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EQUATIONS OF ANISOTROPIC PLATE THEORY

V. V. Ponyatovskily

In this paper the method of [1] is used to construct a theory of
anisotrop’.c plates. It 1s assumed that the plate 1ls elastically
uniform through its thickness and has at every point a plpne of elas~
tic symmetry parallel to the medlan plane. As is known, in this case
the problem of the stresses in the plate breaks down into two indepen-

dent problems which are symmetric and antisymmetric with respect to
the medlan plane, respectively.

The equations of the bending problem for transversely isotropic
plates are examined in detaill.

s A, B R

In this case, the stress state 1s
represented as the sum of two qualitatively different stress states:
"rotational"™ and "potential® [2].

To solve the bending problem we use asymptotlic integration of

differentlal equations with a small parameter in the derivatives
£3,4].

§ 1. Three-dimensional Problem Formulatlon.
Baslec Relations

e S WA S T AT Al e

1. We refer the plate median plane tc the arbltrary curvilinear

coordinates xl, x2 and denote by guB the metric tensor of the median

plane 1n these coordinates. Let z be the distance of any point of

FTD-HC-23-361-69 s
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the plate to the median plane,so that

—k<2z<A,

where 2h is the plate thickness, which we will consider constant.

We denote the components of the stress tensor and the deformations
z = zz= =

by °a8’ ouz = 0, = 943%,2 ° o and euB, euz ea, ezz

respectively. Here and in the following the Greek indices of a tensor

symbol take the values 1, 2.

= e,

We assume that the material from which the plate is made obeys

the generalized Hocke's law and at every point has a Plane of elastic
symmetry parallel to the median plane.
law formulas are written as

In this case the Hooke's

0= 09" -0, 0,
'¢=b", e=‘.’f’+a,' (101)
where aqup’ auB’ a, buB are the derormation coefficients. In

the plane xl, x2 amBﬂp is a tensor whieh is symmetric relative to

both the first and last two indices and also their pairs; auB and bu

8

are symmetric tensors and a is a scalar. 1In the following we assume

that the deformation coefficients are independent of z.

In the absence of mass forces, the equilibrium equations have
the form

" de
v.c"+-5-=0. v.d'+3'.-=0. (1.2)

where 7y is the symbol of covariant differentiation in the

metric established in the median pPlane. The statie boundary conditions

%liya =00 =132 (1.3)

will be given at the boundaries of the plate surfaces z = th, where
qQ=4q (xl, x2) glves the lcad on the surfaces z = th, which is
symmetric relative to the median plane, while p
antisymmetric load.

= p (x!, x2) gives the

FTD-HC-23-361-69
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2. We represent the plate stresses o in the form of Legendre

”

af
polynomial series in the varlable ¢ = ﬁ » and retaln 1n these serles

a finite number of terms 1
N 0 )

4 L

=Y, A, - 3

h (1-4) R %

d

]

The expansion coefficients, whlch in the following we will call k-th » 1
* 1

order "moments", are unknown functions of a point of the plate median
plane. '

Substituting (1-4) into the equilibrium equation (1.2) and
integrating the resulting equations with respect to z with account
ror the boundary conditions (1.3), we obtaln the expressions for

the remaining stresses
N1

.?H) .(.l—l)
: N[ (1.5)
¢=§+-¥:;ﬁp.(o+n-g[m-:g(r-ﬂ_nf '

20, 04
- Byt mr ey A

and the equations

248
V% =0, Tv.v,ca’,-l.-P=0-.

(1.6)
In (1.5) we have used the notations
%™ =% =0
W=V =V, k=23, ..., N, (1.7)
3p=0, £=0, 1.
Moreover, here and below we shall conslder that a“s = Qfork <0 *
and k > N. ' (k)
3. We note that, by virtue of the orthogonality of the Legendre v
polynomials, the zero and first order "moments" °§g)’°§é) are pro-
N 1 2
portional to the conventional forces and moments Tus’ MGB

FID-HC-23-361-69 4




(1.8)

However, "moments" of higher order °§§) (k> 1) define stresses which

are self-equllibrating through the plate thickness.

Similarly,
% =V
(1.9)
i1s proportional to the shearing force Na
: 28
No= [ adz= 5o, (1.10)
et "I
\ :
while ogk‘ (k # 1) defines the self-equilibrating tangential st: <sses.

We see from (1.8), 1.10) that (1.9) and (1.6) are simply the usual
plate equilibrium equations in terms of forces and moments.

§ 2. Application of the Castigliano Principle
to the Derivation of Plate Theory Equations

1. We 1ntroduce the plate deformation potentlal energy

. .
n=-}jj“(:fz.,+2r e. + ce) dz} Vg dxt dxs, (2.1)
s 4.

‘=‘|I ‘ﬂ— ‘?ﬁo

where the double integral 1s taken over the entire median plane of
the plate.

Substituting (1.1), (1-4), (1.5) into (2.1) and integrating
with respect to z we obtain

FTD-HC-23-361-69
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&) ( B CE=T1)r+T)(2x +3)
4 X Co-nl) +ei-ntw _ Wigd ye) el
=HE-—)@k+1) @ =HNE-D@RF1) " .
L "n’+ Woadth  MWa ("u)"i‘i'"z)'n)_*_
T @+ DT~ @D DT
+ . Shazy) o Wy, +
T k=3 -1+ 12k 4+3)(2k+8)  (2A+ D2k +3)(2Rk+9)
+ May (20070 + Bom 2w _
: [P FITE BT FX )

—_—— w‘1‘.*’)7(.) +
A=+ DR+ )R CE+TD

.“3. ‘),(.) o

+ BT E TS 5)(§k+7)(§k+5)]'/‘d"d"’+

. +2"ﬁ['~2‘"¢°73+%“-3’3)""1%“-:’?3)’*"501“&)4‘
+ '—g—f a3z — -6—’;’—;5 a 3(5)] Vgdx dx"+.con§t.

(2.2)

The energy expression 1s written so that, to obtain its variation
61, we must in each term of the integrands place the variation sign
6§ in front of the last cofactor and then double the first integral.

Let us minimize the expression for the potential energy with
the aid of the equilibrium equations (1.6), which play the role of
auxiliary conditions. In order to take these auxiliary conditions
into account, we use the Lagrange multiplier method. We multiply
(1.6) by 2hu  and w, respectively, and substitute the results into
the integrand of (2.2). We obtaln the functional

1=1+ {f[2hus, 5 + (5 v. v, % + p) w] VEdrar (2.3)

The Lagrange multipliers u, are the covariant: components of the
characteristic tangential displacement and w is the characteristic
deflection [5]. In classlical thin plate theory u,,u,, w are the
components of the displacement vector of a poini of the median plane.

For convenience in writing the subsequent formulas, we introduce

the notations:

FTD-HC-23:--361-69
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waﬁ'%ﬁ#mm%ﬁnﬁ
tETTe T W =0 L2 M

Pe=1: pm--'{- Pay=0: Py=—T5: Pay=0, £>3;
D=

a—!mf"ﬁr-m Fnm Ty
mﬁ&.ﬂ @=1,2 ... M;

=0, 'm"'y: :
Masy_
= = —~ Nk — ¥
e : I Mo o
-BEk -3 -1+ D (2% +3) ==+

Ghtas
- ST LTyt m S myEy
4his
+ﬂ¥“§é%aﬂ=3§ -+ “15;-!?5”1’34-6(5#5*' (24)
Wmlrﬁm—mﬁwm sr(u-nmr—)

(l===2, 3, .
P¢;=’Q- Pg=’m.—]"9- P«)—O; Rm—’p)- N—O. .>5.

With the aid of these notations the variation of functional (2.3)

may be written as

i _
3 '=”.2.1” (eWBad +uy, v, v,efg,-fu?) v o)V gdxtdat, -

Equating &I to zero, after the usual transformations we obtain the
following variational equation:

hi
Sl gt vt e s Vst +

+ gj[(gm.- — i'ﬂ n‘) 8 (s, m, )+

(2.6)
'.,_(.9,--&1 )a(.-g,u,s,) sy (o) | ds =0.

FID-HC-23~361-€9
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Here n.» n® are the covariant and contravariant components of the
vector of the unit outward noraal to the contour of the region
occunled by the plate medlan plane; 80 s® are the components 0. the
unit tangential vector, whose direction 2oincides with the direction

of integration along the region boundary; ds 1s the contour length
element.

Variational equation (2.6) leads to the differential equations E
(compatability equations)
L :
“-3’* (el + o4+ v.5,4,,=0 ( :
2.7} i

and the homogeneous geometric boundary conditions

\' -
-‘."u'-%}f\:o. ug')r-f%r=o. i, =0.

(2.8)
The corresponding static boundary conditions are
q)nc'l‘*d:')' )% 5y = s T =g, (2-9)

By virtue of the assumption of elastic symmetry, the stress state
of the plate may be considered as the sum of two stress states, one .
of which 1is symmetrié, while the other 1s antisymmetric with respect
to the median plane. Correspondingly, we have two independent
problems: stretching and bending ¢f the plate, for which the equations
and boundary conditions are obtained from the protlems presented
above for even and odd k, respectively.

2. The compatibility equations (2.-7) may be derived by inte-
grating the Hooke's law equatlons with respect to z after first
writing them in the form:
a‘.'.'-}-a‘o—--;-(v‘ﬂ’-[- v;’-)‘-:o'

where(vlv2,v) is the displacement vector of an artitrary point of
the plate. "

Displacements V,  and v can be determined if we 1ntegrate the

first two equations (2.10) with respect to z, after first substituting

FTD-HC-23-361-69 8
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into them the expressions (1.4) and (1.5) for the stresses. Substi-

tuting the displacements Vo thus found into the third equation and
expanding the left side into a series in Legendre polynomials, we
obtain equations of the form (2.7). The variational method has the
advantage that it permits obtainirg simultaneously the natural
geometric boundary conditions.

. . i o — e — . = e et

§ 3. Bending Equations for a Homogeneous
Transversely Isotropic Piate.

1. Consider 8 transversely 1isotropic homogeneous plate whose
plane of isotropy coincides with the median plane. Let E be Young's
modulus for the directions in the plane of isotropy; E, is Young's
modulus for the directions perpendicular to the plane of isotropy;

v 18 Poisson's ratio, characterizing the contraction in the plane
of 1isotropy for stretch in this same plane; v, is Poisson's ratio:
characterizing the contraction in the plane of isotropy for stretch
in the direction perpendicular to this plane; G is the shear modulus
for planes normal to the lsotropy plare.

The deforaation coefficient tensor has the form
1
1 1
bo=358s = (3.1)
We rewrite the equilibrium equations (1.6) for the case of

plate bending and the compatibility equations (2.7), substituting
therein the deformation coefficients from (3.1)

1+ve—v ':
e vl | B g0 £ K5 (ro o)+

AS v AS v
+é"f“(v-°f’+"‘: o) — T‘.E:‘ ‘f&'gd‘(a:T'EE:goP'

E_ - MY, V%0 _
z H‘-ﬁ(ﬂ—!)(ﬁ-—!-ﬁ'h_( -n@+n

E - “‘V.' '.-
T @M - —'_2&'13)( )T HE@TY

_E Pt testun) | £ Mt get?)
L @-Soh@h T @-H@—NaTDH

+ 1+ —vg 350 + E_ DM (v.npolat+ faim)
%31 E @D (- Hr L)

(Continued on following page)

+

(3.2)
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(Continued from preceding page)

- m—w&—m—s'(" ol
+z +fs‘-w-fﬂ-—-ﬁﬁ"?!’&'%’:ﬁwxc—r+
f ”(’. +D -:-3:(.‘1 )wz‘!:"’w(m’%?:- +!%;“’n)
— % @hETIE TS e Ty eTy T+ ¢

£, (3.2)
+‘£: )-i-)(+ +HEETY

The geometric boundary conditions (2.8) for the transversely
isotropic plate take the form:

WP w3

A
W
w=0,

‘-1537:7Rﬁt:5aﬁénﬁﬁh-Uﬁh+4)“?;?"*-,
+"1Kanr_'775_1ﬁérL4)§FQ-b(f"?"‘2:4'534'

+m—m—l)ﬂt+n(‘£"‘“}‘}"’ w—ed-nm) 4
+arrarmTs e — % ) -
r-.'lfm(ﬂ—l)(::;u)m.,_;)m*_s) :‘:.’m+

+ mrnmrsaTs (% Tt -] +

+TWWW%5W'M'”‘— | (3-2,)
77"+"Tm~+r)amw *‘“’n'

"l‘(TTF, . Y £ T TV E ) ) (,,- Fre=0  (r~s),
- (=3, 5, .., N),

o ..
ot
0-__
u"o

(Continued on follcwing page)
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(Continued from preccding page)

. —
rﬂm-mn:‘- = T (oo
: w

2] -
=Dk =) (R — 1)k + 1) (2K +3)

. ". ”".
' "'m'-,.'l)'m&ﬁ'ﬂ—ﬁ"'?s— @wrnerTsH T

) e, Aoyl oy -
+ ETHE D@ HE TN Y S @R+ HAR )
' 2 o Mgy
DTN @ S TGN T ‘ (3-29)
z. R Y
+ @ +8 +u+)+

"'m”l'm'rn-" Lradiiteon

The symbol (n® ~ 8%) indicates that the relation obtailned from
the given expressicn by replacement of n® by s® holds.

2. Let us introduce the stress functions. To do t:hisz we
divide the vector cf“k)into potential and rotational parts t k) c(;k)

such that

P=4d (&=13,..,N).
(3-3)

The latter may be expressed in terms of the scalar functions °(k)?“’(k)
by the formulas

=00, V=" (*=13 .,N),

‘ : (3-4)
where e?u 1s the mixed form of the discriminant tensor €48 (4]
=0 tu= = ta=VE. (3-5)
From (3.3}, (3.4) we have (A = g“s v v )
V400 =2y, v, m+V-(':V-"m+' Vs “w),
V=080, (k=13 ..., N). (3-6)

Substituting (3.6) into (3.2),we obtain
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k‘r.'lo
EB—WWZ'_!E%_‘-) =H@-NH&*FH

. “'.' ‘.‘._'
L7 THGTSH

_& By, (v, Tpoonn + £ 800 Benlas
"’&' iﬁ% 2T+ T et
(|+')(‘, ﬂi’)-'l4':(n)+2 DR (v, 0308 oy + &, “m)
o 'ﬁ‘-"m'l'l)iﬁ.'l'”
B VYa¥p %)
w=hEInETS T

“'v.v A®

+7;- -)(+)(+)(+ + .
.".' €, E "8 '.' 4 “aq.n
+vwmﬁir=m _TE—LE'H)( 9
Wv.v
.E =7 SBTHTTH T

+L. My 0, SR
PI;WTMTF&LT’B_W FH@R T +9)
= B P Bn T (=3, 5 .. M,

where til;) denotes the symmetric tensor
< % (3% n + %) +
+HEX +v) =3(r-1) )+l)
Y ‘n'-'m"" )
"’T—M) )

e VlhTea, +'-'n"(-+n) _
W + 1) (2 4+ 3)(x 4+ B) (‘—l; 3,...., N)

(k)

a8 satisfy the equation

We require that the tensor =

v,ﬁ,-:!‘w::s"vl‘om k=13, ..., NL.

Then in accordance with (3.8)

RES vyde,_ Al -.
] |+‘)am—=‘)(ﬁ—i)(ﬁ+l)
MES gy bde ) +
: "(iTFvSGm.—l)thH)(ﬁﬁ)
A’Bl,.v,ht“ o
+ T TE T D S Es =
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We convolve the left side of this equality with respect to a with
the tensor c;a. Censidering that

‘;"..V.-—-d V%=V

we integrate the resulting equalities and drop the nonessential
abritrary constant. We obtain the fo;lowing equations for determining
the functions ”(k)

mrrm—‘:'s‘%i"’-rmﬁﬁ%—
’zmm:rr‘é‘?mw+

bopin
ey -0 *=L3..A. (3:10)

We further take

F-F=8 @=13..M.

(3.11)
Thus, from (3.3), (3.4) we have
1 'l’:n"',.m.‘";)='(:r' =y,0,. (3.12)
Moreover, by virtue of (3;8)
=L (3.13)

It follows from (3.11) and (3:13) that (3.7) may be considered as
the equations which determine the tensors tag).

Thus we have a representation of the tensor o(g) as the sum of
two independent tensors rig) and t(k). The former is defined by
(3.8), in which the scalar functions 8 () must satisfy (3.10), and

is characterized by the fact that r:(k) = 0 and the vector VT(k)

are solenoidal. The second tensor t(k) is characterized only by the

aB
property that its divergence vat?i) is a potential vector.

We shall designate the stress states corresponding to the

tensors r(k) and ¢t k)

] + ] ] "
oB o 25 rotational" and "potential" [2].

FTD-HC-23-361-69 13
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We express the "moments" tilé) of the "potential" stress state
in terms of the stress functions Q(k) and the deflection function w,
and we derive tne differential equations for determining these
functions. For simplicity, we set p = 0 and denote (3-7) briefly
as
80y=0, L§=0 (*=13,... N (3-14)

(Lig) is a symmetric tensor).

We form the equalities VBLZ(k) = 0 and integrate them, discarding
the nonessential arbitrary constant. We obtain the equatlons

1 Eh , ME /1
Lron—jan+ Tovt g (g— 1) sem=0.
B MaLe .

A Y ¢ B TP -".'i_i‘(Lﬂ_lﬂ—-) +8

(, =) -))( —DEFH@:EFS
—.E..”‘. h:(._n +A.(._ -E_ ’“(._n
L WD @ -D@TD —DE+ T @mssm-n@ent
v A
+arrfe—ariet

E, DaM(lalg+00) £ a0,
+ 5 BN ENEED T W@ Y +

z. ' 4 & R)
+I mmhE—na T« 73) Tt
E A0, . g My A‘:(N +40,, i
+ o BTG NG TS T mn T +T(T’5L) i
. _E. : 4Ataae, _
@ a @ T @ Tt

£, s = .
rEwTTETE S EETETy =0 (3:23)

(#=3, 5, ..., N).

A o A PR e s AT L A WS i s il A

Subtracting from these equations the equalities Lz(k) = 0 we obtain

B ‘3‘.".‘._’). .+‘ "
L @my@a-naTy T arith e —
£ Doy M A, A &1

_£. s ) N A% v A,
E, (ﬁ—i)(ﬁ+l)(ﬁ+3)+f;f&u+ 1)5?5' -!-‘.:!;?Zl-i-.‘b)-o
/- (k=1 » N).

(3+16)

Excluding t:(k) = °Z(k) from (3.15) with the aid of these relations,
we obtain the following system of equations for finding the functions
e k)
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Zhtw (1 — )0+ 5 (7 — 20t a0y,

. (3.17,)
L L R . ;
: --r('-r )W‘smfmn—’rmmmm-‘f
+z—2. (l+')r)m'ﬁl?nr‘i+7"—f°‘”—
_(-a..—zv,(l+')r)wia%7_f+
+T(l— ) = T -u +)(20+) i
.|..a.—2v.(l+')r) ‘:)( _3'?@_4-'5
-,-( )W-nrwﬁf?ﬂ?ﬁm"'
+z;(l-f:'3)mnmm‘xﬁﬂm_r‘° (3-17,)
(#=3,5, ..., N—2). g

For k = N, the following term is added to the left side of (3-172)

(") v

To obtain the formulas expressing th2 moments t(k) in terms of

the scalar functions w and ¢ k)? we must exclude ta(k) from (3.7)
with the aid of (3.16). We obtain the' formulas

(]+v)l"’==-£llv.v.w+'(l +')8.. (|p+'a' AN ('

v (1 4 ) AS . ( ‘18
=g R n+r 2L, a0, 3+18)
/l ”V.»"A.l
5-'-'1:143’ T(‘ ~ £ ) e e

Art g, vy By

r( )WWW"‘

. a . . . A . ® <
+(§ -2 ('+"r)(-Tﬁf'=%(‘"zr+—u‘

_ L v.y o, v(l 4+ v)

—E-v,(l +v) < - ((l +,~,' 1(:—l—g¢ W (3 .182)
£ W O

~(&- 2’"'+"T)*-rm%‘(”m+

(Continued on following nage)
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{(Continued from preceding page)

W sy, v, 8
+E P EnE @ T

L E E ‘Shty, vy 30
"'II(“!:':) T T R T E o T I
’ (-3r~2~.(l+v)r)mu—5,‘}"'4."*{’ -3
l'c CAR X o
-0+ ET g ~
E %%
"!:("'"!:':) [ P TV EYVES) )%A';n--'s_nu-n " (3-182)

Y E L Tl YO :
+E(‘“E*)Wmﬂ%rmmgm) :

o N—=2)

For k = N, the following term is added to the left side of (3«182)

(&) wrrmen .‘%ﬂrx

Reissner's plate theory equatibns [7, 8] are obtained from the
relations obtained in this section for N =" 1. Therefore, the present
theory may be considered to be a generalization of Relssner's theory.

The plate bending theory equations, which are obtained from the
relations above for N = 3, include all the correction terms for
classical theory which were obtained in [9, 10] and also include some
others which permit the establishment of more general boundary con-
ditions than those of [9, 10].

§ 4. Asymptotic Integration of the Bending
Equations for Transversely Isotroplc
Plates

l. We can use the method of asymptotic integration of differen-
tail equations with a small parameter in the derivatives [3, 4] to
solve the problen of transversely 1sotropic plate bending.

FTD-HC-23-361-69 16
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We take as the small parameter the plate halr-thickness h,

considering it a small quantity in comparison with the characteristic
linear dimension a of the plate medlian plane.

Hereafter, 1t is assumed everywhers that the problem parameters
and the desired solution are sufficiently smooth point functions of
the plate median plane.

The integrals of (3-2) which are not rapidly varying (regular
part of the asymptotic solution) are sought with the aid of the
usual erall parameter method. Namely, setting

=By ), (4.2)
o=@+ r10+..)

and substituting (4.1) into (3.2), we require that the coefficlents
of 1like powers of h be the same in the left and right sides. Then we

() )y ()

obtain for determining Ocg ? W

equations, each of which 1s equivalent to a single blharmonic equation
(s)
for the function w.

a recursive sequence of sets of

The equations for the first threce approximations follow :
W=0 (>,
L.
AN -’f=0.
® ® .
() O — vg 0ty + E9, 9,0 =0; (H.24)

=0 a>1),
v.v,g:,f,=0.

. ' (4.2.)
( +')2£I)_ "o;?:(l)"" EV.V’“&= 0; 1

w
where %= "%
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W=0 (>3, ,

A+ — 2 = - BTV —
-3 .f:'i( v+ v:%") .
v.v.%,=o. '

(0B — g @ gy +Ev.7,0= (4.2,)

=G (v o) + 3. £ gop,

2. The integrals (4.1), (4.2} can be subjected to only two
boundary conditions at che edge of the plate. In order to obtaln a
sufficlently broad class of solutions which permit satisfying all
the boundary conditions at the plate edge, we must introduce into
corsideration integrals of the homogeneous equation (3.2) of the boun-
dary layer type [3]. These integrals, differing markedly from zero
only near the boundary I’ of the plate medlan plane, disappear rapidly
with increasing distance from the boundary into the depth of the
region. For thelr construction we use a small parameter method which
is based on a different expansion of the differential operdtors in
powers of the small parameter h thar thatv used in § 3; this decomposi-
tion holds only in a small vicinity of the boundary I [3].

In order to obtain this decomposition,we introduce in the vicinity

of the boundary T of the region occupled by the plate median plane,a
local orthogonal coordinate system xl = r, x2 = s. Here r is the
distance measured from points of ﬁhe curve I' along the lnward normal,
and s is the arc length of the contour I, whose direction 1s taken
opposite that of the unit tangent vector s (see (2.6), (2.8), (2-9)).

We denote by R = R(s) the radius of curvature of the curve T
and consider 1t positive at points of convexity and negative at points
of concavity of the region cccupled by the plate median plane.
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We write out the expressions for
and discriminant tensors and
rY
.GB

the compunents of the metric

the second-order Christoffel symbols
in the 1local coordinate system which Wwe have introduced

. “u"rh 8x=0, ln"‘(l —]")‘.

4 471t L
VR w ) =g (1—5) (4.3)
Rh=- ’ F}.=l?.=l"u.=°-

7

Using (H=3),te obtain the following expressions for the differen-
tizl operations chB

. 'n'ng';h ""-.é.'-k_(lb:;)%'
bR S ot

and the expression for the Laplace operator

Y | E-.. <@ | YA Y )

Am=gr - + . =1,
B (4 L l;(n-{; "-) (4.5)
The coefficients in (4.4), (4.5) may be ex
boundary into series in powers of r.

changing the independent variable r by

panded in the vielnity of the
Performing this operation and
means of the formula

r=At, (4-6)

We obtain the following decompositions for the differential operations
(4.8), (4.5) 1n powers of h:

A= (4.7)

1
FTD-HC-23-361-69 ?




Using the last tormula (4.7) we can obtain the decomposition of the
biharmonic operator in powers of h

¥
M= T+ (4.8)

3. We construct the boundary layer type integrals by starting
from the equations which the functions @ k) and °(k) must satisfy.
We first turn to the equations (3.10) for determining the functions
(k) and construct the rotational boundary layer.

Let D = || d,, || be a diagonal matrix and A = Ja, | a
symmetric codiagonal matrix

dy=git. du=0inh i k=123, =M

2 - 1
W=EWH@-DEFD * WS T @@ ENEFY” (4-9)
aun=0. A>1.

Then(3-10) may be written as

(D.-!'-(‘%-:WA)ozo, (4.10)
where o denotes the vector
o=(0y), O e %) (4.11)

If in (4.10) we expand the Laplace operator in powers of h in accor-
dance with (4.7) and use the small parameter method, setting

® o ]
(a — 1s an as-yet-urndefined integer) we nbtaln a recursive system

of ordinary linear differential equations with constant coefficients.
It 1s reaquired of the sclutions of tﬁese equatlions that they have the
boundary layer nature, i.e., they approach zero togather with their
derivatives as t++». Therefore, to construct these solutlons,we use
the fundamental sclutions of the homogeneous equations, which
correspond to negative roots of the characteristic equation, and the
particular solutions (of the boundary layer type) of the inhomogeneous
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equations, which can be constructed by the methcd of undetermined
coefficients [3].

Thus, in the s-th approximaticn (s = 0, 1, 2, ...) we obtain

2[3 +&@lexs (- Vm_",'_Wu) (4-13)
G=o0,

where "
L, <L <...<2, (4.14)

are positive roots‘of the equation

ID—YA|=0; . (4.15)
(s)
01 is a nonzero vector satisfying the equation
(D—ﬁA g:o;
o )g, (4-16)

and, finally, Ci(t) is a vector whose components are polynomials
in t of order no higher than s.

After finding w,we can use (3-8), (3-9) to obtain the expan-
sions of h t il;) ard ¢ ik) in powers of h. After some transformations
using (4-16), we have (only the first terms of these expansions are
written out below)

‘u-(‘iu ‘P' seey 11”))-

=a'“l/;',_;—,:f:‘, T (- VEE?Z*"H

*n==(4‘) - NP ) -

=,.~28,exp me)
- —op'te l/ —" E') Er %exp(_ me)_'_
) : '!""(‘p- o, ..., ’)— o
o
ey

(_(l) 83 d ;N | -

-—pt Vm__TE!——)f_z(Q, Mexp( V‘('*‘"a llt) +..

(4.17)
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4. Turning to the construction of the boundary layer type
integrals of the potentlal stress state, we note that Au = 0 implies
u =0, since this equation does not contain the small parameter h
and its boundary layer 1s equal to zero. Therefore, from (3.14) and
(3:171) we have for the boundary layers 0(1) and w

S0=0, w=g(+Z 7)o (4-18)

where 0(3) is a boundary layer type function which will be defined
later. From (4.18) and (3-181) we have

=0, £ = F - Y5 e9.7,0. (4.19)

Now we turn to (3-172) and using matrix symbollization rewrite
it in the fcrm of the single equation

[(l - lo-(g-—zv,(l +) Tﬁ‘) KAIA +
+-§‘~(l —--f;v;)mm]o=o. ‘ (4.20)

where

O=(0 Py .-+ ) : (4.21)

A and D are the matrices (4.9) introduced previously; I is a diagonal
matrix of M-th order, all elements of which on the principal dlagonal
equal unity except for the first, which equals zero; B = || bik”

1s a symmetric matrix of (M -~ 1)st order whose elements are the numbers

Bl 6 ]
.""'(4l~5)(41—3)(4:-|)(«+|)(.,+3, (i=2 3, ..., M—1),
by ™ S n
un = =N DN TN FH OV 5 1

E E -1 l
i Z:V:(l —Z,_':) N+ NN T (4.22)
. ; |
W)@ DWW FH@TH@ 5
1

byy=-—

b =T HarharsaEs Ty

buin=0, k>2 (i=2,3, ..., M).

(U.22)
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The boundary layer type integral of (4.20) is constructed just
as the integral of (4.10) was constructed above. With the aid of
the expansions (4.7), (4.8),the operator in the left side of (4.20) is
expanded in powers of h, after which the following series

o=@+ 0 +48+..) (4.23)

(b 1s an integer) is substituted into.(4.20),and the coefficients of
all powers of h are equated to zero. We than obtain a recursive
sequence o} linear ordinary differential equations with constant
coefficients whose solutions of the boundary layer type have the form

N-1
- T C+Bio) expina,

) Bu=o.
where oi'exp (-fuit) are the boundary layer type solutions of the

o~ o n D % [ ] s)
homogeneous equations; Di(t) exp ( —uit) are particular solutions of

the boundary layer type of the corresponding inhomogeneous equations;
My are the roots of the characteristic egquation

- |Bo)| = la—» :o_7(§-m,(;'+»);;),-14+
+Z (1~ 3)w8|=0

(4.24)

(4.25)

(s)

havfng negative real parts, and ¢y is a nonzero vectcr satisfying
the equation

B® (—p;) 9:=0. (4.26)

On the basis of the positive definiteness of the plate potential
energy,we can show that the characteristic equation (4-25) has N - 1
roots with negative real parts.

Substituting the value “ocund for ¢ into (4.18), (4.19) and
(32182), (3.4), we obtain expansions in powers of h of all the quanti-
tles characterizing the boundary layer type potentlal stress state
(only terms with the lowest power of h are shown in the following
formulas)
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LTSS )'ﬁ:’pup(—m+

e rz :f”exv(-w'ﬂ

: Q-z;'s-g—z Trmxp(-—ht)-f-

lﬁ-rusZr’a‘exp(—m-l-
SR ,.,go. _
t.-e(d' ' O o)

-t Xm.exp(-mtﬁ--o
t,-(tt" e, ... 4=

N=-R
:‘_“*‘ -=l’ Yo exp('-n-.t)-i-
X S )
by ‘(‘u. ; 4”))
-k‘;; wexp(—pi)+..

ax,.:-lo(tﬂ‘ a. . dz”’)--
- M""E #Aiexp(‘-mt)— '

e ‘N'(l —v) 2 - ID ilexp(-mf) +..

lot,,alo(@ tﬁ' )=

=W (sD— 2, a;,m) 29¢exp(—p,t)+

(4-.27)

where is the first component of the vector ¢1.

5. The boundary layer type lntegrals are deflned in a quite
small vicinity of T, but by using the boundary layer decay property
they may be extended into the entire plate median plane region with
only small errors being introduced.
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At the boundary I (for t = 0),the rotational boundary layer
has M = . ; o degrees of freedom (equal to the number of positive
roots of the characteristic equation (4.15)),while the potential
boundary layer has N - 1 degrees of freedom (equal to the number of
roots with negative real part of the characteristic equation (4.25)).
Thus,it 1s easy to see that the integrals of the regular part of the
-asymptotic solution together with the .integrals of the boundary
layer type will have sufficient disposable constants of integration

to satisfy all the problem boundary conditions.

The disposable constants of integration are determined
sequentially at each stage of all three itération processes with the
aild of the procedure for superposing boundary conditions [4]. The
regular part- of the asymptotic solution and the boundary layers are
substi’ uted into the problem boundary conditions and then the integers
a and b (which appear in (4.12), (4.23)) are selected in a suitable
fashion. After this, in each of the resulting equalities,we equate
terms with the same powers of h in the left and right sides. From
the relations thus obtained;we can determine sequentially the
constants of integration in (4.13) and (4.24) and establish the
boundary conditions for the inegrals of (4.2).

We shall consider some boundary condition cases as examples.
a) Static Boundary Conditions

Let us assume that the right sides of the static boundary
conditions (2.9) may be expanded into series in powers of the small
parameter h as follows

cﬁ:k"’ (:l:.)-}- hg"' + .. .).

(4.28)
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The corresponding expansions of the boundary forces and moments
(as we see from (1.10), (1.8)) begin with the zero power of h.

Substituting (4.28) into the right sides of (2-9) and expres-
sing the left sides in accordance with (8.1), (4.2), (4.17), (4.27),
in terms of the regular terms and the boundary layer, we obtain

(2',’+kg£?;i; g ) n'n’+h‘"£"-mlé-§:}"p,+..

L..+2&‘“ym__ - ""’"+ = A
. T 1=l )

(‘2')+ﬁ2"+...)n‘jf-h‘;’ M)-}- -?n+u»+',

s ’ |
C-?;*+.§¢§'+...) s’+h’*’§‘: 3'527—n+

B

..+a‘+’;;92" =l Ay |
- - (4.29) 3

(it )'i+n‘§$}+.,. | J

+J¢‘“ sz"i‘_ 1-5+. _lr’( ..+h2:.+ )

. N=-1
‘.3-+h=-+ Jat g pt ;; roit...
M ()

+rz|l‘“' =k o hmt. ),

M
(a.,+na.,+ Jn 's’+la‘z R+,

S ST,

U 2/ VAN .-,mr!!!!—
V—lf ‘ ‘E.l

: '—u--v)h’*' p““-{- r’=..+h‘s'.’,+ )

=]

P S D i RS,

The last three relations represent the boundary conditions in masrix

form and utilize notations similar to the following

s

(1] m (s) (s 1
]
9= ( ) '(.? } ) _
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It is not difficult to see that the integers a and b should be
selected so that

{for other values of a and b the resulting system of boundary relations
will either be inconsistent or g, and :" vanish entirely).

Equating coefficients on the left and right of like powers of h in

the third and sixth equation (4.29),we obtain a sequence of boundary
relations from which 8: are fully defined. 1In the zero approximation

these will be the equations

M
oy ®
Zor=S2-Syu,
=1
M
-
zm’! - I

i1

(4.30)

Similarly, the fourth and fifth equations (4-29) define the sequency

0
of boundary relations from which g. are found. In the zero approxi.
mation these will be the equations

N-1g N

]
EW-%L.m=0
=) . =]

The first two equations (4.29) define the boundary conditions
for the biharmonic problems (4:2). In the zero approximation,we
obtaln the relations

‘2(» -.’ mm

“’m . g : ‘%’ . “”9)

winlch in view of the first equation {(4.30) coincide with the Kirchhoff
static boundary conditions.
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Outside some vicinity of the boundary I the plate stress state
1s defined by the regular part of the asymptotic solutlon, since the
boundary layer within the region is infinitely small in comparison
with any power of h. In the immediate vicinity of the boundary, as
we see from (4.17), (4.27), the boundary layer stressest,, %, &2, &, &y fn
have the same order, while the stresses T, and t1 are of lower order
by one (relative to h) than the basic stress state defined by the
‘regular part of the asymptotic solution. This implies that the
stresses (1.5)tangential and normal to the medien plane,which are
neglected in classical plate theory, are quantities of the same
order as the tangential stresses (l.4). Therefore,the error of the
Kirchhoff hypothesis near the boundary may be arbitrarily large for
.- sufficiently small h. A similar result was obtalned in [2] on the
basis of Lur'ye's symbolical method.

Let us further assume that =0, and aeJand o are~

connected by the relation
. y
‘(."-—%‘.go'

l.e., the system of edge restraints is statically equivalent to zero
on any small segment of the edge. Then in the zero approximation the
principal stress state disappears,and only the boundary layer remains.
Hcwever, 1in the first 2pproximation the principal stress state will
still be, generally speaking, nonzero. Thus,the stress state due to
the system of edge loads, which are statically equivclent to zero

on any small segment of the edge, encompasses the entire plate region.
This contradicts the Saint Venant principle in the classical formula-
tion,but corresponds to the Mises modification of this principle, in
accordance with which the Saint Venant principle must be related not
wlth the stress decay at infinity but with the relative order at
infinity of the stresses due to the various systems of loads acting
on a small segment of the body boundary [11, 12].
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b) Completely Clamped Edge

In this case,we set a = -1, b = -2, Omitting the detailled
arguments, we write the zero approximation boundary conditions

i SR - Fpai
,_-(:-,-v:,zpzay,+'4‘-‘,—'lxm,-—#m
VIR - S

V@Zu(ﬁ’)-gm 4% : (4%).

L :;,f==o i:_.o 5o e
ca:(o..:‘?.'... m)' ((ﬂ,.. ..0). S
n .
,..g c.m, e, -- s c.uv)) G-m. 0.. 0)-

w t

The first four equations are used to determine the constants
of integration 1in :‘, 3‘. . The boundary conditions of the biharmonic
problem are the same as 1in classical plate theory.

Near the boundary,the tangential and normal stresses (1:5) are
of the same order (relative to h) as the stresses (1.4). However, their
numerical values may be small since they depend on the factor v,

¢) Freely Supported Edge

Here two versions are possible: 1) the stresses %an, ns
and normal deflectlion u3 equal zero and 2) Son = 0, u3 = 0 and
the displacement ug tangentlal to the boundary c¢i' the median plane
equals zero.
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In the first version,we set a = b = 2, in the seccnd a = -1,
b = -2. The basic stress state 1n the zero approximation 1s determined
from classlical plate bending theory. The boundary layer stresses are
of the same order (in terms of h) as the basic stress state. Just
as 1n the clamped case, the numeiical values of the potentlal boundary
layer stresses may be large by virtue of the fact that they depend
on the factor v

6. The linear ordinary differential equations, to the solution
of which the bohndary layer construction reduces, and thelr boundary
conditions are independent of plate geometry,and therefore may be
integrated once and for all. For practlcal computatior purposes,these
equatlons need only be solved for small N, since the boundary layers

qm-om»deday rapidly for large k;énd thelir effect on the basic
stress state diminishes rapidly, although 1n the sense of asymptotic
behavior they are of the same order.

The study of plate bending problems with various support
conditions (clamped, free ) shows that the effect of the potential
bcundary layer on the basic stress state in the flrst and second
approximations i1s expressed (by means of the Poisson ratio vz) in
accounting for the deformations of the transverse fivers 1n determ!i-
ning the deformations of the flbers parallel to the median plane.
Therefore, accounting for the potential boundary layer introduces ‘into
the first and second approxlimations of the baslc stress state only
slight corrections, which vanish entirely if Poisson's ratio Vo
vanishes. For example, for a cilrcular plate of radius a which 1is
clamped along the edge and loaded by the uniforr. pressure p, in the
first approximatlon,we have for the deflection f{unction (r is the
distance from the center of the circle)

w =" 15 (" — &%) [ — &)+ aC],

where C 1s a constant. The second term in the square brackets is
the correction to classical theory which appears as a result of

accounting for the potential boundary layer. For an isotropic plate
v=03; C=0,05.
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The corrections to the basic stress state introduced by the
rotational boundary layer are more significant and in certain cases
they should be considered. The integrals (4-13) of (4.10), subject
to the corresponding boundary conditions, show good internal
convergence with increase of N. Therefore,Reissner's plate theory,
which includes the first eguation (3:10), may be applied successfully
for determining the first correction to the basic stress state given
bty classical theory. A similar conclusion concerning Relssner's
theory is presented in [13], in which the problem of a strip clamped
along the edges 1s examined with account for edge effects.

We note that with increase of the ratio E/G the boundary
layer decays more slowly and its effect on the baslic stress state
Increases. Therefore,ignoring the edge effects may lead to
considerable error for strongly anisotropic plates, for which the
ratio E/GC 1s large.
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SOME QUESTIONS OF UNCOUPLING AND
DISCRETIZATION OF SHELL THEORY EQUATIONS

L.A. Rozin

In plate and shell theory,1t 1s of interest to construct problem
solution methods which can be ascribed definite physical relevance.
This 1s because physical consliderations are often useful in construct-
ing computational algorithms. Moreover, this approach makes possible
a more profound and simpler analyslis of the various assumptions and
simplifications.

Some techniques were indicated inl1l, 2] for decoupling the
operators of the differential equations of shell theory and these
techniques were used to construct solution schemes having definite
physical relevance. In particular,it was possible to reduce the
problem to the calculation of a crossed bar system. It was found
that this sort of system 1s not a crossed bar system in the usnal
sense. Its individual bars 4o not bend relative to the normal ¢to
the shell middle surface, T.elr twist takes place with a rigidity
proportional to the moment of inertia, additional forces and moments
acting on the bars appear, the calculation result doeé not depend
on the relative width of the bars and so on. The resulting bar
system differs 1in this aspect from the conventional crossed bar
system. The latter sometimes appears Inthose studies where an attempt
is made to construct computational schemes not on the basis of the
fundamental mathematical formulation of the problem,but by means of

33
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unconvincing and at times erroneous arguments based on "engineering"

intuition.

In the present paper,we develop the basic propositions presented

in [1, 2]. The general equations of shell theory are transformed with

the aid of a decoupling method. Here qur objective 1s to transform

the equatlions of shell theory so that they will be as simllar as
possible to the equations of crossed bar systems. In the transforma-
tion process,we clarify the degree to which thils may be dcne. We
found that thls technique makes 1t possible to transform the equations
of shell theory to the equatlions for a four-layer crossed bar system.
The two inner layers of this system do not differ, at least 1in prin-
ciple, from the conventional crossed bar system, and 1n many problems
they are the primary load-carrying portion of the shell. The outer
layers arlise as a result of the difference in principle between the
equations of sheil theory and those for the bar systems. However,
even these layers may be treated in an arbitrary sense as bar systems,
at least from the viewpolnt of constructing computational algorithms.
By a slight extenslion of the concept of the crossed bar system,we

are able to account for the effect of Polsson's ratio comparatively
simply. The familiar differences (different order of the equations)
in the formulation of the boundary conditions for the consldered bar

systems and the equations of shell theory are indicated.

The mathematical decoupling technique reduces the problem
to the solution of a system of specific integral equations. Discre-

tizatlion of these equations onto a grid leads to the calculation of

the crossed bar systems mentioned above. We can thus connect the

questions of analysis of the bar system and solution of the integral
equatlions of the decoupling method. On the one hand, we can use

the analysis and approximate methods for solving integral equations

and carry them over to the bar system. On the other hand, we can

use the effective methods for calculating bar systems for approximate
solution of the integral equations of the decoupling method.
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In the following,we use tne notations of [3] without further
explanation.

1. By analogy with [1] we decouple the opzrators of the system
of differential equations of equilibrium shell theory aiong the
lines of principal curvature of the middle surface. Then,setting
b, = Cl(sz) A, and b, = 02(81) A, where 01(82)’ 02 ) are arbitrary

functions, we have t..c (T M,,. Ty My)= Ko (P P Po

0, @, 63, ml, mY),

. (1.1)
7,,,.;."_;"&:-..(.') (=12 3 4
. L (T, My, Tns, My)=

..BK,,.(O. 0. o- ﬁ?- ’9- 1‘.'?- ”ﬁ" ng’):
r,._+"_;:.=_n§ (=1, 23, 4). e

Here the internal forces (moments), the components of the external
load Pys Pys P and the interaction functioas [1] ql,qz,q3, ml, P

m., are multiplied by bl’ 59 respectively. This 1s denoted by the
subscript b and by the superscripts 1, 2 for the interaction functions.
The external locad components P;sPysPps in (1.1) could also be par-
tially applied to (1.2). The conventional differential operators
appearing in (1.1), (1.2) have the form

Lu (2, ..., 2)=32 T %(z, _l;_:_) : 7;7';:_:'
Liag (2, ..., z.)._ = 3;"1-9.
Ly, (2, -. z.)_?--p ( (7 “':!.) E‘.'
Ly (2, ..., ")='8;‘2":' :‘" k=1, 2); (1.3)

Ku.(l,. ceey z.)=—zl+(_1)nz,?._jy_n_

Rs
K)—ll.(zn cee y z.)——2,+( l). |-l'
Kup(@us .- 2= 1 (— P =2
Ko, (2, ..., 2)=22 (k=1 2). (1-4)
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Using some elasticity relation, for example the Balabukh=Novozhilov
law, we set Tu=Th+9, Myz=M)H+0,
’
Tiv=Tin+9;, Mn=Mn+e,
Te=Ta+Y, Mu=MY+¥,
Tm=Ta+% Mn=Mn+¥,

(1-5)
ﬂh==&pn :¥b==£hn; 71»==L¢g;
where Mu=Dau (k=1 2 t=2, 1); )
®, =By, €;=vDx,, .l=l'1"n+%‘:“:.
=T (1.7)

¥, =g, ¥,=vDy, ';==L;51'%Elﬁ. vc==%af'i

» '
and 5a. Da. "'(‘+Q:)zl'" _Dﬂ:Dﬁ('—') (¢=1,2)—  are the correspon-

ding stiffnesses, multiplied by bl for k = 1 and b2 for k = 2, We

substitute (1.5) into (1.1), (1.2) and rewrite them as follows

L (T, Mis, Tiw, Min)=Ku,(pis. Pass Pus. ¥, 0. g0,
=, m{)+K, (0, 0, 0, /1, £V, 11, 0, nfl);

(1.8)
L_B- @, o, o, ©, =K, (0, 0, 0, —f".’,
—jn)' _f(llt,' 0‘ —”g,) (‘=lo 2- 30 4):
(1.9)
L (T, My, Tha, ﬁﬁu)=?
=K, (0. 0,0, g2, ¢, 4B, mD, m) + L
+K,,(0,0, 0, 12, 12, 1. @, 0) +10)
Ly)(¥,, ¥y, ¥y, ¥)=
=K,,(0.0, 0, —fR, —f, —fB, —nd,0) (1-11)

=123 9,
where we have introduced the additlonal interaction functions
8. A, 18 k=1, 2), a), a. Here we have omitted the last equations (1-1),
(1-2), which are not required 1in the following since the correspon-
ding equation in shell theory is satisfied identically. Equations
(1.8) — (1-11) transform to the differential equations of shell

theory if we exclude the thirteen interaction functions introduced
apove
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0, 0 G m, my, [0, 18, F2 k=1, 2), ofd. Af.

We denote the operators which are formed in the left sides cof

(1-8), (1:10), after converting therein to displacements and rotations
wsing (1.6), as follows

= == 3 4
b, o o, (2 5.
. S (1.12)

Then if we follow the idea of the decoupling method [1] and seek the
interaction functions on the basis of the requirement for equivalence
(1-8), (1.9), (1:10), (2.11) (where the left sides of (1.8), (1.10)
are replaced by (1.12))withthe basic equations of shell theory, then
this requirement takes the foi'm of the conditions

Bf’—n? o =u?, 0&”—--;-4."”

(t...l 2; t=2, 1), (1-13)
o i__ s u O.R._T;u
=B W Dy - Ty *
LRRy o My 1-14)
" pae,—2E o0, = T ; ] (
) .AP N P
) %i"%' ," “B %#’i%'
&"___#MR ‘..|='3‘§"4. (1.15)

where (1-14), (1.15) follows from (1.6) and (1-7). In other words,
for complete equivalence of the decoupled and original equations it
is necessary that the interaction functions be selected so that the
conditions (1.13), (1-14), (1.15) are satisified.

Here we hawe used the elasticity law in the Balabukh-Novozhilov
form with the assumptionl.(ii-ag-)-Lb which is not essential and
has been adopted only for convenience of exposition. Other elasticity
laws may also be used, for example,that used in [4] and [8]. Then
the following changes occur in (1.6), (1.7)

M’”=%l"|' Mg‘.-%!!v (1-16)
o, =2, =Rt O=Lie, Vo=l
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In (1.14), (1-15) th2 last two equalities are replaced by

; L1 ‘4. j
=7 =T
”m ¥e M:‘!D

=T n=De-

In the case of the Love elasticity law (1.6), (1.7) will become

(1-17)

=L, .l=[?;7’50.
= v,= Da v,.
LI.I.O [} W l (1'18)
Here the functions ®, @, and ¥ ¥, are already related Then the
four interuction functions in (1.9) are defined only by the three
funetions °1 and consequently only three of them will be independent.
Similar arguments apply to (1.11). As a result,the adopted decoupling
of the governing equations,and the Love elastiecity relation leads to

eleven interactlon functions in place of thirteen as in thg_3a§g_cf thq

other elasticity laws. The number of conditions (1-14), (1.15) also
decreases to six. In place of the last two conditions in (1.14) and
(1-15), we have one condition each of the form -

'0
%F"i? 1) - .(1.19)

2. Now we turn to the mechanical analysis of the solution of
shell theory problems by the decoupling method on the basis of the
decoupled equations and the condltions (1.13), (1.14), (1.15). 1In
the left sides of (1.8), (1.9), (1-10), (1.11) there appear the
cperators Lis# (245 +-..,zy) (k = 1, 2), which are the operators of

the equilibrium equations of curvilinear bars of width b1 and b2 if

the arguments z4 (1 =1, 2, 3, 4) are given the meaning, respectively,
of normal force, bending moment, tangential feorce,and torsicnal
moment in the bar. The axes of these bars cclinclide with the lines

a, = const and @, = const, ar.d the unit vectors 32, gn and 31, e

colncide with the prineipal axes of inertla of thelr cross section
(Figure 1). Here there are rno bending moments relative to the unit
vector :n and equilibrium of the moments about ;,, is satisfied by
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®igure 1.

virtue of the external distributed moments mégl(k = 1, 2)which, as
noted above, are not essential.

Now let us turn to the operators Lig (k =1, 2) in (1.8), (1.10).
k
The forces and moments here are connected with the deformations by

(1.6). Conversion from forces (moments) to displacements (rotations)
using (1:6) permits obtaining the operators (1.12). We see from
(1.6) and (1-8), (1.10) that the difference between(l-12) and the
conventional bar operators 1is that [1] bending of the bars takes
place only relative to.€ or o 0277 In the 31, '52 plane

there is only pure shear; moreover, the secticn form coefficient in
shear equals unity [3]. Torsion takes place without bending relative
to :L with stiffness proportional to the bar moment of 1lnertia
(4]. The Poisson ravio appears in the corresponding stiffnesses.

"
Comparing these speclific propertlies of the operators L18 (k -1, 2)
k
with vthe properties of the conventlional bar operators, we can write

[
for the transformation L18 (k = 1, 2) the Maxwell-Mohr formulas of
k
the following type
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Ab=j£~,—?”"d,.+f%‘5ﬂd,.+ .
b

+f ol gy [, (3:3)
o A .

where, respectively, k =1, 2; t =2, 1; n = }, and in the case of
the elasticity law of [4], [8] n = 2. Here quantities with sub—
scripts 1 and jJ denote the forces (moments) from the action of which

and corresponding to which we seek the generalized displacement values.

Expression (2-1) follows from the fact that the connection between
the forces (moments) and the deformations 1s taken in the form (1.6)

or (1+16). 1In fact, considering (1,6) and examining for definiteness .

the case k = 1 we can rewrite (2.1) in the form
‘:l=! (o 7:01 +'HM:OI,+0u 7‘:»1 + tuMin))ds,.

Substituting herein in place of the deformations their expressions in
terms of displacement and rotatlon,and integrating the resulting
integral by parts with use of the fact that the forces (moments)

with subscript jJ satisfy the equilibrium equations (1.8) with the

right sides -.’,. TI'S,",. 3‘.'2,}';;?,’, s to which the generalized displace-
ment 1n guestion corresponds , we obtain

Aly = Jj ("11’711'.’,1- aaf)) + w{igl) — °§:""§1’,) ds,+ ["3’ T:u] i
+ [a8700)] + [ (N0 — mi)] + [P Mh)] + [09MD)).

]

Here the square brackets denote nonintegral terms which arise as

a result of integratlion by parts, and the quantity N 1is the
transverse shearing force. The brackets represent the work of all the
concentrated loads corresponding to the state k nn the corresponding
linear and angular displacements of the state 1. 1In turn, the inte-
gral is the work of the distributed loads. Thuss A} in (2-1) is

the generalized displacement, understood ir the usual sense.

We shall term these bars, with left sides of the equilibrium
equations the same as the left sides of (1.8), (1-10), with the

BTD-hCe?23-361=69 4o

——— e - M




elasticity law in the form (1.6) and no bending relative to the
unit vector En s P bars. Hereafter,we dencte the P bars located
along 8, and 5, by P1 and P2, respectively.

Now let us consider the operators Ku,(z, ..., %) (¢=1,2) in
the right sides of (1.8) - (1.11). Taking (1.4) into account, we
can conclude that KL.(&:H.2) are the operators in the right sides

of the equations for conventional bars relative to the distributed

loads zl,r....za . In Kisl the quantities Zys 255 z3 and Zys 25, zZ¢

are the proJections of the distributed running forces on the unit

vectors‘!hq.cb and 27, Zg, are the proJections of the distributed

running moments on the unit vectors e2, e1 In Kis the quantities
2
Zys 25’ Zgs 87,28are nonzero. They irave the same significance as the

corresponding loads in Kis s ¢€except that they act in the opposite
direction. 1

Let us assume that the quantities fig) fég) f(k)(k- 2) and
nigz né%) may be dropped in (1. 8), (1.10). Then we find the five

interaction functions s q2,qn,ml, m2,for the equations (1.8), (1-10)
with the ald of the five conditions (1:13). Here the equations

(1-8), (110}, and the elasticity law (1.6) describe the behavicr of
t#b continuous families of bars P, and P, positioned along the

1 .
coordinate lines 81 and S, The bars P1 are loaded by the external
loading and unknown running loads, while the bars P2 are loaded by

unknown running loads of opposite sign. There 1s the following
connection bhetween the magnitudes of these running loads.

d? @ LB BB
:-T .’v—T'. (22)
off oD Al a2 '
S T iy e

The unknown running loads in (2.2), which may be termed the inter-
action loads between P1 and P2, are defined from the cenditions (1.13).
The latter express the equality of the displacements and rotations
(twist) of the considered families of P bars. A similar situation
holds 1in the crossed bar system. Therefore,we shall call this

system the crossed and continuous P bar system and denote it by
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{Pl’ P2) . On the basis of the properties of the P bars,we
can conclude that the algorithms for the calculatlon of such a
system do not differ in any fundamental way from the algorithms for
calculating the conventional continuous and crossed bar system.

Reduction of the mathematical formulation of the shell theory
problem to the equations of the crossed and ccntinuous P bar system
1s possible in those cases when the quantities fih fi f& (k=1,2) 5, )
may be dropped in (1-8), (1.10). This can be done in several problems.
However, in the general case we must consider all the equations and
take into account all the interaction functions.

Let us consider the gensral case. -We first turn to the ecquations
(1.9), which do not differ in any way from the equilibrium equations
for the P, bars relative to®, (=1, 2, 3,4). Let oy be found by solving
(1.9), then the displacements and corresponding rotations may be found
as folliows. From 01 and (1.14) we find the forces (moments) just
like 78 m%, Tis M.  Then with the ald of the elasticity law (1.6) we
find the corresponding displacements and rotation from (2.1), just as
for the P2 bars. Therefore, we can consider that (1.9) together with
(1.6) and (1.14) describe the behavior of an equivalent continuous
bar-type system for which the internal forces (moments) are found from
(1.9) and (1.14). 1In turn, the displacements (rotation) are found from
the forces (moments) just as in the P2 bar system. To determine the
static quantities of such a system we must invert the operators Ls,
in (1.9) with respect to S99 Just as for the P1 bars, while to find
its kinematic constants we must invert the operators (1.6) with
respect to 5, Just as for the P2 bar system. This is the basic
feature of the system described by (1.9), (1.14),and (1-6). At the
same time it 1s advisable to consider it as a bar system, since in
determining the internal forces (moments) and displacements (rot-
tions) in this system we must invert the operators just as for t e
Pl and P2 bars We term such a system a continuous family of P21 bars,
and we abritrarily consider its bars positioned along CPE

Now let us consider the system of equations (1.8),
(1.6) for the continuous family of Pl bars,and the sytem of ecuations

(1.9), (1.14), (1.6) for the contlnuous family of P,, bars. 1In

21
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accordance with the(r%gh% 31des)of 21)8), (1.9} equal and opposite

1 1) 11 1
interaction loads flb’ tzb’ f nb * Bap? act between Pl and P21.
Surpose Pl and P21 form a continuous crossed bar system {Pl, le}
with the interaction loads indicated above. Denoting the displace-
ments and roations tor the P1 bars by uil’ (1), w(l), oél) and
those for the P21 bars by u(21) (21) (21) le), we determine the

interaction loads in the crossed system{ 1° P21}from the conditions

falf’. @—q“ ﬂgd”
"'-"Tﬁ'?“l:?- (2.3)

Thus, we take the crossed system {Pl’ PZI} to be a system con-
sisting of the elements F, and P,, between which there act the inter-

action boads titz §§2 g%} £2b’ determined from the conditicns (2.3).

We can introduce similarly, the concept of a continuous family
of Pis bars along 81 whose behavior is desecribed by (1.11), (1.15),
(1.6). Moreover, we shall consider that €¢1.10), (1.5) for the
continuous family of Pz'bars and (1.11), (1.15), (1.6) for the
continuous family of P12 bars describe ~ the behavior of the

continuoue crossed bar system {PZ’ Plz}with the interaction loads

{ﬁ? éﬁ} fnég) n{i). These loads are found from the conditions

o=, r=u), HOxu,
L R
where the displacements and rotations of the P2 and P12 bars are

denoted by u(2) é%) w(2), 0&2) and uilZ)’ uélZ)’ w(12), 0&12).

(2.4)

respectively.

Now let us conslder a four-layer contlnuous system of bars which
are crossed at each layer. Suppose the 1-st (upper) and Lth (lower)
izyers consitute, respectively, P21 and 912 systems, and the middle
palr of layers of a crossed P bar system (Figure 2). Thirteen inter-

acticn loads z2c¢t between the four famillies of bars P,., P,, P,, P
21 1 2 12,
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which constitute this four-layer
system. Five of these loads which
appear in (2.2) for the Py, Py}
system are found from the condi-
tions (1.13), while the remaining
eight are found from the conditions
(2.3), (2-4). Let us show that
the equations describing the
behavior of such a four-layer
bar system, which we denote by
Figure 2. E.,‘;c s coincide with the uncoupled
shell theory cquations presented
above and that the conditions (2.3), (2.4) are equivalent to the
conditions (1.14), (1.15). 1In fact, the equilibrium equations of
the P‘k= four~layer bar éystem are by definition the same as the
uncoupled equilibrium equations of shell theory written in the form
(1.8),— (1.11). 1In both cases the forces (moments) with the zero
superscript in (1.8), (1-10), are welated with the the deformations
by the equations (1.6). It would appear that the only difference is
that for the uncoupled equations of shell theoryf, the conditions
(1.13), (1-14), (1-15), must be satisfied, while in Pl&c‘ the conditions
(1.13), (2:3), (2-4) must be satisfied. However, in actuality these
conditions are equivalent. We denotethe forces (moments) in the P21
system, obtained in accordance with (1-14) from ¢,, as follows:
T% (P M (Py), T (Pyy), Miu(Py). . Céx;reéﬁondir_lgﬁ.‘,__—‘ in the
P,, System the analogous quantities will be TB (P, MU(P,), T (P,
Min(Py)- The displacements and rotations corresponding to these
quantities must satisfy (2.3), (2.4). In the right sides of these
equallities there appear the displacements and ;'otzitions of the P2, Pl’
bars, which in turn are connected with one another by (1.13). Thus,
on the basis of (1.13)

= uw, ufV = uf’, ™ = o™, O'f“ == OP,

(2.5)

=, WP=uf, oM=u" =0 (2-6)
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Since in accordance with (2.5) the displacements and rotations
are equal in P21 and P2, on the basis of (1.6) the corresponding

internal forces {moments) in P21 and P, are equal, 1i.e.,

2
1‘9(?:)-"'- T.”- M;(Pu)="ﬁh ﬂ,.(P,,): 1’:»-
M (Py) =My
(2.7)
Similarly , for P12 and P1 (2-6) yield
n.(p..) ™h, MY(P)=Mb, Tin(Py)=Tim .
M.Q(Pu)—M.m- (2.8)

By definition the left sides of (2.7), (2.8) are connected with Qi

and *1 by (1.14), (1. 15). Consequently, the right sides of (Z.7)

(2.8) are connected with ¢ L by by (1.14), (1.15). Thus, if the
equalities (2.3), (2.4), (1.13) are satisfied | 1.14) and

(1.15) are automatically satisfied. The equations are conditions
defining the interaction loads for both Puc and the uncoupled equations
of shell theory are identical. Moreover, since the uncoupled equations
and the conditions (1.13), (1.14), (1.15) are equivalent to the
governing equations of shell theory, the equations of the four-layer
bar system will be equivalent to them.

This four-layer bar system is quite reminescent of the conven-
tional bar system. The main difference from the latter is the nature
of the bars P21 and P12' However, in spite of this none of the
operators which must be lnverted in the calculation of such a system
differ in any way from the operators for P bars. Therefore,the
basic nature of the algorithms 1s the same in both cases.

3. Now let us formulate the boundary conditions for this four-
layer bar system, equivalent to the boundary conditions of shell
theory. For simpllicity,we consider that the shell edges coincide
with the coordinate lines.

Let the boundary conditions, four at each shell edge, be given
in terms of displacements. To invert the operators (1-12) with
respect to th: displacements and rotations in P, and P, we need five

1 2
conditions at each edge, since these operators are tenth oraer. The
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missing fifth conditionr with respect to the rotation is obtained from
the given shell edge displacements by differentiating these displace-
ments along the edge. Consider the operators Lisk (k = 1, 2) in
(1-9), (1-11) for the P21 and P12 systems. Since LN and ¥y appear
here as forces (moments), to invert Lig, (k = 1, 2) we need to

know the five quantities @, ¥j, (%;: ).- (S;,’)‘ i=1,23,4).

at the corresponding edges. Generally speaking, these quantities
do not appear in the boundary conditions of shell theory. They must
be conslidered additional edge interaction functions or additional
edge loads, analogous to the thirteen distributed interaction loads.
They are defined with the aid of (1.14), (1.15) at the corresponding
shell edges. The reason is that at the edges the conditions (1.14),
(1-15) cannot be satisfied by the distributed interaction loads,
Just as in the case of a cantilever bar end loads must be applied

at the tip in order to satisfy certain static conditions there.

In the present case, when the displacements at the shell edge are
given, by inverting the operators (1.12) we can obtain the forces
(moments) with zero superscript in F, and P_. Then we use (1-14),

1 2
(1.15) to calculate the quantites o, v GEQY c;ly (i=1, 2, 3, 4)
’ ’ ’= '. ” »

at the corresponding edges.

Consider the case in which forces (moments) are given at one of
the boundaries, for example a, = ag = const, while the condition
at t 2 remalning edges are given in terms of displacements. We
transform the boundary conditions of shell theory fora1= “g‘ const
as follows

M e
T=Qw Tint _3% =\,

M, My, by (3-1)
Ny 7,"—~—"T-'E=Q'm. Mu=M,,,,

where the given values are on the right. Noting that

M.
Mm=—£i b, 3‘1—‘ (M) =m{® + ‘:—.”-% )

(3-2)
and substituting (3.2) into (3-1),we obtain
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L Mh=My—¢,

Here, on the basls of the corresponding uncoupled equilibrium equation !

(1]
:"¢~+Mm7};--‘£}—~u=—mﬂ’.

in which the transverse shearing force n,=N},+®), appears, we can
take

. (00,0,
°.v=(;.")+'§ (3.1)

Then at the boundary we will also have

e,
TNy - A B
The expressions for the forces (moments) with zero superscript for
the edge a2' agsconst are written similarly to (3.3). Expresslons
(3.3) are ¢he houndary conditions at the loaded edge a= ag

the Pl bars. In the right sides of (3.3) there appear 0‘-[(%" v, v,

and the moments in P2 for oy = ag . This situation indicates that ‘

the boundary conditions at the lcaded edge a, = ag for P1 may
" 0 Q - 0
be established after determining M2b’ M21b in P2 for ay ay. |
In the present case swe first invert the operators corresponding to
0 0 "
P2. This yilelds 01, and(~. and Mzb’ lebfor al oy . Then we
find ¢1, ¥

i in terms of the five as yet undetermined quantities

for

(‘.z’_'y 3 After this we establish the boundary conditions (3-3)

and make the calculation of the P1 bars. Finaily,the quantit:.es
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®
Y (Tas_z)' are found at the boundary a.= agnconst with the aid

2
of the cgnditions (1.15).

Assume a shell has two neighboring loaded edges while the
boundary conditions at the other two edges are given 1in terms of
displacements. Moreover, we consider that the concentrated normal
force Q: acts at the intersection of the loaded edges. In shell
theory the following condition 1is taken for the corner point

[(cos® 1 —sin®y) My] =,

where the square brackets denote the jump of the quantity in the
brackets with transition from one of the loaded edges to the other
in the counterclockwise direction. Here y 1s the angle between the
unit vector 31 and the tranjectory direction, measured counterclock-
wise. This immediately 1implies that at the corner

Mm: t #'-—oh
M‘.‘=i_°.i_.’___q;“ (3.5)

Moreover, since the loading on the loaded edges is given, at the
corner we know the moments appearing in the boundary conditions (3.3),
and the analogous conditions for a, a ag = const for the extreme

P1 and P2 bars positioned along the loaded edges. We take the

quantities ¢ ¥ (%’)" (%%). as the edge interaction function

at the loaded edges. Then 1n accordance with the boundary conditions
of the type (3.3) we can analyze the extreme P1 and P2 bars. More-
over, by inverting the operators (1.9), (1.11) we find the quantities

LFEI P After this we can establish the boundary conditions
the type (3.3) for all the P1 and P2 bars. Calculation of the Rl
and P2 bars makes it possible to determine the internal forces

(mcments) with zero superscript and write with the aid of (1.14),

(1.15) the ten equations for finding the quantities ¢, qq,({E?y'(%%%-.

Other boundary conditions and also the existence of an oblique edge
may be examined similarly. In the case of the oblique edge,additicn-
al edge interaction loads appear, acting between the bar systems
which converge at the edge. This is the only problem complication
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which appears for the oblique edge. The shell support scheme in
which the families of bars under consideration may not be in equili-
brium under the influence of external loads and support reactions
presents a problem for this technique. For exzample, this sort of
case includes the shell with two opposite free (or loaded edges)
which coincide with the lines of curvature. In this case we note the
technique of [2] which makes it possible to turn to consideration of
tne conventional edge conditions. Thus, in all cases the edge
conditions adopted in shell theory together with the corresponding
relations for the four-layer Puc bar system make it possible to
formulate the boundary conditions for the bars forming Puc. There-

fore, Phc becomes completely equivalent to the shell within the
framework of general shell theory [3].

4. There are thirteen interaction loads in the Puc system.
The number may be recuced to nine and in the cace of the Love
elasticity relation to seven by a slight generalization of the
concept of the crossed and contlnuous P bar system. We rewrite the
uncoupled system of equations (1.8) —(1.11) in the form

Lu(T, My, Tie, Mix)=
=Kie,(Pras Pops Pays 5. 983, 440 mi), mf})) + .
+K, 00,0, 13, £, £, 0,13 (4.1)

. Lb. ‘on ol'..' ol)=

=K“|(0; 0| ol - |‘.‘l _,;‘:l _Ig- 0' _-u(;.)) (u'2)
(‘=l|2'3l 4): i

: Lu,(Toe, My, Ths, M) =
=K, (0.0, 0, ¢, 4. 43 m. mD)+ .
+K.i,(0,0,0, 3. 12, 3. 2, 0) 2

Lll- (on 0| 'll “l)'_—' -
=K, 0 0,0, —fD, — 2 —f% —n, 0)
. (¢=1234). (4.4)

Here only two of the four interaction functions in (4.2) are indepen-

dent, since they are all related by the two equations which follow
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from (4.2). A similar situation exists in (4.4). Thus, in (4.1)—
(4.4) there are nine independent interaction functions which must
satisfy the five cvonditions (1-13) and four of the conditions
(1.14), (1.15), in witch ¢3’ 0“, V3’ ?u’ figure.

Let us examlne the mechanical meaning of the uncoupled equations
(4-1)—(l4.4). We first consider the equations (4.1), (4.3), dropping
therein the interaction functions which appear in (4.2), (4.4). They
do not differ at all from the equilibrium equatlions of the P bars 1f
we take le,Mlb, TZb,Mstto mean, respectively, the normal forces
and bending moments 1n the bars. However, in this case we have 1in
place of {1.6)

wmrdo(lt =B nmrta(ie ), ()

e :
q_1%33=13-u=uzt=zu

Hence we see that the difference between the crossed and contlnuous
bar system described by the equilibrium equations (4-1), (4.3) with
the elasticity law (U4.5),and the crossed and continuous P bar system
lies in the first two relations (4-.-5). If we call this the Pv system
and denote it by Plv’ P2v s tl.ils difference between Pv and P
reduces to the fact that we can no longer conslder separately the
families of Plv and P2v 1
The deformations, displacements and rotations in P

bars positioned along s
depend on the
1v

T2b’ M2b’ acting in P and vice versa. Thus, 1n this case we

2v
must consider the Pv crossed system as a whole. Obviously, for v= 0
this connection between Plv and P2v disappears and the Pv system
transicvions to P.

The necessity for considering P, as a whole has little effect on
its analysis and calculation in the spirit of the bar system. In
fact, in the statically determinate case the equlilibrium equations
(4.1), (4.3) for Plv and P2
over, for the Plv’ P2vbars we can write formulas analogous to (2.1)

v may be integrated independently. More-

for finding the generalized displacements from the glven deformations
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5 L h '_ ‘ (4.6)

Finaliy, the five interaction loads (2.2) in Pv are found from

the five conditions (1.13), which express the equality of the

displacements and rotations for the Plv and the PZv systems.

In the general case with account for all nine interaction functions

we can by analogy with Puc, consider the four-layer bar systemPPucv
which is continuous and crossed at every layer. This system 1is

formed sequentially by the families of bars lev’ Plv’ sz, P12v,

The nature of the P21”and tP12v bars is the same as that of le and

P12’ except that in this case the quantities °l’ ¢2, ?l, Wz, are

missing. Prom the equation (4.2), (4.4), we can find ¢3, ¢, and
?3, Vu, and then these values are used to find the quantities

Y 0 0

T Pay) M1y ()08 Tpy (Bo), My (P5,), in accordance
with (1.14) and with (1.15). We define the displacements and rota-
tions in P2lv as follows . :

lS” =af?, oM™= w" .

ﬁ_.g,, ot 3 (PZI-
f?‘_i_*_ owi'” ) "1” Mzu(Pm- (4.7)
A’ 1?’ 05 Ry —“IC_‘"'

where the indices (21 v) and (1lv) denote, respectively, displacements
and rotations in the P and P, systems. We proceed similarly in

21v 1v
the Plszystem, setting thereiln

W™=, 0= o™,

:4‘2 194 = T (Pias)

ds, A T T L (4.8)
™ e (o-ﬂ') _uf™ Y My (Pa)
-Ot.— T A -E 0%y R "Dy
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In this case the four conditions of equality of the coe¥Fsspénding
displacements and rotatlons for each of the lev’ Plv, and sz, P12v
systems ™

. v)
= af, . gz'-=-"_£"_ + 5

’ . P S
A= = (4.9)

and also the five conditions (1-13) for Plv and sz yileld all the
necessary equatlions for finding the nine interaction loads. 1In fact,
all these conditions will be equivalent to (1.13) and the four
conditions (1.14), (1-15) with ®3, %y~ Y3 ¥4 This in

turn leads to the uncoupled equations (M.l)——(ﬂ,ﬂ)_together with
(4.5), describing the behavior of Phcv, becoming completely equivalent

to the equations of shell theory.

The boundary conditions in P40v are formulated similarly to
those in P, ~ wlth the exception that &) %5 ¥; ¥, are missing in

Pucv'

5. The four-layer P, system consists of the bar system Fpy» Py,
R, P15+ 1t is not difficult to see that as a rule Py;, Py, are
relatively coxpliant systems and the crossed P bar system forms the
basis of Puc' Thls applles even more to the Pucv system, in which
Pv forms the basis. However, thes technique for calculating the P
system dces not differ from that for calculating the conventlonal
crossed bar systems. Nor is this difference essential in the case
of the P, system. In general neglect of ¢y ¥y 1in (1-5) and in all
the succeeding formulas does not lead to a large error. Moreover,
if we use the elasticity law in the Love form ,the difference between
Pue and P will be due to v and ¢3,W3 while the difference between
Pucv and Pv will be due only to ¢3’ W3 , which are proportional to
the shear deformation components. Sometlmes ch and Pucv degenerate
into P and Pv . For example, this occurs in plate bending, axisym-
metric deformation of shells of revolution and so on. 1In many cases
the transition from Puc and PMCv to P and Pv may be accomplished
approximately. Moreover, in general in calculating Puc and Pucv we
examine the iteration process with consideration of only the P and
Pv systems at each step.
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6. In the uncoupling method the conditions (1.13), (1.14), (1-15)
or (1.13), (2.3), (2.4) lead to a system of integral equations of
the Fredholm type of the first kind in terms of the interaction func-~
tions (interaction loads). They are obtained by inverting the opera-
tors (1.8)—-(1.12) and equating the corresponding quantities in
accordance with (1.13), (1-14), (1.15) or (1.13), (2.3), (2.4). A
pecullarity of these integral equations is that the unknown functions
of two varliables appear in these equations as single integrals of
each variablzs separately. Moreover, in the case of certain boundary
conditions they may contain nonintegral terms with values of the
unknown functions at the edges. In the general case the number of

such equations for the Puc system is thirteen, and for the Pucv

system the number is nlne. In those cases in which additional
interaction loads do not occur ,the number decreases to five and in
several concrete problems the number may be even less. Thus, the
problem of calculating the continuous and crossed bar systems
obtalned above reduces to the solution of the corresponding integral
equations of the uncoupling method.

Now let us consider the discrete bar systems. We can use the
following technique to discretize the integral equations of the un-
coupling method. We form a grid on the shell middle surface using
the lines of principal curvature. We specify on the grid lines the
unknown distributed interaction lvoads as depending on n unknown
parameters, where n 1s the number of nodes of the grid being used.
Then we determine these n parameters from the conditions for

satisfaction of the integral equations or the conditions (1-.13), (1.14)

(1-15) or (1.13), (2-3), (2.4) only at the grid nodes (colocation
method for integral equations). This approximate method for solving
the problem may be treated in a certain sense as the calculation of
a crcssed bar system with distributed unknown interaction loads.
However, it 1s of interest to go directly to the calculation of the
discrete bar system with concentrated interaction loads at the
nodes. We shall show how this may be done, using as an example

the bending of a plate.
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In the case of bending of a flat plate.we shall dwell in greater
detall on the discretization and peculiarities of the numerical
solution of the integral equations of the uncoupling method. The

uncoupled plate equatiors may be transformed to the equations for the
continuous and crossed P bar system

o™ -
01;."=’u+7n+% ’

D=

D"‘&“‘:"q.'*‘%—".

D-"g. -5

where the subscript b 1s dropped, since we have assumed b, =b, = 1
and

m=72 (=12

In this case the conditions (1:13) will be

" =w?, ’f’:—%, 8‘”:_6{'_" (6.3)

and the problem reduces tc¢ a system of three integral equations in

q, ﬁl’ 52 . For simplicity of analysis,we consider a rectangular
plate which is clamped along the contour,and we take approximately
ﬁl = ﬁz =0 . Then, solving the first oralnary differential

equations (6-1), (6-2), satisfying the clamping boundary conditions
and satisfying the first conditions (6.3), we obtain

b d
§ S B —3) K, (x, 43— K, (y, )] g, (t, ¢)dtdt' =

d
f3(r—nKi(x, Op.(t, £)dtdt =~ F(x, y), (6.4)
) a<x<h; c<y<d,

By

where 6 1s the delta function, Kl(x, £ 0; K2 (y, t') are the deflecticn
influence functions foir the clamped P bars. Let us break down the
region 1n question by a grid of straight lines. 1If we use the idea

of the colocation me hod and equate the left and right sides of (6.4)
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at the grid nodes, and specify q_ (x, ¥) to within undetermined
parameters on the straight grid lines, we obtain a system of alge-
bralc equations. The same equations are obtaired when calculating
the discrete and crossed system of P bars, defined on the grid lines,
with distributed interaction loads. We can proceed differently. We
replace the integral in the left side of (6.4) using the formulas

iar uitchanical quadrature. We consider that the grid nodes coincigde
Wwith the nodes of the quadrature formulas,and we equate the left

and right sides of (6-4) at these same points. Then we obtain a sys-
tem of algebralc equations of the form

g’ ALK (51, 1) ga (5, )+

, : (6.5)
+ I AL Ka oy M0 51 90)==F (51, 5+ w0,

where factors A£X), Aﬁy)

result from the quadrature formulas and
pi.1 are the overall errv.: of the gquadrature formulas. Setting
pi.1 =0, ze obtain the equations for the approximate values of
of the qn(xi, yi). Taking account of the physical meaning

influence functions, we note that for p1J = 0 and Aﬁi) = Aﬁz) = ] the

equations (6.5) also hold for the discrete P bar system described by
the first equations (6.1), (6.2) with the concentrated excess unknowns
at the nodes qgé(xi, yJ). Hence, using a unifc: | grid spacing and

quadrature formulas such that Aéx) = Aﬁg) = A, we obtain
1

 Qalxy, y)=2=C2)

This relates the approximate solution of ti.® integral equations of

the uncoupling methci and the calculation of bar systems by the method
of forces. The uncoupling method and the method of forces 1n
structural mechanics, which are similar in form, become similar in
essence. These arguments make it possible in constructing the
approximate solution of the integral equation (6.4) to calculate the
corresponding discrete P bar system with concentrated interaction
loads at the nodes rather than calculating the system (6.5) directly.
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In so dolng, we can use many effectlve tectuniques of structural
mechanics to construct the approximate solution of the integral
equations 1n question. On the other hand, conversely, analysls
of the Integral equations may be useful 1n calculating high-order
crossed bar systems.

The difficultlies in the numerical solution of integral equations
of the first kind are well known [5,6]. They are assoclated with the
fact that the operator in (6-4) overrides the strongly oscillating
solutlion and the zero 1s a condensation polnt of 1ts elgenvalue
spectrum. A similar situatlion occurs 1n calculating crossed bar
systems of both the P and conventional types. There thils leads
to poorconditioning of the system of algebralc equations of the
method of forces. The various approaches to the solution of equatlions
of the type (6.4) reduce to the introduction in one form or another
of additjional information on the sought solution in the original
mathematical formulatlion of the problem. For example, Tikhonov
[5. 6] considered the sought solution to be sufficiently smooth
and prorosed to screen out the osclllations in the numerical solution
of (6-4) by minimization of a smoothing functional. In our case

we can write
o4 A ‘o d )
M‘=SSAq,q,dxdy+2S'Sq,Fdxdy-{_-§Q;
(6.6)

é:jf[,,(x y)(% + oy (x, y)(oq.)""'?l(x- y)Qi]dde".

6.
2.(x, >0 (i=1, 2, 3), (6.7)

where A 1s the operator of (6.4) and o 1s the parameter. Since
the operator A is positive, the solution of (€.4) minimizes the
functional MO (a = 0). The role of the regulating functional @
consists in smoothing the approximate solution. The parameter a

is selected so that the function which minimizes (6-6) will be close
to the solution of (6.4), but at the same time the influence of §
willl not dilsappear. The Euler equation and the natural boundary
conditions for the functional M” have the form
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[Kx, 00,6 a4 Kuts O x V80 +
+re p=eft[ne 0+

+§,-[h(x. y)?;]-?.(x. y)q.}.‘
E=0 tor, x=a, x=b F=0" for y=c.y=d. (6-8)

The physical meaning of the left side of (6.8) makes 't possible to
conclude that in this case a filler materlal has appeared between the
two continuous crossed systems of P bars and what the displacement
law for this filler 1s defined by the left side of (6:8).

We can proceed simllarly in calculatling the bar systems. In
this case we minimlze the corresponding quadratlic form rather than
the functional Mg. For example, for a girder framework we can vake
in place of & the sum of the squares of the differences of the excess
knowns at nelghboring nodes of the grid in both directions,and the
sum of the squares of the values of the unknown quantitles themselves,
multiplied by some positive welighting functlons of the integer argu-
ment (of the grid nodes). ‘

Other techniques may be used for the approximate solution of
these problems of integral equations and bar systems by using addition-
al information on the sought solution. It 1s often convenient to
write the additional conditions in the form of lnequalities and
seek a solution which will satisfy these 1nequalitles while at the
same time satisfying with the maximal possible adcuracy the basic
problem formulation. Moreover, we can formulate overdeflined problems,
in which we introduce the requlred additicnal information into the
basic problem formulations by means of redundant equaticns. The
solution of the overdefined problems may be constructed using the
method of least squares or in tte Chebyshev approximation sense.

In many cases the methods deveioped in linear programming [7] are
effective in solving the problems mentioned above.
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We can ,2Int out still another effer e technique for calculating
the crcssed tar system within the framewc of quadratic programming.
We write in ptLace of the sysiem of equatic s of the method of forces

e e s T LR T e R R
2 1al®s mﬁ: & : ?@

a system of inequalities in the form

gt

e Wi 2

and we seek a minimum of the smoothing quadratic form nh’ egqual, for
example, to the sum of the squzres of the differences of the excess
unkowns at neighboring nodes in both direc®ions,and the sum of the
squares of the values of the unkn.wns themselves, multiplied by some
positive welghting functions of an integer argument (of the framework
nodes ), under the condition that the inequalities (6-G) be satisfied.
We assume the function nh to be convex. In the problems being
considered the quantity a, which characterizes the maximal acceptzble
error in the equations of the methed of forces in each specific

case, may be estimated quite accurately. Algorithms for the solution
»f thls problem formulation in quadratic programning theory are
wncwn. Similar arguments may be applied to the integral equations of

the uncoupling method.
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ON THE DETERMINATION OF THE MOMENTLESS STRESS STATE
IN COVERIMNGS WITH POLYGONAIL PLANFOPM

V. Ya. Pavilaynen

Shells which cover a space with nonrectangular planform find
application in the construction of pavilions, trade centers,and
other structures. Here the most efficient shells are those in which
the midsurface has positive Gaussian curvature, since these shells
provide a stress state whizh is nearly moment-frze under the primary
design lioads (dead weight, snow). In this case a considerable portion
cf the shell, with the exception of small regions near the edge,
operates in uniform compression and this permits effective use of the
material in reinforced concrete designs.

It is advisable to perform the calculation of these coverings on
the hasis of the equations of momentless shell theory in Carteslan
coordinates, first derived by Pucher [1] and valid for shells of
arbitrary rise. In formulating the boundary conditions,it is usually
assumed that the elements of the shell supporting contour have
stiffness only in the shell plane and that the entire load is trans-
mitted by means of tangential forces. As a rule these forces increase
with approach to the corners of the covering and may, in particular,
increase without 1limit in absolute magnitude [2].

This fact indicates that under certain conditions the momentless
nature of the stress state is significantly disrupted near tre shell
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support contour and also at the shell corners. However, in many
cases all the momentless forces in the shell may remain finite,

and this has been the subject of several studies, including [3]. The
interest in this question is explained by the fact that the determi-
nation of the contour forces, and also the stress state in the corner
area, where there 1s a marked increase of the tangetnclal stresses,

is the most critical part of the design and controls the choice of
the optimal constructionai version.

In the present paper we suggest a method for calculating cover-
iugs with nonrectangular planform which differs from that of [3]. The
Pucher system of equations 1s generalized to the case of an oblique
Cartesian coordinate system. We examine several cases of the
application of the resulting equations to the analysis of coverings
which have an arbitrary parallelogram planform, and also the questions
of direct determination of the tangential forces ai the shell corners.

§ 1. Equilibrium Equations of Momentless
Shell Theory in Oblique Cartesian
Coordinate:

The shell midsurface 1is given oy

z2=2z(x, yj,

&
X

Figure 1.
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where x, y, 2 are obiique Cartesian coordinates (Figure 1). The
X and Y axes of this system 1lie in the horizontal plane of the shell
planform and form the angle x with one another. The Z axis is directed

upward along the vertical, and the unit vectors I i 4 are connected
by the relations .-
.T‘afgml?
T k=] k=0
(1.2)
[l,j]:slnxk,
- - - | S 4 .-
), R|= T { — cigx/,
(1-3)

®i)=T— gl
1

In the general case, in which the shell planform is an arbitrary
polygon, it 1is advisable to select the angle y and direct the X and
Y axes so that they are parallel to two adjacent sides of the shell
planform contour. The x and y coordinate lines on the midsurface
will be the curves formed by intersection with planes parallel to
the planes X0Z and Y0Z, respectively. Generally speaking, such a

system is not orthogonal.

In fact, taking the paremeters x and y as curvilinear Gaussian
coordinates of the surface, we write (1:1) in vector form

7, =4y +2(x NE.

(1.4)
The vectors tangent to the coordinate lines will be
;JL::;Z:T"-}:_“
e -> -> oz (1'5)
*=f,= +Wk,
and the corresponding unit vectors are
= 1 - 1 {1y 9
Q=7 == 0z \! (1+5;k)'
-+ (3)
- -» 1 n’_’_o' "
1 (] "‘_’Tk) (16)
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Here Al, A2 are the Lamé parameters
A1=4;;|"lﬂl+(;;) ’ <
A==y 35T (1-7) ‘

With account for (1-2) we find
1

> o &\ _ ;?'
0,637 -TT?FT_—T—FH -;;) 7 l+(1;') (°°31+;; g) cos o

where y is the angle beiween the coordinate lines on the surface
(see Figure 1). It follows from (1.3) that in the general case
s+ 0 and, consequently, the coordinate line grid on the surface

18 not orthogonal. The unit vector normal to the surface, defined
by the formula

:'=-‘%T :l’ ;']
will be, on the basis of (1-3) and (1-8),

->

T 1
b= : 5 X
Veris () +(5) 1oy
X (-5 & et ) it
+( =g S+ etex i)+ oin .

(1-9)

Let us conslder the conditions for mementless equilibrium of a
small element cut from the shell by two nzarby planes parallel to the ¢
X0Z plane and by two nearby planes pr-ullel. to the YOZ plane (see
Figure 1). The sides of this element are

d‘l = l—:i: :(gjrdxo

d:,=‘/|+ 77) dy,

and its projection on the XOY plane 1s a parallelogram with sildes dx
and dy and the included angle .

(1.10,
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We denote the force vector acting on the uait arc length MN by

-F and the force vector acting on the unit arc length MQ by ﬁy’

where
-=rJ+?,,/+ T.R,
Fy=T) i+ 1y +Ty k. (1.11)

Then the force acting on the entire arc MN equals

-;,d:,=f7','y 1 +(3;E)I dy=—S$,dy, (1-12);

and on the arc MQ —T,ds, -T, ]/l_l_(g;' dx=—8,dx.
(1 12)2
On the opposite sides PQ and NP the following forces act
Fdo+2L dx=(§,+%-dx)dy. (1-13)
Ften+ St dy=(3, + 2 dy s
T’d&+—$" y=\5y + 5 %

In (1.12), (1.13) we have introduced the new forces §

§y sWwhose decompositions along the I 3 k axes have the form

and

$,= Sesd + SxJ+ S,k

$,=S,d+ S, + Syt (1-10)

and from (1.11) and (1.12)we have the ohvious relations

Sex=Txs ‘/;:(—?;’)' y Sp=Ty, ]/ + (3-)

Sey=Ty, 1+( )'. Syy=Tyy +(3;) BT

sx:—rul/l‘*'i?} Syt—Tnl/l'l'

vWle denote the external force vector acting on the shell element

in guestion by
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P=[ge(x, i+ qy(x, yj+a.(x, 0 F| e,

where d&8==siaydxdy- ~is the area of the parallelogram M'N'P'Q’
(see Figure 1) ana q,, 4 o] are the load intensities, given in
3

y z
the X0Y coordinate plane. .

The condition for vanishing of the principal vector of.the exter-
nal and internal forces applied to the element 1s expressed by the

equation

&, & T4aT+ak
&+ +led+a,7+ k) sax=o0, (1.16)

which is8 projected onto the coordinate axes with account for (1-14)
and (1-2) to yield
. 3S, a8 [ 1Y 8s,

('f"f“';;i)'{‘('j;—’"i'-ﬁ)cosl-{-q,slnl:o,
as,, . &S és. és,

(3 + 37 cwn+ (37 + ) +a,smx=0,
&S, S 5
=+ -+ gs sin 2 =0, (1-17)

Consider the first two equations (1.17). Since in all the
arguments it 1s assumed that the angle X # 0,7 (otherwise the
problem formulation loses meaning), these equations may be solved

for the expressions in the parentheses. As a result (1.17) is
uritten as " is
q :
- TR =g+

as s q
1:2 "“"é,‘: = ;|',|,—1+q:dgl. :

ggxﬂ-yf;—"-:—q,slnx. (1.18)

Now let us find the condition for vanishing of the principal
moment of all the forces acting on the isolated middle surface
element. We take as the reference point the center of gravity of
the element(see Figure 1),and we note that the radius vectors of the
points of application of the internal forces on its edges are
characterized by the relations

di,=dsi + azk=(T +5;¥) dr,

‘-D

¢;=¢y7+dzi=(7+-,;;*)dy. (1.19)
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Then, retaining terms of no higher thzn second order of smallness,

the sought equality i1s written in the form

[3:‘-."' (7'*":‘;;)'4‘]*'[3"’" (7'*'%;)4"]:0' (1-20)

Projecting (1-20) onto the coordinate axes and considering (1-14)
(1-3), sin x # 0, we find

s,.+sa.cosx=(8,,§‘;+s,,;;,’-)+(s,,%§+8,.$‘; 08 %, (1-21)
;%iﬁul'ksht==e&w;;*'sn;;)+(S”;;+4ﬁq%5‘msl.
- So=5=
From the first two equations (1-21) we have
Sn==sxr£;+4%x£;.
(1.22)

< 9
Sp=Sp 3+ -

Equalities (1.22) show that the internal forces on the shell which 1s

in the momentless stress state do not have components normal to the

midsurface. To see this we examine the decompositions of the vectors
<>

R T + -+ .
Tys s along the directions €, €5, €,:

"
v

F. = Toor+ Tba+ Tratn, (1.23)

- - -
Ty=Tut,+ Ta+ Tuts.
Projecting fx on the direction gn and taking account of
(1-9) and (1-11),we have

-i:'.;. - n. sin L

Vo e

X[~ Tur g = Ty 35+ Tt =0,

cince the expression in the square brackets vanishes in view of

(1.15) and (1.22)1-
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We cbtain similarly

-fy';-= Tw =0.

Now let us find the coefficients Tl’ T

¢ 12° T21’ Tz, i.e., the
components of the vec’arr .

and -7‘, along the coordinate direc-
tions. We project '1'; onte the directions 7, and ¢,.

fx"‘\ “'i' 'T\l’*m’—

m%&,r (Txx teos xTy+ 35 Tu) ’

T ty=Ticos g+ Ty =
1

(1.24)
e (r,,cosx+r,,+3;r,,). He
V i+ Sl

Transforming the numerator in the right side of (1.24)

1 with account
for (1.15) and (1.22) ,We obtain the expression

= (1; [s,,+cousn,+

+-.;( & 45, )

Vq;;r{['*“r)]‘«”f(““er %))

walch we substitute into (1.24)4 to find

- o
L+ T..cooﬁ— ——(;;;21' Sxx+ cos ?sxy

(,;) (1.25);
Equality (1.-214)2 is reduced in the same way to the form

o 1+ .
Tycos ¢+ Tyy=cos § (& SuetSi (1.25),
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Hence

(1.26)

The coefficients T21 and T2 are found by entirely analogous arguments
as a result of which we have

(1.27)

Formulas (1.26) and (1.27), first derived by Pucher [1], define all
the tangentlal forces in the momentless shell and, 1n particular,
establlsh the palringlaw for the tangentlal stresses T12 and T21

in the adopted coordinate system.

To derive the resolving equation of the problem,we substitute
S, and Syz in accordance with (1.22) and (1.21)3 into (1.-18)3
which takes the form

F ™ .
Seefit 355 +5y Bty $1—cer’y)
. +"(m+x"g“dlx%)—q,slnx. ' (1..28)

The first two equations (1-18) will be satisfied identically
if we Introduce the stress functlion F, assoclated with the forces

Sxx’ Sxy’ Syy by the formulas

e .
Ser=gx— [ﬁfl-—q,ctgx]dx, e
_ &
—F-

Sﬁ

Comwamyg "—-—5~

7 N
[!ln’; —q.ctg X]dy ’
-— _ &F .

/ A W i

-

Sv=

&

and (1.28) takes the final form
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& #r #s PP P PF
o F_zaa;'a;+;;-w;=—q,smx

- '.+£[££(i%—qymx)dx].'}.

356 —nco] -

and is identical to the familiar Pucher equation [1], differing from
the latter only in the form of the right side. Thus (1-30) may be
considered a generalization of the Pucher equation to the oblique
Carteslian coprdinate gsystem.

§. 2. Some Analysis Problems

It 1s convenient to use the relations obtained in the preceding
section for the analysls of shells whose planform 1is arbitrary. Iu
this case uwe refer the surfuce to the oblique Cartesian coordinate
system and find the eolutjon of (1.30).

The use of this ecguation makes 1t possible to determine directly
the tangential forces at the corners of coverings with polygonal
planform, which is of definite practical interest. We shall demon-
strate this on the exémple of a paraboloid of revolution having an
equlilateral triangle planform. We first consider the XYZ system of
rectangular Cartesian coordinates in which the equation of the shell
midsurface has the form (Figure 2)

A
r=A—g(*+y), teld)
and the load 1s distributed uniformly in the planform plane, 1l.e.,
§2=—¢y=const.

Then the problem reduces to integration of the Polsson equation
* BF P
WTF=—"",
(2.2)
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whose solution, by analogy with the problem of torsion nf a prismatic

bar, may be obtained in closed form [2].

='_.$[3"_ (x'—axy')—%-a‘+-}(x'+¥')]' (2.3)

Differentiating (2.3),we find the forie_s Sxx’ Syy’ Sxy:
P 3
Sum= 91—,

=t (1+3). (2.4)

Figure 2.

1
At the boundary y=—ﬁ(-‘+2") the forces normal and tangentia]

to the contour are found from the formulas

S:"=S,,sm'a+$yyc°3""s"!s'" %z, (2.5)

So= ';' (Syy— Sxs)sin 22+ S,, cos 2,

where a is the angle between the tangent to the contour and the X

axis. Substituting (2.4) into these equalities and setting ﬂ=%.

we obtaln

In particular, at the shell corners
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s;,g—-g-.ﬂ fgr 8=—2a.
s‘l’g!ﬂ.ﬂ for X=0.

(2.6)

We note that the same values of Sx

may be obtained if in (2.4)., we
. y 3
set y=%v3a.

Thus, in the general case, in order to determine the tangential
forces at the shell corners we must have, first, the solution of the

differentlal equatilon (2.2)and,r second, the subseguent scaling of
the fqrces.

Let us show that all this may be avoided if we uzse (1.30). We
return to the example 1in question. In the shell planform plane we
introduce the oblique Cartesian coordinate system xOy (Figure 3),
which may be cobtained from the basle coordinate system by rotating
the system XO0Y through the angle % clockwise and a further rotation
of the Y'! axis through the same angle. Let us find the equation of
the surface (2.1) in this coordinate system.

The expression x2 + y2 is invariant to the first axisof rotation;
therefore, (2:1) remains unchanged in the xtoy! system. In the
second transformation the coordinates of any point M in the X'OY' and
xOy systems will be connected by the relations

x'=x-ycosy,

Substituting (2.7) into (2.1),we obtain

[ ]
= R = o (x4 ) -+ 2xycos 1),
=T (2.8)
or for l=.;.,

=k 2 (£ 4 Y+ xp).
p=t@ ey (2.9)

71
FTD-HC-23-361-69




This 1s then the equation of the surface in question in the

x0y
coordinate system (see Figure 3). Hence,we have
#z_#s__ A Pz __ K
AT AT T W Ixdy '
and (1.30) takes the form
F , #F r YT
O et = Ay =— 1 (2.10)

As we would expect, 1n the new coordinate system the twlst of the

surface element, characterized by the quantity is%- 1s nonzero,
since oneof the familles of coordinate lines no longer colncldes with

the lines of translation. Thils ensures retention in (1.30) of the

term containing 555- and in the final analysis asaures equilibration

of the vertical load in the corner zones by the tangential forces

alone. For the boundary condition version adopted
_op o “L @F| L
s’x—-w ‘---’-.--o..s"—‘a;' -_L‘—-O. (2'11)
2 . M

)
Using (2.11),we find the tangential forces at the point (—',—.;a, —% )
directly from (2.10)

Soym— 2F /3
‘v m—
3xdy A (2.12)
which completes the solution of the posed problem.

Now let the original surface (2.1) have an arbitrary polygonal
planform. By selecting the angle x and the direction of the coordi-

nate axes, by analogy with the preceding example, we write (1.30) in
the form

4 ' y
2o + Hh=— M gy

(2.13)
where the value of the angle yx depends only on the choice of the shell
planform corner at which the shearing force is determined. Assuming
that edge conditions analogous to (2.11) are satisfied on the

adjacent edges, we obtaln the formula for the force Sx at the corner
pcint
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sn=—]g'="‘1f!tzx‘
(2.14)

This formula shows that 1f the parabolold of revolution has a poly-
gonal planform the tangential force at the corner points is propor-
tional to tgyx and has a singularity only at the pointi::%,while
this force remains finite for all other values of the angle x in the
intervals '

0<x<y, g<x<*

Moreover, (2.14) implies that Sy, changes sign as the angle
X passes through the singular point. For example, if the surface
(2.1) has a regular hexagonal planform, i.e., 1=m§:.then we
obtain

Sy=2Y%

In conclusion we note that in certain cases the forces in the
shell with oblique planform may be obtained by simple scaling, with-
cut solving the differentlal equations, 1f we know the solution for
the corresponding shell in the rectangular Cartesian coordinate
system. We shall clarify this by an example.

Let the shell midsurface be a surfz:e of translation whose
equation is
2(x, N=H(x)+L0).

(2.15)
and the lines of translation 2z, = fl (x) and z, = f2 (y) are 1lccated
in mutually perpendicu’ar vertical planes. In the case of a load
which is uniformly distributed over the shell planform, the Pucher
equation will have the form

Of, BF . &y oF
ot E = (2.16)

Now let us assume that the solution of (2.16) is known and examine
another surface of translation with nonrectangular planform, whose
lines of translation are located in vertical planes which form the
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arbitrary angle x with one another, and are also described in these |

planes by the equations z, = f, (x) and z, = f, (y). For the same

load g, = -q_, the equation (1.30)

dtfy O8F . &,
ot wm

from which it becomes quite clear that for the same boundary conditions

for such a surface takes the form

#aF
W=q. S‘HX,

all the internal forces in the corresponding sections of the second
shell may be obtained by simple multiplication of the known forces
for the first shell by the constant sin y. For example, the case of
a cylindrical surface having a parallelogram planform immediately
reduces to the analogous surface with rectangular planform.

Consider still another example.
Let the equation of the shell mid-
surface expressed in oblique Carte~
sian coordinates have the form

z=A—gg (4.
For q, = -q, the equation (1.30)

for such a surface will be

.§;4u;;==-§¥:uni.

and on the basis of(2.3) the cor-
responding function

=% [@w—30)—Fa + 5 ()]s,

vanishes on the triangular contour (Figure 4). Thus, by multiplying
(2.4) by sin x we obtain the solution in closed form for the surface
of translation which is analogous to an élliptical paraboloid and
has the indicated triangular planform.
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SOME CASES OF TORSION OF BARS WITH
VARYING ELASTIC MODULI

S. G. Lekhnltskly

The problem of torsion of an elastic bar of constant cross
section in the classical formulation, 1.e., under the assumption
that the deformations are small and the material obeys the generallzéd
Hooke's law, 1s known to reduce to the determination of a stress
function which satisfles 1n the region of the cross sectlon a
second-order linear equation and takes a constant value on-the con-
tour. For a homogeneous bar this equation has constant coefficlents
which depend on the modulus of elasticity [1, page 149]. However,
if the elastlec modull are coatlnuous functlions of the coordinates
we obtain for the stress functlon a second-order differential equation
with varlable coefficients, and the question of finding an effective
solution for the torsion problem becomes much more complex. It
appears that this problem has been solved only for a bar in the
form of a solid or hollow circular cylinder having cylindrical aniso-
tropy, with elastic moduli which are constant along the length [2]
[1, pages 203-205].

In the present article we conslider several cases of bars with

variable moduli for which an effective solution of the torsion probiem
may be obtained elementarily, using the same methods used in solving
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the corresponding problems for the homogencous isotropic bar. These
cases are, first, an orthotropic bar of rectangular section with
shear modull given in the form of exponential and power-law functions
of the single coordinate y and; second, a tubular bar having
¢71lindrical anisotropy in which ithe mcduli depend on the distance

r from the center of the section and vary along the length.

§ 1. General Torsion Theory Equations for
a Bar with Rectilinear Anisotropy

Consider an elastic bar of arbitrary constant cross secticn
having rectilinear anisotropy. We use the x, y, 2 coor&inate system,
aligning the xy plane with the plane of one of the ends and dlrecting
the z axis parallel to the generator (Figure 1). Forces which reduce
to the twisting moments M are distributed over the ends.

We make the following assump=- ;
tions:

1. The bar material obeys
the generalized Hooke's law and
experiences small deformations
undér the influence of the load.

2. At each point there 1is
a plane of elastic symmetry normal

to the bar centerline, and conse-
quently the number of independent
coefficlents appearing in the
equat ion of the generalized Hooke's law is 13.

3. The deformation coefficlents a1J are continuous differenti-
able Tfunctions of the two coordinates x and y,but do not very along
the length of the bar. Thus, Wwe shall consider only "continuous
inhomogeneity" and exclude from consideration bars composed of
different materials (composite bars), in which the elastic properties
vary abruptly from point to point.
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We shall use the conventional notations of elasticity theory.

The basis of Saint Venant torsion theory is that four of the
six stress components vanish

9y =0, ==, ==ty =0,

(1.1)
while the other two, as implied by the equilibrium equations, ar=
expressed in terms of the stress function y(x,y)

(1.2)

NPT R 3

In view of (1.1),we write the equations expressing the general-
1zeA Hooke's law as follows

s, =0, T)n=¢u'yz+¢u‘.u- '
8y =0, Vs =8 %zt s Tirs -
83=0, 1¢,=0, .

(1.3)

where

w=F o =t R (1.4)

u, v, W are the projections of the displécément on the directions of
the x, y, z axes.

From these equations ,ne obtain the expressions for the
displacements

a=—Wyz4pz—1y+t,
o=0xz+}1x—232+49,
w=1(x, Ntey—pxtw, (1.5)

and the equations which the "torsion function" ¢ and the stress
function must satisfy

;x:'y-l.a“;’t—a“%o
~=—. _
wtetag-ad (1.6)
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Excluding ¢ from (1.6), we obtain a second-order equation with
variable coefficients for the stress function

L (outt — e )+ 2 (- )=

1.7)

The boundary condition for ¢ 1is derived Just ac in the case
of the homogeneous bar and reduces to the followlng: the stress
function takes constant values on every contour bounding the

section; in particular, in the case of a singly connected region y = 0
on the contour. ’

The constant @ , the relative rotation, or twist, is proportiocnal
to the torsional moment )
Py |
—z-.
(1.8)

In the case of a singly connected cross section region S the
stiffness C is

coifee

The constants ;_i—_iy?.ln % ®,. which express the "rigid"
displacements, are determined from the conditlions at the restrained
end of the bar. We consider the end z = 0 free and the end ¢z = 1
resfrained;and we find all six constants by requiring that a small
area in the z = 1 plane (1 1s the bar length) be stationary.

§ 2. Orthotropic Rectangular Bar
In the case of an orthotropic bar,the number of independent
coefficlents a1j reduces to nine. If the bar 1is orthotroplc and the

coordinate axes are directed normal to the planes of elastic symmetry,
in (1.3), (1.6) and (1.7) we must set

B gy (2.1)
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where Gl(x, ¥), G,(x, y) are the shear moduli for the planes of §
elastic symmetrv parallel to yz and xz. We obtain the simpler equation
fcr the stress function in place of (1.7)

‘3‘:(5:%)"‘%(?;?%%“” (2.2) "

which beccmes in the case of a homogeneous bar an equation of the
elliptic type with constant coefficients and, in particular, the -

M s iy

s

Poission equation for a homogeneous isotropic bar.

Consider torsion of an ortho-
tropic bar of rectangular section
with sides a and b. We assume that
the planes of elastic symmetry at
every polnt are parallel to the

planes bounding the bar. Directing

the axes as shown in Figure 2, we

restrict ourselves to study of the

Figure 2. cases when Gl and G, depend only

2
on the single coordinate y. 1In

these cases 1t 1s possible to use for the solution the same series

method as 1is used for the 1sotroplc and homogeneous orthotroplc

bars.

The boundary conditions reduce to

$=0 for x=0, x=a, y=* %

(2.3)

We expand the right side of (2.2) into a Fourier sine series
on the interval (0, a) and obtain

429=—4',-:- 2 -}sln-‘—?—.

k=1, 3,8.... (2.4)
We seek the expression for ¢ in the form of the series )
=" homi (2.5)

8=1,38....
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It will satisfy the conditions on both sides x = 0, x = a. Substi-
tuting (2.4) and (2.5) into (2.2), we obtain
1Yy [V, 0o,
y;+a'(a;)‘y; (Sfan-- . (2.5)
' (=1, 3,5,

Dencting by Yko the particular soluiion of the inhomogeneous
equation (2.6) and by Ykl and Yk2 the linearly independent solutions
of the corresponding homogeneous equation, we obtain the general
expression for the function ¢

t= .3 AYutBiYut Vs ZE,
A=t 84 ...

(2.7)

The constants Ak’ Bk for each value of k are found from the con-
ditlions on the sides y==j;% and are expressed 1ln terms of o
which in turn is found from (1.8)-(1-9).

)

It is obvious that the particular solutions Ykl’ Yk2 cannot be
found in explicit form for arbltrary G1 and Gz. The solution of the
inhomogeneous equation for Yko is found from onc of the known solutions
of the homogeneous equation with the ald of guadratures.

Let us analyze further two cases of the representation of G1
and 62 in which the particular solutions of the homogeneous equation
corresponding to (2.6) are found simply: these solutions are express-
ed either in terms of elementrary functions or Bessel functions.

§ 3. Rectangular Bar with Shear Modulil
Given in the Form of Exponential
Functions

Lot the shear moduli of the bar shown in Figure 2 be given as
follows

-y
[

0|=llﬁ-?. 0y=g,e (3.1)

where n is any real number: positive, negative, whole, fractional or
zero, and gl, g2 are constants having the dimension of the shear

2
modulus, i.e., kg /cm".

-
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Substituting (3.1) into the equation for Yk,we obtain a second-
order inhomogeneous equation with constant coefficients

!
._g
:
;

=y
v “ e
R4 h—(Fan=-Sfe " (3.2)
Here ;
—85_0 ;
n=5=0

(3.3)

is the ratio of the shear moduli, a constant.

S = Rl i

Equation (3.2) is easily solved. We denote: ¢ = a:b (ratio of
the sides of the section),

a=08(}/wt Fais). (3.4)
=05}V w+ Feutn).

—— T Lk

In the following,we shall drop the subscript k in these quanti-
ties for simplicity of writing, i.e., we write s, t in place of Sics tk.
The general integral of (3.2) is

L a7

YQ'_—.A.C

. £ e

(3.5)

e

Determining Ak and Bk from the conditions
O\ f_by\_
n(z)=n(-1)=" (3.6)

we obtain the final expressions for the stress function and the

stress components

. 4=250x
"_h’

i -
shin-(tZe’ —shinta) Se PR3 I
bt 2‘_:1_[ 2 — 2 —+e ']sln—;—;(&?) (3.7)
shis+hHg
Xe3= “g!‘“ x
~ v '
ssh(n-—l)le_bl-t-lsh(nq'—s)%e ’ _? Arx
X L d —ne sin—2=1
o N =
2 shis+ 07
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Ty = —.—5'_‘. X

Y &
shin—f)z e —shints)x L
xz’;[ 2 - .r‘ +e EF]t:oo.-—""f-. (3.8)

wet0y

Here and in all the following formulas the symbol t denotes for
simplicity summation over odd k from 1 to =, as in (2.7).

The expression for the stiffness, found from (1.9), has the
é::-‘%."ix

Tk et Sl
le“[!% ik hedl B 77_,_,%3"_.;].

form

w@+0y (3.9)

We know that the maximal stress in a homogeneous lsotropic bar
for a > b is found at the points x.—:%,y:i-;-. l.e., at the
mid points of the long sides of the rectangle. The questlon of the

location of the most highly stressed polnts in the present case can
be only resolved by specifying numerical values of n.

In a particular case we obtain from (3.7)-(3.9) formulas for
the homogeneous orthotropic rectangular bar. Specifically, setting

n = 0 we obtain
42

Then (3.7) and (3.9) become the familiar expressions [1, pages
157-158]
ch 52
,._.ﬂ’.;iz:-'_ - T),,,,z_s_
™) Py o3 a
7T
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| 054'&..&23':(1 -+ V_'gi_“'"!“)' (3.12)

§ 4. Rectangular Bar with Shear Moduli
Given in the Form of Power-Law Functions

It is not difficult to obtaln the solution in those cases in
which the shear moduli are represented by power-law functions of the

-
- & 1 . i
e Ny NS S e P A R L)

distance, namely,

L=

0,=g, (-l;t-b-)", 0,=:.(-L'*EL)-.- (4.1)

Here m and n are any real numbers — positive, negative,
whole, fractional or zero, equal or unequal; gl’ g, are constants
having the dimension of the shear modulus; and Yo is a positive
constant with the dimension of length. Since by definition the
shear moduli cannot be negative and imaginary or complex numbers,
we shall consider that the bracketed expressions in (4.1) are always
positive within the rectangle, or at most vanish at the side y = -b/2,
i.e., we assume that ¥, > b/2.

Equation (2.6) will have the form

Ntsiih- (%)': T =20 (e T
(&=8 ). | (42) =
We introduce the new varlable

1=y+% (4.3}

and denote by primes derivatives with respect to n,rather than with
respect to y. Then we obtain in place of (4.2)

hit () g =~ B (4.4)

The integral of this equation is expressed in terms of Bessel
functions (of imaginary argument) [3, pages 52, 53, 471].
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We introduce the notations (the sign of the expression for N
is selected so that N2 0)

s—1 -=..'i.1/—;,
e =T (4.5)

Then for nonintemer N the particular linearly independent
solutions of the homogeneous equation corresponding to (4.4) will be

: L Yu=wly (o Ya=wlx(0?), (4.6)

where IN is the Beasel function of the first kind JN of the purely
imaginary argument ivn . For integer M we must substitute K (|n )
(the Macdonald function), in place of I_ ( N ) .

We find the particular solutlon of the second-order lnhomogeneous
equation (4.4) fa‘zvf the known Y, ,; this solution will have the form

»L
g = r.-——ﬂ— Ynj(}'.'.a’f'j‘}'ndq)dn. (4.7)
f224
For N nct ﬂantl to an integer or zero, we obtain the following
expression for thﬂ~§treas function

0_*:2!_‘&!"":'(1‘5’)-}' B L-atrd) + Vel sin 7. ™o

For integer or zero N

,gzu.q—cl,(w)-fa.n “Kn (1) 4+ Yual sin L) (4.9)

We find the.final expreasions for ¢y after determining the
constants A, and Bl from the condlitions at the sides y—i-,—, but
in view of thelr complexity we shall not write them out here. Nor
shall we write out the formulas for the stiffness, which are obtained
from (1.9) after determining A, and B, (which, just as Y ,, will be
proportional to the constant ¢ ).

kO
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§ 5. Particular Cases of Power-Law
Dependence

We shall consider thke most typical cases of power-law dependence
of the shear modulus on y + Yor

Equation (4.4) and the expression for y are simplified somewhat
when the shear modull are proportional to the same power of y + Py

G,=g, ("-1‘;-!’).'. 0,=¢g, (’—JP)-' (5.1)

Then (m = n)

. .=.-.—;—l-, ’=.]. N=t—;—,1=%lf‘—.. (5.2)

We write the expressions for the stress function for four parti-
cular cacses of this sort. '

1. Linear dependence

o= (E3), omui33).

l=—l. a==—1, N=I; (5-3)
(5.4)
$= [An /() + BunKy () + Yiol sin 5.
2. Inverse proportiopality
s b
. @=ﬁ&¢ﬂvm=h&ﬁﬂ. i
’ rn=1, =0, N=0; .
(5.6)
t="F (A 10+ Ba Ky (1) + Yief sin 5E
3. Moduli proportional to distance squared
Gi=g (@)’- 0,=‘,(‘-'—‘*"£)’,
‘ 3 (5.7)

R==2, a=—3, N=-g-,
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In this case the formula for y cointains Bessel functions of
order :t%

» which are known to be expressible in terms of the
elementary functions.

We obtailn finally
t=EIA~(¢n—ndm)+8.(chn—mhn)+

4-thdl-—-
u'

(5.8)
Y+,

Moduli inversely proportional to the square of the distance

olaln(—,'_—' n'_"(ﬂ-_)
8m2 8= o, N:=-,v,

(5.9)
??2(‘01"&:1+'Bn'q"dln+ Yag) sin — (5.10)

We shall not write out the particular solutions for Y
they are quite complex; they are found using (4.7) with the aid of

K0 since
two quadratures from expre§sions contalning Bessel functions,or in

cases three and four using hyperholic functlons.

We note ancther particular case in which the stresses are
expressed in terms of elementary (power-law) functions.

.Let \_agﬂ.‘l (},—_&;).-’ y Oy=g, (’-_%,—‘).,

R=g—2
where n 18 any real number, in particular zero.
\

(5.11)
(4.4) becomes the Euler equation

The equation
NtV (T) &= 20"

(5.12)
The expression for the stress function is written as

(5.13)
i 5
y=2ar E (A% + By v=* - y-9) a

l[n 14 ({;) ]'
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Here

x=o,5[]/ =1 +4(T) —— n].
r=05[V =1 +4{Z +a— )]

(5.14)

(the subscripts k for A and u are dropped).

These examples of the rectangular bar with variable elastic
modull do not by any means include all possible soliutions of the
problem. However, they show that there are a large number of function-
al dependences of the modull on the y ccordinate for which the
torsion problem is solved nearly as simply as for the homogeneous
isotropic bar. In addition to the exponential and power-law functions
we could cite many others, but we shall not do tnis herej rather we
shall consider a different sort of case, which seems to us to be H
of no less interest.

§ §. Torsion of Tubular Bar with
Cylindrical Anisotropy

In conclusion,we shall present the results of a study for a
bar having anisotropy of a different kind, namely cylindrical, and
Wwe shall indicate how the elastic moduli must depend on the coordinates
in order that the quali.atlve stress distribution pattern be the
same as for the corresponding isotropic homogeneous bar.

Consider a bar in the form
of a hollow circular cylinder whose
material obeys the generalized
Hooke's law and has cylindrical
anisotropy with an axis of aniso-
tropy colnciding with the geometric
2z axis; we consider the deforma-
tion coefficients a1J to be con-

One end of the bar is restrained,

while forces which reduce to the
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4

torsional moment M act on the other end. We use a cylindricai
coordinate system (Figure 3).

The stress distributior in the homogeneous isotropic bar is
characterized bty the singie stress component Tog? which depends only
on r. We shall clarify the conditions which the variable deformation
coelfficients must satisfy in order that only one Tog of the six

stress components in the twisted bar be nonzero, and we shall find
this component.

We shall not consider the most general anisotropy case, rather
we shall assume that 1). the relative elongations €ns €gs €,
aré independent of 19 , l.e., alu = azuaa3u=0 and 2). The
coefficients a,), 359 aus are given in the form of products of
funetions of 2z alone by functiors of r alone, 1i.€.,

Cu=2Zy(2) 8y (r), 8, =2Z4(2)04y(r), =24 (2) bu(')- (6.1)

The remaining coefficlents aij may be any functions of the
cylindrical coordinates r and 2z and also of the angle 6. These

sssumptions are quite general, although they obviously do not include
&l) possible cases.

Setting .
=a=c‘=t"=t,.=0, ﬁ,:ﬂ,(’),
(6.2)
we write the generalized Hooke's law equations
=0, T =04y,
#=0, 1,=a,w,
=0, v=a, . (6.3)

Expressing the deformation coefficients in terms of the
displacement proJections~ury9;w along the directions r, 86, z and
considering the displacements to be functions only of r and z, we
obtain from (6.3)
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Zy=1, 8,=0, o= 3‘ byndr+m,

(6.4)
and the equations relating Ug and To,
C (MY, ey
. ‘;07)"2h r"
(%) . duzy 6.
1?(7)-2; r (6.5)
These equations for ug will be compatible oniy if
Z“=Z(2), Z“=IZJ¢+I (6.6)
(a 1s a constant, Z(z) 18 an arbitrary continuous function).
Consequently,
0«’—"2(2)’40(';)- Ay =0by(r), “«=(I2‘k+‘)’u(')- (6.7)

Excluding the displacements from (6.5), we obtain the equations
for To,

r].r (6.8)

Introducing the function
P L
f(')"‘ . (6.9)

we write the final expressions for the stress and dlsplacements as
follows I

="

(6.10)

8,=0,
=0(SZdz+¢)rf(r)+w,

(6.11)

Thus,we find that if the deformation coefflcients are given by
(6.7) the stress and displacements are defined by (6.10) and (6.11).
We find the constants w and W from the conditions at the
restrained end 2z = 1 and the constant & from the formula

90
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= M

I,o
aj Dy {(6.12)
g .
(the stress 1 in any cross sectlion reduces to the torsional moment

). %z

In particular, for the orthotropic bar (with planes of elastic
symmetry normal to the axls, radial and orthogonal %o the first two)
we have

l.ﬂl..=0, ‘.=.“=o.
‘ (6.13)

If the shear modulus for the radial planes of elastic symmetry
(f.e., those passing through the geometric axis z) is given in the
form of the function

L 1
0= = T (6.14)
3 where Z and buu are arbltrary continuous functions of z and r, then
the stress Tag is found from the formula
=
(6.15)
where o=- ‘: o
2% dr
!“L (6.16)

The corresponding displacements will be
8 =w=0,
..a.f(j'ldz+-.). (6.17)

Hence, after determining wg from the condition at the restrained
end u, = 0 we find the total twist angle

. [}
| o=-:-(-.),_.='-'SZ€¢-J (6.18)

For example, if the shear modulus is given by the formula

O=apm - (>0 (6.19)
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we obtain

“J:tiu-z.g

wetd {6.20)

As for the stress, it 1is independent of z in both cases consid-
ered here; we obtain the same stress for any representation of the
function Z(z) and it is found from (6.10), (6.12) or (6.15), (6.16).
Thus ,the factor Z{z) affects only the deformation of the bar in
torsion (more precisely, the displacement ug and the total twist
angle).
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CYLINDRICAL SHELL AND PLATE SUBJECTED TO
A MOVING HEAT SOURCE

R. M. Finkel'shteyn

We consider thin c¢ircular c¢ylindrical shells of radius R and a

semi-infinite flat plate

The temperature 1s distributed linearly through the thickness of

the shells and plate.

NOTATIONS

K -

Ko -
c
p -
h
v
.
Q==f;u%
She

33’“%{{&#&-
=%

q-
z -

FTD-HC-23-361-69

K. ¥h. Kozhakhmetov

and

under the 1influence of & moving heat source.

thermal conductivity

heat transfer coefflcient
specific heat

material density

shell and plate thickness
source motion velocity

heat source density per unit middle surface
area

coordinate of source "center of gravity"

specific output ‘of heat sources
coordinate along normal to middle surface

93




!--j.u dimensionless coordinate in the direction
of the generators

t = time
twf, = - dimensionless time

Fo - Pourier criterion

!-—'f'-- dimensionless distance traveled by source
é§ - Dirac function

Pl g

TO - middle surface temperature
K - temperature gradlient through shell thickness

T‘=ﬁ°—,- dimensionless middle surface temperature

K‘s-‘,’;’f— dimensionless temperature gradient through
shell thickness

-2 =) =),
= S P 2,
m=(V/ 7T+ 1),
1 f w=(Vr+g-5).

"“‘)=?:J‘-"d" ~ Qauss function
u - longitudinal component of displacement vector

W - normal component of displacement vector

- dimensionless longitudinal component of

Py [
*'=%  daisplacement vector

..=_=_- dimensionless normal component of displace-

ment vector

a ~ thermal expansion coefficient
E = Young's modulus
v = Polsson's ratio

A‘g Wﬂ _') '. B='!!3R‘('+‘) .
Cum MR o o)
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£a
D= - compressional stiffness

“2%':'- ’o=%- D,= N _,, - cylindrical stiffness
« T. T, - forces

My, M; _ bending moments |
I. Semi-~Infinite Shell
§ 1. Temperature Pleld

We assume that the temperature of the medium 1s zero,and the
heat transfer coefficlents from the outer and inner sldes of the

shell are the same. Then for a linear distribution of the heat
through the shell thickness

T(x, 2, f)=Ty(x, {)+2K(x, 1) (1.1)

we have for T, and K the independent equationsl1]

9&& %‘*’%n‘ =g
£ (B = -2
or
I _E L eTe=i(E—)
[ ' (1.3)

=, T-!-T‘K‘ =3 —2).
The initial and boundary conditions for (1.2) are

T,=K=0 for ¢=9,
To=K=0 for x=0and forx=. -

Then these conditions for (1.3) take the form

Te=K=0 fort=0,

(1.4)
T*=K*=0 for §=0 and fort=co.
We apply the Fourier sine transformation to the new (1.3)
Va, )= y’.Z.J T (&, )sinaid:.
(1.5)
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Then this equation takes the form

24+ @ 4=V e

om0,

whose solution will be
i ”'W*?‘-«a:-"?;'
and after transformation we have A
o=t GRS«

-2 f et 2

Calculating the integrals in (1.9),we obtain

} -'o—-; . )
T 9= (e (Y g) X
X[1—e (w3 - )| —exp(mV+ =)
X [l —ed(l;w-kw‘?)]—;exp(u,}/; = -27‘,_-‘-)' X
sl 5T
x[l—m(._,;fn#m +
ﬁ%ﬁ(ﬁ#fﬂlxl)+.%(mm—chua)
a for0< <k,
' . -—

i -2,k =
ml : for 0< =t
. #rﬂﬂll’; for0<:<y.

(1.6)

(1.7)

(1.8)

(1.9)

{1.10)

Since the second equationof(l.3)differs from the first only by a

constant factor, we can immedlately write

v o
Ko 9= gl (V- )

e

i+ i -mo{m =35

Xll — et (V3 - ;-;75)]+exp(-.}’ THiyr) X
X [1 —et(mye+ -’—:7.)]] +

(Equation continued on next page)
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(Equation continued from preceding page)

-t . -3
;;‘fl_T{-__‘; (shmy 4 chmy) + .",—ﬁ (shmX—ch mX)

. forO<x <k,

*-3 .

+ T - i | for 0<y=t,
.2 . e T

.—ﬂﬁr'ﬂshn&. S f_:_»::§0<5<1.

(1.11)

It i3 not difficult to see that (1.10) and (1.11) satisfy the initial
and boundary conditions.

Now let us find the displacement field. We shall consider
separatel; the quasistatic case (dropping all the inertial terms), and
the case 1n which only the inertia of the normal component of the
displacement vector 1is taken 1nto account.

§ 2. Displacement Field (Quasistatic Case)

In the quasistatic case,the thermoelastic equations in terms of
displacement for this problem have the form

f e BK*
2.1

%—-{-"‘:%&T‘. (2.2)

Let the shell be pin-ended. Then the solution of (2.1) must satisfy
the conditions

o @ 0)=w*(0, =220 — 0* (=, 9)=0. (2.3)

Applying the Fourier sine transformation to (2.1) under the conditions:
\2.3)

9=} I{wr @ gsinstas, S
® .
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we obtailn ]/?;Bl(@-l-f)slnal ~ am cos 17}
Rl
a 'fz.-&-(ﬂlﬂf
W"'
| 4L r——
CFAORFEFFaw (2.5)
V’c.,,,-mfr
TR 0 TR R
and, inverting (2.5), we optain

N _ 2B £ (a2 4-P)sinay —amcos .
e ')“'.75 AT+ P ey S0 360 +
+ [ e -

S —(Q'-ry)'slnag ’ X
5(-4+Aol(-'+s=)u-*n'1 de + (2.6)

42x¢ o= O gy o3
= ) GTATET o ¢
We obtain from (2.2), takIng account of (1.10) and (2.6),

q

a® 2»85 (¢'+§:))lsl:|t+—-;:-co:;, Slna‘da—
HC al [(e2 |- 1) sin —Illeos.x!
_—‘—.5 ( + AY |( +]I,!+¢.I Sln:Eda+

- ms P

CEY U] CER TRy

2vmC a%e~ (41 Tginad ds —
* ) @A T 7R+ ]
CR‘ & (

“eamy T+ |°XP (
—exp(mV=+ )[1 erf(u,V‘+__)]_

DR i
+exp(n.}"+ [l — el n,l/=+2 ',-)]|+

il

_—ml'T__i+n e~ &0 —e-mE+D] for0<7,<E:
——CR ___ p-mg —t
@ s - . for 0<x & N
CR

=#x sh ng:’ 0<E<y.
T T Cog Sl
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The integrals in (2.6) and (2.7) break down into a series of tabulated
integrals. The calculations of these integrals follow.

h={ Fﬁ%ﬁ%&%“-j“"’“ LD Y

- sinafsing, in af sin o
+L.5-Jﬂl-d.+ .{ : da=

e () (et ) R+
+()--L )ain‘TM ] exp ‘_1.)_(3'*'

[(L.+—2)eoo L) +( sm‘—"‘*”]]-;-
+2l.,r'-‘ shn,x+2l. &shnd fort>y,

o[ #) R+
A e el v e
X (L:+#)MM+("—L )smﬁ‘—;ﬂ]]+
© +2p-mashntt2L e "tshnt for E<us

A-f R o [ iR

+L,y——1—ﬂ—'::“‘ ¢+L,S——71"';*+“ da=
[l et funtti
| S

+-5_(Lr'-'chn;l+L.r'-‘chna) for >,
3 (G o S~ a4
+exp( %‘L)[L cos—“—"'—n- "‘sln-‘&"—p—]]

,-(L,c-~x:hu,z+l..e-~a:hn,a) fort <y

; ot (e? 4-7Y) sinaisine (L¢-!+l.,¢.)slno€slaq
.’-ﬂﬁﬁwwﬁwd’—j “rA et
+L"5 -‘:lnr‘ d¢+l.,5 sin of sin da=

(Equation continued on next page)
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(Equation continued from preceding page)

g {472 o S

+(%'}—L.)sln‘ﬂ§:u]—exp(—4%ﬂ)x
x[(L.+-‘{)cos-(—ﬂ=+ +(L“—L)sln‘——1?-‘;,§ N
= +2Lye A shmy+ 2L, ™ shmt £ort>y,

Frelon{A o+ e
( —" )sln‘-‘ﬁ',:fﬂ]—exp(—‘—ﬁw )X
X[(Lot 7 )eos L 1 (Lo g Jun ACZ0 ) 4

2L shmi42L, " shmf fort<X;

_f . esuma )
h={ e de= [ Mgty
Sl S “l;.:.“.lﬂ dz+L,.s “""““l_dg-_

ot mg

T gxp(— ;’f )[l.,,-cos‘"e" +-’-3;—-;an.*).]+

4]
+exp (—- 4“—"‘-’2) [L cos%’%—ﬂ- + "‘,‘-— sin —(i,iru]] +

+‘§('-u¢ = chmy+L, -“'!Ch”‘d) for E>x,
‘[exp(ﬁ(! 12 lL .cosl(ﬁ » _ L

Spuntiz0].

+exp(~ _AE+y) )[Lum (e}}p + L gp A0 ]} +

+ 3 (Lue™ ™ shms 4 L™ shm,%) for E<y.

Here the notations are:

=__. A—mw+ 3 (n+nd) Av(n] + nd) — 38(A¢ —nln))
=@ r»wﬂ,r' b= ayramiay

h+";l-| L __l-|+ﬂ’l-1 . U
ﬂ = —!—""l_n; :
e e i p -
(4~ ""'g)"i'“("l'r"’)v (““"f";)_"f'“("i'-“";)" (2.8)

(Equation continued on next page)
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(Equation continued from preceding page)

‘-:’"—'L’:i'l.. Ls——_':;;!-%—
A D) | A adel) + )]
SR A T e A

L et lmi—t | —Ly— Lot
12

R T = B
] ek As(w] 4 )
ta -;.’;?Tk(-i«—-i)’ be=a — mad) + A ()
Ly+ Liyed L..—tu-{

== ===

(2.8)

NOTE: In specific cases the calculation of these integrals

iz simplified considerably. The quantity u'='g- even for

large values of the heat transfer coefficient and small source
velocltles 1s much smaller than one.

Por example, for a steel shell of thickness h = 1 em and source

velocity V = 10 m/hr

2
-3 |.m - kcal - k
x = 45.10 [—]] , C=0.11 [] /deg] o = 7900 [-%1

m-J
- P
»*={,00035 K.,
for K, = 35 keal/m®.hr.deg
*g 1
For these same values
=F=10,

and only for velocities of the order of 300 m/hr is p2 ~ 0.01,
i1.e., also small in comparison with one.

For n2 « 1
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R £ g = - R T R e T T O T N Y P T T S TP i Y e T s -3 = - — —

sl m?, s§=5-, X T N
(a)
If in this case Pz(( 1, then §
!
m=mt R§=5'- m; = mi=mt (b) -
and for P?>)1
m=1(1+m), m=10—m), ]
mpm=2, m—m=2m. i !
The constantsL1 from (2.8) are simplified correspondingly. We denote :
2
b
=] 2] |
X {[m (LB —LuC) + —2 LC— LB+ — (L aC— L#)]x v
xm‘—“—}i+[;,-a.8— ..C)+~?(t B—L,00+ '
+v,“.(l.,.c L,B)]sm’“‘ "} fori>y: ]
= _AZ+YD
(5 '):—'fexP[ vz ]X .
X [[7-1';7 (L, B—L,C)+-',—;.7,(L,B—L..C)+m(l.B—-l-sC)]X - i
Xcos“e+l)+['/—,, (I_,C——l.lB)+—-' (L. 8-—.L,,C)f -!'
+7;(I..B——L,.C)]sln‘(""v] fori>y: :
9y (€, ) =€~ (.:. Leshny —mL chay)+
+e-lg€ (‘:‘L‘shﬂa—nlgdlngl) fore>1: ¥

| () —_;e-"s (% Lyshm;y—mL,ch mll) T
+e"'-5(1l.,,shm,1—ml...chm,z) tori>y:
(9= Ferp[A852] x
X {[ 757 WC—LB)+ i (LWC—L,B)+m (LB — LuC)] %
AE—1) 1 ol = P
xcos2E2h +[ 2 (L C— LB+ 57 (LB—LO+

+ R C—La]utE2BY (e <y

(Equation continued on next page)
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(Equation continued from prece ding page)
net 9=exp[- 2852} x
x([;,;—(L.B—-L.C)+T(L.B—L..CHML.B—L..C)]x
xm.'-'-ﬂ+[7ru..c L)+ b8 —LuO) +
= +7(L.B-L,.C)]sm4-—'tn} foriSX

(8, =2 (-L,+L,m)m,t+

+r"-!( I.‘-i—l..l)shn,! fort<y:

ot O=e-ma (—-L,.-—L,.u)shnht-l

. +.--t( L,,—-L,.n)shngi forE<u:

F X3 1)—- {L,exp(u, Ve— ",_)
B i <Al
A A

(5= )| e 552
oo 5

f,(t c)——T—{Luexp(mlr— : ',_.)
x[!—erl(al,V-— ]——L,.exp m.lf—+ ",—) X
X[l——erl(u,}’—+ )]-l—L;.exp(m,Vt- )
A I A

x[‘-“'("r+ w')“

JAR --,—{(z.--f;,)[up(a Vi— o= ',_
xe(A V=i (V47 me(w-»r,.f)]

( ;+ﬁ)[exp(—A "—_75) ertc( AVn__L- .
—exp(-AV"-l--——) erfc(—AVi¢+-27-_-)]]

L&, ‘)——-—T—{ L.. a}\[exp(A Vie— )' X
Xerfc (A V- —',-_-)—exp (AV11+ 7_-) erfc (A )/ 4 —= ',_)] 4§
(L,_, +ﬁ)[exp( AVis— ,r‘) ( AVER—- —ﬁ)_
—exp(— AVi+4 -’—:7;-)' erfc(-—A V&+ -’—:,—?-m .
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Then we have the following expressicns for w®* and -‘g-

v 9=—"PAC I+FLE I-22146. 0+

+216 9+ .
+{9|(‘- t) -+ es(§, ©)—Bay(E, )+ Co((f, ) for&>x
(5, *)+v.(¢ t)--8h(€ N)+Co€, ©) fori<k;

R

ﬂ-l————ﬁ-{exp(u.ﬁ : (2.9) -
T A
x[n-e:t(-. V‘=+;§5)]—- L

B R G e Tk
il A R (R 2 1)
vs+h—-8h+c-r.+;.—y—ﬁx '
X[ t-D—e-n4D] forE>y,
cR (2.10)
9l+9|—8ft+c?c+WX
Xeshaf forf<.

The forces and moments are calculated from
& t)=2k!£(%+vﬂ’—% 1").
(!.*)—0‘5(74""'37:7') (2.11)
N 9=— %e(_F + Cax.)
me9=— G+ cK?),
M;(E.t)=—'%'“(~§',-'+cx-)
§ 3. Displacement Field (with acccunt for

inertia of normal component of the
displacement vector)

In the case of the displacement fileld (with account for the
normal comgonent of the inertia forces),the thermoelasticity equations

in terms of displacements will be
&+ A
a AW =—8T— —c G -5,
=g

(3.1) =
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Applying the transformation (2.4) to the first equation under the
conditions (2.3), we obtain

=Bf(at 0 Y~ &M COs oY
DT+(¢‘+A0).‘~__VT Ko® - P sin g — am cos oy}

ECE E T -
L _}/..:hn'("*"" _ V;Cc'[(c’-{-ﬂsluq—ueolq] ’

@10 + &=t (3.2)
:Ca‘ﬂ"’m .
@I T
60 =2Ctd_ (3.3)

Solving (3.2) under the conditions (3.3) and then inverting
the result, we obtaln

o' (R, t)=%5[_.3..-."'*:)+ﬂl qf_;-wu F++a‘fm
- 'ﬁp’mﬁmﬂ'[ﬁWﬂhﬂnq—me_

: - S
-.-ll'*mlfx—.?mﬂ‘)l-l—&'ﬂl ‘*}. :n T eo?«:++ +m-r' (3.4)

+Wj;nf—$;;ml—w[l("+':') (nsigar—

—hseosqt)-—m(cour—hocm)llslnddc
Pram the second expressionof(3.1)wlth acccunt for (3.4) and (1.10),
we have

=2 a
%: f::'/% exP("lV_— ,—) eﬂt("nr— ',—‘)
~exp(mV T+ t=)e (n;V=+m)
—exp(u,V_i—z‘ )’eﬁc(n,V?—#_T e
+exp( 2',-)'edq(ﬂiy—f+2;-;)}+
T
| +W[@’+ﬂ’)@slnn—m‘mw— (3.5)
W [=* +T')("4coscl—2mcosm)—
—M(mq—2cosm)|]sln¢'dc+

i R — M) £or0<y <,

+ —I“-—fg———_‘_——.—;t"""'s for 0<X=¢ (3.5
-—’;—’c,—fﬁ-r'ﬂlhﬂj. fOr°<E<13
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In {3.4) and (3.5) we have used the notation

36 4 At
’?:‘T’.
(3.6)
for simplicity.
II. Shells of Finite Length
§ 4, Temperature Field 1
In the case of a shell of finite length,we solve (1.3) under %
the conditions d
T* (€, 0)=T*(0, 9=T"(l, =0, i
(4.1) '
K* (¢, 0)=K*(0, ©)=K"*(ls, *)=0. (4.2)
Applying the finite Fourler sine transformation 3
= To gt
O(n, t)—-jT‘slant., (4.3)

to the first equation (1.3) under the conditions (1.4), we have

LG i |

+(2.0=0.. (4.5)

We solve this equation under the condition (4.5) and invert the

result. Then
T*( )=
nef

¥ i mmmmen e

We obtain similarly
. K*G, 9=

4y o e WO s |

1%
(1*+—,3-) + o2

[ ]

(4.7
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§ 5. Displacement Field (quasistatic case)
We solve (2.1) unde; the conditions
@ 9= (h, =250 2= Brte 00, (5.1)
We apply tpe finite Fourier sine transformation
", =)=3‘-ua-'5f. (5.2)

to (2.1) under the conditions (5.1) and after inverting the result
we have ' '

(5.3)

(1' +T) 4 ans — na c08 ame

sin ﬂ

(f+ T) +atnt b

Prom (2.2) with account for (4.6) and (5.3),we have

o P+7- sin e — ancosans
° =
- WZ §’+—,r +¢w &

]

(’*7")“"" " (5.4)

(Equation continued on next page)
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(Equation continued from preceding page)

o )
- .«+~a—l (P+?)-F’5'?

)=,
N
_ e 3 \ l""'--(’“"?' +
“FLmepare
: (f—P%;%umJn—mu«nanl"nn*
R

(5.4)

§ 6. Displacements with Account for Inertia
of the Normal Component of the Displace-

ment Vector

In thls case we solve (3.1) under the conditions

-"(o. H=o*(©, )=2w*(l, :):"_'%}_f’=‘£g-_‘-’=o,

(6.1)

We apply the finite Fourier sine transformation (5.2) to the first

equationof(3.1)under the condition (6.1) and obtain
D+ A‘+"—‘é-'-)§‘=

;-;[(p+~;;:f:)..nm_.,;o,am] o (gr;;;)..] _

(o' + -"%‘1)' - (w + "—’55)' +am
. C'—'—:r:’ (1*+ fé:)slrun-.-uu:osm-r:] '
- (1' + %?—T + atat "

Fol ()]
e

108

+
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-1 e re I R TRE TR s

- o de*(m0) _
(8, ="y =0. (6.3)
Solving (6.2) under the conditions (6.3) and 1nverf1ng the result,

we obtain (, o ?)

,.'. slu s —2coslz$ 2
)= 1;2‘ Ban( T

)=l ]
n_“][ P+ﬁ( Slflam—

) =

. —ﬁlaeot N)—an’ (cosw—-?eos r)]

(6.4)

= [(" +'T) > ”] ';;Yw] [(1’ + -,3-) (sinant

AR\
- Mcol&)—-m (ﬁ\\s\h\— 2:03(1)] l sln—

shere

"’&%ﬂ- (6.5)

From the second expression (3.1) with account for (4.6) and (6.4)
we have

a.o 2CR 'i""’T 'lnu — & cos an=

s:+7- Yt am ¥
4 mocH - .
+ “z;[_,s_é_t)iz'z;]}sml;’—+ (6.6)

(Equation continuted on next page)
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(Equation continued from preceding page)

ST
sln (t —~{cos iz .

, u[(NT) -LM][C’—M] | e
[(P'-i' T)(’:slnam-—%nm,ﬂ "'“'lv(coswu_

stulr~Ccos e |- Ce (H-%.) ?
—ﬁm'v)] cm("+ T) s .
- e o] | ’
i [F*’T)“'"']‘" M][\Y +T)(Cslnam—

. : ‘

—Qaaeostt)—ant(cosam—uosts)] sln-'—E. { .

ITI. Flat Plate

The temperature field for the flat plate has the same form as
for the semi-infinite cylindrical shell. The temperature field for
the latter was found above in (1.10), (1.11). In the case of the
flat plate,we must set in (1.10) and (1.11)

E=-;., 15;, Z=$' ”'—T- -

b ”" (7.1)
. 1'=3(4+4p".
We also note that in the case of the plate
T =T KO3 K. (7.2)
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T e

.For the quasistatic case the tangential and normal components of the

displacement vector will satisfy the very simple equations

P 14v) o
g
=2 S (7.3)

If we assume that the ends of the p'late are also freely supported,
then we have §=_ mgl_'g;-i-vz. _"-F{exp(u.l’_-—:,—_)'x
X[1—et{m V- gi)| e (m Ve + )
x[t—m( V'+7=-)] "‘P("-V—'—W-;)'x'
el el ey

<t )+

LAty .mi'ﬁl“""’—.r‘*’"'l fort>y

S P - el LY fori<y (7.4)

1+y)_, 1;“5{“‘,(.,;/:—”_‘

’?' Damy/T+7
x[1—et(m s — 55| —exp(mV = +575)

sl en{ =)
x[t—dﬁﬁ“?‘ﬁ)]"“""("’ﬁ‘”:ﬁ) « (7.5)
[l —ed(llsV; +—}=')l] =

lﬁ’l)— --J!+l) .
(Hﬂ -Yl‘+7' [ e ] for i>x
it -—';ﬁ-e"‘d Shm; for E<Z

If we now consider the inertia of the normal componént of the displace-

ment vector, the conponents of the displacement vector will be defined

from the equations

ﬂ‘g:ﬁ’(l-}-v).d%

p T
gt (l+v) #K® 1293(l —w) Bw® (7.6)
-—‘ﬁ'-u,—-!'w-—inri’"&r*'
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We see that the first equation here coincides with the first

equation (7.3). As for the second equation, applying to it the Fourier
sine transformation, as in the case of the cylindrical shell, for
hinged-free edge fastening we have

@ )= &'—Lﬂ

¢t + - X.

) ainés—o0s (41
x{uﬁx%ﬁr“——*-

sindc =4 sinpy) + {cos py — cos {x) In ptd,
= Joimpide.

Here we have denoted for convenience

= xR

Tt 9=D, % - BGtvun 1,
T, !)—Dv_f.;ﬂl_-a—v)LD.T.
@ 1)—--&.6'_5_ D ’l(l-r-v ) ke
My, t)__Dv- % Dg-qh(l+v) s JED P

A ‘)__2: = &'EM .

Received 8 March 1964.
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(7.7)

(7.8)

The forces ar.d moments are expressed as follows in terms of the
displacement components and the temperature

(7.9)




INTEGRALS OF THE EQUATIONS OF AXISYMMETRIC
VIBRATIONS OF SHELLS OF REVOLUTION

P. Ye. Tovstik

The ssymptotic method for integrating equatlions with small
parameters in the higher derivatives 1s employed to lntegrate the
system of equations of small'axisymmetric vibrations of a thin elastic
shell of revclution. 1In some frequency range the resolvent equation
has a reversal polnt. In this article we consider the case in
which the coefficlient of the second derlvative 1n the resolvent
has a simple root (simple reversal point),and we find the Stokes
multipliers relating the integrals of the resolvent to the right
and left of the reversal point. Moreover, the integrals in the im-
medlate vicinity of the reversal point are calculated. As an example,
we examine the problem of the natural vibration frequencles of a
shell with clamped edges.

The present article 1s an extenslon of the study inltiated by
Alumyae [1] for a conical shell.

§ 1. Equations of the Vibrations of a
Shell of Revolution

After separation of variables,the system of equations of small
axisymmetric vibrations of an elastlic shell of revolution has the
form [2]
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g s et Loty 2 S el
(3 @)+ m) e~ (m ) m-
-~ &E R0
(;';+-;};)%+(—5;+7§;){-;+(1_#_ e
R k(0 (- (3 45 =0 (.1)

Here s 1s the meridian (generator) arc length; u and w are the
projections of the middle suiface displacements on the direction of
the normal and meridian; B = B(s) denotes the distance from the
middle surface points to the aris of revolution and is assumed tc te
a holomorphic function of s; Rl and R2 are the principal radii of
curvature, and

- _,
L Yavey~ I Yy (1.2)

1=('—”)'§. where o is Poisson's ratio; p,density; p,the
vibration frequency; E,Young's modulus.

The shell thickness 1s denoted by h, which we assume small in
comparison with the characteristic radlius of curvature. We introduce
the small parameter u by the formula

pi= gk (1.3)

Excluding u from (1.1),we find

—(aFtaZE+. ) HaZm o How=0. o

Without loss of generality we can consider that e;=a,(s)==i
Then

by==8,(s, ) =2 —(1 —")(Ry (). (1.5)
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§ 2. Integrals of (1.4)

Assume the function b2(s) does not vanish in the interval
5, <3< . Assume B(s) also does not vanish in this interval

(thereby we exclude from consideration shells in the form of a dome).

Then we can construct asymptotic series for the four integrals of
(1.4) which have a large variability index [3, 4].

.(.)-X,ty.(s)exp{-';su(c)a], =123 4, (2.1)
o e AR S
where w(s) satisfies the equation

o — bs*=0, (2.2)

and the functionéyik(s) are determined sequentially in quadratures;
8, is an arbitrary point.

After making the necessary calculations,we find the approximate
expressions for the integrals (2.1)

W W= () O Wi (2), =1, 23,4 (2.3)

Here the indices ®*+* and "-" correspond to b, > 0 and by< 0. In
the case b,> 0 ,ue have

Wi=e Wi=¢, Wi=cosz, Wi=sinz,

(2.4)

and for b, < 0

Wi=¢"cosz, Vi=e"sinz, W;=¢" cos z,,
Wi=e"sinz, (2.5)
Here
[l 1

4 n _2 _3 .6
it ILYUA A= nO=8) Tise T @0
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To the integrals (2.3) we must add two other integrals w_{s,u)
and w6(s,u), corresponding to the zero roots of (2.2) with an error on

the order of u , and coinciding with the integrals of the momentless
3 equation

0,52 +8 5 +hw=0. (2.7)

Numerical integration methods must be used to find the integrals
of this equation.

Now assume the function b2(s) vanishes at the points
% <8 <<... <08, Then the integrals (2.3) no longer
hold throughout the interval (sl, 52), since the form of the integrals
changes with passage through the pointss = cuJ and 8 Nle)=w.
Nevertheless,in each of the intervals o+eLs<2—s the
functions (2.3) are integrals of {(2.1). The question arises of
the connection between these integrals for neighboring intervals and

also the question of the behavior of the integrals in the immediate
vicinity of the points aJ,

The polints aJ are termed reversal polints and the coefficients
expressing the connectlon between the integrals for neighboring
intervals are termed Stokes multipliers. If #&(s)+0, the point
uJ is termed a simple reversal point.

We shall show that the hypothesis of the exlstence of 1solated
roots of the equation &(s,})=0 1is géneral. In fact, it 1is
not difficult to show that Rz(s) = const only for two types of
shells — cylindrical and spherical, and in all the remalning cases
Rz(s) is not an identical constant, and in accordance with (1.5)
there are values of A (and consequently of the frequency p) for

which tne functlon b2 will vanish for certain aJ for the interval
(s., 52)‘
A

Assume e,=a43d) 13 a simple reversal point. moreover,

bs(z)>0 and in the interval (Sl’ sg) there are no other reversal
points (the case bi(a) <0
replacement s' = -s).

reduces to the preceding case by the
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Starting from the form of the coefficients of (1.1), we show
that 5, (e)=20(x,), which implies that the momentless equation
(2-7) has a single regular solution ané a single solution with a

S singularity for & = . As the fifth and sixth integrals of (1.4),
we take the integrals having near s = a the expansions
o mO=1+ab—)+a—ar+...+069,
- 0.(8)—1(\)*;(8)ln|8—-.l+,_ +enls—a)+ ...+
+ 0l (s— ) ), (2.8)
- . t—
Shere 1= (-E@+8O—0e) =3 (P27 +
 AYAR I u—ﬂr —-—1
+a)(&) - mm)]]+ SR (r+e.) ®EER) 2o
and ¢ are expressed in terms of the coefficients of the expansions
of bz(s), bl(s) and bo(s) into series in powers of s - a,.
§ 3. Reference Equation
The results of [1] could be used to establish the connection
between the integrals of (1.4) to the right and left of the
reversal point. However, the reference equation introduced in [1] 1is
inconvenient for studying the behavior of these integrals in
the immediate vicinity of the reversal point. Therefore, we intro-
duce into consideration the equation
*o
- ¢ =
(& +z.ﬁ)+ FHe+wE=0 @1 o0
- where 1o=1(®&) is found from (2.9).
* Employlng the Laplace transformation, we represent the integrals
of (3.1) in the form of the contour integrals
, v,(')_l" exp{et— ]411_12 , 6, (3.2)
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where the contours of integration must be selected so that the
increment of the function

fO=(t+wrexp e~

is zero when t covers the entire contour. The function f(t)
i .
vanishes for t =Yg and also for l=cc-e_"‘—, £=01,.... 4

Following [1],we take contours of integration which yield real
solutions (Figure)

C=A,0,0,A, 1 Aa,0,A,, Cy=A0.8A,+ Ajass,A,,
G=4App0A, C,= AaapA;, C= R T o L T p
Co=Fu,a,0A,} Fa,aaA,, {(3.3)

where the points aJ are located on a circie of radius ¢ for the
points AJ recede to infinity.

To calculate the integrals

yU=1234 and o F
we use the method of steepest
descent and find the asymptotic
expansions of these integrals [1].
The expressions for £ < 0 are
shown on the left; those for £>0
are on the right; the relative
error of the formulas presented

below is of order PE_%'

Figure

de‘:-cos(C,-J,--."i)e-v,(E)-»dc- ) (3.4)
de-cos((,+ )é—v,(E)-of_(cos.—sln)
de-sln((,-{—-"—)«—i“v,()-v--—d—e"

de-’-sln( = 3;)4-1"'0‘( )-’T(LOS\+SIH JLivg (§)
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where 3

==y T,
¢=-f-€%r“.
'C.=3-{—’(-!)!’r'.
The integral Vg (£) 1s a constant

o @)= —2x1,1. (3.5)

For £<0 the integral (5 coincides with the integral

; 1
.pm=£ 1+ B)evdt=2(—+uintl+...).
(1+F)ar=2( ) (3.6
to within u"& -6 . However, if £>0 the integral (3.6) diverges.
We represent the contour of integration 06 in the form CG = 06 +C

where Cg = Faga A, = Fa.a3A3. Then for £>0 we have

2’

w@=2(9+{ (1 +%)evdr+ 004+,

€

(3.7)

and the Integral along the contour C'6 has the same expansion (3.€)
into a serles in .

We seek the Ilntegrals of the basic equation (1.4) in the form

e 1 , J=12 ...,6,
9y (8) =y (s) o, 88}, /=1, 2 6 (3.8)

where the functions ;'.(s) and £(s) are selected so that the highest
order terms in the expansion of the left side of (1.4) into a series
in u will vanish

4 1 4
t)= g% " s () 4:]" =
A

1 . \
-(b;(-.))"(s--c.)(t +~—"—5"’—<s—a.)+...).

T
(3.9)
o=V (87 (3.10)
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The integrals WJ(S), J =1, 2, 3, 4, are expressed linearliy in
terms of the integrals (2.3), which with account for (3.4) yields the
connection between the integzrals (2.3) to the left and right of the
reversal point.

The integrals Ws(s) and 36(3) may be considered as integrals
of (1.4) only forjs—a,|& 1. For |s—e,|>1 the behavior of these integrals
of (1.4) and (3.1) is significantly different. The integral WS(S)
of (1.4), which has the expansion (2.8) near s = a
the integral v5(£), of (3.1).

0 corresponds to

The representation of the integral w6(s) for s<0 and s>0
with account for (3.8), (3.6) and (3.7) makes it possible to con-
struct the sixth integral of (1.4), since Wo(s) is a good approximation
of the integral of (1.4) for|s—aj&1.2nd these formulas are applicable
b
in the intervalsl‘_.‘l»;r.

The following expressions yield the ccnnection between the
integrals (2.3) and (2.8) of {1.4) to the left and right of the

reversalil point, whe_re _1n (2.6) we take Sy = a4~ These expressions

may be used for l'—%l»;ﬁ'

3= ~
Y ST s - B0,
L -os-;--l—v; sln-;-o-;,-. %(w:_.,‘«).
LY sln;-:-—w; cos 1'5- - "';a = ‘;"f.

= > .~ ;
'T""T—'TfO’T*‘T"c"",l—-z-('.“+"f)+vr¢'s-

' (3.11)
wewmuty Thwr—wy),
where
_3 Ul
a=-- ',/T__ﬁ.)_,.lb;(..n L} b=-;-V¥(b;(¢.)B(a.))’-‘ (3.12)
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§ 4. Behavior of the Integrals Near the
Reversal Point

As ncted apove, the formulas (3.11) are not suitable

4
for |3....,|<,T, In order to examine this interval of the variable we
again turn to (3.2). The idea for their calculation consists in the
expansion of .,,.___.z%(m. arnd subsequent term by term integration.

As a result,we obtain

v,a)=2¢.(l—cosﬂ‘—t—"i)v.'.'

91(5)—26 ( £ (k) LI 4(l+l!s)

r'v.(t)—Za.sln-‘-(.—}'—')—‘- k__ —‘l

Ho ()= za.sln———r—z(.+l)' r‘+—5]-

L

"-“’=2"ﬂ°s’i?”i»~+a.-%(c+...|£§|)'+ i
A=8
+0(r%).
where
(4.2)

-4 N s r(L'}i) _
= a=— (T,
C is the Euler constant; r(z) is the gamma function.

In view of the rapid decay of the coefficients a, ,the series

k’
(4.1) are suitable for calculating the functions o, for

(or for |wl<1) ) or even in a broader region.

4
PSS

To obtain the fungtions ;l(s),we must use (3.8)-(3.10).In view of
the fact that |s—e,|<s’, the right sides of (3.9 and (3.10) may be
approximated by the first terms in their expansion into Taylor series
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1 - -3
B =(Bi(2) T s—wh, i) =V 5frg (B ™.

(4.3)

We see from (4.1)-(4.3) that

;"l(-'o)‘—‘.o(r-%). ;j'l’(s.)_:o'l 'T}“";'). (4.4)

\p

§ 5. Frequency Equation for Shell with
Clamped Edges

Assume that in the interval (sl, s2) the radius of curvature
Rz(s) increases (R:($)>0) . Then by virtue of (1.5) in this interval

there will be a single (simple) reversal point gg=g (), if A, <A<A,
where A =(I—)(Ry (), Ay=(1 - o) (Ry(s)))*. However, if A

is outside
this interval there are no reversal points
Let the shelil edges be clamped, 1.e.,
=0, w=0, %:0 forS==8, $=5$,. (5.1)

In order to satisfy the conditions (5.1),we need the expressions
for the integrals uJ(s), corresponding to the integrals ¥y (s). On

the basis of (1.1) the asymptotic expressions for the integrals ud(s)
with large variabllity index are
8f ()= ()+ 0@ Uf (2), J=1,2 3,4 (5.2)
where
: -5 . e ‘ (5.3)
an(@=pi60) ¥ (5 + 5 )0, Ui (=)W} @) dz,

and Wj(z) are determined from (2.4) and (2.5). The integral us(s)
is regular while u6(s) has a logarithmic singularity as p~0 at

s = o.. With passage through the reversal point the integrais u
L%
are transformed using the same formulas (3.11).

J(S)
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We take the general solution of (1.1) in the form

[ ]
l(s)=E Cju(s), '(s)=§ C,w(s). (5.4)
Using the boundary conditions (5.1),we obtain the frequency equation

A0, p=0 1in the formn of equality to zero of a sixth order determi-
nant. Let us consider various cases.

For A<A; we have b2<0 for all s; there are no reversal points
in the interval (sl, 52),and the integrals with large variability

index have the nature of nondegenerate edge effect functions. 1In
this case

AR I=uP(s, Na (5, ) —aP (s, NEP (. NHOG)I=0. (5 5y

Here and in the follcwing the superscript (0) means that these sclu-
tions are taken for y = 0. We see from (5.5) that the natural

vibration frequencles may be determined from the momentless equations
to within quantites of order u.

Now let A‘_<"<_‘3' In this case there 1s a reversal point with-

in the interval of integration and the natural frequencies are
found from the equation

V2aba(z,) a (s,) cos < 4 () (s2) i (3,) —
- -r(s.)ur'(s.»sm-;-+0(p%)=0.
(5.6)

where .

: 1
e(M= | (Ot V)",
&)

(5.7)

a (1) and b(ar) are fourd from (3.12),and the functions uf® and "\i’
also depend on .

Finally, let a>4A, In thils case b,(s) >0, and again there
are no reversal points within the integration. In this case the

frequency equation breaks down into two equations: ¢the momentless
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equation, coinciding in form with (5.5), and the equation depending
on functions with a large varlability index

M'E"*"O(P):oo
(5.8)
where = .
sm=§ (0, ) de. (5.5)
&

4
E,aations (5.5), (5.6) and (5.8) are applicable if |A—A,|Dp®, A=A Dp"

In order tc solve (5.5),1it is necessary to know the integrals of
(1.1) for h = 0. 1In the general case they can be constructed only
by numerical integration methods. These integrals also appear in
(5.6). However, certain conclusions on the distribution density ecf

the natural Tfrequencles can be made even without knowing the functions

4’ anq #*

We write (5.6) in the form

&) __
== (5.10)

In view of the fact that for small u the argument of the tangent in
(5.10) changes very rapidly with variation of A, to within the order
u,7e can consider that y(1) remains constant in the interval between
the neighboring roots An and *#  of (5.10). Then the distance

AX between neighboring roots 1is

M=t O,
Ly (5.11)

or, introducing the root distribution density n{(1), the reciprocal
distance between roots, we find

l ) 1 { —l ‘ -
"(1)=;9(1)=7;j‘ (8,(2, ) Y. (5.12)
)
Similarly, for ,s z, the density n(1) is

(5.13)

2 _3
A =L n 0= f @0 0 Tt
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We see from an examinatior of (5.12) and (5.13) that near a=4
the density n{1) increases rapidly and reaches a maximal value
for A=), A, <), <A, For 2>A; the density n(x) decreases.
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" REGULAR INTEGRALS CF THE EQUATIONS FOR
AXISYMMETRIC VIBRATIONS OF A DOME

P.Ye Tovstik

It is known [1, 2] that the general solution of the system of
equations of free axisymmetric vibrations of a thin elastic shell of
revolution is made up of two integrals of the momentless eguations
and four integrals with a large variability index. The asymptotic ex-
pressions for these four integrals may be found easily in intervals
which do not contain either sc-called reversal points or singular
points of the shell vibration equations. The behavior of the inte-
grals in the vicinity of a simple reversal point 1is examined in [2, 3].
The equations for the vibrations of a shell in the form of a dume
have a regular singular point at the shell apex.

In tae present study, we construct the regular integrals with
large variability index at the dome apex, and find their asymptotic
expressions far from the apex of the dome. We need to know these in-
tegrals in order to determine the natural vibration frequency of the
dome.

§ 1

Let the shell be formed by revolution of the curve y = f(B)
(Figure) about the y-axis, where f(B) is an even function whi:zh is
holomorphic near B = 0 and £{03) = 0, £" (0) = R, R is the shell radi-
us of curvature at the apex of the dome (B = 0). Small axlsymmetric

vibrations of such a shell are described by the system of equations[4].
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Liw, ol (- £ G0+ (+ ) e -
R R)E -SR]
e = G RS+ A ot
Hi—ddh-a)-r 4 (ed (%)
Here s is the arc length of tﬁe generator OA; u(s) and w(s) are the

projections of the displacement of the middle surface points in the
direction of the generator and the normal; A = {1 - 02)E'1pw2 (o is

(1.1)

the Poisson ratio; E, Young's modulus; p, density; w, the vibraticn
frequency); u is a small parameter where uu = 32/32 {h is the shell
thickness, which is assumed small in compariscn with the radius (R).
We call the system obtained from (1.1) for g = 0 momentless or

degenerate.

¥

. Rl(s) and Rz(s) are the principal radii of curvature. which are
even functions of s; B(S) is an odd function. Near s = 0, these func-
tions have the following expansions into series in powers of s

Ri(9=R+as+..., Ry(s)==R+bs5+...,
L Bly=s—g et (1.2)
For s = 0, certain of the coefficients in (1.1) become infinite.
Our task is to construct solutionc of (1.1) which are regular for
s = 0. Here we shall assume that A # (1 - oz)R'z. In the case,
A= (1 - oz)R-z, the momentless system (1.1) has no regular solutions,

and this case requires special study (in this case the dome apex coin-
cides with the reversal point).

§ 2

It is not difficult to see by direct substitution that the degen-
erate system (1.1) has the solution uo(s), wo(s) of the form

'o(’)=214‘2,,s“+', w.(;):iwg),u' . (2.1)
b0 ded .

where mo(o) = 1 and the coefficients uJ(O), mJ(O) are determined se-
quentially from linear equations.

We seek the regular solution of (1.1) in the form
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.(3).-.-2;" dals), wls)=2p"-. fs).
P and

(2.2)
Then the fun~cions un(s) an: . (s) willl satisfy the equations
R o3
Lilne, wi=0, 1, . w; °|-t (,_ £ (5 £(8422))-
=12 . (2.3)

For uniqueness of selection of u., @, we require, in addition to
their regularity at s = 0, that wn(O) = 0. It 1s not difficult ¢o
show by induction that all wn(s) are even functions, and then the
right side of the second equation (2.3) is a regular function of s.
Expanding un(s) and wn(s) into series in powers of s cf the form
(2.1), we show that there is & unique regular solution of (2.3) sat-
isfying the condition wn(O) =

Thus, we have shown the existence of a regular solution of (1.1)
which differs by a magnitude of crder uu from the regular solution of
the degenerate system. Numerical integration must be used for the
ictual construction of the solution (2.1) for values of s which are
not clcse to zero.

§ 3

We shall construct two regular integrals of (1.1) which have a
iarge variabllity index.

We replace the first equation (1.1) by

+ 5 (BL)=0 (3.1)
and introduce the new unknown function v(s) by the formula
o=t-2By) [a=4 '8 4
=54 = 2 LICUE (3.2)

Then (1.1) takes the form
bo-+{1+-St) o+ (i) — (g + ) dw—
14¢
7.'(}7"'7,_)“ Ta( dt(Rl Ra))" (3.3)
(g + )+ (m—m) T+
+(1—‘—;f—,,l"7'—5‘;)a—,.‘uw=0,
where the-operator A is

b (B55)- (3.4)
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We seek the soluticn of (3.3) in the forr

°e)= Z:'-s.(s)vm +p“p'~+'8,,.(s) o

(3.5)
-m=2»*v-(s) vw+rz~=“' Caanr () G5,

where V(s) is thé solution of the equation
(7.6)

and the ruﬁEEZEEE“S(s),"én(s)'éﬁa Cn(s) are tc be determined {(we 1limit
ourselives toc finding p, BO and C ). In evaluating the order of the

individual terms in (3.3), we assume that the functions p, B and C
are of order unity in ccmparison with u and d™v/ds® = o(u~ V) Ve

substitute (3.5) into (3.3) and equate coefficients cof like powers of
u to zero. The higher order terms yileld

=B+ (g + ;) G =0,
(R + ) B+~ — i — ) G- =0, E
and we tﬁus have
. P _+(x %3—73)% B.=(7;T+-5;)C.. (3.8)

The coefficlents of dV/ds in the first equation (3.3 and of
uz(dV/ds) in the second equation yield

i R)Ce 2 B o )G -
“‘(f'+'—§;"' G=0, . (3.9)
(& +%)B—(m+7) o+~ (m—%) 8+
+28c+ 4L =0

From compatibility of (3.9) with respect to the unknowns Bl(s)

and Cl(s), we find
41— 1—ot\ dCy
& (o) ot () =0
(3.10)
and we have
Cy(s)= ll*w-—‘- (3.11)

For A = (1 - 02)(R2(s))-2, the quantity Co(s) becomes infinite.
Therefore, the solution construction is good from the dome apex up
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to and including thz first root 50 or the equation A - (1 -

- 02)(R2(s))'2 = 0. Here sy 1is a reversal point. If RQ(SO) £0,
we can use the results of [2, 3] to construct the corresponding in-
tegrals to the right of the reversal point.

§ 4

Now let us integrate (3.6). We use the reference equation methecd
[5]. We seek the solution in the form

V=3 = Dut 4120 + P Dute) . (4.1)
ned L

where Jo(z) is the Bessel funetion of zero order. We substitute (4.1)
into (2.6) and equate coefficients of like powers of u to zero. Then

[} 1
we obtaln (_:%)a —p.'fp(:)=0. z=t'i*’?S(P(t))Tdf:
. -
b+t T E-2(E) =" (4.2)
) 8 1
nm=(;ri (4.3)
.'-z-

To clarify the behavior of these solutions for s >> uR, we use
the asymptotic formula for the Tunction Jo(z) [6]

J.(z)-(;’,—)%{oos(z— +)+oe). (4.4)

§ 5

Using the analysis of § 3 and § 4, we present the final expres-
sions, having a relative error of order pu, for the two real solutions
wl(s) and w2(s) of the system (1.1) which are regular at s = 0.

Let A = (1 - 02)(R2(s))-2 > 0. For s = O(R) we have
w, () =9 () Jo (:E (). w, () =1 (), (s~ E(s)), (5.1)

where

5. (5.2)

: 1
) — (8O N\T|, _i—st
dt, *(’)“(2!‘?(") I*_nf;‘(s)

A 'I _'—i
E(')_Jl)' R ()

Por s >> uR the solutions (5.1) have an asymptotic representation
of the form
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-x(c)=1(!)[eu(i§§-’ - -}) +0 (%)] w,(5)=

1 (5.3)
=5r0e* (1+0(g).
where . —x e
w=@@ Th-30 o
Now let A - (1 - 02)(R2(s))'2 < 0, For s = O(un)
o=tk Wbt )), mo=1@nl w69

where Re z and Im z denote, respectively, the real and imaginary parts
nf the zomplex number 2.

For s >> uR ..(')_T‘(.)‘.ﬂ [eoc(-% )+ ]

'b(l)——-rn(sn:ﬁ[sln Mo _2)ro (—’;—)] (5.6)

Using (5.2) and (5.4) 1t is not difficult to show that the solu-
tions (5.3) and (5.6) are linear combinations of the solutions con-
structed in [2] far from the dome apex.

We use (3.2), (3.6) and (3.8) to find the corresponding integrals
ul(s) and u2(s). To within a relative error cf order u,we obtailn

w =3+ 75) 40 (G hmo, 1=1. 2 (5.7)

(the subscripts 1 = 1, 2 correspond to different signs in (3.8)). It
is not difficult to obtain ormulas similar to (5.1)—(5.6) for the
functions uy and U, by use f (5.7). We simply note that

L] (9) =‘-’O(PU](S)), i=1,2.
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SHELLS OF REVOLUTION WITH A SMALL CENTRAL OPENING
SUBJECTED TO SYMMETRIC AND ANTISYMMETRIC LOADING

V.I. Kruglyakova

This article presents a unified method for determining the stresses
near a small central opening in shells of revolution subjected to sym-
metric and antisymmetric loads. Primary emphasis is placed on reduc-
ing the solution to a form convenient for practical applicacion. In
particular, the edge stiffness coefficlents are obtained.

In most studies on this question (see § 10 of the present paper)
symmetric deformation of a shallow shell 1s examined. In contiast to
these studies, the'pronosed method contains a simplification involving
replacement of sin € hy 6 only in the equation coefficients. The
trigonometrié multinliiers are retained in the expressions for the
stresses and disp:acements. Compariron of the resulting solution with
a speclally constructed more exact solution has shown its acceptabi” -
ity for a wide i:cuge of values of the angle 60; corresponding to the
edge of the opening in the shell. The region of values of the basic
parameters (h/R, 00), in which the suggested Bessel solution may be
replaced by the much simpler familiar Geckeler snlution, is determired.
A brief review of the studies known to the author is presented.

The basic relations and notations used here are described in
[1, 2].
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§ 1. Basic Relations for Shells of Revolution
Formed by Rotation of Second Order Curves

In study:ing shells of revolution, we usually take the angles 6 and
.? (Figure 1) as the curvilinear coordinates.

Among the shells of positive Gaussian curvature, those most fre-
quently ernicountered are the shells whose middle surfaces are formed
by rotating second order curves about thelr axes of symmetry. For
these shells the priricipal radii of curvature

R, R, (1.1)
R=trwm B=gmaeyT

are indebendent of the angle ¢ . Here Y = 0 corresponds to a sphere;
Y = -1 1s a paraboloid; y > -1 are ellipsolds; y < -1 are hyperboloids,
and the parameter RO is the value of the radii of curvature for 0§ = 9,

Figure 1. Figure 2.

The Codazzi-Gauss relations are written as
..‘%ﬂ..-:-dar-zR‘coso (r=:Rysinb). (1.2)

In shells of revolution, it is often convenient to introduce, in

place of the usual unit vectors e, and n (FPigure 2), the unit vectors

1
of the horizontal and vertical directions

-> - - - - ->
e, =cosbe,+sindn, e =cosle, —sinbe, (1.3)
- -> -> e d
;,=_smo;+¢osou, n=sinVe, | cosle,.
Resolving the dlsplacement vector .
- - -> -> -» ->
U= u-;‘+v¢’+ wn=1u,e + ve,+ ue;,
along these directions,we obtain the expresslons for 1ts components

g, =cosOu -+ sinfw, u=cos0u, —sinBu,,

(1.
tg=—sin0u+cosbw, w=sinbu,+cosbu,. (1.4)

We have for the rotation angle of the tangent to the meridian
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‘h | o
"‘“5;(3‘")“‘-'&:(""‘!"“‘-"'%) (1.5)
and Tor the deformation components
) [on 5 u
w=g (5 + o) =gy Ao,

= gmate). =% (1.6)
-;=-‘-';(sln0'~;."+m0’;;'.l—'s:n.-z-);{_--}\eg.u.

Figure 3. * Figure 4.

The stresses which arise on the lateral surfaces of the shell are
reduced to forces and moments, whose positive directions are shown
in Figure 3. Here Tl are meridional forces and T2 are circumferen-
tiai forces; Ml’ M2 are the meridional and circumferential bending
moments. Im pidce of the merigdional T1 and shearing an forces,we
often consider the horizontal Qpand vertical Qz forces (Figure U)

Q,=cos7,+3in8Q,,, (1.7)
Q,atﬂn.r,—cbﬂQ...
The catenary stresses (uniform across the shell thicknesc) are

found from the formulas ;-
.r.='?'o 'r.='%'-

(1.8)
and the bending stresses are found from

'.'|=%"l ’-'|=%! P ( 1. 9)
The maximal stresses, occurring in the extreme fibers of the shell,
are determined by the maximum of the quantitiles

| |= 3t + 5.
I 1=|2 £ 52|,

where the upper : .ir35 correspond to the stresses on the outer shell

(1.30)

surface, and thL=2 :ower are for the inner surface.
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The fcrces and moments are related with the deformations by Hooke's

law . Tl=l:n:('l+"l‘o MI=HT?—_'7)'(‘I+'IIL
Ty=2a(atva), My=qrrew et st .

v is the Poisson coefficient.

We consider the complex displacements [1]
=u+id, w=wtiw, (1.12)
whose regl parts are the conventional displacements, while the imag-
inary parts are the stress functions u,W , and the complex forces

‘F.-r.-whc-,.

li=ut=)
It 1s not difficult to see that
T,=ReT,, T,=ReT,
‘ﬁ==-Chdi}f;ﬁz-
My=~cim T, 497, ).
The complex forces % ans azware defined in terms of the basic
Novozhilov complex function T = T + T2, which 1s the solution of the

(1.14%)

system ol differential equations

0 {0}~ [1—te(dk; - &) sam] =10 9

_1ca{?}+?+(-,};—7:;)m(1'ﬁ=n,q_, (1.15)
where
R’ﬂl. F
-135377 3?(_ﬁ_- 77)4“15133 =D
AL ’)'TW{‘&‘[@nm'—qnslni)k‘sm'o]+ 16
1.1

+ ‘b-R,R’sm’l}

N n
The basic forces are determined frow the functions T and U found from

this system -
r,=m+z cigt -3{
ar
r,_--,—mn +r tc-,‘,'—
(1.17)

The following expressions are obtained for the complex boundary

values [2]
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za==<k-lﬁltx-an01}44k7&1 %;,

'6,=Q,+1£tcu,_s:nor.—u%-! -‘a'- (1.18)
Mo=M, 41 =ic{F,— T, Q,=5.
Using the resulting fcrces, the compiex displacements are found
from ti.» .¢.ations of the minplex Hooke's law, which takes the follow-
Ing form ol shells of revolution

T~ -,,-+R.«g» AR T im),
1”u.+mu+smu—-5+u ={;{7", —TLm),

*‘ [ (‘F‘T)"'W =2 a9 - Lo},
% w[r (F-il=gS-F-9.  aa

~ G s(‘&“"“‘")-rm( )=
=g (T —-7i):

1 ” —
2 [r'c (T"'"""’)] + o (B —eon07) =
S T =z (5-5)
* I
Here the starred quantities Tl’ T2, My, My, S, H are a static sys-
teg c¢f functions which is the particular  solution of the nonhomogen-
ecus sy-*em of equilibrium equations. For the majority of problems

of praciical interest the mmomentless solution, l.e., the solution of
the system =
o
—”—'—';——-I—R.W—R‘oosOT; —R, Rssmo‘lu

_‘—+T%:‘5::£—-‘RIR!““.%. e

]r“P15~ﬂh
,(Af—-ﬁf-—tf-ol

may be taken as the particular solution
§ 2. Symmetric Case

In the symmetric loading case all the quantities of the preceding
section are independent of the angle ? and the system of equations
(1.15) for the basic complex function % reduces to a single second-
order differential equation
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- T
G +{h— e 4 R FHmT =t (2.1)

where

] I\ U
F(')=Raqu—(]l —'k:)m
and q, i1s the normal component of the surface load.

The function U, the axial vertical force acting on a parallel
circle, may be easily calculated

u___,_&#!ﬂ. (2.2)

Here FZ 1s the axial component of the principal vector of the edge
loads applied to thne parallel c¢i cle and

".F:= (F, s)g-

] %
We take the momentless solution T = Tl + ’I‘2 as the particular

solution of (2.1) and write the homogeneous equation with account for
(1.1) in the fprm

AT, 14+ s cod 4T R = -

A T W d gy =0 (2.3)
The question of the integration of this equation will be examined
later in application to specific forms of shells of revolution (sphe?b

and ellipsoid). After the function:fois found, we determine the com-
plex forces from (1.17)

= O
3ﬁ=?7:+4¢£%;"7r

N N - (2.4)
Ti=n+T—i%- .

) *
We note that finding the momentless forces Tl, T2 from (1.20) usually

does not present any difficulty for particular forms of loading.

In the symmetric case,we obtain fcr the complex boundary condi-

tions (1.18) 3'=-Q;+‘§%.?‘1“.%-_

(@ =ccsdT)),
.ﬁ.=:;{r;_vﬂ+7*--k(1+v)-§§l-%” :

(2.5)

We also write out the expressions which will be needed later for the
radial displacement up and the edge rotation angle 3, using for this
purpose the system in terms of complex displacements (1.19)
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.?=.:+!Jz"l‘;.|.{g¢7~+(|+v)-’;—;dg|lm%- . (2.6)
0=v—!'i---g}lte‘{-. ‘
) .':=%(r;.—"' rDo

.-z:_.ﬁ. .:_:.%: (2.7)

S (=TT
§ 3. Antisymmetric Case (wind load)

where

The anfisymmetric case 1s that in which both the unknown and given
quantities have the followlng dependence on the angle %

(%, 0,8, 8, 0=(, x4, 8.,,0 .)::’",

ne

v=v,.”", .
coss

(8 09 3, )= (‘i.l.'n,ln.'z.l)
sy’ (3.1)
U8 r..M..M.. Q. Q=(Ti1 Tot. Mr.1, Ma1, Q1. @ .)‘“"

- (ﬁ.ﬁ) (1.,..4...)
ﬁ 'u::"

where the uwuper functions apply to the first antisymmetriz case and.
the lower apply to the second case. For definiteness we shall con-
sider the first case in the following.

Urnon substituting (3.1) into the relations of § 1 and simplifying
the trigonometric factors, we obtaln relations which depend only on
the angle ® for the quantities of interest to us. Just as in the
symmetric case, the problem reduces to the integrztion of a single
ordinary differential equation in the complex function

Ta=Tu+T,
S R L (3.2
+{l(].— ‘ )m‘f.l"";;‘;r.l:ig';l:(”o

or,

where F(.)=Rxl.,|—(]!;—§l;);ﬁ'ﬁ.
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-t [t B
=Rt = -8
A

+3 ”S&unm+
0 i .
+ I o(o)R,smm},

(3.3)

Figure 5.

@{V) = (ga,1c088 — ¢y, 120 0)
x@uﬂ—{(hmn‘+n:mi-q:..)R,R,slnM . (3.4)

The ccmponents of tne principalil vector and of the.principal moment
of the forces and moments applled to the parallel section of the shell
(Figure 5) have the form

B, ra y E=O,
53==c:(”hJ‘F"LJl By=(By\,

(3.5)
’35 '(Q*‘_- r”'l) ’:=(FX)~I

= fo @t rag A
For the shell class in question (1.1) the basic equation is writ-
ten in the form

ar, sin?0 cosd ‘rl - ﬂu‘l
F T T -m =
. R, . . (3.6)
X ¢(I1-1tll"—)“r" el + yoist )™ '(‘,'

If we take the momentless solution as the partlcular soiution, then
in accordance with (1.17) the complex forces are writtea as

"?.,|=T:|+“'l‘c#_. ‘;'.' . N,_n‘ﬁﬂ'l:i.} (8T

Tor= u+?.—-lc{9}l—“_ WT"} .

where T? 1 is the general solution of the homogeneous equation (3.6)
and

L. 4
U Rysnt¥ ¢
T;,|=qu.,|_‘k—nrr|: ; (3.8)

We obtain theexpressions for the edge conditions (1,18)
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| Q,,,=6;, —'l;"’i_i{'"";?' _'gfd‘"m??‘}‘.

Q' =cosV T, L
MI.I—“-Cllﬂ?I—c(l’*") < .R ";— | (3.9)
—EWRG?IB

The functions x and (ry) in the antisymmetric case play the role
of the quantities u, and 8 of the symmetric case. The first of these
functions is the elastic rotation of the tangent to the meridian,and
(fy) 1s the relative elongation of the edge. '

-.z=l.+z%[_¢.¢. Re 7% —-,ﬁe f;l}
n=n‘+5'n—"" ‘Re?fu-i- | 3.10)

+(1 -|-v)c [-,‘,L Im 5t /W in7 l]

——’I“.—.'(T;.l-'rz.l)
Lo Rjsmd o[ T '
: l"""‘E‘{‘—k— w(T:m')

dRysn VW
+1 ) [~ gy R R, 80— 20, )]}
We note that the quantities %% in (2.6) and x* in (3.10) may be neg-
lected within the limits of shell theory accuracy [2].

where

(3.11)

§ 4, On the Solution 'of the Reference Equation

To find the solutions of the homogeneous equations (2.3) and (3.6)
we use the method of reference equations [3], which involves the use
of simpler known equations with the same singularities in the coef-
ficients as the equation in question, in order to find the solution.

'In our case we take as the reference equation the Bessel equation
1 & n?
B+ E—(1+F)y=0. (4.1

Its fundamental solution [4] may be written in terms of modified Res-
sel functions of the first and secona kind

y=71,(9!/7)+.§l(,.(¢ VT)v 4,2)
where the modified Bessel function of the first kind of ordern Iq (pv1)
and that of tne second kind -Kn(w/f) are written in terms of the
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AT

tabulated Tnomson (Kelvin, functions [4.6]

P L5V ) =bery 4+ ibei, ¢,
2K (WY 1) =Kera b+ i kela d. (4.3)

The functions bernw, beinw with subscript n may be defined in terms
of the corre ‘ponding function: with subscript n - 1 using the follow-

ing recursion formulas ber‘{n~=-'—,,'f—(ber"'_v:a—bel’qo).

bel = —3- (ber'$+ber’4),
berass = — 2. (bers § — bela4) — beras ,

'be|.+.1»—-—;—(ber.¢-,-ben.1o) beta-1%; (h.4)

bes’ ’_—W-(ber._|?+bel.-|1')-—n—bﬂ'* ]
_ i Aty %

bet ¢ = 75 (beta-i§ —bele14) : (4.5) }

Similar formulas hold for the Thomson functions of the second
i
kind kernw, kelnv.

For small values of the argument the asymptotic forms of the
Thomson functions are valid

ker¢=—ln?+0.1159-i;:;"'§-+.,..
kelp=—(¥)ine— 5+ 11150 5 4.
e B o) LLL
kel =~ Iny— 4 +0558+..

(4.6)

For large values of the argument the following expressions will be
the asymptotic representations

bef? expa(d) @ 4‘\:@)'

bety Vb sin i (h.7)
i kerq expe(—%) cosp( _#)
ke"’f Y ¥z
where .
alo)~ Y 1 B 13
p‘ﬁ)‘\ﬁ—_T“W'fi—lw-wy{f +... (4.8)

We see from (4.7) that the Thomson functions of the first kind ber ¢,
bel ¢ increase exponentially with increase of the argument, while the
functions of the second kind ker ¥, kei ¥ diminish.
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§ 5. Symmetric Deformation of a Spherical Shell
Weakened by a Small Central Opening

Consider a spherical segment with small central opening (Figure 6)
subjected to uniform internal pressure p. In this case we %take the
momentless solution as the particular solution of the problem

Ti=Ti=r . (5.1)

We find the general solution of the homogeneous equation (2.3), which
for the sphere (y = 0, Rl = R2 = R) takes the form

TG itT=o 52

With the intention of obtaining a solution which 1s valid near the
small opening, we 1limit ourselves to the consideration of small angles
0 and we set in the equation ctg 6 X 1/9

FtaE T
By the substitution x = vR7c¢(8) this equation is reduced to the Bessel
equation (4.1) for n =0

%++--‘£——ﬁ-o, (5.3)

where the bar over the complex quantlity denotes conjugation.

Its fundamental solution 1s written in the form of (4.2)

T=Cy(xV D+ Tk £V 1), (5.4)
where Io(x/T)is the modified Bessel function of the first kind of
zZero order; Ko(x¢17is the modified Bessel function of the second kind
of zero order., We note that for large values of the argument
x = VR/c(0) (with increasing distance from the edge of the opening)
the solution obtalned with account for the asymptotic forms of the
Bessel functions (U4.7) ylelds the familiar Geckeler approximation.

Consideringithe behaviorof the functions appearing in the solution,

and discarding the part of the solution which tends to infinity with
increase of the argument, we write the solution In the form
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FmCK(xV7) = (A+iB)(ner x+ tkel x),
T == (A—1B)(ker x — i kel x). (5.5)

Taking (1.14), (2.4) into account, we obtain
the expressions for the meridional and cir-
cumferential forces

L=Ti+ V%dmnerx-i-nu«'q,
Figure 6. T.==T'+A[keu:-v dgikel'x]— : (5.6)

-—B[keu + V—dgﬁ ‘-eu’x]

and for the meridional and circumferential bending moments

My=clA|kere 41— Y Fagorer <]+
+ B[kerz-—(l —v) V;ctgikel’xl],

M,=c(A[vkelx—(l —) y’-.;;cuuer'x]+ (5.7)
+B{vkerx+(l —v)V-;cth kel“.w]} .

The constants ol integration are found from the problem boundary condi-
tions. The stresses are determined from the usual formulas (1.8)—
(1.10).

We obtain tne expressions for the edge compliance (stiffness)
coefficients, understanding these to be the angle of rotation ard
radial displacement of the edge wnich develop under the influence of
unit force and unit moment at the edge. Introducing the notations
for the edge values of the Thomson functions

kerx, =g,
kelx._qo,(x._VTO.
- ke'xy=w, (5.8)
- kel %y =10
and using (2.5), we write the shearing force Q0 and bending moment
MO acting on the edge in the fo_lowing fcrm

—Q.('-)—Q; Vg s [A%+ B,
My=M,(d)=c [%4—(‘ +v) V’k’dg.o9o]+

+B[r—(+9 Vg ctedys;
QG =cos ¥, T;.

(5.9)
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Hence the arbltrary constants may be expresced in terms of the shear-
ing force and bending moment given at the edge of the shell

A= V—?;san.-:—}(Q.‘-Q")—%‘-?.

p= Ve @1 52 (520

[ 4
where the notations are

o, =0 — (147} &g,
=t 1) Y 5 et o)
=%, — ¥o¥,.
From (2.6), (2.7) we find the edge values of the radial displaceument
and rotation

=1, (O)=uj+ 2% 40, _ gy,

0.:1’(0.):—% V;[A?‘;_Bq,ohl (&.=0). (5.12)

Substituting here the values of the arbitrary constants from (%.10),
we obtain the final expressions for the edge values of the radial
displacement and rctation

u =u;+all Qo"" + IIMm
;=au(Q‘_£Q;)+Q?”M: (5wd8)

where Ayps Gy G5p505, denote the edge compliance coefficients

8 e a o2 -2
ay= VY I2T—v)(4) st 210 L
al!=a’|=_ l2(l—v’)% sln‘o.—_—n—'o,o:‘?.';“ .—l_

N g (5.14)
an=[12(1 =)™ ]/'__f_._____("’)’:(“’oy.#.

§ 6. Antisymmetric Deformation of a Spherical
Shell with Small Opening in the Center

For the sphere the geverning equation of the antisymmetric case
(3.6) take - the form

";I cos? d;‘, R 1\~ .
T+m'T'+(‘T—s.,..,)T..=t-f—F(o). (6.1)

In each particular loading case there 1s no difficulty in finding

the (momentless) problem solution from (3.8), (3.3). Therefore, we
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examine the homogenecus equation and, as in the symmetric case, we
make the replacement

cost=1,
sin® =6,

The equation 1s then written as
= 1] -~
‘] 4T, R 117
L G ) = 6.2)

By the substitution
L3

it is reduced to the Bessel equ%tion of type (4.1) for the value n = 1.
and for the conjugate quantity T, 1 it is written as follows

t

d‘l;.l 1 dr - 1\= A

Lttt (14 %) T -0 (6.14)
Using (4.2) its solution will have the form

7.1=Z:1’|‘1V7)+82K1(3Vi-). (6.5)

where Il(x/f) is the modified Bessel function of the first kind of
order one; Kl(x/fy is the modified Bessel fupction of zhe second kind
of order one. Just as in the symmetric case, we set C1 = 0. The
function Kl(xvf) is expressed in terms of the Thomson (Kelvin) func-
tions of the second kind as follows (4.3)

K, (x Vl_) =i(ker,x <+ ikei, x),

6.6
K (x V)= — ket x4 iker, x, - (6.6)

and between the Thomson functions of first and zero orders We have
the recursion relations (4.4), (4.5)

~23-301-69 LUE




Ci e e D et o gt

=
&
S “ ker, x= -}? (ker’ x —ket’ x),
kel x= ,—:? {ker x4 kel x),
ker, x=— AL
P

ﬁ(kerx+keix)—'5—'£-.

¢ g L (ker 5 — ket x) — B
ke, x= 'Q.(kerx 'kelx)

x .
Short tables of the Thomson functions of the second order with index 1.
are presented in [5] for the values of the argument 0 < x < 10.

We finally obtain the following expression for the basic complex
function %0,1
(C.=a+s),
T = — (A—iB) (kel, x+ i ker, x).

(6.8)
Using (3.7) and (1.14),we find the following expressions for the
forces and moments for the antisymmetric case
Tih= T:.:+A[V -i-dg! ka;x—%-—‘ﬁ,—; ker; x]—
. —.B[V %m!kel{x—%-;ﬁn kellx],

(6.9)
Toa=Tiy = Alkec + 5 ctghkerix

¢ 1 K
i . T ] i I
—B[ger.x—V%;tg'kel{x-}-i—-“—:n-kellx];
Ms,n=c{ll[ker|x—(l—v) -%—cthkel;x-{-

,+(l—v)-3--7:ﬂ-kel|x]—8[kehx+
+{l—v) V -}dg! ker;x--(l _')%'T.:ﬂ' kerlxn,

My, = —c{;“i [vker,x;-'(l —v) l/%ctgi kely x +

+.(l-v)-£—--;l—.!;; kellxl—B[vkéilx +

(6.10) |
+(1—v) V -i—ctg. ker;x—(l——v) -2-,—":;-.- ker.x]]

(3.9)

We write out the values of the edge shearing force and bending moment

-— //— i e
".,_Q;l + ] 'I‘FF::T[A ,kenx— ] %c(goker, x]«

— B|ket) x — V—;-ctg 0 kellx]} !
Ml'.‘ =C{A [ker|x+(l +v) (’;*s_m.ﬂ' kelle

- V%ctgi. kel;x),—- B[kel. *—t +V)(

il —;—-ﬁker,;t—-
— % ctgtker; x)” )

(6.11)
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If we now, by analogy with the symmetric case. introduce the notations
for the edge values of the Thomson functions of the first order and

their combinations . ]
t=ker, X, 9, =ker; x,,

t=kel, X, §; =kel; x,

.(x.::VZQ.); (6.12)

S=n+1+)(§- .T.,;—ﬁ- o),
Vo=t — (49 (et — Vees), (6.13)

n=o,(5— Vet =% (e - Vieunn).

after solving (6.11) for the arbitrary ccnstant:z,we obtain for the
latter expressions in terms of the shearing force Qo = Qp 1(90) and
’
bending moment M, = Ml 1(9 ), given at the edge
’

K-V 4
[

..-}/-"',mo. Le-@+ y""
2= cig (6.14)
p=-VEun 2o+ L E e

Using (3.10),we obtain for the elastic rotation and relative elonga- )
tion of the edge = -E[A ketyx+ (1) = cghter 5 —
_(l+v)]- —-,-‘ker.x +8[ker.x —(l14v) l/ ctg!kel,x-!-
+(l+’)-‘- mkei.xl}
t=2 VEalketjx— Vi agie, 5]
) ‘E ¢ : N 'R'C.g e.l: + .
+ Bjker, x — " -i-ﬁ“kﬂlx]}. - (6.15)

”e

where n* ‘é(r;.x—'ﬂ.n).

Denoting
l.=(n). ' (6 .16);

using the previously htroduced notations (6.12), (6.13) and substitut-
ing into (6.15) the values of the arbitrary constants, we obtain the
following form of the desired expressions

#y=1tg + a}, (Qy — Q) + ujzM,,
o—au(Qc Q;)'*'“;:MO- (6.17)
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Here, as before, Q175 Q35 G595 Gy, are the shell edge compliance coef-
ficients, and in the present case they have the form

b/ T () s, BES L
'l'-==l'n"—V—9(T——'5-R;slnl.1l..E‘._. (6.18)
ah=[12(1 — ) |*'( )"‘1:.

In addition to the notations used previousliy (6.12), (6.13), here we
have used the two additional notations

=0 (v - V5 cen) + 05— Vg ctem), (6.19)
f={i= Y reenn) +(6i=Vreom).

The derived relations (5.13) and (6.17) are essentially deforma-
tion boundary conditions of a specjal form. Their use facilitates the
solution, particularly of problems of the mating of sheils.

§ T. Calculation of Symmetric Loading of
an Ellipsoid of Revolution
The principal radii of curvature for an ellipsoid of revolution
are

\ «
S R"‘mﬂmﬂ
— &

where a, b are the ellipse semimajor and semiminor axes, respectively,
and

.1'== .’—l.
L (7.2)

Fundamental resolvent (2.3) takes the form

sint8 coel dl'
o+ e Frer

=1 a(l+mnn?3 FQ).
We take as the particular solution the momentless solution, which for
a uniform internal pressure p acting on the ellipsold has the form

-="2. 1
T W (14 7sin20)? *

(7.3)
o_pet  I—qysints
Ta 3 (1 +ysmth)'?’
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We t'ind the general solution of the homogeneous equation
sint§ «u. ar 10 0,
T+T+1W‘ At (!+w'l-5-’lEi

or for the conjugate

a7 4 1 coct Vi o )

M BT T A il bryraresrr g

We seek the solution by the reference equaticn method; for which
we take the Bessel equation (see § 4) of zero order

(7.4)

BrF-v=0

(7.5)
We write initlal equation (7.4) as follows
& dg i
- 1 PO) 5 — &% (9)2=0, (7.6) !
where we have set l
z(O=T®), i
l‘=—&-' ;
1 e
PO =TEEE Tt = o [(1 4 ysint 5]}, & (7.7 |
= ! : : 1
Q@L—ZT;;;;;F;. i
We seék the generszl solution of (7.6) in the form :
=n(hy O] (7.8)
Hence
L=y 7,
diz N rer ¥y o wo (7.9)
7 =@y @ + )y + 1.
Assuming that y(£) is the solution of reference equation (7.5), 1
replacing y" and substituting (7.8), (7.9) into (7.6),we obtain i
(gt ’t
(-1t o Lpma)y + — 1
+ 0+ PO -+ i — g (6)7) y=0. 3
Equating the first bracket to zero
2-———+p(0)— (7.11) 3
and integrating with account for (7.7), we obtain
= .___5__._
= ) voTraenTm (7.12)
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Now we equate the second bracket to zero
L+r@L+8-ay@=o0 (7.13)
and repiace here with account for (7.11)
1 I NDAE WA\
Lol E () -6 -
-7 O— PO

Equation (7.13) may be satisfied by setting
V=1,
¢
A
HO=) f

Since we are considering the shell edge near a small opening at the

apex, we can limit ourselves to examination of small angles 6, taking
(in the first apprcximation)

(7.14)

sind=0,
(=M,

((‘)z{-. ‘
=~

It 1s obvious that (7.13) is immediately satisfied.
We take
tO)=18,
P
. :
W=y T (7.15)

Now, with account for (4.2) the general solution of the homogene-
ous equatlion may be written

s=a Tt 00V7) + Tk, 0V/7)). (7.16)

We drop the part of the solution which grows with lncrease of the argu-
n

ment and convert to the unknown function To, writing the solution in

terms of Thomson functions (4.3)

To=5(8) [(A — iB) (ker M — i kel 20)]. (7 <27)

The function n(8) changes slowly and for small angles is close to one
viigure 7). We neglect the variability of this rfunction in compari-
son with the variability of the Thomson functions and thereby obtain
a simplified formula for d@o/de

FTD-HC-23-361--69 151

s




“;:"1 (9 {(A— iB)(ker'i% — i kel M)).

With the aild of (1.14) and (2.4) we obtaln,the expression for the
forces and moments

T,== TE4 A ) cig (1 + 78000 [A ket M + Bier W],

Ty= T2+ 9(0) (A [kerhd — X ctg¥(1 +1iu'0)"keno| - '
" —B[ke1)d + 22 cig¥(1 +ysint )P ke 0]); . (7.18)

My =ex (DA [ket)d +(1— )i ctg¥(1 + 151a®0)  ker' M| +
+ Bkertd — (1 — )1 ctg 0 (1 71000 ker' )},
My=cn (O{A [vke1)d— (1 — )it ctg¥(1 + 75100 ker' 28] +
+Bvker 4 (1 — )2t ctg0(1 44 sin* 0P ket M)).
The constants of integration are found from the boundary condi-

(7.19)

tions.

The edge compliance coefficlents for the ellipsoid may be obtained
Just as was done for the sphere. Without repcating the previous argu-
ments, we present the final results. The arbitrary constants are

A Aslnly . — - M, ’;
T T T QDT

N 1N(l+1m’0.)‘.7'1?0_(0'-q'.’ +?s%7"?.'

We obtain for the edge horizontal displacement and angle of rotation

x,=0g + &3, (% — Q) + M,
o=t (%= Q)+ -2y

where the compliance coefficients have the form
. A\ anh,  f+q
=V '20";)(‘“) TFism&E T E°

A ) ® 3 '+' ;
sh=eh = — VT = (&) g B (7.22)

3, .
sa==[12{1 "'")lm(%)m(l + 4 sin*4,) -"’—l'.‘.:i". - 2{3 r

We note that here, as before,

9 == kerif,, ?. =ker Af,,
h=ketdd,, ke,

S ArTie=rY

g
(7.23)
T=5—1
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Figure 7.
Moreover, we have introduced the notctions

dy==gy—(1 + )X ctg by (1 + TsIn’ 0,7,
" gy (1N g 8y(1 7 sin? 3,

. (7.24)
To==di$, — 49,

and also

g D,

C=coel\T’. . (7.25)

The case of antisymmetric loading is analyzed similarly.
§ 8. Calculation Examples

As examples we shall consider spherical and elliptical end clo-

sures with small central opening, subjected to uniform internal pres-
sure.

Example 1. For the spherical segment (see Figure 6) with a small

central opening at the apex we take two versions of the boundary con-
ditions at the edge of the opening:

a) the opening edge is rigidiy clamped so that the radial dis-
placement and angle of rotation are zero

8 =0,
O'IBO for I=V\,; (8.1)

b) the opening edge 1s free of forces and moments
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M, =0,
T:—Ofor.—‘ (8.2)

Using the relations of § 5, for the filrst boundary condition ver-

sion we obtain the following expressions for the stresses on the

opening contour

-g-[l—(l—v) ctgo. “’:""”

z"'”.'l

Blew [Mo+%] (8.3)

Chalee =

On the freely-supported opening contour we have

v + '. (80’4)
o, = 22 [2-  E gy, 2atbe®e],
Here the previous notations of (5.8) and (5.11) are used everywhere.

The expressions in the square brackets in (8.3) and (8.4), char-
acterizing the stress increase in the sphera in comparison with the

dh==‘h==4g%'

were calculated for different values of the wall curvature-thickness
ratios and different angles of the opening edge in the sphere. Thelr
values are shown in the table, where the notations are

L= [2'— Ttgo 2%+ %“]

’-'[l—(l—")'/k ctgi' * 'H"']

h== — 3!]-—') .M°+M
g 's(l—") . b o

Examgle'2. We consider the symmetric deformation of an ellipti-
cal end closure with small central opening which 1is reinforced by an

momentless case

(8.5)

elastic ring.

We assume “hat the ring is symmetric about the horizontal plane
and that its linear dimensions are small in comparison with the radius

FTD~-HC~-23-361-69 154

(distance from the ring center of gravity to the axis of revolution).

e

e

R mp—




mle|l v | o] & Jea]e} & v &
s 148 | 03w | - el a2 | 12s) —oms
101 310 | 13s] —ose2 0| 12 | 17| om0
| B 129 —or6a] .00 1 18 | 1080 | 2] —tom
»| 72l m| Zixs 2 | 270 | o8| 1%
- e o] ol S @ | 700 | 104|120
0 | 2056 | 107] —1200 ® 02| ~1
s | am|i1n 5 Ja | 0928
w | tel iRl =% 0 | 108 | i | 2o
w | 8] 57| vat| Zoomr) o0 | 18 | 1610 | 108 | “rise
AP FE W HE IV E
o | 214 | 104] Zi'230 -60 | 10020 | 11| 1’260
1 8] am |1 :
10 | S00]122] oms
| s § teet —rico
o | 20| 18] —i'»0
o |wn | i) i

. Figure 8.

The displacement in the radial direction and the rotation angle about the

ring center of gravity are
: S

=i, (8.6)

where Ek is the ring elastic modulus, Qk is the ring section area, Ik
is the ring section moment of inertia about the horizontal axis pas-
sing through its center of gravity, Qk is the spreading force in the
ring, and Mk is the torsional moment.

The conditions of the elastic coupling of the ring with the shell
have the form (Figure 8)

l....' Q.'—'g: (8.7)

With the aid of (7.21) and (8.6) these conditions may be rewritten as
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u.-‘?o—-+- (@ —Q+ M,
-,;',;M.=s'.(0.—0:)+«:,u.
and solved for the unknown edge force and moment
.—-;- [(-u)’Q: (ta——ga-)(-uQ: ':)]
't€= (-5;5—0; u.) (8.8)

where
. A=(¢:{f—(‘h—*;§x)(‘§:"'£:7;)’ (8.9)

On the right in (8.8) are known quantities which depend on the geome-
try of the shell and ring, and also on the momentless problem solution,
which may be considered known. Then (8.8) and (7.20) yield the values

of the arbitrary constants for our problem.
L

§ 9. Refinement of the Theory

N
By means of the substitution z = TvYsin 6 the resolvent (5.2) for
the symmetrically loaded spherical shell

RN RS
is reduced to the form

%+[}(ﬁ:ﬂ-%)+‘7+;i;+fi§-]z=o. (9.1)

The under;ined small terms (values of the function f(6) = F (ETH?——
—?) + H are shown in Figure 9) may be neglected in comparison with
the other terms. We obtain the following form of the Bessel equation

o
S+t &]e=o (9:2)
The solutionof thls equation 1s a cylinder function of zero order

z==VQ%(l/7%;0,
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which may be written in terms of Bessel functions of the first and

second kind or in terms of their modifications. Dropping the part of
the solution which tends to infinity with increase of the argument
and writing the Bessel function which appears in the solution in

terms of Thomson functicns of the second kind, as was done in § 5,

. K\ xV =) =kerx—ikel x,

L=V
we obtaln the following expression for the basic complex function

-V Eav ==

V_‘-W(A.‘."' 1B))(ker x — ikel x). - (9.3)

SeL We obtained (9.2) from the oriélnal equation
1. .

i by neglecting quantitles of order c¢c/R in compar-
HRQJANEAV 1550 ywith one.
Fig. 9.

This permits considering the

resulting solution as "exact," i.e., its error
is a quantity of order h/R.

Denoting

" Fo=5(Vam).

we obtain the expressions for the sheli forces and moments

(9.4)

n=T'+ e o,{A,[F(O) kei x + ]/“‘; VE kel'x] -
< —B[rmree+ Y o V Rker ] (9.5)
] ' _r."= 1§+.4,'_[ ]"-2-; ker x — - ctg 0F (D kel x —
) -.Vg V;q;.kel'x +B,[V:T‘_.ke|x+
g Okerx+ ) Y Fegokers],
" M=c{a[V ket 41— (GeigiF O rerx 4
4V V Egserts)|-- B[V iy e s —

— (=) ctgtF@keic+ Y 57 V'E cgdrer’a]), (9.6)
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M,=c{4.[ V——'——;keu—u—.)(%agdr(o)kerx+
+V——.—V-§-ctg0ker x)]—B‘[ mGerx+
+1 = (etetr O etV ooy V5 ctgdie x)]}
The values ¢ * the functions v8/sin € and F(8) are taken from Figures

10 and 11. o
L : g
&) : : =)
:.. a o 4
N 'K EXLK) X
Figure 10. Figure 11.

We have for the edge shearing force

Q=A% drFOkect ) ar Vg myters] -

—B[ & PO+ )/ Ty V-_;---“—:Tker’x].

Using the same notations for the values of the Thomson functions (5.8)
at the edge and using arguments similar to the preceding, we find the
relations between the edge values of the radial displacement and ro-
hearing force and bending mQment

(9.7)

tation angle and the values of the s

at the edge
“o=ﬂ;+An (QO—Q;) +A,,M,,
%=An(Q,— Q)+ A,M,. (9.8)

In this case the edge compliance coefficients are

. 2
A“=Vﬁ(|___—yr(£)' sin*, L+£"L '
A o SO (9.9)
u-—An="‘ Vl?(l—") V’osmeo +%& r_c

Y R
where we have the additional notation
3 =F{8) % +V—— ,,,.. v.,, (9.10)
h=FC+ YV EY B4
W= V-;‘¢.+u+v) ctg 82,
Wg——-vm?o—(l-{»v)?dg%% (9.11)
W=8W,—a,w, - T
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In order to evaluate the accuracy of the solutions,we calculated
the compliance coefficients corresponding to three methods: 1) the
conventional Geckeler method [2, page 123}, 2) the Bessel asymptotic
solution treatment (using the relations of § 5, which for brevity we
term the Bessel solution), and 3) the modified solution presented in
the present section. The latter 1s more exact and is used as the com-
parison standard. The angle 80, characterizing the size of the cen-
tral opening in the sphere, was assigned various values from 5 to 90°.
In addition, several values of the curvature-thickness ratio were
used b/R = 1/20, 1/50, 1/100, 1/200, 1/500.

A S

I “m f. L
- p
v ¥ ;\ I
» 0
« v %
LA K LI e » 4 %00
Figure 12. Figure 13.

The compliance coefficlents corresponding to the Bessel solution
(Formulas (5.14)) were close to the modified values obtained using

(9.9). The difference did not exceed 5% for any values of the para-
meters.

As an example Figure 12 shows the values of the ratios aiJ/AiJ
(s0lid curves) and aiJ/AiJ (dashed) for three values of the curvature-
thickness ratio R/h = 20, 100 and 500, where “iJ are the compliance
coefficients corresp.nding to the Geckeler solution, a1J are for the
Bessel solution,and A1J are the modified solution. The Geckeler
asymptotic solution gives good agreement for the compliance coeffi-
cients with the modifled solutlion for thin spherical shells and for
angles 60 greater than 30°. The worst of the ratios aij/Aij was used
to plot the curves of Figure 13, which make 1t posslble tov evaluate
vilc aPpiidavility of the conslderably simpier Geckeler asymptotic
solution as a function of the shell parameters. Here the curves
correspond to 5, 10 and 20% error of the Geckeler solution in compar-
ison with the modifled solutlion. Selecting a shell curvature-thickness
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ratio and the desired accuracy, we cen use the figure to obtain the
value of the angle 90 for which the Bessel soiution may be replaced
by the Geckeler seolution.

This analysis permits us to conclude that: A
1) The proposed version of the Bessel solution is valid for all

"hemispheres" to within shell theory accuracy. Therefore, its further
refinement is not worthwhile.

2) For 90 exceeding some limiting value which is characteristic
for each curvature-thickness ratio (Figure 13), the simpler Geckeler
solution may be used.

§ 10. Literature Survey

The following survey (laying no claim to completeness) includes
primarily studies of the stress state in shells of revolution with a
small central opening. The closely related studies of the effect of
a concentrated force or of a load distributed over the area of a small
circle with center at the pole of a shallow shell are not covered in
this survey.

The symmetric deformation of a spherical sheil weakened by a cir-
culgr cutout was studied by Shevlyakov [7]. Using the Vlascv shallow

shell equilibrium equations [8], he reduced the solution to the single

equation Lls—ile=0

(10.1)
where

a 1s a dimensionless parameter

’ 4 Fﬁ
r=b¢, kz‘/-ﬂ(_i_—‘_ﬂ'

The solution was obtained in the form o = 9, + 055 where °1 and 95
are solutions of the equations .
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7= = g i R PR

I &
+.... —=b=0,
2 i o (10.2)
S+ Twm=0.
and 02 is the solutior in terms of Bes=el funstions
a=(A+18)J, (s V=D + (A, +BIK, (s V=1). (10.3)

The cases of free and clamped opening were considered. Unfor-
tunately, an error was nade in the argument in the solution of (10.3).
In reality the function Ko(a/T) will be the second solution in (10.3).

The results of this study were used in [9] to solve the problem
of stress concentration in a spherical closure which 1s coupled through
& toroidal segment with a cylindrical tube.

The axisymmetric problem was also examined by Sokolov [10] who
used the Lur'ye relations [11] to write the solution for a spherical
shell with small circular opening at the pole in terms of the same
Thomson functions ker x and kel x. Then, retaining in the general
solution the function which decreases with reduction of the angle
0 (ber x, beil x), Sokolov obtained also a solution for a closed
spherical shell in which the angle ccrresponding to the shell edge
is small. He wrote out the expressions for the edge values of the
basic quantities— forces, moments and displacements, for two versions
of the boundary conditions at the edge -of the opening: i) given
meridional bending moment (MO) and horizontal force (QO), 2) given
horizontal displacement (uo) and rotation (30).

"The combinations of Thomson functions were calculated for the
sphere with an opening
" et ket ' -
Clx)= -—‘m » D(x)=ker x kelx — kel'x ker x,
t».-«‘)—tel‘x-i-l:el'lt: F(x)=ker’' xker x4 kel xkei x, (10.5)
E D .
J0=-F0, =254, d=.

where the values of the functions f(x), e(x), d(x) are presented in a
table (x < 10).

Comparing his solution with the conventional asymptotic solution,
Sokolov concludes that it may be used for large values of the angle 6.
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We know that the Geckeler approximation, valid for not very small
angles 0, consists in neglecting the unknown function and its first

derivative in comparison with the second derivative in the Meissner
equation [12]
Q. +gsQ;, — (g V—) Q= EM,
v g —(t+e=— 24550,
(10.6)

( ® is the meridian rotation angle, an is the shearing force). This
leads to exclusion of terms with trigonometric factors from the equation.

Hoff [13] attempted to account approximately for the meridian
curvature of a spherical shell by replacing ctg 6 by the first two

‘terms of its Taylor series expansion in the fourth-order system (10.6),

trans rmed to a single equation, i.e., writing

dt.==dg«k+"‘==“g%"“ﬁ£&[n

where 60 corresponds to the shell edge in question, and x is measured
from the sheli edge. He shows that this approximation is valid for
85 > 30° for R/h = 100 and for 8, > 45° for R/h = 50. Here the in-
fluence coefficients orresponding to the new approximation differ
from the Geckeler values only by correction factors which are close
to unity in the region where the new solution is applicable.

The numerical values of the influence coefficients for a hemis-
phere with opening with the basic parameters
X =15, 25, 50, 75, 100, 125, 150, 200, 250;
6, =50, 40, 30, 20, 10° T

were obtained by Galletly [14] by integrating the Meissner equations
(10.6) using the Runge-Kutta method with & '© step.

In his previous study [15] Galletly made a comparison of the in-
fluence coefficients for the hemisphere with circular central opening
obtained using three different methods: 1) Geckler method, 2) Esslinger
method, [16] which amounts to reducing the governing equation to a
Bessel equation by the change ctg 6 ¥ 1/68,and 3) the Love method [17],
which reduces the equation to a form whose solutions are Legendre
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functions of a complex variable. In calculating the latter,Galletly
used either ésymptotic_representations (method 3a) or their expres-
sions 1n terms of hypergeometric series (method 3b). Method 3b (very
cumbersome ,but more precise) was used as the standard for comparison
with the other metheds. On the btasis of comparison of the influence
coefficients for one specific hemisphere with the parameters R/h =
90.5 and eo = 10°30',he recommends using method 2 (Bessel asymptotic
method) for cases when the opening total central angle 260 < n/6. In
the case 1n question,its error was 5% in comparison with method 3b,
while the Geckeler method gave a maximal deviation of 15%.

In a distussion of Galletly's article his supporters [18] expand
the study, including two additional methods which are convenient for
practical zpplication: method 4 of Burrows-Graves and method 5, which
is an apprcximate solution based on the Langer asymptotic treatment.
The Langer ideas will be discussed later. The Burrows-Graves techni-
que extends the asymptotic solution of Hildebrand [19].

The latter reducas the system of the type (10.6) for the shell of
revolution of arbitrary shape to a form which does not contain the
first derivative

X" —F.X 42000 =0,
Y'_-— FY -2 =— WX._

Here E=Vﬂl—;')k§ and the functions Fl, F2, ¢, which depend on the
shell geometry, under the assumption of smoothness of the geometric
parameters are quantities of order one. The asymptotic solution is

sought in the form
= X%,
Y=y,

where: :='j.¢€; o'=2/, and the functions x and y are taken in the form
of serles in powers of 1/k

it

In the previously mentioned discussion a comparison was made of
the influence coefficients for a hemisphere with ratic 2R/h = 30
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using all four methods with the results of an exact soluticn similar
to the Love method (method 3b) and led the authors to conclude: 1) ®
the Geckeler approximation is valid for a comparatively thin closed §
hemisphere; 2) the Bessel approximations are satisfactory near central
openings in relatively thin spherical segments; 3) method U4 1is usehle . ﬂg
for comparatively thin segments which are nearly hemispherical; and '!
4) method 5 (Langer) is valid at all points of relatively thick closed i
or unclosed spherical segments, including the complete sphere. j
7

We note that the Hetenyl approximation [20], also presented in Timo-
shenko's book [21], which 1s more exact than the Geckeler approximation
and involves neglecting only the function itself in comparison with the
second derivative in initial equations(10.6), yields poorer results than i
the Burrows-Graves method and the Bessel asymptotic solution for the 1

hemisphere in question.

We note that not all the approximate methods were investigated
for the angles 290 > n/6 and for other values of the curvature-

thickness ratio.

Several analyses have been based on the methods developed by
Langer [22-24] for asymptotic integration of differential equations
containing a large parameter. Langer's first study [22] examined
asymptotic integration of the equation

o () + (MQ* (x) — x (%)) u (x) =0, (10.7)

where A 1s the large parameter; ¢2(x) may vanish at a single point of
the interval of x variation (for example, x = 0) as follows

G x)=x@+ax+..) (>0),

and x(x) is assumed finite. .
Detailed studies are made of the solutlons .
x %-»
.{j O(x)dxl :
Y =——F—¥GC.. (%) 5
(o(x)? , (10.8)
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(I' =,_'+3. €=150(x)dx,

whefe G (E). G_ (E) are cylinder functions of an equation related to
the 1n1t1a1 equation (10 7),

- ) Y (%) + 0¥ (x) — o (x)] y(x) =0 (10.9)

o ()= g7 (2 3 (2 + 4" _
is finite in the function interval being considered. The solution of
(10.7) 1is given in terms .of y, (x) and y_ (x), where the Hankel func-

tions are used as the cylinder functions. The more general equation
is considered in [24] )

'$+ p‘"c(“) + l?] (x)+R{x, V] u=0,

where

>N, Bz, y=S 2D
=A% H= Do

pnd qoﬂx) may or may not vanish.

Asympototic solutlons of (10.7) for singuiaritles of the coeffi-
cient 02(x) of more complex form were obtained by Dorodnitsyn [3].

Naghdl and de Silva [25, 26] introduce an auxiliary complex func-
tion to reduce the system of two equations for a shallow shell of
revolution obtalned by Reissner [27] to a single second-order differ-
ential equation of the type (10.7), velid for shells of constant
thickness and for those of a large class of varlable thickness

W A 04 A () W -[£-£]F 1017 +ua, (10.10)

Its asymptotlic solution 1s found by the Langer method

w=[¢ swe] {AJ 1 (0 +BJy () }

(20,31}
1=(2F) pj'de

Thié‘method is used in [28] to obtain a solution valid at the
apex for a thin ellipsoidal shell of constant thickness subject to an
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axisymmetric load. The solution 1s written 1n terms of Thomson func-
tions {See § 7). It is shown that in the 1limit this solution becomes
the famiilar solution for a shallow spherical shell [29].

The Din le method [30] for finding the asymptotic solutions of
ordinary differentlal equatlons leads to the same results as the
Langer method. By the usual substitution any second order differen-
tial equatlion 1s reduced to the standard form

“ .
G =1(uta). (10.12)
The Dingle method involves comparing the origilnal equation with
“u"!__:r(,)u(a)' (10-13)

for which analytic solutions 1n terms of tabulated special functions
are known. Dingle's study presents a table of the comparison func-
tion I' (o) and the corresponding solutions for various typical shells
of revolutlon. Here the unknown solutlon 1s written in terms of the
solution of (30.13) in the form

1
‘, - —
.("'):(2;) \2 U(’)_-
or in the first approximation

i~ (28 v

1) (10.14)

wilth a simple technique being given for estimating the omitted cor-
rection terms.

The study [31] of Galletly and Radok indicates that the Dingle
method includes the Langer method as a particular case and permits a
simpler and less formal analytlc interpretatlon of the asymptotic
solution of the equations. Moreover, in the Langer method the argu-
ment of the Thomson functions includes an integral of the type

b=5___"_‘_dt
a—m?
0==un%}).
which 1s not tabulated anywhere. In order to comﬁare the Langer
approximate solutionwith the more exact solution, the authors give
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a comparison for two particular forms of shells of revolution — ellip-
soid with operiing and torus of negative Gaussian curvature — in terms
of the compliance coefficientsbetween the two asymptotic solutions
(Langer and Dingle) and the solution obtained by numerical integration

of the equilibrium equations. They concluce that the agreement between
these methods is satisfactory.

The effect of symmetric and antisymmetric loadings on a spherical
shell with,small opening is studied in [32]. The bending moment is
transmitted to the shell through a thin-wall cylindrical tube. The
purpose of tﬁe paper 1s tostudy the effect of cylinder thickness on
the magnitude of the stresses and deformations n the sphere. The
Reissner solution for a shallow shell [29] 1s used for the sphere.

A numerical example shows that the cylinder thickness has a large in-
fluence on the stresses aﬁa_aisplacements in the sphere and in the
1imit. With increase of the cylinder thickness, the solution becomes
the familiar solution of the problem of the effect of a concentrated
force and moment acting on a spherical shell through a cylindrical
adapter [33].
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STUDY CF STRESS CONCENTRATION IN TURBINE BLADE T-SHAPED HEADS
IN ELASTIC AND CREEP CONDITIONS

|
|
|
|

I. I. Bugakov, V. DP. Smirnova and S. P. Shikhobalov

I IS AN i s

This article presents the results of a study using photoelastic
and photocreep methods of stress concencration in the T-shaped
heads of turbine blades with relative dimensions D/d = 1.58 and h/d
= 0.625 (Figure 1). The study was made by the Optical Laboratory of |
the Scientific Research Institute of Mathematics and Mechanics
of Leningrad State University for the "22-nd Session of the CPSU"
Leningrad Metals Plant.

The study was made using two-
dimensional models subjected to a
constant external load simulating
the blade centrifugal force. The
mcdels were fahricated using metal 1
templates with relative dimensions
r/d = 0.010; 0.0417; 0.0625; and
0.1250 (Figure 1).

tresa b

CEE T S

The elastic problem was studied

on models made from a solution of

Figure 1
PN-1 in 30% styrene, solidified

with gradual temperature increase to 80° after adding 10% styrene to
increase the material optical activity and 1-2% hydroperoxide. The
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models were studied by "freezing" the deformations. In the "freezing"
process the mocdel was mounted on a ring simulating the turbine disec
rim. The stgdies were made using three mounting techniques: a) the
model was supported on the ring through metal bars located at the
edges of the collars; b) the bars were lccated at the radii r;

c) the model rested directly on the ring. The loaded model was trans-

formed Into the highly elastic state by gradual heating to 90°, after
which it was slowly cooled.

The optlcal path difference § was measured at those points where,
under elastic conditions, the highest stresses arise, namely at the
midpoints of the arcs of radil -. Exceptions were the models with
ratios r/d = 0.010, in which the highest s“resses were observed and
measur2d not on the r contour itself, put 0.2 - 0.4 mmabove this
contour, at points of the rectilinear part of the contour (Figure 1).
The § measurements were made in white 1ight on a KSP-6 synchronized
coordinate polarimeter using a SKK-2 mica compensator [1].

The stress concentraticn factor k was determined from the
formula
. = .ﬂl.'so
(1)
where Snax 1s the measured stress; S .1s the nominal stress in the

neck part of the head (see Figure 1). The values of k are pre-
sented in the table.

The creep problem was studled using models made from transparent
technical celluloid. The techniques for modeling creep of T-heads

were discussed in [2].

As the creep law, we used the aging theory equation

V4 1= .
'U“T(’II"' W?c),,)-{-p(t)exp (6T)sy, (2)
L4 J=123,

where eij are the deformaticn tensor components; siJ are the stress
deviator components; c=-%—cu is the average pressure; T=V05ss,;
is the tangential stress intensity; t 1is time; E ic the elasticity
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1 modulus; v is Poisson's ratio; b is a function of temperature; and
A1J are unit tensor components.

The mechanical and plezo-optical properties of the celluloid
r were determined from data of specimen tests under constant stresses

of 50, 100, 150 and 200 kgf/cm2 and a temperature of 35° in simple
! tenslion; the tests lasted five hours. The creep curves were reduced
using the equation

w=3 + Fr@enp(S)e.
(3)

which follows from {(2), in the case of simple tension.

The specimen deformation as a function of time was measured
using Martens tensiometers [3]. The modulus E = 18,000 kgf/cm2 was
determined from the results of the first measurement as the ratio
of the stress to the measured value of the deformation. Then the
experimental results were plotted on a plane in the coordinates

h(i%‘"%)-%- . Isochrones were then drawn through polnts relating
to the same moments of time (Figure 2).

It follows from (3) that
(3 —)=m[Fr ]+

Thus, the slope of the lines in Figure 2 defines the quantity ;7-.
From Figure 2, we find b = 0.0626 cm2kgf.

L]

g a !

A

7
A\

Shr.
=
%/ famin k
/ mi
-a - ;
" = FBkgf/em? : g5
Figure 2 Figure 3
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Since time enters into (2) as a parameter, the function ¢ is not
determined specifically. The quantity £=Fe{) which defines the
connectic 1 between analogous moments of times on the model and full~-
scale [2], was calculated in accordance with (3) using the formula

S (Es o
=3[9 __ = .
_-f( - l) exp( v’f)
The curve of t° has the shape of creep curves (Figure 3).

Studies have shown that the values of t° increase with increase
of fhe material temperature. In order to cover a wide range of
values of t°,the specimen and model tests were conducted at elevated
tenperatures:

The optical path difference 8§ In these tests of the celluloid
specimens was measured by the Senarmon method 1n polarized 1light
which was nearly monochromatic with wavelength SU46 mu. From the
measured values cf §, we plovted isochrones in the coordinates
&, (Pigure 4). {

The celluloid models were tested at 35° under various constant
values of the nominal Stresses S. The values of S are shown in the
table. AlSo shown are the values of the dimensionless parameter
S° = bS, which are necessary for conversion from the model to full
scale. The models were mounted directly on a celluloid ring (it
was shown in [2] that the contact conditions of the head with the
disk under creep conditions does not have a significant effect on
the value of the stress concentration factor). Each test
lasted five hours. The & measurements were made as a functlon of
time at the same points as used on the PN-1l models, using the
measurement technique described in [2]. The conversion from 6 to the
stress Oy was accomplished with the ald of the 1isochronic curves
(see Figure U#). The particular 1sochrone used depended on the
moment at which § was measured.
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Figure U.

The stress concentration factor k was found from (1).

The variation of k with time for the celluloid models with
r/d = 0.0417 is shown in Figure 5.

The dimensionless time tg of steady state creep onset was

determined from the conditions [2]

£=05exp (—% . (4}

Then Figure 3 was used to determine the physical time ty, of steady
state creep onset (dashed curve in Figure 5). The values of C. ts

and the stress concentration factors k for steady state creep

‘for t>t,) are shown in the table. Since the values of k for -E-=0.0417,
=035 and SO = 0.695 vary little with time (Figure 5), we consider

that steady state creep corresponds to the values of k for t

5 hours.

Figure 6 shows the variation of k 1in steady state creep as a
function of the ratio r/d (solid curves). The curve S = 0 corres-
ponds to the solution of the elastic problem or the solution of the

problem for a material for which the creep deformation depends linearly
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on the stress. This curve is plotted from the results of PN-1 model
testing. The other curves are plotted from the results of celluloid

model testing. The crosses correspond to the data of Hetenyi [4],
obtained under creep conditions.

In [2], a study was made of the stress concentration in a T-
head witl relative dimensions -:1=1.73. %=0.645 (see Figure 1) for
sO = 0 (elastic problem) and S” = 1.47 for values of r/d in the
range 0.0715-0.1785. Values of k for the same values of s° Were
later obtalned for r/d = 0.009. The results of the study of these
blade hcads are shown by the dashed curves in Figure 6. We see that
the values of k in theses heads and in those studied above are
practically the same for the same values of S0 and r/d.

The data of Figure 6 are used to plot in Figure 7 the variation
cf k with S0 under steady state creep conditions. The parameter
ror eacn curve is the ratior/d. The ordinate SO = 0 defines the
solution of the elastic problem.
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We see from Figure 6 that with an increase of the parameter S0
(1evel of the nominal stress in the head or degree of nonlinearity of
the connectlon between creep deformation and stress for the head
material) the value of k decreases, and the dependen.e of k on the
ratio r/d also diminishes. It follows gimilarly from Figure 7 that
the values of k and the dependence of k on S0 diminish with increase

of the ratio r/d.

These results make 1t possible to determine the stress concen-
tration factor in metal T-heads in steady state creep conditions, 1f
they have the relative profile dimensions indicated. It is assumed

that the head is loaded only by the constant blade centrifugal force ,

S — which does not cause kending — the stress state in the head
is plane, the head is uniformly heated and 1its temperature 1s con- 3

stant.

From the resulvs of testing the head material in simple tension

under creep conditions, we can determine the values of b and to,
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similarly to the way this was done above for celluloid. We note
that the use of the exponential dependence of the creep deformation
'on the stress in accordance with (2) usually leads to good results.
The tests should be conducted at the working temperature and with
stresses in 2 range no less than the expected stress range 1in the
head. Then, the parameter So = bS 1s calculated, and (4) is used
to obtain the dimensionless time t2 of steady state creep onset,

and then the physical time tyg for onset of this state. The value

of k for steady state creep (t > t*); is found from the values of
So and r/d using the curves of Figures 6 and 7. From the curves of
Pigure 5,we can find the variation of k with time in the unsteady
state creep condition for the head with ratio r/d = 0.0417. The
analogous moments of time for the model and full scale are defined
by the same values of to [2]. Therefore, we can use Figure 3 to
convert the curves of Figure 5 to the coordinates k, to,and we can
use the curve of to, t to convert for the full-scale material back

into the k, t coordinates,where now t 1is the time after lcading of
the full scale head.

l ’
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ESTIMATINQ THE FUNDAMEN?AL_VIBRA?;QN FREQUENCY OF

A BAR OF VARIABLE CROSS SECTION

L. I. Kuznetsov

The problem of finding the natural frequencies of the longitudi-
nal vibrations of a bar, one end of which i1s clamped while the other

carries an absclutely rigid weight,leads to finding those values of
W, for which the equation

IS@F N+ FSWfin=0- Q)

has a nonzero solution [1], under the boundary conditions

10)=9, (2)
M) —ES(f(H=0

Here y 1s the bar material density; 1 is the har length; S(x) is
the cross sectlon area; E 1s the modulus cf elasticity; M is the mass
of the bar.

For estimating the upper 1imit of the first (fundamental)
vibration frequency,we have the simple but in many cases adequately
precise Rayleigh formula [2, 3], which for the mode corresponding
to a statlc load is

-HC-23-361-6
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&
d<=——7 :
Me (D +;{;;S'a(x)s¢xm :
(3)
where wy is the fundamental vibration frequency, and

ol o2
.o(x) 53-(‘—,. ] (u)

It 1s desirable to have an ejually simple formula for estimating
the lower 1limit of the fundamental frequency, as this would he
useful for practical calculations. Such an estimate 1Is obtained
immediately with the ald of the principle of contracting mappings
[5]. However, this method is not found in handbooks and texts on
vibration theory, and this is the reason for the present article.

Let us consider the problem of forced vibrations of a har with
a weight under the influence of a "distributed™ loading of the form
F(x, t)=9(x)smef, where ¢(x) is a function which 1s continuous in
(0,1] . Then we obtain

SO @Y+ S f(x)=1 (x) (5)

with the same boundary conditions.

Let w<®.. Then there exists a Green's function of the
operator [S(x)f'(x)]*' with the conditions (2)[4]

(=P | E— Mt e —s(2]), x5y,

G(x, y)=
T [E—Met[s(D—a(n)l, x>, (6)

and we can wrlite the integral equation
]
f(x)=li'—50(x. NSNS () dy-+ (), (1)
where

]
®(x)=— ‘f G(x, y)o(y)dy.
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We note the following. Since @<®, we find from (3) and (4)
that

E—Me*()>0
(8)
and
0<E=Metfa(h)—a(x)] < E.
(9)
We require that
[ ]
a(x, )Sdy<1.
I mu {0tz SOy . o
We achleve this 1f we consider that e< e, where
.’.= : 1‘ .
_ Al-(o+15-(;)3(xm : (11)

In fact, it follows from (4), (6) and (9} that for all X€[0; ]
we have
' 50(" y)smdy<m(,, 5 “0)SO)y +

+,_-‘5;-mj'3(y)dv<m—, 5 s(x)S(x)dx |

d
an 1;'- max 50(: y)S(y)dy<

<-,'- erSc(x)S(x)dx-l

Then it follows from the principle of contraction mappings [5] that

a solution of (7) exists for any e<e,. And this means that w,
1s no.greater than W

For illustration,consider the simple example: S = const. If

we take v-%,'-;—- (m is the bar mass), then we obtain from (3) and

1)

=V§P' v.‘=V;—f—'.
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The exact value of the fundamental frequency is determined by the
smallest positive root of the equation [3].

igy=¢g.

The follcwing table is constructec from the calculations-

. a1 . LY ' » m -
v, 3,309 0511 0,633 0817 1,292 1,400 1414
v 0A11 0520 0,653 0,81 1429 1 1571
Yoo 0311 0,523 0,665 0%6 lgﬂ ] 1:512 1532

We see from the table that for small u the error of (11) is

not large (however,(3) 1s more accurate).

However, for large u the

error of both formulas is of the same order.

It i1s interesting to note tnat the
(ve+7v.) does not exceed 2.5% for all the values of u presented

1
Vay=T
in the table.

It is clear that (3) and (11) are also suitahle for estimating

error of the average value

the fundamental frequency of torsional vibrations of a bar.

In place of E, S(x), M we need only write G (shear modulus), I (x)
(polar moment of the section), and I (moment of inertia of the weight).

Formulas (3) and (11) will also hold for transverse vibraticns
of a clamped bar with a point welght at the end (without account for

rotational inertia and shear).

However, in this case

where EI(x) is the bending stiffness.
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FORCED AXISYMMETRIC VIBRATIONS GF A
CIRCULAR THICK PLATE

G. N. Bukharinov

In this article we solve the problem of forced axisymmetric
vibrations of a circular thick plate under the influence of uniformly
distributed normal forces which are harmonic time functions appliled
to one of the faces of the plate. The boundary conditions on the

‘faces are satisfied exactly. Satisfaction of the boundary conditions

at the side surfaces reduces to calculating the coefficients in
the expansion of the displacements Into serles of functions of the
z coordinate, where o~ is the axls of symmetry.

In the axisymmetric deformation case,the radial displacement u
and the axial displacement w, as 1s knowr, satisfy the following
di“ferential equations ¢f motion

l—p #u , 1-p 1| 98 1—p & ., 1
E&'FE*’F:%‘T o TT= 'T: Tgamt
1 Pw (14-p) &
‘*’nr:m'm?-’—ﬁ'wr-

H 1 ou ] Py l~u Sw (1)
M= 7 w T Hi— e TT=% o7 T

|.ow . | ®w__g(15p) &
ty T et
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where t is time; r and z are cylindrical coordinates; p is Poisson's
ratio; E is the normal elasticity modulus: p is the density. We take
the plane z = 0 as the middle plane. We denote the plate thickness
by 2h and the face radius by roe

The normal o, and tangential T stresses are known to have
the form, respectively,

=r§;{(l-r)-‘£- + P(%-I-%)}.

- (2)
w=0(% +3).

where G is the shear modulus.

We specify the following boundary conditions at the faces of

the plate .‘={-g.'uu-t Yot z=-+4,
) 0 for z=—4 )
for 2= %4 (3)
and =0

Substituting (2) into (3),we have

(-nE+e(F+F)|_ =P wsnw, (4)
v LB
N E+e(F +7)) |,=¢
o o
&+ >

We seek the solution corresponding to forced vibrations in the form

g=a*(r, z)sinef,.

v=[ml R m et + R+, ‘)],’f“f" s

where

: A+t —2
p=
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and it 1s assumed that the frequency w of the specified loading
satisfies the ccadition sin 2 kh # 0. Substituting {6) into (1),we

find that u®*(r, z) and «* (r, z) must satisfy the following system of

diiferential equations

20— Fu‘ 2([— l u* (1 — =°
Gpmp Ly goe,
+3 +1=5'm?+""‘=°-
1 1 é* 1 #s* 2(1 —p) Otw®
T R BRI e )

++ - F+5E taw =,

where

]
at= th 2

The boundary conditions at the faces z = ¢ h after substituting
(6) into (4) and (5) are rewritten in the form

=0+ D) =

Y 3
(8)
and
& +%)| = (9)
We seek the solution of (7) in the form
s'=—U,(lar
l( )?(z)l (10)

wt=J,(lar)¢(2),

where JO and Jl are Bessel functions.

Substituting (10) into (7),we find the equations for the
functions ¢(z) and y(z)

¥ @)+ 158 [z’ T a’]?(2)+r,:—y,,‘?' (2)=0, (11)
¥ () i 0+ 604 (2) + gy ¥ (2)=0.
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Integrating (11) we find

' 9(r)=Amosl.z+8.unl.i+i-(.—o.cosx,z+c,unx.z).
$e) =5 (B,co0he — A, stady2) 4 Gy coshoz + Dy sy, (12)

where Al’ Bl’ 02, D2 are arbitrary constants and

l{- a*+4-a,

J .__
l{- ¢’+l' (13)

After introducing (10) into the boundary conditions (8) and (9),they
are written in the form

G—pY W)+ pas(h=0,
(1 —p)¥ (— ) +pap(—4)=0

(14)

Y ®+ept) =0,
¥~ 9+ =0, (15)

Introducing (12] into (14) and (15), we find that (11) and the
boundary conditions (14) and (15) will be catisfied bty the functions

"""}"i'““:‘ — TR -coslyz ],
N‘)——T‘-A;[dnl,z %&- % |n}‘z] s = (16)

where Al and A2 are expressed in terms of & using (13), and we have
the equation

WU’WM—W
(17)

Similarly, the system (11) and the boundary conditions (14) and (15)
will be satisfied by the functions

9(2)=B,[slnl,z ;-,——;,— ::—:}ler l,z]

1'(2)=-£-B.[cosl,z- L :%;;—:-cos ).,z], (18)
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where xl and x2 are expressed in terms cf a using (13), and the

equation holds .
tg Ml clg Myh (2 2a7 .
(19)

We denote by a, (k=1;2 3,...) the root of (17). On the basis of (13)

this root corresponds to

&=¢‘+’=o

Azt a2} (20)
T )

and from (16) we have the functions

v.(Z)‘-M»[coﬂuz —;;-"’ :::: cosl..z].

A411 salr lnlgz]

h(z)=—§'Ml|-$lanl . Iy (21)

where My(k=1.2.3....) are arbitrary constants.

We denote by Bs £=1,2,3,...,the root of (19), i.e.,
(o 21

“‘s""""s“‘=m_' (22)

where ;
su=“'+3=-
1=
Su=gieyat+h (23)
On the basis of (28) the root Bk corresponds to the functions

. % S,
22 (2)=Np [sln Suz — '-Ti-.z_a" ::: s: sin S,‘z]

‘+”z Coisl“ céssnz] (2’4)

t(2)= -}—N [cos S.,z—T
A

where Ny (k=1, 2, 3, ...)- are arbitrary constants.
that (7) and the boundary conditions (8) and (9) will be satisfied

It follows from (10)

by the following coordinate functions
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30-—X{Wy,(ky)[m)m—_§q.%l$mv]+

+iM ) [un s,,_%,. i S..z]}.

(25)

.-=g{-a~.,.u..,,[m..z;*_;g ] ¢

+4L Nty () cosS,,z—_:;i s

The arbitrary constants M and Nx (k=1,23,...) must be found from
the boundary conditions at the plate side surface.

i It 1s obvious that there s no difficulty in indicating the

u]ma‘ of the constants M, and N if we satisfy the boundary conditions

k
nt the side surface(r = ro) in the Saint Venant sense, or if we

m satist'action of these conditions only at a finite number
!ot ;points from the interval A<z<+4.

Recelived 7 March 1964
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EFFECT OF PRELIMINARY PLASTIC DEFORMATION ON THE YIELD
AND ULTIMATE LIMITS OF

e

COPPER

G. B. Talypov

In preceding papers [1, 2] a study of the effect of preliminary
plastic deformation on the yield 1limit of low and medium carbon
steel established that the shape of the yield 1limit is independent
of the loading path, and 1is a circle on the Il'yushin plane [3],
expanding and displacing in thedirection of the preliminary plastic
deformation. In the present paper,we present the results of a study

of the effect of preliminary plastic deformation on the yield
limit of annealed technical copper.

§ 1. Specimens and Test Equipment

Tubular specimens (D = 25 mm, d = 23 mm) were fabricated from
35-mm-diameter annealed rods of technical copper. The basic geo-
metric dimensions of the speclmens were selected so that the stress
state induced during testing was as near uniform as possible. The
axial load was transmitted to the specimen by means of a UM-5
press and special blank flanges. The axial force measurement ac-
curacy was + 1%. Internal pressure was transmitted to the specimen
by means of a hydraulic press and was monitored by a reference
manometer. The internal pressure readout accuracy was + (.25 atm.
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Wire resistance pickups and bridge amplifiers were uced to measure

the deformations. The deformation measurement accuracy was £5-10°+1%.

The technique for reducing the test results was described in [1, 2,
§].

§ 2. Yield and Ultimate Limits in
the Original Condition

a} Yield Limit In order to find the initial yield 1limit
each of the selected specimens was tested to fallure along a definite
ray of the first quadrant of the (%, %) plane. For a given ray the
connection between the axial force and the internal pressure was
determined by'phg'?glation

* P=pT1aD+(x—1d]. -

where n 1s the slope of the ray to the 9 axis. The basic geometric

dimensions of the specimens, the values of the louading path parameter
a,and also the test results are presented in Table 1.

Table 1.
Sample| - a . .
A N N B T e i R s
kg /cm .kg/qm /e
1 MU | 2 0 1230 1230 0 118 9
2 18 113 1160 310 1 . i)
3 ”“ “nm b 1] *960 1090 530 l.'g.! t%
4 a0 | 28| 5 1050 1060 1060 099 0,990
2801 | 2296 | 60 920 656 188 0,613 16
[ ] M| 27|18 1000 299 1His 02% 1,064
7 9 | 2233 | 90 1090 0 1070 0 1L

The test results are: E = i.l‘lO6 k;/cmzau=0.32,cso=lc70 kg/cm2,
Tpa ™ 2190 kg/cmz. The experimental initial yield 1imit points
from the data of Table 1 are plotted in Figure 1. The a = 0 point
should be neglected; a shortage of specimens from this lot of copper
made 1t impossible to carry out repeat tests for this point. Figure
1 2lso shows the initial yield 1limit on the Il'yushin plane, [4],
where
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ka-combinedloadin

Figure 1 Figure 2

=377,
x
"=V_Tr"v_t' (2)

Figure 1 shows that this copper 1s isotropic with respect to the
initial yleld limit.

b) Jltimate Limit. During the tests the maximal magnitudes
of the axial force and internal pressuire were recorded. From these
quantities we determined the equlvalent ultimate stresses Top
and Tpp The test results are presented in Table 2, from which
the data are used to plot in Flgure 2 the effective ultimate limit .
In this case, jus: as in the case of steel [1], in the region %>%

the Huber-Mises strength condition 1s satisfied

c:-c‘c,-{-c::a’.o' (3)

while in the region %>% the condition of maximal tangential

stress 1s satisfied

(4)

‘!-.u = 1.,
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\
kg/cmd _K8_Vxg/cm?lkg /cm?] e
1 0 170 ~700 | 1900 0 | 088 | 0 ‘
2 16 168 <300 | 1830 490 0834 | 0224
3 % 167 140 1890 1100 . 0,503
4 15 170 1880 1900 0859
$ 60 118 1250 1318 2240 0,600 1,02
6 5 58 1590 2320 1.06
7 5 54 1830 610 200 | 0378 | 105
s % 0 1660 -0 2190 1,00 L
9 % 0 1670 0 2200 0 1,00
Table 2.
§ 3. Yield and Ultimate Limits
After Preliminary Plastic Deformation
The data of Table 2 show that the ultimate strength in the
transverse direction is about 87% of the ultimate strength in the
longitudinal direction. Therefore, in order to ensure consistent
results the preliminary loading of all the specimens was performed
up to o=180,  along the ray a = 90°. After the preliminary
loading and unloading new measurements were made of each of these
specimens and loading tables were prepared. The second loading up
to fallure was accomplished on the day following unloading.
al XYeld Limit F..om the measured deformation values,we
calculated the deformation Intensity ei,and from the corresponding
values of the stresces g and g, We calculated the stress intensity \
0y From the (01’ ei) diagram,we determined the value o,  of o,
at the effective yleld limit. l

In determining the stresses 9q
and o, Wwe used the new specimen dimensions, so that Osg will in essence
represent the true stress [4].

Tie test results are presented in Table 3. The data of Table 3

were used to plot in Figure 3 the yleld 1limit of the copper after
preliminary plastic deformation. In this figure the triangles
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Specimen! | :
No'l 2‘.‘ :.: e’ %y 2 k Ny 2 7 2 .I‘--?—.— "—;E- 3
. kg/cm?ikg/cmé kg /cm » » 3
1 {4 f{220] of 140 | 17490 1
2 | 2450 ] 2273 | 15| 1870 | 2080 ssg :'62 L0517 :
HEAVAHELE- IR
HEAEAHE AR AL A F AR f
7 313|239 1720 o | 1me | O :E

Table 3

The results
shape of the

indicate this same boundary on the Il'yushin plane.
show that the loading complexity does not affect the
yileld 1limit for copper.. This 1limit remains a circle on the
I1'yushin plane, expanding and displacing in the present case 1in
a direction which does not coincide with the direction of the pre-

liminary plastic deformatvion.

b) Ultimate Limit. As indicated above, the second loading
of each specimen after the preliminary plastic deformation was
carried out to failure. The maximal values of the axlal force and
the internal pressure recorded during the tests were used to

determine the effective ultimate stresses. The test results are
presented in Table 4 and plotted in

%EL‘ “&E-q? Figure 2. We see from the figure
&/ that preliminary plastic deformation

by axial stretching has no effect

on the uitimate limit in the

region 9:>3, but leads to

some expansion of this 1limit in

the region 3>3,.

“‘é‘{?(‘igﬁ%
Figure 3
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Spegmen || 2[ w | | e
kg/cu?] kg _lkg/cmilxg/cnl ‘| °w
1 0 165 | —70| 200 | 40 | o9« | oo
2 | 192 | —3%6| 2 | ses | ooet | ozss
3 | 1% 1w | 2130 | 10 | owm | o3s
3 |we | 181 | ssol 2106 | 1720 | oses | o
HE B 187 | 790 | 2080 | 200 | oo | oona
¢« | o 120 | 13| 10 | 20 | osas | 1
1 | 8 | 0| o3 | 2348 | 03 | 107
s | » o | ww]| "o | 2| o 0.983
Table 4
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EFFECT O} LARGE PRELIMINARY PLASTIC DEFORMATIONS AND
NATURAL AGING ON THE YIELD LIMIT OF LOW CARBON STEEL

G. B. Talypov

It was shown in [1, 2] that natural aging after preliminary
plastic deformation has no effect on the shape of the yleld and
ultimate 1limits. Therefore ,the effect of natural aging on the
yleld and ultimate limits méy be studled by means of experiments
in simple tension. The influence of natural aging after prellminary
plastic deformation manifests itself 1n the fact that,along with
the increase of the duratlon of natural aging,the yleld limit
initially expands continuously and then contracts, i.e., there is a
recovery effect. Natural aging has practically no effect on the

ultimate J1imit.

Results were presented in [3] of a study of the effect of small
(up to 5%) preliminary plastic tensile deformations and natural
aging on the yleld anZ ultimate 1limits of St. 3 steel. The
results of these tests showed that the effect of natural aging on the
yield 1imit of low carbon steel is described quite satisfactorily

by the formula

L=Xo+ Ae~H (1)
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where xo is the ratio of the yield limit ag to g.4 1n the unaged

of the yield - 1imit occurs. . In the general case the parameters

A, k.aﬂﬂ‘f“BEEUKG‘Gﬁ“tnE"magnitude of the preliminary plastic
deforlatlon. Small preliminary plastic deformations were examined
in [3] and.thercfore, account was not taken of the effect of the
specimen: coss 3Ection area change as a result of preliminary defor-
mation on the value of the yileld point for the repeat loading.
Figure 1 ghows' the variation of the parameter A for St. 3 steel as

a function of the degree of preliminary plastic deformation, plotted
from the results of [3] with account for tne specimen cross s=ction
area change as a result of preliminary plastic deformation.

In the present paper,we present the results of a study of the
effect of large preliminary plastic deformations and natural aging
on the yield 1limit. For the experiments we used four groups of
so-called "gagarin®™ specimens of annealed St. 20 steel. The (three)
specimens of the first grcup were tested in tension to determine the
basic mechanical propertlies of this steel (o = 2280 kg/cm s a =

b0
= 3860 kg/cm ). All 27 specimens of the second group were stretched

to a, = Q. BSGbQ After unloadlng and recording the new dimensions, 3
samples of the first subgroup were agaln stretched up to fallure on the
same day. Each of the three specimens of succeedling subgroups were
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o- 6720856,
O- +0,9¢;0,
a- 083640

4 R 8 Months of aging

Figure 2

stretcned up to faillure, alter aging for a period of one to two months

All 27 specimens of the third group were subjected to
= 0.90 0,4 and all the specimens of
After unloading the

and so on.
preliminary stretching to 0,
the fourth group were stretched to oz=0.950b0-
corresponding subgroups of these groups of speclmens were subjected

to the same operations as were the corresponding subgroups of the
second group. The test results are shown in Figure 2 and are described
satisfactorily by (1)}. In this case the parameter A remains constant,

1 to 0.31, and its values are shown by the triangles in Figure 1.
expansion of the yield

on the magnitude of the
the steel grade. While

equa
Thus ;we find that the extent of the maximal
1imit for natural aging depends not only
preliminary plastic deformation ,but also on
in the case of St. 3 steel this expansion reached 20%, for St. 20

steel 1t reached 30%. -
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FAILURE TIME OF TUBES SUBJECTED TO
INTERNAL PRESSURE AND AXIAL FORCE

Ye. M. Levitas

In [1] Hoff showed the practical value of the concept in which
failure time 1s determined from an analysis of the unbounded quasi-
viscous flow of a body. Discussion and literature references on
the problem of "viscous" fallure are pres:nted in [2].

One of the most important practical problems of this kind 1is
that of tube fallure. In [3] Kats found the time for viscous failure
of a tube under the influence of the internal pressure p. In the
following,we conslder - more general problem in which the lcad is
made up of the 1nternal pressure p and the axial force P.

Let a ard b be the Instantaneous internal and external radii
of the tube. In accordance with the Hoff scheme, failure occurs

when a-+b (%—:P - l.) .

Let us derive the differential equation for 8. We start from

the ubvious relation

(1)
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The following formula for the creep deformation rate in the
tangential direction was obtained in [U], devoted to an analysis
of the stress state of a tube under the influence of internal pressure

-n p and axlal force P

p L

. &
bt / .'_T' (2)
where

==k

P—
=351

He¢

2  (creep rate in the axial direction).
Introducing the value (2) into the expressions
o il ds .
=% —'(’:')I,_.- }7=(’=,)|,_‘. (3

substituting the result into (1) and noting the connection
between k and c*, we obtain
3
b B4

2
£ 2 1 2 ) (4)

In the new notations

‘E='#, t=2Bp*t .

(B 1is a coefficient and m is the creep index) we rewrite (U4) as

_;...;g..roﬂ__ﬂ=_df. (4}

We write the formula for the radial stress O obtained in [4]
in the form

- 1+m

(5)
;,5%:2-3 ;’

t(Pl x’l ;" m)—'l.

o7

FTD-HC-23-361-69 _
201




;
y
] where N
- !'El 1 r
¥ (o, bp. 9, ""=5('+ -;;-J,‘T) % (=7
l
Consldering \,=const, we find k from the boundary condition
9,),.s=0 and substitute it into (4*)
. u-1 -1 =
g7 TRRS. LT o d (6)
where
T, 3. m)=¥(s &, B M),y
We introduce the function
. 15 ik ] prm-t
Q. by, M=z 5 ¥, 3, m)g—ydb.. ]
B N ’
Then, integrating (6) with the condition Bl =8, we obtain
QP 2 m)—Q(@3, 2, m)}=t.

Consldeiing that Q(i, A, m)=0, we find the fallure time

(8)
=1
1,=2""3 T Q(&, )y, m).

REMARKS.

4
1. If P=pwa", then A, =0, Considering the relation
L_E‘_ after transformation,we obtain
Pl T 3

. -5
Q. o, == f(l—ﬁ I
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We have obtained the formulas found by Kats [31 for visc. 'us faliure

of

a tube under the influence of the internal pressure p.

2. It is not difficult to show that for p = 0 B = const.

Tn fact, introducing the expression for the creep rate in the :

tangential direction

§v=-;' Br—‘(.’v—"):— :‘+l 8s7 (°=—'3,_"+' +")
' T

into (3) and substituting the result into (1) we obtain

variations of 8 is not sultable.

#as const =$§,..

Consequently the method cf solutlon based on analysis of the
Therefore ,the Hoff solution [1]

for a bar in tension does not follow from (8).

We present a takle of the values of*

© -0
1). the functions @, 4, n)=$(l+%.%)w%» calculated for
[ 4 a

B AN L I

RS

(s)

o—ﬁ":_ b

L,=1,2 3 m=3579 with § varying from 1.00 to 2.00 (0.05

steps);

Table 2

Values of the Function t (i %, m)-10

ﬁ,—] l X’-i l’-l
b ®=3] mel ] Ma? naolu-aln-& --7|.-0 mm) | el | maT?| =t
150 3,498 .9.Iﬂ ﬂ.f&i 1.886{ 1,2201 1,749 | 044110, 0337
b1 '10,110 18,745 ] 39,8131 6,310 5591/ 4,154 3:238 4 2$66 2% Iﬁé
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2). the function L@, i,, m)
for a) 80 = 1.50, b) B o = 2.00

-

for the same ) and m.
- meg P
- mes [ A8 The calculations (and program
/-‘::; compilation) were performed by
A. V., Abramova of the computer
4 o o center of Leningrad State Univep-
| l+ | / : mes P2 S1tY.
/ T~ ma7 .
"o Curves of the functigns ¥, 2, m)-10
and 4 (% A,, m)-10 are shown in Figures
1 and 2. 1
med -
I would 1like to thank Profes-
/ 201

sor L. M. Kachanov f‘ér his guid-~

J me} ance.
“-' _ mey
3

Figure 1 i

Figure 2
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EFFECT OF PRELIMINARY PLASTIC DEFORMATION
On THE YIELD LIMIT OF ST. U5 STEEL

A. I. Chistyakov

Tubular specimens were prepared from 55-mm-diameter annealed
rods. A plane stress state at points of the specimen cross section
was created by simultaneous application of an axial rorce and inter-
nal pressure. The axial force was measured to within + 1%, the
internal pressure to within 1 kg/cmz.

The longitudinal and transverse deformations of tlhe specimen
wer2 .Jseasured by wire resistance pickups with base lenzth 24 mm
and t-idge amplifiers. In order to account for the possible slight
eccentricity in the specimen installation,the longitudinal gages
were mounted along two opposite generators.

§ 1. Yield Limit for Simple Stress

To construct the. yield 1limit, we tested nine specimens using
the following stress paths a = 0, 15, 30, 45, 60, 75, 90°, and in
crder to determine more preclsely the yleld point 9 for the St. 45

steel three specimens were tested with o = 90°.

(o)
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As 1s known, under simultaneous application of the axial force
P and the internal pressure p, the effective stresses are determined
from the formulas

“=ri

: ¢1)
0,=-P7-+’%‘-.

Since small elasto-plastic deformations are considered, the effective

stresses will be close to the true stresses.

The loading path in the (oz, oe) plane is defined by the
expression

° w——
Ty (2)
Substituting into this equality the expressions (1) for
Og and a,,we obtain the dependence of P on p
P=p 3 [aD+(n—1)d]. (3)

To determine the yield point we plotted tne curves 01 = (ei),where

L/} =\v 52— W% s %
o= Y e ra—ay

The deformation e, in the elast’c reglon was found from the formula

(4)

e,;—%(eg-}-egl (5)

and in the plastic region from

&=~ (qf + e~ (e +e). (6)

The relative permanent elongaticn 0.2% at the effective yield limit

for u = 0.27 corresponds to the intensity Clyis = 0.17%. From the

value of eyq swe find the values of the stress intensity 94¢ and in
Figure 1 we plot the Mises ellipse in the relative coovdinates
Su . pi | » Whereo = JIOOkg/C'n is defined as the average value
% £y s@

for the three specimens with deviation from the mean of + 1.5%.
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We can also plot the yield
iimit on the Il'yushian plane if
we use the transformation to the
new variables o, and 02 on the basis

1
of the formulas

4 =V2s, '
,,-}/'.g.g,%. : (7)

In so doing the Mises ellipse will
be transformed into a circle
with the same center.

If we denotg

FTD-HC-23-361-69

mwmE (8)
[ ]
.-._::-:°= e '
then we have from (7)
YT IV
aollr = Py
15t
7] S
--'Gu
.(3;. a’)
a-(0,x)
'}‘ A s
* L a2 A 3
¢
. L4 v 15 gﬁim

Figure 2
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The yield 1limit on the Il'yushin plane 1s plotted in this same
figure.

For an isotropic material the yleld curve must be a circle on
the Il'yushin plane.

In our case the curve 1in Figure 1 differs somewhat from a
circle in the direction of the Og axls. This can apparently be
explalined by the fact that the specimen material has a lower yleld
1limit in the transverse direction than in the longitudinal direction.

§ 2. Yleld Limit for Compcund Loading

Six specimens of a gilven lot were loaded to oy = 1-7080 in the
direction a = U45° and then were unloaded along the same path. After
unloading the specimen dimensions were measured and each specimen
was again loaded along a glven direction.

The following directlons were used for the second loading in the

|
experiment: a = 35, 40, 45,50,55,600. From the test data, we found
the yleld po&nts and plotted the yleld curve 1in the relative
cocrdinates (Figure 2)

Figure 2 also shows the yleld curve on the Il'yushin plane, which
indicates that the yield 1limit 1s shifted in the direction coin-
ciding with the direction of the preliminary plastic deformation and
does not have angular points.

The shape of the yield 1limit for the plane stress state is
independent of the loading direction and 1s a circle in the Il'yushin
plane.

In conclusion,the auther wishes to thank Docent G. B. Talypov
for guldance in setting up the experiments.
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PHOTOELASTIC STUDY OF THE EFFECT OF BOTTOM SFAPE ON
THE STRESS STATE OF THICK-WALL VESSELS

T.D. Maksutova

The present article is an extension of the description of the re-
sults of an optical polarization study of thick-wall cylindrical ves-
sels. The purpose of the study is to obtain the most complete possi-
ble description of the stress state as a function of the values of the

parameters characterizing the vessel geometry.

- Table 1.
f_- Models R1/Ry t h o Py
Model 1 . . il i 0.167 0
odel 2 0.167 1.167
odel 3 . . . . 2 1 1 2

in a preceding study} we examined the effect of the cylinder outer/

inner radii ratio Rl/R0 on the stress state of a thick-wall vessel

with flat bottom and constant wall thickness. In the present article,

we use the example of a cylindrical vessel with ratilo Rl/RO equal to
two to examine tiie effect of the geometry of the region where the ves-
sel wall Joins the bottom, and the shape of the bottom on the stress

To clarify the posed question, we consider three vessel geome-
The quantities which characterize the ves-

state.
tries (Figure 1, Table 1).
sel geometry are given in dimensionless form, and we take as the char-

acteristic dimersion, just as In the preceding article, the magnitude

(Footnote 1. See page 225.)
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RO of the cylinder inner radius. Consequently, the stress state of
the vessels 1s described in the dimensionless variables p = r/RO,

g = z/RO, and the vessel geometry 1s characterized by the dimension-
less quantities: bottom height (h), wall thickness (t), inner (po)
and outer (pl) bond radii.

po o § b &«
jJouter
3 t
outer ] nne inner
¢ t
i 4
finner
1
< |

. - '_
. 7 4 -
Figure 1. Geometry of vessels with different bottom shapgq.

As the basic version (Figure la), we considered the model with
flat bottom, small inner bond radius (p0 = 0.167) and outer square
corner (p1 = 0). As the second characteristic case (Figure lc), we
stualed the stress state of a vessel with hemispherical bottom
(p0 = 1; Py = 2). The vessel with a flat bottom, small inner bond
radius Py = 0.167) and outer corner cut at the radius (pl = + t)
1s an intermediate version (Figure 1b).

o

In mcdels 1 and 2, the distributicn of the stress state components
in the bottom and a portion of the adjacent transition region is deter-
mined along the lines p = const, parallel to the vessel axis of
symmetry. To calculate o, in this region, we use the second equili-
brium equation in cylindrical coordinates, which leads to the familiar
f‘ormula2

=3t 5 (Seer 4 22 ) . (1)

As usual, a?zr/ar is calculated from the corresponding values in two
auxillary sections, ?vr are the values of the tangentlal stress at
the points of the basic section being considered, and r, the distance

("ootnote 2. See page 225.

FTD-HC-23-361-69 213




frou the axis of symmetry, is a constant along the entire path of in-
tegration. The normal stress o_ at polnts of the axis of symmetry

z
cannot be calculated directly from (1), since along this line r = Oand
Tl 0. Therefore, we must first eliminate the indeterminancy,

which ieads in final form to the following expression
- g
;,=¢2—25%dl. (2)

Thus, to determine o, in the bottom and in the adjacent portion of the
transition region we need only have available data obtained on the
basis of measurements of the optical quantities in the radial section
pt whose middle plane coincides with the vessel plane of symmetry.

To calculate (13 in the vessel wall and in the portion of the
transition region directly adjacent to it, it is natural to use the
first equilibrium equation in cylindrical coordinates. 1In this case,
we have

j_ G’_a’ 5(0'" :;')dr, -
-

The calculation of o, using (3) requires that we have data along
two mutually perpendicular planes — along the lines f = const in the
radial plane and along the radius in the corresponding plane 7 = const.

In calculating both g and 0> the origin for the inpegration path
was selected at points on the free surface of the model, so that as a
result of the calculations we determined the value of the correspond-
ing component of the stress state normal to the inner loaded surface,
and at the end of the integration path nominally equal to the magni-
tude of the internal pressure. Naturally, for different sectilons
(p = const or g = const) we obtain different, but only slightly dif-
fering,values of the stress state compcnent Uv normal to the surface.

The resultant of the tangenti:l stresses ?zr’ acting on a cylin-
drical surface of radius p isolat:d from the bottom is equilibrated
by tne resultant of the 1nternal nressure p. On the baslis of the
corresponding area, ZHpTZr equais npzﬁ , where Tzr is the area of the
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corresponding tangential stra2ss diagram. Since the quantities Tzr are
determnined from experimental data, this equilibrium condition is not
satisfied exactly. Consequently, the quahtities o, calculated for
different cylindrical elements of radii Py differ somewhat from one

another: p, = ZT;r/pi.

In reducing the experimental data, it was found to be advisable to
determine the magnitude of the internal pressure as the average of all
the values 62 and Er determined by integration at the points of the
inner surface of the model and the 51, calculated from the resultant
of the tangential stresses in the bottom

Pav= I E B

In this case, the optical activity coefficient ( is calculated
from the formula C = ﬁav/dp, where p is the internal pressure acting
on the vessel model,measured by a manometer.

The deviations of Aar and AEZ of Gr and 52 at the points of the
inner surface of the model from the value 5av and the deviations
(ATzr) of the resultant tangential stresses Tzr in the bottom from
the corresponding values §avp/2 define ﬁhe accuracy with which the
experimental study is carried out (Table 2).

Analysis of the results obtained from all three models showed
that the average error in the determination of the stresses normal to
the inner surface, calculated by integration, is 2.8% with a maximal
deviation from the average value of 9.3%. The error in the determin-
ation of the principal vector of the tangential stresses in the bottom
is 2.9% with a maximal deviation of 9%.

It is natural to describe the stress state of the hemispherical
bottom of model 3 in the polar coordinates p, ¥, 6, and that of the
wall in cylindrical coordinates p, %7, 9. Within the limits of the
bottom, the stress state components were determined along the axis
of symmetry (¢ = 180°) and along the line where the bottom joins th2
cylindrical wall o. the vessel (y = 90°, the boundary of the transition
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: Table 2.

Deviation, %

Average Maximal
Models Ao | Ac-’z Aazr Aar Aaz ATzr' -
4 aV_,vﬁav hvsav 2 kvﬁav Pay Pay % :
[ Model 1' 2 M ks bty bt ] e g
Model 2 2 L8 s el 15 | ﬂ;g v .
== ’ss e ¥ H i ﬁg | £ ‘

¥ For model 3 data were taken for the stress
normal to the inner surface of the spherical
bottom.

region), and also along rays for which ¥ equals 150° and 120°. ‘The

distribution of o, was found by Integrating the first equilibrium

equation in the rectangular' coordinate system X, X, X5(3r=0; .—°x’°o—°x.)«

since there 18 no obvious advantage in calculating On by graphical

integration of the corresponding equilibrium equation in polar coor-

dinates. In order to obtain all the required data, it was necessary

to perform measurements In two mutually perpendicular planes — the = 3 i
radial plane and that corresponding to the section ¥ = const. The

pleces and sections cut from the model were marked off using a large

tonling microscope, which made it possible to ensure the required

precision in performing this operation. Just as in the case of

models 1 and 2, the optical activity coefficlent C was determined

from the formula C = p /dp, and the experimentally determined '11ue

of the internal pressure pa was calculated as the average value of

all the quantities o, determined by integration at the points of the

inner surface of the bottom and wall: ﬁav = Eai/n . 1

The patterns of the principal stress trajectories and the distri-
butiocn of their differences in the pz plane (Figures 2 and 3) yield a
good irituitive feel for the effect of the bottom shape and the shape
of the region where the bottom joins the wall on the stress state in
the vessel.

FTD-HC-23-361-69 216

S



i 4

“Pigure 2. Principal stress trajectories in the g plane:
1) trajectories S, of the principal stress o%.; 2) trajec-
tories S, of the ﬁrincipal stress 0'5; a-model 1; b-model 243
c-model 3. '

The trajectories of the principal stresses in the pz plane (Figure
2) were plotted from the corresponding isocline patterns for each
model. Comparison of the isostatic curves of the three models shows
that the nature of the stress state for models 1 and 2 is the same in
the pottom, the wall and the portion of the transition region adja-
cent to the inner loaded surface of the @icdels. The stresses in the
vessel with hemispherical bottom were distributed more uniformly than
in the vessels with flat bottom and small inner bend radius, for which
a marked crowding of the trajectories 0'1, is observed near the inner
surface of the reglon where the bottom and wall join, which indicates
a significant local concentration of this stress. However, tihe 0'1
trajectories in model 3 within the limits of the hemispherical bottom
are nearly concentric circles, while the o', trajectories lie nearly
in the radial directions.

On the basis of the experimental data obtained on models 1 and 2,
in Pigure 3 we have plotted the lines Grz/p = const in the bottom and
the portion of the region where the bottom joins the wall directly
adjacent to the inner surface of the models, and we have shown the
distribution of Grz/b along the axis of symmetry, along the generc.or
p=1- Py and along the outer and inner surfaces of the bottom clo-
sure. The lines Grz/p = const within the limits of the bottom are
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Figure 3. Distribution of o'l - 0'2/p, characterized by the

lines o'y - 0'2/p = const in the pg plane, by values at points
of the inner and ocuter surfaces and by values at several sec-

tions p = const and ¢ = const.

e — model 1
X — model 2
o — model 3
& — common data for two (bott>m) or three (wall) models

drawn through points plotted in the pg plane and taken from the curves
‘drz/ﬁ constructed for models 1 and 2 in tnhe various sections p = const.
In those sections p = const (or { = const) in which experimental data
were obtained on both models, the curves 6, = Srz(p) op 6o = drz(c)
were plotted on the basis of these combined data and then we determined
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from these curves the coordinates of the points with the corresponding
values of Grz/ﬁ. The experimental data on the distribution of the
stress state components e, 9. %, 2z in the bottom and the transigion region
of models 1 and 2 were processed éiﬁziarly (Figures 4-7). The results
presented in these figures, and also the curves of the stress distri-
bution constructed for several sections of the transition region and
along its inner surface, show that for the vessel models with a flat
bottom the distribution of all the stress state components within the
limits of the bottom and the portion of the transition region adjacent
to the inner surface 1is practically the same. However, the portions
of the transition region adjacent to the outer unloaded surfaces have
stress state component distributions which differ significantly from
one another, though the stresses themselves are very low in magnitude
in these regions.

. Figures 8a and 8¢, respectively, show the general patterns
of the distribution of ©0,./p and dg/P ‘in the model with
hemispherical bottom, while Figure 8b shows the general pattern of the
ot/p distribution, where g within the 1limiis of the hemispherical
bottom coincides with °¢ (polar coordinate system) while within the
limits of the wall it coincides with a, {cylindrical coordinate system).
Obviously, the distribution of the stress state comporients in the
hemispherical bottom of model 3 differs considerzbly from that of the
corresponding components in the bottom and the transition region of
both models 1 and 2. Thus, the stress state in the hemisphericcl
bottom is characterized by the fact that the normal stresses OW aind
dgg are tensile and do not change sign through the thickness, while in
the models with a flat bottom there are regions of significant com-
pressive normal stresses 9, and 0g near the inner surface, which
transition intc tensile stresses only at the boundary where the bottom
Joins the wall. Also, o, and 0g are positive in a quite broad regicn
of the bottom near the free surface. nally, there are no marked
normal stress concentrations at points of the inner surface of the
model with hemispherical bottom. Conversely, at the polnts of the
cransicion region on the inner surface of the model with a flat bottom
there 1s a high concentration of all the stress state compconents.
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Figure 4. istribution of or/p, characterized by the lines
or/p = const ir. the pf plane, bv values at points of the
inner and outer surfaces and values in several sections

p = const and ¢ = const.

Notations same as in Figure 3.

There are two possibilities for comparing the stress states in
the walls of the three models under consideration: either align the .
boundaries of the transition regions 6f models 1 and 2 with the
section ¢ = 2 of model 3 (Figure 9a), or align the points f = 0 of >
the three models and consider the beginning of the wall to be the
section § = 2, corresponding to the plane along which the hemispheri-
cal bottom Joins the cylindrical wall of model 3 (Figure 9b). 1In the s

latter case, within the l1imits of the bottom for the first two models
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Figure 5. Distribution of oZ/p, characterized by the

lines 0,/p = Const in the pg plane, by val:es at points of the
*aner and outer surfaces and values at several sections

p = const and ¢ = const,

Notatlions same as in Figure 3.

there 1s included not only the bo“tom itself and the transition region,
but also a portion of the cylindrical wall.

In constructing the general patterns of the stress state compo-
nent distribution in the vessel wall we selected the first version
for comparison of the data obtalned for the three versions of vessel
bottom geometry. Namely, we aligned the sectlions £ = 1.167 of the
first two models with the section ¢ = 2 of model 3, and this plane
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Figure 6. Distribution of oe/p, characterized by the lines ag/p =
constin the-p%{ plane, by values at points of the inner and

outer surfaces and values at several sections p = const

and ¢ = const.

Notations same as in Figure 3.

was taken as the origin for measuring the axial coordinates c' in the
vessel wall. From the values of the stress state components calculated

in section g#=const (common for the three models) we plotted curves of
the variation of the corresponding stresses along the radius.

The exnerimental data shown in Figures 4-7 show clearly that the
distributions of all the stress state components for models 1 and 2
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Figure 7. Distribution of Trz/p, characterized by the lines
rrz/p in the pf plane and by values at several sections

p = const and § = const.

Notations same as in Figure 3.
in the wall are also practically identical.

For £ > 0.8; the experimental values of 0, obtained for model
3 fall on the curve which is common for models 1 and 2, which in turn

differs 1little from the distribution curve for o, given by the Lamé
solution.

The values of 0g obtained experimentally in the sections of model
3 1lie on curves which are common for models 1 and 2 for z* > 1.8,
Agreement of the experimental values with those calculated following
Lamé is observed only for t* > 2.8. Here the experimental data sys-
tematically exceed the theoretical data near the free surface3. These
deviations at individual points do not exceed 0.2p or 21% of the
theoretical values at the same points, with the average deviation cf

J5eap CTOM 05 [amg Pelng of the order of ug.

(Footnote 3. See page 225 .)
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Pigure 8. Distribution of stress state components in hemi-
spherical bottom and the portion of the wall directly adja-
cent to the bottom for model 3.

a) 0,/p; b) 0./p, c) 0y/p

g
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Flgure 9. Two model comparison -
versions.

Analysis of the distributions of
O, the smallest of the three normal
stresses, obtained in the vessel wall
leads to the following conclusions:
first, the experimental data obtained
on model 3 lie on the curves which are
common for models 1 and 2 for ¢* > 0.8;
second, the distribution of 9, through
the thickness of the wall is nearly
linear; and third, equilization of L/
across the section ¢* = const takes

place extremely slowly and for z#* = 2.8 the distribution of 9, still
differs significantly from the uniform distribution required by the

theoretical Lamé solution (for p = l,0, = 0.16p; for p = 2,0, =

FI'D-HC'-23-361-69
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FOOTNOTES

1. T.D. Maksutova, "Photoelastic study of thick-wall vessels with
flat bottom," Studies in Elasticity and Plasticity, vol 3, Press of
Leningrad State University, 1964. (see page 212)

2. Here and hereafter weuse the previously introduced notations

_ g WG =
where C is the material o

section thickness. The t
culated from the formulas

S——— } ) ;-*ﬁz'mﬁ?n-%lwﬂ'm
where ¢, 1s the angle formed by the (algebraically greater in the

section plane) principal stress o‘l with the positive direction of

the radius, and ¢zr is the angle between 0'1 and the positive direc-
tlon of the z(z) axis. (see page 213)

ptical activity coefficlent; d is the reduced
angential stresses in the P¢ plane were cal-~

3. This 1s easily explained by the neglected initial path dirfference
Ggo = 0, which Qevelops during polymerization of the cylindrical
blanks, distributed nonuniformly across the section and not
completely eliminated by annealing (Gge = 0 at points of the axis of

symmetry and distributed parabolically along the radius).
(see page 223)
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CALCULATING THE LOAD-CARRYING CAPACITY OF
IDEALLY PLASTIC AXISYMMETRIC SHELLS

V.I. Rozenblyum

The yleld condition expressed in terms of forces and moments

("finite relation") is of fundamental importance in the theory of

limit equilibrium of 1deally plastlic shells. At the present time

these finite relations have been formulated for the cases of the Mises
medium [1-4] and for the Tresca-Saint Venant medium [5,6], and also
for certain other types of plastic media [7].1 These Mnite relations
(within the framework of the usual hypotheses of thin shell theory
they may be considered as exact relations) have a very cocmplex struc-
ture. In this connection considerable attention has also been devoted
tothe question of the approximation of these exact yield conditions
by means of relatively simple surfaces which are more convenient for
application. The greatest simplicity is achieved if we take the
yield surfaces in the form of polygons2, for erample,

max {1t} |&), [Li—tl, |m, |, |my], |m—m,!]=1,
where . (0.1)

A

and so on,are dimensionless forces and moments; h is the shell thick-
ness, o is the tensile yield limit.

The piecewise linear yield condition in the form (0.1) has been

widely used in many particular problems {8, 9, and others] .

However,
the -

_ults obtained and the comparisons made with certain more exact

(Footnotes 1 and 2. See page 239.)
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solutions(10] suggest that, generally speaking, the approximation of
the éétuéi yield surface by tne piecewise linear relation (0.1) 1is too
crude and in many cases may lead to una:zceptable errors. The reason
for this is, in part, that in the yleid condition (0.1) we have ig-
nored to a considerable degree the interaction of the force and moment
factors, which has a significant effect on the plastic bahavior (as
follows, for example, from the elementary theory of plastic arches).

Under. these conditions the question arises of the cholce of a
"compromise" version of the theory, possibly more complex in compari-
son with the simplest formulation based on (0.1),but at the same time

leading to a more realistic description of the actual structural
behavior.

In this connection we consider in the following the "gquadratic"
¥ield condition [11, 12]

(-0t + D+ (ni—l-m&m,-yn@—_- 1

(0.2)
and its "semilinear" modification
4=t
o (0.3)
where
s=max (|4}, [6), [ =l
p==max {{m,|, |,"l‘-,‘”|"‘"s!;- (048

The results presented later for the axisymmetrically loaded shell
of revolution show that the nonlinearity present in (0.2) and (0.3)
appears to make 1t possible to approach more closely the exact solu-
tion than when using the plecewise linear condition (0.1); although
the solutlons are somewhat more complex in thils 1instance, in many
cases gqulte effective solutions may be obtalned.

1. We first consider the quadratic yleld condition (0.2), which

on the basis of the assoclated flow law corresponds to the middle
surface defermation rates

=2l =gt h=pi{m - m), I
Cma(am ). i )
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where A is a nonnegative coefficient of proportionality.

The yield
condition (0.2) may be satisfied by taking
t,=-;?unoc03(?.—%). n.——;—s:-cosncoa(Q—-ﬁ—). Foad
t.=-}.s-ﬂa-eoo(?+~;- v m= coucos(‘ - —). |
Substitution of these expressions into (1.1) yields
%#‘ﬂ!m(?4-§-). 5.=-5:—eos~cm(0-—§-).
. ., PR y- 3 (1.3)
c.-lsln-cos(’ﬁ-w). :,-Tcosncos(t-{--r),

If we substitute (1.2) into the usual system

of (three) equili-~
brium equations of the axisymmetric shell

Uil s 7,4 R A 0AA =0,
lA:?,' - ( -E;)AIAt"i"anlAa:o, 3 (J..“)
ddyMy  dhy g :

“[ St ‘.. M’—l\jA.A’:O

(Rl, R, are the principal radii of curvature,A;, A, are the Lamé
parameters, ay is the coordinate corresponding to the meridional dir-
ection) and if we substitute (1.3) into the two equations for defor-
mation compatibility, then as a result we obtain a system of five
differential equations in terms of the unkncwn functions A, w, ¥,

and the shearing force Nl' Generally speaking, the solution may be
obtained by numerical methods-. However, the energy approach, which

leads to two-sided estimates of the limit load [11], is far more

effective. In order to obtain the lower estimate we must construct a

statically possible force and moment field which satisfies the static
equations (1.4), the static boundary conditions, and does not con-
tradict the yield condition (0.2). The upper estimate is found by

equating the lnternal energy dissipation and the eternal force inten-
sity A at kinematically possible rates

'}i"' S Sm.a,q:,a:,:z\. (1.5)

where

r=‘/ (l|+||l,+'.)+ (”+“!’+‘1) (1.6)

We note that by virtue of the known inequalities
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B <ld- 0 487°<x,

Y p<lal— w4 md? <p
every statically permissible (or exact) solution satisfying the semi-
linear yield condition (0.3} 1s also statically permissible with rela-
tion to the quadratic condition (0.2). This makes it possible to use
for the construction of the lower estimates the simpler condition (0.3)
(or its linearized version (2.6), introduced later).

(1.7

2. In using the semilinear relation (0.3) we must differentiate
the regular and singular regimes. In the first case the usual asso-
clated flow law ylelds

Sy a it a_a
a=ltg, n=—grE-,
P (2.1)

In the singular regime cas¢ (when one of the conditions: tl = t2’t1 = Q,
t2 = 0, m, = m,, My = Q, m, = 0 is met) the flow law 1is ccnstructed
in the form of a sultable linear combination of the regular laws in
a fashlon which 1s completely analogous to the corresponding construc-
tion in general plasticity theory. For example, let

t=hoth, p=my

Then

i,'=.if’+([—¢) o, . 0<agh),

s,=asd' 4 (1—0) s (?.2)

where the superscripts (1) and (2) denote the deformation rates cal-
culated using (2.1) for the regular regimes 1 = ¢
tively:

1,1 = t2, respec-

i?';u.'.' o =0,
W=0, P=x, (2.3)

Combining (2.2) and (2.3) we obtain

e o, =M,.
Snallicisl (2.4)

Moreover, for u = m, we have from (2.1)
- ."=_%_m’. ;l=0' (2'5)

We obtain the complete system of (four) equations of the flow law
by adding to the three relations (2.4) and (2.5) the adopted condition
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h=t,.

We note that in the case of singular regimes the protlem of deter-

mining the stress state of the axisymmetric shell in the c:orrespending
plastic regions becomes (internally) statically determinate.

To obtaln a statically determinate problem in the general case
(which is important for obtaining the lower bounds with the aid of
statically permissible solutions), we can use the following approximate

technique [11]. We replace one yield condition (0.3) by the following
two conditions
max ({4, 14l 1a—&il=4%,
max “ﬂ.!, l'glo "l-'l" =3.,
(2.6)

where Gt, Gm are constants subjJect to the conditions

o | e
These constants are determined in the final stage of the solution
so as to obtain the maximal value for the limit load. The yie¢ld con-
ditions (2.6) are analogous in form to the classical Tresca-Saint
Venant yield condition aad are fofmed by hexagons in the tl, t2 and
m, My planes (Figure 1). We note that an analogous technique is

also possible in the case of the quadratic yield condition (0.2), for
which we take
B—th+ =7
m—mm, L =1,

(2.8)
Pt’ 5 ﬂ,
8 A 'y 4’
=" ‘\1 ~
¢ 1 . /
7 f; A L £ "..,. ]
L N .
» [ r (3
Figure 1

In Figure 1 ellipses inscribed in the hexagons (2.6) correspond to
these conditions.
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Let us conslder some examples which clarify the use of these
techniques.

?
LN o
= Lililig—= | 3. It is convenlent tc make the com-
- parison with other solutions on the basis
- R B of combined bending and tension of an an-
Figure 2.

. nular plate (Figure 2), which has been
studied in detall by Hodge L9, 10]. We shall use the semilinear yleld
condition (0.3) and assume the plastic regime

=4y, p=M; (3.1)
Then from (0.3)
G+m=1.

(2.2)
Then the flow law (2.1) yields

i,:lo; ;|=01

e ke o
where
ds S fo
i U
[ i de (3-’4)
l,=7, :,=—-’—-T

(u and w are the radial displacement and bending deflection rates).

We obtain the complete system of équations by combining with (3.2),
(3.3), (3.4) the equilibrium equations

wr—y=0

4 r7'—al (3-5)
< rmy) — my=— p——

(5 = P/Ms; P is the uniform pressure on the plate) and the boundary

conditions

for r=a .tl=0, nl.=0.. |
for r=b tl—_-q-q?-, m,=0, w=0. (3.6)

In spite of the static indeterminancy of the problem and the nonlinear-
ity of the yield condition (3.2), the exact solution in this case is

quite elementary. From (3.4) with account for the conditions € = 0,
Kl < 0 we obtain
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=£l . -& N
e Sl (3.7)
where C,, C, are arbitrary constants. Since from (3.3) m2/t2 =
hk,/4€,,as a result of (3.7) we obtain
i %:.—m:c. (3.8) L
Solving this equaticn together with (3.2) we immediately obtain
1 =
h=7"-“¥—z3‘- “:—:J‘l—_ra' (3.9) -
Substitution of these values into (3.5) and integration with account
for the boundary conditions at r = a yield
.‘_r—a. 1 ‘
3 - ,"‘__rr_?- (3.10) ‘
r—a | p r—ea €
'”=’_77'°;7ffi""17' —(r* + ar — 2a7). i 1
!
Then the two remaining boundary conditions at r = b serve for ¥ |
determining the constant C and the limiting relation between the values \
of the loads p and q. The latter may be written in the form i ‘
’ l_’ _L:’-_-: k 3 . H
(&) +(5)=1 (3.11) . i

where Py and qq denote the limiting values of the pressure and radial
force, acting separately

P=6(0tab—2), g=132. (3.12)

(These expressions are thezxact solutions of the bending and tension
problems for a flat plate under the Tresca-Saint Venant condition.)

Figure 3 shows the circle (3.11) and also the polygon AOB corres-
ponding to the analogous solution [9] based on the piecewise linear
yield condition (0.1). The difference between the solutions in this
case 1s quite large, and the circular arc AB 1s closer to the exact

solution, which Hodge showed [9] must lie within the hatched strip in
Figure 3.

' k. Now let us consider a shallow shell of revolution supported '

along the contour and loaded axi:ymmetrically by the normal pressure
P(r).
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The shell middle surface 1is given by the
equation z = z{r), where r is the distance teo
the axis of symmetry (Figure 4).

M Under the usual
" assumptions of shallow

L ’ -‘--/::y-,- ----- shell theory,the equili-

C ' : :
Figure 3 - Figure 4.

brium equations and the
expressions for the de-
formations of the middle surface may be written in the form

St —u=0, (p=735):

(4.1)
%(ml)_.,+.‘i.'it,=—-:,-5p(r)rdr,
N . 4%
':"7;""'- R =g —_i._
-  a-%w ) P— ”) ()

s ’ 'Q-T

where the prime denotes differentiation with respect to r.

We shall use the yleld condition (0.3) and consider the singular
(statically determinate) plastic regime 1 = tl = t2, uo=m, to which
corresponds the finite relation

fiq 1=l
(4.3)
and the flow law (derived in § 2)
s it kN
=0, _!—‘;—- 4 my (4.4)
Using the condition tl = t2 we obtain from the first equilibrium
equation
fh=t,=¢c. (4.5)
Prom (4.3) and (4.1) we obtain the bending moents
m=YT--c, (4.6)
(4.7)

r i r 4
me=Vi—c — i.-\z'rdr —;‘;;50 “P(’)f‘”-
Y °
After transforming the second term we Integrate by parts and

noting the boundary condition m = 0 on the contour r = a,we obtain
(for p = const)
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Tpuv ?+ pm (4.8)

If an external meridional force tl = q 1s applied on the contour,the
problem wlll be completely statically determinate; for constant c we
find in this case, in accordance with (4.5), the value ¢ = q and
(4.8) defines the limit loads-

E=VT=a 45 (4.9)

Here P, = 3/2 i1s the Hmiting pressure for the flat plate case; z%
denotes the average shel.: height

=%5 (4.10)

Now let the kinematic condition
w=u=0 (forr=a). (4.11)

be given on the contour. 1In this case, in order to complete the
solution we must examine the velocity field. Introducing the values
for t;, m, into (4.4), we obtain

) %5%==°

l(rz’) N 4w (4.12)
T ,/] —a dr °

Integrating these equations with account for (4.11) we obtain

for velocities u, w and constant c,

‘r (ru) w—r

w:.?',(‘ )l (u‘13)

h c .,

s=7w+w, ;'.! dr+ T i=a’
v x (4.14)

c-4—-[l+ 4~—)'l :

where w.,, the velocity scale, remains arbltrary. Introddcing (4.14)

0,
into (4.8), we obtain the expression for the limiting pressure

P-po]’l—:(-:;—:?. 2L

We see from this Hrmula that the limiting pressure on the shallow
shell depends not on the details of its shape, but only on the average
height z*. For the solution to be correct,it is necessary that the
bending moment m, satisfy the condition 0 < m; < m,. This condition
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is easily verified for specific classes of shells. It is obviously
satisfied,.for example, for the spherical shell, for shells of the
form z.—_-zoll—(-}).] {for 1 < n/2 < (h/42*)°) and 1n many other cases.

5. We shall examine the construction of bilateral estimates of
the 1limiting load on the example of a spherical shell which is clamped
along the contour and subjected to pressure loading (Figure 5). Tc
obtain the lower estimate,we use the yield condition in the form (2.6).
We assume the plastic regime.

0t <t, 0Sm<m,, (5.1)
Then (2.6) provide two yield conditione

t=8 m=in (5.2)
Combining with these relations the equilibrium equations

cos 9 cose’

. 2 R sin? int
4o (msing) —mycose — 4 TR0 = 9p 2t

(,=_£_,_§), , (5.3)

we obtaih a statically possible regime which satisfies the necessary
conditions at the apex of the shell (for ¢ = 0) in the form

% ph_sin?
=40 +2(2 { —p) Sto),

(5.4)
where thg notations are
Sor-myles(E )t (5.5)
The edge condition m = 0 for % = a yields
P=W s+ (5.6)

After determining here Gt, Gm from the condition of a maximum of p
with the additional condition (2.7) and returning to dimensional
variables, we obtain finally

1.2

P | Rt
&=+ ()] (5.7)
where PO = 20s (h/R) denotes the momentless solution.
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To obtain the upper estimate we specify the rate field

#=0, w=g,A05 -ty (5.8)

sine ¥

to which correspond the following deformation rates

et R
W=joige+ = 3T
49 Wy COs
b Y

-

Ry sine '
. a . 1 . costy
% =W"“%":—“‘;‘E- .l-..;._‘:-.slllllll" . o

Substituting these values into (1.5) we obtain

L}
’ - Lameny ]” :
- 3 ] -
' St - ST sin gd
()"‘3 tae BY ¥ m ——‘-'?T— iy
& -

BT S (5.9)

.

{ (sin 2 — sin §) sin pdy

R S R TG Sk e s s M e oy gL & ’
AR i R SRR AT s e B pC i R L i L G
1A Ay R, S SR L T g3ib P
i

|
|
The results of calculations using this formula for certain values ‘

of h/R are shown (for 10° < a < 90°) in Figure 6. Also shown there |
are the corresponding curves constructed using (5.7) (lower estimate). ! |
For small values of a (5.7) is in good agreement with the exact solu-
tion (4.15) for the shallow shell. 1In this case the upper estimate J
(5.9) differs from the solution (5.7) by at most 15%. ;

i Yot i
-
Thamn i e e

FTD-HC-23-361-69

236




- | |
Py |
b
¥r /g- '3'5
- Ex
10
(5=
qs «
0 20 2] 8 80 R

= Lower estimate
=== Upper estimate

Figure 6. ‘
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FOOTNOTES

|
1. In the last two cases, the finite relationshi ;

PS were derived only g
for axisymmetrically loaded shells of revolution. (see page 226) j

2. In this case, there are Specific difficulties connected with
felecting the suitable plastic regimes. (see nage 226)
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is known that the general solution of the system of equations
Jf (ree sxisymmetri~ vibrations of a thin elastic shell of revo-
.dtion is made up of two integrals nof the momentless equations
§md four integrals wi‘h a large variability index, The asympto-
tic expressions for thes~ four integrals may be found easily in
intervals which do not contain either so-called reversal points
or singular points of the shell vibration equations., The beha-
vior of the integrals in the vicinity of a simple reversal point
is examined. The equations for the vibrations of a shell in the
form of a dome have a regular singular point at the shell apex,
In the present study, we construct the regular integrals with
large variabllity index at the dome apex, and find their asymp-
totic expressions far from the apex of the dome, We need to know
these integrals in order to determine the natural vibration fre-
quency of the dome,

DD .=v..1473 UNCLASS IFIED

Security Classification




s——e = "

1e. Link A TR cwce |
xgY woRDs

nots] wr | more] wer Jwmore] wr §

Inte§ra1 Equatiocn
Shell]l of Revolution

Shell Vibration
Vibration Frequency

l

UNCLASSIFIED

Security Classification

e AR R,

Adin.




ST g ey

UNCLASSIFIED

SO OF

T

DOCUMENT CONTROL DATA-R&LD
ty closelficotion of d abeect and Inozing annotlation musi 30 entered whon the sversell 1a classified
1- ONIGINA TING ACTIVITY (C 28, REPOAT SECURNITY CLASSIFICATION

Foreign Tec ology Divisic
Alr Force Systems 005mand

-1

28. SROUP
U. S. Alr Force )

3. REPOAT TiTLE

SHELLS OF REVOLUTION WITH A SMALL CENTRAL O G SUBJE
SYMMETRIC AND ANTISYMMETRIC LOADING LR e 10

10. 1sTAN W00 ITATMRNT

4. DESCRMPTIVE NOTES (Type of repert and inclueive dotes)

Translation

.- DRID) (| atRe, e initiel, laei nasre)

k]

Kruglyakova, V. I.

e DA TR

7. TOTAL NO. OF PASES 75, NO. OF REFS

— 37 35

—

F3%57'70'D-%07 Se. ONIGINATOR'S AEFOAT NUMSERISI
8. PROIECT HO. 72301-78

[ X 0. QTHEN W l'.lv n;cli (Axy’ oM numbere that msy be ascigned

s sepoct)

Acc. Nr, L879-66

4

Distribution of this document is unlimited, It may be released to

the Clearinghouse, Department of Commerce, for sale to the general
-ublic. ,

1. SUPPLEMENTARY 00

12. SPONSORING MILITARY ACTIVITY

Foreign Technclogy Division
Wright-Patiterson AF8, Ohio

This article presents a unified method for determining the
stresses near a small central opening in shells of revolution
subjected to symmetric and antisymmetric loads, Primary emphasis
is placed on reducing the solution to a form convenient for
practical applicatYon. In particular, the edge stiffness coeffi-
cients are obtained., In most studies on thls question symmetric
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The problem of finding the natural frequencies of the jongitudinal
vibrafipns of a bar, one end of which is clamped while the other
carries an absolutely rigid weight, leads to finding a given value
for which a giW¥en equation has a nonzero solution, under given
boundary -conditions, Here gamma is the bar material density; 1 is
the bar length; S(x) is the cross section area; E is the modulus
of elasticity; M is.the mass of the bar, For estimatlng the upper
limit of the first (fundamental) vibration frequency, we have the

- simple but in many cases adequately precise Rayleigh formula, which

for the mode corresponding to a static load is a given equation,

It is desirable to have an equally simple formula for estimating
the lower limit of the fundamental frequency, as this would be
useful for practical calculations, Such an estimate is obtained
immediately with the aid of the principle of contracting mappings.
However, this method is not found in handbooks and texts on vibra-
tion theory, and this is the reason for the present article.
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In this article weesolve the problem of forced axisymmetric
vibrations of a circular thick plate under the influence

of uniformly distributed normal forces which are harmonic
time functions applied to one of the faces of the plate.

The boundary conditions on the faces are satlsfled exactly.
Satisfaction of the toundary conditions at the side surfaces
reduces to calculating the coefficients in the expansion of
the displacements into serlies of tfuncticns of the 2 coordi-
nate, where oz is the axis of symmetry.
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In preceding papers a study of the effect of preliminary
plastic deformation on the yleld limit of low and medium
carbon steel established that the shape of the yielad
1imit i1s independent of the loading path, and is a circle
on the Il'yushin plane expanding and displacing in the
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present paper, we present the results of a study of the
effect of preliminary plastic deformation on the yield
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In the present paper, we present the results of a study of the
effect of large preliminary plastic-deformations and natural aging
on the yield 1imit. For the experiments we used four groups of son-
called 'gagarin" specimens of annealed St. 20 steel. The (three)
specimens of the first group were tested in tension tc determine
the basic mechanical properties of this steel. All 27 specimens of
the second group were stretched to a given equation, Affer unload-
ing and recording the new dimensions, 3 samples of the first sub-
group were again stretched up to fallure on the same day. Each of
the three specimens of succeeding subgroups were stretched up to
failure, after aging for a period of one to two months etc, All 27
specimens of the third group were subjected to preliminary stretch-
ing to a given equation and all the specimens of the fourth group
were stretched to a given equation, Arter unloading the correspond-
ing subgroups of these groups of specimens were subjected vo the
same operations as were the corresponding subgroups of the second
group. The test results are shown in a figure and are described
satisfactorily, In this case the parameter A remains constant,

g equzl S0 0,31, and its valuesg are chown by the triangles in a
figure. Thus, we find that the extent of the maximal expansion of
the yield 1limit for natural aging depends not only on the magnitude
of the preliminary plastic deformation, but also on the steel grade,
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Hoff showed the practical value of the concept in which failure
time is determined from an analysis of the unbounded quasi-
viscous flow of a body. Discussion and literature references
on the problem of "viscous" failure are presented. One of the
most important practical problems of this kind is that of tube
failure, Kats found the time for viscous failure of a tube
under the influence of the internal pressure p., A more general
préblem in which the load is made up of the internal pressure p
and’ the axial force P is considered,
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| Tubular specimens were prepared from 55-mm-diameter annealed
rods., A plane stress state at polnts of the specimen cross
section was created by simultaneous application of an axial
force and internal pressure, The axial force was measured
tc within plus or minus 2 percent, the internal pressure to
within 1 kg/cm(superscript 2)., The longitudinal and trans-
verse deformations of the specimen were measured by wire re-
sistance pickups with base lengths 24 mm and bridge ampli-
fiers, In order to account for the possible slight eccentri-
city in the specimen installation, the longitudinal gages
were mounted along two opposite generators,
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Tiwe yleld condition expressed in terms of forces and moments
(®*finite relation") is of fundamental importance in the theory
of limit equilibrium of ideally plastic shells, At the present
time these finite relations have been formulated for the cases
of ‘the Mises medium and for the Tresca-Sairt medium, and also
for certaln other types of vlastic media, These finite rela-
tions (within the framework of the usual hypothesis of thin
shell theory they may be considered as exact relations) have a
very complex structure, In this connection considerable atten-
tion has also been devoted to the question of the approximation
of these exact yleld conditions by means of relatively simple
surfaces which are more convenient for application,
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