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ABSTRACT

A linearly polarized antenna cannot radiate power uniformly in
all directions. However, by controlling the aperture excitation, as
is done in an array, it is possible to reduce the maximum gain and
approach conditions for isotropic radiation. A numerical method is
presented which generates a family of designs which depend on a param-
eter a. As o approaches zero, the radiation pattern tends to become
more isotropic. However, the efficiency is reduced and the sensi-
tivity of the pattern to errors in the aperture function is increased.
In some cases this sensitivity is so high as to make the result worth-
less. The design, therefore, must be a compromise between closeness
to conditions of isotropic radiation on one hand, and losses and sen-
sitivity to errors on the other.

The sensitivity to errors, expressed by the pattern deteriora-
tion for a given level of error, has been evaluated by a numerical
experiment (Monte Carlo method). A general relation has also been
established between the sensitivity and the losses in the antenna.

It agrees with the numerical experiment and can be used as a guide

to choose the regularization parameter a.

Accepted for the Air Force
Franklin C. Hudson
Chief, Lincoln Laboratory Office
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1. INTRODUCTION

A linearly polarized antenna cannot radiate power uniformly in all
directions. This condition of isotropic radiation, or unity gain, is
also impossible if one specifies the axial ratio of the polarization

ellipse.(l)

However, accepting the existence of nulls in the radiation
pattern, one may ask if it is possible to reduce the total solid angle
in which the gain falls below a certain level. This is equivalent to
reducing the maximum gain.

It will be shown that it is, indeed, possible to make the maximum
gain as close to unity as one wishes. However, the practical difficul-
ties in doing this are the same as those encountered in trying to increase
the gain of an antenna indefinitely. To reach a certain level of per-
formance (gain or lack of gain), one must have an antenna of sufficient
aperture. If, for a given aperture, we try to improve the performance
above a certain level, we have to increase drastically the antenna cur-
rents (or the near field). As a consequence, both the losses and the
sensitivity to construction errors are increased. This 1is character-
istic of the supergain problem. It occurs more generally anytime one
tries to shape a radiagion pattern too accurately. In particular, it
occurs in the "minimum gain' problem considered here.

The need for an isotropic radiator arises when one disposes of a
certain amount of power and one wishes to produce a radiation intensity
higher than a given level in a solid angle as large as possible. This
may be for the purpose of reaching a target whose direction is not known
a priori. Conversely, in the receiving case, one may want to receive g

sufficient signal from a source of given power and unknown direction.




Although the method used could be generalized, we shall consider
in this report a colinear array of dipoles as shown in Figure la. From
the far-field power pattern of this antenna, which is shown in Figure 1b,
and some gain level Gm’ one can read the total solid angle { in which
the gain falls below Gm' The plot of G(Q) versus Q is shown in Figure
lc. In this plot, (47-Q) is the total solid angle in which the gain
exceeds Gm.

Given the curve G(Q), the total available power P watts, and the
desired radiation intensity I watts/steradian, the useful angle (4m-0)
is defined by

-Z&? G (41T—Q)

]
=~

or

G(4m-Q)

|}
1
(]

If the ratio I/P is small, Q will be small for any design. However,
when I/P is large, then special designs become necessary in order to
produce an intensity I in as large a solid angle as possible.

In Figure lc, the shaded portion under the gain curve has an area
equal to 4m. The total area of the rectangles ABCD and DEFH exceeds
that of the shaded portion. Accordingly, the following inequality may

be written,

(41-2)G, + oG_ > 4m

or

Q R3] 4 (GM"l)/(Gm_g) s
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Figure 1. Schematic representation of array and its far-field gain
and power patterns.

(a) Array of colinear dipoles.
(b) Far-field power pattern.

(c) Curve of gain versus solid angle.
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where GM is the maximum gain. This last inequality implies that for

2 > 0, the maximum gain G,, must approach unity.

M
To obtain an indication of what can be achieved practically with a

moderately short antenna (1 wavelength), this report considers the syn-

thesis of linear antenna arrays made of dipoles aligned in some direc-

tion, Ox, as shown in Figure la. The resulting pattern has nulls in the

directions +x. The problem is to reduce the cones where the gain is

below a certain level. A general method based on the concept of regular-

(2,3)

ization was developed in the Antenna Laboratory under NSF Grant

GK 2120. It will be applied to the problem.



2. STATEMENT OF THE PROBLEM

The general case of a pattern function go(g) defined over the vis-
ible region[-k < £ < k] will be first considered, and the numerical

results will be specialized to the case
gp(8) =1 [k <& < k] (1)

where the gain is equal to one over the whole visible region. A source
distribution £(x) representing an array of N elements over the aperture

[-a < x < a) is of the form

N
f(x) = nil fnd(x—xn). (2)

The problem is to determine the {fn} such that the pattern function
of the array comes close to go(g).
The far-field pattern of a linearly polarized source f(x) is given

by

a
g(£) = Tf = e(£) [ £(x)elt®

—-a

dx [k < £ < k] (3)

where £ = k sin 6. The first factor e(f) is the element pattern.
For a source distribution described in Equation (2), the far-field

pattern is given by,

N
B0 =T = I £ (O 4)

where

g (8) = e(®e'™ [k < g <kl




The function g(£), therefore, belongs to a finite dimensional vector
space ¢N spanned by the N elements gn(g) (1 <n <N). In general, go(g)
does not belong to this subspace and the problem is to determine the
complex coefficients {fn} such that the pattern given by (4) comes close
to g4(8).

In one method proposed in the next Chapter, the coefficients {fn}
are determined such that the corresponding pattern g(f£) is the orthogonal
projection of go(g) on the finite dimensional subspace ¢N. This gives
the least-squares approximation to go(g).

This straightforward projection, however, may result ip a solution
with a high Q factor, that is, excitation currents {fn} that are very
large for a given power radiated. These currents vary widely from ele-
ment to element, and the resulting far-field pattern becomes very sen-
sitive to errors in construction.

To avoid this difficulty in problems of the same type, T:I.honov(2>
has proposed a method of regularization which consists of imposing some
restrictions on the acceptable solutions, that is,on the aperture functions f.
The regularization algorithm depends on a parameter a such that for

o = 0, we have the direct projection on the subspace ¢N. As o increases,

a set of solutions is obtained with decreasing values of the Q factor.

This set of solutions invariably produces far-field patterns that are
further away from the desired pattern but are also less subject to

ohmic losses and less sensitive to errors in construction.

To give a precise meaning to the concept of projection and of Q
factor, one has to introduce appropriate norms in the space :}of source

functions f = {fn} and the space gbof far-field patterns g(£). In both




spaces, it is natural to choose the L, norm which can be interpreted

2
in the spaceé?'as the power radiated by the antenna. Thus,

N
|1£]1>= £ £ (5)
n=1 n n
and
+o,
lell> =5 7 g0 g ac. (6)
=tk

The Q factor for a given design is represented by

2 2
Q=|£]]"/ |lg]l”. (7)

Because of the element pattern, this factor is not always larger than

one.




3. METHOD OF SOLUTION

Tihonov's procedure consists of minimizing the functional

3 2 2
3 (658 = |lemggl|2 + all£]]

N
2
| EN

n

2
fngn-gol dt + o (8)

1 n=1

o~ =

i
i £,

~ %

where a 1s a positive constant referred to as the regularization param-
eter.

By setting the first variation of Ja(f;g) with respect to f = {fn}
equal to zero, the following equation for £, = {fa }, the minimizing set

n
of excitations, 1s obtained,

-

N Lk "
L f X ) 8,8, d¢ + a fa o
= k m

8y * &, 4t (L<n, m<N)

1
k o m

where, since g, is. symmetrical, the excitations {fn} are assumed real.

In matrix notation,

(G+aI)fa = Gogo (9)

where G is an (N x N) square matrix with terms Gmn given by

k 18(x -x )
/e(ee(e)e - P g, (10)
-k

(.
u
b

mn

and I is the identity matrix of dimension N.

The column matrix g, = {go } (1 <3j=<M represents the sam-

J
pled values of the function &g at the M equally spaced points over the
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visible region [-k < £ < k], and G, is a (N x M) quadrature matrix derived

to perform numerically the integral

1 k
= *
k _i gOgm dg

for any given function go(g).
Equation (10) shows that the Gmn are the Fourier Transforms H(x) of

2
h(£) = |e(g)|” evaluated for X = X

Gmn - H(xn_xm)'

When the elements are dipoles in the ¥ direction,

E2 1/2
e(f) = cos 8 = (1 - =5 ) 1n
k
and
J (kx)
H(X) = 2)/(2"T) i/—z—ﬁz—
(kx) ™
= 4 5 [ SEE(§X) - cos (kx)]. (12)
(kx) x
To derive the elements G0 of the Quadrature matrix GO’ the func-
i3

tion 8g is sampled at equally spaced points over the visible region
[k < £ < k] and approximated by straight lines over each interval. For

the range,

g8 = i gy Ciky o)-g, o (G-Ei)]
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where h is the length of each interval. For the range,

6y 2628y

1

and the terms GO are given by
1j
11, 3 ® L/2 T
G =pd /S (g Q-5 T
- o
ij £ k
j-1 £
i+l 2 igx
S5 e, - B2 T g,
J+1 2
€j k

Since these integrals cannot be evaluated in closed form, they were eval-

uated by Simpson's three-point quadrature. From (9),

. -1
£ = (GHD) T G- (13)

Once a choice for o is made, Equation (13) gives a unique solution
fa for a given By This solution fa has a far-field pattern By given

by

By = Tfa (14)

and a corresponding Q factor. The function fa has the property that,
for this value of Q,its far-field pattern g, yields the least-squares

fit to 8y
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4, NUMERICAL RESULTS

In order to study the relationship of o to the sensitivity of the
design to errors, Equation (13) was solved for a number of values of «
ranging from O to 10_1.

The magnitudesof the element excitations for arrays of five and
seven elements are reported in Tables I and II,respectively, for various

values of the regularization parameter. The element pattern e(f) is

given in Equation (11).

TABLE I. MAGNITUDE OF ELEMENT EXCITATIONS FOR THE FIVE-ELEMENT ARRAY.

gtﬁ:::t a =0 a =103 o o 102 .
1 .64 .35 ~ 15 58
2 ~2595 ~1.47 ~: 18 .335
3 4.28 3.26 1.47 .86
4 -2.25 5,257 -.11 .336
5 .64 .35 -.15 -.28

The far-field pattern g, corresponding to each solution fa is eval-
uated using Equation (4). Since it is assumed that only power
P = lbollz is available to the array for radiation, the excitations

{fa } are normalized such that
n

20 2
[le,11° = lggll®

Let fa = {fa } and éa be the normalized sources and far-field patterns,
n
respectively. The relative error ei due to regularization is expressed

by the norm of the error ||§a—g0||2 divided by that of the desired
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TABLE II. MAGNITUDE OF ELEMENT EXCITATION FOR THE SEVEN-ELEMENT ARRAY.

gizﬁzgt =0 e 1070 g 30 P
1 -6.71 -1.58 .57 .87
2 35.07 10.19 -.29 -1.80
3 -81.46 -26.53 -3.36 .07
4 107.20 36.88 7.22 2.79
5 -81.46 -26.53 -3.36 .07
6 35.07 10.19 -.29 -1.80
7 -6.71 -1.58 57 .87
Element -2 -1
Number a =10 a =10
1 .05 -.23
2 -.55 -.01
3 43 A4l
4 1.08 .62
D 43 Al
6 T -.01
7 .05 -.23
2
pattern |[|g||
2 = 2 2
e = |lg,gol 1 / Ilgyll
k
1 - 2 2
= E —1{_ |ga_gol dg / Hgoll o (15)
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Next, in order to study the sensitivity of each design to errors in
construction, a random relative error v is introduced to the source func-

tion, and these excitations with noise are denoted by fa; and given by
n

fav = fa (l+vn) (16)
n n

where v = {vn} are random complex numbers with a Gaussian distribution

E(vn) =0

Bl o3 i e
(vn M 2

The far-field pattern corresponding to sources {fav } is denoted by B,
n
The excitations {f } are normalized such that ilgav||2 = ||80||2.
n
Let £ = {f } and g be the normalized sources and far-field pattern,
av av_ av
respectively. The relative error 53, due to the introduction of random

noise, is expressed by the norm of the error ||§av—ga||2 divided by that

of the desired pattern.
2 - =12 2
e, = |le,, -8, 1" /7 |lggll®s (17)
av "a 0

\Y

and the corresponding relative errors due to regularization and the intro-
duction of random noise are expressed by the norm of the error ||§av_g0||2

divided by ||g0||2:

2 _ |- 2 2
e, = |leg,~goll® 7 llggll®-

For each design, the Q-factor is calculated with the presence of random

errors and denoted by Qv’ where

= 2 = 2
Q = |5, 1177 gy 1% (18)

N avl
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In each instance, 25 sets of random errors were introduced and the aver-

age of the quantities ei, ei, and (l/QQ) were calculated over the 25 trials,

where

<}
W)
<

o

€ = <€2> (19)

rt
rt
v
<

l/Qv = <1/92?av'

The quantities €y €0 and e, are 1llustrated schematically in Figure 2.

In this diagram, vectors are understood to represent functions and straight

lines, distances in the sense of the L, norm. The curved lines represent

2
operators mapping the space of source functions into the space of far-
field pattern functions. The three vectors g8y éa’ and éav are drawn

with their tips on the same circle to indicate that their L, norms are

2
equal.
-2 - 42

The far-field power patternsllgaﬂ and lgavl of the arrays for
various values of the regularization parameter o are shown Iin Figures 3 to 11.
Also in the same figures, the power pattern intensity of an elementary
dipole is shown for comparison. The horizontal line drawn for a radia-
tion intensity = 1 is that of an ideal isotropic radiator. It is
pointed out again that all pattern functions are normalized such that
thelir L2 norms are equal. Thils makes theilr radiated power, represented

by the area under the curve, equal in all cases. In Figures 12 and 13,
curves for the quantities ei, ei, ei and Q are shown as a function of the
regularization parameter a for the arrays of five elements and seven ele-

ments, respectively.
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Number of elements:5 ?
Aperture size: 1A
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Figure 12. Error parameters ez, 63, and :E’ and Q vs. regularization parameter
a for the five-element array.
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NORMALIZED ERROR
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Figure 13. Error parameters ¢, €,,, and €_, and Q vs. regularization parameter
a for the seven-elément array.
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From the far-field power pattern intensity |§a|2 in Figures 3 to 11,
curves for the gain vs. solid angle, as described in the introduction,

were derived. These curves are shown in Figures 14 and 15 for the five-

and seven-element array, respectively, for the cases o = 0 and o = 10-2.
The gain curve for an elementary dipole is also shown for comparison.

For example, in Figure 14, for a directive gain level of 0.8, the total

solid angle in which the gain of each of the cases considered exceeds

the 0.8 gain level is as follows:

Ideal isotropic radiator : 4m
Five element array (a = 0) : 3.82m
Five element array (o = 10—2) : 3.367

Elementary dipole r 2.72m.

A plot of l/Qv vs. 1/Q is shown in Figure 16.




28

*Ae1ie JUSWIT9-9ATI 92Ul 10J OT3ue PITOS °SA urey

9|buy pijog

1L 2

“yT °In81a

| 1 i LI —

X| = 9ZiIS 9injiady

G = Sjuawa|3 10 BN
Apaayy

Jojoipoy o1dosjosy |Dap]

(0=D) . O
v~ (Ol =) ¥

U13440d

1
O

uiD9 aAl}d3lIQ

(§599)

juawa|3

o'l

Gl



29

*AB11P JUSWDTO-UDADS oYl I0J oT3ue pPITOS °*SA ures) °G 2Ind1g

=
o

9|buy pijog
0 4L e
! _ T _ _
X| = 9ZIs aunjiady
J =Sjudwa|3 0 N
Apiay
Jojoipoy o1doajosy _couH/
(0= D) v
‘ ANMU_H va O
(QS02)uidiind uawa|3
o

o'l

Gl

uiD9 dAI2811(Qg



30

*sdelle JUsWATS-ULABS PUB -2ATF Yjoq 103 J/T °sa >O\H Jo 3014

(0/1)

Ol

o Ol 2-

. Ol

M|

‘9T @2an31g

,.0

mrrirr i I

|LLLLLLEL |

|

L |

1

1

llllll 1

%S =1

[

Ol



31

5. COMMENTS ON THE NUMERICAL RESULTS AND THE CHOICE OF o

The first observation is that using an array does,indeed, improve
the low gain performance. The gain curves in Figures 14 and 15 for
o = 0 come closest to that of an ideal isotropic radiator among all
designs considered. Comparing the gain curves of the five-element to
the seven-element array, only a slight improvement in low-gain perform-
ance 1s observed in the latter. The aperture size in both cases, how-
ever, is the same.

The performance of those designs corresponding to relatively small
values of o looks, indeed, promising. However, in the presence of random
errors in the currents, the performance of these designs deteriorates
drastically, as shown in Figures 3 to 4 and 6 to 9. In such instances,

a single element has a better performance than the array!

In deciding which value of o to use, it becomes imperative to study
the behavior of the quantities ei, 63, and Q. For a constant power radi-
ated,the Q-factor is directly proportional to ohmic losses while the
error 65 is an indication of the sensitivity of the design to error.

In Figures 12 and 13, as o approaches zero, ei decreases, and both Q and
55 increase. For the larger values of o, these trends are reversed.
The design then must be a compromise between ei, ei, and Q. A good com-
promise is that wvalue of o which minimizes the total error-zf. For the

five-element array, this corresponds to a = 3.54 x 10_3, Q= 2.25, and

ei = .008 and, for the seven-element array, to a = 1.6 x 10—3, Q = 4.0,
and si = ,0045. For these partipular values of o, the seven-element

array has larger ohmic losses, but is less sensitive to errors than the

five-element array.
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It is observed in Figure 16 that the introduction of random errors
in the element excitations produces a decrease of the Q-factor, that
is, an increase of the power radiated for a given norm of the sources.
For values of Q less than 10, the reduction is very small. For values
of Q larger than 10, the reduction becomes appreciable,and for values

of Q larger than 104 Qv,becomes coﬁstant,equal to 270.
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6. STATISTICAL ESTIMATION OF l/Qv AND ei

The numerical determination of l/Qv and ei, as outlined in the pre-
vious section, can be time consuming since the averages have to be taken
over a large number of trials. It would be advantageous, therefore, if
the quantities l/Qv and ei could be estimated analytically. From the
expression for fav in Equation (16) and the definition of the L, norm

2

in the space of aperture source functions given in Equation (5), the L2

norm of f is evaluated:
ov
N
2 - % %
£, 11" = Z £E T (v )+ ),

and the expected value of this quantity is found to be

2
|

=0 2
eI, 112 = 11E,11% awd

where, for v2 <<1

12}

= (2
E(][£,] REMIe (20)

The far-field pattern gav,corresponding to an aperture source distribu-

tion fav,is given by Equation (4):

A

] m'z.

x fan(l+vn)g'n(‘c’,) g

From Equations (6) and (10), the L, norm of 8o is evaluated,

2

N N D %
= I T G f fl(l+\)n )(l+vm),
n=1l m=1 n m

2
g, |1
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and the expectation is found to be
2 - 2 2 )
2] g,, 112 = 1,112 + v2eyq | IE) 12 (21)
The expected value of 1/Qv is defined to be

2
||

B(1/Q} = E| s |1% / 115, [1%) -

However, Equation (20) shows that when the mean square level of error

v is small, the expected value ||fav||2 may be approximated by ||Ea||2
and the following relation for 1/Qv is obtained from Equation (21):
2
l/Qv = E{l/Qv} =1/Q + GOOv . (22)

: 2
Before computing the relative error & due to random errors, 8,y

should be normalized so that
] 2, =2
B({g 12} = |15, 112,
From Equation (21), the normalization factor F is given by

2 G o s il
[QE{Q )

V

—1/2'

-1
F = [1+v76,,0] (23)

Let éav denote the normalized far-field pattern of the aperture sources

in the presence of random error.

0|
]
o]
o

av av’
: 2
The relative error e, is given by

2 2 i = D
e, = Ele)} = E{Ilgav—gall Y/ I|8a||



Figure 17.

Schematic representation of the relationship between the pattern
functions and the error parameters.
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where

g -g = L fa gn[F(l+vn)—l].

Taking the norm and then the expectation, the following relationship

: ’ 2
is obtained for ev

2— -
€, = 2(1-F). (24)

This equation relates 53 simply to the drop in the Q-factor when random
errors are introduced in the sources.

Equation (24) can be rederived from the schematic representation
in Figure 17. Equation (21) shows that the quantities Iléall’ v||§a||/655,
2}]1/2

and [E{||§a|| are related by the Pythagorean theorem. Therefore,

the tangent of the angle 6 shown in Figure 17 is given by

tan 8 = VVQGOO (25)
and
0
e = 2 gin & , (26)
v 2

which can be rewritten in a form similar to that of Equation (24):
63 = 2(1l-cos 8).

Plots of l/Qv and 53 as a function of Q calculated from Equations
(22) and (24) are shown in Figure 18. The values of these quantities

evaluated numerically are also shown for comparison. The agreement is

very good.



38
7. CONCLUSION

A method has been outlined to design a linear array whose gain is
close to unity and, therefore, whose pattern is nearly isotropic. Tihonov's
regularization algorithm is used to produce a family of designs which
depend on a parameter a.

It is found that as o approaches 0, the error ei from the actual to
the desired pattern decreases. But the norm ||f||2 of  the aperture
function, which for a unit power radiated is also the supergain ratio
Q introduced by Taylor, increases. This is accompanied by an increase
in the sensitivity of the design to errors represented by 63. An accept-
able design has to be a compromise between these three quantities.

Although the sensitivity to error varies in the same direction as
Q, it is not directly proportional to it. A general relation has been
established between these two quantities. This relation has been veri-
fied numerically and it provides a useful guide for choosing the amount
of regularization.

The regularization method proves to be effective in designing nearly

isotropic arrays of reasonable sizes.
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