 

:l exp [- (K* )2] 
I(p,«) - «w'k'z \     ll - J (Kp> I < T-? STTTTZ2 >K dK    (^'^ 

2 2   C" r 1 )0-033Cn ***  [' (KV   ' SI i1 ■ 3oH 

obteined by substituting the spectrua given by Eq.  (8)  into Eq.  (1). 

Substituting x ■ Kp in Eq.  (1) ve obtain 

I(pfs) - 4irVs(0.033)C*pV3 J     2-- , ^^    0 , dx    (A-2) 
»0 (x2 ♦ a2)11^6 

where 

k2 
0,2 " (*")   " 1 (A"3) 

For those values of p in the inertial subrange the exponential in 

Eq. (A-2) can be neglected» since the «sin contribution to the inte- 

gral coses for x ^ p/t « P/i .   Than suppressing the factor 
2 2      2 5/3 

4irVs(0.033)cV'J, «e obtain 

- [1 - J (x)lx dx 
Kp.t) - \ —5 51[I7?- 

f« [1 - J0(x)] 

JO (x2 + a
2): 

3 «-5/3  I    K5/6(o)   1 
5     "L2^r(ll/6)a5^J 

(A-4) 

where K^ is the aodified Bessel function of the second kind of order v, 

and r(x) is the gaxna function. In obtaining the second tern on the 

right-hand side of Eq. (A-4), ws have used Eq. (2), p. 434 of Ref. 7. 
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The modified Bessel  function of the second kind, K  ,   is related to 
v 

the modified Bossel function of the first kind, I , through the relation 

K 
(1  - I ) 

1     -v   v 
\)      2      sin TTV 

(A-5) 

Using the power series expansion 

[(a) (*)V V  (a
2M)k 

k»0 1) 
(A-6) 

in Eq. (A-5) and substituting in Eq. (A-4) with \» - 5/6 yields 

K5/6(a) 
(a/2)-

5/6 , (a/2)
7/6  (a/2)

5/6 

r(i/6)   TOW)       r(ii/6) 
(a/2) 

17/6 

r(i7/6) 
(A-7) 

Hence,   from Eqs.   (A-4)  and   (A-7)  we obtain 

S t1   -   Jo(X>l 1/1 L 
x dx - 1.12 - 0.90a '^ + 0.13a    + ••• 

n , 2  ,     2,11/6 
0 (x   + a ) 

(A-8) 

Replacing the factor previously withheld yields the expression given 

by  Eq.   (10). 
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