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EQUATIONS OP ANISOTROPIC PLATE THEORY 

V. V. Ponyatovskiy 

N 

In this paper the method of [1] is used to construct a theory of 

anisotrop*.c  plates. It is assumed that the plate is elastically 

uniform through its thickness and has at every point a plane of elas- 

tic symmetry parallel, to the median plane. As is known, in this case 

the problem of the stresses in the plate breaks down into two indepen- 

dent problems which are symmetric and antisymmetric with respect to 

the median plane, respectively. 

The equations of the bending problem for transversely Isotropie 

plates are examined in detail. In this case, the stress state is 

represented as the sum of two qualitatively different stress states: 

"rotational" and "potential" [2]. 

To solve the bending problem we use asymptotic Integration of 

differential equations with a small parameter in the derivatives 

[3,4]. 

§ 1. Three-dimensional Problem Formulation. 

Basic Relations 

1. We refer the plate median plane to the arbitrary curvilinear 

the metric tensor of the median 
1  2 coordinates x , x  and denote by g 

plane in these coordinates. Let z be the distance of any point of 

FTD-HC-23-361-69 



the plate to the median plane,so that 

— k<z<h, 

where 2h Is the plate thickness, which we will consider constant. 
We denote the components of the stress tensor and the deformations 

9. zz by o 06 aZ 
Z a  * o = 0  = a and e „ e aß,  aZ 

s e a   "o'"zz ap,  aZ   a' "zz 
respectively. Here and in the following the Greek indices of a tensor 
symbol take the values 1, 2. 

We assume that the material from which the plate is made obeys 
the generalized Hocke*s law and at every point has a plane of elastic 
symmetry parallel to the median plane.  In this case the Hooke's 
law formulas are written as 

(1.1) 

are the deformation coefficients. In where a . , a fl, a, b „   oßirp'  aß*  "   aß 
1  2 

the plane x , x a a      is a tensor which is symmetric relative to *    aßirp " 

both the first and last two indices and also their pairs: a _ and b 0 
* '     aß     aß 

are symmetric tensors and a is a scalar. In the following we assume 
that the deformation coefficients are independent of z. 

In the absence of mass forces, the equilibrium equations have 
the form 

V+TF=0' V.«^+£=0, 
(1.2) 

where 7    is the symbol of covariant differentiation in the a 
metric established in the median plane. The static boundary conditions 

*u*»-o, •u**-HiL- (i-3) 

will be given at the boundaries of the plate surfaces z = ±h, where 
q s q (x , x ) gives the lead on the surfaces z  ■ ±h, which is 
symmetric relative to the median plane, while p = p (x , x') gives the 
antisymmetric load. 

!* 
PTD-HC-23-36I-69 0 



2. We represent the plate stresses a . in the form of Legendre 

polynomial series in the variable x, ■ r , and retain in these series 

a finite number of terms 

A- (14) 

The expansion coefficients, which in the following we will call k-th 

order "moments", are unknown functions of a point of the plate median 

plane. 

Substituting (1-4) into the equilibrium equation (1.2) and 

integrating the resulting equations with respect to z with account 

for the boundary conditions (1«3)> we obtain the expressions for 

the remaining stresses 

and the equations 

»-0 

v,«Ä-o. Tr^^+'"a 

(1.5) 

(1-6) 

In (1.5) we have used the notations 

%=V.T»)=V.V?<»S,. * = 2, 3, .... yV, (i„7) 
^,=0, *=0. I. 

rt ft 
Moreover, here and below we shall consider that a  = Q for k < 0 

and k > N. ^ 

3. We note that, by virtue of the orthogonality of the Legendre 

polynomials, the zero and first order "moments" a g »° o  are pro- 

Dortional to tne conventional forces and moments T .., M „ 

FTD-HC-23-361-69 
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U={9^dz=2hq, Af^= f «»„«fear 
-» -» 

3 ■»• 

00 

(1.8) 

However, "moments" of higher order a  ,  (k> 1) define stresses which 
op 

are self-equilibrating through the plate thickness, 

Similarly, 

"&> = *» "{ft 

is proportional to the shearing force N 

• 
AT. = (\<fc =-£.<•>, 

(1-9) 

(1.10) 

(k) while o ' (k fi  1) defines the self-equilibrating tangential stresses. 

We see from (1.8), I-IO) that  (1-9) and (1*6) are simply the uuual 

plate equilibrium equations in terms of forces and moments. 

S 2. Application of the Castigliano Principle 

to the Derivation of Plate Theory Equations 

1. We introduce the plate deformation potential energy 

f*»fiif«--if* 

(2.1) 

where the double integral is taken over the entire median plane of 

the plate. 

Substituting (1.1), (1-4), (1-5) into (2-1) and integrating 

with respect to z we obc,3in 

PTD-HC-23-361-69 5 



- '■*mat»?!&t**uuwm 

**««« n—* ff V r «*«a^-*)'M  
JJ ^l(tt-*)(tt-*MÄ-*)(*k-i)(a»+i) 

(U-5)(tt- J)(24- 1)(24 + l)<24 + 3)  "*" 

Vt^i «»»«■S»*» ^*«(aW «& + *&«(>)) 1      »+l     ^(2»-l)(»+l)(2» + 3)     (2*-l)(2* + l)(2* + 3)^ 
6>4<"(»>ci» 2»« ft, «L5&»&3 

*" C2*-3)(.!*-l)ti»+l)(2» + 3)(2* + 5)     (2»+ 1) (2*+ 3) (24+ 5) r 

+ ** «.* K»»»«(2)+ad+») »i») 
<24+l)l24 + 3)(24 + S) 
 W «'(»♦»)*») , 

(2*-I) 134+1) (2*+ 3) (2*+ 5) (2*+ 7)1" 
+. *«^*«rtH  1 \r-edxx rfjef . T (2* + I) 124 + 3) (2* T S) (2* + 7) (2*+9) J' *"* a^T 

(2.2) 

The energy expression is written so that, to obtain its variation 

OH, we must in each term of the integrands place the variation sign 

6 in front of the last cofactor and then double the first Integral. 

Let us minimize the expression for the potential energy with 

the aid of the equilibrium equations (1-6), which play the role of 

auxiliary conditions.  In order to take these auxiliary conditions 

into account, we use the Lagrange multiplier method. We multiply 

(1.6) by 2hu and w, respectively, and substitute the results into 

the integrand of (2.2). We obtain the functional 

/-n+JJ[tfv^ + (»?.v,.fl+,).]i^*w.       (2.3) 

The Lagrange multipliers u are the covariant components of the 

characteristic tangential displacement and v  is the characteristic 

deflection [5].  In classical thin plate theory U-^u^ w are the 

components of the displacement vector of a point; of the median plane. 

N 

For convenience in writing the subsequent formulas, we introduce 

the notations: 

FTD-H'C-23-361-69 



%**#!'«HF; ^»Ä°: ^«■a—"fr:^»-^. *>* 
«AM « • 

^*-<i*-«ciiC?l)8*+i)+(i*-i)(j/Tn; 
qpjj (*=1, 2;.... iV); 

jf<j»i 
%FF«' 

«Na«, ia 

<*«2,3... Af); 

(2L4) 

With, the aid of these notations the variation of functional (2.3) 

may be written as 

*/a.M2jJ(<^+«wV.V,*^+*V-W''*<
b,*A 

(2-5) 

Equating &I to zero, after the usual transformations we obtain the 

following variational equation: 

.V 

SJf[^-T(^«?,+v.«n+^«tt,J«-jp,^rf«i^+ 

(2.6) 

PTD-HC-23-36I-69 



TWMiij» nmxwMwam 

Here n , n are the covariant and contravariant components of the 

vector of the unit outward normal to the contour of the region 

occupied by the plate median plane; s , sa are the components o." the 

unit tangential vector, whose direction coincides with the direction 

of integration along the region boundary; ds is the contour length 

element. 

Varlational equation (2.6) leads to the differential equations 

(compatability equations) 

and the homogeneous geometric boundary conditions 

The corresponding static boundary conditions are 

«&*.«>=t«2?. 0&*.*>=a& afo*.=0?*- 

(2.7; 

(2.8) 

(2-9) 

By virtue of the assumption of elastic symmetry, the stress state 

of the plate may be considered as the sum of two stress states, one 

of which is symmetric, while the other is antisymmetric with respect 

to the median plane. Correspondingly, we have two independent 

problems: stretching and bending of the plate, for which the equations 

and boundary conditions are obtained from the problems presented 

above for even and odd k, respectively. 

2. The compatibility equations (2-7) may be derived by inte- 

grating the Hooke's law equations with respect to z after first 

writing them in the form: 

(2.10) 

1 where (v,v0,v)   is the displacement vector of an arbitrary point of 

the plate. 

Displacements va and v can be determined if we integrate the 

first two equations (2.10) with respect to z, after first substituting 

FTD-HC-23-36I-69 8 
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Into them the expressions (1.4) and (1.5) for the stresses. Substi- 

tuting the displacements v thus found Into the third equation and 
expanding the left side into a series in Legendre polynomials, we 
obtain equations of the form (2.7). The variational method has the 
advantage that it permits obtaining simultaneously the natural 

geometric boundary conditions. 

I 3* Bending Equations for a Homogeneous 
Transversely Isotropie Pj.ate. 

1. Consider a transversely Isotropie homogeneous plate whose 
plane of isotropy coincides with the median plane. Let E be Young's 
modulus for the directions in the plane of isotropy; E„ is Young's 
modulus for the directions perpendicular to the plane of isotropy; 
v is Poisson's ratio, characterizing the contraction in the plane 
of Isotropy for stretch in this same plane; v is Poisson's ratio 
characterizing the contraction in the plane of isotropy for stretch 
In the direction perpendicular to this plane; G is the shear modulus 
for planes normal to the isotropy plane. 

m 

The deformation coefficient tensor has the form 

*«"Tff** *~T,- (3.1) 

We rewrite the equilibrium equations (1.6) for the case of 
plate bending and the compatibility equations (2.7)» substituting 
therein the deformation coefficients from (3.1) 

 =j—a—l+-j-v.v,»—TJ" ,Tf(Vr+W')+ 

e »T.T»««^) 
Ta' (tt-t)(2*-J)(i*-i)(4*-i)(i»+l) ~ 

B   ■ *»?.*> «»-a 
MT  (M-5)(»-3)(»-l)(2*+l)CS» + 3) ~ 

~~Ta       (tt-3)(2*-t)(2*+l)  
h30'(2*-3)(»-l)(2«+l)T 

T   '   5+1       h'f7' (l*-i)(2»-fi)(2* + 3) ~ 

(.Continued on following page) 
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(Continued from preceding   page) 

"»"If <»-3)(»-i)(i*V*)a*+»>(4*+i| + 

i g. £fe&2^dk3   5 £ato&a±aad 

-ir <tt-D(ii-f-j)(i»+r)(a+s)(ik-i-j) t' 

AO- 

(3-2) 

The geometric boundary conditions (2«8) for the transversely 

isotropic plate take the form: 

JA» 
Wffl' *<■-■»*«■-■}•■£*'-«. 

»=0. 

Ti(S*-4)ca*-»(»+i)(2*+3)(2*+5) • a«« + 

+ (ll1inj^3>WT1)fe%
2B>-48?+,,-*)+ ' 

-S,<U-b(24 + i>(M+i)(U + &)(^H-7) "Tp -«•— 

"»+*} 
"7:,<2*+l)<2* + S)(2* + 5)(2* + 7)(2*i-9) ' "l?"""* 

Ig  ^»l     _   , -*,(ik~S)(i»-i)(ü+l) '^r«"=0  (•'-*•), 

(*=3, 5. .... JV). 

(3.2X) 

(Continued on following page) 
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(Continued from preceding,  page) 

(a-i)(a-3)r*-i)(»+mwrJ) 

(3.2l) 

The symbol (na * s°) indicates that the relation obtained from 
the given expression by replacement of n by s holds. 

2. Let us introduce the stress functions. To do this, we 
(v) (k)  (k) 

divide the vector a      into potential and rotational parts t  , TO 

such that 

*>=*>+*?>  (* = 1.3 N). 
(3-3) 

The latter may be expressed in terms of the scalar functions *(b.\;u(ir) 
by the formulas 

«?>=*.•«. «."=•?. *»•*>  (*= I. 3 N), 

a 
where e  Is the mixed form of the discriminant tensor e - [<"] 

. a otp 

Prom (3-3), (3.1*) we have (A * goß 7 7.) 
a   P 

?.*>+**»-2w. V,«w+*.(.«, ?.«.<»,+»'. 7,-w>. 
V.«fo=&»W      (* = 1. 3, .... AO. 

(3-4) 

(3-5) 

(3-6) 

Substituting (3-6) into  (3-2),we obtain 

FTD-H023- 361-69 11 



!f>m*+ß**o, 

£    *• £   «9: 

£ "   **r. MV-a  
^*7B_^(tt-j)(ik-i)(ii_i)(»+n ~ 

+ ^F+I +r,     (4»~i)dit+i)(J»+s) 
£ >»*»%i    ■   , 

, £ ; *»T«V»*»W , 

B ^f^fy^im-D       , 
T (tt-i)*k+l)ö*+^(i»+i)(4*+»i + 

• £  **y»f»**J»-Mi  

"£y2rfrWw-£7<ak-S)G*lifiw+i> <*=3'6- ■'••«** 

(k) where t.*7* denotes the symmetric tensor 
op 

<5L £*»   T.('i?.y>| +«?.?>»(>-») 

*<T 

£F+l=~*(i+*)<S—<Ji~S)(Si-i)(4k+i) + 

£*  nfaT.»^»»-!-'r«y(>+g) tk_.  ,  ^ 

(k) We require that the tensor T   satisfy the equation 

Then in accordance with (3-8) 

3<l+*)tftf*-3)<ä*-i)(i*+i> +TF+T 

—0+»iö<5*-i)(4»+i)(J»+i)^ 
»£'?.?» *»»+!)       —ft 

(3-7) 

(3-8) 

(3-9) 

FTD-HC-23-361-69 12 



We convolve the left side of this equality with respect to a with 

the tensor e"°. Considering that 
ff 

ve integrate the resulting equalities and drop the nonessential 

abritrary constant. We obtain the following equations for determining 

the functions u,^ 

!<l+.)fl<»-Wä?--l>c**+0 +Ä™ 
0+^*(4»-i)ö*+i)(4»+3) + 

• /aß Am. 

(3-10) 

Ve further take 

ThuB, from (3-3), (3-1») we have 

Moreover, by virtue of (3-8) 

'w 

<«*« a». 

(3.11) 

(3.12) 

(3-13) 

It follows from (3.11) and (3-13) that (3.7) may be considered as 
(k) 

the equations which determine the tensors tQß • 

(k) 
Thus we have a representation of the tensor a . as the sum of 

.00 .00 two independent tensors T*J; and t^J;. The former is defined by 

(3.8), in which the scalar functions u,k^  must satisfy (3-10), and 

is characterized by the fact that t°(k) = 0 and the vector y*k) 

are solenoidal. The second tensor t*J' is characterized only by the 

property that its divergence ^t^ is a potential vector. 

Y.e  shall designate the stress states corresponding to the 

tensors T
(
I
}
 and Jk) as "rotational" and "potential" [2]. 

OP OP 

PTD-HC-23-361-69 13 



We express the "moments" t g of the "potential" stress state 

in terms of the stress functions */kx and the deflection function w, 

and we derive the differential equations for determining these 

functions. For simplicity, we set p ■ 0 and denote (3*7) briefly 

as 
Mm=0, L$=0      (*=1, 3,..., N) (3-14) 

(L . is a symmetric tensor)« 
aß 

We form the equalities ^f^tk)  s ° and integrate them, discarding 
the nonessential arbitrary constant. We obtain the equations 

^•to-Hw+f^+wfi-Tfr)4*»-* 
¥1M ]|=4L 

Tt- <a-Wi*-SKtt-i>(4*-l>(2*+i) 
4ft«AA*, <*-»> 

~"e7(»-»)(»-3)i2*-i)<»+i)(2*+3) 

£r*(»-l)(»-l)(ak+15"T" Ö ■3r-3)(2*-l)(2»+l)"t" 

WM. 
+V<*»-l)<ä+i)(l*+S>--3"(l*-»)<l* + i)(J*+3) + 

T-^- (»-3)(24-l)(2»+l)(» + 3)(2» + 5)T" 

T"7T'(»+!)(3» + 3)(2ft + 5) T,'   (I* + l)(2» + 3)(J* + 5) 
U«AM>, 

"5' <2»-i)(»+l)(2» + 3)(4ft + 5)(Z» + ?) + 
. e *«^»^ n 
f£7" (»+l)(3» + 3)(»-»-5)Ca* + 7)(» + 9) -U 

(*=3, 5, ..../V). 

(3-15) 

Subtracting from these equations the equalities L"(k) = 0 we obtain 

?T (i»-4)(4»-i;(2*i.i)+iT+T^*)--2* + i— 

^ ^-i)(»+l)(I* + 3)-r"£7(3*+|)(2* + 3)(2*-r5)' 
/ (*=1, 3, .... N). (3-16) 

Excluding t ott) 
= o „ x from (3^15) with the aid of these relations, 

we obtain the following system of equations for finding the functions 

FTD-H'C-23-361-69 
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T5V ~£i)Tii-W4u£<a-1rtL-i)<ai+i> - 

-(■5— 9,«<!+*>^l*-.tK8*+'l)(ik+i)+ 

(**3, 5 Af—2); 

(3.17r) 

(3-172) 

For k - N, the following term is added to the left side of (3-172) 

(W 
To obtain the formulas expressing the moments t^> in terms of 

the scalar functions w and #(k), we must exclude t"   from (3,7) 
with the aid of (3«l6). We obtain the formulas «00 

(3-l81) 

+(4 -*.Ö+')#)»i-feüi2a_ 

v       /£«/(»-i)(aÄ+i)(2*+3) + 

(3.182) 

(Continued on following page) 
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(Continued from preceding   page) 

J. B m It I rt     ™W££l2&       I 

"ZV-i; ') (l*-i)(4»-i)(J*+i)cä+4)(4«^5) 

(3-l82) 

£, «*  »    '(2A+l)(» + 3)(2A + 6) 

. .* f,     *r^\ »v.v»^»^) t i"5\,""1, *' (i*+i)<5*+3)(i»+5)<2* + 7>(2*-9) 
(*=3, 5 AT—2); 

For k * N, the following terra is added to the left side of (3-l82) 

XT,**) (W+\t&i+mfT+fv 

Reissner's plate theory equations [7, 8] are obtained from the 

relations obtained in this section for N » 1. Therefore, the present 

theory may be considered to be a generalization of Reissner's theory. 

The plate bending theory equations, which are obtained from the 

relations above for N ■ 3» include all the correction terms for 

classical theory which were obtained in [9, 10] and also include some 

others which permit the establishment of more general boundary con- 

ditions than those of [9, 10]. 

§ k.    Asymptotic Integration of the Bending 

Equations for Transversely Isotropie 

Plates 

1. We can use the method of asymptotic integration of differen- 

tail equations with a small parameter in the derivatives [3, ^] to 

solve the problem of transversely Isotropie plate bending. 

FTD-HC-23-361-69 16 
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We take as the small parameter the plate half-thickness h, 
considering it a small quantity in comparison with the characteristic 
linear dimension a of the plate median plane. 

Hereafter, it is assumed everywhere that the problem parameters 
and the desired solution are sufficiently smooth point functions of 
the plate median plane. 

The integrals of (3*2) which are not rapidly varying (regular 
part of the asymptotic solution) are sought with the aid of the 
usual small parameter method. Namely, setting 

.■—t-e+£+...) 
(4.1) 

and sua&tituting (4-1) into (3-2), we require that the coefficients 
of like powers of h be the same in the left and right sides. Then we 

(s) (s) ..   , . .     Mk) „  a recursive sequence of sets of obtain for determining  a  ', w 
cp 

equations, each of which is equivalent to a single biharmonic equation 
(s) 

for the function    w. 

The equations for the first three approximations follow 

%*0   (*>l)fc 

Wf,-r^f=0, 
mm m (1 +,)3jJ- *#nro+£v.V,w=0; (4.20) 

=0  (*>1), 

(4.2X) 

where1 
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 (*>3). 

(4.2J 

2. The integrals (4.1), (4-2) can be subjected to only two 

boundary conditions at ehe edge of the plate. In order to obtain a 

sufficiently broad class of solutions which permit satisfying all 

the boundary conditions at the plate edge, we must Introduce into 

consideration integrals of the homogeneous equation (3»2) of the boun- 

dary layer type [3L These Integrals, differing markedly from zero 

only near the boundary r of the plate median plane, disappear rapidly 

with increasing distance from the boundary into the depth of the 

region. For their construction we use a small parameter method which 

is based on a different expansion of the differential operators in 

powers of the small parameter h than that used in § 3; this decomposi- 

tion holds only in a small vicinity of the boundary r [3L 

In order to obtain this decomposition,we introduce in the vicinity 

of the boundary r of the region occupied by the plate median plane,a 
1      2 local orthogonal coordinate system x ■ r, x = s. Here r is the 

distance measured from points of the curve r along the inward normal, 

and s is the arc length of the contour r, whose direction is taken 

opposite that of the unit tangent vector s  (see (2-6), (2.8), (2-9)). 

We denote by R = R(s) the radius of curvature of the curve r 

and consider it positive at points of convexity and negative at points 

of concavity of the region occupied by the plate median plane. 

FTD-HC-23-36.1-69 
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We write out the expressions for the components of the metric 

and discriminant tensors and the second-order Christoffel symbols 

r^  in the local coordinate system which we have introduced 

fu»l. im—0, *»=(l -y)\ 

"l*~^r'"=r''-=ri.=a 
(1-3) 

«ui £Z£.";~obtain the foii°"ing •«—-*-«-««.»»■ 
a 0 

,v.ft-S^.?.-w+r7rL7Tw. 

(«•«) 

(4.5) 

and the expression for the Laplace operator 

The coefficients in (4.4), (4.5) may be expanded in the vicinity of the 

boundary into series in powers of r. Performing this operation and 

changing the independent variable r by means of the formula 

r=kt. <*•« 

we obtain the following decompositions for the differential operations 
(4.4), (4.5) in powers of h: 

*ViVi=jp, 
4,*.'.-*£+fl+ 

(4.7) 
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Using the last formula (4-7) we can obtain the decomposition of the 

biharmonic operator in powers of h 

afetwyr-JJTJF+ (4.8) 

3. We construct the boundary layer type integrals by starting 

from the equations which the functions &>/.» and ♦ ,.* must satisfy. 

We first turn to the equations (3-10) for determining the functions 

u^x and construct the rotational boundary layer. 

Let D ■ || d4. || be a diagonal matrix and A ■ llä-iirl a 

symmetric codlagonal matrix 

du=jT^T. du-0. i + KL *=1. 2. 3,-..., *^-=Mr 

 a        1 
«H=C4,_J^_i)(4l + r)' a"+«--  (4*-l)<*+l)(4/+3)' 

o«+»=0.  *>1. 

(4-9) 

Then(3-10) may be written as 

(*>-I<ITV)-=
0

' 

where u denotes the vector 

■o v "»• ■V0 )• 

(4-10) 

(4-11) 

If in (4.10) we expand the Laplace operator in powers of h in accor- 

dance with (4-7) and use the small parameter method, setting 

(4.12) 

(a — is an as-yet-undefined integer) we obtain a recursive system 

of ordinary linear differential equations with constant coefficients. 

It is required of the solutions of these equations that they have the 

boundary layer nature, i.e.., they approach zero together with their 

derivatives as t-*•+».  Therefore, to construct these solutions,we use 

the fundamental solutions of the homogeneous equations, which 

correspond to negative roots of the characteristic equation, and the 

particular solutions (of the boundary layer type) of the inhomogeneous 

FTD-H'C-23-361-69 
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equations, which can be constructed by the method of undetermined 

coefficients [3]. 

Thus, in the s-th approximation (> > 0, 1, 2, ...} «e obtain 

where 

■JjR+JJ wit* (- )/^Fvl, 

are positive roots, of the equation 

|D—XM|a=0; 

(4-13) 

(4.14) 

(4.15) 
(a) 
Q^    is a nonzero vector satisfying the equation 

and, finally,  C,(t) is a vector whose components are polynomials 

in t of order no higher than s. 

sions of h T *~' and T 

After finding w,we can use (3-8), (3*9) to obtain the expan- 

' and x in powers of h. After some transformat!or op      a 
using (4-16), we have (only the first terms of these expansions are 

written out below) 

*««?. *ff 4W- 

v«?«* «ID- 

'^Jfr.4* 4f0- 

(4.17) 

#-1 

*»tf\*?> tr= 

1-1 
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4. Turning to the construction of the boundary layer type 
integrals of the potential stress state, we note that Au ■ 0 implies 
u ■ 0, since this equation does not contain the small parameter h 
and its boundary layer is equal to zero. Therefore, from (3*14) and 
(3'17-,) we have for the boundary layers */,x and w 

•«..=0. •=*(^-4)**. (4-18) 

where */?\  is a boundary layer type function which will be defined 
i (3-18,) we have later. Prom (4-18) and (3-18^ we have 

(4.19) 

Now we turn to (3-17?) and using matrix symbolization rewrite 
it in the form of the single equation 

[<l-.*)/0-(S~*k<l+*)£)**M + 
(4.20) 

where 

•-<•». % ♦»*>>: (4-21) 

A and D are the matrices (4-9) introduced previously; I is a diagonal 
matrix of M-th order, all elements of which on the principal diagonal 
equal unity except for the first, which equals zero; B ■ || b., || 
is a symmetric matrix of (M - l)st order whose elements are the numbers 

i 6  

«•-(4<-6)(4<_3)(4/-t)(4/+l)(4/ + 3)  (i = 2' 3 M—l), 
A 6 
** " ('•*"- *) (W-1) (M + i) (JA/+3) fai +1T + 
+ B7^(1~^v')'(iiV+i).(Jyv'+3).(^ + 5)'  <422> 
-+,==_t«-3)t4/-l)(4/H)(41 + 3>(4(>i) • 

"+' = («' - I)(4i + I)(4i + 3) (4/ + 5) (47+7)" • 
*«+*=<>, *>2 (/ = 2, 3 M). 

(4-22) 
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The boundary layer type integral of (4.20) is constructed just 
as the Integral of (1.10) was constructed above. With the aid of 
the expansions (4-7)» (4-8),the operator in the left side of (4.20) is 
expanded in powers of h, after which the following series 

•«4»(5+Ä+*«+...) (4.23) 

(b is an integer) is substituted into (4*20),and the coefficients of 
all powers of h are equated to zero. We than obtain a recursive 
sequence of linear ordinary differential equations with constant 
coefficients whose solutions of the boundary layer type have the form 

= JJ (ft+&(<)) exp(-ft/). 

8W= - (4'24) 

<♦ 

where 
(s) 
♦± exp ( ,t) are the boundary layer type solutions of the 

homogeneous equations; D^(t) exp ( _^t) m  partlcular solutions of 

the boundary layer type of the corresponding lnhomogeneous equations; 
are the roots of the characteristic equation 

(4-25) 

(s) 
having negative real parts, and $. is a nonzero vector satisfying 
the equation 

*M-N)»|*0. (1-26) 

On the basis of the positive definiteness of the plate potential 
energy,we can show that the characteristic equation (4*25) has N - 1 
roots with negative real parts. 

Substituting the value "ound for * into (4-18), (4.19) and 
(3il82), (3.4), we obtain expansions in powers of h of all the quanti- 
ties characterizing the boundary layer type potential stress state 
(only terms with the lowest power of h are shown in the following 
formulas) 
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,=^l(!d^l>_^>eSp(-^+... 
i-i 

M-t. 

l-l r 
Jf-l 

■«   IST ^~»"2i "ar ft «P(— ft*)+• •• 

*-ir%52iSf««p(-no+.-..' 

*i«W\<K...,*H- 

~*^' /§ ft**8**""*"+• •. 

I-I 

f..-wf. #..... <n 
»-I. 

■***]§ ft«p<-ftO+... 

*-i 

. 

(4-27) 

(0) 
where (3) (0) 

is the first component of the vector <j>. 

5- The boundary layer type integrals are defined in a quite 

small vicinity of r, but by using the boundary layer decay property 

they may be extended into the entire plate median plane region with 

only small errors being introduced. 
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At the boundary r (for t » 0),the rotational boundary layer 
N + 1 

has M » —^— degrees of freedom (equal to the number of positive 

roots of the characteristic equation (4.15)),while the potential 

boundary layer has N - 1 degrees of freedom (equal to the number of 

roots with negative real part of the characteristic equation (4.25)). 

Thus»it is easy to see that the integrals of the regular part of the 

asymptotic solution together with the integrals of the boundary 

layer type will have sufficient disposable constants of integration 

to satisfy all the problem boundary conditions. 

The disposable constants of Integration are determined 

sequentially at each stage of all three iteration processes with the 

aid of the procedure for superposing boundary conditions [4]. The 

regular part" of the asymptotic solution and the boundai'y layers are 

substituted into the problem boundary conditions and then the integers 

a and b (which appear in (4 .12), (4.23)) are selected in a suitable 

fashion. After this, in each of the resulting equalities,we equate 

terms with the same powers of h in the left and right sides. Prom 

the relations thus obtained,we can determine sequentially the 

constants of integration in (4.13) and (4«24) and establish the 

boundary conditions for the inegrals of (4-2). 

We shall consider some boundary condition cases as examples. 

a) Static Boundary Conditions 

Let us assume that the right sides of the static boundary 

conditions (2.9) may be expanded into series in powers of the small 

parameter h as follows 

*-**&+*&+...). (j|.28) 
£-^$ + 8» + ..)   (*=1. 3 /V). 
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The corresponding expansions of the boundary forces and moments 

(as we see from (1.10), (1-8)) begin with the zero power of h. 

Substituting (4.28) into the right sides of (2-9) and expres- 

sing the left sides in accordance with (4-1), (4.2), (4-17), (4.27), 

in terms of the regular terms and the boundary layer, we obtain 

1z}m 

«*f (0) fll 

/»       » i «f    at 

(4-29) 

f,2> ■   » \ .        '        *     MM 

.V-l M) 

1,1    2JS  *+•••=*  1'» + *»« + ..,) 

The last three relations represent the boundary conditions in matrix 

form and utilize notations similar to the following 

-(% >    » 
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It is not difficult to 3ee that the integers a and b should be 

selected so that 

0 = k-:-2 

(for other values of a and b the resulting system of boundary relations 

will either be inconsistent or %   and  *  vanish entirely). 

Equating coefficients on the left and right of like powers of h in 

the third and sixth equation (4.29)»we obtain a sequence of boundary 

relations from which a), are fully defined. In the zero approximation 

these will be the equations 

iBK-ftj-Sifcy. 
a 2 m    m 

i-i 

(4-30) 

Similarly, the fourth and fifth equations (4«-29) define the sequency 

of boundary relations from which 9l. are found. In the zero approxi- 

•natlon these will be the equations 

<-i    *-i 

TJhe first two equations (.4-29) define the boundary conditions 

for the biharmonic problems (4*2).  In the zero approximation,we 

obtain the relations 

**+$£-*. 
which in view of the first equation (4-30) coincide with the Kirchhoff 

static boundary conditions. 
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Outside some vicinity of the boundary r the plate Btress state 

is defined by the regular part of the asymptotic solution, since the 

boundary layer within the region is infinitely small in comparison 

with any power of h. In the immediate vicinity of the boundary, as 

we see from (4-17), (4 «27), the boundary layer stresses«,* *» &* t»  '«. 

have the same order, while the stresses T2 and t1 are of lower order 

by one (relative to h) than the basic stress state defined hy the 

'regular part of the asymptotic solution.  This implies that the 

stresses (.1.5^tangential and normal to the median plane,which are 

neglected in classical plate theory, are quantities of the same 

order as the tangential stresses (1*4)« Therefore,the error of the 

Kirchhoff hypothesis near the boundary may be arbitrarily large for 

sufficiently small h. A similar result was obtained in [2] on the 

basis of Lur'ye's symbolical method. 

Let us further assume that  «jJI^O, and a o£» and «*'»  are^. 

conneeted by the relation 

I.e., the system of edge restraints is statically equivalent to zero 

on any small segment of the edge. Then in the zero approximation the 

principal stress state disappears,and only the boundary layer remains. 

However, in the first approximation the principal stress state will 

still be, generally speaking, nonzero. Thus,the stress state due to 

the system of edge loads, which are statically equivalent to zero 

on any small segment of the edge, encompasses the entire plate region. 

This contradicts the Saint Venant principle in the classical formula- 

tion,but corresponds to the Mises modification of this principle, in 

accordance with which the Saint Venant principle must be related not 

with the stress decay at infinity but with the relative order at 

infinity of the stresses due to the various systems of loads acting 

on a small segment of the body boundary [11, 12]. 
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b) Completely Clamped Edge 

In this case,we set a ■ -1, b « -2. Omitting the detailed 

arguments, we write the zero approximation boundary conditions 

-*('-^)§^+a-^)§.-A%<>. 

ys^|;vUs;)-|M#^-/Ut). 

*V P«  *•     w. \ f«*».       \ ■••■■I*«». •»«» ••• t «•w/ = l».«(i), 0,... , 0;. 

The first four equations are used to determine the constants 
W  Ml 

of integration in flt Q    • The boundary conditions of the biharmonic 

problem are the same as in classical plate theory. 

Near the boundary,the tangential and normal stresses (1-5) are 

of the same order (relative to h) as the stresses (1.4). However, their 

numerical values may be small since they depend on the factor v . 

c) Freely Supported Edge 

Here two versions are possible: 1) the stresses a        o 

*nd normal deflection u- equal zero and 2) a      = 0, u= 0 and 

the displacement u tangential to the boundary oi' the median plane 

equals zero. 
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In the first version,we set a ■ b ■ 2, in the seconi a ■ -1, 
b - -2. The basic stress state in the zero approximatijn is determined 

from classical place bending theory. The boundary layer stresses are 

of the same order (in terms of h) as the basic stress state. Just 

as in the clamped case, the numerical values of the potential boundary 

layer stresses may be large by virtue of the fact that they depend 

on the factor v . 

6.  The linear ordinary differential equations, to the solution 

of which the boundary layer construction reduces, and their boundary 

conditions are independent of plate geometry,and therefore may be 

integrated once and for all. For practical computation purposes,these 

equations need only be solved for small N, since the boundary layers 

«*#>. *»*» decay rapidly for large k,and their effect on the basic 

stress state diminishes rapidly, although in the sense of asymptotic 

behavior they are of the same order. 

The study of plate bending problems with various support 

conditions (clamped, free ) shows that the effect of the potential 

boundary layer on the basic stress state in the first and second 

approximations is expressed (by means of the Poisson ratio v ) in 

accounting for the deformations of the transverse fibers in determi- 

ning the deformations of the fibers parallel to the median plane. 

Therefore, accounting for the potential boundary layer introduces 'into 

the first and second approximations of the basic stress state only 

slight corrections, which vanish entirely if Poisson's ratio v 

vanishes. For example, for a circular plate of radius a which is 

clamped along the edge and loaded by the uniforr. pressure p, in the 

first approximation,we have for the deflection function (r is the 

distance fron the center of the circle) 

I-»» Ws=-gir-T$l(r'-'*t) l(r*-a*) + aAC], 

where C is a constant. The second term in the square brackets is 

the correction to classical theory which appears as a result of 

accounting for the potential boundary layer. For an Isotropie plate 
v=0,3; C«0.05. 
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The corrections to the basic stress state introduced by the 

rotational boundary layer are more significant and in certain cases 

they should be considered. The integrals (M-13) of (*».i0), subject 

to the corresponding boundary conditions, show good internal 

convergence with increase of N. Therefore»Reissner's plate theory, 

which includes the first equation (3-10), may be applied successfully 

for determining the first correction to the basic stress state given 

by classical theory. A similar conclusion concerning Reissner's 

theory is presented in [13], in which the problem of a strip clamped 

along the edges is examined with account for edge effects. 

We note that with increase of the ratio E/G the boundary 

layer decays more slowly and its effect on the basic stress state 

increases. Therefore,ignoring the edge effects may lead to 

considerable error for strongly anisotropic plates, for which the 

ratio E/G is large. 
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SOME QUESTIONS OP UNCOUPLING AND 
DISCRETIZATION OP SHELL THEORY EQUATIONS 

L.A. Rosin 

In plate and shell theory,it is of interest to construct problem 

solution methods which can be ascribed definite physical relevance. 

This Is because physical considerations are often useful In construct- 

ing computational algorithms. Moreover, this approach makes possible 

a more profound and simpler analysis of the various assumptions and 

simplifications. 

Some techniques were indicated in[l, 2] for decoupling the 

operators of the differential equations of shell theory and these 

techniques were used to construct solution schemes having definite 

physical relevance. In particular,It was possible to reduce the 

problem to the calculation of a crossed bar system. It was found 

that this sort of system Is not a crossed bar system in the usual 

sense. Its individual bars do not bend relative to the normal to 

the shell middle surface. Ti eir twist takes place with a rigidity 

proportional to the moment of inertia, additional forces and moments 

acting on the bars appear, the calculation result does not depenJ 

on the relative width of the bars and so on. The resulting bar 

system differs in this aspect from the conventional crossed bar 

system. The latter sometimes appears inthose studies where an attempt 

Is made to construct computational schemes not on the basis of the 

fundamental mathematical formulation of the problem,but by means of 
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unconvincing and at times erroneous arguments based on "engineering" 

intuition. 

In the present paper,we develop the basic propositions presented 

in [1, 2]. The general equations of shell theory are transformed with 

the aid of a decoupling method. Here our objective is to transform 

the equations of shell theory so that they will be as similar as 

possible to the equations of crossed bar systems.  In the transforma- 

tion process,we clarify the degree to which this may be dene. We 

found that this technique makes it possible to transform the equations 

of shell theory to the equations for a four-layer crossed bar system. 

The two inner layers of this system do not differ, at least in prin- 

ciple, from the conventional crossed bar system, and in many problems 

they are the primary load-carrying portion of the shell. The outer 

layers arise as a result of the difference in principle between the 

equations of shell theory and those for the bar systems. However, 

even these layers may be treated in an arbitrary sense as bar systems, 

at least from the viewpoint of constructing computational algorithms. 

By a slight extension of the concept of the crossed bar system,we 

are able to account for the effect of Poisson's ratio comparatively 

simply. The familiar differences (different order of the equations) 

in the formulation of the boundary conditions for the considered bar 

systems and the equations of shell theory are indicated. 

The mathematical decoupling technique reduces the problem 

to the solution of a system of specific integral equations. Discre- 

tization of these equations onto a grid leads to the calculation of 

the crossed bar systems mentioned above. We can thus connect the 

questions of analysis of the bar system and solution of the integral 

equations of the decoupling method. On the one hand, we can use 

the analysis and approximate methods for solving integral equations 

and carry them over to the bar system. On the other hand, we can 

use the effective methods for calculating bar systems for approximate 

solution of the integral equations of the decoupling method. 
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In the following,we use tne notations of [3] without further 
explanation. 

1. By analogy with [1] we decouple the operators of the system 
of differential equations of equilibrium shell theory along the 
lines of principal curvature of the middle surface. Then,setting 
bl * Cl^82^ A2 and b2 * C2^S1^ Al wnere c1(

s
2)» 

C2^3i^ are arbitrary 

n*Ci* Mw Tm, M^ss/C^ip^, pn, pM, 

♦JS?. «6. «2. «B. *»>. 
r»+^.= -«a  (i=l,2.3,4). 

.    L*.(T». Mm, 7a», Mm) — 
«**(0, 0, 0. ft, «g, ft, *g>, «g)f 

functions, we have 

*M» 
'"•+TT ■ - *S  <*•!. 2. 3. 4). 

(1.1) 

(-'-.2) 

Here the internal forces (moments), the components of the external 
load p,, p2» p~ and the interaction functions [1] q,,q2,q,, m^, m„, 

mn, are multiplied by b., b2, respectively. This is denoted by the 
subscript b and by the superscripts 1, 2 for the interaction functions, 

The external load components Pi^Pp^n* ***  (-1.1) could also be par- 
tially applied to (1.2). The conventional differential operators 
appearing in (1.1), (1.2) have the form 

L*>* -H|+£(*-&j-*. 
(1.3) 

*«+* *u,(*i *i)=-*i+(~l)*^» ^ . 
*!-»»,, (*l *•)= - *I+(~ 1)*«.-». 

.*) = -*, + (-!)» *.-^- 
*<.,(*» *,) = *»-» (* = 1. 2). (1-4) 
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law, we set 

Using some elasticity relation,  for example the Balabukh-Novozhilov 

(1-5) 

where 7»»=aft«»;   ££,=£»*;   7t»=£*•»; 
AfS»=Z3Utk   (*=!. 2; /=2. 1); 

•i~»^**   •»=*£Vr   ♦,=£,•»+ h. 
(1-6) 

and 4.4h*i(l+jjgj)»£*.   £\»=D*(1-»)   (*=1, 2) 

(1.7) 

are the correspon- 

ding stiffnesses, multiplied by b, for k - 1 and bp for k ■ 2. We 

substitute (1-5) into (1*1), (1-2) and rewrite them as follows 

i*0& ri* ^». *W»**(A». /»*. A». «©, «ff. «3. 
-B. "40+**.(<>, o. o, /a>. /a», /a o. «g>); 

^(♦i, •* •* *.)=**,«), 0, 0, -/JJ), 
~7JI>. -/JJ, 0, -<>) (/=!, 2. 3. 4); 

^**.(°- o, o, «jj, <7g», «2. *& *4?) + 
+ ^(0,0,0,/ff,/g.,/2. ^J, 0); 

(1.8) 

(1-9) 

(1-10) 

=^(0, o. o. -rs, -fi$, -/2. -«& o) 
(/=!, 2, 3, 4), 

(1.11) 

where we have introduced the additional Interaction functions 

/i»./S'. /LV(*= I. 2X «8?, «ft». Here we have omitted the last equations (1-1), 

(1*2), which are not required in the following since the correspon- 

ding equation in shell theory is satisfied identically. Equations 

(1-8) — (1-11) transform to the differential equations of shell 

theory if we exclude the thirteen interaction functions introduced 

above 

FTD-HC-23-36I-69 36 



ft. ft, ft. ««. "». /ßV/tt'. /-»(*=». 2). «ff. 4?. 

We denote the operators which are formed in the left sides of 
(1*8), (l-lO), after converting therein to displacements and rotations 
using (1.6), as follows 

iy*.#;*«u (llt"1- 
(1.12) 

Then If we follow the idea of the decoupling method [1] and seek the 
Interaction functions on the basis of the requirement for equivalence 
CL.-8), (1:9), (1^10), (I'll) (where the left sides of (1.8), (1.10) 
are replaced-by (1.12))withthe basic equations of shell theory, then 
this requirement takes the foi*m of the conditions 

>=tff.*f»=wP, ti^-^4 "Hi 
!. 2; *=2. \y. 

■  £„__S^L..=^: 

ft*i 

-ffe 

Mft *i *»  n — » 

(1.13) 

(1-14) 

(1.15) 

«here (JL^l4), (.1-15) follows from (1.-6) and (1-7). In other words, 
far complete equivalence of the decoupled and original equations it 
Is necessary that the interaction functions be selected so that the 
conditions (1.13), (1-14), (1-15) are satisified. 

Here we have used the elasticity law in the Balabukh-Novozhilov 
form with the assumption Z»[l+—y—J«^ik, which is not essential and 
has been adopted only for convenience of exposition. Other elasticity 
laws may also be used, for example,that used in [4] and [8]. Then 
the following changes occur in (1.6), (1.7) 

Afk=*LtIf Af°M»-^t„ (1.16) 

,=^t.. >«-=?. §!v •,»Il.„ *, = £,<»,. 
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In (1.14), (1-15) tho last two equalities are replaced by 

•» — 'S» 
1Z~ 

£- 
TUT (1-17) 

y« ^i» 

N 

In the case of the Love elasticity law (1*6), (1*7) will become 

».=*A. T«=^",r«-, (1.18) 

Here the functions *», •« and  M« *« are already related. Then the 

four interaction functions In (1*9) are defined only by the three 

functions *. and consequently only three of them will be independent. 

Similar arguments apply to (1.11). As a result,the adopted decoupling 

of the governing equations,and the Love elasticity relation leads_Jto. 

eleven interaction functions in place of thirteen as in the case of the 

other elasticity laws. The number of conditions  (1-14), (1.15) also 

decreases to six.  In place of the last two conditions in (1.14) and 

(1-15)*we have one condition each of the form 

4. 
TZ' 

(1.19) 

2. Now we turn to the mechanical analysis of the solution of 

shell theory problems by the decoupling method on the basis of the 

decoupled equations and the conditions  (1-13)» (1-14), (1.15).  In 

the left sides of (.1-8), (.1-9), U-1Q), (1-11) there appear the 

operators L.   (z., . ...,Zj.) (k = 1, 2), which are the operators of 

the equilibrium equations of curvilinear bars of width b, and b- if 

the arguments z^  (i = 1, 2, 3, 4) are given the meaning, respectively, 

of normal force, bending mome'it, tangential force,and torsional 

moment in the bar. The axes of these bars coincide with the lines 

«„ = const and a, = const, and the unit vectors e?, e and e,, e 

coincide with the principal axes of inertia of their cross section 

(Figure 1). Here there are no bending moments relative to the unit 

vector g     and equilibrium of the moments about en   is satisfied by 
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figure i. 

virtue of the external distributed moments m*T (k ■ 1» 2)which, as 
ITD 

noted above, are not essential. 

Now let us turn to the operators L.  (k ■ 1, 2) in (1.8), (1.10) 
lsk 

The forces and moments here are connected with the deformations by 

(1-.-6). Conversion from forces (moments) to displacements (rotations) 

using (1^6) permits obtaining the operators (1.12). We see from 

(1-6) and (1-8), (1-10) that the difference between(l-12) and the 

conventional bar operators is that [1] bending of the bars takes 

place only relative to *,  or «, [2].   In the   a, ep plane 

there is only pure shear; moreover, the section form coefficient in 

shear equals unity [3]- Torsion takes place without bending relative 

to em       with stiffness proportional to the bar moment of Inertia 

[4]. The Poisson rsuio appears in the corresponding stiffnesses. 

Comparing these specific properties of the operators L,_  (k - 1, 2) isk 

with the properties of the conventional bar operators, we can write 

for the transformation L is, (k » 1, 2) the Maxwell-Mohr formulas of 

the following type 
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(2-1) 

where, respectively, k • 1, 2; t ■ 2, 1; n ■ 1, and In the case of 
the elasticity law of [4], [8] n ■ 2. Here quantities with sub- 

scripts i and j denote the forces (moments) from the action of which 

and corresponding to which we seek the generalized displacement values, 

Expression (2-1) follows from the fact that the connection between 

the forces (moments) and the deformations is taken in the form (1.6) 

or (l«l6). In fact, considering (1.6) and examining for definiteness 

the case k * 1 we can rewrite (2«1) in the form 

ti ■• j (•» 7»»/ -f-«ujM?»/+«u 7k/+*ui«M«)rf*,. 

Substituting herein in place of the deformations their expressions In 

terms of displacement and rotation,and integrating the resulting 

Integral by parts with use of the fact that the forces (moments) 

with subscript J satisfy the equilibrium equations (1.8) with the 

right sides   ?j'^, ty, fy,. 5$   , to which the generalized displace- 

ment in question corresponds , we obtain 

+ K'7?»y] + W> (iC-«®8+[«ltd + [IM,,]. 

Here the square brackets denote nonlntegral terms which arise as 

a result of Integration by parts, and the quantity ™w   is the 

transverse shearing force. The brackets represent the work of all the 

concentrated loads corresponding to the state k on the corresponding 

linear and angular displacements of the state I. In turn, the inte- 

gral is the work of the distributed loads. Thus» A^  
in (2«1) is 

the generalized displacement, understood in the usual sense. 

We shall term these bars, with left sides of the equilibrium 

equations the same as the left sides of (1.8), (1-10), with the 

i 

i 
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elasticity law in the form (1.6) and no bending relative to the 
unit vector e  , P bars. Hereafter,we der 
along s, and s2 by P, and P», respectively, 
unit vector e  , P bars. Hereafter,we denote the P bars located n 

Now let us consider the operators **»»(*!. •••,*%)  (*=1> 2) in 

the right sides of (1-8) - (1.11). Taking (1.4) into account,we 
can conclude that Ku„ (*=l. 2) are the  operators in the right sides 
of the equations for conventional bars relative to the distributed 
loads B-,  Zg • In K.   the quantities z,, z2, z^ and Zj., Zj-> Zg 

are the projections of the distributed running forces or the unit 
vectors \#i.«W *«. and z?, Zg, are the projections of the distributed 
running moments on the unit vectors e2> e. .  In K,   the quantities 

Zj,| Ze» zg» z7»Zgare nonzero. They rave the same significance as the 
Corresponding loads in K.  , except that they act in the opposite is, 
direction. 

'S* 4K
5
 fi^dc-1, 2) and 

find the five 
Let us assume that the quantities f, ' f;.. '  fv!"' 

t2)    m lb» 2b> nb 
nlb  a2b "^ be dr°PPed in (!• 8.), (1.10). Then we : 
interaction functions q,, q2,q ,m , m„,for the equations (1«8), (1*10) 
with the aid of the five conditions (1.13). Here the equations 
(1*8), (1-10), and the elasticity law (1.6) describe the behavior of 
t#6 continuous families of bars P, and P_ positioned along the 
coordinate lines s, and s_. The bars P, are loaded by the external 
loading and unknown running loads, while the bars P„ are loaded by 
unknown running loads of opposite sign. There is the following 
connection between the magnitudes of these running loads. 

TT T'T IT- tr-TT' (2.2) 
m    m<* 

The unknown running loads in (2-2), which may be termed the inter- 
action loads between P. and P_, are defined from the conditions (1.13) 

* id 
The latter express the equality of the displacements and rotations 

•      (twist) of the considered families of P bars. A similar situation 
holds in the crossed bar system. Therefore,we shall call this 
system the crossed and continuous P bar system and denote it by 

FTD-HC-23-361-69 11 

■      ■ ■■    ' ■ -    " 



ip t  p I        On the basis of the properties of the P bars,we 

can conclude that the algorithms for the calculation of such a 

system do not differ in any fundamental way from the algorithms for 

calculating the conventional continuous and crossed bar system. 

Reduction of the mathematical formulation of the shell theory 

problem to the equations of the crossed and continuous P bar system 

is possible in those cases when the quantities /», /»'»/2J (*ä1* *>• T»« "» 

may be dropped in (1*8), (1.10). This can be done in several problems. 

However, in the general case we must consider all the equations and 

take into account all the interaction functions. 

Let us consider the general case. We first turn to the equations 

(1.9), which do not differ in any way from the equilibrium equations 

for the Pj bars relative tofy (/=!, 2, 3, 4) . Let j. be found by solving 

(1.9), then the displacements and corresponding rotations may be found 

as follows. Prom *, and (1.14) we find the forces (moments) just 

like 7*t jfa jit, A&».   
Then with the aid of the elasticity law (1.6) we 

find the corresponding displacements and rotation from (2.1), just as 

for the P bars. Therefore, we can consider that (1.9) together with 

(1.6) and (1.14) describe the behavior of an equivalent continuous 

bar-type system for which the internal forces (moments) are found from 

(1.9) and (1.14).  In turn, the displacements (rotation) are found from 

the forces (moments) just as in the Pp bar system. To determine the 

static quantities of such a system we must invert the operators ii», 
in (1-9) with respect to s, , just as for the P.. bars, while to find 

its kinematic constants we must invert the operators (1.6) with 

respect to s? just as for the P? bar system. This is the basic 

feature of the system described by (1.9), (1-14),and (1*6). At the 

same time it is advisable to consider it as a bar system, since in 

determining the internal forces (moments) and displacements (rot^ 

tions) in this system we must invert the operators just as for t e 

P.. and P„ bars We term such a system a continuous family of P», bars, 

and we abrltrarlly consider its bars positioned along Sp. 

Now let us consider the system of equations  (1.8), 

(1.6) for the continuous family of P, bars,and the sytem of equations 

(1.9), (1-14), (1.6) for the continuous family of P?1 bars.  In 
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accordance with the right sides of (1.8), (1.9) equal and opposite 
Interaction loads f5J, fir, fnj" , nl*, act between P. and P21. 

Suppose P, and P21 form a continuous crossed bar system IP,, P21J 
with the Interaction loads indicated above. Denoting the displace- 
ments and roations for the Px bars byuj

1^, u*1^', w(1\ *^  and 

those for the P21 bars by u£
21*, u2

21), w*21),^2i), we determine the 
interaction loads in the crossed systemjp., F-A from the conditions 

«F>=«?», ^eÄ««>, a»s#, 

Thus, we take the crossed system JP,, p21f to oe a sysfcem con~ 
sistlng of the elements P, and P2- between which there act the inter- 

action boads fj*; f2b; f*g2 n^» determined from the conditions (2.3). 

We can introduce similarly, the concept of a continuous family 
of P,2 bars along s,, whose behavior is described by (1.11), (1.15), 
(1.6). Moreover, we shall consider that (1.10), (l.S) for the 
continuous family of P 'bars and (1.11), (1*15), (1.6) for the 
continuous family of P, 2 bars describe the behavior of the 
continuous crossed bar system /P2, P,plwlth the interaction loads 
(2) (2)  (2) (2) ' flb* f2b* fnb* nlb   These lo^^ are  found from the conditions 

«t*=*«7». «f»=«p. *»«*•«, 

where the displacements and rotations of the P_ and P,2 bars are 

Hanntori h„ „(2)  „(2)  „(2),   .(2) „(12)    „(12)    „(12)     .(12). denoted by u,>    u2,    w °i      sna u,       , u~      , w        »3 

respectively. 

Now let us consider a four-layer continuous system of bars which 
are crossed at each layer. Suppose the 1-st (upper) and 4th (lower) 
layers consitute, respectively, P«, and P.2 systems, and the middle 
pair of layers of a crossed P bar system (Figure 2). Thirteen inter- 
action loads act between the four families of bars P21> P,, P2, P,? 
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Figure 2. 

which constitute this four-layer 

system. Five of these loads which 

appear In (2.2) for the  f»« p») 

system are found from the condi- 

tions (1.13)» while the remaining 

eight are found from the conditions 

(2.3), (2^4). Let us show that 

the equations describing the 

behavior of such a four-layer 

bar system» which we denote by 

?t    , coincide with the uncoupled 

ohell theory equations presented 

above and that the conditions (2-3), (2.4) are equivalent to the 

conditions (1.14), (1.15). In fact, the equilibrium equations of 

the Pj. four-layer bar system are by definition the same as the 

uncoupled equilibrium equations of shell theory written in the form 

(1.8),— (1.11). In both cases the forces (moments) with the zero 

superscript in (1*8), (1-10), are related with the the deformations 

by the equations (1«6). It would, appear that the only difference is 

that for the uncoupled equations of shell theory» the conditions 

(1.13), (1-14), (1.15), must be satisfied, while In P. the conditions 

(1.13), (2-3), (2>4) must be satisfied. However, in actuality these 

conditions are equivalent. We denotethe forces (moments) in the Pp, 

system, obtained in accordance with (1^14) from ♦,, as follows: 

r1»(Pn).  *»<*■). 7M»(/>„), Mm{Pn)..     Correspondingly^r in the" 

P  system the analogous quantities will be T%(B& vMu(/»It), 7m(Pjt 

JMIMCU)-    
The displacements and rotations corresponding to these 

quantities must satisfy v2«3), (2.4).  In the right sides of these 

equalities there appear the displacements and rotations of the P , P , 

\ 

bars, which in turn are connected with one another by (1.13)■ 
on the basis of (1.13) 

■p>««f. «p|)=d?', •tM»=«w, *r}=tf. 

Thus, 

(2.5) 

i 

«fW.»    tf» = tf\   »(,2,=»0).   •P««P. (2-6) 
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Since In accordance with (2.5) the displacements and rotations 

are equal in P-, and P_ , on the basis of (1.6) the corresponding 

internal forces (moments) in P_, and P„ are equal, i.e., 

I»(P«)=7l», Mt(P„)=iM», r!,»(P„)-7i». 

4l?w(Pft) = iVfi,*. 

(2.7) 

Similarly , for P12 and P1  (2-6) yield 

Tu(P^ = Tlt.   AA(Pu)=A«tt,    Tm(P^=7m. 
AA»(Plt)=y*C (2.8) 

By definition the left sides of (2.7), (2.8) are connected with *± 

and *. by (1.14), (1.15).  Consequently, the right sides of (2.7) 

(2.8) are connected with c *±,  ^ by (1.14), (1.15). Thus, if the 

equalities (2.3), (2.4), (1.13) are satisfied (  (1.14) and 

(1.15) are automatically satisfied. The equations are conditions 

defining the interaction loads for both Pi|c and the uncoupled equations 

of shell theory are identical. Moreover, since the uncoupled equations 

and the conditions (1.13), (1.14), (1.15) are equivalent to the 

governing equations of shell theory, the equations of the four-layer 

bar system will be equivalent to them. 

This four-layer bar system is quite remlnescent of the conven- 

tional bar system. The main difference from the latter is the nature 

of the bars P21 and P12» However, in spite of this none of the 

operators which must be inverted in the calculation of such a system 

differ in any way from the operators for P bars. Therefore,the 

basic nature of the algorithms is the same in both cases. 

3.  Now let us formulate the boundary conditions for this four- 

layer bar system, equivalent to the boundary conditions of shell 

theory.  For simplicity,we consider that the shell edges coincide 

with the coordinate lines. 

Let the houndary conditions, four at each shell edge, be given 

in terms of displacements. To invert the operators (1-12) with 

respect to th'J displacements and rotations in P, and P we need five 

conditions at each edge, since these operators are tenth order. The 
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missing fifth condition with respect to the rotation is obtained from 

the given shell edge displacements by differentiating these displace» 

ments along the edge.  Consider the operators Lis  (k * 1 2) in 

(1*9)» (I'll) for the P21 and P _ systems. Since *. and <y.  appear 

here as forces (moments), to invert L^g. (k * 1, 2) we need to 

know the five quantities  •&.??,  (^'(a*)  (1=1,2,3,4) 

at the corresponding edges.  Generally speaking, these quantities 

do not appear in the boundary conditions of shell theory.  They must 

be considered additional edge interaction functions or additional 

edge loads, analogous to the thirteen distributed interaction loads. 

They are defined with the aid of  (1.14), (1-15) at the corresponding 

shell edges. The reason is that at the edges the conditions (1-14), 

(1-15) cannot be satisfied by the distributed interaction loads, 

Just as in the case of a cantilever bar end loads must be applied 

at the tip in order to satisfy certain static conditions there. 

In the present case, when the displacements at the shell edge are 

given, by inverting the operators (1.12) we can obtain the forces 

(moments) with zero superscript in F, and P„.  Then we U3e (1,*14), 

(1.15) to calculate the quantites $J( v*h ld*'\\ (dV*-V  (/=!, 2, 3, 4) 

at the corresponding edges. 
i 

Consider the case in which forces (moments) are given at one of 

the boundaries, for example a, ■ a. = const,  while the condition 

at t a remaining edges are given in terms of displacements. We 

transform the boundary conditions of shell theory fora » a^s const 

as follows 

,v.. t dMM     Mm   **»_/>. M  _«. 
(3-1) 

where the given values are on the right.  Noting that 

MM Mfth 
ft,, ■&e*W-«B+>..£. 

and substituting (3*2) into (3*l)»we obtain 

(3'2) 
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ArtUqU-^-mfl»- ~ns—üT+ 

+ ^—-SJT» 

(3-3) 

Here, on the basis of the corresponding uncoupled equilibrium equation 

[1] 

in which the transverse shearing force M#ss/Vi»-f#3», appears, we can 
take 

<-Rr+ffr 
(3-4) 

Then at the boundary we will also have 

4M7& 

The expressions for the forces (moments) with zero superscript for 

the edge o5
M a^const are written similarly to (3-3),  Expressions 

0 (3.3) are the boundary conditions at the loaded edge ot « ot!j   for 

the P1 bars.  In the right sides of (3-3) there appear ^ ••(SflVn*« 
and the moments in P„ for a-. a, This situation indicates that 

the boundary conditions at the loaded edge a, ■ a. 
0   0       l 

be established after determining Mp., M«..  in P, 

for P may 

., for a±  = a?. 

In the present case,we first Invert the operators corresponding to 

P„. This yields *4, and (jj) and M^ Mplb f or a = a?   •  Then we 2' 
find * 

'i m 

ri,  -- W  -»« -2bj  »21b x„x  »1     -1 

in terms of the five as yet undetermined quantities 

After this we establish the boundary conditions (3*3) 

Finally,the quantities and make the calculation of the P bars 
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M0 
are found at the boundary a » a2«const with the aid 

of the conditions (1.15) 

Assume a shell has two neighboring loaded edges while the 

boundary conditions at the other two edges are given in terms of 

displacements. Moreover, we consider that the concentrated normal 

force Q  acts at the intersection of the loaded edges.  In shell 

theory the following condition is taken for the corner point 

[«»•»T-tlii^Afd^Qr. 

where the square brackets denote the Jump of the quantity in the 

brackets with transition from one of the loaded edges to the other 

in the counterclockwise direction. Here Y is the angle between the 
-»■ 

unit vector e. and the tranjectory direction, measured counterclock- 

wise. This immediately Implies that at the corner 

ü4»«±ifc-.*, (3-5) 

Moreover, since the loading on the loaded edges is given, at the 

corner we know the moments appearing in the boundary conditions (3'3)> 
0 

and the analogous conditions for a? * a„ ■ const for the extreme 
P1 and P„ Dars positioned along the loaded edges. We take the 

quantities 9',, *,*, Lgsj, IQLX    as the edge interaction function 

at the loaded edges. Then in accordance with the boundary conditions 

of the type (3-3) we can analyze the extreme P, and P„ bars. More- 

over, by inverting the operators (1.9), (1-11) we find the quantities 

V After this we can establish the boundary conditions 

the type (3-3) for all the P-, and P_ bars.  Calculation of the P, 
X d 1 

and P„ bars makes it possible to determine the internal forces 

(moments) with zero superscript and write with the aid of (1.14), 

(1.15) the ten equations for finding the quantities •*, V*,,  (-j^Y, (-5-*-)*. 

Other boundary conditions and also the existence of an oblique edge 

may be examined similarly.  In the case of the oblique edge ,additicn- 

al edge Interaction loads appear, acting between the bar systems 

which converge at the edge.  This is the only problem complication 

N 
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which appears for the oblique edge. The shell support scheme in 

which the families of bars under consideration may not be in equili- 

brium under the influence of external loads and support reactions 

presents a problem for this technique. For example, this sort of 

case includes the shell with two opposite free (or loaded edges^ 

which coincide with the lines of curvature. In this case we note the 

technique of [2] which makes it possible to turn to consideration of 

tne conventional edge conditions. Thus, in all cases the edge 

conditions adopted in shell theory together with the corresponding 

relations for the four-layer F^ bar system make it possible to 

formulate the boundary conditions for the bars forming Pj. . There- 

fore, Pjj becomes completely equivalent to the shell within the 

framework of general shell theory [3]. 

k.    There are thirteen interaction loads in the P., system. 
4c 

The number may be reduced to nine and in the case of the Love 

elasticity relation to seven by a slight generalization of the 

concept of the crossed and continuous P bar system. We rewrite the 

uncoupled system of equations  (1.8)—(I'll) in the form 

£<*(7u, Mu. 1m, •Mi»)"1 

=**(*». fw P»> iff. «&'• *& "V- o + • 

lu,(0, 0, •* *i) = 
•** (0, 0. 0, -/» -C -fZ 0. - 4») (4.2) 

(1=1.2,3.4); 

i-i»,(T», M*,  7a», Aft»)-" 
=/ftoi(0. 0, 0, *$• «ff. «2- "fr "£) + 

+ **.(0,0.0,/« /«, /2. C'o); (^•3) 

Ato.(0,0, *„*,) = 

-*fc„(o. 0, 0, -/<?, -/*. -/2. -C o) 
(/=!. 2. 3, 4). (4.4) 

Here only two of the four interaction functions in (4-2) are indepen- 

dent, since they are all related by the two equations which follow 
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from (4.2).  A similar situation exists in (1.1). Thus, in (4.1)- 

(4.4) there are nine independent interaction functions which must 

satisfy the five conditions (1-13)  and  four of the conditions 

(1.14), (1.15), in w.^ch *3 *n *3 ¥4 figure. 

N 

Let us examine the mechanical meaning of the uncoupled equations 

(4*1)—(4.4). We first consider the equations (4-1), (4-3), dropping 

therein the interaction functions which appear in (4.2), (4-4). They 

do not differ at all from the equilibrium equations of the P bars if 

we take Tlb 
M
lb 

T
2b 

M2b,to mean> respectively, the normal forces 

and bending moments in the bars. However, in this case we have in 

place of (1-6) 

•*=-TT'. ^TCT <*='• 2; '=2. «). 

(4-5) 

Hence we see that the difference between the crossed and continuous 

bar system described by the equilibrium equations (4-1), (4.3.) with 

the elasticity law (4-5),and the crossed ana continuous P bar system 

lies in the first two relations (4-5).  If we call this the P system 

and denote it by Plv, P2v   , this difference between P and P 

reduces to the fact that we can no longer consider separately the 

families of P,  and P  bars positioned along s, and s„, respectively. 

The deformations, displacements and rotations in P,  depend on the 
T2bJ M2b'   acting in P  and vice versa. Thus, in this case we 

must consider the P crossed system as a whole. Obviously, for v= 0 

this connection between P,  and P„ disappears and the P  system 
lv      2v    v* v 

transitions to P. 

The necessity for considering P as a whole has little effect on 

its analysis and calculation in the spirit of the bar system.  In 

fact, in the statically determinate case the equilibrium equations 

(4-1), (4-3) for P.  and P_ may be integrated independently. More- 

over, for the Ply, P2vbars we can write formulas analogous to (2.1) 

for finding the generalized displacements from the given deformations 
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(4.6) 

Finally, the five interaction loads (2.2) in P are found from 

the five conditions (1.13)> which express the equality of the 
displacements and rotations for the P, and the P_ systems. 

In the general case with account for all nine interaction functions 
we can by analogy with Pj. , consider the four-layer bar systemPPj, 
which is continuous and crossed at every layer. This system is 

formed sequentially by the families of bars P21v» 
p
lv» 

p
2v' 

Pi2v 

The nature of the P2iv
and tpi2v bars is the same as tnat of P21 and 

P.-, except that in this case the quantities *., *„, ¥,, Y2, 
are 

missing. Prom the equation (4.2), C2*.!*), we can find ♦ .,, *j, and 
*_, "P^, and then these values are used to find the quantities 

*21b (P2lv> M21b CP21v)and T?2b {?izl>  M12b (IW» in accordance 

with (l.l1*) and with (1.15). We define the displacements and rota- 
tions in Pp, as follows 

-*, -^n'srysir  n*}—ZE    • 
(4.7) 

where the indices (.21 v) and (lv) denote, respectively, displacements 
and rotations in the P.. and P systems. We proceed similarly in 
the P,p system, setting therein 

-*.1 x^•■3?,,, J, • (4.8) 
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In this  case the four conditions of equality of the oo#**s$6nding 

displacements and rotations for each of the P0,  P.  and P_  P.« v 21v,  lv,     2v,  12v 
systems 

.#*_,*•. «*—5g.+£. 
(4-9) 

and also the five conditions (1'13) for P,  and P_  yield all the 

necessary equations for finding the nine interaction loads.  In fact, 

all these conditions will be equivalent to (1*13) and the four 

V This in conditions (1.14), (1-15) with *3, *i»,  *3, 

turn leads to the uncoupled equations (4.1)—(4.4) together with 

(4-5), describing the behavior of Ph        becoming completely equivalent 
7CV» 

to the equations of shell theory. 

The boundary conditions in Pj,   are formulated similarly to 

se in Pj.  with the exception that *]_ *2,*1, *2,are missing in tho 

Pkc^ 

5. The four-layer Pj. system consists of the bar system ^l' ^i» 

2* ^i2" lfc is not difficult fco see that as a rule ?2l' **12* are 

relatively compliant systems and the crossed P bar system forms the 

basis of PN .  This applies even more to the Pj,  system, in which 

P  forms the basis. However, the technique for calculating the P 

system does not differ from that for calculating the conventional 

crossed bar systems. Nor is this difference essential in the case 

of the Pv system. In general neglect of *n *n in (1'5) and in all 

the succeeding formulas does not lead to a large error. Moreover, 

if we use the elasticity law in the Love form ,the difference between 

P^ and P will be due to v and  $3:, *^ while the difference between 

Pj,  and P  will be due only to ^3  ^3 , which are proportional to 

the shear deformation components.  Sometimes P^ and Pj,   degenerate 

into P and F  . For example, this occurs in plate bending, axisym- 

metrlc deformation of shell? of revolution and so on.  In many cases 

the transition from P., and P.,   to P and P may be accomplished He tcv v 
approximately. Moreover, in general in calculating Pj, and P^  we 

examine the iteration process with consideration of only the P and 

P systems at each step. 

N 
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6. In the uncoupling method the conditions (1.13), (1*14), (1*15) 

or (1*13)* (2.3), (2«4) lead to a system of integral equations of 

the Fredholm type of the first kind in terms of the interaction func- 

tions (interaction loads). They are obtained by inverting the opera- 

tors (1.8)—(1*12) and equating the corresponding quantities in 

accordance with (1.13), (l*l4)a (1-15) or (1.13), (2-3), (2-4). A 

peculiarity of these integral equations is that the unknown functions 

of two variables appear in these equations as single integrals of 

each variable separately. Moreover, in the case of certain boundary 

conditions they may contain nonintegral terms with values of the 

unknown functions at the edges. In the general case the number of 

such equations for the P  system is thirteen, and for the Pj. 

system the number is nine. In those cases in which additional 

interaction loads do not occur ,the number decreases to five and in 

several concrete problems the number may be even less. Thus, the 

problem of calculating the continuous and crossed bar systems 

obtained above reduces to the solution of the corresponding integral 

equations of the uncoupling method. 

Now let us consider the discrete bar systems. We can use the 

following technique to dlscretize the integral equations of the un- 

coupling method. We form a grid on the shell middle surface using 

the lines of principal curvature. We specify on the grid lines the 

unknown distributed interaction loads as depending on n unknown 

parameters, where n is the number of nodes of the grid being used. 

Then we determine these n parameters from the conditions for 

satisfaction of the integral equations or the conditions (1-13), (l»l4) 

(1.15) or (1.13), (2«3), (2.4) only at the grid nodes (colocation 

method for Integral equations). This approximate method for solving 

the problem may be treated in a certain sense as the calculation of 

a crossed bar system with distributed unknown Interaction loads. 

However, it is of interest to go directly to the calculation of the 

discrete bar system with concentrated Interaction loads at the 

nodes. We shall show how this may be done, using as an example 

the bending of a plate. 
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In the case of bending of a flat plate,we shall dwell in greater 

detail on the discretization and peculiarities of the numerical 

solution of the integral equations of the uncoupling method. The 

uncoupled plate equations may be transformed to the equations for the 

continuous and crossed P bar system 

N 

°TcrÄÄ+fc+-SI 

(6-1) 

(6.2) 

where the subscript b is dropped, since we have assumed b., ■ b0 = 1 
and 

**=f~£ (*=1.2). 

In this case the conditions (1.13) will be i 
•<•>=•» •?> *»<*> , »f = «W» 

(6.3) 

and the problem reduces to a system of three integral equations in 

For simplicity of analysis,we consider a rectangular m-, m. qn, "V -2 
plate which is clamped along the contour,and we take approximately 

m. m2  = 0 Then,  solving the first  orainary differential 
equations   (6-1),   (6-2),  satisfying the  clamping boundary  conditions 

and satisfying the first  conditions   (6.3),  we obtain 
» 4 

\\\W-MA*, t)+*(t-*)Kt(y, n)9.(t, t')dtdf= 
» 4 

= - JJ*C-.y)*i<*. t)pA*. r)dtdf=,-F(x, y), 

a<x<»;   c<y<rf,   . 

(6.4) 

where 6 is the delta function, K,(x, t), K  (y, t*) are the deflection 

influence functions for the clamped P bars.  Let us break down the 

region in question by a grid of straight lines.  If we use the idea 

of the colocation me hod and equate the left and right sides of (6.4) 
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at the grid nodes, and specify q (x, y) to within undetermined 

parameters on the straight grid lines, we ohtain a system of alge- 

braic equations. The same equations are obtained when calculating 

the discrete and crossed system of P bars, defined on the grid lines, 

with distributed interaction loads. We can proceed differently. We 

replace the integral in the left side of (6.4) using the formulas 

i'or sitchanioai quadrature. We consider that the grid nodes coincide 

with the nodes of the quadrature formulas »and we equate the left 

and right*sides of (6-4) at these same points. Then we obtain a sys- 

tem of algebraic equations of the form 

a-1 

a-l 

+ ^^Kt(y„y^qa(x,, yt)=-F(xt, >,)+*A 
(6.5) 

where factors *£* , A£   result from the quadrature formulas and 

p. . are the overall erroi* of the quadrature formulas. Setting 

p.. »0, we obtain the equations for the approximate values of 

of the q„,(x., y^). Taking account of the physical meaning "•n 
(x) 

influence functions, we note that for p.. ■ 0 and A^ kly) '  1 the k2 

equations (6.5) also hold for the discrete P bar system described by 

the first equations (6.1), (6.2) with the concentrated excess unknowns 

at the nodes q* (x., y.). Hence, using a unifoi i grid spacing and 
nc 1  j 

(x)   (v) quadrature formulas such that A^ ' = A^' = A, we obtain 

*.<•*/, y,) 

This relates the approximate solution of tt.? integral equations of 

the uncoupling method and the calculation of bar systems by the method 

of forces. The uncoupling method and the method of forces In 

structural mechanics, which are similar in form, become similar in 

essence. These arguments make it possible in constructing the 

approximate solution of the Integral equation (6.4) to calculate the 

corresponding discrete P bar system with concentrated interaction 

loads at the nodes rather than calculating the system (6.5) directly. 
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In so doing, we can use many effective techniques of structural 

mechanics to construct the approximate solution of the integral 

equations in question. On the other hand, conversely, analysis 

of the integral equations may be useful in calculating high-order 

crossed bar systems. 

The difficulties in the numerical solution of integral equations 

of the first kind are well known [5»6]. They are associated with the 

fact that the operator in (6-4) overrides the strongly oscillating 

solution and the zero is a condensation point of its eigenvalue 

spectrum. A similar situation occurs in calculating crossed bar 

systems of both the ? and conventional types. There this leads 

to poorconditioning of the system of algebraic equations of the 

method of forces. The various approaches to the solution of equations 

of the type (6-4) reduce to the introduction in one form or another 

of additional information on the sought solution in the original 

mathematical formulation of the problem. For example, Tlkhonov 

[5j 6] considered the sought solution to be sufficiently smooth 

and proposed to screen out the oscillations in the numerical solution 

of (6.4) by minimization of a smoothing functional.  In our case 

we can write 

AT = f f Aqjjxdy + 2 J J qfdxdy+«S; 
it «« 

(6.6) 

» 4 

8=jJ[?,(*. ,)(*£)•+*<*. y)(%)' + *(** y)<t7]äxdy, 
f,i*,y)>0  (I-1. 2. 3), 

(6.7) 

where A is the operator of (6.4) and o is the parameter. Since 

the operator A is positive, the solution of (6.4) minimizes the 

functional j^° (a = 0).  Tne role of the regulating functional ft 

consists in smoothing the approximate solution. The parameter a 

is selected so that the function which minimizes (6*6) will be close 

to the solution of (6.4), but at the same time the Influence of ft 

will not disappear. The Euler equation and the natural boundary 

conditions for the functional M have the form 
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*£=0 for, *=«. *=*: |=0 for^,^-       (6-8) 

The physical meaning of the left side of (6-8) makes It possible to 

conclude that in this case a filler material has appeared between the 

two continuous crossed systems of ? bars and that the displacement 

law for this filler is defined by the left side of (6«8). 

We can proceed similarly in calculating the bar systems.  In 

this case we minimize the corresponding quadratic form rather than 
a 

the functional M~. For example, for a girder framework we can take 

in place of ft the sum of the squares of the differences of the excess 

knowns at neighboring nodes of the grid in both directions,and the 

sum of the squares of the values of the unknown quantities themselves, 

multiplied by some positive weighting functions of the integer argu- 

ment (of the grid nodes). 

Other techniques may be used for the approximate solution of 

these problems of integral equations and bar systems by using addition- 

al information on the sought solution.  It is often convenient to 

write the additional conditions in the form of inequalities and 

seek a solution which will satisfy these inequalities while at the 

same time satisfying with the maximal possible accuracy the basic 

problem formulation.  Moreover, we can formulate overdefined problems, 

in which we introduce the required additional information into the 

basic problem formulations by means of redundant equations. The 

solution of the overdefined problems may be constructed using the 

method of least squares or in the Chebyshev approximation sense. 

In many cases the methods developed in linear programming [7J are 

effective In solving the problems mentioned above. 
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We can point out still another eff«-'-  e technique for calculating 

the crcssed bar system within the framewc \ of quadratic programming. 

We write in p.ace of the sy3cem of equatic s of the method of forces 

a system of inequalities in the form 

\Ax-F\<*F 
(6-9) 

and we seek a minimum of the smoothing quadratic form ß., equal, for 

example, to the sum of the squares of the differences of the excess 

unkowns at neighboring nodes in both directions,and the sum of the 

squares of the values of the unkn;wns themselves, multiplied by some 

positive weighting functions of an integer argument (of the framework 

nodes), under the condition that the inequalities (6-9) be satisfied. 

We assume the function fi, to be convex.  In the problems being 

considered the quantity o, which characterizes the maximal acceptable 

error in the equations of the method of forces in eaGh specific 

case, may be estimated quite accurately. Algorithms for the solution 

of this problem formulation in quadratic programming theory are 

Known. Similar arguments may be applied to the integral equations of 

the uncoupling method. 
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ON THE DETERMINATION OP THE MOMENTLESS STRESS STATE 

IN COVERINGS WITH POLYGONAL PLANPOPM 

V. Ya. Pavilaynen 

Shells which cover a space with nonrectangular planform find 

application in the construction of pavilions, trade centers,and 

other structures.  Here the most efficient shells are those in which 

the midsurface has positive Gaussian curvature, since these shells 

provide a stress state which is nearly moment-free under the primary 

design loads (dead weight, snow). In this case a considerable portion 

cf the shell, with the exception of small regions near the edge, 

operates in uniform compression and this permits effective use of the 

material in reinforced concrete designs. 

It is advisable to perform the calculation of these coverings on 

the >>3sis of the equations of momentless shell theory in Cartesian 

coordinates, first derived by Pucher [1] and valid for shells of 

arbitrary rise.  In formulating the boundary conditions,it is usually 

assumed that the elements of the shell supporting contour have 

stiffness only in the shell plane and that the entire load is trans- 

mitted by means of tangential forces. As a rule these forces increase 

with approach to the corners of the covering and may, in particular, 

increase without limit in absolute magnitude [2]. 

This fact indicates that under certain conditions the momentless 

nature of the stress state is significantly disrupted near the shell 
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support contour and also at the shell corners. However, In many 

cases all the momentless forces In the shell may remain finite, 

and this has been the subject of several studies, including [3]. The 

Interest in this question is explained by the fact that the determi- 

nation of the contour forces, and also the stress state In the corner 

area, where there is a marked increase of the tangential stresses, 

is the most critical part of the design and controls the choice of 

the optimal constructional version. 

In the present paper we suggest a method for calculating cover- 

ings with nonrectangular planform which differs from that of [3]. The 

Pucher system of equations is generalized to the case of an oblique 

Cartesian coordinate system. We examine several cases of the 

application of the resulting equations to the analysis of coverings 

which have an arbitrary parallelogram planform, and also the questions 

of direct determination of the tangential forces ai, the shell corners. 

S 1. Equilibrium Equations of Momentless 

Shell Theory in Oblique Cartesian 

Coordinate3 

N 

The shell midsurface is given oy 

*«»(*, y). 
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where x, y, z are oblique Cartesian coordinates (Figure 1). The 

X and Y axes of this system lie in the horizontal plane of the shell 

planform and form the angle x with one another. The Z axis is directed 

upward along the vertical, and the unit vectors  7. /• *  are connected 

by the relations 

i.yj==8{nx*. 

(1.2) 

(1-3) 

In the general case, in which the shell planform is an arbitrary 

polygon, it is advisable to select the angle x and direct the X and 

Y axes so that they are parallel to two adjacent sides of the shell 

planform contour. The x and y coordinate lines on the midsurface 

will be the curves formed by intersection with planes parallel to 

the planes XOZ and YOZ, respectively. Generally speaking, such a 

system is not orthogonal. 

In fact, taking the parameters x and y as curvilinear Gaussian 

coordinates of the surface, we write (1-1) in vector form 

r(x, y)=xi+yj+z(x, y)k. 

The vectors tangent to the coordinate lines will be 

-      t.   d* t or Z   /i 2 h 

(1.4) 

(1.5) 

and the corresponding unit vectors are 

i ;_ 

e*=Äir> = 

IM£) wf+**) 

y>+1.-37) (1-6) 
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Here A,, A„ are the Lame" parameters 

T&V 

(1-7) 

With account for (1-2) we find 

"TSWtaff H***H*       (,8) 
where ij> is the angle between the coordinate lines on the surface 

(see Figure 1). It follows from (1.9) that in the general case 

«■t^Q  and, consequently, the coordinate line grid on the surface 

is not orthogonal. The unit vector normal to the surface, defined 

by the formula 

will be, on the basis of (1-3) and (1-8), 

x[(-i=rjF+a«£)?+ 
+ (-«TiT^+ctgX^);+slnZ*]. 

(1-9) 

Let us consider the conditions for moment less equilibrium of a 

small element cut from the shell by two nearby planes parallel to the 

XOZ plane and by two nearby planes p-- -u.llel. to the YOZ plane (see 

Figure 1). The sides of this element are 

(1-10/ 

and its projection on the XOY plane is a parallelogram with sides dx 

and dy and the included angle x> 
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We denote he force vector acting on the unit arc length MN by 

T  and the force vector acting on the unit arc length MQ by -T , y x 
where 

*,=*rJ+7Vf TJ, 

Then the force acting on the entire arc MN equals 

-Tjht^-T, yT+]gf dy=~SAdy, 

(1-11) 

and on the arc MQ - v*,=-f,y i +(£)' dx=-s,dx. 

(1-12). 

(1  12). 

On the opposite sides PQ and NP the following forces act 

f/lst^^dx^x+%.dx)dy, (1.13) 

Tfr+^dyJf, +%-dy)dx. 

In (1.12), (1.13) «e have introduced the new forces S    and 

S ,whose decompositions along the I, J, k axes have the form 

t^sj+sj+sj, 
$,=syJ+s„/+s„*. 

and from (1-11) and (.1.12) we have the ohvious relations 

U-1'0 

s«=r«j/T+(|)\ s„=r„j/i+ (£}', 

(1.15) 

We denote the external force vector acting on the shell element 

In question by 
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&={lA*. /)<+?,(*. jr)7+?,(*. y)k\dtt. 

«here   d&—Ma%ixdy is the area of the parallelogram M'N'P'Q* 

are the load intensities, given in 

the XOY coordinate plane. 

(see Figure 1) and qv q„ Q 
A, y,  z 

The condition for vanishing of the principal vector of.the exter- 

nal and internal forces applied to the element is expressed by the 

equation 

which la projected onto the coordinate axes with account for (1~-14) 

and (1-2) to yield 

{***)-*+(* + *)+••*-* 

Consider the first two equations (1.17). Since in all the 

arguments it is assumed that the angle X t  0,TT (otherwise the 

problem formulation loses meaning), these equations may be solved 

for the expressions in the parentheses. As a result (1.17) is 

written as 

-3r + -jr=-ifi7+*>ct8x. 
as 

w w, 

»_  IT 
flux +y,c»gx. 

3fr + -£—fc-Z- 
(1-18) 

Now let us find the condition for vanishing of the principal 

moment of all the forces acting on the isolated middle surface 

element. We take as the reference point the center of gravity of 

the element(see Figure l),and we note that the radius vectors of the 

points of application of the internal forces on its edges are 

characterized by the relations 

(1.19) 
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Then, retaining terms of no higher than second order of smallness, 

the sought equality is written in the form 

p^(U£*>]+[V*. P+JF*M-*     (1-20) 

Projecting (1-20) onto the coordinate axes and considering    (1.14) 

(1-3),  sin x t 0» we find 

^+*««i-(^J+sJ>£)+(s„g+sMg-)Ä-i. 

SjyBsSji*. 

(1-21) 

Prom the first two equations (1-21) we have 

(1-22) 

Equalities (1-22) show that the internal forces on the shell which is 

in the momentless stress state do not have components normal to the 

midsurface. To see this we examine the decompositions of the vectors 
-»■->■-♦• 

along the directions e1> e2, en: T * T" xx* 

(1-23) 

Projecting ^x on the direction e*n  and taking account of 

(1-9) and (1-11),we have 

»'"» 

/-i+(Sj;+(S)r->«iÄ-? 
x[-^£-rÄ£+rrf]=o, 

since the expression in the square brackets vanishes in view of 

(1.15) and (1.22)x. 
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We obtain similarly 

?,.J.= r*=o. 
Now let us find the coefficients T  , T    , T„  , T  , i.e., the 

components of the vec^orr .\     and    ff   along the coordinate direc- 
tions.    We project    fa   onto the directions    e,   and   #,: 

~VVV/,-f 7~CCOSt = 

■j^f-W-t*'-); 
(1.24) 

Transforming the numerator in the right side of (1.24)., with account 

for (1.15) and (1.22),,we obtain the expression 

w: dch CW substitute into (1.2% to find 

r,+rMcoit. 

Equality (.1.24)« ls reduced in the same way to the form 

Ttci*i+Ta =«»♦1/ ~ki- S„+S JfJII 

(1.25)i 

(1.25). 
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Hence 

r-j/rj E. 5StT->*4r. 7»—$r> 

» (1.26) 

The coefficients T», and T are found by entirely analogous arguments 

as a result of which we have 

(1-27) 

Formulas (1-26) and (1-27), first derived by Pucher [1], define all 

the tangential forces in the momentless shell and, in particular, 

establish the pairing law for the tangential stresses T,2 and T--. 

in the adopted coordinate system. 

To derive the resolving equation of the problem,we substitute 

S„ and S„„ in accordance with (1-22) and (1.21)0 into (1.18)- xz     yz _3 j 
which takes the form 

(1.28) 

The first two equations Cl-18) will be satisfied identically 

if we introduce the stress function P, associated with the forces 

S , S  , S  by the formulas xx' xy' yy J 

S«*^-Jjjj«. _ h ctluj ^ 

c  c    *P 

(1-29) 

and (.1.28) takes the final form 
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uitf!'W>iuwmar;i»^JffliP«n^rftfiMiiirraj^ 

&.££_ 9  ft **  j_*» «V 

(1.30) 

and la identical to the familiar Pucher equation [1], differing from 

the latter only in the form of the right side. Thus (1-30) may be 

considered a generalization of the Pucher equation to the oblique 

Cartesian coordinate system. 

tJ g. Some Analysis Problems 

It is convenient to use the relations obtained in the preceding 

section for the analysis of shells whose planform is arbitrary. In 

this case we refer the surface to the oblique Cartesian coordinate 

system and find the solution of (1*30). 

The use of this eouation makes it possible to determine directly 

the tangential forces at the corners of coverings with polygonal 

planform, which is of definite practical Interest. We shall demon- 

strate this on the example of a paraboloid of revolution having an 

equilateral triangle planform. We first consider the XYZ system of 

rectangular Cartesian coordinates in which the equation of the shell 

mldsurface has the form (Figure 2) 

*=*-£<*•+/>. (21) 

and the load is distributed uniformly in the planform plane, i.e., 

ft as—ft=const. 

Then the problem reduces to integration of the Polsson equation 

(2-2) 
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whose solution, by analogy with the problem of torsion of a prismatic 

bar, may be obtained in closed form [2]. 

/?=-*r[i<JC,-3«J^-Ta,+T^+^]- (2.3) 

Differentiating (2.5),we find the forces S  , S , S  : 
AX   y j        "j 

$«.— *(•-*). 

*»—*?('+*)• 
**9 * " a 

(2.4) 

,\\\   ' 
M±*.*A 

C(aßafl) 

Figure 2. Figure 3' 

At the boundary y=^y(*+2«) 'the forces normal and tangential 

to the contour are found from the formulas 

S'n=SJUtlnt*-{-S„co3t* — SXySln2ti, 

S^= y(S„-5«)sln2«-t-S,/cos2«, 
(2.5) 

where a is the angle between the tangent to the contour and the X 

axis. Substituting (2.4) into these equalities and setting a=-y. 

we obtain 

S' =o s' — w/' A. *\ 

In particular, at the shell corners 
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(2.6) 

We note that the same values of S  may be obtained if in (2.4K we 

set y = + /& ■ 

Thus, in the general case, in order to determine the tangential 

forces at the shell corners we must have, first, the solution of the 

differential equation (2.2)and, second, the subsequent scaling of 

the forces. 

Let us show that all this may be avoided if we use (1.30). We 

return to the example in question. In the shell planform plane we 

introduce the oblique Cartesian coordinate system xOy (Figure 3), 

which may be obtained from the basic coordinate system by rotating 

the system XOY through the angle 7  clockwise and a further rotation 

of the Yl axis through the same angle. Let us find the equation of 

the surface (2.1) in this coordinate system. 

2   2 
The expression x + y  is invariant to the first axis of rotation; 

therefore, (2;1) remains unchanged in the X'OY' system.  In the 

second transformation the coordinates of any point M in the X'OY' and 

xOy systems will be connected by the relations 

/say sin X. (2.7) 

Substituting  (2.7)  into  (2.1),we obtain 

t «= * —£•(*•+/+fccycos x). 
(2.8) 

or for X=-y, 

*«*-»<*■+/+*/)• 
(2.9) 
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This is then the equation of the surface in question in the xOy 

coordinate system (see Figure 3). Hence,we have 

ißt    ma *  *» _  * 

and (1.30) takes the form 

*F %&ilai=s-iJ>j£L 
(2.10) 

which completes the solution of the posed problem. 

Now let the original surface (2.1) have an arbitrary polygonal 

planform. By selecting the angle x and the direction of the coordi- 

nate axes, by analogy with the preceding example, we write (1.30) in 

the form 

S-*»»S+?—¥•* (2.13) 

where the value of the angle x depends only on  the choice of the shell 

planform corner at which the shearing force is determined. Assuming 

that edge conditions analogous to (2.11) are satisfied on the 

adjacent edges, we obtain the formula for the force S  at the corner 
xy 

pr.int 

x1 

As we would expect, in the new coordinate system the twist of the 

surface element, characterized by the quantity j-g-       is nonzero, 

since one of the families of coordinate lines no longer coincides with 

the lines of translation. This ensures retention in (1.30) of the 

term containing ^-    and in the final analysis, assures equilibration 

of the vertical load in the corner zones by the tangential forces 

alone. For the boundary condition version adopted 

S„= ■»j« 

rt ' .      'm'7Tm 
(2.11) 

Using  (2.11),we find the tangential forces at the point [~yfa'~~7=a) 

directly from  (2.10) 

*«—&—*£- (2.12) 
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(2.14) 

This formula shows that if the paraboloid of revolution has a poly- 
gonal planform the tangential force at the corner points is propor- 

tional to tgx and has a singularity only at the point x =4= while 
this force remains finite for all other values of the angle x in the 
intervals 

0<x<f. !<*<« 

Moreover, (2.14) implies that Sxy changes sign as the angle 
X passes through the singular point. For example, if the surface 
(2.1) has a regular hexagonal planform, i.e., *=*y«, then we 
obtain 

Stf9*!?—- 

In conclusion we note that in certain cases the forces In the 
shell with oblique planform may be obtained by simple scaling, with- 
out solving the differential equations, if we know the solution for 
the corresponding shell in the rectangular Cartesian coordinate 
system. We shall clarify this by an example. 

Let the shell midsurface be a surf& ie  of translation whose 
equation is 

*(*.»=/i W+/.ty). 

(2.15) 
and the lines of translation z, ■ f (x) and z„ ■ f_ (y) are located 
in mutually perpendicular vertical planes.  In the case of a load 
which is uniformly distributed over the shell planform, the Pucher 
equation will have the form 

V   f#^<* W  -*•• (2.16) 

■ 

Nov let us assume that the solution of (2.16) is known and examine 
another surface of translation with nonrectangular planform, whose 
lines of translation are located in vertical planes which form the 
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arbitrary angle x with one another, and are also described in these 

planes by the equations z. = f1 (x) and z0 = f„ (y). For the same 

load q = -q  the equation (1.30) for such a surface takes the form 
2j        \J 

from which it becomes quite clear that for the same boundary conditions 

all the internal forces in the corresponding sections of the second 

shell may be obtained by simple multiplication of the known forces 

for the first shell by the constant sin x- For example, the case of 

a cylindrical surface having a parallelogram planform immediately 

reduces to the analogous surface with rectangular planform. 

Consider still another example. 

Let the equation of the shell mid- 

surface expressed in oblique Carte- 

sian coordinates have the form 

For q ■ -q the equation (1.30) z    o 
for such a surface will be 

Figure 4 and on the hasis of(2.3) the cor- 

responding function 

Fss nr [£<*-***) - ik+T V+rt]** x. 

vanishes on the triangular contour (Figure 4). Thus, by multiplying 

(2.4) by sin x we obtain the solution in closed form for the surface 

of translation which is analogous to an elliptical paraboloid and 

has the indicated triangular planform. 
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SOME CASES OF TORSION OP BARS WITH 

VARYING ELASTIC MODULI 

S. G. Lekhnitskiy 

The problem of torsion of an elastic bar of constant cross 

section in the classical formulation, i.e., under the assumption 

that the deformations are small and the material obeys the generalized 

Hooke's law, is known to reduce to the determination of a stress 

function which satisfies in the region of the cross section a 

second-order linear equation and takes a constant value on»the con- 

tour. For a homogeneous bar this equation has constant coefficients 

which depend on the modulus of elasticity [1, page 149].  However, 

if the elastic moduli are continuous functions of the coordinates 

we obtain for ♦-■he stress function a second-order differential equation 
with variable coefficients, and the question of finding an effective 

solution for the torsion problem becomes much more complex.  It 

appears that this problem has been solved only for a bar in the 

form of a solid or hollow circular cylinder having cylindrical aniso- 

tropy, with elastic moduli which are constant along the length [2] 

[1, pages 203-205]. 

In the present article we consider several cases of bars with 

variable moduli for which an effective solution of the torsion problem 

may be obtained elementarily, using the same methods used In solving 
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the corresponding problems for the homogeneous Isotropie bar. These 

cases are, first, an orthotroplc bar of rectangular section with 

shear moduli given in the form of exponential and power-law functions 

of the single coordinate y and, second, a tubular bar having 

cylindrical anisotropy In which the moduli depend on the distance 

r from the center of the section and vary along the length. 

S 1. General Torsion Theory Equations for 

a Bar with Rectilinear Anisotropy 

Consider an elastic bar of arbitrary constant cross section 

having rectilinear anisotropy. We use the x, y, z coordinate system, 

aligning the xy plane with the plane of one of the ends and directing 

the s axis parallel to the generator (Figure 1). Forces which reduce 

to the twisting moments M    are distributed over the ends. 

We make the following assump- 

tions: 

1. The bar material obeys 

the generalized Hooke's law and 

experiences small deformations 

under the influence of the load. 

2. At each point there is 

a plane of elastic symmetry normal 

Figure 1 to the bar centerline, and conse- 

quently the number of independent 

coefficients appearing in the 

equation of the generalized Hooke's law is 13. 

3. The deformation coefficients a*,  are continuous differenti- 

able functions of the two coordinates x and y,but do not very along 

the length of the bar. Thus, we shall consider only "continuous 

inhomogeneity" and exclude from consideration bars composed of 

different materials (composite bars), in which the elastic properties 

vary abruptly from point to point. 
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We shall use the conventional notations of elasticity theory. 

The basis of Saint Venant torsion theory is that four of the 

six stress components vanish 

(1.1) 

while the other two, as implied by the equilibrium equations, are 

expressed in terms of the stress function *(x,y) 

*«=?*. V—"~it' 
(1.2) 

In view of (1.1).,we write the equations expressing the general- 
ized Hooke's law as follows 

(1.3) 

where 

•*ae='C» •••• Tjw=,3p+-y, (1.41 

u, v, w are the projections of the displacement on the directions of 

the x, y, 2 axes. 

From these equations ,we obtain the expressions for the 

displacements 

«= -l/*+P*—TV + «*, 
v—%St+\x—a*+V* 
« = ?(*. >)+V-M + «!i (1.5) 

and the equations which the "torsion function" $ and the stress 

function must satisfy 

(1.6) 
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Excluding * from (1.6), we obtain a second-order equation with 

variable coefficients for the stress function 

#*%-•»%+$(**%-•*%)- 
(1.7) 

The boundary condition for $ is derived Just as in the case 

of the homogeneous bar and reduces to the following: the stress 

function takes constant values on every contour bounding the 

section; in particular, in the case of a singly connected region n> 

on the contour. 

The constant • , the relative rotation, or twist, is proportional 

to the torslonal moment 

•a« IT- 

C=\tt*dxdy. 

(1.8) 

in the case of a singly connected cross section region S the 

stiffness C is 

(1.9) 

The constants *»Ä.T.**«W^. which express the "rigidrt 

displacements, are determined from the conditions at the restrained 

end of the bar. tfe consider the end z ■ 0 free and the end z  ■ 1 
restrained,and we find all six constants by requiring that a small 

area in the z «* 1^ plane (JL is the bar length) be stationary. 

i 2. Orthotropic Rectangular Bar 

In the case of an orthotropic bar,the number of independent 

coefficients a*, reduces to nine. If the bar is orthotropic and the 

coordinate axes are directed normal to the planes of elastic symmetry, 

in (1-3), (1.6) and (1.7) we must set 

««=0, ou=z±. 37. «u = ^. (2.1) 
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where G,(x, y), G ,(x, y) are the shear moduli for the planes of 
elastic symmetry parallel to yz and xz. We obtain the simpler equation 
for the stress function in place of (1.7) 

4fr3)+*(4-*)-* <2.2> 

which becomes in the case of a homogeneous bar an equation of the 
elliptic type with constant coefficients and, in particular, the 
Poission equation for a homogeneous Isotropie bar. 

Consider torsion of an ortho- 
tropic bar of rectangular section 

jt with sides a and b. We assume that 

{ 
',"' n   tfA'S/ffly ^ every point are parallel to the 
 P*7 -g£—x        planes bounding the bar. Directing 

the planes of elastic symmetry at 
every point are parallel to the 

.r the axes as shown in Figure 2, we 
restrict ourselves to study of the 

Figure 2. cases when G, and G- depend only 
on the single coordinate y. In 

these cases it is possible to use for the solution the same series 
method as is used for the Isotropie and homogeneous orthotropic 
bars. 

The boundary conditions reduce to 

(2.3) 
$=0 for <=0, x—a, y=±j 

We expand the right side of (2.2) into a Fourier sine series 
on the interval (0, a) and obtain 

We seek, the expression for \j>  in the form of the series 
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It will satisfy the conditions on both sides x * 0, x = a. Substi- 

tuting (2.1) and (2.5) into (2.2), we obtain 

*+*W*-I*;*«- 
«1-1. 3. 5, 

(2.<5) 

Denoting by Y. Q the particular solution of the inhomogeneous 

equation (2.6) and by Y  and Y _ the linearly independent solutions 

of the corresponding homogeneous equation, we obtain the general 

expression for the function <|* 

*■ 2 (A>Y*+B>r»+r») sin **X 
»-!.*•.. 

(2.7) 

The constants A., B. for each value of k are found from the con- 

ditions on the sides y— ± -|  and are expressed in terms of * , 

which in turn is found from (1.8)-(l-9). 

It is obvious that the particular solutions Y. ., Y. „ cannot be 

found in explicit form for arbitrary G. and Gp. The solution of the 

inhomogeneous equation for Y.Q is found from one of the known solutions 

of the homogeneous equation with the aid of quadratures. 

Let us analyze further two cases of the representation of G, 

and G„ in which the particular solutions of the homogeneous equation 

corresponding to (2.6) are found simply: these solutions are express- 

ed either In terms of elementrary functions or Bessel functions. 

i 3- Rectangular Bar with Shear Moduli 

Given in the Form of Exponential 

Functions 

Lot the shear moduli of the bar shown in Figure 2 he given as 

follows 

?i=fi^"^. 0,= &x« » • 
(3-D 

where n Is any real number: positive, negative, whole, fractional or 

zero, and g,, g0 are constants having the dimension of the shear 
2 

modulus, i.e., kg /cm . 
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Substituting (3.1) into the equation for Y.,we obtain a second- 

order inhomogeneous equation with constant coefficients 

K+^K-(^*K.--JS^ 

Here 

(3.2) 

(3-3) 

is the ratio of the shear moduli, a constant. 

Equation (3-2) is easily solved. We denote: c - a:b (ratio of 

the sides of the section), 

*=0.5(j/*+?£,-*i), 

/•=0.5(}/^T?7.+'»). 
(3.*) 

In the following,we shall drop the subscript k in these quanti- 

ties for simplicity of writing, i.e., we write s, t in place of s. , t.. 

The general integral of (3.2) is 

an in amr 

(3.5) 

Determining A. and B from the conditions 

*(*)-*(-*)-* (3.6) 

we obtain the final expressions for the stress function and the 

stress components 

(3.7) 

„   — *1L£L v 

*2* |,sh(n-/)^*' +<ih(/iT*)y«    * _!2H      fe[ 

$h(« + 0-j- 
«*       I sin ]■ 
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«-Af±x 

^ L      rtd + Oy J 
(3.8) 

Here and In all the following formulas the symbol £ denotes for 

simplicity summation over odd k from 1 to • , as in (2.7). 

The expression for the stiffness, found from (1.9). has the 

form 

'2>[*' 
c=£to£Lx 

? + «shT 
I J ■k(« + Oi (3-9) 

We know that the maximal stress in a homogeneous Isotropie bar 

for a > b is found at the points x=l,y= ±jt i.e., at the 

mid points of the long sides of the rectangle. The question of the 

location of the most highly stressed points in the present case can 

be only resolved by specifying numerical values of n. 

In a particular case we obtain from C3-7)-(3.9) formulas for 

the homogeneous orthotropic rectangular bar. Specifically, setting 

n ■ 0 we obtain 

Then (.3*7) and (3-9) hecome the familiar expressions [1, pages 

157-158] 

•-^SX'-^K (3.1D 
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c-^SM'-iYZ**). 
(3.12) 

S 4. Rectangular Bar with Shear Moduli 

Given in the Form of Power-Law Functions 

It is not difficult to obtain the solution in those cases in 

which the shear moduli are represented by power-law functions of the 

distance, namely, 

o.=f,(^*f. O,=*(4ä.)-. (4.1) 

Here m and n are any real numbers — positive, negative, 

whole, fractional or zero, equal or unequal; g,  g~ are constants 
i, d 

having the dimension of the shear modulus; and y_ is a positive 

constant with the dimension of length. Since by definition the 

shear moduli cannot be negative and imaginary or complex numbers, 

we shall consider that the bracketed expressions in (4.1) are always 

positive within the rectangle, or at most vanish at the side y ■ -b/2, 
i.e., we assume that yQ 

>  b/2. 

Equation (2.6) will have the form 

(f.=fi«fi). 

2%r(y+yJr* 
, (4.2) (4.2) 

We Introduce the new variahle 

•n=y+y* 
C4.31 

and denote by primes, derivatives with respect to n,rather than with 

respect to y. Then we obtain in place of (.4.2) 

rt+5 K-(£)**"-V-K,=-ÄftiV. (4.4) 

The integral of this equation is expressed In terms of Bessel 

functions (of Imaginary argument) [3, pages 52, 53, 47]. 
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We introduce the notations (the sign of the expression for N 

is selected so that N > 0) 

 «-I .— * + »-■ jy - . _ ■-'    ^-.l^s 
(4.5) 

Then for noninte^er N the particular linearly independent 

solutions of the homogeneous equation corresponding to (4.4) will be 

,  KM=VMTY), K«=IJ-"/-.V(TV). (4.6) 

where 1^ is the Bessel function of the first kind JN of the purely 

imaginary argument iyn . For integer V   we must substitute KN(Tn ) 

(the Macdonald function), in place of I_N(vn ) . 

We find the particular solution of the second-order lnhomogeneous 

equation (4,4) for the known Y. ,; this solution will have the form 

*$£ K„ J(KüV JK„rf,)rfT(. (4.7) 

For N not «qiftal to an integer or zero, we obtain the following 

expression for the* stress function 

For integer or zero N 

We find the final expressions for \\>  after determining the 

constants A. and B. from the conditions at the sides y=±j,  but 

in view of the^r complexity we shall not write them out here. Nor 

shall we write out the formulas for the stiffness, which are obtained 

fro« (1.9) after determining A. and B. (which, just as Y , will be 

proportional to the constant * ). 
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§ 5- Particular Cases of Power-Law 

Dependence 

We shall consider the most typical cases of power-law dependence 

of the shear modulus on y + y . 

Equation (4.4) and the expression for $  are simplified somewhat 

re proportional to the £ when the shear moduli are proportional to the same power of y + y , 

Then (m ■ n) 

•«^.»-l. *-±^.T«£VA.     (5.2) 

We write the expressions for the stress function for four parti- 

cular cases of this sort. 

1. Linear dependence 

*«2 l**,i/ita)+&n/r1(Tij)+>'»lsin*r 

2. Inverse proportionality 

*=ssl, «=0, JV=0; 

*= 2}l**/.(7l) + ***.(r)) + M s,n^£ • 

3. Moduli proportional to distance squared 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

* = —2, «= —y, /V—y. 
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In this case the formula for i/» contains Bessel functions of 
3 

order   ±y , which are known to be expressible in terras of the 

elementary functions. We obtain finally 

f~2^(*T*~™,*T,,)+A(d,T,,~ipi,h")+ 

+ W*n%. 
(5.8) 

4. Moduli inversely proportional to the square of the distance 

y + y, 

(5.9) 

♦«^(^'•hro+fl^chTI+^tJn^. (5.10) 

i 

We shall not write out the particular solutions for Y. Q since 

they are quite complex; they are found using (4.7) with the aid of 

two quadratures from expressions containing Bessel functions,or in 

cases three and four using hyperbolic functions. 

We note another particular case in which the stresses are 

expressed in terms of elementary (power-law) functions. 

Let ^wr--*-4*tf 
«as«—2, 

(5.11) 

where n is any real number, in particular zero. The equation 

(4.4) becomes the Euler equation 

rS+Art-j^n—ajp,.. (5.12) 

The expression for the stress function is written as 

f« »A»" ■><***+A 

(5.13) 

v+V-) 
Hx 

i — 
a 

+-+(fH 
I 
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Here 

x«as[y(«-i)»+4(^),-(« - D] . 
t=0#[Y (i,-l)»+4(£)' +<«-!)] 

(5.14) 

(the subscripts k for A and u are dropped). 

These examples of the rectangular bar with variable elastic 

moduli do not by any means include all possible solutions of the 

problem. However, they show that there are a large number of function- 

al dependences of the moduli on the y coordinate for which the 

torsion problem is solved nearly as simply as for the homogeneous 

Isotropie bar.  In addition to the exponential and power-law functions 

we could cite many others, but we shall not do tnis here; rather we 

shall consider a different sort of case, which seems to us to be    j 

of no less interest. 

S 6. Torsion of Tubular Bar with 

Cylindrical Anlsotropy 

In conclusion,we shall present the results of a study for^a 

bar having anlsotropy of a different kind, namely cylindrical, and 

we shall Indicate how the elastic moduli must depend on the coordinates 

In order that the qualiuative stress distribution pattern be the 

same as for the corresponding Isotropie homogeneous bar. 

Figure 3 

Consider a bar In the form 

of a hollow circular cylinder whose 

material obeys the generalized 

Hooke's law and has cylindrical 

anlsotropy with an axis of anlso- 

tropy coinciding with the geometric 

z axis; we consider the deforma- 

tion coefficients a., to be con- 

tinuous functions of the coordinates. 

One end of the bar is restrained, 

while forces which reduce to the 
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torsional moment M act on the oth^r end. 

coordinate system (Figure 3)« 

We use a cylindrical 

The stress distribution in the homogeneous isotropic bar is 

characterized by the single stress component ig , which depends only 

on r. We shall clarify the conditions which the variable deformation 

coefficients must satisfy in order that only one te of the six 

stress components in the twisted bar be nonzero, and we shall find 

this component. 

We shall not consider the most general anisotropy case, rather 

we shall assume that 1). the relative elongations er* 
£
e» 

t
z> 

are- independent of T 8, , i.e., a 

coefficients a M» a/»5* aü6 
14,' 

a24*a34*° and 2)* The 
are given in the form of products of 

functions of z alone by functions of r alone, i.e., 

«i«=Z-(z)*4«(0. a»3B£,(*)»4i(r), ou=ZM(z)bM{r). (6.1) 

The remaining coefficients a., may be any functions of the 

cylindrical coordinates r and z and also of the angle e. These 

assumptions are quite general, although they obviously do not Include 

all possible cases. 

Setting 
ar=sn=9as=t„s=xtt=0, *,==•*,(#"), 

(6.2) 

we write the generalized Hooke's law equations 

(6.3) 

Expressing the deformation coefficients in terms of the 

displacement projections u -
U
Q*"W along the directions r, e, z and 

considering the displacements to be functions only of r and z, we 

obtain from (6.3) 

FTD-HC-23-36I-69 89 

■ . 
■ 



Z.»l, «raO. «ft* J *„*,*+■(,, 

and the equations relating u« and Tg, 

(6.4) 

(6.5) 

These equations for u. will be compatible only if 

Zu=Z(z), Z„=JZ«fc+« (6.6) 

(o is a constant, Z(z) is an arbitrary continuous function). 

Consequently, 

,J     ; (6.7) 

Excluding the displacements from (6.5), we obtain the equations 

for rez 

*P«r^-* (6.8) 

Introducing the function 

m j* 
(6.9) 

we write the final expressions for the stress and displacements as 

follows 
*-HP= 

«,=0, 
»=:t(JZrfz+«)r/(r)+f, 

(.6.10) 

(6.11) 

Thus,we find that if the deformation coefficients are given by 

(6.7) the stress and displacements are defined by (6.10) and (6.11) 

We find the constants u and wQ  from the conditions at the 

restrained end z » 1 and the constant « from the formula 
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.JfiJB. (6.12) 

(the stress t   In any cross section reduces to the torsional moment 

5).       z 

In particular, for the orthotroplc bar (with planes of elastic 

symmetry normal to the axis, radial and orthogonal to the first two) 

we have 

.«•■»«••=0, »„=»„=0. 
(6.13) 

If the shear modulus for the radial planes of elastic symmetry 

(i.e.» those passing through the geometric axis z) is given in the 

form of the function 

n I _   1 
(6.14) 

where Z and b^ are arbitrary continuous functions of z and r, then 

the stress t9  is found from the formula 

where 

m 

The corresponding displacements will be 

«f=f=fl, 
*i=§r(rzdfc+«»). 

(6.15) 

(6.16) 

(6.17) 

Hence, after determining uQ from the condition at the restrained 

end u„ ■ 0 we find the total twist angle 
8 

•-4-<«.u--»fz*. (6.18) 

For example,  if the shear modulus is given by the formula 

a>=fhn    ■«•>* (6.19) 
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we obtain 

'♦•'* (6.20) 

As for the stress, it is independent of z in both cases consid- 

ered here; we obtain the same stress for any representation of the 

function Z(z) and it is found from (6.10), (6.12) or (6.15), (6.16). 

Thus»the factor Z(z) affects only the deformation of the bar in 

torsion (more precisely, the displacement ufl and the total twist 

angle). 
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CYLINDRICAL SHELL AND PLATE SUBJECTED TO 

A MOVING HEAT SOURCE 

K. Kh. Kozhakhmetov 

and 
R. M. Plnkel'shteyn 

We consider thin circular cylindrical shells of radius R and a 

semi-infinite flat plate under the influence of a moving heat source. 

The temperature is distributed linearly through the thickness of 

the shells and plate. 

NOTATIONS 

K - thermal conductivity 

K0 - heat transfer coefficient 

c - specific heat 

p - material density 

h - shell and plate thickness 

v - source motion velocity 

ir - heat source density per unit middle surface area 

'ff \ *?rf*- coordinate of source "center of gravity" 

q - specific output of heat sources 

z - coordinate along normal to middle surface 
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l«<4— dlmensionless coordinate in the direction 
of the generators 

t - time 

«■J^aep- - dimensionlesa time 

PQ - Fourier criterion 

l*~-- dlmensionless distance traveled by source 

< - Dlrac function 

TQ — middle surface temperature 

K - temperature gradient through shell thickness 

r*=-2ttp-.- dlmensionless middle surface temperature 

/f* = %E ~ dlmensionless temperature gradient through 
shell thickness 

—*. *-(?)'• '-&• 

«rf(*)=^(V',rfy • » Qauas function 

u - longitudinal component of displacement vector 

w - normal component of displacement vector 

U0im m   - dlmensionless longitudinal component of 
■  displacement vector 

«•_ • - dlmensionless normal component of displace- 
*  ment vector 

a - thermal expansion coefficient 

E - Young's modulus 

v - Poisson's ratio 

FTD-HC-23-361-69 
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■*• i_»» - congressional stiffness 

~ST' '•SBF' ^~lä|f-^>- cylindrical stiffness 

• 'i. T* - forces 

Mx, Mi _ bending moments 

I. Semi-Infinite Shell 

§ 1. Temperature Field 

We assume that the temperature of the medium is zero,and the 
heat transfer coefficients from the outer and inner sides of the 
shell are the same. Then for a linear distribution of the heat 
through the shell thickness 

r<*, z, t)=r,(jc. /)+ZK (x, t) (2 •1} 

we have for TQ and K the Independent equations[l] 

a , »q | «* r - Q 

TT - * "ST + ("ST + «ST j * - If» **• (1.2) 

or 
dT» 

HP 

The Initial and boundary conditions for (1.2) are 

r,=/f=0 for/=0, 
r,=IC=0 for *=Oand forjc = ac. • 

Then these conditions for (1.3) take the form 

T* = /P=0  for*=0. 
T*=/C=*0  for 5 = 0 andfort = <». 

We apply the Fourier sine transformation to the new (1.3) 

• (a. t) = 

(1.3) 

(1.4) 

<a,T)= j/|f 7*«, t)stn*ft. 
(1.5) 
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Then this equation takes the form 

whose solution will be 

and after transformation we have 

Calculating the integrals in (1.9)»we obtain 

™*-s5rT*H«v*-&)'* 
X[l-«f(«.^-j^-) 

x[i—1(^+^)1 + 

-l«*p(«tl^—jp-)Tx 

+exp(«lr/f+ilfj,X 
X 

X 

forO<x<«. 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

Since the second equatlonof(1.3)differs from the first only by a 

constant factor, we can immediately write 

x[i-«f(«1^+i^r) 
+eip(-.Kt + fJr),X 

(1.11) 

xfi-«f(-^+Tf«)]) + 
(Equation continued on next page) 
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(Equation continued from preceding page) 

--■u 
,/l+7» <sh *»Z+ch *,*) + ^ff^p (sh */-ch »hit) 

£orO<x<«, 

-^TOf»-^      £orO<X«i 

■^=ßt—«sh «,*      for 0<? < X. 
(1.11) 

It is not difficult to see that (1-.10) and (1.11) satisfy the initial 
and boundary conditions. 

Now let us find the displacement field. We shall consider 
separately the quasistatic case (dropping all the inertial terms), and 
the case in which only the inertia of the normal component of the 
displacement vector is taken into account. 

§ 2. Displacement Field (Quasistatic Case) 

In the quasistatic case,the thermoelastic equations in terms of 
displacement for this problem have the form 

w 5£- +A%» = - BT* - C ^~ 

+^ = ^7-* 

(2.1) 

(2.2) 

Let the shell be pin-ended.    Then the solution of  (2.1)  must  satisfy 
the conditions 

Wß, 0)=«*(0, t)=^^- = W'(cc, *)=0. 
(2.3) 

Applying the Fourier sine transformation to (2.1) under the conditions 

v2.3) 

■,(M)=}][»,({. 'Osln»5</5, 
i (2.4) 
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we obtain Y — B |(«? + f) sin i7. - am co* »y.l 

/T j^+rtt 

— («•+*>l(-*+:tF+«,*1l 

and, Inverting  (2.5), we obtain 

«ris, •)—-7-1 («.+fr|(;r^py+ag^ ««n«w« 

4. S f «*}(«*+ 1*>»""X-««» co» r/j _,_ 

a»a •»-'^W'sioaS 
rfa 

"*" e J (-+>**)((«s-rT*)»TSiPrai- 
2*C f 

We obtain from (2.2), taking account of (1.10) and (2.6), 

dm* __ 2»fi f («* + P)«in«x~««coi«y. trf  _ 

»g f «» K* + ^t) sin «x - im cos «xl ,,n M-  ■ 

mr******** 
f(«*+ ,*)» +.*«•*) 

</,. 

Jv*cf       ■»-<*'+i,>'sin«;       rfa 
T"^ (^ + ^4)((«s + Ts)« + «im«) aa 

-SroHK- 57r)'[' -'■("^- ijr)] - 
-exp^^+j^r)'[l-erf(«,V^+Tt?) - 

 Cg    («-».«-«-«-«.(5+rtl   f or 0 < x < E, 

«-»••e £or0<x = 5. 

e-««'sh/7t; for0<6<x- 

CR 

CR 

(2.5) 

(2.6) 

(2.7) 

3ft* »T+ (i* 
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The Integrals in (2.6) and (2.7) break down into a series of taoulated 

integrals. The calculations of these integrals follow. 

4-J MK9RU *-f ^+ar »**+ 

^M-^)l(<>+*)wdV+ 

+(fc-l.) _'.\«.4S=jt.l- /H-exp(- )x 

x[(wi)-T+(*-'')"Tl+ 

■5-M-Hü*)!1—^*+*-*W-l+' 

- y (l ,r-* ih «,? + I*-»* th «,?)  £ o r 5 < x; 

+ 

(Equation continued on next page) 
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(Equation continued from preceding   page) 

'<=/?* 

iFn[«'(-^)[(''+äf)»V+ 

+(*-'.)«»!Vl-K'(-d^)x 

+2£11«~"'*sli«,5+2£,1e-"ash«|g     for{<X; 

_L#       P     «tl««eCOI«I     v_   ,    ,       f    a Haag COS«       . 

|{exp(^)[£llcos^>-^,!„dii?>] + 

+ f te»'""'1 *h «i5 + ^u*"*1 »h «hO f or * < X- 

Here, the notations are: 

i. 
_    *-«M+?(«?+«!) 

x 

£,= 

(Equation continued on next page) 
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(Equation continued from preceding   page) 

*'~(*-^^(^r '■•= {L+tf'+#ti+4-    (2-8) 

u
—-f^r-*N== «?--£ • 

NOTE: In specific cases the calculation of these integrals 

ic simplified considerably. The quantity  *'=-£. even for 

large values of the heat transfer coefficient and small source 

velocities is much smaller than one. 

For example, for a steel shell of thickness h * 1 cm and source 

velocity V « 10 m/hr 

.2 

- ^°-3 [fc] •• ■ ••" [»] »■««> p] 

«?=G.00035/r« 

2 
for KQ ■ 35 kcal/m .hr.deg 

For these same values 

«■<!. 

2 
and only for velocities of the order of 300 m/hr is p «0.01, 

i.e., also small in comparison with one. 

2 
For n ^ 1 
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If In this case P2« 1, then 

and for P^>1 

(a) 

(b) 

(c) 

The constantsL, from (2.8) are simplified correspondingly. We denote 

Mi.t>=ie*p[-^]x 

x([«(i.Ä-£aC) + -i:j(£,C-tlB) + -is(I1.C-M)]x 

X co»^—1 + [-J(£.*-£»C) + ^(L.B- £,C| -J- 

+ 7J-(II/:_ItB)],|Bd^.) for;>z:        / 

xj[-^r(£,B-I,C) + -7i:p(I1B-l.MC)+fli(I^-£uC)]x 

Xcos^). + [7^(l,C~Ilfi)+-^(/:i8-£l.C) + 

+ £<£.*-£»C)]sin4£^) for«>z: 

Ti (?. *)=«*•''- (4 *•« sl> "i/- — «i; ch *,x) + 

+ '-** (4 ^4sh *«/. — »»£»ch *»x) f or I > *: 

f 4 (?. *)=«""^ (4 £ " sh "'Z "" mi '* ch m&) + 

+ «-«-1 |4 *« sh W*X — *iw ^ »"A) f o r 5 > /.: 

X j[^j <£,C-£,8) + -^(£MC~ £,fl) + m <£,B- £„C)] X 

X cos^ii^-+ [i^J(£.C-£!B)+^ (£^-^,.0 + 

+ -£(£HC-£.*)]»I"di^jL) for«</: 

(Equation continued on next page) 
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X 

X 

(Equation continued from preceding page) 

*o.«>«i«p[-^]x 

W«l(%/7-^)]-*.^H^+lM[X 
l-.erf(-llVT+•i^)]+i».«p('««>'*-Vf)

, x 

Xll-erf^+^f)]); 

-«,(-* ^+^)'erfc^/M- ^)]); 

Xtrfc^l^-^-exp^+^erlc^/^+^J-f 

+ (^+^)[«P(~^S-^),erfc(->l^-^f) 

-exp(-^/S + i^)
,'er.c(-M/S+^f)TV 

X 

X 

X 
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Then we have the following expressions for w§ and    -ißr 

+( 

••ft *>=-T/I& ')+¥/»«• l-8?/^ *>+ 

»ift *)+*.«, *)-*?»(?. ')+Cf4fc *)  for?>X. 
t»ft *)+?.«. t)-*f,(S. *)+<*.(«, t)  f0r?<X; 

r 
Kfl_. CÄ» '••1« 

^nsr(«p(%/?-i^rJ,x 

x[,-.«,(%»ri + 5^)||--(/l+±A)+-(/-+i/i) 
Ti+fi-gfi-t CT«+ a^i^Ty? x 

X 

X 

X 

?.+*—*fr+C?i+ C* 
»/! + «• 

xr-««h/M f»r«<x 

(2.9) 

C2.10) 

The forces and moments  are calculated from 

(2.11) 

i 3. Displacement Field (with account for 

inertia of normal component of the 

displacement vector) 

In the case of the displacement field (with account for the 

normal component of the inertia forces),the thermoelasticity equations 

in terms of displacements will be 

d*w* ■ A*W = -BT» - C %£ - D^- 

~+^.=^rv CR 
"SS 

(3-D 
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Applying the transformation (2.4) to the first equation under the 

conditions (2.3), we obtain 

-npTWTSi» WA+.M    (3.2) 

w-(«.0=^=^=0. (3-3) 

Solving (3.2) under the conditions (.3.3) and then inverting 

the result, we obtain 

—2««co»Tt) —II»«T((COS*/ —2cotv))J3in«W«. 
From the second expressionof(3.i)with account for (3.4) and (1.10), 

■ » ff ^.. <■»+P) »"Mx-1 en» ^+ »-<*+»» . 

+ fr|^+fo+L«lh*-,»«*| [V+m'ln**-*™«»*)- (3-5) 

— «w| (cos «n—2 CM ijt)l J tin «5<fa + 

+ 

cw 

*-*■* £orO<X={,   (3.5 
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In (3.4) and (.3.5) we have used the notation 

<-=*^ 

for simplicity. 

II. Shells of Finite Length 

§ 4. Temperature Field 

(.3-6) 

In the case of a shell of finite length,we solve (1.3) under 

the conditions 
T*(i o>=r*(o, t)=r*(/„ x)=o, 

C4.1) 
*•<£, o)=/f(o, *)=*•</.. t)=o.        (]j 2) 

Applying the finite Fourier sine transformation 

•(«.t)=f r*$|n^Ä, (4.3) 

to the first equation (1.3) under the conditions Cl-^)» we have 

(4.4) 

•(«.o)=a (4.5) 

We solve this equation under the condition (4.5) and Invert the 

result. Then 

v* {(iH-^w-^*«"-'+*-«j,-fr+
T)1I 

,,n^ 2 FW «*«* (4.6) 

We obtain similarly 
*•(?. x)= 

»£ 
|[ ;*+ —j-|sina(i-— affcos<M~-fitdexp| — 

n*«f\' 

("+f) 
[>?)» sln- 

+ a««5 

(4.7) 
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S 5.  Displacement Field (quaslstatlc case) 

We solve (2.1) under the conditions 

(5.1) 

We apply the finite Fourier sine transformation 

*•(«, t)=T«*8ln^« (5.2) 

to (2.1) under the conditions (5-1) and after Inverting the result 

we have 
s "•*<>=" 2 5f*+T (-T) 

FfT M«^ + 

(^fj^7 a-t c 

«It — MCM4MR |t, + "'g-J In an 

+~Fff »In me 

From (.2.2) with account for (.4.6) and (5.3),we have 

(5-3) 

Ihf) slnwn — (Wicojam 

FTJ -f a««« 

+«**•* 

«c 
(5.4) 

(Equation continued on next page) 
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(Equation continued from preceding   page) 

4-MMI«! 

tr"*T 
MR 
(-+TJ 

.  «• 

"^[•^TH 
"SfSF\T 

(*+T) 
— 4M cos «m I" + -a- lata «in — <MCO 

r —/    iggra  

(fTf 
sin 

(5.4) 

§. 6. Displacements with Account for Inertia 
of the Normal Component of the Displace- 
ment Vector 

In this case we solve (3-D under the conditions 

(6.1) 

We apply the finite Fourier sine transformation (5.2) to the first 
equation of(3.1)under the condition (6.1) and obtain 

„ + K+Ä*)5.; 

-Bit? + -s-jtMMt-«#ico*a»rj      SIMexp J — (? + -4-\: j 

FTD-HC-23-361-69 

f+x) --«*«* 

:Tlr+Tr —ar I sin air:—«ii cos «#n 1 
4-«»«» 

+ «««* 

(T +T) -f- «*«* 

108 

(6.2) 



»**~Äfra--a (6.3) 

Solving (6.2) under the conditions (6.3) and inverting the result, 

we obtain _/r+*"\, 

.   — aMoww«)—«'.(cotMt- 2cos:t)| + , 

«here 

iMaCt-CcofC^ + te rMfr 

-rSmcOtCt) 

IliU»^Cw)«'- 

(6.4) 

(6.5) 

Prom the second expression (3.1) with account for (4.6) and (6.4) 

ve have 

: — «A COS air: 

+ «*«* 

,">f-(^"f)-il„1Lr,   ■ 
+ «*«» 

(6.6) 

' 

CEquation continuted on next page) 
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(Equation continued from preceding   page) 

■»2 Ban 

X f(p* + ^p\ (v sin a»t—2a« cos Ct) — an', (cos ant — 

2CW:<)]-C^W L -f/ ygg T + 

sin ant — 

— 2a» COS It)—« C (cos ant—2 cos ,,] sln- 

(.&. 6) 

III.    Plat Plate 

The temperature  field for the flat plate has the same form as 
for the  semi-infinite cylindrical shell.    The temperature field for 
the  latter was  found above in  (1.10),   (1.11).     In the case of the 
flat plate,we must set in  (1.10)  and   (1.11) 

l-f, *=£, *=•*   „=£*, ?.= 2M 

We also note that in the case of the plate 

r--3K*-&«. 

(7.1) 

(7.2) 
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For the quasistatic case the tangential and normal components of the 

displacement vector will satisfy the very simple equations 

N 

(7.3) 

If we assume that the ends of the plate are also freely supported, 

then we have   g— ag^«"*"*{«^%y?-5frjTx 

x[l-ed(«t^+JJT)]j + 

|r-M-a-«-^i»|   £or5>z, 

r7m'-^«"M for«<y.; 

X 

x[i—i(-Hi^-i^)]-H"4,^+iwrx 

+*aülL±ä 
I 

11     Ir-*-*>-#-*+*>l f0T ;>x 

for 5<2 
,7iT?e"",l8h^ 

(7.4) 

(7.5) 

If we now consider the inertia of the normal component of the displace- 

ment vector, the components of the displacement vector will be defined 

from the equations 

*»*_ 3*T»«(1 + ») »y »ay»»(l-v») d«w* 

JJJ 

IST + 
(7.6) 
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We see that the first equation here coincides with the first 

equation (7-3). As for the second equation, applying to it the Fourier 

sine transformation, as in the case of the cylindrical shell, for 

hinged-free edge fastening we have 

(7.7) 

Here we have denoted for convenience 

**- tJ(t—*)   ■&£? (7.3) 

The forces ar.d moments are expressed as follows in terms of the 
displacement components and the temperature 

Tl(lx)=Di^.~mi±^!!£i.T* 
^ My *   » 

(7.9) 

Received 8 March 1964, 
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INTEGRALS OF THE EQUATIONS OP AXISYMMETRIC 
VIBRATIONS OP SHELLS OP REVOLUTION 

P. Ye. Tovstik 

The asymptotic method for integrating equations with small 

parameters in the higher derivatives is employed to integrate the 

system of equations of small axisymmetrlc vibrations of a thin elastic 

shell of revolution. In some frequency range the resolvent equation 

has a reversal point. In this article we consider the case in 

which the coefficient of the second derivative in the resolvent 

has a simple root (simple reversal point),and we find the Stokes 

multipliers relating the integrals of the resolvent to the right 

and left of the reversal point. Moreover, the integrals in the im- 

mediate vicinity of the reversal point are calculated.  As an examplet 

we examine the problem of the natural vibration frequencies of a 

shell with clamped edges. 

< 
The present  article is an extension of the study     initiated by 

Alumyae  [1]  for a conical shell. j 

i 
i I. Equations of the Vibrations of a , 

Shell of Revolution 

After separation of variables,the system of equations of small 
i 

axisymmetrlc vibrations of an elastic shell of revolution has the 

form [2] 
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-^•-fr*-i(^(*-*(**)))-a (l.i) 

Here s Is the meridian (generator) arc length; u and w are the 

projections of the middle suiface displacements on the direction of 

the normal and meridian; B = B(s) denotes the distance from the 

middle surface points to the axis of revolution and is assumed to be 

a holomorphic function of s; R. and R are the principal radii of 

curvature, and 

*==(' — ')X»  where a is Poisson's ratio; p,density; p,the 

vibration frequency; E,Young's modulus. 

(1.2) 

The shell thickness is denoted by h, which we assume small in 

comparison with the characteristic radius of curvature. We Introduce 

the small parameter u by the formula 

«*#=4*- (1.3) 

Excluding u from (l.l),we find 

Without loss of generality we can consider that ff,=a,(j)3( 

Then 

*,=*,(*. i)=i-(i-*)(*.(«»*. (1.5) 
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S 2. Integrals of (1.*) 

Assume the function b2(s) does not vanish In the interval 

«,<*<«, .  Assume B(s) also does not vanish In this Interval 

(thereby we exclude from consideration shells in the form of a dome) 

Then we can construct asymptotic series for the four integrals of 

(1.4) which have a large variability index [3, 4], 

^-tV/»««p|£wi)*).  «=1.2.3, 4. (2.1) 

where u(s) satisfies the equation 

^-V*0l (2.2) 

and the functionsy-fc(s) are determined sequentially in quadratures; 

sQ is an arbitrary point. 

After making the necessary calculations,we find the approximate 

expressions for the Integrals (2.1) 

>«*««tM«)+Oto) Wr (*).   i = 1. 2. 3. 4. (2.3) 

Here the Indices •♦" and -" correspond to b. > 0 and b?< 0.  In 

the case b2> o ,we have 

#f=r*. wt=*: Wtf=«»*. r;=sln*. 

and for h2 < 0 

Here 

*r=*"*sln*,. 

» i 

(2.4) 

(2.5) 

(2.6) 
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To the integrals 12.3) we must add two other integrals V-(s.u) 

and H/-(s.y). corresponding to the zero roots of (2.2) with an error on 
o      n 

the order of u , and coinciding with the integrals of the momentless 

equation 

*»$+*«45"rV=a (2.7) 

Numerical integration methods must be used to find the integrals 

of this equation. 

c 

Now assume the function t>2(s) vanishes at the points 

•y, *,<«,<«!<...<««<**.     Then the integrals (2.3) no longer 

hold throughout the interval (s,, s_), since the form of the integrals 

changes with passage through the points s ■ o. and  * A(«/)="• 

Nevertheless,in each of the intervals  ay-f-«<«<*/+i —»  the 

functions (2.3) are integrals,of (2.1). The question arises of 

the connection between these integrals for neighboring intervals and 

also the question of the behavior of the integrals in the immediate 

vicinity of the points a.. 

The points a. are termed reversal points and the coefficients 

expressing the connection between the integrals for neighboring 

intervals are termed Stokes multipliers.  If *»(*/) *0, the point 

a. is termed a simple reversal point. 

We shall show that the hypothesis of the existence of Isolated 

roots of the equation ft,(s. l)=0      ±s  general.  In fact,  it is 

not difficult to show that R?(s) * const only for two types of 

shells — cylindrical and spherical, and in all the remaining cases 

FL(s) Is not an Identical constant, and in accordance with (1.5) 

there are values of A (and consequently of the frequency p) for 

which the function b. will vanish for certain a. for the Interval 
2 j 

(s„, s0). 

Assume  *»=«#(*)  la a simple reversal   point. Moreover, 

M*»)>0 and in the Interval  (s.. , s?)  there are no other reversal 

points (the case *i(«»)<0   reduces to the preceding case by the 

replacement s1 = -s). 
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Starting from the form of the coefficients of (1.1), we show 

that  *iK)=2Ms).   which implies that the  momentless equation 

f(2-7) has a single regular solution and a single solution with a 

singularity for s ■ a . As the fifth and sixth integrals of (1.4), 

we take the integrals having near s = a  the expansions 

■kM=l+rM(*-*J+r„(«-»J»+...+Ofr«), 

t».W=T(s)«»(«)ln|*-«.l+r~+^(*-"J+- + 
+ 0(^(*-«,)-), (2.8) 

where       iW-^ (-•*(«)+*!«-*.(«)) =^(1L=F^[(i + 

+*)(*)^-i(i)1+(I^(i+i)-^^;    (2.9) 

and c.. are expressed in terms of the coefficients of the expansions 

of bp(s), b..Cs) and bQ(s) into series in powers of s - «.. 

S 3- Reference Equation 

The results of [1] could be used to establish the connection 

between the integrals of (1.4) to the right and left of the 

reversal point. However, the reference equation introduced in [ll is 

inconvenient for studying the behavior of these integrals in 
■ 

the immediate vicinity of the reversal point. Therefore, we intro- 

duce into consideration the equation 

-f (Sr+vjj+vS+fr+tfJ-oi (3-D (3>1) 

where J**ülW is found from (2.9). 

Employing the Laplace transformation, we represent the integrals 

of (3.1) in the form of the contour integrals 

•iW=f(l+-£)eip{l* -££J«,y=l, 2 6. (3.2) 
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where the contours of integration must be selected so that the 

increment of the function 

N 

/(0=(<+lJtexp («<-*£} 

is zero when t covers the entire contour. The function f(t) 
J»ri 

vanishes for t =-Y0 and also for t=ooe s  *=0. I, .... 4. 

Following [l],we take contours of integration which yield real 

solutions (Figure) 

Cl=AlalatA,+ Atata9At, Ct=Afita,Al + AiaiiiA„ 
Ct=A&ttAt,  Ct=Atata^tlAu Ci = al/ila^alat. 

(3.3) 

where the points a. are located on a circle of radius e for the 

points A. recede to infinity. 

To calculate the integrals 

v, 0=1.2.3,4)  and |5)>>|T , 

we use the method of steepest 

descent and find the asymptotic 

expansions of these Integrals [1], 

The expressions for C < 0 are 

shown on the left; those for £>0 

are on the right; the relative 

error of the formulas presented 

below is of order I'C 
4 
T 

Figure 

*" ; ct>s (fi + x) *- "i (') - *% 
d* cos (c, + -£-} ♦- *,({) - -±- (cos ; - sin '.), 

(3-4) 
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where , 
rf=l''2Kn~Tifl~T. 

^=^(-oV 
The integral v5 (?) is a constant 

».©=-2»T.*. (3.5) 

For t<0 the integral v#t{)  coincides with the integral 

«f (0=f(l +-£)«»'*=2(-5-+T.ln|l7.l+...). 

to within  u^C "    •  However, if £>0 the integral (3.6) diverges. 

We represent the contour of integration Cg in the form Cg * Cg + C_, 

where Cg ■■ Pa§a_A ■ Pa,a A .  Then for ?>0 we have 

M«)=*trt<0+J (l +3?)#dt+OW), 
(3.7) 

and the integral along the contour Cg has the same expansion (3.6) 

into a series in £. 

We seek the integrals of the basic equation (1.4) in the form 

WyW =*<«>«, |«(«)|. /= I. 2 6, 

where the functions >,(*)  and £(s) are selected so that the highest 

order terms in the expansion of the left side of (1.4) into a series 

in w will vanish 

-(*i(s))^-^(i + 1^r(,-a.) + ...). 

>.<•>=vv*(sr4 

(3-9) 

(3-10) 
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The Integrals w. (s), J * 1, 2, 3, 4, are expressed linearly in 

terms of the integrals (2.3), which with account for (3.4) yields the 

connection between the integrals (2.3) to the left and right of the 

reversal point. 

S 

The integrals w,-(s) and Wg(s) may be considered as integrals 

of (1.4) only for)«—«,|<1- For |*—«,|>1 the behavior of these integrals 

of (1.4) and (3.1) is significantly different. The integral w5(s) 

of (1.4), which has the expansion (2.8) near s » a , corresponds to 

the integral v^U), of (3.1). 

The representation of the integral Wg(s) for s<0 and s>0 

with account for (3-8), (3.6) and (3-7) makes It possible to con- 

struct the sixth integral of (1.4), since wQ(s) is a good approximation 

of the integral of (1.4) forj*—«,|<l,and these formulas are applicable 

in the Intervals «-si: 
4 

The  following expressions  yield the connection between the 

integrals  (2.3) and  (2.8)  of  (1.4) to the left and right of the 
reversal point, where in  (2.6) we take s_ * aQ.    These expressions 
may be used for    .        ,„   T 

I«.—Sl^l»  : 

»f co» X + •»" ««" T - *i - *£. 

•» "os "j" "f* "y 'In -g- ■*- w, -*■ 

»rsln-i—t 

(3.11) 

where 

«W •>i*iwf *. »=T^«(»;(S)ä(S))
;
. (3.12) 
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§ 4. Behavior of the Integrals Near the 

Reversal Point 

As noted above, the formulas (3-11) are not suitable 
« 

for |#—%|<l»T.  In order to examine this interval of the variable we 

again turn to (3-2). The idea for their calculation consists in the 

expansion of ^.yi ..^   and subsequent term by term integration. 

As a result,we obtain 

",(*>=2«.(cos IftJJlL-« JÄ|ai)^ 

*■* 

^CD-2*"Jfi*a=-^+>b-T(c+'-|^|)+  '  C4,1) 

+ot4). 

where 

k-4 
(4.2) 

C is the Euler constant} r(z) is the gamma function. 

In view of the rapid decay of the coefficients a.. ,the series 

(4.1) are suitable for calculating the functions tjy({)  for ...  T 

Cor for M<0 ) or even in a broader region. 

To obtain the functions «y(s) ,we must use (3.8)-(3.10l .In view of 

the fact that \s — a,|<|iT, the right sides of (3-9 and (3.10) may be 

approximated by the first terms in their expansion into Taylor series 
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«<*)= (M«.))T<*-«.>. Ms)"V-si^i^tjT^. 
(1.3) 

v 

We see from (4.1)-(4.3) that 

»yU)=o(P~*j, ^(^)*O^"W-T) (4.4) 

§ 5- Frequency Equation for Shell with 

Clamped Edges 

Assume that in the interval (s,, s„) the radius of curvature 

R2(s) increases (£»(«)><>)  . Then by virtue of (1.5) in this interval 

there will be a single (simple) reversal point «t=«,(*), if  A, <X<AI? 

where   A,=(l-o»)(Ä,(*,))-», A,=(i -•■)(*,(s,))*. However, if A is outside 

this interval there are no reversal points 

Let the shell edges be clamped, i.e., 

«=0, w=0, -fi- = 0     for«=«,. *=*i (5.1) 

In order to satisfy the conditions (5.1),we need the expressions 

for the integrals u,(s), corresponding to the integrals w.(s).  On 
J o 

the basis of (1.1) the asymptotic expressions for the integrals u. (s) 

with large variability index are 

«>*<*)= («.M+Ofo» Uf(z),     y=i, 2, 3. 4, 
15.2; 

where 

— /    \ • 
«.(«)=H**Ml" *(-k+ii)yo^, unz)=\wt(z)dz. (5.3) 

and Wf(z)   are determined from (2.4) and (2.5). The integral u.-(s) 

is regular while Ug(s) has a logarithmic singularity as w+0 at 

s = ft,.  With passage through the reversal point the integrals u.(s) 

are transformed using the same formulas (3.11). 
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We take the general solution of (1.1) in the form 

*W £f CJUJ C* *(,)=J§ Cy *y(s)* (5.4) 

Using the boundary conditions (5.1)iwe obtain the frequency equation 

A(X,it)=o in the form of equality to zero of a sixth order determi- 

nant. Let us consider various cases. 

For *<•*, we have b?<0 for all s; there are no reversal points 

in the interval (s.,, s2),and the integrals with large variability 

index have the nature of nondegenerate edge effect functions.  In 

this case 

Afcl»>=«P(«i. *)<?(*,. *)-«P(*.. *)«P(*., l) + O(s»)=0. (5-5) 

Here and in the following the superscript (0) means that these solu- 

tions are taken for u « 0. We see from (5-5) that the natural 

vibration frequencies may be determined from the momentless equations 

to within quantites of order y. 

Now let Ai<*<A*-  in this case there is a reversal point with- 

in the interval of integration and the natural frequencies are 

found from the equation 

- «P(*i)«T («i))«n -J- + 0 (3=0, 
(5.6) 

where t tW* J (M*. M)T*. 
(5-7) 

a U) and hOO are found from (3.12),and the functions uf> and "P* 

also depend on X. 

Finally, let  1>A,.  In this case  *,(»)>0,   and again there 

are no reversal points within the integration.  In this case the 

frequency equation breaks down Into two equations:  the momentless 
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equation, coinciding in form with (5-5), and the equation depending 

on functions with a large variability index 

cos-ö-+Ö(n)=ö. 
(5.8) 

N 

where 

fiW»J(M'. *»T*. (5.9) 

4 

E^jations (5-5), (5.6) and (5-8) are applicable if ;x—A,|»y*, |l— 

In order to solve (5.5)»it is necessary to know the integrals of 

(1.1) for h ■ 0. In the general case they can be constructed only 

by numerical integration methods. These Integrals also appear In 

(5.6). However, certain conclusions on the distribution density of 

the natural frequencies can be made even without knowing the functions 

»P and1*4*- 

We write (5.6) in the form 

(5.10) 

In view of the fact that for small p the argument of the tangent in 

(5-10) changes very rapidly with variation of A, to within the order 

u ,v;e can consider that <<(*) remains constant in the interval between 

the neighboring roots A and *«+• of (5.10). Then the distance 

AA between neighboring roots is 

(5.11) 

or, introducing the root distribution density n(A), the reciprocal 

distance between roots, we find 

Sijni larly,   for    k> \  the density n(A)  is 

(5.12) 

.M-^fiW-ifÄtt W"'* 

(5.13) 
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We see from an examinatior of (5.12) and (5-13) that near 

the density n(X) increases .rapidly and reaches a maximal value 

for  lack,, Aj<3^,<At.For 
k>\ the density n(x) decreases. 
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KEGULAR INTEGRALS CF THE EQUATIONS FOR 

AXISYMMETRIC VIBRATIONS OF A DOME 

P.Ye Tovstik 

It is known [1, 2] that the general solution of the system of 

equations of free axlsymmetric vibrations of a thin elastic shell of 

revolution is made up of two integrals of the momentless equations 

and four integrals with a large variability index.  The asymptotic ex- 

pressions for these four integrals may be found easily in intervals 

which do not contain either so-called reversal points or singular 

points of the shell vibration equations» The behavior of the inte- 

grals in the vicinity of a simple reversal point is examined in [2, 3]. 

The equations for the vibrations of a shell in the form of a dume 

have a regular singular point at the shell apex. 

In tne present study, we construct the regular integrals with 

large variability index at the dome apex, and find their asymptotic 

expressions far from the apex of the dome.  We need to know these in- 

tegrals in order to determine the natural vibration frequency of the 

dome. 

§ 1 

Let the shell be formed by revolution of the curve y = f(B) 

(Figure) about the y-axis, where f(B) is an even function whiah is 

holomorphic near B = 0 and f(0) ■ 0, f" (0) = R, R is the shell radi- 

us of curvature at the apex of the dome (B = 0) . Small axisymmetric 

vibrations of such a shell are described by the system of equations[4]. 
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~{i+*)S-*(i+i)~* 

Here s is the arc length of the generator OA; u(s) and w(s) are the 

projections of the displacement of the middle surface points in the 

direction of the generator and the normal; A ■ (1 - a )E~ pw^ (c is 

the Poisson ratio; E, Young's modulus; p, density; w, the vibration 

frequency); u is a small parameter where y = h /].< (h is the shell 

thickness, which is assumed small in comparison with the radius (R). 

We call the system obtained from (1.1) for y - 0 momentless or 

degenerate. 

R,(s) and R~(s) are the principal radii of curvature, which are 

even functions of s; B(s) is an odd function. Near s - 0, these func- 

tions have the following expansions into series in powers of s 
fit{$)=.R+aS + .  •. /?.(»)=* + *»»*+ •••• 

■■.#»-«—£r+«•••+••• (1,2) 

For s ■ 0, certain of the coefficients in (1.1) become infinite. 
Our task is to construct solutions, of (1.1) which are regular for 

s = 0. Here we shall assume that A ^ (1 o2)R-2, In the case, 
2 —2 A • (1 - o )R , the momentless system (1.1) has no regular solutions, 

and this case requires special study (in this case the dome apex coin- 

cides with the reversal point). 

§ 2 

It is not difficult to see by direct substitution that the degen- 

erate system (1.1) has the solution uQ(s), ü)Q(S) of the form 

«.(«)=2«&,»**1. *.(s)=2<*2*. (2.1) 
k~6 

where UQ   = 1 and the coefficients u,(0), ui.(O) are determined se- 

quentially from linear equations. 

We seek the regular solution of (1.1) in the form 
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«(*)-• 2>*«.(*>, •'»)=2i»4-».'»). 

Then the fun-vions u (s) an«. • (s) will satisfy the equations 

* = 1, 2, ... 

(2.2) 

(2.3) 

For uniqueness of selection of u , u , we require, in addition to 

their regularity at 0, that wn(0) = 0. It is not difficult to 

show by induction that all w (s) are even functions, and then the 

right side of the r-eeond equation (2.3) is a regular function of s. 

Expanding un(s) and w (s) into series in powers of s of the form 

(2.1), we show that there is a unique regular solution of (2.3) sat- 

isfying the condition wn(0) ■ 0. 

Thus, we have shown the existence of a regular solution of (1.1) 
ii 

which differs by a magnitude of order u from the regular solution of 

the degenerate system. Numerical integration must be used for the 

actual construction of the solution (2.1) for values of s which are 

not close to zero. 

§ 3 

We shall construct two regular integrals of (1.1) which have a 

I-irge variability index. 

\i 

We replace the first equation (1.1) by 

-J-i(fiiO=o 
and introduce the new unknown function v(s) by the formula 

'=T-£<Ä»>  {*=-*■{*  *')■ 

Then (1.1) takes the form 

+(HH&*4)*"~,',A4*SB* 

(3.1) 

(3.2) 

(3.3) 

where the operator A is 

*-**(**)■ 
(3.1) 
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We seek the solution of (3-3) in the fo;*ir 
m   . — 

«(«)= \V&.(s) V(s) f -Y^'fi^i (*)■£. 

•(i)=2?1'c*<*)^(*)+,'2Isl?"+,CI•+,(4)^• 
(3.5) 

a-« 

where V(s) is the solution of the equation 

(3.6) 

and the functions p(s), Bn(s) and CR(s) are tc be determined (we limit 

ourselves to finding p, BQ and CQ). In evaluating the order of the 

individual terms in (3-3), we assume that the functions p, B and C 
n    n n      n 

are of order unity in comparison with y and d V/ds = 0(u V). We 

substitute (3-5) into (3-3) and equate coefficients of like powers of 

u to se-o. The higher order terms yield 

-*'+(i+T5)ft»=». 
I (i+*)*+fr-*-&-*)w;-* <3-7) 

* 
and we thus have 

I '»-4-*Sr- M*+4K <3-8> 
The coefficients of dV/ds in the first equation (3.3) and of 

2 
u (dV/ds) in the second equation yield 

-£(£ + ^)c.=0, (3.9) 

Prom compatibility of (3-9) with respect to the unknowns B,(s) 

and C,(s), we find 

(3.10) 

and we have 

^w-h-TpjP- (3.1D 
2       -2 For A = (1 - a   )(Rp(s))  , the quantity CQ(s) becomes Infinite 

Therefore, the solution construction is good from the dome apex up 
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to and including th3 first root sQ of the equation A - (1 - 

- o2)(R2(s))
-2 = 0. Here sQ is a reversal point.  If R2(

s
0) * °> 

we can use the results of [2, 3] to construct the corresponding in- 

tegrals to the right of the reversal point. 

§ 4 

Now let us integrate (3*6).  We use the reference equation method 

[5]* We seek the solution in the form 

■-0 «-0 

(1.1) 

where JQ(z) is the Bessel function of zero order.  We substitute (4.1) 

into (3.6) and equate coefficients of like powers of u to zero. Then 
f        i 

we obtain l£j -r*p (*)=o. *=±n tow>Ttf*. 
(4.2) 

*W' A(«)= (4.3) 

To clarify the behavior of these solutions for s >> uR, we use 

the asymptotic formula for the function JQ(z) [6] 

AW-(l)T(ügi(i-|)+0(r')j, (4.4) 

§ 5 

Using the analysis of § 3 and § 4, we present the final expres- 

sions, having a relative error of order u, for the two real solutions 

w,(s) and Wp(s) of the  system (1.1) which are regular at s = 0. 

Let X - (1 - a2)(R2(s))"
2 > 0. For s = 0(uR) we have 

where 

M«)=* (*) U (s»"1«(»)). «t (»)=* (*) 4> (i*-15 (*)). 

"•>=fr-^r* ""«i'-g 

(5.1) 

(5.2) 

For s >> yR the solutions (5.1) have an asymptotic representation 

of the form 
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-^«"(i+o(f)). 

where i.       • 

(5.3) 

,(f)^(i)fT|x_L-|-T ^ 

Now let X - (1 - o2)(R2(s))"
2 < 0. For s = Oun) 

«M«)«t«Re UU" «(*)«*)). *k<«>= ♦(«) In»\AU-»fC*)*T/f     (5.5) 

where Re z and Im z denote, respectively, the real and imaginary parts 

of the complex number z. 

For s >> V.R  .       .    ifeL. ....    .   . ,, 

t*»—4-i«^[-it;^-f)+o(t)].       (5.6) 

Using (5.2) and (5.1*) it is not difficult to show that the solu- 

tions (5.3) and (5.6) are linear combinations of the solutions con- 

structed in [2] far from the dome apex. 

We use (3-2), (3.6) and (3.8) to find the corresponding integrals 

u,(s) and u2(s). To within a relative error cf order y,we obtain 

•'«=(i+Ä)*(,)(^ry,(z'(s))' t=h2       (5.7) 
(the subscripts i = 1, 2 correspond to different signs in (3.8)). It 

is not difficult to obtain formulas similar to (5.1)—(5.6) for the 

functions u-, and Up by use of (5.7). We simply note that 

*,(,)* 0(i»«, (s)),  1=1,2. 
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SHELLS OP REVOLUTION WITH A SMALL CENTRAL OPENING 

SUBJECTED TO SYMMETRIC AND ANTISYMMETRIC LOADING 

V.l. Kruglyakova 

This article presents a unified method for determining the stresses 

near a small central opening in shells of revolution subjected to sym- 

metric and antisymmetric loads. Primary emphasis is placed on reduc- 

ing the solution to a form convenient for practical applicacion. In 

particular, the edge stiffness coefficients are obtained. 

In most studies on this question (see § 10 of the present paper) 

symmetric deformation of a shallow shell is examined.  In contiast to 

these studies, the pronosed method contains a simplification involving 

replacement of sin 6 by 6 only in the equation coefficients. The 

trigonometric multipliers are retained in the expressions for the 

stresses and displacements. Comparison of the resulting solution with 

a specially constructed more exact solution has shown its acceptabi- 

lity for a wide -uge of values of the angle 6Q; corresponding to the 

edge of the opening in the shell. The region of values of the basic 

parameters (h/R, 8Q), in which the suggested Bessel solution may be 

replaced by the much simpler familiar Geckeler solution, is determired. 

A brief review of the studies known to the author is presented. 

The basic relations and notations used here are described in 

[1, 2]. 
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§ 1.  Basic Relations for Shells of Revolution 

Formed by Rotation of Second Order Curves 

In studying shells of revolution, we usually take the angles 6 end 

»(Figure 1) as the curvilinear coordinates. 

Among the shells of positive Gaussian curvature, those most fre- 

quently encountered are the shells whose middle surfaces are formed 

by rotating second order curves about their axes of symmetry. For 

these shells the principal radii of curvature 

- (1.1) 
Rx _ %_ 

35" • Rf- <l + TtlnM)
w ' ■'"  (! + T«in*I)

11 

are independent of the angle f . Here y  = 0 corresponds to a sphere; 

Y = -1 is a paraboloid; Y > -1 are ellipsoids; Y < -1 are hyperboloids, 

and the parameter RQ is the value of the radii of curvature for • = 0. 

(1.2) 

Figure 1. Figure 2. 

The Codazzi-Gauss relations are written as 

i*i*!Ll=.£ = /?, cos«  (r==/?,sln9). 

In shells of revolution, it is often convenient to introduce, in 

place of the usual unit vectors e, and n (Figure 2), the unit vectors 

of the horizontal and vertical directions 

ef — cos 9 ^ -f sin •«,     «, = cos 9 e, — sin •«„ 

et= -sin 9*, -f cosS«,  n = sin • e, + cos9e,. 
(1.3) 

Resolving the displacement vector 

V= a#, -f v et+•« = u,ef + vet + u,et, 
along these directions,we obtain the expressions for its component: 

«f = cos 9 u -j- sin 0 w,        u = cos 9 uf — sin 0 at, 

&,.== —sin 8 a -f- cos 6 w,     w = sin 9 ttf -f cos 8 «,. (1.4 

We have for the rotation angle of the tangent to the meridian 
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•—*(S—H *(-"£+*••*) (i.5) 
and for the deformation components 

I \ 

Figure 3. Figure *». 

The stresses which arise on the lateral surfaces of the shell are 

reduced to forces and moments, whose positive directions art shown 

in Figure 3. Here T, are meridional forces and T~ are circumferen- 

tial forces; M,, M- are the meridional and circumferential bending 

moments. In place of the meridional T, and shearing Q,  forces,we 

often consider the horizontal Q0and vertical Q forces (Figure 4) 

^ »cost 7»*+sin IQM, (1.7) 
<&« stair,—cbs»Qw. 

The catenary stresses (uniform across the shell thickness) are 

found from the formulas       *     r- 

(1.8) 

and the bending stresses are found from 

(1.9) 

The maximal stresses, occurring in the extreme fibers of the shell, 

are determined by the maximum of the quantities 

KI-£±T£ 
Kl- *±* 

(1.10) 

where the upper : .51J correspond to the stresses on the outer shell 

surface, and the .o;«>er are for the Inner surface. 
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The forces and moments are related with the deformations by Hooke's 

law £*» 

(1.11) 

v is the Poisson coefficient« 

We consider the complex displacements [1] 

«=«+i«. •=*+*•. (1.12) 

whose real parts are the conventional displacements, while the imag- 

inary parts are the stress functions ü,w , and the complex forces 

T,~Tt-lEkcH (1.13) 

It is not difficult to see that 

7\=Re 7*„ 7",=Re#t. 

Mt=~rtm[Tt +«?,}. 
The complex forces T, and T? are defined in terms of the basic 

Novozhilov complex function T = T, + Tp, which is the solution of the 

system of differential equations 

(1.1*) 

(1.15) 

where 

+ $*-/?,«? sin»«]. (1.16) 

The basic forces are determined froiu the functions T and U found from 

this system 

(1.17) 
The following expressions are obtained for the complex boundary 

values [2] 
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- 

(1.18) 

Using the resulting forces, the complex displacements are found 
from tu* ..t, at ions of the complex Hooke's la*»» which takes the follow- 
ing form ior shells of revolution 

-i*irli"VTr~*)J "i-TT-HtP»-'^ •        (1.19) 

L. •   «   »        *   # 
H«re the starred quantities Ti, T2, M^ M2, S , H are a static sys- 
tas of functions which is the particular solution of the nonhomogen- 
eous ay^prn of equilibrium equations. For the majority of problems 
of practical interest the momentless solution, i.e., the solution of 
the system ——■ 

<^'-fr*iTcr--/?iCO»«7l ==-/?, ^sMy,, 

(1.20) 
*»T5T+TRiffI —-JT—Ä /<» *•8,n • fc 

may be taken as the particular solution 

§ 2. Symmetric Case 

In the symmetric loading case all the quantities of the preceding 
section are independent of the angle f and the system of equations 
(1.15) for the basic complex function T reduces to a single second- 
order differential equation 
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4>T 

where 

(2.1) 

and q is the normal component of the surface load. 

The function ü, the axial vertical force acting on a parallel 

circle, may be easily calculated 

£/=_&£»/* (2.2) 

Here F is the axial component of the principal vector of the edge 

loads applied to the parallel ci cle and 

«  *  * 
We take the momentless solution T = T, + Tp as the particular 

solution of (2.1) and write the homogeneous equation with account for 

(1.1) in the fprm 

(2.3) 

The question of the Integration of this equation will be examined 

later in application to specific forms of shells of revolution (sphere 

and ellipsoid).  After the function Tu is found, we determine the com- 

plex forces from (1.17) 

(2.4) 

We note that finding the momentless forces T,, T„ from (1.20) usually 

does not present any difficulty for particular forms of loading. 

In the symmetric case,ue obtain for the complex boundary condi- 

tions (1.18)       0 = 0.4./'  «.^ 

(Qj=co3 67-r), 

(2.5) 

We also write out the expressions which will be needed later for the 

radial displacement u and the edge rotation angle n., using for this 

purpose the system in terms of complex displacements (1.19) 
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where 

«.««j+ÄgllRe^+d + ^dgllm^). (2.6) 

•-••-A-***. 

••«-a'-sr-ir (2.7) 
(7*=r;+7D. 

§ 3. Antisymmetric Case (wind load) 

The antisymmetric case is that in which both the unknown and given 
quantities have the following dependence on the angle ?: 

(«, «,«,, «„ •)=(«. i. «P.i. «M. a*i. • i)*0**, 
slnf 

on<r 

h. •» »i. *i)=(«i. i.**.«. 1.1. «n)'0®*9. 
T (3 1) 

ir„ r„ ^ M» ft. Q,)=( r»,,, n,. AT,. ,. M*,. ft.,. ft.)c" * 
slnf 

(ft. f«)=(?,.,. f-.«)"*T. 1 u ttnf 

where the upper functions apply to the first antisymmetric case and 
the lower apply to the second case. For definiteness we shall con- 
sider tho first case in the following. 

Upon substituting (3.1) into the relations of S 1 and simplifying 
the trigonometric factors, we obtain relations which depend only on 
the angle • for the quantities of interest to us. Just as in the 
symmetric case, the problem reduces to the integration of a single 
ordinary differential equation in the complex function 

*t»«i.i+r«.i, 

*+[(«*- ')««'-V*]41+ (3-2) 

where 'WS"*V '"("^""ATJiPT • 
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nl ft, sin 141 + 

Figure 5. 

X ÄJaln»— f (f..isin^+fi.icost—fi.i)/?i/?»slnW». i 

(3.3) 

(3.4) 

(3.5) 

The components of tne principal vector and of the principal moment 

of the forces and moments applied to the parallel section of the shell 

(Figure 5) have the form 

For the shell class in question (1.1) the basic equation is writ- 

ten in the form   . 

If we take the momentless solution as the particular solution, then 

in accordance with (1.17) the complex forces are written as 

%Q 

(3.7) 

where T, , is the general solution of the homogeneous equation (3.6) 

and 

'••'"TROTT» 
(3.8) 

We  obtain theexpressions  for the edge  conditions   (1.18) 

FTD-HC-23-36I-69 140 



(3.9) 

The functions x and (rY) in the antisymmetric case play the role 

of the quantities u and » of the symmetric case. The first of these 

function» is the elastic rotation of the tangent to the meridian,and 

ity)  is the relative elongation of the edge. 

where 

,._ • f $m%   *(   tl   \x 

(3.10) 

(3.11) 

We note that the quantities •• in (2.6) and x* in (3.10) may be neg- 

lected within the limits of shell theory accuracy [2], 

§4. On the Solution of the Reference Equation 

To find the solutions of the homogeneous equations (2.3) and (3.6) 

we use the method of reference equations [3], which involves the use 

of simpler known equations with the same singularities in the coef- 

ficients as the equation in question, in order to find the solution. 

In our case we take as the reference equation the Bessel equation 

3+f*-(l+*)>-* <«.i: 
Its fundamental solution [4] may be written in terms of modified Bes- 

sel functions of the first and second kind 

y=XlB{tt}n)+?KnWfy (4.2) 

where the modified Bessel function of the first kind of ordern I (lJi/D 

and that of tne second kind -K U/T) are written in terms of the 
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tauulated Tnomson  (Kelvin)  functions  [4.6] 

<"/»(4 V~i)=**!„* + /bei. 4, 
t* K. hV~l) = ker. * + / kei. *. (4.3) 

The functions ber t|», bei \\>  with subscript n may be defined in terms 

of the corrt ponding functions with subscript n - 1 using the follow- 

ing recursion formulas  .  .  i „ .., . ,,.. 
bcrt 4 =■ -^ (ber' 4 - bei' 4), 

be«it=-^-(ber't + bel'*), 

ber,+.4 = - ^- (ber. 4 - bei. 4) - ber,_, 4, 

bel.+,t=-^(ber.*-}-bel.t)-bel.-,t;        (**•**) 

K^-^Cber.-«*-*!..,*)-^., 

Similar formulas hold for the Thomson functions of the second 

kind ker iK kel i|>. 
n     n 

For small values of the argument the asymptotic forms of the 

Thomson functions are valid 
«At 

ker 4 = -In 4+0,1159+-=j- +..., 

kelt«-(£)lnt—;;- + l,U59-£ + ..., 

4-ker'4=:-r+^- + (-g-)lnt + .... 

4-'kel'4=--]r,n* —T+0«558*-- 

(1.6) 

For large values of the argument the following expressions will be 

the asymptotic representations 
ber 4 _ «ip««.} V-C3 . t . 

bei4     K^? sin     '' 
ker 4^ e»p«(-*) cos.(    . 
kel 4       /ätT«   sin       T" 

(4.7) 

where 
.(41 L. + -J ®_ 13 w 

25 
/5   «   8*/2  W  384^/2 +'" C'8> 

We see from (4.7) that the Thomson functions of the first kind ber ty, 

bei \p increase exponentially with increase of the argument, while the 

functions of the second kind ker \\>,  kei ^ diminish. 
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5 5. Symmetrie Deformation of a Spherical Shell 

Weakened by a Small Central Opening 

Consider a spherical segment with small central opening (Figure 6) 

subjected to uniform internal pressure p. In this case we take the 

momentless solution as the particular solution of the problem 

^a7«=4- (5.1) 
We find the general solution of the homogeneous equation (2.3), which 

for the sphere (Y ■ 0, R, ■ Rp * R) takes the form 

With the intention of obtaining a solution which is valid near the 

small opening, we limit ourselves to the consideration of small angles 

6 and we set in the equation ctg 8 k,  1/9 

By the substitution x ■ »TVc(8) this equation is reduced to the Bessel 
equation (4.1) for n ■ 0 

*++•*-*■* (5-3) 

where the bar over the complex quantity denotes conjugation. 

Its fundamental solution is written in the form of (4.2) 

(5.4) 

where I0(x/i)is the modified Bessel function of the first kind of 

zero order; KQ(xi/i)is the modified Bessel function of the second kind 

of zero order. We note that for large values of the argument 

x = /R/c(6) (with increasing distance from the edge of the opening) 

the solution obtained with account for the asymptotic forms of the 

Bessel functions (4.7) yields the familiar Geckeler approximation. 

Consideringtthe behaviorof the functions appearing in the solution, 

and discarding the part of the solution which tends to infinity with 

increase of the argument, we write the solution in the form 
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\ 1 ^     Taking  (1.14), 

■N 

C#t(x V~0-{A+<*)(*« x +1 kei x). 
ikelJt). (5.5) 

(2.4) into account, we obtain 

the expressions for the meridional and cir- 

cumferential forces 

Figure 6 ^»T^f^kerjr-l/^ctgUel'jt]- 

- *[keu + y^£ dg • iei'JC] 

(5.6) 

and for the meridional and circumferential bending moments 

■C\A keu+(l-»)yr^ctglker'jc + 

+ «[kerx-O -») |/^ctg«kef*J). 

At,-. 

Mt=c[A »keljc-(l-»)}^ctg«ker'x] + 

+ fl[vker*+(l -»)^^ctgl kel'.*J. 

(5.7) 

The constants of integration are found from the problem boundary condi- 

tions.  The stresses are determined from the usual formulas (1.8)— 

(1.10). 

We obtain the expressions for the edge compliance (stiffness) 

coefficients! understanding these to be the angle of rotation and 

radial displacement of the edge which develop under the influence of 

unit force and unit moment at the edge. Introducing the notations 

for the edge values of the Thomson functions 

kei *,=*,(*. = VTf»)« 
kef'x,=f; 
kei'*,=fr 

(5.8) 

and using (2.5)> we write the shearing force QQ and bending moment 

M„ acting on the edge in the fo_lowlng form 

+ «k-(i+*)}^ctg\iv;]), 
q:=co3«.r;. u 

(5.9) 
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Hence the arbitrary constants may be expressed in terms of the shear- 

ing force and bending moment given at the edge of the shell 

,._yz,M,a«fc-<o+|4. (510> 

where the notations are 
- 4 

*-*+«+*) l^T^MS. (5'n) 

From (2.6), (2.7) we find the edge values of the radial displacement 
and rotation 

»^»(«^-i/I^-^j (f. = 0)> (5.12) 

Substituting here the values of the arbitrary constants from (5.10), 

we obtain the final expressions for the edge values of the radial 

displacement and rotation 

«•ss<+MQ-QD + a11Af„ 
»=a«(Q.-<^+^Affl, (5.13) 

where a,, ,  «-,„,   dp,,ap9  denote  the edge  compliance  coefficients 

4 , n,,, «2+^      I 
E 

+. 6.1: j *-*—vBü=9J4«it.Ä±i&.4.. (5>1„ 
| ^,=112(1 -,■)!*• j/TJS^W^. 

- 

§ 6.  Antisymmetric Deformation of a Spherical 
Shell with Small Opening in the Center 

- 
For the sphere the governing equation of the antisymmetric case 

(3.6) take • the form 

4*T,! . cos» dT i , /, R I \-5;     o /.- n \ 

In each particular loading case there is no difficulty in finding 

the (momentless) problem solution from (3-8), (3.3).  Therefore, we 
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examine the homogeneous equation and, as in the symmetric case, we 

make the replacement 
COS • AS 1, 
sln#=s». 

The equation  is  then written as 

IF 
•1   rfrfi  , (, R      i \f°,_o 

(6.2) 

By the substitution 

■=/?' (6.3) 

it is reduced to the Bessel equation of type (4.1) for the value n = 1. 

and for the conjugate quantity T, , it is written as follows 

(6.4) 

Using  (4.2)   its  solution will have the form 

T,, = C,/, tx VT) + CjAC, (x Vft (6.5) 

where I,(x/T) is the modified Bessel function of the first kind of 

order one; K,(x/iT is the modified Bessel function of the second kind 

of order one.  Just as in the symmetric case, we set C-, ^ 0. The 

function K,(x^i) is expressed in terms of the Thomson (Kelvin) func- 

tions of the second kind as follows (4.3) 

Kl(xV7) = i(kcTlx+ikeilx), 
/T, [x VT)= - kel, x -f I ker, x, 

(6.6) 

and between the Thomson functions of first and zero orders we have 

the recursion relations (4.4), (4.5) 
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ker, x 

kel.jr 

ker, x = -J= (ker* x — kel' JC), 

kel1x=^(kei'x+kei'x). 

kerj jt = — ^= (k«r x -f- kei x) 

kefj JC = -7?r(ker x — kei JC) — 

Short tables of the Thomson functions of the second order with index 1 

are presented in [5] for the values of the argument 0 <_ x £ 10. 

We finally obtain the following expression for the basic complex 

function T0,, 

??i«-(A-~U)(keM+'keri*)- (6>8) 

(6.9) 

Using  (3.7)  and  (1.14)»we find the following expressions for the 
forces and moments for the antisymmetric case 

rü-flrM  Vrc!glker;x--J..1^Fkertx]- 

TM- 7l» -i*[kel,x + jAj-ctgeker.'x —J-.-^ker.jc]-- 

-«[ker.x-j/^ctg^kel.'x+TT-aii-kel.x]; 

itf|,i - *{i4 [ker,x~(i -») }/^ctg»kei»'x + 

■ + <! ~ *•> TFH3K kel' *] ~ B [keI« * + 

H-d-vjl/^ctglk^x-d-^-J-.^ker.x]), 

JW*i - -c{^[vker,x-(l -*) j^-J-ctgl kel,'x + 

+ (I—v)-J- -jjjiy kel, x] - 51v kel, x+ 

+ (l-»)V/TCtg»kerI'x-(l-v)^.T^Tkerlx]); 

We write out the values of the edge shearing force and bending moment 

(3<9) ^•Ä^. + ^-i^{^i-;x-)^ctg,keriX^ 

-fi[ktf;x-y^dgeke,iJtjJ, 
^'I^H'+^+^T-^^x- 
-/ictg!ke«;x)|-Ä[kel|,_fI+v)(:£.._^kerijr_ 

-} -j-ctg «ker,'*)]). 

(6.10) 

(6.11; 
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If we now, by analogy with the symmetric case,, introduce the notations 

for the edge values of the Thomson functions of the first order and 

their combinations 
fi=kertx» ri=ker,'xt> 

*,=kei,x„ t;=kei;* 
(6.12) 

(6.13) 

after solving (6.11) for the arbitrary constants,we obtain for the 

latter expressions in terms of the shearing force QQ » Q 

bending moment MQ 
s M,  i(9o^» 8iven at tne edge 

1(eQ) and 

A=-V1r*fAQt-<ü->-*1  K**"***1 * 

fi=-/?stal.A(Q.-<5) -A Tf-etlV. - (6.14) 

*. 

Using (3.10),we obtain for the elastic rotation and relative elonga- ^ 

tion of the edge     r:=r\*—yWkd,JC+(I+»)|^df•&»;*- 

-<! +»>T'i5nto«x]+Ä[ker'* -fl +') iT«*1 K x + ' 
+<»+'>T-aiikH)' 

+ *[ker;*-}/£dg«kerl*]}. (6 15) 

. 

where 

Denoting 

v«x&>, 
«•-(nrt, (6.16) 

using the previously titroduced notations (6.12), (6.13) and substitut- 

ing into (6.15) the values of the arbitrary constants, we obtain the 

following fjrm of the desired expressions 

».=«i,(Q.-<S)+«J^Wo. (6.17) 
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i 

. 

Here, as before, <»,,, o»12» 
a2l» a22 are tne sneH edge compliance coef- 

ficients, and in the present case they have the form 

A-^-lOSÖ^^sta^A.-^ (6.18) 

In addition to the notations used previously (6.12), (6.13), here we 
have used the two additional notations 

fc^^-vl^^W*;-^*«^)- (6.i9) 
*-(iJ-)^eiiM.)V(*i-}^ci^yfc)".- 

The derived relations (5.13) and (6.17) are essentially deforma- 
tion boundary conditions of a special form. Their use facilitates the 

solution, particularly of problems of the mating of shells. 

i 7. Calculation of Symmetric Loading of 
an Ellipsoid of Revolution 

The principal radii of curvature for an ellipsoid of revolution 
are 

*»"MT+7SEDP' (7,1) 

where a, b are the ellipse semimajor and semiminor axes, respectively, 
and 

T--S-1. * (7.2) 

Fundamental resolvent  (2.3) takes the form 

g+V"*^' ^~£- + i  IT?» 

We take as the particular solution the momentless solution> which for 
a uniform internal pressure p acting on the ellipsoid has the form 

1  "S"(l + 7»l»*«)w' (7   -1) 
T» pm*      l-T»imi UO' 
I  1 == "XT" • —     ■*   " ; -r 

» (1+1 tin* I)'-'1 ' 
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We find the general solution of the homogeneous equation 

*r , t-rgT*"g Si ,äT*  n 
~*ii+i*ttfitf* 

r=o. 

or for the conjugate 

(7.4) 

We seek the solution by the reference equation method, for which 

we take the Bessel equation (see S 1) of zero order 

£+i-£-*=°- 
We write initial equation (7.4) as follows 

IF-I pW-gr-^ (•)*=<). 

(7.5) 

(7.6) 
where we have set 

*(«)=r(«). 

?<•)= 
(I+T *!•*•>" 

We seek the general solution of (7.6) in the form 

*=i(»)y!*(«>l. (7.8) 

Hence 

at -ä—ttoy+v^. 
-g. = (tfV + (2r,T + T,r) / + n'y. 

Assuming that yU) is the solution of reference equation (7.5), 

replacing y" and substituting (7-8), (7-9) Into (7.6),we obtain 

(7.9) 

{- -n lL + T,S* + 21,';' + p (0) v/J / + 

+ W + P (•) V + hfi'7 - tt?q (6) ij} y = 0. 
(7.10) 

Equating the first bracket to zero 

T"+2"?T~T+'(*>=C 

and integrating with account for (7.7), we obtain 

T<(,)=c|/ 1-0,-TWW- 

(7.11) 

(7.12) 
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Now we equate the second bracket to zero 

-£+*<•>-*- + «4-a*»(«)-o (7a3) 

and replace here with account for (7.11) 

Equation (7.13) may be satisfied by setting 

Since we are considering the shell edge near a small opening at the 

apex, we can limit ourselves to examination of small angles 8, taking 

(in the first approximation) 

(7.14) 

i 

It is obvious that (7.13) is immediately satisfied, 

We take 

i 
+ t*l">*)ly1*'"*' (7.15) 

Now, with account for (4.2) the general solution of the homogene- 

ous equation may be written 

'•»Iftffoftl V7) + d/C, (M K/")J. (7.16) 

We drop the part of the solution whicn grows with increase of the argu- 

ment and convert to the unknown function T , writing the solution in 

terms of Thomson functions (4.3) 

>*M|(P}{(A--l0)(lKrll—Jtott)|. (7.17) 

The function nO) changes slowly and for small angles is close to one 

v'Tigure 7). We neglect the variability of this function in compari- 

son with the variability of the Thomson functions and thereby obtain 

a simplified formula for dTVd8 
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i£=faf (I) [(A -iS)QLen*-t Mm 

With the aid of (1.14) and (2.4) we obtain,the expression for the 

forces and moments 

r1=r,*+Ji-^(l)ctgl(l + 7Slo*«)iwMke«'« + fik"'lll. 

r„~ Jt +1« M Ikertf - *"• ctf #(1 +1 tltffktfM] 
-B (kel» + **c*l<l +YstaM)*k«'»l|}; (7.18) 

*~«1«M MM +(1 -*)*-« ctg#(I +i«ta«l)»*kei'MJ + 
+B[kerW-(i->)Ji-«ctfia+T«lB«#),*kel'M|), 

^=«I«>M [«kdM-(l —)k-*ckj«(l +T«M«#j"Iker'M] + 
-^Äl» kerli + (1 -»)!-»ctgl(l +, tfpHffecl'Mj]. 

The constants of integration are found from the boundary condi- 

tions. 

(7.19) 

The edge compliance coefficients for the ellipsoid may be obtained 

Just as was done for the sphere. Without repeating the previous argu- 

ments, we present the final results. The arbitrary constants are 

A«,     imk *,/»«*  «. «1 (7.20) 

We obtain for the edge horizontal displacement and angle of rotation 

where the compliance coefficients have the form 

A=[ist, -.-)r(ft)"(i+-««•« ^is^-i. 

We note that here, as before, 

T"-jr— I. 

(7.21) 

(7-22) 

(7.23) 
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fl  »  H      »40      SO     60      TO     00     Mt* 

. Figure 7. 

Moreover, we have introduced the notations 

^sr^-O + «)V*Clgt(l + ISln1 w; 

and also 

<*-g-(7l-»7lX 

(£=co»\rt. 

The case of antisymmetric loading is analyzed similarly. 

§ 8. Calculation Examples 

(7.24) 

(7.25) 

As examples we shall consider spherical and elliptical end clo- 

sures with small central opening, subjected to uniform internal pres- 

sure. 

Example 1. For the spherical segment (see Figure 6) with a small 

central opening at the apex we take two versions of the boundary con- 

ditions at the edge of the opening: 

a) the opening edge is rigidly clamped so that the radial dis- 

placement and angle of rotation are zero 

»»Ofor^V (8.1) 

b) the opening edge is free of forces and moments 
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Using the relations of § 5, for the first boundary condition ver- 

sion we obtain the following expressions for the stresses on the 

opening contour 

V 
•*="*. 

30 -»» gg r»fo+^i 

On the freely-supported opening contour we have 

(8.3) 

(8.4) 

Here the previous notations of (5.8) and (5.11) are used everywhere. 

The expressions in the square brackets in (8.3) and (8.4), char- 

acterizing the stress increase in the sphere in comparison with the 

momentless case 

*«iHr. 
were calculated for different values of the wall curvature-thickness 

ratios and different angles of the opening edge in the sphere.  Their 

values are shown in the table, where the notations are 

/.-[i-O-vyKJctge.lLiJi], 
,       3d-v)   w;+fr*b 

yi(i->«)  xo 

Example 2. We consider the symmetric deformation of an ellipti- 

cal end closure with small central opening which is reinforced by an 

elastic ring. 

We assume ~,hat the ring is symmetric about the horizontal plane 

and that its linear dimensions are small in comparison with the radius 

r. (distance from the ring center of gravity to the axis of revolution) 
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*'* l> I, ft 4 *»• P '. d '. 

1 tas «.45 -0.337 t 4.19 141 -0,776 
10 5.10 14* -0,602 10 749 1.17 -0490 

99 15 44» 14» -0.704 900 16 1040 1.19 -1.079 
m '•S 1.17 -IJOOS 50 91.70 1.08 -1.100 

- 45 1940 1.11 -1.190 40 9740 14« -14:0 
60 2046 147 -1^00 00 63.60 142 -1450 
• 9,75 14» _0408 5 5.88 141 -0495 

M 4.14 14» -0.77» 10 1040 I.« -1,085 

10 15 6.79 Ul -0417 590 15 16,10 Iff -1.15» 
50 UM 1.19 -14*7 30 33,90 14« -1.210 
45 tut IJW -1.100 45 58.20 1.02 -1440 
00 «.u IjN -14» 00 10040 141 -1450 
i 4» 144 -0444 

10 fc40 14» -«405 
1« 15 T.08 1.1« -1405 •5 1*57 145 -UK« ... 

49 90.40 145 -I4M 
.00 48k» ijw -1440 

JäHSMSt 

Figure 8. 

The displacement in the radial direction and the rotation angle about the 

ring center of gravity are 

■»-IST^ 

♦.= TKT JH., (8.6) 

where E. is the ring elastic modulus, fl. is the ring section area, I. 

is the ring section moment of inertia about the horizontal axis pas- 

sing through its center of gravity, Qk is the spreading force in the 

ring, and M. is the torsional moment. 

The conditions of the elastic coupling of the ring with the shell 

have the form (Figure 8) 

•.= •„  ft = <k (8.7) 

With the aid of (7.21) and (8.6) these conditions may be rewritten as 
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ati*m*miBcmB&iQlvw> 

and solved for the unknown edge force and moment 

<?.=4 [W«-(*--TX)««-«S)| . 
.%■ -4(Äac-<). (8.8) 

where 

A-W-(*-'Är)(*-TSr)' (8.9) 

On the right in (8.8) are known quantities which depend on the geome- 

try of the shell and ring, and also on the momentless problem solution, 

which may be considered known. Then (8.8) and (7.20) yield the values 

of the arbitrary constants for our problem. 

§ 9.  Refinement of the Theory 

By means of the substitution z ■ T/sin 6 the resolvent (5.2) for 

the symmetrically loaded spherical shell 

is reduced to the form 

+ |*fe|-*) + i + *+'»]'-» (9.1) 

The underlined small terms (values of the function f(8) = TT ( . * . - 

^j-) + jr  are shown in Figure 9) may be neglected in comparison with 

the other terms. We obtain the following form of the Bessel equation 

<PM +[-*r+<-f)*«0. (9.2) 

The solution of this equation is a cylinder function of zero order 

FTD-Hc-23-361-69 156 



which may be written in terms of Bessel functions of the first and 

second kind or in terms of their modifications. Dropping the part of 

the solution which tends to infinity with increase of the argument 

and writing the Bessel function which appears in the solution in 

terms of Thomson functions of the second kind, as was done in § 5, 

*• (* K11?)* ker x—i kel x, 

we obtain the following expression for the basic complex function 

}^(M-W.)<ker*-ikeU). (9.3) 

We obtained (9.2) from the original equation 

by neglecting quantities of order c/R in compar- 

ison with one. This permits considering the 

resulting solution as "exact," i.e., its error Fig. 9- 

is a quantity of order h/R. 

Denoting 

™=£[K=S. (9.<0 

we obtain the expressions for the shell forces and moments 

r,«lt+i*,(f/3rkerjt-r-J.ctgaF(»)kel*- 

+ if** Wmttx+ Y% Y^dgntt'x], 

-'0 -')(Tct««F(»)kelx+ Y~3Ef /f ctg»kei 'JCJJ, 

(9.5) 

(9.6) 

: 
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MA 

+ Vr3¥VTd8,ker'*)]-i,-[vVr3TkerJr + 
+ 0 -»>(£ c*«F(l) keljr + j/^J ]/^ctg«kel '*)]). 

The values c ' the functions /8/sin 6 and P(8) are taken from Figures 

10 and 11. 

• ■ UM mm wtrtv 
Figure 10. 

We have for the edge shearing force 

ftnrww wwinrtT 

Figure 11. 

(9.7) 

Using the same notations for the values of the Thomson functions (5.8) 

at the edge and using arguments similar to the preceding, we find the 

relations between the edge values of the radial displacement and ro- 

tation angle and the values of the shearing force and bending moment 

at the edge 

a,=«;+>*u(Q#-QE)+^,Af„ 

•. = MQ.-Qo*) + *«Af,. (9.8) 

In this case the edge compliance coefficients are 

where we have the additional notation 
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In order to evaluate the accuracy of the solutions,we calculated 

the compliance coefficients corresponding to three methods:  1) the 

conventional Geckeler method [2, page 123], 2) the Bessel asymptotic 

solution treatment (using the relations of S 5, which for brevity we 

term the Bessel solution), and 3) the modified solution presented in 

the present section. The latter is more exact and is used as the com- 

parison standard. The angle 8Q, characterizing the size of the cen- 

tral opening in the sphere, was assigned various values from 5 to 90°, 

In addition, several values of the curvature-thickness ratio were 

used VR » 1/20, 1/50, 1/100, 1/200, 1/500. 

J 
it 

\ 

\ 
\ 

V ■«, 

J0 
» 
« 

j* 

n\ 
'»* 

* w m «a «0 

Figure 12. Figure 13- 

The compliance coefficients corresponding to the Bessel solution 

(Formulas (5.1*0) were close to the modified values obtained using 

(9.9). The difference did not exceed 5%  for any values of the para- 

meters . 

As an example Figure 12 shows the values of the ratios &,,/A.. 

(solid curves) and <***/&**  (dashed) for three values of the curvature- 

thickness ratio R/h =20, 100 and 500, where a., are the compliance 

coefficients corresponding to the Geckeler solution, a,, are for the 

Bessel solution,and A.. are the modified solution. The Geckeler 
in 

asymptotic solution gives good agreement for the compliance coeffi- 

cients with the modified solution for thin spherica] shells and for 

angles 8„ greater than 30°. The worst of the ratios <*. ./A,, was used 

to plot the curves of Figure 13, which make it possible to evaluate 

»Ac appxlCeLüilit/ of the considerably simpler GecKeler asymptotic 

solution as a function of the shell parameters. Here the curves 

correspond to 5, 10 and 20%  error of the Geckeler solution in compar- 

ison with the modified solution. Selecting a shell curvature-thickness 
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ratio and the desired accuracy, we can use the figure to obtain the 
value of the angle 8Q for which the Bessel solution may be replaced 
by the Geckeler solution. 

This analysis permits us to conclude that: 

1) The proposed version of the Bessel solution is valid for all 
"hemispheres'' to within shell theory accuracy. Therefore, its further 
refinement is not worthwhile. 

2) For 0Q exceeding some limiting value which is characteristic 
for each curvature-thickness ratio (Figure 13), the simpler Geckeler 
solution may be U36d. 

S 10. Literature Survey 

The following survey (laying no claim to completeness) includes 
primarily studies of the stress state in shells of revolution with a 
small central opening. The closely related studies of the effect of 
a concentrated force or of a load distributed over the area of a small 
circle with center at the pole of a shallow shell are not covered in 
this survey. 

The symmetric deformation of a spherical shell weakened by a cir- 
cular cutout was studied by Shevlyakov [7]. Using the Vlasov shallow 
shell equilibrium equations [8], he reduced the solution to the single 
equatlon LL,-IL,=0. 

(10.1) 
where 

a is a dimensionless parameter 

r — Ka,  K~~ y jjjyZ-*) • 

The solution was obtained in the form a = a,   +  o?, where 
are solutions of the equations 

°, and a~ 
x 2 
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and o.   is the solution in terms of Bessel functions 

(10.2) 

(10.3) 

The cases of free and clamped opening were considered. Unfor- 

tunately, an error was made in the argument in the solution of (10.3). 

In reality the function KQ(O/T) will be the second solution in (10.3). 

The results of this study were used in [9] to solve the problem 

of stress concentration in a spherical closure which is coupled through 

a toroidal segment with a cylindrical tube. 

The axisymmetric problem was also examined by Sokolov [10] who 

used thf: Lur'ye relations [11] to write the solution for a spherical 

shell with small circular opening at the pole in terms of the same 

Thomson functions ker x and kei x. Then, retaining in the general 

solution the function which decreases with reduction of the angle 

9 (ber x, bei x), Sokolov obtained also a solution for a closed 

spherical shell in which the angle corresponding to the shell edge 

is small. He wrote out the expressions for the edge values of the 

basic quantities— forces, moments and displacements, for two versions 

of the boundary conditions at the edge of the opening: 1) given 

meridional bending moment (MQ) and horizontal force (QQ), 2) given 

horizontal displacement (uQ) and rotation (*Q). 

The combinations of Thomson functions were calculated for the 

sphere With an opening 

CfamSSübgaL,   D(x) = ktt'xktix-M'xkttx, 
^«ke^x+kel»*,   /r(jc) = ker'jck«jc+kel'jckeu, 

/«=•£&• •«--£&, 'w--£g:L 
where the va.lues of the functions f(x), e(x), d(x) are presented in a 

table (x < 10). 

Comparing his solution with the conventional asymptotic solution, 

Sokolov concludes that it may be used for large values of the angle 9. 

(10.5) 
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We know that the Geckeler approximation, valid for not very small 

angles 9, consists in neglecting the unknown function and its first 

derivative in comparison with the second derivative in the Meissner 

equation [12] 

(10.6) 

{ • is the meridian rotation angle, Q.  Is the shearing force). This 

leads to exclusion of terms with trigonometric factors from the equation. 

Hoff [13] attempted to account approximately for the meridian 

curvature of a spherical shell by replacing ctg 8 by the first two 

terms of its Taylor series expansion in the fourth-order system (1-0.6), 

trans rmed to a single equation, i.e., writing 

where 8« corresponds to the shell edge in question, and x is measured 

from the shell edge. He shows that this approximation is valid for 

8Q > 30° for R/h = 100 and for 60 > 45° for R/h ■ 50. Here the in- 

fluence coefficients corresponding to the new approximation differ 

from the Geckeler values only by correction factors which are close 

to unity in the region where the new solution is applicable. 

The numerical values of the influence coefficients for a hemis- 

phere with opening with the basic parameters 

-J-=15, 25, 50, 75, 100. 125, 150. 200. 280; 

•,=50, 40, 30, 20, 10J 

were obtained by Galletly [14] by integrating the Meissner equations 

(10.6) using the Runge-Kutta method with r     ° step. 

In his previous study [15] Galletly made a comparison of the in- 

fluence coefficients for the hemisphere with circular central opening 

obtained using three different methods: 1) Geckler method, 2) Esslinger 

method, [16] which amounts to reducing the governing equation to a 

Bessel equation by the change ctg 8 % 1/6,and 3) the Love method [17], 

which reduces the equation to a form whose solutions are Legendre 
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functions of a complex variable. In calculating the latter,Galletly 

used either asymptotic, representations (method 3a) or their expres- 

sions in terms of hypergeometric series (method 3b). Method 3b (very 

cumbersome»but more precise) was used as the standard for comparison 

with the other methods. On the basis of comparison of the influence 

coefficients for one specific hemisphere with the parameters R/h • 

90.5 and 8Q * 10°30'»he recommends using method 2 (Bessel asymptotic 

method) for cases when the opening total central angle 28Q < ir/6. In 

the case in question»its error was 5%  in comparison with method 3b, 

while the Geckeler method gave a maximal deviation of 152. 

In a discussion of Galletly's article his supporters [18] expand 

the study, including two additional methods which are convenient for 

practical application: method 4 of Burrows-Graves and method 5, which 

is an approximate solution based on the Langer asymptotic treatment. 

The Langer ideas will be discussed later. The Burrows-Graves techni- 

que extends the asymptotic solution of Hildebrand [19]. 

The latter reduces the system of the type (10.6) for the shell of 

revolution of arbitrary shape to a form which does not contain the 

first derivative 

r-ptY-i**x=-wvxt. 

a» 
Here **=y3{l— ^)jtr  and tne functions F,, Pp, ♦, which depend on the 
shell geometry, under the assumption of smoothness of the geometric 

parameters are quantities of order one. The asymptotic solution is 

sought in the form 

where »=»J<WJ, «*=2f, and the functions x and y are taken in the form 

of series in powers of 1/k 

*=S *.(©*-. y=2y„0)*-". 

In the previously mentioned discussion a comparison was made of 

the influence coefficients for a hemisphere with ratio 2R/h = 30 
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using all four methods with the results of an exact solution similar 

to the Love method (method 3b) and led the authors to conclude: 1) 

the Geckeler approximation is valid for a comparatively thin closed 

hemisphere; 2) the Bessel approximations are satisfactory near central 

openings in relatively thin spherical segments; 3) method 4 is usehle 

for comparatively thin segments which are nearly hemispherical; and 

4) method 5 (Langer) is valid at all points of relatively thick closed 

or unclosed spherical segments, including the complete sphere. 

- 4 

We note that the Hetenyi approximation [20], also presented in Timo- 

shenko's book [21], which is more exact than the Geckeler approximation 

and involves neglecting only the function itself in comparison with the 

second derivative in initial equations(10.6), yields poorer results than 

the Burrows-Graves method and the Bessel asymptotic solution for the 

hemisphere in question. 

We note that not all the approximate methods were investigated 

for the angles 28Q > ir/6 and for other values of the curvature- 

thickness ratio. 

Several analyses have been based on the methods developed by 

Langer [22-24] for asymptotic integration of differential equations 

containing a large parameter. Langer's first study [22] examined 

asymptotic integration of the equation 

«•(Z")+|X»O»(*)-XW]H(X) = 0, ?) 

where X  is the large parameter; *~(x) may vanish at a single point of 

the interval of x variation (for example, x = 0) as follows 

V(x) = X'(alt+alx+ ...) (v>0), 

and x(x) is assumed finite. 

Detailed studies are made of the solutions 

y±- rG±,{-) 
{•{*)}■ (10.8) 
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(*=7h' «=lf*(*)<fc. 

fiss- 
•«** 

"TTÖ— 

where G (?)» G_ (5) are cylinder functions of an equation related to 

the initial equation (10.7); 

and 
f{x) + \W{x)-m (JC)| y(jt)=0 

(10.9) 

•(*)=-«r((a,r-3(2'),+VI 

is finite in the function interval being considered. The solution of 

(10.7) is given in terms of y+ (x) and y_ (x), where the Hankel func- 

tions are used as the cylinder functions. The more general equation 

is considered in [24] 

where 

and QQ(X) may or may not vanish. 

Asympototic solutions of (10.7) for singularities of the coeffi- 

cient • (x) of more complex form were obtained by Dorodnitsyn [3]. 

Naghdi and de Silva [25, 26] introduce an auxiliary complex func- 

tion to reduce the system of two equations for a shallow shell of 

revolution obtained by Reissner [27] to a single second-order differ- 

ential equation of the type (10.7)» velid for shells of constant 

thickness and for those of a large class of variable thickness 

W + [aye* (?)+A (*>i v=[•£ • ~]^7(9 \F+ /«?]. (10.10) 

(10.11) 

Its asymptotic solution is found by the Langer method 

This method is used in [28] to obtain a solution valid at the 

apex for a thin ellipsoidal shell of constant thickness subject to an 
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axlsymmetric load. The solution is written in terms of Thomson func- 

tions (See § 7). It is shown that in the limit this solution becomes 

the familiar solution for a shallow spherical shell [29]. 

The Din le method [30] for finding the asymptotic solutions of 

ordinary differential equations leads to the same results as the 

Langer method. By the usual substitution any second order differen- 

tial equation is reduced to the standard form 

^=7<*)«<*). (10.12) 

The Dingle method involves comparing the original equation with 

£gf&«I» (/(.), (10.13) 

for which analytic solutions in terms of tabulated special functions 

are known. Dingle's study presents a table of the comparison func- 

tion T(o) and the corresponding solutions for various typical shells 

of revolution. Here the unknown solution is written in terms of the 

solution of Ü0.13) in bhe form 

*ty-(wrp?f(* 
or in the first approximation 

■»-(IB)*1'«. (10.14) 

with a simple technique being given for estimating the omitted cor- 

rection terms. 

The study [31] of Galletly and Radok indicates that the Dingle 

method includes the Langer method as a particular case and permits a 

simpler and less formal analytic interpretation of the asymptotic 

solution of the equations. Moreover, in the Langer method the argu- 

ment of the Thomson functions includes an integral of the type 

which is not tabulated anywhere.  In order to compare the Langer 

approximate solution with the more exact solution, the authors give 
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a comparison for two particular forms of shells of revolution — ellip- 

soid with opening and torus of negative Gaussian curvature - in terms 

of the compliance coefficients between the two asymptotic solutions 

(Langer and Dingle) and the solution obtained by numerical integration 

of the equilibrium equations. They conduce that the agreement between 

chese methods is satisfactory. 

The effect of symmetric and antisymmetric loadings on a spherical 

shell with,small opening is studied in [32]. The bending moment is 

transmitted to the shell through a thin-wall cylindrical tube. The 

purpose of the paper is to study the effect of cylinder thickness on 

the magnitude of the stresses and deformations n the sphere. The 

Reissner solution for a shallow shell [29] is used for the sphere. 

A numerical example shows that the cylinder thickness has a large in- 

fluence on the stresses and displacements in the sphere and in the 

limit. With increase of the cylinder thickness, the solution becomes 

the familiar solution of the problem of the effect of a concentrated 

force and moment acting on a spherical shell through a cylindrical 

adapter [33]. 
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STUDY OF STRESS CONCENTRATION IN TURBINE BLADE T-SHAPED HEADS 

IN ELASTIC AND CREEP CONDITIONS 

I. I. Bugakov, V. P. Smirnova and S. P. Shikhobalov 

This article presents the results of a study urlng photoelastlc 

arid phctocreep methods of stress concentration in the T-shaped 

heads of turbine blades with relative dimensions D/d = I.58 and h/d = 

= 0.625 (Figure 1).  The study was made by the Optical Laboratory of 

the Scientific Research Institute of Mathematics and Mechanics 

of Leningrad State University for the "22-nd Session of the CPSU" 

Leningrad Metals Plant. 

t M*» H 

M) 

^. 

Figure 1 

The study was made using two- 

dimensional models subjected to a 

constant external load simulating 

the blade centrifugal force.  The 

models were fahrlcated using metal 

templates with relative dimensions 

r/d = 0.010; 0.0417; 0.0625; and 

0.1250 (Figure 1). 

The elastic problem was studied 

on models made from a solution of 

PN-1 in 30% styrene, solidified 

with gradual temperature increase to 80° after adding 10? styrene to 

increase the material optical activity and 1-2!? hydroperoxide.  The 
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models were studied by "freezing" the deformations.  In the "freezing" 

process the model was mounted on a ring simulating the turbine disc 

rim. The studies were made using three mounting techniques: a) the 

model was supported on the ring through metal bars located at the 

edges of the collars; b) the bars were located at the radii rj 

c) the model rested directly on the ring. The loaded model was trans- 

formed  into the highly elastic state by gradual heating to 90°, after 

which it was slowly cooled. 

The optical path difference 6 was measured at those points where, 

under elastic conditions, the highest stresses arise, namely at the 

midpoints of the arcs of radii r. Exceptions were the models with 

ratios r/d « 0.010, in which the highest stresses were observed and 

measured not on the r contour Itself, but 0.2 - O.^ mm above this 

contour, at points of the rectilinear part of the contour (Figure 1). 

The 6 measurements were made in white light on a KSP-6 synchronized 

coordinate polarimeter using a SKK-2 mica compensator [1]. 

The stress concentration factor k was determined from the 

formula 

(1) 

where a   is the measured stress: S Is the nominal stress in the max 
neck part of the head Csee Figure 1). The values of k ar<=  pre- 

sented in the table. 

The creep problem was studied using models made from transparent 

technical celluloid.  The techniques for modeling creep of T-heads 

were discussed in [2J- 

As the creep law, we used the aging theory equation 

•</==1T1(*'/+ T7?«»»)+f(0«p(»»)^       (2) 
/,/=!. 2. 3, 

where e., are the deformation tensor components; s,. are the stress 

devlator components; «=-3-9/1   is the average pressure; 7"= y0,bstis,j 

is the tangential stress intensity; t is time; E is the elasticity 
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modulus; v is Poisson's ratio; b is a function of temperature; and 

A., are unit tensor components. 

The mechanical and piezo-optical properties of the celluloid 

were determined from data of specimen tests under constant stresses 

of 50, 100, 150 and 200 kgf/cm and a temperature of 35° in simple 

tension; the tests lasted five hours. The creep curves were reduced 

using the equation 

%"} + }?«)•>»$.)* 
C3) 

which follows from (2), in the case of simple tension. 

The specimen deformation as a function of time was measured 

using Martens tensiometers [33* The modulus E = 18,000 kgf/cm was 

determined from the results of the first measurement as the ratio 

of the stress to the measured value of the deformation. Then the 

experimental results were plotted on a plane in the coordinates 

(•i i)' *'" •  Isochrones were then drawn through points relating 

to the same moments of time (Figure 2). 

It follows from (3) that 

*(*-i)-M+#- 
Thus, the slope of the lines in Figure 2 defines the quantity  -7? 

From Figure 2, we find b = 0.02 6 cm kgf. 

**'kgf/cm2 

t 

./ f 
a '   thr 

Figure 2 Figure 3 

FTD-HC-23-36I-69 
172 



Since time enters into (2) as a parameter, the function <J> is not 

determined specifically. The quantity f=^f(h which defines the 

connectic i between analogous moments of times on the model and full- 

scale [2.]> was calculated in accordance with (3) using the formula 

'-*(*-•)«»(-$»■ 

The curve of t° has the shape of creep curves (Figure 3). 

Studies have shown that the values of t° increase with Increase 

of *;he material temperature.  In order to cover a wide range of 

values of t°,the specimen and model tests were conducted at elevated 

temperatures. 

The optical path difference 6 in these tests of the celluloid 

specimens was measured by the Senarmon method in polarized light 

which was nearly monochromatic with wavelength 546 m u . From the 

measured values of 6, we plotted Isochrones In the coordinates 

*p.   (Figure 4). I 

' 

The celluloid models were tested at 35° under various constant 

values of the nominal stresses S. The values of S are shown in the 

table. Also shown are the values of the dimenslonless parameter 

S° ■ bS, which are necessary for conversion from the model to full 
scale. The models were mounted directly on a celluloid ring (it 

was shown in [2] that the contact conditions of the head with the 

disk under creep conditions does not have a significant effect on 

the value of the stress concentration factor). Each test 

lasted five hours. The & measurements were made as a function of 

time at the same points as used on the PN—1 models, using the 

measurement technique described In [2]. The conversion from 6 to the 

stress a   was accomplished with the aid of the lsochronic curves max 
(see Figure 4). The particular isochrone used depended on the 

moment at whi'ch 6 was measured. 
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Figure 4. 

The stress concentration factor k was found from (1). 

The variation of k with time for the celluloid models with 

r/d = 0.0417 is shown in Figure 5. 

The dimensionless time t# of steady state creep onset was 

determined from the conditions [2] 

*=0.5exp(-^). cm 

Then Figure 3 was used to determine the physical time t# of steady 

state creep onset (dashed curve in Figure 5). The values of '» '• 

and the stress concentration factors k for steady state creep 

[for f>0 are shown in the table.  Since the values of k for -£-=0,0417, 

St—0.345 and S° = 0.695 vary little with time CFigure 5), we consider 

that steady state creep corresponds to the values of k for t ~ 

5 hours. 

Figure 6 shows the variation of k in steady state creep as a 

function of the ratio r/d  (solid curves).  The curve S = 0 corres- 

ponds to the solution of the elastic problem or the solution of the 

problem for a material for which the creep deformation depends linearly 

■ 
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on the stress. This curve Is plotted from the results of PN-1 model 

testing. The other curves are plotted from the results of celluloid 

model testing. The crosses correspond to the data of Hetenyi [*J], 

obtained under creep conditions. 

In [2], a study was made of the stress concentration in a T- 

head with relative dimensions -j-=1.78» -j-=Q,645  £see Figure 1) for 

S ■ 0 (elastic problem) and S =1.47 for values of r/d in the 

range 0.0715-0.1785. Values of k for the same values of S were 

later obtained for r/d ■ Q.Q09. The results of the study of these 

blade heads are shown by the dashed curves In Figure 6. We see that 

the values of k in theses heads and In those studied above are 

practically the same for the same values of S and r/d. 

The data of Figure 6 are used to plot in Figure 7 the variation 

cf k with S under steady state creep conditions, 
Q 

for eacn curve Is the ratio r/d. The ordinate S * 

solution of the elastic problem. 

The parameter 

0 defines the 
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Figure 5 
Figure 6 

We see from Figure 6 that with an increase of the parameter S 

(level of the nominal stress in the head or degree of nonlinearlty of 

the connection between creep deformation and stress for the head 

material) the value of k decreases, and the dependence of k on the 

ratio r/d also diminishes.  It follows similarly from Figure 7 that 

the values of k and the dependence of k on S° diminish with increase* 

of the ratio r/d. 

These results make it possible to determine the stress concen- 

tration factor in metal T-heads in steady state creep conditions, If 

they have the relative profile dimensions Indicated.  It is assumed 

that the head is loaded only ay the constant blade centrifugal force 

S - which does not cause bending — the stress state In the head 

is plane, the head Is uniformly heated and its temperature Is con- 

stant. 

From the results of testing the head material in simple tension 

under creep conditions, we can determine the values of b and t , 
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Figure 7 

. 

similarly to the way this was done above for celluloid. We note 

that the use of the exponential dependence of the creep deformation 

on the stress in accordance with (2) usually leads to good results. 

The tests should be conducted at the working temperature and with 

stresses in a range no less than the expected stress range in the 

head. Then, the parameter S = bS is calculated, and (4) is used 

to obtain the dimensionless time t# Of steady state creep onset, 

and then the physical time tt for onset of this state. The value 

of k for steady state creep Ct > t„), is found from the values of 

S° and r/d using the curves of Figures 6 and 7- From the curves of 

Figure 5~,we can find the variation of k with time in the unsteady 

state creep condition for the head with ratio r/d = 0.0417. The 

analogous moments of time for the model and full scale are defined 

by the same values of t° [2]. Therefore, we can use Figure 3 to 

convert the curves of Figure 5 to the coordinates k, t ,and we can 

use the curve of t°, t to convert for the full-scale material back 

Into the k, t coordinates,where now t is the time after leading of 

the full scale head. 

FTD-HC-23-361-69 
177' 



REFERENCES N 

Edel'shteyn, Ye. I., "Instruments of the Scientific Research 
Institute of Mathematics and Mechanics of Leningrad State 
University for Studying Stresses by the Optical Polarization 
Technique.w In the collection: Polyarizatsionno-apticheskiy 
metod issledovaniya napryazheniy (Optical Polarization Techniques 
for Stress Analysis) LGU Press (Leningrad State University Press) 
I960, p. 171. 

Bugakov, I. I., V. P. Smirnova and S. P. Shikhobalov, "Modeling 
creep of T-head turbine blades," Issledovaniya po uprugosti i 
plastichnosti (Studies in Elasticity and Plasticity), Collection 
3, LGU Press, 1964, p. 192 

Bugakov, I. I., ''Equipment for Plastic Creep Studies" In the 
collection: Issledovaniya po uprugosti i plastichnosti (Studies 
in Elasticity and Plasticity), Collection 1, LGU Press, 1961, 
p. 213- 

Hetenyl, M., Stress-concentration factors for T-heads. J. Appl. 
Mech., Vol. 26, No. 1/2, p. 130, 1959- 

Received 7 April 1964. 

i 

PTD-HC-23-36I-69 178 

J 



ESTIMATING THE FUNDAMENTAL VIBRATION FREQUENCY OF 

A BAR OF VARIABLE CROSS SECTION 

L. I. Kuznetsov 

The problem of finding the natural frequencies of the longitudi- 

nal vibrations of a bar, one end of which Is clamped while the other 

carries an absolutely rigid weight,leads to finding those values of 

w. for which the equation 

IS(x)/(j»)J'+^S(jt)/(jc) = 0 CD 

has a nonzero solution [1], under the boundary conditions 

/(0)=0. 
Afa»/(/)-£S(/)/(/)=0 

C2) 

Here Y Is the bar material density; 1 Is the har length; SCx) is 

the cross section area; E is the modulus cf elasticity; M Is the mass 

of the bar. 

For estimating the upper limit of the first (fundamental) 

vibration frequency,we have the simple hut In many cases adequately 

precise Rayleigh formula [2, 3], which for the mode corresponding 

to a static load is 
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«■i- c 
<«WiW^ 

(3) 

where w. Is the fundamental vibration frequency, and 

•W"J (4) 

It is desirable to have an equally simple formula for estimating 

the lower limit of the fundamental frequency, as this would be 

useful for practical calculations. Such an estimate is obtained 

immediately with the aid of the principle of contracting mappings 

[53. However, this method Is not found in handbooks and texts on 

vibration theory, and this is the reason for the present article. 

Let us consider the problem of forced vibrations of a bar with 

a weight under the Influence of a "distributed" loading of the form 

P(x, t)=i(x)m*t,      where <Kx) is a function which Is continuous In 

[0,1] . Then we obtain 

IS W/M1'+ g-S(x)f(x)=f (x) C5) 

with the same boundary conditions. 

Let  •<«v . Then there exists a Green's function of the 

operator [S(x)f«(x)]r with the conditions (.2) [4] 

G(x,y) = 
jr5&™|£-AfrM«(0-«<j)l), *<* 

'M jr=fl&flj(*-JiWN/)-«to!!. x>y. (.61 

and we can write the integral equation 

where 

'. y)S{y)f(y)dy+*(x), C71 

•«—J -fO(x, y)9(y)dy. 
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We note the following. Since «»<•,. we find from (3) and C*) 
that 

E—M«M/)>0 

(8) 

and 
0<£-Af.»[*(/)-*{*)! <£. 

(9) 

We require that 

.£-B!Mt {o(x, y)S(j)dy<\. 

We achieve this If we consider that •<•«, where 

(10) 

(11) 

In fact, it follows from (4), (6) and (9) that for all *€J<*1 
we have i ' 

to(x, y)S(y)dy<TZ£tf3 f «to)S(y)dy + 

and 
^'nux to(x,y)S(y)dy< 

Then it follows from the principle of contraction mappings [5] that 
a solution of (7) exists for any «•<•«.    And this means that w„ 
is no.greater than <*>.. 

For illustration,consider the simple example: S = const. If 
we take v»-5,f — -5-  (m is the bar mass), then we obtain from (3) and 

(11? 

*-/£. «..=v^. 
PTD-HC-23-361-69 i8i 
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The exact value of the fundamental frequency Is determined by the 

smallest positive root of the equation [33- 

The following table is constructed from the calculations« 

r» M U •w 1 N It» - 

0,309 
0,311 
0.311 

0J5I1 
ojno 
0,523 

0.633 
0,«» 
0,665 

0417 
0.0M 
0366 

1.2W 
!.4» 
ijsao 

1,400 
1,566 
1.708 

1,414 

1.732 

We see from the table that for small y the error of (11) is 

not large (however,(3) is more accurate). However, for large y the 

error of both formulas is of the same order. 

It is Interesting to note that the error of the average value 

v i(».+»M) does not exceed 2.5* for all the values of y presented 

in the table. 

It is clear that (3) and (11) are also suitahle for estimating 

the fundamental frequency of torsional vibrations of a bar. 

In place of E, S(x), M we need only write G (shear modulus), I (x) 

(polar moment of the section), and I (moment of inertia of the weight) 

Formulas (3) and (11) will also hold for transverse vibrations 

of a clamped bar with a point weight at the end (without account for 

rotational inertia and shear).  However, In this case 

X    t 

where EI(x) is the bending stiffness. 
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FORCED AXISYMMETRIC VIBRATIONS OP A 

CIRCULAR THICK PLATE 

G. N. Bukharinov 

In this article we solve the problem of forced axisymmetric 

vibrations of a circular thick plate under the influence of uniformly 

distributed normal forces which are harmonic time functions applied 

to one of the faces of the plate. The boundary conditions on the 

faces are satisfied exactly. Satisfaction of the boundary conditions 

at the side surfaces reduces to calculating the coefficients in 

the expansion of the displacements into series of functions of the 

z coordinate, where o17 is the axis of symmetry. 

In the axisymmetric deformation case,the radial displacement u 

and the axial displacement w, as is known, satisfy the following 

differential equations cf motion 

I da I CD 
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where t is time; r and z are cylindrical coordinates; v  is Poisson's 
ratio; E is the normal elasticity modulus: p is the density. We take 
the plane z « 0 as the middle plane. We denote the plate thickness 
by 2h and the face radius by rQ. 

The normal o and tangential T  stresses are known to have z rz 
the form, respectively, 

where G is the shear modulus. 

We specify the following boundary conditions at the faces of 

the plate ,,-J-ft »»•»•*  for *= + *, 
0    for *=-* 

for *=±*. (3) 

and *„=0 

Substituting (2) into (3)»we have 

(<'-')T+«'(^ + 7-))(„,.=-1i?».«»-. „, 

{<'-'>T+'(S+7-)}Lr° 

and 

(s+*)L.-* C5> 

We seek the solution corresponding to forced vibrations in the form 

(6) *=[srf£M*co>'t{*+k)+"'(r< x)Vlamt; 
where 
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and it is assumed that the frequency u of the specified loading 

satisfies the condition sin 2 kh f  0. Substituting (6) into (l),we 

find that u#(r, z) and u* (r, z) must satisfy the following system of 

differencial equations 

ap-ri *B* , 2(t-rt i *• in-rt *• , 

+4" TF+Tfr+«*»*=0, 

(7) 

where 

tf«**^. 

The boundary conditions at the faces z = *_ h after substituting 

(6) into (4) and (5) are rewritten in the form 

{(l_rt~+f(~+*))L=. 

and 

We seek the solution of (7) in the form 

**=UUr)i((t), 

where Jn and J.. are Bessel functions. 

Substituting (10) into (7),we find the equations for the 

functions <J>(z) and ty{z) 

(8) 

C9) 

(10) 

»'w+^h^^w+^vf^o, 
1-2» ,'"W+^T^)(*,+0,)Mz) + äö^rjf^)=o. 
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Integrating (li) we find 

tW«Aco.M+Äl«n»1i+^«-flyco,Xtz+Q,i„ V). 

♦W«-J-(^co.Äl«-^aBXIr)+C,coiX1z+oI,,„Mf 

where A^ B^ C.,, L2 are arbitrary constants and 

(12) 

(13) 

After Introducing CIO) Into the boundary conditions (8) and (9),they 
are written In tbe form 

O-rtf(-*)+W(-A) = 0 

(i4) 

and 

f(*)+«t(A) = 0, 
f(-A)+«t(-*)=0. (15) 

Introducing C121 into (.14) and (.15), we find that (11) and the 

boundary conditions (14) and (15) will be satisfied by the functions 

(16) 

«here X^ and X2 are expressed in terms of a using (13), and we have 
the equation 

(17) 

Similarly, the system (11) and the boundary conditions (14) and (15) 

will he satisfied by the functions 

(18) 
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where X and X„ are expressed In terms of a using (13)» and the 

equation holds MX»)) 

(19) 

We denote by a» (k=\; 2, 3, ...) the root of (17). On the basis of (13) 

this root corresponds to 

and from (16) we have the functions 

[2,a 
C0,X,*Z""7+^ 

eo»!,»* 

♦.W=-5Af*[$,nX'»z-^r 

;J    cos if** 

** + *J "  tin*«* 

cosX^z 

stn^r 

■]■ 
«InXuA ]■ 

where Af4(*—i. 2. 3. ...) 
are arbitrary constants. 

(21) 

N 

We denote by P*. .*=I. 2, 3,... .the root of (19), i.e., 

(22) 

where 

(23) 

On the basis of C..8)  the root ß, corresponds to the functions 

(.24) 

where Nu  (*=1, 2, 3, ...)- are arbitrary constants.  It follows from (1Q) 

that (.7) and the boundary conditions (8) and (9) will be satisfied 

by the following coordinate functions 
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—i« 

••—SH«[-^-^r 
+ W*y,(i?tr)TiinSu». * *to5l(A 

COS*»* -f ] 
\ 

(25) 

The arbitrary constants M. and #k  (*=I, 2. 3....)  must be found from 

the boundary conditions at the plai;e side surface. 

j 

r 
It is obvious that there \s  no difficulty in indicating the 

values of the constants M. and N. if we satisfy the boundary conditions 

at the side siirfaceCr ■ rQ) in the Saint Venant sense, or if we 
satisfaction of these conditions only at a finite number 

of points from the interval *<*<+*. 

i 
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EFFECT OF PRELIMINARY PLASTIC DEFORMATION ON THE YIELD 

AND ULTIMATE LIMITS OF 

COPPER 

G. B. Talypov 

In preceding papers [1, 2] a study of the effect of preliminary 

plastic deformation on the yield limit of low and medium carbon 

steel established that the shape of the yield limit is independent 

of the loading path,  and is a circle on the Il'yushln plane [3], 

expanding and displacing in the direction of the preliminary plastic 

deformation. In the present paper,we present the results of a study 

of the effect of preliminary plastic deformation on the yield 

limit of annealed technical copper. 

§ 1. Specimens and Test Equipment 

Tubular specimens (D = 25 mm, d = 23 mm) were fabricated from 

35-mm-diameter annealed rods of technical copper. The basic geo- 

metric dimensions of the specimens were selected so that the stress 

state induced during testing was as near uniform as possible. The 

axial .load was transmitted to the specimen by means of a UM-5 

press and special blank flanges. The axial force measurement ac- 

curacy was + 13».  Internal pressure was transmitted to the specimen 

by means of a hydraulic press and was monitored by a reference 

manometer.  The internal pressure readout accuracy was + Q.2 5 atm. 

FTD-HC-?3-361-H9 
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Wire resistance pickups and bridge amplifiers were used to measure 

the deformations. The deformation measurement accuracy was ±5-IO"*± 1%. 

The technique for reducing the test results was described in [ I, 2, 

i 2. Yield and Ultimate Limits in 
the Original Condition 

a) Yield Limit     In order to find the initial yield limit 

each of the selected specimens was tested to failure along a definite 

ray of the first quadrant of the (v a«) plane. For a given ray the 

connection between the axial force and the internal pressure was 

determined by the relation 

P=jr5f-i»D+(ii-l)rf]. 
CD 

where n is the slope of the ray to the o„ axis. The basic geometric 
o 

dimensions of the specimens, the values of the loading path parameter 

a,and also the test results are presented In Table 1. 

Table 1. 

Sample 
No. 

ft 
MM MM *• V.I 

kg/cm2. 

1330 

•fc. 

kg/cm2 

1330 

■v.- 
kg/cm2 

0 

" *m 

1 34* n» 0 1.16 9 
2 aw» 2*93 IS 1130 1160 310 1.0» 02M 
3 34* 22,94 30 •960 1090 i30 1.03 1.588 
4 25* 32* 45 1080 1080 1060 aw 0,990 
» *fi! 32* 60 920 656 1135 0.613 1* 
• »4* TJJSI 75 1000 299 1115 0*0 1.6» 
T Kit 23* 90 1090 0 1070 0 1.0.» 

The test results are: E 
2 ■ 2190 kg/cm . The experimental initial yield 

1.1"10 kg/cm ,u-0.32,ffg0-lC70 kg/cm , 

I^Q - tj.au «4«,/ win .  nie cAyci »envoi JJU.I/J.O.X jr-LCAu limit points 

from the data of Table 1 are plotted in Figure 1. The a = 0 point 

should be neglected; a shortage of specimens from this lot of copper 

made it impossible to carry out repeat tests for this point.  Figure 

1 also shows the initial yield limit on the Il'yushin plane, [4], 

where 
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a 
.-simpleloadiug, 
4-combined.loadiriR 

Figure 1 

> <* » 4* oljy 

Figure 2 

N 

(2) 

Figure 1 shows that this copper is isotropic with respect to the 

initial yield limit. 

b) ultimate Limit, During the tests the maximal magnitudes 

of the axial force and internal pressure were recorded. From these 

quantities we determined the equivalent ultimate stresses <r 

and a ,_  • The te3t results are presented in Table 2, from which 
zb 

the data are used to plot in Figure 2 the effective ultimate limit . 

In this case, jus; as in the case of steel [1], in the region «i^8» 

the Huber-Mises strength condition is satisfied 

while in the region °i>9*  the condition of maximal tangential 

stress is satisfied 

(.3) 

*-«=*.. CO 
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Sample •• 'r *»• «!»• •a- _*» •rt 
No, kg/cm2 

170 

kg kg/cm2 

1900 

kg /cm2, 

0 

'¥> *M 

i 0 -700 0.868 0 
2 II 165 -300 1830 490 0.134 0.224 
3 30 187 140 1890 1100 0,864 4503 
4 45 170 780 1880 1900 0.859 0L866 
5 eo 118 1350 1315 2240 0.600 1.02 
6 75 51 1590 586 3320 0,268 1.06 
T 75 54 1530 610 2300 0,278 i.05 
• 90 0 1680 0 2190 0 1.00 
» 90 0 1670 0 2200 0 1.00 

Table 2. 

§ 3. Yield and Ultimate Limits 

After Preliminary Plastic Deformation 

The data of Table 2 show that the ultimate strength in the 

transverse direction is about 8T% of the ultimate strength in the 

longitudinal direction. Therefore, in order to ensure consistent 

results the preliminary loading of all the specimens was performed 

up to  «,—i.6»«t   along the ray a = 90°.  After the preliminary 

loading and unloading new measurements were made of each of these 

specimens and loading tables were prepared. The second loading up 

to failure was accomplished on the day following unloading. 

al Y-leld Limit    p-.-om the measured deformation values,we 

calculated the deformation intensity e.,and from the corresponding 

values of the stresses a_ and a we calculated the stress intensity 9      z 
a..    Prom the Ca., e.} diagram,we determined the value a.      of a. 

at the effective yield limit.    In determining the stresses a„ 

and a    we used the new specimen dimensions, so that a.  will in essence 
Z> lo 

represent the true stress [4]. 

The test results are presented in Table 3.  The data of Table 3 

were used to plot in Figure 3 the yield limit of the copper after 

preliminary plastic deformation.  In this figure the triangles 
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Specimen1    D 

No. !   •"' MM •» V 
kg/cm2 

1740 
1870 
1895 
1830 
1770 
1730 
1720 

kg/cm2 
1    V, 
.kg/cm2 f   -±- 

1 
3 
3 
4 
8 
6 
7 

34.14 
24,89 
33,89 
84.04 
H» 
24.60 
HIS 

23,20 
22.73 
31.96 
22,10 
22.26 
22J(2 
21.13 

0 
IS 
30 
45 
60 
76 
90 

1740 
2080 
2090 
1830 
1175 
516 

0 

0 
560 

1210 
1830 
2040 
1975 
1720 

142 
1.94 
I* 
1.71 
t.io 
0.482 

0 

0 
4)317 
1.13 
1.71 
131 
1.75 
141 

Table 3 

indicate this same boundary on the Il'yushin plane. The results 

show that the loading complexity does not affect the shape of the 

yield limit for copper. . This limit remains a  circle on the 

Il'yushin plane, expanding and displacing in the present case in 

a direction which does not coincide with the direction of the pre- 

liminary plastic deformation. 

-£*■&). 

b) Ultimate  Limit.   As indicated above, the second loading 

of each specimen after the preliminary plastic deformation was 

carried out to failure. The maximal values of the axial force and 

the internal pressure recorded during the tests were used to 

determine the effective ultimate stresses. The test results are 

presented in Table 4 and plotted in 

Figure 2. We see from the figure 

that preliminary plastic deformation 

by axial stretching has no effect 

on the ultimate limit in the 

region 3z>3,,  but leads to 

some expansion of this limit in 

the region 3,>JZ. . 

Figure 3 

FTD-HC-23-36I-69 19*1 



\ 

Specimen 
No/ »' 

„, 

1 • 
3 ■ 
3 » 
4 3T4B' 
1 y 
« «0 
T 1 
8 9» 

kg/cu2 

l«S 
192 
I» 
If? 
187 
121 
•7 
0 

J9L Jtg/a^lkg/an2, 

-739 
-391 

147 
«SO 
780 

itse 

!870 

Table 4 

9000 40 
3170 «to 
2130 1300 
2105 1730 
2060 2000 
1370 2280 
«43 234« 

0 2150 

0,844 
0491 
0,872 
0.983 
0,937 
0.626 
0.293 
0 

«* 

0.011 
0.288 
0.55 
0.734 
Ö.9U 
1.03 
1.07 
0.933 
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EFFECT 0}   LARGE PRELIMINARY PLASTIC DEFORMATIONS AND 

NATURAL AGIi\C ON THE YIELD  LIMIT OF LOW CARBON STEEL 

G. B. Talypov 

It was shown In [1, 2] that natural aging after preliminary 

plastic deformation has no effect on the shape of the yield and 

ultimate limits.    Therefore»the effect of natural aging on the 

yield and ultimate limits may be  studied by means of experiments 

in simple tension. The influence of natural aging after preliminary 

plastic deformation manifests Itself in the fact that,along with 

the increase of the duration of natural aging,the yield limit 

initially expands continuously and then contracts, i.e., there is a 

recovery effect. Natural aging has practically no effect on the 

ultimate limit. 

S 

Results were presented in [3] of a study of the effect of small 

(up to 5%)  preliminary plastic tensile deformations and natural 

aging on the yield an:! ultimate limits of St.  3 steel.  The 

results of these tests showed that the effect of natural aging on the 

yield  limit of low carbon steel Is described quite satisfactorily 

by the formula 

• 

Z = X. + -4«-*"-'"\ (1) 
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Figure 1 

where x0 *■ the ratio of the yield limit a to a. in the imaged 

condition; t, is the aging time interval for which maximal expansion 

of the yield • limit occurs.   In the general case the parameters 

A, Ic and t, depend on The magnitude of the preliminary plastic 

deformation. Small preliminary plastic deformations were examined 

in [3] and therefore, account was not taken of the effect of the 

specimen- dsoea section area change as a result of preliminary defor- 

mation on the'value of the yield point for the repeat loading. 

Figure 1 shows" the variation of the parameter A for St. 3 steel as 

a function of the degree of preliminary plastic deformation, plotted 

from the results of [3J with account for the specimen cross section 

area change as a result of preliminary plastic deformation. 

In the present paper,we present the results of a study of the 

effect of large preliminary plastic deformations and natural aging 

on the yield limit.   For the experiments we used four groups of 

so-called ^gagarin™ specimens of annealed St. 20 steel. The (three) 

specimens of the first group were tested in tension to determine the 

basic mechanical properties of this steel (a n = 2280 kg/cm , a, _ = 
o S U DU 

■ 386O kg/cm ).  All 27 specimens of the second group were stretched 

to a = 0.85c,~ • After unloading and recording the new dimensions, 3 
z     _bu - 

samples of the first subgroup were again stretched up to failure on the 

same day. Each of the tnree specimens of succeeding subgroups were 
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N 

s>-dr-0,85ö,9, 

•- *ej9tte, 

I Months of aging 

Figure 2 

stretcned up to failure, a*ter aging for a period of one to two months 

and so on.  All 27 specimens of the third group were subjected to 

preliminary stretching to az » Q.9Q obQ and all the specimens of 

the fourth group were stretched too =0.95obQ. After unloading the 

corresponding subgroups of these groups of specimens were subjected 

to the same operations as were the corresponding subgroups of the 

second group. The test results are shown in Figure 2 and are described 

satisfactorily by CD.. In this case the parameter A remains constant, 

equal to 0.31, and Its values are shown by the triangles in Figure 1. 

Thus ,we find that the extent of the maximal expansion of the yield 

limit for natural  aging depends not only on the magnitude of the 

preliminary plastic deformation ,but also on the steel grade.  While 

in tU'i case of St. 3 steel this expansion reached 20%, for St. 20 

steel It reached 30$. - 
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FAILURE TIME OF TUBES SUBJECTS TO 

INTERNAL PRESSURE AND AXIAL FORCE 

Ye. M. Levitas 

In [1] Hoff showed the practical value of the concept in which 

failure time Is determined from an analysis of the unbounded quasi- 

viscous flow of a body. Discussion and literature references on 

the problem of "viscous" failure are preaanted in [2]. 

One of the most important practical problems of this kind is 

that of tube failure. In [3] Kats found the time for viscous failure 

of a tube under the influence of the internal pressure p. In the 

following,we consider r more general problem In which the load is 

made up of the internal pressure p and the axial force P. 

Let a and b be the instantaneous internal and external radii 

of the tube. In accordance with the Hoff scheme, failure occurs 

when a+b |-j-=p->l). 

Let us derive the differential equation for ß. We start from 

the obvious relation 

It  = a  I dl       a  ' at}' 
(1) 
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The following formula for the creep deformation rate in the 

tangential direction was oöi-ained in [4], devoted to an analysis 

of the stress state of a tube under the influence of internal pressure 

p and axial force P 

•   «■ —x- ■ 

where 

V—;s5r- 

(2) 

a-  (creep rate in the axial direction). 

Introducing the value C2) into the expressions 

w=^u=«,)u. f-euU' C3) 

substituting the result into CD and noting the connection 

between k and o*. we obtain 

C*3 

In the new notations 

CB is a coefficient and m is the creep index) we rewrite (.4) as 

T-fr-nÄj—* C4*) 

¥e write the formula for the radial stress a    obtained in [4] 

in the form 

!♦• >i 
^f^J'P^lf,»;,?,«)-!, 

(5) 
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where 

rfc'v*-»«^l+'$-Jrf*$ if-Z I- 

Considering Xr=const, we find ic from the boundary condition 

«rl#_>~° and substitute it into C2*1) 

where 

«•+• «T" nfc2*^.j£^£-= - </F. i     a      . .a_i   »—I 

»<p, \, *«)=*(?. v P. «>W 

(6) 

We introduce the function 

,*■-. 

Then, integrating (6) with the condition  pj. =s0> we obtain 
'j-0 

»Ho » 2"+,3 » (Q.A. >,, *)-<?<?. ^ /*)] =F. 

Considering that  Q(l, Ji„ m)=0,   we find the failure time 

7,=2-+,s"'"Q(fli, X„ «). 

(8) 

REMARKS. 

1.   If P=p*a\  then A
p 

s ° • 

_*__,»£ after transformation,we obtain 

Considering the relation 

Q(.3, 0, «) = 
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We have obtained the formulas found by Kats [33 for vise,uc failure 

of a tube under the Influence of the internal pressure p. 

2. It is not difficult to show that for p - 0 3 » <Jonst. 

In fact, introducing the expression for the creep rate in the 

tangential direction 

as"1" 

into C3) and substituting the result into CD we obtain 

t»s coast s=pt. CS) 

Consequently the method of solution based on analysis of the 

variations of 3 is not suitable. Therefore ,the Hoff solution [1] 

for a bar in tension does; not follow from C8). 

We present a table of the values of: 
. »-■ 

f5"*^ calculated for 1). the functions »(S, J^, «) =f|l + •$--£) 

»>=I72,3; «»3,5,7,9 with ß varying from 1.Q0 to 2.0Q CO.05 

steps!; 

Table 2 

Values of the Function ',dV V *)•!<• 

V-» V* 1,-J 

«. 
•-J ■-» ■-T *«• IB-3 »-S *-; *-» At -3 *-s »-T m-t 

IJ» 2,480 
4598 

3.495 
19,770 

9.193 
18.745 

27.283 
39.813 

1J586 1.220 
5J59I 

1,7« 
0.154 

2^00 
7.630 

1.005 
4£3Q 

0.441 
2J86S 

0,265 
2.203 

0.337 
1.845 
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2). the function '•(&.'?.<") 
for a) 60 » 1.50, b) ß 0 = 2.00 

for the same A and in. 
P 

V*     The calculations (and program 

/   compilation) were performed by 

A. V. Abramova of the computer 

center of Leningrad State Univer- 

Curves of the functions T(8, >.,,«)• 10 

and £(&. *„ *)10 are shovm in Figures 
1 and 2. 

I would like to thank Profes- 

V aor L. M. Kachanov for his guid- 
ance. 

»  3 

Figure 1 
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EFFECT OF PRELIMINARY PLASTIC DEFORMATION 

ON THE YIELD LIMIT OF ST. 45 STEEL 

A. I. Chistyakov 

Tubular specimens were prepared from 55-mm-diameter annealed 

rods. A plane stress state at points of ehe specimen cross section 

was created by simultaneous application of an axial force and inter- 

nal pressure. The axial force was measured to within + 1%,  the 
2 

Internal pressure to within 1 kg/cm . 

The longitudinal and transverse deformations of the specimen 

wer?, measured by wire resistance pickups with base length 24 mm 

and fcidge amplifiers. In order to account for the possible slight 

eccentricity in the specimen installation,the longitudinal gages 

were mounted along two opposite generators. 

i 1.  Yield Limit for Simple Stress 

To construct the- yield limit, we tested nine specimens using 

the following stress paths a ■ 0, 15, 30, 45, 60, 75, 90°, and in 

order to determine more precisely the yield point a      for the St. 45 

steel three specimens were tested with a *  90°• 

FTD-HC-23-36I-69 ^07 



As is known, under simultaneous application of the axxal force 

P and the internal pressure p , the effective stresses are determined 

from the formulas 

8 J_- iff (1) 

*■- 

Since small elasto-plastic deformations are considered, the effective 

stresses will be close to the true stresses. 

The loading path in the (az, aQ)   plane is defined by the 

expression 

■*--*.=«. 

(2) 

Substituting into this equality the expressions  CD for 

OQ and cr we obtain the dependence of P on p 

P-p-2-[nD+(n-l)d\. (3) 

To determine the yield point we plotted the curves a^ = f C^)» where 

The deformation e in the elastic region was found from the formula 

*--!^W+«ft 

and in the plastic region from 

*"-rib«+*)-M+«& 

C5) 

(6) 

The relative permanent elongation 0.2$ at the effective yield limit 

for \i ~  0.27 corresponds to the Intensity e.  = 0.17$. Prom the 

value of e. ,we find the values of the stress intensity a.  and in 

Figure 1 we plot the Mises ellipse in the relative coordinates 

■S*-; 3L ,  where o - = 3100 kg/cm is defined as the average value 
•JO   »»> S 0 

for the three specimens with deviation from the mean of + 1.5S« 
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X-ÄÖ 

We can also plot the yield 

limit on the Il'yushin plane if 

we use the transformation to the 

new variables o, and o on the basis 
l     2 

of the formulas 

«b-Vl*,. 

(7) 

Figure 1 

then we have from C71 

e 

FTD-Hc-23-361-69 

In so doing the Mises ellipse will 

be transformed into a circle 

with the same center. 

If we denote 

x 

*"■ 
Vf' n> * v* 

Figure 2 

209: 

^^ 
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The yield limit on the Il'yushin plane is plotted in this same 

figure. 

For an isotropic material the yield curve must be a circle on 

the Il'yushin plane. 

N 

In our case the curve in Figure 1 differs somewhat from a 

circle in the direction of the a0 axis. This can apparently be 

explained by the fact that the specimen material has a lower yield 

limit in the transverse direction than in the longitudinal direction. 

§ 2.  Yield Limit for Compound Loading 

Six specimens of a given lot were loaded to o^  = 1*7asg in the 

direction a = ^5° and then were unloaded along the same path. After 

unloading the specimen dimensions were measured and each specimen 

was again loaded along a given direction. 

The following directions were used for the second loading in the 

experiment: a = 35, 40, 45,50,55,60°. From the test data, we found 

the yield points and plotted the yield curve in the relative 

coordinates CFigure 2) 

9„ «fa 

Figure 2 also shows the yield curve on the Il'yushin plane, which 

indicates that the yield limit is shifted in the direction coin- 

ciding with the direction of the preliminary plastic deformation and 

does not have angular points. 

The shape of the yield limit for the plane stress state is 

independent of the loading direction and is a circle in the Il'yushin 

plane. 

In conclusion,the auther wishes to thank Docent G. B. Talypov 

for guidance in setting up the experiments. 
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V 

PHOTOELASTIC STUDY OP THE EFFECT OF BOTTOM SHAPE ON 

THE STRESS STATE OF THICK-WALL VESSELS 

T.D. Maksutova 

The present article is an extension of the description of the re- 

sults of an optical polarization study of thick-wall cylindrical ves- 

sels. The purpose of the study is to obtain the most complete possi- 

ble description of the stress state as a function of the values of the 

parameters characterizing the vessel geometry. 

Tab le 1. 

Models Ri/Rn t h p0 pl 

Model 1 . . . . 

Model 2 . . . . 

Model 3 • • • • 

2 

2 

2 

1 

1 

1 

1 

1 

1 

0.167 

0.167 

1 

0 

1.167 

2 

In a preceding study, we examined the effect of the cylinder outer/ 

inner radii ratio R-i/R0 on the stress state of a thick-wall vessel 

with flat bottom and constant wall thickness.  In the present article, 

we use the example of a cylindrical vessel with ratio Rj/Rg equal to 

two to examine the effect of the geometry of the region where the ves- 

sel wall joins the bottom, and the shape of the bottom on the stress 

state. To clarify the posed question, we consider three vessel geome- 

tries (Figure 1, Table 1). The quantities which characterize the ves- 

sel geometry are given in dimensionless form, and we take as the char- 

acteristic dimension, just as In the preceding article, the magnitude 

(Footnote 1.  See page 225.) 

I 
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RQ of the cylinder inner radius. Consequently, the stress state of 

the vessels is described in the dimensionless variables p « r/Ro» 

C ■ Z/RQS and the vessel geometry is characterized by the dimension- 
less quantities: bottom height (h), wall thickness (t), inner (pQ) 

and outer (p,) bond radii. 

outer 

Inner 

r^ 
X i t 

Figure 1.  Geometry of vessels with different bottom shapf. 

As the basic version (Figure la), we considered the model with 

flat bottom, small inner bond radius (pQ = 0.167) and outer square 

corner (p1 =0). As the second characteristic case (Figure lc), we 

studied the stress state of a vessel with hemispherical bottom 

(p0 ■ 1; p1 * 2). The vessel with a flat bottom, small inner bond 

radius pQ * 0.167) and outer corner cut at the radius (p, = pn + t) 

is an intermediate version (Figure lb). 

In models 1 and 2, the distribution of the stress state components 

in the bottom and a portion of the adjacent transition region is deter- 

mined  along the lines p ■ const, parallel to the vessel axis of 
symmetry. To calculate a    in this region, we use the second equill- 

brium equation in cylindrical coordinates, which leads to the familiar 
2 

formula 

«■= -^-J(*+*K (1) 

As usual,, 3T /3r is calculated from the corresponding values in two 

auxiliary sections, f  are the values of the tangential stress at 

the points of the basic section being considered, and r, the distance 

(footnote 2,    See page 225 
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froi.i the axis of symmetry, is a constant along the entire path of in- 

tegration.  The normal stress a at points of the axis of symmetry z 
cannot be calculated directly from (1), since along this line r ■ 0 and 

t  = 0. Therefore, we must first eliminate the indeterminancy, 
Zl 

which leads in final form to the following expression 

3-*|# dz. (2) 

Thus, to determine a    in the bottom and in the adjacent portion of the 

transition region we need only have available data obtained on the 

basis of measurements of the optical quantities in the radial section 

PC whose middle plane coincides with the vessel plane of symmetry. 

To calculate a    in the vessel wall and in the portion of the 

transition region directly adjacent to it, it is natural to use the 

first equilibrium equation in cylindrical coordinates.  In this case, 

we have 

-a-]« —+ Zh)d, 
(3) 

The calculation of o using (3) requires that we have data along 

two mutually perpendicular planes — along the lines X,  = const in the 

radial plane and along the radius in the corresponding plann £ ■ const. 

In calculating both a    and a  , the origin for the integration path 
Z I 

was selected at points on the free surface of the model, so that as a 

result of the calculations we determined the value of the correspond- 

ing component of the stress state normal to the inner loaded surface, 

and at the end of the integration path nominally equal to the magni- 

tude of the internal pressure. Naturally, for different sections 

,(p = const or x,   = const) we obtain different, but only slightly dif- 

fering values of the stress state component a normal to the surface. 
» F v 

The resultant of the tangent i -.1 stresses T  , acting on a cylin- 

drical surface of radius p isolated from the bottom is equilibrated 

by the resultant of the internal pressure p.  On the basis of the 

corresponding area, 2irpT  equals wp p , where T  is the area of the 
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corresponding tangential strass diagram. Since the quantities T  are 

determined from experimental data, this equilibrium condition is not 

satisfied exactly. Consequently, the quantities p. calculated for 

different cylindrical elements of radii p. differ somewhat from one 

another: p. = 2f*r/pi. 4 
zr' 

In reducing the experimental data, it was found to be advisable to 

determine the magnitude of the internal pressure as the average of all 

the values 5,. and ö determined by integration at the points of the 

inner surface of the model and the p"i, calculated from the resultant 

of the tangential stresses in the bottom 

Pav" 

In this case, the optical activity coefficient C is calculated 

the formula C = p.„/dp, where p is the : 
av 

on the vessel model,measured by a manometer. 

from the formula C = p„„/dp, where p Is the internal pressure acting 

The deviations of AÖ" and Aö„ of ö" and 5„ at the points of the 
r     z    r    z      r 

inner surface of the model from the value p" r and the deviations 

(AT ) of the resultant tangential stresses f  in the bottom from 

the corresponding values p„,,p/2 define the accuracy with which the 
3. V 

experimental study is carried out (Table 2). 

Analysis of the results obtained from all three models showed 

that the average error in the determination of the stresses normal to 

the inner surface, calculated by integration, is 2.8%  with a maximal 

deviation from the average value of 9 • 356 - The error in the determin- 

ation of the principal vector of the tangential stresses in the bottom 

is 2.9* with a maximal deviation of 9%> 

It Is natural to describe the stress state of the hemispherical 

bottom of model 3 in the polar coordinates p, tp, 9, and that of the 

wall in cylindrical coordinates p, £, 9. Within the limits of the 

bottom, the stress state components were determined along the axis 

of symmetry (ty -  l80°) and along the line where the bottom joins tha 

cylindrical wall o* the vessel (^ = 90°, the boundary of the transition 
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Table 2. 

Models 

Model 1 

Model 2 

Model 3 

Deviation, % 
Average 

Aö 

S 

r5H 
av 

A5J 
av 

ä5™ zr 

P *av p *av P      £ pav 2 

Maximal 

AÖ_ 

?3 

4-8 

3.2 
<-6 
4 

/-5 
4.9» 
i-4 

17 

3.1 

p 
lav av 

+3.5 
-1.4 

+4.7 
-3,7 

+13 
-4.1 

av 

+13 
-7.0 

18 

AT. zr 

pav 2 

+5.0 
-4.3 
+9,0 
-1.9 

* For model 3 data were taken for the stress 
normal to the inner surface of the spherical 
bottom. 

region), and also along rays for which ij; equals 150° and 120°. The 

distribution of or was found by integrating the first equilibrium 

equation in the rectangular coordinate system xu xt, x,(»r=aJti; «+=«x,; 8i=a*J« 

since there is no obvious advantage in calculating a    by graphical 

Integration of the corresponding equilibrium equation in polar coor- 

dinates.  In order to obtain all the required data, it was necessary 

to perform measurements in two mutually perpendicular planes — the -^ 

radial plane and that corresponding to the section ij) = const. The 

pieces and sections cut from the model were marked off using a large 

tooling microscope, which made it possible to ensure the required 

precision in performing this operation. Just as in the case of 

models 1 and 2, the optical activity coefficient C was determined 

from the formula C = p /dp, and the experimentally determined •'alue 

of the internal pressure p" r was calculated as the average value of 

all the quantities 5 determined by Integration at the points of the 

inner surface of the bottom and wall: 5  = So /n . 
*av  -^ r 

The patterns of the principal stress trajectories and the distri- 

bution of their differences in the p? plane (Figures 2 and 3) yield a 

good intuitive feel for the effect of the bottom shape and the shape 

of the region where the bottom joins the wall on the stress state in 

the vessel. 
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" PIgure 2. Principal stress trajectories in the p£ plane: 
1) trajectories S, of the principal stress a!,; 2) trajec- 
tories Sp of the principal stress a'2; a-model 1; b-model 2; 
c-model 3. 

The trajectories of the principal stresses in the p£ plane (Figure 

2) were plotted from the corresponding isocline patterns for each 

model. Comparison of the isostatic curves of the three models shows 

that the nature of the stress state for models 1 and 2 is the same in 

the Dottom, the wall and the portion of the transition region adja- 

cent to the inner loaded surface of the models. The stresses in the 

vessel with hemispherical bottom were distributed more uniformly than 

in the vessels with flat bottom and small inner b^nd radius, for which 

a marked crowding of the trajectories D1,, is observed near the inner 

surface of the region where the bottom and wall join, which indicates 

a significant local concentration of this stress. However, the a' 

trajectories in model 3 within the limits of the hemispherical bottom 

are nearly concentric circles, while the o'^ trajectories lie nearly 

in the radial directions. 

■ 

On the basis of the experimental data obtained on models 1 and 2, 

in Figure 3 we have plotted the lines fi__/p = const in the bottom and 
F Z 

the portion of the region where the bottom Joins the wall directly 

adjacent to the inner surface of the models, and we have shown the 

distribution of 6__/p along the axis of symmetry, along the generator rz 
p ■ 1 - P0 and along the outer and inner surfaces of the bottom clo- 

sure. The lines 6 /p = const within the limits of the bottom are rz 
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Figure 3. Distribution of o^ - o'2/p, characterized by the 

lines o' - o'2/p = const in the PC plane, by values at points 

of the Inner and outer surfaces and by values at several sec- 

tions p = const and z,  = const. 

• — model 1 

x - model 2 

o - model 3 
a - common data for two (bottom) or three (wall) models 

drawn through points plotted in the pc plane and taken from the curves 

Ö /p constructed for models 1 and 2 in the various sections p = const. 
rz 

In those sections p = const (or ; = const) in which experimental data 

were obtained on both models, the curves 6  = 5rz(P) 
or  6rz 

= &
vz^^ rz 

were plotted on the basis of these combined data and then we determined 
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from the3e curves the coordinates of the points with the corresponding 

values of *rz/P» The experimental data on the distribution of the 

stress state components •„ «*. % V* in the bottom and the transition region 

of models 1 and 2 were processed similarly (Figures 4-7). The results 

presented in these figures, and also the cur/es of the stress distri- 

bution constructed for several sections of the transition region and 

along its inner surface, show that for the vessel models with a flat 

bottom the distribution of all the stress state components within the 

limits of the bottom and the portion of the transition region adjacent 

to the inner surface is practically the same. However, the portions 

of the transition region adjacent to the outer unloaded surfaces have 

stress state, component distributions which differ significantly from 

one another, though the stresses themselves are very low in magnitude 

in these regions. 

Figures 8a and 8c, respectively, show the general patterns 

of the distribution of  or/p  and  ofl/p in the model with 

hemispherical bottom, while Figure 8b shows the general pattern of the 

o /p distribution, where aT within the limits of the hemispherical 

bottom coincides with o.  (polar coordinate system) while within the 

limits of the wall it coincides with o (cylindrical coordinate system). s 
Obviously, the distribution of the stress state components in tne 

hemispherical bottom of model 3 differs considerably from that of the 

corresponding components in the bottom and the transition region of 

both models 1 and 2. Thus, the stress state in the hemispheric:;! 

bottom is characterized by the fact that the normal stresses o^ and 

Cg are tensile and do not change sign through the thickness, while in 

the models with a flat bottom there are regions of significant com- 

pressive normal stresses a    and oQ near the inner surface, which 

transition into tensile stresses only at the boundary where the bottom 

Joins the wall.  Also, o and o„ are positive in a quite broad region 

of the bottom near the free surface.  Finally, there are no marked 

normal stress concentrations at points of the inner surface of the 

model with hemispherical bottom. Conversely, at the points of the 

transition region on the inner surface of the model with a flat bottom 

there is a high concentration of all the stress state components. 
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Figure 4. Distribution of O„/PJ characterized by the lines 

°r/p 
a const ir. the pc plane, bv values at points of the 

inner and outer surfaces and values in several sections 

p ■ const and z,  = const. 

Notations same as In Figure 3. 

There are two possibilities for comparing the stress states in 

the walls of the three models under consideration: either align the 

boundaries of the transition regions of models 1 and 2 with the 

section c = 2 of model j (Figure 9a), or align the points C = 0 of 

the three models and consider the beginning of the wall to be the 

section x,  = 2, corresponding to the plane along which the hemispheri- 

cal bottom Joins the cylindrical wall of model 3 (Figure 9b).  In the 

latter case, within the limits of the bottom for the first two models 

» 
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Figure 5. Distribution of a  /p, characterized by the 
25 

lines az/p» Const in the pc plane, by valv.es at points of the 
*,iner and outer surfaces and values at several sections 

p = const and x, =  const. 

Notations same as in Figure 3. 

there is included not only the bottom itself and the transition region, 

but also a portion of the cylindrical wall. 

In constructing the general patterns of the stress state compo- 

nent distribution in the vessel wall we selected the first version 

for comparison of the data obtained for the three versions of vessel 

bottom geometry.  Namely, we aligned the sections c,  = 1.167 of the 

first two models with the section c,  = 2 of model 3, and this plane 
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Figure 6. Distribution of aQ/p,  characterized by the lines OQ/P = 
const in the~pC plane, by values at points of the inner and 
outer surfaces and values at several sections p = const 
and 5 ■ const. 
Notations same as in Figure 3- 

was taken as the origin for measuring the axial coordinates ? in the 

vessel wall. From the values of the stress state components calculated 

in section c»=const (common for the three models) we plotted curves of 

the variation of the corresponding stresses along the radius. 

The exoerimental data shown in Figures 4-7 show clearly that the 

distributions of all the stress state components for models 1 and 2 
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Figure 7. Distribution of T /p, characterized by the lines rz 
x/p in the p5 plane and by values at several sections 

p * const and £ * const. 

Notations same as in Figure 3« 

in the wall are also practically identical. 

For c > 0.8; the experimental values of a    obtained for model 

3 fall on the curve which is common for models 1 and 2, which in turn 

differs little from the distribution curve for or given by the Lame* 

solution. 

The values of Og obtained experimentally in the sections of model 

3 lie on curves which are common for models 1 and 2 for c* >^ 1.8. 

Agreement of the experimental values with those calculated following 

Lame is observed only for c* > 2.8. Here the experimental data sys- 

tematically exceed the theoretical data near the free surface^. These 

deviations at individual points do not exceed (K2p or 21$ of the 

theoretical values at the same points, with the average deviation of 

3- ^„_ from a- -  - being of t-.he order of 4*. o eAp     o iiame 

(.footnote 3" See page 225 .) 
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lines^Aw' 
«contour 

yalone    lines y »Owe 
contour 

Figure 8. Distribution of stress state components in hemi- 
spherical bottom and the portion of the wall directly adja- 
cent to the bottom for model 3. 

a) or/p; b) oT/p, c) oe/p 

e» c 

^ 
./ 

/ 

•f 

Analysis of the distributions of 

o , the smallest of the three normal 

stresses, obtained in the vessel wall 

leads to the following conclusions: 

first, the experimental data obtained 

on model 3 lie on the curves which are 

common for models 1 and 2 for c* 1 0.8; 

second, the distribution of a    through 

the thickness of the wall is nearly 

Figure 9. Two model comparison linear; and third, equalization of or 
versions 

across the section r* = const takes 

place extremely slowly and for ;• = 2.8 the distribution of o still 
z 

differs significantly from the uniform distribution required by the 

theoretical Lame solution (for p = la ■ 0.l6p; for p = 2,a = Q.48p) 

Received 7 April 1964 

FTD-Hc'-23-36l-69 22k 



FOOTNOTES 

Ji"«f H«;«.  5USV2i Photoelastic study of thick-wall vessels with 
flat bottom," Studies in Elasticity and Plasticity, vol 3 Press of 
Leningrad State University, 1964. (see page 212) 

2. Here and hereafter we use the previously introduced notations 

2S-?«n JMSÜ material °Ptical activity coefficient; d is the reduced 

AS f^nrforSlas^^^1 >tre"e8 ln the « plane were cal! 

  V-^«»« at«r. »„—%» «la2f,„ 

«here ^ is the angle'formed by the (.algebraically greater in the 

section plane) principal stress a\  with the positive direction of 

the radius, and ^  is the angle between c« and the positive direc- 
tion of the z(?) axis,  (see page 213) 

3^ This is easily explained by the neglected initial path difference 

«re - 0, which develops during polymerization of the cylindrical 

blanks, distributed  nonuniformly across the section and not 

completely eliminated by annealing (5°e = 0 at points of the axis of 

symmetry  and distributed parabolically along the radius). 
(see page 223) 
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CALCULATING THE LOAD-CARRYING CAPACITY OP 

IDEALLY PLASTIC AXISYMMETRIC SHELLS 

V.l. Rozenblyum 

The yield condition expressed in terms of forces and moments 

("finite relation") is of fundamental importance in the theory of 

limit equilibrium of ideally plastic shells. At the present time 

these finite relations have been formulated for the cases of the Mises 

medium [1-4] and for the Tresca-Saint Venant medium [5,6], and also 

for certain other types of plastic media [7].  These Änite relations 

(within the framework of the usual hypotheses of thin shell theory 

they may be considered as exact relations) have a very complex struc- 

ture. In this connection considerable attention has also been devoted 

to the question of the approximation of these exact yield conditions 

by means of relatively simple surfaces which are more convenient for 

application. The greatest simplicity is achieved if we take the 

yield surfaces in the form of polygons , for erample, 

max!!/,I, |/,|. |f,-/,|. I«,I. I «»I, K-/n,!) = 1, 

where 

'»-£• «« 
and so on,are dimensionless forces and moments; h is the shell thick- 

ness, a    is the tensile yield limit, 
s 

The piecewise linear yield condition in the form (0.1) has been 

widely used in many particular problems [8, 9, and others] . However, 

the - _,ults obtained and the comparisons made with certain more exact 

(Footnotes 1 and 2. See page 239 -) 

(0.1) 

hU, t 

I 
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solutions[10] suggest that, generally speaking, the approximation of 

the actual yield surface by the piecewise linear relation (0.1) is too 

crude and in many cases may lead to unacceptable errors. The reason 

for this is, in part, that in the yie"'d condition (0.1) we have ig- 

nored to a considerable degree the interaction of the force and moment 

factors, which has a significant effect on the plastic bahavlor (as 

follows, for example, from the elementary theory of plastic arches). 

Under these conditions the question arises of the choice of a 

"compromise" version of the theory, possibly more complex in compari- 

son with the simplest formulation based on (0.1),but at the same time 

leading to a more realistic description of the actual structural 

behavior. 

In this connection we consider in the following the "quadratic" 

yield condition [11, 12] 

and its "semilinear" modification 

where 

*'+*>-». 

(0.2) 

(0.3) 

(0.4) 

The results presented later for the axisymmetrically loaded shell 

of revolution show that the nonlinearity present in (0.2) and (0.3) 

appears to make it possible to approach more closely the exact solu- 

tion than when using the piecewise linear condition (0.1); although 

the solutions are somewhat more complex in this instance, in many 

cases quite effective solutions may be obtained. 

1. We first consider the quadratic yield condition (0.2), which 

on the basis of the associated flow law corresponds to the middle 

surface deformatior rates 

(l.i) 
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whert A Is a nonnegative coefficient of proportionality, 

condition (0.2) may be satisfied by taking 

#,=-^|-«ni»cos^--£-). *, — -~cos*cos(»--jf-). 

Substitution of these expressions into (1.1) yields 

'•t»lUnmcoafo + -j-\, i*--^-cos«cos/l-f--j-). 

The yield N 

(1.2) 

(1.3) 

If we substitute (1.2) into the usual system of (three) equili- 

brium equations of the axisymmetric shell 

«Mt*, . 
m 

T, T,\ (1.4) 

(R-^, R2 are the principal radii of curvature,A,, A2 are the Lame 

parameters, a, is the coordinate corresponding to the meridional dir- 

ection) and if we substitute (1.3) into the two equations for defor- 

mation compatibility, then as a result we obtain a system of five 

differential equations in terms of the unknown functions A, w, t|>, 9 

and the shearing force N1. Generally speaking, the solution may be 

obtained by numerical methods- However, the energy approach, which 

leads to two-sided estimates of the limit load [11], is far more 

effective. In order to obtain the lower estimate we must construct a 

statically possible force and moment field which satisfies the static 

equations (1.4),  the  static boundary conditions, and does not con- 

tradict the yield condition (0.2). The upper estimate is found by 

equating the Internal energy dissipation and the eternal force inten- 

sity A at kinematically possible rates 

-LrJJM.yMvfc^ =A, 

where 

We note that by virtue of the known inequalities 

(1.5) 

(1.6) 

. 
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(1.7) 

every statically permissible (or exact) solution satisfying the semi- 

linear yield condition (0.3) is also statically permissible with rela- 

tion to the quadratic condition (0.2). This makes it possible to use 

for the construction of the lower estimates the simpler condition (0.3) 

(or its linearized version (2.6), introduced later). 

2. In using the semilinear relation (0.3) we must differentiate 

the regular and singular regimes. In the first case the usual asso- 

ciated flow law yields 

(2.1) 

In the singular regime cas* (when one of the conditions: t, * ^o'^i = °, 

t. « 0, m, ■ nu, m, ■ 0, nu * 0 is met) the flow law is constructed 

in the form of a suitable linear combination of the regular laws in 

a fashion which is completely analogous to the corresponding construc- 

tion in general plasticity theory. For example, let 

x=tl--tt, ***** 

Then 

i,=«;F+(i-.)i|» (0<a<l), 
(?.2) 

where the superscripts Q.) and (2) denote the deformation rates cal- 

culated using (2.1) for the regular regimes T * t,,T ■ tp, respec- 
tively; 

;i'>=w„ ;p»=o, 
iV>«o, ip«u* (2.3) 

Combining (2.2)  and (2.3) we obtain 

i•+i•=sW,• (2.4) 
Moreover, for u ■ m- we have from (2.1) 

;s«4-m»'   i,Ä°- (2.5) 
We obtain the complete system of (four) equations of the flow law 

by adding to the three relations (2.H)  and (2,5) the adopted condition 
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We note that in the case of singular regimes the problem of deter- 

mining the stress state of the axisymmetric shell in the cr^-responding 

plastic regions becomes (internally) statically determinate. 

To obtain a statically determinate problem in the general case 

(which is important for obtaining the lower bounds with the aid of 

statically permissible solutions), we can use the following approximate 

technique [11]. We replace one yield condition (0.3) by the following 

two conditions 
IMXII/.I. IM. |*.-tt\\=it. 
■wxII«,!, I«,I. 1*1—*h||=«,. 

where 6.,  6 are constants subject to the conditions m 

*?+£ = !■ 

(2.6) 

(2.7) 

These constants are determined in the final stage of the solution 

so as to obtain the maximal value for the limit load. The yield con- 

ditions (2.6) are analogous in form to the classical Tresca-Saint 

Venant yield condition aid are formed by hexagons in the t,, t? and 

m1, m2 planes (Figure 1). We note that an analogous technique is 

also possible in the case of the quadratic yield condition (0.2), for 

which we take 

Ml — (71,/fl, -4- /Flj =; nm. 

i 

(2.8) 

V— -4 

Figure 1 

In Figure 1 ellipses inscribed in the hexagons (2.6) correspond to 

these conditions. 
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Let us consider some examples which clarify *he use of these 

techniques. 

ä^äffl. W$\   1 tBBBBt--^ .     3. It is convenient to make the com- 

parison with other solutions on the basis 

of combined bending and tension of an an- 

Figure 2. nular plate (Figure 2), which has been 

studied in detail by Hodge L9» 10]. We shall use the semilinear yield 

condition (0.3) and assume the plastic regime 

Then from (0.3) 

Then the flow law (2.1) yields 

(3-D 

(3.2) 

i,3=o. «i=o, 
(3.3) 

where 

am 

■ I (3.4) 

(u and w are the radial displacement and bending deflection rates). 

We obtain the complete system of equations by combining with (3.2), 

(3«3)j (3.4) the equilibrium equations 

-jp-(r»i) — «, = — p—|— 
(3.5) 

(P ■ P/M : P is the uniform pressure on the plate) and the boundary s 
conditions 

lot r-a 

lot  '=* 

f,=0, »i=0, 

f,=?«-2-, «,=o. 
(3.6) 

In spite of the static indeterminancy of the problem and the nonlinear- 

ity of the yield condition (3.2), the exact solution in this case is 

quite elemencary. Prom (3.*0 with account for the conditions e, = 0, 

K, - 0 we obtain 
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•.=? 
where C,, Cp are arbitrary constants.    Since from (3-3) m-Ap * 
hiCg/^Cgjas a result of (3-7) we obtain 

Ä=const=C. 

Solving this equation together with (3-2) we immediately obtain 

(3.7) 

(3.8) 

'•-/r+'d*' ** .»HT? (3.9) 

Substitution of these values into (3.5) and integration with account 

for the boundary conditions at r ■ a yield 

'. 
r-a        I 

r — s 
(3.10) 

L. .£=•, 
•'-^'TGS-T^VT*-** 

Then the two remaining boundary conditions at r * b serve for 

determining the constant C and the limiting relation between the values 

of the loads p and q. The latter may be written in the form 

(*W"- (3.1D 

where pQ and qQ denote the limiting values of the pressure and radial 

force, acting separately 

A=6<A»+a»-2a»), *~T*. (3.12) 

(These expressions are the exact solutions of the bending and tension 

problems for a flat plate under the Tresca-Saint Venant condition.) 

Figure 3 shows the circle (3.11) and also the polygon AOB corres- 

ponding to the analogous solution [9] based on the piecewise linear 

yield condition (0.1). The difference between the solutions in this 

case is quite large, and the circular arc AB is closer to the exact 

solution, which Hodge showed [9] must lie within the hatched strip in 

Figure 3. 

4. Now let us consider a shallow shell of revolution supported 

along the contour and loaded axitymmetrically by the normal pressure 
P(r). 
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Pigure 3 

The shell middle surface is given by the 

equation z ■ z(r), where r is the distance to 
the axis of symmetry (Figure 4). 

Under the usual 

assumptions of shallow 

shell theory,the equili- 

brium equations and the 

expressions for the de- Figure 4 

formations of the middle surface may be written in the form 

«,-—-t—. «f- — 

(4.1) 

(4.2) 

where the prime denotes differentiation with respect to r. 

We shall use the yield condition (0.3) and consider the singular 

(statically determinate) plastic regime T » t, ■ t2, u = m2 to which 

corresponds the finite relation 

(4.3) 

and the flow law (derived in §  2) 

«i = 0, ■i+ H _J.-A 
4     Mt (4.4) 

Using the condition t, * t2 we obtain from the first equilibrium 

equation 

/,=',=<• (4.5) 

From (4.3) and (4.1) we obtain the bending moments 

, - W=7 - ±- \zrdr ~£ f *■ \p{r)rdr. 
o to 

(4.6) 

(4.7) 

After transforming the second term we integrate by parts and 

noting the boundary condition m, = 0 on the contour r = a,we obtain 

(for p ■ const) 
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-f/,~»T^F+1£-f«fr. (1.8) 

If an external meridional force t. = q is applied on the contour,the 

problem will be completely statically determinate; for constant c we 

find in this case, in accordance with (4.5), the value c ■ q and 
(4.8) defines the limit loads 

£~rr^f+*T (1.9) 

Here p = 3/2 is the limiting pressure for the flat plate case; zl 

denotes the average shell height 

••4-l'afr. ~4J (1.10) 

Now let the kinematic condition 

«3=11=0 (forr=a). (4.11) 

(1.12) 

be given on the contour. In this case, in order to complete the 

solution we must examine the velocity field. Introducing the values 

for t,, m2 into (4.1), we obtain 

-g-(ru)_*__=_ T.-_.__. 

Integrating these equations with account for (1.11) we obtain 

for velocities u, w and constant c, 

t 

(1.13) 

(1.11) 

'-«■fr|«+K/| • 
where w„, the velocity scale, remains arbitrary. Introducing (4.14) 

into (4.8), we obtain the expression for the limiting pressure 

,.Aj77[4l?. (4.15) 

We see from this formula that the limiting pressure on the shallow 

shell depends not on the details of its shape, but only on the average 

height z*. For the solution to be correct ,it is necessary that the 

bending moment m, satisfy the condition 0 <  m, <_ m2. This condition 
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is easily verified for specific classes of shells. It is obviously 

satisfied, for example, for the spherical shell, for shells of the 

form ar-*»[,-('r)"] <for 1 < n/? £ (h/4z*)2) and in many other cases. 

5. We shall examine the construction of bilateral estimates of 

the limiting load on the example of a spherical shell which is clamped 

along the contour and subjected to pressure loading (Figure 5). To 

obtain the lower estimate,we use the yield condition in the form (2.6). 

We assume the plastic regime 

0<f,</„ 0<ml<mt. 

Then (2.6) provide two yield conditions 

Combining with these relations the equilibrium equations 

-i-(-.1sln?)-m1cos?-44.gj/I = ~^ 

we obtain a statically possible regime tfhich satisfies the necessary 

conditions at the apex of the shell (for ♦ » 0) in the form 

/ —_J'_  ** »to1» 

»,=«. + 2(^4-/»)S(T). 4 

(5.1) 

(5,2) 

(5.3) 

where the notations are 

5(?)-7ib'«t«(-f^T)-1- 
(5-5) 

The edge condition m, = 0 for ? ■ a yields 

(5.6) 

After determining here 6t, 6 from the condition of a maximum of p 

with the additional condition (2.7) and returning to dimensional 

variables, we obtain finally 

p •Mrcfcr)T' (5.7) 

where P ■ 2o (h/R) denotes the momentless solution, o    s 
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To obtain the upper estimate we specify the rate field 

«=0, —- m_«■«-■»■» 
tin* 

to which correspond the following deformation rates 
4u    ,   w       Mb    »In a — »In e 

* "TBf + TT=S_» 35".     • 
■ __ ! ,.»„« J.  1 _ & »tn«-»lny 

»■«%•«,      CM« 

T      W»        *     »In« ' 
■ <5_ •»    »'"? th      cot»y 
1 ~~ S5 "" ~ "Ä*    »In« •  "» " RT- '«in« tSf' 

Substituting these values into (1.5) we obtain 

(5.8) 

p  , 
7S* 

I (»In »- .«.»»*;  " ft* ««?» 

I- i»ln*2? 
«in f rf ? 

(5.9) 
i*(»lni-»lnf)»ifl?rf» 

The results of calculations using this formula for certain values 

of h/R are shown (for 10° £ a < 90°) in Figure 6. Also shown there 

are the corresponding curves constructed using (5.7) (lower estimate). 

For small values of a (5.7) is in good agreement with the exact solu- 

tion (4.15) for the shallow shell. In this case the upper estimate 

(5.9) differs from the solution (5.7) by at most 15? >*. 

Figure 5. 
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FOOTNOTES 

1. In the last two cases, the finite relationships were derived only 
for axisymmetrically loaded shells of revolution,  (see page 226) 

2. In this case, there are specific difficulties connected with 
selecting the suitable plastic regimes,  (see page 226) 
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In plate and shell theory, it is of interest to construct problem 
solution methods which can be ascribed definite physical relevance. 
This is because physical considerations are often useful in con- 
structing computational algorithms. Moreover, this approach makes 
possible a more profound and simpler analysis of the various assump- 
tions and simplifications. Some techniques were indicated for de- 
coupling the operators of the differential equations of shell theory 
and these techniques were used to construct solution schemes having 
definite physical relevance. In particular, it was possible to re- 
duce the problem to the caluclation of a crossed bar system. It was 
found that this sort of system is not a crossed bar system in the 
usual sense. Its individual bars do not bend relative to the normal 
to the shell middle surface. Their twist takes place with a rigid- 
ity proportional to the moment of inertial, additional forces and 
moments acting on the bars appear, the calculation result does not 
depend on the relative width of the bars etc. The resulting bar 
system differs in this aspect from the conventional crossed bar 
system. The latter sometimes appears in those studies where an 
attempt is made to construct computational schemes not on the basis 
of the fundamental mathematical formulation of the problem, but by- 
means of unconvincing and at times erroneous arguments based on 
"engineering" intuition. 
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Shells which cover a space with nonrectangular planform find 
application in the construction of pavilions, trade centers, and 
other structures. Here the most efficient shells are those in 
which the midsurface has positive Gaussian curvature, since these 
shells provide a stress state which is nearly moment-free under 
the primary design loads (dead weight,snow). In this case a con- 
siderable portion of the shell, with the exception of small 
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designs. In the present paper we suggest a method for calculat- 
ing coverings with nonrectangular planform which differs from 
that of [3], The Pucher system of equations is generalized to 
the case of an oblique Cartesian coordinate system. We examine 
several cases of the application of the resulting equations to 
the analysis of coverings which have an arbitrary parallelogram 
pianform, and also the questions of direct determination of the 
tangential forces at the shell corners. 
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The problem of torsion of an elastic bar of constant cross 
section in the classicla.l rormulation, i.e., under the assumption 
that the deformations are small and the material obeys the genera- 
lized Hooke's law, is known to reduce to the determination of a 
stress function which satisfies In the region of the cross section 
a second-order linear equation and takes a constant value on the 
contour. For a homogeneous bar this equation has constant coeffi- 
cients which depend on the modulus of elasticity. However, if the 
Elastic moduli are continuous 'functions of the coordinates we 
obtain for the stress function a second-order differential equa- 
tion with variable coefficients, and the question of finding an 
effective solution for the torsion problem becomes much more com- 
plex. It appears that this problem has been solved only for a 
bar in the form of a solid or hollow circular cylinder having 
cylindrical anisotropy, with elastic moduli which are constant along 
the length. In the present article we consider several cases of 
bars with variable moduli for which an effective solution of the 
corsion problem may be obtained eleuiexicdrily, uding the same 
methods used in solving the corresponding problems for the homo- 
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The asymptotic method for integrating equations with small para- 
meters in the higher derivatives is employed to integrate the 
system of equations of small axisymmetric vibrations of a thin 
elastic shell of revolution. In some frequency range the resol- 
vent equation has a reversal point. In this article we consider 
the case in which the coefficient of the second derivative in the 
resolvent has a simple root (simple reversal point), and we find 
the Stokes multipliers relating the integrals of the resolvent to 
the right and left of the reversal point. Moreover, the integrals 
in the immediate vicinity of the reversal point are calculated. 
As an example, we examine the problem of the natural vibration 
frequencies of a shell with clamped edges. The present article 
is an extension of the study initiated by Alumyae for a conical 
shell. 
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* is known that the general solution of the system of equations 
of free sxisymmetri" vibrations of a thin elastic shell of revo- 
cation is made up of two integrals of the momentless equations 
•JUKI four integrals wi^h a large variability index. The asympto- 
tic expressions for thes-? four integrals may be found easily In 
Intervals which do not contain either so-called reversal points 
or singular points of the shell vibration equations. The beha- 
vior of the integrals in the vicinity of a simple reversal point 
is examined. The equations for the vibrations of a shell in the 
form of a dome have a regular singular point at the shell apex. 
In the present study, we construct the regular integrals with 
large variability index at the dome apex, and find their asymp- 
totic expressions far from the apex of the dome. We need to know 
these integrals in order to determine the natural vibration fre- 
quency of the dome. 
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This article presents a unified method for determining the 
stresses near a small central opening in shells of revolution 
subjected to symmetric and antisymmetric loads. Primary emphasis 
is placed on reducihg the solution to a form convenient for 
practical application. In particular, the edge stiffness coeffi- 
cients are obtained. In most studies on this question symmetric 
deformation of a shallow shell is examined. In contrast to 
these studies, the proposed method contains a simplification 
involving replacement of sin 0 by 6 only in the equation coeffi- 
cients. The trigonometric multipliers are retained in the 
expressions for the stresses and displacements. Comparison of the 
resulting solution with a specially constructed more exact solu- 
tion has shown its acceptabiJity for a wide range of values of 
a given angle; corresponding to the edge of the opening in the 
shell. The region of values of the basic parameters in which 
the suggested Bessel solution may be replaced by the much simpler 
familiar Geckeler solution, is determined„ A brief review of the 
studies Rnown to the author is presented. 
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This article presents the results of a study using photoelastic 
and photocreep methods of stress concentration in the T-shaped 
heads of turbine blades with relative dimensions given. The 
study was made by the Optical Laboratory of the Scientific Research 
Institute of Mathematics and Mechanics of Leningrad State University 
for.the "22-nd Session of the CPSU" Leningrad Metals Plant. The study 
was made using two-dimensional models subjected to a constant ex- 
ternal load simulating the blade centrifugal force. The models were 
fabricated using metal templates with relative dimensions. 
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The problem of uflnding the natural frequencies of the jongitudinal 
vibraj§i£n» of a bar, one end of which is clamped while" the other 
carries an absolutely rigid weight, leads to finding a given value 
for which a giften equation has a nonzero solution, under given 
boundary conditions. Here gamma is the bar material density; 1 is 
the bar length; S(x) is the cross section area; E is the modulus 
of elasticity; M is.the mass of the bar. For estimating the upper 
limit of the first (fundamental) vibration frequency, we have the 
simple but in many cases adequately precise Rayleigh formula, which 

for the mode corresponding to a static load is a given equation. 
It is desirable to have an equally simple formula for estimating 
the Tower limit of the fundamental frequency, as this would be 
useful for practical calculations. Such an estimate is obtained 
immediately with the aid of the principle of contracting mappings. 
However, this method is not found in handbooks and texts on vibra- 
tion theory, and this is the reason for the present article. 
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In this article we«solve the problem of forced axisymmetric 
vibrations of a circular thick plate under the influence 
of uniformly distributed normal forces which are harmonic 
tiws functions applied to one of the faces of the plate. 
The boundary conditions on the faces are satisfied exactly. 
Satisfaction of the boundary conditions at the side surfaces 
reduces to calculating the coefficients in the expansion of 
the displacements into series of functions of the z  coordi- 
nate, where oz is the axis of symmetry. 
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In preceding papers a study of the effect of preliminary 
plastic deformation on the yield limit of low and medium 
carbon steel established that the shape of the yield 
limit is independent of the loading path, and is a circle 
on the Il'yushin plane expanding and displacing in the 
direction of the preliminary plastic deformation. In the 
present paper, we present the results of a study of the 
effect of preliminary plastic deformation on the yield 
limit of annealed technical copper. 
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In the present paper, we present the results of a study of the 
effect of large preliminary plastic deformations and natural aging 
on the yield limit. For the experiments we used four groups of so- 
called gagarin" specimens of annealed St. 20 steel. The (three) 
specimens of the first group were tested in tension to determine 
the basic mechanical properties of this steel. All 27 specimens of 
the second group were stretched to a given equation. After unload- 
ing and recording the new dimensions, 3 samples of the first sub- 
group were again stretched up to failure on the same day. Each of 
the three specimens of succeeding subgroups were stretched up to 
failure, after aging for a period of one to two months etc. All 27 
specimens of the third group were subjected to preliminary stretch- 
ing to a given equation and all the specimens of the fourth group 
were stretched to a given equation. After unloading the correspond- 
ing subgroups of these groups of specimens were subjected to the 
same operations as were the corresponding subgroups of the second 
group. The test results are shown in a figure and are described 
satisfactorily. In this case the parameter A remains constant, 
equal to 0.31, and its valueq ar~e shown by the triangles in a 
figure. Thus, we find that the extent of the maximal expansion of 
the yield limit for natural aging depends not only on the magnitude 
of the preliminary plastic deformation, but also on the steel grade. 
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Hoff showed the practical value of the concept in which failure 
time is determined from an analysis of the unbounded quasi- 
viscous flow of a' body. Discussion and literature references 
on the problem of "viscous" failure are presented. One of the 
most important practical problems of this kind is that of tube 
failure. Kats found the time for viscous failure of a tube 
under the influence of the internal pressure p. A more general 
problem in which the load is made up of the internal pressure p 
and' the axial force P is considered. 
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Tubular specimens were prepared from 55-mm-diameter annealed 
rods. A plane stress state at points of the specimen cross 
section was created by simultaneous application of an axial 
force and Internal pressure. The axial force was measured 
to within plus or minus 1  percent, the internal pressure to 
within 1 kg/cm(superscript 2). The longitudinal and trans- 
verse deformations of the specimen were measured by wire re- 
sistance pickups with base lengths 24 mm and bridge ampli- 
fiers. In order to account for the possible slight eccentri- 
city in the specimen installation, the longitudinal gages 
were mounted alont; two opposite generators. 
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The present article is an extension of the description of the 
results- of an optical polarization study of thick-wall cylin- 
drical vessels. The purpose of the study is to obtain the 
most complete possible description of the stress state as a 
function of the values of the parameter:? characterizing the 
vessel geometry. 
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The yield condition expressed in terms of forces and moments 
("finite relation") is of fundamental importance in the theory 
of limit equilibrium of ideally plastic shells. At the present 
time these finite relations have been formulated for the cases 
of 'the Mises medium and for the Tresca-Saiht medium, and also 
for certain other types of plastic media. These finite rela- 
tions (within the framework of the usual hypothesis of thin 
shell theory tftey may be considered as exact relations) have a 
very complex structure. In this connection considerable atten- 
tion has also been devoted to the question of the approximation 
of these exact yield conditions by means of relatively simple 
surfaces which are more convenient for application. 
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