
APOSE 70-2295 TK

QD
O

WRWEGIE-MELLON UNIVERSITY

9 RESI-ARCIl IN IKFORMATlüN ?R0CFSS1«G AND üCSiPU^ER SCISSCE

'

VINAL TECHNICAL REPOItT

Under ArüSU Contract TF44620-67-C~005Ö

D D C

's SEP * 1970 i

Jk'iaiiinnLlü

Rgproduced by the
CLEAttlNfi HOUSE

(or Föderal Scientific & Tochnica
information Springfield Va. 2215

Sponsored by

Advanced Research Projects Agency
ARi'A Order No. 827

1, Thlsaoc

leaS6 und .axe ; i^ ^

nth33 bean app-ved for pabll«

re

BEST
AVAILABLE COPY

1. Research in Programming at Carnegie-Mellon University during ''968-1970

A Three team programming efforts during the past two years have

been the development of BLISS—a systen building language on the PDP-10;

iC --a conversational system on the IBM/360; and L*--a system building

/ language on the PDP-10.

\/ ' A number of additional individual programming language and system

\/ efforts have also been accomplished by graduate students as their doctoral

dissertation work.{;These dissertations have appeared, or will appear

shortly ss ARPA repots.

Progress in programming is measured by results in the following

problem area ;

(1) The definition of new language and the creation of a "running''

system for it on one or more computers.

(2) The defin1' u of new methodologies for building "running"

programming systems f ^.preferably many) language(s).

(3) The Sv. y and formalization of one or more aspects of pro-

gramming languages whicn are common to many specific languages.

During the contract period, work was performed in the above-

mentioned areas.

(1) Progress In language definition

New languages are defined both to unify linguiutic experience

acquired with a diversity of languages and to create a base for new patterns

of communication betwsen aan and computer. Of course, there is always a

tinge of the former motive in an activity of the latter kind. Most of the

language definition work at Carnegie during the contract period was, however,

focussed on the latter goal. Little effort was made in defining new "total"

languages in the «Igol, HSr2, FORMULA ALGOL, PL/I, Algol 68 style.
2

(a) LC (Language for Conversational Computing) was defined

and created on the IBM/360-67. Here the goal was to exploit the execution

methodology of time sharing in the execution of programs written in a

problem solving language. The thesis--the mode in vhich programs written

in a language L are executed strongly influences the language L—guided

the definition of LCC as a language for conversational computing in a time-

/*-

Sharing environment. A source language version of the systsm Is available

on magnetic tape. An ARPA report on LCC will be issued shortly and two

brief papers about it have been published:

1, J. G. Mitchsll, A. J. Perlis and H. Van Zoeren,
2

'•LC , a Language for Conversational Computing, in Interactive Systems for

Experimental Applied Mathematics," edited by Reinfelds and Klerer, Academic

Press, 196S.
2

2. J. G. Mitchnll, "LC ", Computer Science Research

Review, 1969, Computer Science Department, Carnegie-Mellon University.

(b) BLISS was defined and created on the PDP-10. The

increasing complexity of languages and systems has made it mandatory to

improve the tools with which they are made. BLISS is a language meant to

satisfy the programmer's need for creating efficient machine code without

using macldine assembly language. As such It provides the syntactic control

elegance of Algol for manipulation of machine data structures (here the

PDP-10) in such a way that Its compiled programs are tightly organized and

efficiently coded machine language programs. The test of such a system

building language is, of course, the efficient systems constructible with

it. Thus:

1. The BUSS compiler h^s been bulls in BLISS.

2. A WATFOR compiler has been built in BLISS.

3. An APL system is being built in BUSS.

Interestingly enough the WATFOR compiler was written by one man

in about three months, though measurements of other efficiency criteria

have not yet been obtained.

An ARPA report on BLISS has been produced. The BLISS system

operates under the the PDP-IO time-sharing monitor.

(c) L* is a system building language aleo created on the

PDP-10. The systems for which L* is intended are the large, dynamically

organized, artificial intelligence systems which are generally built by

one man. The design motifs here are simplicity and boot-strapping. The

system initially provided to the user is made from about 1000 machine

words and all els« follows from that by an individually organized and

„3-

controlled boot-strapping process. Not only may systems be expanded,

extended and grown, but Lney may be reorganized, compressed and distilled

to reflect the influences of changing goals, improved techniques and

better understandings It is, by tht way, the capability of compression

and distillation that has been missing from almost all other extensible

language systems.

The system is currently under test by a »jontiolled group

of users.

(2) Progress In system building methodology

Two of the language efforts (BLISS and L*) certainly contri-

bute to system methodologies. An additional effort in system building

methodology by a graduate student (Mr. Rudolph Krutar) is much more

language Independent. Called "conversational system programming," this

methodology envisages systems as being constructed from "off-the-shelf"

program modules by plugging them together as co-routines. Each of these

modules has a number of ports for input and output of data an* the modules

are linked through their ports. Constructing a system is like wiring a

patchboard in an anabg computer. Once wired, pushing the "start button"

causes the entire synchronized system to execute.

While it has been a long time goal in software to develop an

"off-the-shelf" programming methodology, it has thus far been more of a

dream than a reality and this work promloas to bring that dream very close

to fruition. The system was originally intended as a tool for development

of an extensible formula manipulation language, but now appears more

valuable as a general methodology than for the specific purpose for which

it was originally intended.

(3) Programaiag languages can be characterized by ehe vari-

ability they make available to the programmer. Several pieces of research

have been completed by graduate students which have focussed on the issue

of variability and its convsr3e-~cor.stancy.

David Fisher in his thesis, "Control Structures for Programming

Languages," developed tools—and a carrier language--for describing control

in programming languages. Whereas control had been taken as fixed in most

-4-

languages. Fisher has revealed how the programmer in fashion control that

is most apt for the task being programmed. This thesis has appeared as an

ARPA report (AD708511),

Jim Mitchel. in his thesis, "The Design and Construction of

Flexible Efficient Interactive Programming Systems," analyzes how inter-

pretive conversational systems can be modified to provide compilation—

with the resultant increase in running efficiency—for those parts of a

program, e.g., in LCC, which are slowly changing, and still keep the pro-

grammer unaware of which parts are compiled; and even where compiled, the

program is modifiable in the same flexible ways as when it was interpreted.

Mitchell also treats methods of bootstrapping such systems into existence.

His thesis has been released as an ARPA report, (f.o AD number has as yet

been assigned.)

Gary Lindstrom in his thesis, "Variability in Language Frocebsors,"

has considered the general question of variability in language processors:

(a) Freedom of base language selection: it should be
possible to apply this system to a wide range of
existing processors.

(b) Program representation flexibility: several inter-
pretive execution levels should be avpllable for the
source language program.

(c) Incremental program structure: it is desirable for
the program to exist as a variable collection of inde-
pendently compiled segments, so as to permit mid-
execution program recoroposltlon.

(d) Dynamic program organization: the textual arganiza-
tlyn of the source program should be selectively
replaceable by an organization based on execution
sequence.

(e) v ogram execution ramification: it should be possible
to generalize the concept of program execution to
include several interacting but independent subexecu-
;:ions.

(f) ;'rogr?mmer integration into execution: the relatlon-
ship between the program and the programmer should be
s synmetric one, in which neither possesses non-
-^ilegatable control over the execution.

-5-

He has developed a methodoiogy for constructing highly variable

language processors which goes far beyond what is currently available in

systems. His thesis is to be released as an ARPA report.

Anotier aspect of progranming languages is the correctness of

programs written in them. A natural goal of computer science research is

to develop a program for proving the correctness of sets of programs. The

first such effort is describe' in the thesis, "A Program Verifier," of

James King. While the language which can be treated is a simple one, the

techniques used are applicable to real languages. A major next step will

be the inclusion of functions in programs whose correctness is being proved.

This thesis has been released as an ARPA report (AD69924&).

The thesis, '"Constructing Programs Automatically Using Theorem

Proving," of Richard Waldinger deals with the creation of a program which

will write programs from a problem statement—another major goal In Com-

puter Science. This thesis has been released as an ARPA report iAD597041),

2. Research in Artificial Intelligence at CMU during 1968-70.

Progress in the field of artificial intelligence tends to center

around the construction of total systems which demonstrate new sets of

capabilities. Almost all such demonstrations fit one of four broad types:

(1) Competence In a new task ('-«main

(2) High performance, usually on a nerrow task

(3) Competence over a wide area — generality

(4) Competence in a task of applied interest

Much rarer ara attempts to evaluate particular reasoning mechanisms or

attempts to put forth a theory for some class of mechanisms or some task

domain. The last type or. the list is a relatively recent addition, if we

discount the close relationship bstw^en artificial intelligence and cog-

nitive psychology, which has existed from the beginning.

The work at CMU during the last two years has members In all

four of the above categories.

•6-

New Task Dotnalna

The area of apatial design has been of interest at CMU for

some time, primarily because of the presence of Charles Eastman, an

architect, who held a joint position on the Computer Science faculty

until Icist year. Eastman has attempted to anderstand how problems in

design are specified by studying human design behavior (Eastman, 1968),

The main technical issue is how to represent space inside the computer

so that it can be manipulat*. d with anything like the flexibility that

humans use. One system has been developed by John Gra-ion (1970). Another

is nearing completion (Pfeff Korn), The latter is aimed at cha problem

of designing the layout for computer facilities (i.e», the locations of

central processor, tapes, passageways, etc.),

A second task domain is that of progrimming. It is strange,

to say the least, that the field of artificial intelligence has rather

completely neglected the task of programruing. A key issue has been thai

the program only provides a representation of the solution» and not of

the problem. How is the goal to be stated for a programming task?

Several answers have now been proposed. Ota of them, by Bob Floyd (1967),

is embedded In an idea called the verifying compiler. This is a program

that take3 another program as input and attempts to prove that the pro-

gram indeed does what it should, A verifying compiler system was con-

stjcucted by King (1969) as his thesis, which realizes these Ideas in a

very impressive way. A related notion is to view the problem of program-

ming as the task of proving a related theorem in a logical system. Given

this proof, i^ should then be possible to 3xtract out the elements for

the program itself. This idea was realized in a thesis by Waldinger (1969),

Both the efforts by King and by Waldinger represent important connections

between artificial intelligence and the theory of programming (as repre-

sented, for example, by the work of Manna, discussec" jlsevhere in this

report).

High Performance

The most important effort here is the research on speech recog-

nition by Professor Reddy, He joined CKU in the Fall, 1969. from Stanford,

-7-

where he had an active prcgrara in speech recognition systems. He has

spent the year building up his laboratory in connection with the new

PDP-10 facility. Thus, there is little research to report. Two graduate

students from Stanford accompanied him here and are doing their thesis

work on aspects of speech recognition. The new system being buil . by

Reddy here represents a third complete iteration in terms of program

organization. The system built at Stanford showed impressive recognition

capabilities, so that it is appropriate to consider this effort as a long

range attempt to construct a high performance speech recognition system.

Chess has a well established position as a k^y problem in

artificial intelligence. Enough people have worked on it, and enough

diacussion on the problems have occurred in the literature to make it

continually fruitful With the efforts of Greenblatt at MIT, chess

programs have reached a level of good club play, and it no longer is of

interest just to put together a chess program. One is strictly aiming for

high performance. We now have a chess pxogram in this class, developed

by Hans Berliner (a chess player of substantial caliber). It recently

played in a ci'iss tournament in Detroit, and in its present form it

appears not to be quite as good as the present Greenblatt program. We

expect to continue research into its structure and performance.

Generality

Work on the General Problem Solver (Ernsät and Newell, 1969)

terminated In 1968. However, since then there have been two efforts in

the arer or generality. One of these is a program developed by R. Fikcs

(1969, 1970) called REF-ARF, which takes as input an algebraic prograamiing

language (Algol-like) that has been augmented to permit variables so it

can state problems (i.e., what values of the variables make the program

terminate successfully?) This is a natural language for stating many

kinds of problems. The prchlem solver takes the program as iiput and

attempts to discover the correct values of the variables in the program.

The program is quite successful and has been run on a wide variety of

problems (Fikes, 1970, gives descriptions and statistics on 18 problems).

The second effort is a thesis by Donald Williams (1969) on analogy prob-

lems, such as occur in intelligence tests. The task for the program was

not to do a pprHcular kind of analogv problem, but to accept any of the

variatiot that occur in the tests. (The program was limited to working

on formal analogy oroblems, not involving the meanings of words.) The

program was given the instructions to a particular test by being given the

preliminary worked examples that occur in such tests to be sure that the

test-taker uaderstands the problem task. The program Inducts the nature

of the particular analogy problem from these examples and then goes on to

apply this knowledge by doing a sequence of problems.

Applied Tasks

The stock of knowledge in artificial intelligence is beginning

to approach the level at which applied tasks can be considered. The most

outstanding example is the recent work at Stanford by Feigenbaum and his

colleagues on Dendral, a program for inferring the structure of organic

iiolecules from mass spectral data. Several efforts at CMU fall under thia

same rubric, though all of them are still in their early phases. They

could all have been considered under the heading of "new task domains,"

but it seems more revealing to consider them as examples of attempts to

move artificial intelJ igence in an applied direction.

Work is in progress on a program to design operating systems

(Freeman, 1969). Work is also under way by Moore and Newell to construct

a system that (in some sense understands the domain of artificial intelli-

gence at the level of understanding the structure, function and performance

of the various programs that make up the field. The applied motivation

here is one of teaching and posing problems to students who wish to learn

about artificial intelligence. There are severe conceptual difficulties

in accomplishing Lhis aim—i.e., in building understanding-programs for

complex domains ot knowledge. At least one other effort at CMU ii attempt-

ing to shed light on this: work by W. Mann en what is required to under-

stand the domain of sorting algorithms. A third applied effort is under

way by D. Waterman and A. Newell to build a system ior analyzing human

problem solving data. This program will have to have considerable

inferential powers, so that it is in fact an exercise in applied artificial

-9-

intelllgence.

All of the above tasks are ambitious, and require a substantial

phase of basic research for their successful accomplislunent. They are

applied efforts primarily in accepting a task domain that has applied

interest.

Other Strands

Organizing the efforts in artificial intelligence in the four

broad categories used above leaves out two important research efforts.

One of these Is the work on predicate calculus theorem proving, which is

an active domain of artificial intelligence. Iwo faculty members have

contributed heavily to this area ('Loveland, 1969; Andrews, 1969). The

other is the work in cognitive psychology at CMU, which depends heavily

on the information processing concepts that have emerged from artificial

intelligence. Most of th'.s work is supported by other funds, although

the work by Waterman and Newell cited above is a partial exception. How-

ever, the efforts work hand in hand. For insta. '.e, there Is work on thc

perceptual and memorial organization of chess players, which is yielding

important clues about how to organize chess prograois. Also, a major effort

during the last two years has been the preparation of a book which describes

an information process-'ng theory of how humans solve problems and is

heavily dependent or. work done at CMU over- the last ten years (Newell and

Simdi, in press).

3. System?

The analysis and desigu of systems--in their totality—is au

increasingly important activity in computer science. In the thesis

"Design and Behavior of TSS/'?: A PDP-8 Based Time Sharing System," Ad

Van de Goor produced a detailed analysis of a system he designed which

serves as an admirable model for system designers. This thesis has been

released as an ARPA report (AD707367)

In the thesis "The Descriptior, Simulation, and Autcnatic

ImplemenCation of Digital Computer Processors," John Darringev developed

a language for describing the behavior of digital computer processors

Irrespective of their even.ual implementation. The prof-rams — written can

be translated into hardware specification fov ritual implementation. This

thesis has been released as an ARPA report (AD700144).

REFERENCES

Andrews, Peter, "On Stnplify.icg the Matrix of a Wfft" Journal of Symbolic
Lo&ic, 33, (2), 180-192, (Jane, 1968).

Andrews, Peter, "Resolution 'ilth MerRins." Journal of the Association for
Computing Machinery, 15, (3), 367-3«!, (July, 1968).

Eastman, C. M., "Cognitive Processes and 111 Defined Problems: A Case
Study from Designs," Proceedings of International Joint
Conference on Artificial Intellieence. edited by D. E. Walker
and L. M. Norton, The Mitre Corporation, (1969).

Ernst, G. W. and / Newell, GPS; A Case Study in Generality and Problem
Solving." Academic Press, Wew York, (1969;.

Fikes, Richard E. (Ph.D. Dissertation), Research Mathematician, Stanford
Research Institute, "A Heuristic Program for Solving problems
Stated as Nondeterministic Procedures," 1969, (AD 688604),

Floyd, Robert W., "Assigning Meanings to Programs." Proceedings of
Symposia in Applied Mathematics, Volume 19; Mathemetical
Aspects of Computer Science, edited by J, T. Schwartz, American
Mathematical Society, Providence, Rhode Island, 19-32 (1967).

Grasen, John, (Ph.D. Dissertation), "Methods for the Computer-Implemented
Solution of a Class of 'Floor Plai* Design Problems.""

King, James Cornelius, (Ph.D. Dissertation), ?fes*>arch Staff, T. J. Watson
Research Center, IBM Corporation, "A Program Verifier," (AD 699248)

Loveland, Donald W., "A Simplified Format for the Model Elimination Theorem-
tiToving Procedure," Journal of the Association for Computing
Machinery, 16, 349-363, (1969).

Loveland, Doncid W., "Theorem-Provers Combining Model Elimination and
Resolution," Machine Intelligence, edited by Meltzer and Michie,
Edinburgh University Press, 4, 73-86, (1969).

Loveland, Donald W., "Mechanical Theorem-Proving by Model Elimination,"
Journal of the Association for Computing Machinery, 15, (2)
236-251, (April, 1968).

Ualdinger, Richard J. (Ph.D. Dissertation), Research Mathematician, Stanford
Research Institute, "Constructing Programs Automatically Using
Theorem Proving," 1969, (Ad 697041),

Williams, Donald S. (Ph.D. Dissertation), Systems Specialist, RCA Corpora-
tion, "Computer Program Organization Induced by Problem Example,"
1969, (Ad 688242).

smj-issifiifi

I BOCUHSMT COHTROi PAT A • * M)

lit.. G^-a'Jt'

■ Carnegie->;-Hon University
I Di-pariiiien!; of Gonip.jtc;r Science
f ^ Lfcl^bjlfJ^S .^'-nn.'-^lv^inia 15213 __ i

RESEAKCH IN INFüllMAlIÜN PROCESSji.C AKJJ COMPUtEB, SCXÖfGS

USCLASSTFIED

I Scientific Final

j Advanced Research Projects Agency

it-. i<»;ncRT D\T'

y August 197^

F^4620-67-0-0053

9718
f "■ 61I02F

6iJ450lE

16- DISTBItHITION f AT'/MCMT

2. TOtAU HO. O* ^ÄC|-

10

17it lif». OF BEFS

! 13

ARPA Ordef Ko. 827

AF0SB__2fl_. g^y
1. This docnn.ent has he en approved for public

i release and sale; its distribution is unlimited.

trrm

Air Force Office of Scientific Research (SRKp
1400 Wilson Boulevard |

Arlinstcn, Virginia 22209
A !sST-!A\ r

This is the Final Scientific Recearch for the rese.-irch ic progran-raing .TC

Carnegie-Me 11 on University -luring 1963-1970.
la

\J1JC.1A.SSIFIKD

