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ABSTRACT 

A linearly polarized antenna cannot radiate power uniformly in 

all directions. However, by controlling the aperture excitation, as 

is done in an array, it is possible to reduce the maximum gain and 

approach conditions for isotropic radiation.  A numerical method is 

presented which generates a family of designs which depend on a param- 

eter a.  As a approaches zero, the radiation pattern tends to become 

more isotropic.  However, the efficiency is reduced and the sensi- 

tivity of the pattern to errors in the aperture function is increased. 

In some cases this sensitivity is so high as to make the result worth- 

less.  The design, therefore, must be a compromise between closeness 

to conditions of isotropic radiation on one hand, and losses and sen- 

sitivity to errors on the other. 

The sensitivity to errors, expressed by the pattern deteriora- 

tion for a given level of error, has been evaluated by a numerical 

experiment (Monte Carlo method). A general relation has also been 

established between the sensitivity and the losses in the antenna. 

It agrees with the numerical experiment and can be used as a guide 

to choose the regular!zation parameter a. 

Accepted for the Air Force 
Franklin C. Hudson 
Chief, Lincoln Laboratory Office 
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1.  INTRODUCTION 

A linearly polarized antenna cannot radiate power uniformly in all 

directions.  This condition of isotropic radiation, or unity gain, is 

also impossible if one specifies the axial ratio of the polarization 

ellipse.    However, accepting the existence of nulls in the radiation 

pattern, one may ask if it is possible to reduce the total solid angle 

in which the gain falls below a certain level.  This is equivalent to 

reducing the maximum gain. 

It will be shown that it is, indeed, possible to make the maximum 

gain as close to unity as one wishes.  However, the practical difficul- 

ties in doing this are the same as those encountered in trying to increase 

the gain of an antenna indefinitely.  To reach a certain level of per- 

formance (gain or lack of gain), one must have an antenna of sufficient 

aperture.  If, for a given aperture, we try to improve the performance 

above a certain level, we have to increase drastically the antenna cur- 

rents (or the near field).  As a consequence, both the losses and the 

sensitivity to construction errors are increased.  This is character- 

istic of the supergain problem.  It occurs more generally anytime one 

tries to shape a radiation pattern too accurately.  In particular, it 

occurs in the "minimum gain" problem considered here. 

The need for an isotropic radiator arises when one disposes of a 

certain amount of power and one wishes to produce a radiation intensity 

higher than a given level in a solid angle as large as possible.  This 

may be for the purpose of reaching a target whose direction is not known 

a priori.  Conversely, in the receiving case, one may want to receive a 

sufficient signal from a source of given power and unknown direction. 
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Although the method used could be generalized, we shall consider 

in this report a colinear array of dipoles as shown in Figure la.  From 

the far-field power pattern of this antenna, which is shown in Figure lb, 

and some gain level G , one can read the total solid angle Q   in which 
m 

the gain falls below G .  The plot of G(fi) versus ft is shown in Figure 
m 

lc.  In this plot, (4TT-f2) is the total solid angle in which the gain 

exceeds G . 
m 

Given the curve G(ft), the total available power P watts, and the 

desired radiation intensity I watts/steradian, the useful angle (4TT-Q) 

is defined by 

^- G(4Tr-f2) = I 

or 

4TTI 
G(4ff-ft) - 2%r - G . P     m 

If the ratio I/P is small, ft will be small for any design.  However, 

when I/P is large, then special designs  become necessary in order to 

produce an intensity I in as large a solid angle as possible. 

In Figure.lc, the shaded portion under the gain curve has an area 

equal to 4TT.  The total area of the rectangles ABCD and DEFH exceeds 

that of the shaded portion.  Accordingly, the following inequality may 

be written, 

(47T-ft)Gw + aG > 4TT 
M    m — 

or 

Q  <_  4ff (GM-D/CGm-g), 



-a +a 

(b) 

Solid  Angle'&oCf 

(C) 

Figure 1.  Schematic representation of array and its far-field gain 
and power patterns. 
(a) Array of colinear dipoles. 
(b) Far-field power pattern. 
(c) Curve of gain versus solid angle. 



where G is the maximum gain. This last inequality implies that for 

ft •*• 0, the maximum gain G must approach unity. 

To obtain an indication of what can be achieved practically with a 

moderately short antenna (1 wavelength), this report considers the syn- 

thesis of linear antenna arrays made of dipoles aligned in some direc- 

tion, Ox, as shown in Figure la. The resulting pattern has nulls in the 

directions +x. The problem is to reduce the cones where the gain is 

below a certain level. A general method based on the concept of regular- 

(2 3) 
ization '  was developed in the Antenna Laboratory under NSF Grant 

GK 2120.  It will be applied to the problem. 



2.  STATEMENT OF THE PROBLEM 

The general case of a pattern function gn(5) defined over the vis- 

ible region[-k ^ { _< k] will be first considered, and the numerical 

results will be specialized to the case 

g0(C) = 1  [-kiC£k] (1) 

where the gain is equal to one over the whole visible region. A source 

distribution f(x) representing an array of N elements over the aperture 

[-a <_  x _< a] is of the form 

f(x) = I  f 6(x-x ). (2) 
i  n    n n=l 

The problem is to determine the {f } such that the pattern function 

of the array comes close to g_(£). 

The far-field pattern of a linearly polarized source f(x) is given 

by 

3 i£x g<0  = Tf = e<0  /    f(x)eli;x dx      [-k<5<k] (3) 
-a 

where C = k sin 9.  The first factor e(0   is the element pattern. 

For a source distribution described in Equation (2), the far-field 

pattern is given by, 

N 
g(0 - Tf - I    f E(C) (4) 

n-1 n n 

where 

gn(C)  = e(OeUXn [-k<?< k] 
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The function g(£), therefore, belongs to a finite dimensional vector 

N 
space 0 spanned by the N elements g (£) (1 <_ n <_ N) .  In general, gn(S) 

does not belong to this subspace and the problem is to determine the 

complex coefficients {f } such that the pattern given by (4) comes close 

to g0(O- 

In one method proposed in the next Chapter, the coefficients {f } 

are determined such that the corresponding pattern g(0 is the orthogonal 

N 
projection of gn(C) on the finite dimensional subspace $  •     This gives 

the least-squares approximation to gn(£)« 

This straightforward projection, however, may result in a solution 

with a high Q factor, that is, excitation currents {f } that are very 

large for a given power radiated.  These currents vary widely from ele- 

ment to element, and the resulting far-field pattern becomes very sen- 

sitive to errors in construction. 

(2) 
To avoid this difficulty in problems of the same type, Tihonov 

has proposed a method of regularization which consists of imposing some 

restrictions on the acceptable solutions, that is,on the aperture functions f. 

The regularization algorithm depends on a parameter a such that for 

N 
a = 0, we have the direct projection on the subspace t  . As a increases, 

a set of solutions is obtained with decreasing values of the Q factor. 

This set of solutions invariably produces far-field patterns that are 

further away from the desired pattern but are also less subject to 

ohmic losses and less sensitive to errors in construction. 

To give a precise meaning to the concept of projection and of Q 

factor, one has to introduce appropriate norms in the space Crof source 

functions f • {f } and the space CXof far-field patterns g(5)«  In both 



spaces, it is natural to choose the L„ norm which can be interpreted 

in the space Q  as the power radiated by the antenna.  Thus, 'J 
1,2   N   * 

f   - 2 f f (5) 11     n  n n n=l 

and 

+k 
||g||2 = \  ;   g*(0 g(0 de.        (6) 

K -k 

The Q factor for a given design is represented by 

Q- llfll2 / llgll2. (7) 

Because of the element pattern, this factor is not always larger than 

one. 



3.  METHOD OF SOLUTION 

Tihonov's procedure consists of minimizing the functional 

Ja(f;gj = l|g-g0ll
2 + a||f||2 

.  k   N N    - 
= k i   I \   fnV*ol  d? + a Z lfJ (8) 

-k  n=l n=l 

where a is a positive constant referred to as the regularization param- 

eter. 

By setting the first variation of J (f;g) with respect to f - {f } 

equal to zero, the following equation for f • {f }, the minimizing set 
n 

of excitations, is obtained, 

\   f. £ ' «nCd5 + afa =I^0'^d^      (1 < n, m < N) 
n=l  n  -k m    -k 

where, since g. is symmetrical, the excitations {f } are assumed real, 

In matrix notation, 

(G+aI)fa = GQg0 (9) 

where G is an (N x N) square matrix with terms G  given by 

l  k     *   i^^xr,~xm^ 
G      =£   f  e(^)e(C)e   n m dCt, (10) mn  k . -k 

and I is the identity matrix of dimension N. 

The column matrix gQ = {gQ }  (1 <_ j _<• M)   represents   the sam- 
j 

pled values of the function g at the M equally spaced points over the 
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visible region [-k _< £ <_ k], and G_ is a (N x M) quadrature matrix derived 

to perform numerically the integral 

-k 

for any given function gn(£). 

Equation (10) shows that the G  are the Fourier Transforms H(x) of n mn 
2 

h(0 • |e(£)|  evaluated for x - x . 

G  = H(x -x ). mn    n m 

When the elements are dipoles in the x direction, 

Jl    1/2 
e(0 = cos 6 = (1 - \ ) (11) 

k 

and 

J~/9(kx) 
H(x) = 2/(2-)   '   3/2 

(kx) 

4  r sin(kx)     ,, . , ,. „. 
 9 I (C\ cos(kx)].          (12) 
(kxr   K     ' 

To derive the elements Gn  of the Quadrature matrix G_, the func- 

tion gn is sampled at equally spaced points over the visible region 

[k <_  £ <_ k] and approximated by straight lines over each interval.  For 

the range, 

5J-I -5 - 'i 

g0(O "£ [gjU-5;1_1)-gJ_1(5-eJ)] 



10 
where h is the length of each interval.  For the range, 

'i -5 - Vi 

!0
(« =h tSj+l^-^'-Sj^-^+l^ 

and the  terms G-.       are given by 
ij 

1 1 5j £2     1/2  H%± 

j+1 £2     1/2  Uxi -/        (£-£ Jd-ijre      \u>. 
6jj k 

Since these integrals cannot be evaluated in closed form, they were eval- 

uated by Simpson's three-point quadrature.  From (9), 

fa = (G+al)"
1 GQg0. (13) 

Once a choice for a is made, Equation (13) gives a unique solution 

f for a given g_.  This solution f has a far-field pattern g , given 
a 0 a a 

by 

g = Tf (14) 
a    a 

and a corresponding Q factor. The function f has the property that, 

for this value of Q,its far-field pattern g yields the least-squares 

fit to gQ. 



4.  NUMERICAL RESULTS 
11 

In order to study the relationship of a to the sensitivity of the 

design to errors, Equation (13) was solved for a number of values of a 

ranging from 0 to 10 

The magnitudes of the element excitations for arrays of five and 

seven elements are reported in Tables I and II,respectively, for various 

values of the regularization parameter. The element pattern e(£) is 

given in Equation (11). 

TABLE I.  'MAGNITUDE OF ELEMENT EXCITATIONS FOR THE FIVE-ELEMENT ARRAY. 

Element 
Number 

a  = 0 a = 10 
-3 

a = 10 
-2 

a = 10 
-1 

1 .64 .35 

2 -2.25 -1.47 

3 4.28 3.26 

4 -2.25 -1.47 

5 ,64 .35 

-.15 -.28 

-.11 .335 

1.47 .86 

-.11 .336 

-.15 -.28 

The far-field pattern g corresponding to each solution f is eval- 

uated using Equation (4).  Since it is assumed that only power 

i i2 
P = is available to the array for radiation, the excitations 

{f } are normalized such that 
a 
n 

Let f = {f  } and g be the normalized sources and far-field patterns, 
a    a       a 

n 2 
respectively.  The relative error e due to regularization is expressed 

_      o 
by the norm of the error IIg -g_I " divided by that of the desired 

' • a U ' 
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TABLE II.  MAGNITUDE OF ELEMENT EXCITATION FOR THE SEVEN-ELEMENT ARRAY. 

Element 
Number 

a - 0 a = 10~6 a = 10"5 a - 10~4 

1 -6.71 -1.58 .57 .87 

2 35.07 10.19 -.29 -1.80 

3 -81.46 -26.53 -3.36 .07 

4 107.20 36.88 7.22 2.79 

5 -81.46 -26.53 -3.36 .07 

6 35.07 10.19 -.29 -1.80 

7 -6.71 -1.58 .57 .87 

Element 
Number 

a = 10 
-2 

a - 10 
-1 

1 

2 

3 

4 

5 

6 

7 

.05 

-.55 

.43 

1.08 

.43 

.55 

.05 

-.23 

-.01 

.41 

.62 

.41 

-.01 

-.23 

pattern ||g. 

£a = IIIa-S0M
2 '   ll80112 

1
 r    r   I2 AC   I    I I k_£ lg-gol d5 / Hgol (15) 
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Next, in order to study the sensitivity of each design to errors in 

construction, a random relative error _v is introduced to the source func- 

tion, and these excitations with noise are denoted by f   and given by 
n 

f   - f  (1+v ) (16) 
av    a     n 

n    n 

where v = {v } are random complex numbers with a Gaussian distribution 
—    n 

E(v ) = 0 
n 

*     2 
E(v  v ) = v 6 

n m      nm 

The far-field pattern corresponding to sources {f  } is denoted by g 
av °av 

n  2        2 
The excitations {f  } are normalized such that llg   I  = IIg_II . 

av '' av"    '' 0'' 
n 

Let f  = {f  } and g  be the normalized sources and far-field pattern, 
av    av       av 

n 2 
respectively.  The relative error e , due to the intro4uction of random 

noise, is expressed by the norm of the error llg -g  " divided by that 

of the desired pattern. 

2   , i-   - i , 2       i,2 
ev = I 18av-*aI I I   I Ig01 I , (17) 

and the corresponding relative errors due to regularization and the intro- 

^2 
duction of random noise are expressed by the norm of the error ||g -g.|| 

2 
divided by ||gn|| : 

2        IT II2   /   i I      II2 

et •   Il8ov-80M     /   I 1801 I   • 

For each design, the Q-factor is calculated with the presence of random 

errors and denoted by Q , where 

Q - II* II2 / Mi.JI2- US) 
1L oiv ' '    ' ' av 
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In each instance, 25 sets of random errors were introduced and the aver- 

2  2 
age of the quantities e , e , and (1/Q ) were calculated over the 25 trials, 

where 

2 2 <e > 
v. av 

~2 
et = 

<c2> t av 

1/Qv- <1/Q > xv av 

(19) 

The quantities e , e , and e are illustrated schematically in Figure 2. 

In this diagram, vectors are understood to represent functions and straight 

lines, distances in the sense of the L„ norm. The curved lines represent 

operators mapping the space of source functions into the space of far- 

field pattern functions.  The three vectors g», g , and g  are drawn 
0  o     av 

with their tips on the same circle to indicate that their L_ norms are 

equal. 

- o    i—  2 
The far-field power patterns ||g II and g   "of the arrays for 

a      ' av' ' 

various values of the regularization parameter a  are shown in Figures 3 to 11. 

Also in the same figures, the power pattern intensity of an elementary 

dipole is shown for comparison.  The horizontal line drawn for a radia- 

tion intensity = 1 is that of an ideal isotropic radiator.  It is 

pointed out again that all pattern functions are normalized such that 

their L„ norms are equal. This makes their radiated power, represented 

by the area under the curve, equal in all cases.  In Figures 12 and 13, 

2  2 ~2 
curves for the quantities e , e , e and Q are shown as a function of the 

a  v  t 

regularization parameter a for the arrays of five elements and seven ele- 

ments, respectively. 
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Q-Factor 

Number of elements:5 
Aperture size : 1 X 

10 10 10 10 

REGULARIZATION a 

2  2     ~2 
Figure 12.  Error parameters e , ev, and e , and Q vs. regularization parameter 

a for the five-element array. 
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Number of   elements:7 

10 10 10 10 10 

REGULARIZATION a 

10 10 

2  2    ~~2 
Figure 13.  Error parameters e , ev, and e , and Q vs. regularization parameter 

a for the seven-element array. 
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From the far-field power pattern intensity |g | " in Figures 3 to 11, 

curves for the gain vs. solid angle, as described in the introduction, 

were derived. These curves are shown in Figures 14 and 15 for the five- 

-2 
and seven-element array, respectively, for the cases a = 0 and a • 10 

The gain curve for an elementary dipole is also shown for comparison. 

For example, in Figure 14, for a directive gain level of 0.8, the total 

solid angle in which the gain of each of the cases considered exceeds 

the 0.8 gain level is as follows: 

Ideal isotropic radiator 

Five element array (a • 0) 

Five element array (a = 10 *) 

Elementary dipole 

,-2, 

4 TT 

3.82TT 

3.36IT 

2.72IT. 

A plot of 1/Q vs. 1/Q is shown in Figure 16. 
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5.  COMMENTS ON THE NUMERICAL RESULTS AND THE CHOICE OF a. 

The first observation is that using an array does,indeed, improve 

the low gain performance.  The gain curves in Figures 14 and 15 for 

a = 0 come closest to that of an ideal isotropic radiator among all 

designs considered.  Comparing the gain curves of the five-element to 

the seven-element array, only a slight improvement in low-gain perform- 

ance is observed in the latter.  The aperture size in both cases, how- 

ever, is the same. 

The performance of those designs corresponding to relatively small 

values of a looks, indeed, promising.  However, in the presence of random 

errors in the currents, the performance of these designs deteriorates 

drastically, as shown in Figures 3 to 4 and 6 to 9.  In such instances, 

a single element has a better performance than the array! 

In deciding which value of a to use, it becomes imperative to study 

2  2 
the behavior of the quantities z   , e , and Q.  For a constant power radi- 

ated, the Q-factor is directly proportional to ohmic losses while the 

2 
error e is an indication of the sensitivity of the design to error. 

2 
In Figures 12 and 13, as a approaches zero, e  decreases, and both Q and 

2 
e  increase.  For the larger values of a, these trends are reversed. 
v 

2  2 
The design then must be a compromise between e , e , and Q.  A good com- 

—2 
promise is that value of a which minimizes the total error e .  For the 

_3 
five-element array, this corresponds to a = 3.54 x 10  , Q = 2.25, and 

2 -3 
e = .008 and, for the seven-element array, to a = 1.6 x 10  , Q = 4.0, 

2 
and e • .0045.  For these particular values of a, the seven-element 

v 

array has larger ohmic losses, but is less sensitive to errors than the 

five-element array. 
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It is observed in Figure 16 that the introduction of random errors 

in the element excitations produces a decrease of the Q-factor, that 

is, an increase of the power radiated for a given norm of the sources. 

For values of Q less than 10, the reduction is very small. For values 

of Q larger than 10, the reduction becomes appreciable,and for values 

4 
of Q larger than 10 Q ,becomes constant, equal to 270. 
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6.  STATISTICAL ESTIMATION OF 1/Q AND e2 

2 
The numerical determination of 1/Q and e , as outlined in the pre- 

v     v 

vious section, can be time consuming since the averages have to be taken 

over a large number of trials.  It would be advantageous, therefore, if 

2 
the quantities 1/Q and e  could be estimated analytically.  From the 

expression for f  in Equation (16) and the definition of the L„ norm 
av 2 

in the space of aperture source functions given in Equation (5), the L 

norm of f  is evaluated: 
av 

I I f  I [2 = 2  f f  * (1+v ) (1+v *), II av1*     ,  a a .      n    n n=l  n n 

and the expected value of this quantity is found to be 

i,    ,2    ii- ,.2     2 
E{  f      =  f    (1+v ) 

av ' '     ' ' a 

where,for v  << 1 

E{||f  ||2} = ||f ||2. (20) 

The far-field pattern g , corresponding to an aperture source distribu- 

tion f  ,is given by Equation (4): 

n=l  n 

From Equations (6) and (10), the L norm of g  is evaluated, 

9   N N    - *-     * 
g  |r=  E E 6 f f (1+v  )(l+v ), 6av''     n ,  nm a a   n     m ' n=l m=l     n m 
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and the expectation is found to be 

E<lkJ|2>-||I||2 + v2G„n||fj|
2. (21) 'av'1     '|ea''      00 

The expected value of 1/Q is defined to be 

E{l/Q } = E{||g  ||2 / ||f  ||2}. ^v     ' '°av • '    ' ' av' ' 

However, Equation (20) shows that when the mean square level of error 

v is small, the expected value ||f || may be approximated by ||f || 

and the following relation for 1/Q is obtained from Equation (21): 

1/Qv = E{l/Qv) =1/Q + GQOv
2. (22) 

2 
Before computing the relative error e due to random errors, g 

should be normalized so that 

E<HgJI2>-lliJI2. 

From Equation  (21),   the normalization factor F is given by 

F =   [l+v2G00Q]"1/2    =   [Q.E  { -^ }   ]   1/2. (23) 
v_ 

Let g  denote the normalized far-field pattern of the aperture sources 
av 

in the presence of random error. 

g  = F g  . av     av 

2 
The relative error e  is given by 

E
2 = EU2} = E{||I -i ||2} / ||g ||2 
v     v      ' ' av "a"     ' ' °a' ' 
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HM^o 

Figure 17.  Schematic representation of the relationship between the pattern 
functions and the error parameters. 
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where 

N 
g       "  g     =     I     f       g   [F(l+v   )-l], av a n     a      n n n=l      n 

Taking the norm and then the expectation, the following relationship 

is obtained for e : 
v 

e* = 2(1-F). (24) 

2 
This equation relates e  simply to the drop in the Q-factor when random 

errors are introduced in the sources. 

Equation (24) can be rederived from the schematic representation 

in Figure 17.  Equation (21) shows that the quantities  |g ||, v||f | | /G ~, 

—  i2  1/2 
and [E{||g |  }]   are related by the Pythagorean theorem.  Therefore, 

the tangent of the angle  9 shown in Figure 17 is given by 

tan 6 = v/QGQ0 (25) 

and 

e = 2 sin f , (26) 
v        2 

which can be rewritten in a form similar to that of Equation (24): 

e2 = 2(l-cos 9). 
v 

2 
Plots of 1/Q and e  as a function of Q calculated from Equations 

(22) arid (24) are shown in Figure 18.  The values of these quantities 

evaluated numerically are also shown for comparison.  The agreement is 

very good. 
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7.  CONCLUSION 

A method has been outlined to design a linear array whose gain is 

close to unity and, therefore, whose pattern is nearly isotropic.  Tihonov's 

regularization algorithm is used to produce a family of designs which 

depend on a parameter a. 

2 
It is found that as a approaches 0, the error e from the actual to 

2 
the desired pattern decreases.  But the norm ||f| " of the aperture 

function, which for a unit power radiated is also the supergain ratio 

Q introduced by Taylor, increases.  This is accompanied by an increase 

2 
in the sensitivity of the design to errors represented by e .  An accept- 

able design has to be a compromise between these three quantities. 

Although the sensitivity to error varies in the same direction as 

Q, it is not directly proportional to it.  A general relation has been 

established between these two quantities.  This relation has been veri- 

fied numerically and it provides a useful guide for choosing the amount 

of regularization. 

The regularization method proves to be effective in designing nearly 

isotropic arrays of reasonable sizes. 
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