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PREFACE

This Memorandum, prepared for the Advanced Research Projects Agency,
is part of a study of those phenomena which affect the performance of
optical or infrared reconnaissance and guidance equipment. The objec-
tive of these studies is to provide sufficient understanding for the
system analyst to compute performance estimates under various opera-
tional conditions.

A quantitative understanding of the effect of atmospheric turbu-
lence in reducing the lateral coherence of an initially coherent wave-
front is required for the prediction of the performance of verious
devices employing lasers for target acquisition or guidance in tac-
tical missions. Such applications are characterized by near-torizontal
propagation paths near the ground on the order of one to tens of kilo-
meters in length.

These results should be of use to these interested in tactical
applications of laser renge finders, laser line scanners, and the vari-

ous guidance systems employing an illuminating or focused beam.



SUMMARY

It is shown that the most commonly used expression for the mutual
coherence function for an optical wave propagating in a turbulent at-
mosphere, based on an unphysical extrapolation of the Kolmogorov spec-
trum, is incorrect. In modifying the spectrum, it is shown that the
corrections to the coherence function, the implied resolution, spread-
ing of a finite beam, and the signal-to-noise ratio using heterodyne
detection, can be considerable. Approximate expressions for the co-
herence {unction, valid over three distinct propagation distance re-
gimes, are derived. 1In general, it is shown that the field has a
greater transverse coherence length than that predicted by other authors,
with the difference being more pronounced at shorter ranges. This im-
plies that under many conditions the degradation in the performance
of devices which depend on the above properties is less than previously

reported.
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I. INTRODUCTION

The mutual coherence function (defined as the cross-correlation
function of the complex field in a direction transverse to the direc-
tion of propagation) is the quantity which describes the loss of co-
herence of an initially coherent wave propagating in a turbulent medium.
As a result, the mutual coherence function is important for a number
of practical applications. It determines the signal-to-noise ratio of
an optical heterodyne detector, the limiting resolution obtainable along
an atmospheric path, and the mean intensity distribution of an initially
coherent wave emanating from a finite aperture. This study demonstrates

(

that the most commonly used expression 1-3) for the mutual coherence

function (given in Eq. (5) below) is, in general, incorrect. This ex-
pression is derived from the assumption that the Kolmogorov spectrum(z)
of index of refraction fluctuations can be extrapolated to arbitrarily
small wave numbers, K, for the purpose of computing the coherence func-
tion. The apparent justification for using the Kolmogorov power law

for K £ L;I (where Lo is the outer scale of turbulence) is that, al-
though the extrapolated spectrum dive~ges, the integrals necessary to
compute the coherence function from the spectrum remain convergent.
However, the sensitivity of the result to the divergent spectrum proves
to be considerable.

Section I1 argues against the use of an unbounded spectrum (e.g.,
the extrapolated Kolmogorov spectrum) and demonstrates the insensitivity
of the coherence function to any bounled spectrum. Based on these con-
siderations, a modified von Karman spectrum (which levels off for
KX L;l) is examined, and the insensitivity to a number of "reasonable"
spectra in computing the coherence functions is demonstrated. Compari-
son with the previously accepted result predicts an improvement in the
implied resolution, with greater improvement over shorter paths.

Section III shows that there exist three distinct propagation dis-
tance regimes for which approximate expressions for the coherence func-
tion can be found. These formulas with the respective ranges of validity
are presented in the table on p. 8 for the modified von Karman spectrum
of Section II.



In Section IV we calculate the implications with regard to reso-
lution and beam spreading of our expression for the mutual coherence
function or modulation transfer function (MTF) for the case of homo-
geneous isotropic turbulence. In particular, we show the coherence
length (defined as the transverse separation at which the MIF is equal
to e-l) is generally greater than the previously accepted value.

Finally, in Section V we examine the implications for coherent
optical detection. Comparing our results for heterodyne detection
with those of Fried,(l) we predict a greater long-term average signal-
to-noise ratio. In particular, where Fried finds a maximum useful re-
ceiver diameter for all ranges, we find that, for distances which are
small compared with the mean field decay length z, (defined in Section
I1), the signal-to-noise ratio increases indefinitely with receiver

size.



II. THE SFECTRUM

The analysis is based on the expression for the mutual coherence
functicn or MIF for the case of a plane wave incident upon a homogeneous,

(2)

isotropic turbulent medium:
2.2 (7 *
M(p,z) = exp {- 4n°k“z S [} - Jo(Kp)] ¢n(K)K dKk } (1)
0

where k is the optical wave number, p is the transverse separation at
propagation distance z, and ¢n(K) is the three-dimensional spectral
density of the index of refraction fluctuations. Equation (1) may be
written in the form

So Jo(Kp) ¢n(K)K dK

M(p,z) = exp (- %5 1 - = (2)
c .
SO ¢n(K)k dK
where
2.2 (© -1 B
2, = [21: k So o (KK dl(] (3)

(2)

of a plane (or spherical) wave (U) decays to e"1 from its vacuum value

can be shown to be the propagation distance in which the mean field

(the angular brackets denote an ensemble average). From Eq. (2), it

follows that as p +» =, M(p,z) -+ e-22/zc.

This expression is in ac-
cord with the physical picture of the light arriving at the twc points
In I, being scattered through statistically independent media when

->

p = IEI - Ezl is sufficiently large that M(p,z) = U(EI)U*(E

<U(_1;1)> <}J*(52)> .

*
In deriving Eq. (1) it has been assumed that On is not a function

9)

of propagation distance. The modification of Eq. (1) to include an ex-
plicit dependence on range is z¢n(K) > f; ¢n(K,z') dz’. For spherical
wave propagation z[l - Jo(Kp)] - fg dz’ [1 - Jo(sz'/z)].



=

(2)

The Kolmogorov spectral density is most commonly used to repre-

sent atmospheric index of refraction fluctuations:

& (K) = 0.033c2k"11/3
n n

(4)

It is valid within the inertial subrange z;l << K << l;l

, where 20 =
2nlo and Lo = ZnLO are the inner and outer scales of turbulence, re-
spectively, and Cn is the index structure constant.

In order to compute the MIF from Eq. (1), it is necessary to make
certain reasonable assumptions regarding the spectrum outside of the

(2) 1,3

inertial subrange. Tatarski and others, using the spectrum of

Eq. (4) for all K, have computed an MTF given by

2,91 .22 5/3
Mo(p.z) = exp (— -32— k°C 2o / ) L, << << L (5)

which is used for all z, the apparent justification being that the inte-
gral in Eq. (1) converges. However, the sensitivity of the MIF to the
extrapolation of Eq. (4) for K <« t;l is considerable. This can be seen
by carrying out the integration in Eq. (1) for LZI < K < o, vhich gives

¥ (p,2) = exp {- 2 22033 [1 - 0,670/ 3 + O(plzo)z]}

2
for zo << p << Lo (6)
From Eqs. (5) and (6)
M -M
'—M'—q = exp (').97k20r2‘292l;1/3) -1 @))
|

Evaluating Eq. (7) at that value of p [- (22J kzciz) -3/5] where

Mo is equal to e-l yields

M - M
— O

) 2.2 \-1/5,-1/3| _
v LT [0.61(k an) L ] 1

M =e
o



For example, with ) = 10.6 u, C2 = 3 x 10715 ¢072/3, L, = 100 cm (in

this case z = 1 km), we obtain a percentage error in the MIF of 38 per-
cent for z = 1 km and 23 percent for z = 10 km,

This example reveals the sensitivity of the MIF, in the inertial
subrange, to the physically unreasonable extrapolation of Eq. (4) for
K < L;l. Although the integral in Eq. (1) converges, an extrapolation
would lead to divergent integrals for both the energy per unit volume
of the fluctuations and the distance over which the mean field decays
(i.e., zc). On physical grounds, the spectrum must begin leveling off
for K corresponding to scales large compared with the separations over
which the temperature fluctuations exhibit appreciable correlation,
with a finite upper bound as K - 0. Further, careful examination of
Eqs. (1) or (2) reveals the insensitivity of the integrals to the spec-
tral density for any spectrum which remains bounded for K < L;l, and
hence, for the purpose of computing the MTF, we suggest the use of any
bounded spectrum in this range. The spectrum falls off very rapidly

(4)

for K > t;l due to viscous damping, and it is customary to use a
gaussian decay in this region.

An example of a spectrum which is convenient for computational
purposes is the modified von Karman spectrum
, ~(ke )2
0.033Cne

2 11/6

¢ (K) = )

-2
(K” + L )

which implies a flat spectrum for K < L;l. For example, substituting
Eq. (6) into Eq. (3) yields, for lo << Lo'

-1
[~ 201202,5/3
z_ = (,.39k ce ) (9)

Figure 1 is a graph of the mean field decay length 2, plotted versus
wavelength A, for Zo = 100 cm and typical values of Ci.
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Fig. 1 —Propagation distance z_asa function of wavelength



I1I., APPROXIMATE FORMULAS FOR THE MTF

While it is a simple numerical calculation to compute the MIF di-
rectly using the spectrum of Eq. (8) in Eq. (1), it is useful to have
approximate formulas for estimating the coherence length at various
ranges. Based on Eq. (8), we derive approximate expressions for the
MTF valid over particular propagation paths.

First, considering the inertial subrange, substituting Eq. (8)
into Eq. (1), assuming p >> 20, and expanding to lowest order in (ollo),
we obtain (sae the appandix)

M, (p,2) = exp {- 291 4 22,5/ 3[1 - 0.80(p/x )/ 3]} (10)

Comparing Eq. (10) with Eq. (6) demonstrates the insansitivity of the
MTF to the form of the spertrum for K < 1;1 provided it ramains bounded
for K + 0. At a given range, for all of tha transversa saparations of
interast to lie in tha inertial subrange it is necessary that H(zo.z) ™~ ]
and H(Lo,z) << 1. This is essentially tha condition

zc << g << g (11)

i
vwhere z, is given by Eq. (9), and 2oy obtained by replacing,kb by.tb
in tha formula for L is the distance at which the coherence length
of the field is of the order of the inner scale.

For rangas greatar than Zgs all of the p's of interest are small
compared with tha inner scala. The Bassel function in Eq. (1) can then
be axpanded in powers of p/tb to yield

(12)

M(p,2z) == exp (— 1.72k20:2;1/3zpz) z >> z,

Finally, for z << zZ.s recalling M(»,z) = e-Zz/zc = 1, the MIF is

essentially unity for all values of p, i.a.,

M(p,z) = 1 z <<z (13)



In Fig. 2 we compare the MTF computed from Eq. (5) (curve labeled Mb)
with that obtained from Eq. (1) using the spectrum given by Eq. (8)
(curve labeled M) and Eq. (10) (curve labeled Ml), taking A = 10.6 u,
z/zc = 10, 20 = 1] mm, and Lo = 21 m. In gene.al, the present analysis
indicates a "more coherent" MTF.

The approximate formulas for the plane wave MIF with the respective

ranges of validity are summarized in the table.

APPROXIMATE EXPRESSIONS FOR THE MODULATION TRANSFER FUNCTION

Range MIF

z2 << 2z 1
c

exp {-'—-— k C2 5/3[1 0.80(p/2 )1/3]}

2 KzXz

exp {- 3.72¢2/2) 62> 1 - 080612, ]}

exp {- 1.72k2021 “L/3 zpz} =

z >> 2

exp {- 2.4(2/:1)(9/20)2}

NOTE: The quantities z, (the distance where the average field is
down by e-l) and z, (the distance where the coherence length of the
field is of the order of the 1nner scale of turbulence) are given by
(0 39k 02 5’3) o (o 39k 2 c 5/3) , respectively.




-9-

0S

oy

d jo uoiouny o so )W jo uosodwon)—z 61y

uoijouny Jiajsupnly uolpjnpow



-10-

IV, RESOLUTION AND BEAM SPREADING

There are two important consequences of our "more coherent' MIF,
The mean visibility is better than predicted by Fried(s) for given
turbulence parameters along a uniform atmospheric path, and the average
amount by which a finite beam spreads is smaller.

Defining Py 28 the transverse separation at which the atmospheric
MIF is reduced by e-l, the minimum resolvable length at a distance z
from an observer is well known to be ~ z/kpo. It can be shown that
when o is small compared to the size of the transmitting aperture,
the angular spread of a finite beam due to the atmosphere is ~o1/kpo.(6)

It follows from the results of the previous section that, for dis-
tances small compared with zi( = 1052c for Lolzo = 103), the plane

wave MTF does not depend on the inner scale, and can be written as

@ J (u)u du
2z 5 5/3 S 0
M(p,z) = -=|1-3 (/2
Pyz) = exp z [ 3 (p/L) o [u2 R (D/Lo)2]11,6]

= F(p/Zo,z/zc) z <<z (14)
The modification of Eq. (14) for spherical waves is given by

1 85/3 ds ]
0 [uZ + (soﬁto)2]11,6

M_(0,2) = exp {- i—: [1 -3 (oir 33 S

o du uJo(u) S

Folo/r , z/zc) (15)

In Figs. 3a and 3b we plot oollo versus z/zc for plane and spherical
waves, which are obtained by inverting the equations F(poﬁbo, z/zc) = e"1
and Fs(pollo, z/zc) = e-l, respectively. On the same graph in each fig-
ure, we compare our results with that obtailned using the MTF of Eq. (5)
(dashed curve) and the corresponding expression for spherical waves
(obtained by multiplying the exponent in Eq. (5) by 3/8). For the pur-
poses of this computation, we have written Eq. (5) in the form

PN
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Fig. 3—Normalized coherence length, po/{o, as a function of z/zc



M (0,2) = exp [— 3.72(%—)(9/34)5/3]

C

The percentage error in each case, defined as |(D; - po)/Dol x 100
where p; satisfies Mo(p;,z) = e-l, is indicated on the scale at the
right.

As one approaches the plane or spherical wave source, the present
analysis indicates that the transverse coherence of the field increases
at a greater rate than previously predicted. The previous results are
in error by ~ 10 percent at 1042c and 100 percent at O.Szc, while for

distances < O.Szc, the "new" MTF is never down to e-l. For z > 2

i
(= 1052c for Lollo = 103), the use of Mo again gives a poor approxi-

mation to the '"new" MIF, which in this region is given by Eq. (12).

e o A
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V. SIGNAL-TO-NOISE RATIO IN HETERODYNE DETECTION

As an additional illustration of the implications of our ‘'more co-

herent" MTF, we use it to compute the signal-to-noise ratio in a coherent

detection system and compare the results with those computed by Ftied.(l)
The signal-to-noise ratio is given by(l)
ﬂ = 4(n/ )<2>D2 . xK (x)M(Dx,z) dx (16)
N n/e As 0 o ’

where As is the signal amplitude, n/e 18 the quantum efficiency measured
in electrons per unit energy, D is the diameter of the collecting aper-

ture, and
Ko(x) - %’[%Ol-l(x) - x(1 - x2)1/2] %))

Then Eq. (16) can be written in the form
£« stnvre) (2Pv(s, /) (18)

for 0 < z << z,, where & = D/Lo. and
2 1
¥(5, z/z)) =& S X (x)F(x, z/zc) dx (19)
0

The function ¥ contains the dependence of signal-to-noise ratio on the
collector diameter in the presence of atmospheric distortion and is
plotted as a function of & in Figs. 4a and 4b for various values of
z/zc. The reduced signal-to-noise ratio ¥, as computed from Eq. (19)
(solid curve), is compared with the results of Fried,(l) who used the
MIF given by Eq. (5) (dashed curve). In general, the present analysis
predicts a somewhat larger signal-to-noise ratio. The difference is
more pronounced for distances small compared with z_, where {S)/N as
derived here increases indefinitely with aperture size. This result

is in contrast with that of Fried, where an effective limiting diameter
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Reduced signal-to-noise ratio
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is derived beyond which increasing the diameter results in veryv little

improvement in (S)/N for all ranges. For ranges very large compared

with z, (but still small compared with zi), the MTF of Eq. (1) approaches

that of Eq. (5), and the difference between the two signal-to-noise

ratios tends to zero. This trend is illustrated in Fig. 5, where the

reduced signal-to-noise ratio is plotted as a function of z/zc for &= 1.

The solid curve is computed from tha MIF given by Eq. (14) while the

dashed curve is computed from the MIF of Eq. (5). The percentage error,

defined as the difference between <S>/N using Eq. (1) and Eq. (5),

107! 100
80
102
60 §
[ V]
- Q
10”° g
s
Q
403
107
20
-5
10 0
10" 1 10 102 103 104
z/zc

Fig. 5—Reduced signal-to-noise ratio at 10.6 u in a heterodyne detection
system as a function of z/zc for the diameter of the collector equal to to



divided by <S>/N using Eq. (1), multiplied by one hundred, is also
plotted in Fig. 5 (referring to the right-hand ordinate). We see that
a maximum percentage error of 53 percent is obtained for z/zc 4, In
general, the range corresponding to maximum percentage error will of

course vary with the ratio D/to.

eCera Tz

e n
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Appendix

EVALUATION OF AN INTEGRAL

Consider the integrel

0.033¢2 axp [- (ke )?) s
K dKk (A-
2, -TW1/6
(K +4B° )‘

I(p,z) = lnrzk zS [1 -J (Ko\]

obtained by substituting the spectrum given by Eq. (8) into Eq. (1).
Substituting x = Kp in Eq. (1) we obtein

= [1-3,0) exp [- (x£,/0)%]
1176 x dx (A-2)

1(p,z) = lur k s(0. 033)0 95/3 S 2 2
0 (x° +a%

where

al = (‘iL)2 <«< 1 (A-3)

For those values of p in the inertial subrange the exponential in
Eq. (A-2) can be neglected, since the main contribution to the inte-

3:.1 comes for x £ p/& << p/!. + Then suppressing the factor
4r2k?2(0.033) %%/, we obtatn

T S- 1 - Jo(x)]x dx
I(p,2) =
0 (‘2 + u2)1.1./6
K¢ e (a)
-5/3 5/6
=ca - (A-4)
5 278 1 (11/6)a'6

where Kv is the modified Bessel function of the second kind of order v,
and T(x) is the gamma function. In obtaining the second term on the
right-hend side of Eq. (A-4), we heve used Eq. (2), p. 434 of Ref. 7.
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The modified Bessel function of the second kind, Kv’ is related to
the modified Bessel function of the first kind, Iv’ through the relation

(1. -1)
m -V \YJ
Kv "7 sia mv (A-3)
Using the power series expansion
v e 2,,.k
(2 (a_/4) -
1, = (3) et KTT(v + k + D) (4=6)
in Zq. (A-5) and substituting in Eq. (A-4) with v = 5/6 yields
-5/6 7/6 5/6 17/6
~ (a/2) (a/2)"" " _ (a/2) (a/2) -
Kspgl®) = m [r(1/6> Y TG T TUaifey T Craie) e
Hence, from Eqs. (A-4) and (A-7) we obtain
= [1=-J(x)]
S /g X dx = 1.12 - 0.900a1/3 + 0.134% + ... (A-8)
0 (x" +a°)

Replacing the factor previously withheld yields the expression given
by Eq. (10).

o

[
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