$$
A D-710622
$$

WEIGHT, VOLUME, AND CENTER OF MASS OF
SEGMENTS OF THE HUMAN BODY
Charles E. Clauser, et al
Air Force Systems Command
Wright-Patterson Air Force Base, Ohio
August 1969

DISTRIBUTED BY:

KEEP UP
 TO DATE

Between the time you ordered this reportwhich is only one of the hundreds of thousands in the NTIS information collection available to you-and the time you are reading this message, several new reports relevant to your interests probably have entered the collection.

Subscribe to the Weekly Government Abstracts series that will bring you summaries of new reports as soon as they are received by NTIS from the originators of the research. The WGA's are an NTIS weekly newsletter service covering the most recent research findings in 25 areas of industrial, technological, and sociological interestinvaluable information for executives and professionals who must keep up to date.

The sxecutive and professional information service provided by NTIS in the Weekly Govermment Abstracts newsietters will give you thorough and comprehensive coverage of governmeni-conducted or sponsored re-
search activities. And you'll get this important information within two weeks of the time it's released by originating agencies.

WGA newsletters are computer produced and electronically photocomposed to slash the time gap between the release of a report and its availability. You can learn about technical innovations immediately-and use them in the most meaningful and productive ways possible for your organization. Please request NTIS-PR-205/PCW for more information.

The weekly newsletter ser'es will keep you current. But learn what you have missed in the past by ordering a computer NTISearch of all the research reports in your area of interest, dating as far back as 1964, if you wish. Pleaso request NTIS-PR-186/PCN for inore information.

$$
\begin{aligned}
\text { WRITE: } & \text { Managing Editor } \\
& \$ 285 \text { Port Royal Rcad } \\
& \text { Springfield, VA } 22161
\end{aligned}
$$

Keep Up To Date With SRIM

SRIM (Selocted Research in Microfiche) provides you with regular, automatic diatribution of the complete texts of NTIS research reports only in the subject areas you select. SAIM covers almost all Government research reports by subject area and/or the originating Feceral or local government agency. You may subscribe by any category or subcetegory of our WGA (Weekty Government Abstracte) or Govertument Paports Announcementa and Index categories, or to the reports issued by a particular agency such as the Department of Detense, Federal Energy Administration, or Environmental Protection Agency. Other optlons that will give you greater selectivity are avallable on request.

The cost of SAIM service is only 45 . domestic (60 torelgn) for each complete
micreflcied report. Your SRIM service begins as soon as your order is recelved and processed and you will recelve biwaekly shipments thereafter. If you wish, your service will be backdated to furnish you microfiche of reports issued earlier.

Because of contractual arrangements with several Special Technology Groups, not all NTIS reports are distributed in the SRIM program. You will recelve a notice in your microfiche shipments identifying the exceptlonally priced reports not available through SRIM.

A deposit account with NTIS is required before this service can be initiated. If you have specific questions concerning this service, please call (703) 451-1558, or write NTIS. attention SRIM Product Manager.

This information product distributed by

WEIGHT, VOLUME, AND CENTER OF MASS Of SEGMENTS OF THE HUMAN BODY

CHARLES E. ClAUSER
Mrosper Medical Research Laboratory

JOHN T McCONVILLE
Antioch College -
!. W. YOUNG
Citil Acromedical Institute

AUCUST 1969

NATIONAL TECHNICAL
INFORMATION SERVICE
sprinifield, Va. 22151
AEROSPACE MEDICAL RESEARCH LABORATORY
AEROSPACE MEDICAL DIVISION
AIR FORCL SYSTEMS COMMAND
WHIG:HT-PATTERSON AII FORCE BASE, OHIO

WEIGHT, VOLUME, AND CENTER OF MASS OF SEGMENTS OF THE HUMAN BODY

CHARLES E. CLAUSER

Aerospace Medical Research Laboratory

JOHN T. McCONVILLE
Antioch College
J. W. YOUNG

Civil Aeromedical Institute

AUGUST 1969

This document has been approved for pulitic release and sule; its distribution is untimited.

aEROSPACE MEDICAL RESEARCH LABORATORY aEROSPACE MEDICAL DIVISION AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO

Summary

Knowledge of the weight, volume, and center of mass of segments of the human body is of significance to research in such diverse fields as physical education, prosthetics, and space technology. While the specific information needed may vary from one specialty to another, common to all is the objective of understanding more fully the biomechanics of man either as an entity or as a component of some complex system.

The engineer or physicist may test a structure or material until it fails to determine designs and conditions appropriate to the physical characteristics of materials. The introduction of man as an integral part of a system, either in a passive or active role, restricts the freedom to test it because of possible injury to the human component. To overcome this restriction, it is common to replace the man with a physical model or, more recently, to use computer simulation. The degree to which a physical or mathematical model can be formulated as an isomorph of the human body thus becomes a crucial factor.

This study was designed to supplement existing knowledge of the weight, volume, and location of the center of mass of segments of the human body and to permit thair more accurate estimation on the living from anthropometric dimensions.

Thirteen male cadavers were each dissected into 14 segments. The weight, volume, and center of mass of each segment were determined, and sufficient anthropometry of the cadavers was taken to describe the length, circumference, and breadth or depth of each segmont. The relationships tetween the size of the segments and its weight, volume, and the lecation of its center of mass form the busis for estimating those paraneters of living populations.

Foreword

This study was accomplished under Project 7184, "Human Performance in Advanced Systems"; Task 718408, "Anthropology for Design." It was a joint effort among the Anthropolngy Branch, Human Engineering Division, Aerospace Medical Research Laboratory (AMRL); the Anthropology Research Project, Antioch College, under contracts AF 33(615)-1101 and F33615-67-C-1310; and the Anthropology Section, Civil Aeromedical Institute (CAMI), Federal Aviation Administration. Significant financial support was provided by the National Aeronautics and Space Administration under contract R-90.

The research reported here could not have been carried out without the complete cooperation of the administrative directors of the several organizations involved. Dr. J. M. Christensen, Director of the Human Engineering Division, H. T. E. Hertzberg, then Chief of the Anthropology Branch, AMRL; Dr. Stanley Mohler, then Director of Research, CAMI; and Professor Edmund Churchill, Director of the Anthropology Research Project, were enthusiastic supporters of the joint undertaking and made every attempt to assure its smooth functioning. The actual data collection was carried out at the CAMI laboratories in Oklahoma City where Mr. John Swearingen, Chief of Protection and Survival Branch, and Dr. R. G. Snyder, then Chief of the Anthropology Section, went to great lengths to assure that proper support in terms of equipment, workspace and personnel was always available.

The efforts and responsibilities were shared equally among the authors, and the study was indeed a joint effort. The names of the many individuals who supported this study at the various laboratories in : fabrication of equipment and in support activities (administrative, secretarial. photographic, ete.) are too numerous to list individually, yet they often played a significant role in the development of the study. A special acknowledgment is made to Mr. DeWit: Pierce (CAMI) who provided technimal advice and assistance in the use of the !uoroscope and X-ray equipment and to Mr Williar in Flores (CAMI) whe prepared the lliustrations used in this report. Miss Patricia M, rsh, also of CAMI, acted as a baboratory assistant during the initial data collection phase of the study.

Profossor Churchill prepared a number of computor mutines and provided extensive guidance und advies in the analyms of the data. Miss Margaret Marshall worked as a laburutory assissant during the data collection phase and as a statistical assistant during the analysis. Her patience and attention to the many details involveci it, the data processing are gratefully acknowledged.

Most of this study, from the intitial plan of rescarch through the interpretation of the data and the proparation of the report, has been disenssed in detail with our friends and associates. We partiendarly wish to acknowledge our gratitude to the bate Dr. W. T. Dempster for his detallex explanation of the techniques and procedures he used in his earlier study of a similar mature. Our asstciates Captain Willim Hemaett and Professor Maloyd L. Lankach each assistod duriag the data collection on a spectmen, atd we are grateful for their support.

Professor Edmund Churchill, Professar Lloyd L. Laubach, Mr. K. W. Kcumedy, Dr. K. H. E. Smener, Mr. P. V. Kulwicki, and Dr. M. J. Warrick took the time and trouble to listea, to read, and to conment as this analysis was boing made and in so doing constantly improved the final repurt with their constructive criticism. Mrs. Joan Robincte's careful editing and arranging of the anal manuscript is gratefully acknowledged.

This sequat has been roviewed and is approved by:

C. H. KRATOCHVIL, Colonel, USAF, MC Commanuler
Aerospece Medical Rescarch Laboratory

Table of Contents

Page
Historical Background: Methodology and Results of Previous Investigators 1
Methods and Techniques 18
Summary Statistics and Predictive Equations 36
Summary and Conclusions 59
Appendix Page
A. Outline of Procedures and Data Form 62
B. Mid-volume of Segments as an Approximation of a Segment's Center of Mass. 68
C. Standing and Supine Anthropometry and Postmortem Changes in Body Size. 70
D. Descriptions of Anthropometric Dimensions 76
E. Statistical Techaiques 81
F. Correlation Matrix of Segmental Variables 83
C. Densities of Ifuran Tissues 05
References 97

List of Tables

Page

1. Weight of Body Segments 2
2. Weight of Body Segments Expressed as a Percent of Total Body Weight 3
3. Mass, Volume and Spesific Gravity of Body Segments (After Harless) 4
4. Location of the Center of Mass of Segments 5
5. Weight of Body Segments of Japanese 11
6. Weight of Body Segments of Japanese Expressed as a Percent of Total Body Weight 12
7. Body Segment Values, NYU Sample 13
8. Anthropometry of Study Sample 37
9. Total Body Statistics 42
10. Head and Trunk Statistics 43
11. Total Leg Statistics 44
12. Total Arm Statistics 45
13. Head Statistics 40
14. Trunk Statistics 47
15. Thigh Statistics 48
16. Calf and Fpot Statistics 49
17. Culf Statistics 50
18. Foot Statistics 51
19. Uppar Arm Statistics 52
20. Forearm aind Hand Statistics 53
21. Forearm Statistics 54
22. Hand Statistics 35
23. Prodicted Woight of Body Segments of the Living 58
24. Segmental Weight/Rody Weight latios from Several Cadaver Surdes 59
25. Center of Mass/Segment Lougth Ratios from Several Cadaver Studies 60
26. Volume of Segiment Proximal to its Center of Mass as a Percent of Toual Segmeat Volume 68
27. Summary of Mid-Volume as Predictor of Center of Mass 69
28. Comparisory of Anthropoinetry: Standing and Supine 71
29. Average Increase in Radius of Cadaver Dimensions to Approximate Living Dinensions 72
30. Comparison of Anthroponety of Subjects in the Standing and Supine Positions 73
31. Anthropometry of Matched Samples 75
32. Densities of Body Tissues 98

List of Illustrations

Figure Page

1. Estimation of a Segment's Weight by the Method of Reaction Change 7
2. Autopsy Table with Headboard in Place 20
3. Technique Used in Measuring Vertical Dimensions of the Body 20
4. Fluoroscopy Unit Used to Establish Landmarks 22
5. Center of Mass Measuring Table for Total Body and Large Segments 22
6. Center of Mass Measuring Table for Small Segments 23
7. Equipment Used to Determine Segment Volume by Underwater Weighing 24
8. Small Tank Used to Determine Segment Volume by Water Displacement 25
9. Large Tank Used to Determine Segment Volume by Water Displacement 25
10. Technique Used in Determining the Volume of the Body and its Sogments 26
11. Technique Used in Moasuriag the Volume of the Small Segments of the Body 20
12a. Tracing of a lloentgenogram of the Shoulder Segmentation 27
12b. Cross Setion of Shoulder Segmentation 97
13a. Tracing of a Acontgenggram of the Hip Sugmentation 38
12. Cross Section of Hip Segmentation 38
14a. Tracing of a lloentgenagram of the Nert Segamentation 30
14b. Cross Section of Neck Seggmentation 30
15a. Tracing of a hoongenogram of the Kire Segnemation 31
13. Crass Section of Kine Sogementation 31
16a. Tracieg of a Boentgengram in the Ankle Segmentation 32
16h. Crimar Soxtion of Ankle isegramiation 38
 33
87b. Cross Sextion of Alluow Sexprentation 33
 3
1Sb. Cross Sextion di Wrisa Sxgimentation 34

Historical Background
 METHODOLOGY AND RESULTS OF PREVIOUS INVESTIGATORS

Active interest in the weight, volume, and center of mass of the human body and its sor; ments has been demonstrated by numerous investigators over the patt 200 years. These inve: :gators have developed and used a wide variety of techniques in their studies with varying $\mathrm{d}_{6} \ldots \mathrm{~s}$ of success. The following resume of earlier research is certainly neither all-inclusive nor c plete; it does, however, provide a background for the present investigation.

The earliest recorded work appears to have been undertaken in the 17 th ce: \cdot ry. Borelli (1679) determined the center of mass of nucle men by having them stretch out on a rigid platform supported on a knife edge. By moving the platform until it balanced, an approximation of the subject's center of mass could be obtained.

The Weber brothers (1838) improved this technique. Their platform was supported at its center of mass and the body alone moved until the platform began to tilt. The body was then reversed on the platform and the procedure repeated to obtain a second approximation of the center of mass. The mean position between these points gave a more exact location for the center of mass. This technique would appear more accurate than that used by Borelli, as it was independent of the supporting plasorm ond not dependent upon an exact poimt of balane.

Harless (1860) repeated the Webers experiments and extended them to studies of the centers of mass of body segments. In his initial studies, the bodies of two executed eriminals were used. Harless's plan was to locate in the long axis the conters of mass for the largest pa abla manber of movable segments. To achieve this, he segmented the cadavers into 18 major seements with the planes of separation passing through the pivotal axis of oach of the primary pints. The tisme was severd in a plane that bisocted the primary ceatens of joint rotation and the joints then disarticulatex. The segmem surfaces were sttured together over the sturp to reduce tissue and Guid losess. Sensitive scales and a bulance plate were used to determine the woight and centor of mass of each segment. The volume of cach segment was calculated fron its mass, using a partulated total bedy sperific gravity of 1.000 . Harhess's restlis (as well as the rexults dobined by later workers) are shown in tables 1 and 2

To verify and axtend his oherwations. Harless weigled at extrenity segmems taken from seven corpess. The seghents were disarticulated using the same tedmigues cmplayed for the two whole cadavers. The segment volnnes were determined after the principles of Archinedes, by weighing them first in air and then in water. The results of this study are given in table 3. Frow these data. Harless conchaded that age and sex were significant factors in exphaining the distribution of values of the specific gravity of segments of the hutnan body.

Von Meyer, beginning in 1863. continued this work and detemimed the center of maxs leca-
 in locating a point in a three dinemsional spice. For the human loody the comvention is to refer to the Z axis as formed at the intersection of the cagital and coronal planes; the Y axis at the intessection of the comonal and transwerse planes; and the X axis at the intersection of the sigittal and transverse planes. By reducing tive tonal body to a series of mathenatically destriptive forins (elligsumes and spleres), Von Meyer was able to extimate the weight and center of mass for each of the major seggents of the body. Using these eatinates, the shif in the tonal body's center of
TABLE 1. WEIGHT OF BODY SEGMENTS*

Authors	Harless		Braune and Fischer			$\begin{gathered} \text { Fischer } \\ \hline 1906 \end{gathered}$	Dempster							
Cadavar	Graf	Kefer	No. 2	No. 2	No. 4		14815	15059	15062	15095	15097	15168	15250	15251
Entire Body	63970	47087	75100	60550	55700	44057	51364	58409	58409	49886	72500	71364	60455	55909
Head	4555	3747	5350	4040	3930	3880		3797	5227	4348	5337	4850	4371	4340
Torso	29808	19847	36020	28850	23780	19910	-----	29158	29331	24952	35231	33519	27187	28001
Entire Arm, Right	$3770 \dagger$	2699	4950	3550	3520	2360	2641	3277	2695	2125	3947	3673	3035	2394
Entire A>m, Left		2555	4790	3480	3710	2470	2720	2770	2485	2132	3899	3453	3080	2459
Upper Arm, Right	$2070\}$	1485	2580	1990	1730	1243	1212	1920	1528	1123	2171	1970	1614	1372
Upper ism, Left		1411	2560	1880	2020	1252	1157	1541	1373	1133	2199	1909	1663	1315
Forearm \& Hand, Rt.	(1700) \dagger	(1214)	2370	1550	1790	1117	1342	1340	1134	1024	1777	1099	1414	1017
Forearm + Hand, Lt		(1144)	2230	1600	1690	1205	1290	1256	1080	1003	1691	1515	1400	1140
Forearm, Right	$1160\}$	82 I	1700	1050	1300	-.......	865	995	815	710	1250	1265	1021	713
Forearm, Left	---	770	1800	1120	1240	---------	850	934	747	703	1191	1104	1002	780
Hand, Right	540%	393	670	500	490	---------	457	352	311	317	517	452	400	295
Hand, Left		374	620	470	450	----	445	325	332	317	500	417	390	339
Entire Leg, Right	111357	9172	12120	10650	10110	7840	6176	9580	8303	7715	11920	11904	11791	8457
Entire Leg, Left		9068	11390	10250	10650	7840	6255	9855	8390	8313	11997	11111	11337	8092
Thigh, Right	71654	5947	7650	6890	6150	4860	3385	6115	5370	4770	7155	6902	7215	4660
Thigh, Left	\cdots	5827	7300	6220	6750	4810	3495	6482	5520	5285	7093	6258	7700	5135
Calf + Foot, Right	(3970)	(3225)	4470	3950	3930	2980	2613	3472	2907	2878	4825	4765	3955	3322
Calf + Foot. Left		(3241)	4500	3980	3900	2800	2602	3384	2835	3041	4846	4812	4045	3432
Calf, Right	28001	224.3	3210	2870	2970	2070	1963	2674	2165	2205	3899	3606	2954	2459
Cals, Left	---	2252	3320	2880	2900	1890	1961	2629	2080	2218	3860	3552	2991	2564
Foot, Right	1120t	982	1100	1060	990	910	655	800	748	767	924	1095	865	808
Foot. Left		988	1160	1090	1000	910	725	780	754	814	967	1209	949	796

[^0]table 2. Weicht of body segments expressed as a pericent of total body weight

Autiors	Hiartess		Braume and Fischer			$\frac{\text { Fischer }}{1908}$	148i,	Dempster						
Cadaver	Crat	Kefer	No. 2	No. 3	No. 4			15059	15062	15055	25097	15168	15250	15251
Head	71	8.0	7.1	6.7	7.1	8.8	\cdots	6.5	8.9	8.7	7.1	6.8	7.2	7.8
Totso	483	121	48.0	17.5	42.7	45.2	---	49.9	50.2	50.0	48.9	47.0	45.0	46.5
Entire Arm, Righe	$5.9{ }^{\circ}$	5.7	6.8	5.8	6.3	5.4	5.1	5.6	¢. 6	4.3	5.4	5.1	5.0	4.3
Entire Arm, Left	--.	5.4	6.4	5.7	6.1	5.8	5.3	4.7	4.3	4.3	5.4	4.8	5.1	4.4
Upper Arm, Right	$3.2{ }^{\circ}$	3.2	3.4	33	3.1	2.8	2.4	3.3	2.6	2.3	3.0	2.8	2.7	2.5
Cipper Arm, left	\cdots	3.0	3.4	3.1	3.8	2.8	2.3	2.6	2.4	2.3	3.0	2.7	2.8	2.4
Forearn + Hand, Ft	2.76	254	3.2	2.8	3.2	2.5	2.6	2.3	1.9	2.1	2.5	2.4	2.3	1.8
Forcarm + Hancial Ler	-	2.4	3.0	2.6	3.0	2.7	2.5	2.2	$1 . \varepsilon$	2.0	2.3	2.1	2.3	2.0
Forcarm, Righe	$1.8{ }^{\circ}$	1.7	23	1.7	23	\cdots	1.7	1.7	1.4	1.4	1.7	1.8	1.7	1.3
Forearm, Left	\cdots	1.6	2.1	1.8	2.2	\cdots	1.7	1.6	1.3	1.4	1.6	1.5	1.7	1.4
Efand, Right	0.5^{*}	0.8	0.9	0.8	0.9	\cdots	0.9	0.6	0.5	0.6	0.7	0.6	0.7	0.5
Hiand. Left		0.8	0.8	0.8	0.8	\cdots	0.9	0.8	0.6	0.6	0.7	0.3	0.6	0.6
Entize Le\%. Right	17.4*	19.54	16.1	17.5	18.2	17.8	12.0	16.4	14.2	15.5	18.4	18.7	19.5	15.1
Entire Leg, Left		19.31	158	16.9	19.1	17.3	12.1	16.9	14.4	16.7	16.4	15.6	18.8	15.0
Thight Right	11.2	12.8	10.2	11.0	11.0	11.0	6.6	10.5	9.2	9.6	9.9	9.7	11.9	9.2
Thiph, Lectt	-	12.4	9.7	10.2	12.1	10.9	6.8	11.1	9.5	10.5	9.8	8.8	12.7	8.3
Caif + Foot, Right	8.2.4	6.94	8.0	6.5	7.1	6.8	5.1	5.8	5.0	5.8	6.7	6.7	6.5	5.9
Calt + Foot, Left	6.97	6.6	6.6	7.0	6.4	5.1	5.8	4.9	6.1	6.7	8.7	8.7	6.1
Cali, Maght	4.4	6.8	4.3	4.7	53	4.7	3.8	4.8	3.7	4.4	5.4	5.1	4.9	4.4
Call, Left	-	4.8	4.4	4.7	5.2	4.3	3.8	4.5	3.8	4.4	5.3	5.0	4.9	4.8
Foot, Right	1.8*	2.1	1.5	1.7	1.8	2.1	1.3	1.4	1.3	1.5	1.3	1.5	1.4	1.4
Foot, L.eft		2.1	1.5	1.8	1.8	2.1	1.4	1.3	1.3	1.6	1.3	1.7	1.6	1.4

[^1]TABLE 3
MASS, VOLUME AND SPECIFIC GRAVITY OF BODY SEGMENTS

Segment	(After Harless 1860)			Volume (cc)	Specific Gravity
	Sex	Age	Weight (gm)		
Head	M	30	3747.0	3453.3	1.0851
Head	F	38	4980.0	4407.0	1.1300
Right Upper Arm	F	20	1525.6	1436.2	1.0622
Right Upper Arm	M	40	2560.1	2362.2	1.0838
Right Upper Arm	M	68	1420.7	1302.9	1.0504
Left Upper A ${ }^{\text {m }}$	M	30	1484.5	1385.4	1.0572
Left Upper Arm	M	30	1411.3	1296.6	1.0884
Left Upper Arm	M	68	1239.1	1133.0	1.0936
Right Forearm	F	20	725.6	671.6	1.0804
Right Forearm	M	40	1389.7	1260.0	1.1030
Righi Forearm	M	30	821.0	402.2	1.1034
Right Forearm	M	68	767.2	689.9	1.1119
Lelt Forearm	M	68	765.3	688.3	1.1117
Left Forearm	M	30	770.1	692.1	1.1127
Right Hand	M	68	447.7	403.5	1.1093
Right Hand	M	40	525.1	471.6	1.1134
Right Hand	F	20	316.8	283.7	1.1163
Right Hand	M	30	393.2	354.3	1.1191
Left Hand	M	68	443.9	402.3	1.1034
Left Hand	M	30	374.0	334.5	1.1178
Right Thigh	F	28	4890.0	4643.0	1.0532
Right Thigh	M	30	5947.0	5037.5	1.0549
Right Thigh	M	40	7567.0	7099.1	1.0639
Right Thigh	M	68	4670.0	4295.8	1.0871
Left Thigh	F	26	4723.0	4492.1	1.0514
Left Thigh	M	30	5827.0	5515.9	1.0584
Left Thigh	M	40	7367.0	6951.4	1.0598
Left Thigh	M	68	4460.4	4102.8	1.0872
Right Calt	F	20	1917.9	1809.1	1.0773
Right Calf	M	40	2760.2	2541.8	1.0859
Right Cals	M	30	2242.8	2004.8	1.0881
Right Calf	M	68	1874.0	1863.5	1.1205
Left Calf	F	20	1893.1	1727.5	1.0785
Left Calf	M	30	2252.5	2073.8	2.0501
Left Calf	M	40	2506.9	2 S 33.6	1.08801
left Calf	M	68	1811.0	1803.3	1.1205
Right Propt	M	40	1025.8	901.7	1.0802
Night Foot	M	30	082.2	89.1	1.092.
Righe Foot	M	64	252.5	809.8	1.0950
Hight Foos	F	98	75.0	E46.3	1.1017
Left Foot	M	40	10793	9*5.9	1.0767
Left Foot	M	30	988.2	905.2	1.0916
1. det Foot	F	20	713.4	G45.8	1.0998
Left Poot	M	68	065.5	877.9	1,0038

TABLE 4
LOCATION OF CENTERS OF MASS AS A RATIO OF THE DISTANCE FROM THE PROXIMAL END OR JOINT AXIS AND THE TOTAL SEGMENT LENGTH

	Harless		Braune and Fischer			Fischer	Dempster \ddagger
	Graf	Kefer	No. 2	No. 3	No. 4	1908	
Entire Body	41.4	\ldots	\cdots	-.....	-----	\cdots
Head*	36.3	36.1	\ldots	\cdots	-----	43.3
Torso	\ldots	\cdots	\ldots	.-...	\cdots	-.....	\cdots
Entire Arm, Right	--...--	..----	42.7	\ldots
Entini Arm, Left	\cdots	\cdots	\cdots	\cdots	48.4	\cdots
: 'pper Arm, Right	48.4	42.7	-...-	43.8	50.9	44.6	43.6
Upper Arm, Left	\ldots	43.2	\ldots	45.4	47.8	45.4
Forevri, + Hand, Right	\ldots	47.5	47.2	44.4	67.78
Forearm + Hand, L at	46.3	47.7	47.9
Fo. earm, Right	43.9	41.8		41.4	42.2	43.0
Forearm, Lofi	\cdots	40.2		40.6	44.1	\cdots
Hand, Righe	47.4	36.1	\ldots	49.4
Hand, Left	35.7	…'	...'
Entire Log, Right	41.5	43.3
Entire Leg, Laft	\cdots	. -		-	40.9
Thigh, Right	48.8	43.0	43.2	48.9	15.5	43.8	43.3
Thigh, Left	\ldots	57.0	44.6	47.6	38.8	43.4
Calf + Fout. Hight		50.0	50.1	52.1	50.4	43.4
Calf + Foot. Left	...'	\ldots	51.7	51.4	53.1	50.6	*....
Calf. Right	30.0	44.4	42.0	43.5	41.0	120	43.3
Call, Leit		49.4	41.6	41.3	42.2	43.9	. ${ }^{\text {a }}$
Ftrut, Right	\$6.0	43.6	404	43.0	45.3		42.9
Foot, Left		43.5	12.4	43.9	45.3		

- Mastured frohn crown.

A Meatured frown hrel.
Average df nintis becimets.
Ditance from ellow to ular mbtod equale 100%.
mass could be determined from the position and orientation of the trunk and extremities (Von Meyer, 1873).

Braune and Fischer in 1889 published a comprehensive study of weight, volume, and center of mass of the body and its segments. They based their analyses upon the results obtained from a study of three adult male cadavers, all of whom were suicides. The cadavers were of middleaged individuals of muscular builds and each was about 169 cm in length. To avoid certain problems of earlier workers, Braune and Fischer kept the cadavers frozen solid throughout their investigation. This reduced fluid losses to a minimum, but prohibited dissecting out the joints as Harless had done. Instead, Braune and Fischer sawed directly across the joints through the approximate centers of rotation of each joint.

To obtain a more accurate estimate of the center of mass than was possible with the then current balance plate technique, Braune and Fischer drove strong, thin rods into the frozen tissue and hung each segment from three axes. The intersection of the three planes was marked on the segment and gave an accurate location for the center of mass of each segment. Tables 1 and 2 give the weight of each tody segment as determined by Braune and Fischer. Similarly, table 4 gives the center of mass determinations of the body segments.

The data developed by Braune and Fischer have been widely quoted and extensively used, and until very recently, have comprised the most detailed data available.

Meeh (1894) pointed out the desirability of supplementing such data with similar information on the volume of segments of the living. To obtain the volume of body segments, Meeh carefully established for each body joint a plane of rotation that could be most easily associated with anatomical reference points. The segments of the individuals were then immersed in water to that plane, with the overflow water being caught and measured. Meeh found this method to be inexact, as considerable variability occurred in repeated trials with the same segment. Therefore, he averaged the results of repeated measurements to reduce his measuring error to a minimum. Because of the difficulties in using this technique on living infants and small children. Meeh duphicated Harloss's experiment using four infant cadavers. The relationships between segment weights and volumes obtained from Harless's and his own investigation were then used by Meeh to compute segment weight from the segment volume of his live subjects. From these data, and the data he had exporimontally determined on infants and children, Meeh was able to establish a series of graphs to illustrate the growth of the boxdy and its segments with age. Meeh's findings are not reproduced here as they were reported only as percent increments of growth; however, this study was the Arst serious attempt to understand the changes in the weight of segments during growth and developnent.

Fischer (1008) reported on a study of the moments of inertia of the human body and its segments. In this study, he included data of the weight and center of mass of body segments from a single cadaver. The procedures used appear to be identical to those he and Braune (1859) had used carlier in their study of segmental purameters. The woight and center of mass data obtained by Fischer are given in tables 1,2 and 4.

From the turn of the century until the mid-1020's, the interest in segmental parameters seems to have lagged. Indeed, the research that had been carried out in the late $1800^{\prime \prime}$ appears to have been received as the defiritive work and was widely quoted by those who were working in the area of human mechanics (Fischer, 1906; Amar, 1920).

In 1936, Steinhausen reported on a number of attempts by contemporary researchers to develop segment weight and center of mass data on the living. He particularly cited the work of

Hebestreit (unpublished) who was working with a modified Borelli balance. This device, first attributed to Borelli (1679) and subsequently modified by du Bois-Reymond (1900) and Basler (1931) in their studies of total body center of mass, consists of a rigid board supported by a knife edge at one end and a sensitive dial scale at the other end (figure 1). The subject to be measured stands or lies on the supporting board. Knowing the weight of the subject and the distance between supports, the subject's center of mass can be determined by noting the reaction of the scales to his weight.

Determination of Forearm-Hand Weight
W - Weight of Forearm-Hand
ΔR - Difference Between Scale Readings
D - Distance Between Supports
d_{w} - Displacement of Center of Mass of Forearm-Hand
Hgure 1. Eatmation of a Segment's Woight by tho Moihod of
This technique is quite adequate for center of mass determinations of the total body, but cannot be used for accurate sogmental center of mass determinations because the weights of the segments are not known. If one unknown, oither the conter of mass or the weight of a segment, can be accurately approximated, then the socond can be detormined using this principle of lever mownents.

Bernstein und his co-workers used this approach to determine experimentally on the living, the weight and center of mass of segments of the body. This work, carried out in the late 1920° 's and reported by Bernstein et al. (1831), is apparently not available in this country and the discussion that follows is bused upon the summary statement published later by Bernstein (1987) and others. ${ }^{1}$

[^2]The major problem to be overcome was developing a method to accurately approximate either the weight or the center of mass of the body segments. Using frozen cadaver segments, Bernstein concluded that the center of mass of a segment could be considered coincident, for most practical purposes, with its center of volume. Since the volume and center of volume of a segment can be experimentally determined on the living, the weight of the segment could be determined by the method of reaction change.

The modified Borelli apparatus used by Bernstein is pictured as figure 12 in his 1967 publication, and our line drawing (figure 1) is a simplified version. The subject lies on the platform and two readings of the scale are made, with the segment to be measured held in two different positions. Knowing the reaction of the scale to the changes in segment orientation, as well as the distance the center of mass of the segment has shifted and the distance between the knife edges supporting the platform, the segment weight can be calculated from the following:

$$
W=\frac{D(\Delta R)}{d_{w}}
$$

where

$$
\begin{aligned}
W & =\text { weight of segment } \\
D & =\text { distance between knife edge and scale support edge } \\
\mathbf{d}_{\mathbf{W}} & =\text { displacement of } W \text { (center of mass) } \\
\Delta \mathbf{R} & =\text { difference between scale readings }
\end{aligned}
$$

Bernstein's study was undertaken on a sample of 152 subjects of both sexes, ranging in age from 10 to 75 years. His analysis did not include the center of mass of hands and feet, but did include the weight of all limb segments and all centers of mass with the exception of the above.

Only certain of the summary statistics are available from this study. Those for the male sample are given below. These data are the segment weight as a percent of body weight, and center of mass from the proximal end of the segment as a percent of segment length.

	Segment Woight as Percent of Body Weight		Segment Center of Mass as Percent of Segment Length	
	Mean	SD	Mean	SD
Thigh	12.213\%	1.620	38.57\%	3.11
Calf	4.655	. 507	41.30	1.88
Foot	1.458	. 128		
Upper Arm	2.655	. 312	48.57	2.63
Forearm	1.818	. 184	41.24	2.74
Hand	. 703	. 084		

Bernstein concluded that the individual variation was so great that, "Either we may resign ourselves to measuring with the complex technigucs wo have developed every now subject with whom we deal - or we may attempt to find such anthropometric and structural correspondence (correlations) as will enable us to determine with sufflcient accuracy the probable radii of our subjects on the basis of their general habits and anthropometric data" (1067, p. 13). If a search for "anthropometric and structural correspondence" was undertaken, it has not been reported by Bernstein or other authors who have described his work.

The accuracy of the estimates of segment weights based on the reaction change technique is largely dependent upon the accuracy of the center of mass estimates. It is unfortunate, therefore, that Bernstein's original work on the basis of which he concluded that the center of mass is, for most practical purpose, coincident with segmental mid-volume, is not available for examination. Our study afforded the opportunity to test this concept, which has been accepted and used by later workers. The results of our investigation are given in Appendix B.

Since the 1930's a number of other researchers have attempted to estimate the weight of body segments of the living. Zook (1932), in a study of human growth, measured in a rather gross way the segment volumes of a large number of boys, ages 5 through 19 years. These data appear to reflect a large experimental error and are believed to be of limited usefulness. In 1943, Cureton reported the specific gravity of the body segments of fifteen male college students. The techniques used by Cureton were not reported, but his results appear to be even more variable than those reported by previous investigators.

Cleveland (1955) determined the weight and center of mass of body segments of 11 male college students. In his study, the volume and mid-volume for the total body and its segments were experimentally determined by hydrostatic weighing. The subject was suspended on a hammock attached to a spring scale above a water-filled tank.

The volume of a segment was determined by weighing a subject in air and then reweighing him with the segment immersed in water (im wt). The loss in weight was considered equivalent to the segment's volume. The mid-volume of a segment was determined by computing the value:

$$
C G_{\mathrm{wt}}=\frac{\text { air wt }-\mathrm{im} w t}{2}+i m w t
$$

This value, $\mathrm{CG}_{\mathrm{wt}}$, was the calculated reading of the supporting scale with the segment only immersed to its mid-volume. The segment was then withdrawn from the water until the scale value indicated the $C G_{w t}$ and the center of volume was marked on the segment at the level of the water. The weight of the segments was determined by multiplying the segment volume by the subject's total body density.

Harless's data (table 3) indicate that this procedure for computing weight of segments would lead to significant errors due to the discrepancies between the density of the total body and the density of the various segments. The results of this investigation are therefore believed to be of limited use.

Dempster (1955) reported an intensive study of human biomechanics which included data on the weight, volume, center of mass and moments of inertia of the segments of eight cadavers. The limb segments were separated at each of the primary joints and the trunk divided into a shoulder, neck, thorak, and in abdominopelvis unit. The planes of segmentation were fairly similar to those established by B : une and Fischor, excopt that before the dismemberment, joints were flexed to mid-range, which ' Sempster believed would provide a more equitable distribution of tissue mass in each segment. The joints after flexion were frozen before being bisected. Following dismemberment, each segment was put through a series of five steps: (1) the segment was weighed, (2) the center of mass of the straightened part was determined on a balance plate, (3) the period of oscillation (for moment of inertia) was determined, (4) the volume was measured by the Archimedes method and (5) the parts were then refrozen and prepared for further segmentation. The segmental centers of mass were located using a balance plate designed specifically for the study. The results of his analyses are shown in tables 1,2 , and 4.

His study was the most comprehensive study of weight, volume, and center of mass of body segments available. Dempster's sample of eight subjects doubled the number of subjects that had been previously studied and, in addition, provided a wealth of new information on biomechanics not fully reported by earlier investigators. Nevertheless, this investigation was carried out on a sample restricted in terms of age, weight, and physical condition that could significantly hinder the applicability of the data. The cadavers used "represented individuals of the older segment of the population. The specimens were smaller than . . the average white male population . . . and the weights were below those of average young individuals. Physically, however, the subjects were representative of their age level" (Dempster, p. 47) The composition of the human body changes significantly with age (Behnke, 1961), and the data obtained on an older sample is in all probability not fully representative of a younger population. Despite the possible limitations in application that Dempster cited, these data remain the best available and are widely used by researchers today.

Barter (1957) compiled the data obtained by Braune and Fischer (1889), Fischer (1906), and Dempster (1955) and prepared a series of regression equations for predicting segment weights from body weight. He was fully aware that the differences in technique among the investigators did not make their results fully comparable but felt that these differences were probably not significant when considered in the light of the magnitude of errors introduced by other factors. The errors are those introduced by sampling bias, pre- and post-mortem wasting of the body, fluid and tissue losses during segmentation, etc. Barter believed that the equations would provide a better estimate of segment mass than mean ratio values, and would, through the use of the standard error of estimate, give the range in values that might be expected for a given segment mass. The equations formulated by Barter are:
Head, Neck and Trunk (lb)
Upper Extremities
Both Upper Arms
Forearms and Hands
Forearms
Hands
Lower Extremities
Thighs
Calves and Feet
Calves
Feet
-Standerd error of estimate

$$
\begin{aligned}
& =.47 \times \text { Body Wt. }+12.0 \pm 6.4^{*} \\
& =.13 \times \text { Body Wt. }-3.0 \pm 2.1 \\
& =.08 \times \text { Body Wt. } 2.9 \pm 1.0 \\
& =.06 \times \text { Body Wt. }-1.4 \pm 1.2 \\
& =.04 \times \text { Body Wt. }-0.5 \pm 1.0 \\
& =.01 \times \text { Body Wt. }+0.7 \pm 0.4 \\
& =.31 \times \text { Body Wt. }+2.7 \pm 4.9 \\
& =.18 \times \text { Body Wt. }+3.2 \pm 3.6 \\
& =.13 \times \text { Body Wt. }-0.5 \pm 2.0 \\
& =.11 \times \text { Body Wt. }-1.9 \pm 1.6 \\
& =.02 \times \text { Body Wt }+1.5 \pm 0.6
\end{aligned}
$$

These equations have been used extensively by designers and engineors despite the limitations Barter clearly specifed, because they provide a rapid estimation of segment weights.

Goto and Shikko (1858) reviewed the techniques used by provious investigators who had attempted to measure the weight and center of mass of segments on the living and then designed specific equipment for a similar study. They used two methods in their investigation. The first method was that of reaction change using the coefficients Fischer developed for locating the center of mass of limb segments. The second appraach was that of determining the moments of inertia of the body with the segments held in different orientations. The results they obtained us-
ing the two techniques were found to be unsatisfactory. They concluded that the problem was insoluble unless either a satisfactory approximation were developed for one unknown (segment weight or center of mass) or until a new approach were evolved that would be independent of one of the unknowns. More recently at Kyushu University, Mori and Yamamoto (1959) investigated the weight of the body segments of three male and three female Japanese cadavers. The techniques of this study have not been reported, and one can only assume that they followed those of Braune and Fischer. The results of this study are shown in tables 5 and 6 . An additional six cadavers were later studied by Fujikawa (1983) under the direction of Professor Mori. The results of that investigation are also listed in tables 5 and 6.

TABLE 5
WEIGHT OF BODY SEGMENTS OF JAPANESE (kg)

(Cadaver)	Mori and Yamamoto					Fujikawa*	
	I	II	III	IV	V	VI	
(Sex)	M	M	M	F	F	F	
Entire Body	31.7	35.0	28.0	49.4	36.5	26.8	50.30
Head	3.9	4.1	3.9	4.0	4.2	3.7	4.10
Torso	18.6	18.3	14.0	27.2	20.1	13.4	26.95
Entire Arm, Right	1.2	1.7	1.3	2.4	1.6	1.5	$2.40 \dagger$
Entire Arm, Left	1.2	1.6	1.3	2.0	2.0	1.4	2.307
Upper Arm, Right	0.6	1.0	1.0	1.4	0.8	0.8	1.30
Upper Arm, Left	0.6	1.0	1.0	1.2	1.0	0.7	1.25
Forearm + Hand, Right	0.6	0.7	0.3	i.2	0.8	0.7	$1.10 \dagger$
Forearm + Hand, Left	0.6	0.6	0.3	0.8	1.0	0.7	$1.05 \dagger$
Forearm, Right	0.4	0.5	0.2	0.7	0.5	0.5	0.70
Forearm, Left	0.4	0.4	0.2	0.6	0.6	0.5	0.65
Hand, Right	0.2	0.2	0.1	0.3	0.3	0.2	0.40
Hand, Left	0.2	0.2	0.1	0.2	0.4	0.2	0.40
Entire Leg, Right	3.4	4.7	3.7	7.0	4.3	3.4	$7.25 \dagger$
Entire Leg, Left	3.4	4.4	3.8	6.8	4.3	3.8	7.30 +
Thigh, Right	1.9	2.9	2.3	4.3	2.4	2.0	4.75
Thigh, Left	1.9	2.8	2.4	4.1	2.4	2.0	4.80
Calf + Frot, Right	1.5	1.8	1.4	2.7	1.9	1.4	2.501
Calf + Foot, Left	1.5	1.8	1.4	2.7	1.9	1.4	2.501
Calf, Might	1.0	1.3	0.9	2.0	1.3	0.9	1.65
Calf, Left	1.0	1.3	0.9	2.0	1.3	0.9	1.65
Foot, Right	0.5	0.5	0.5	0.7	0.6	0.5	0.85
Frot, Left	0.5	0.5	0.5	0.7	0.6	0.5	0.85

Average of six specimens, male and fomale.
†Calculated value from sum of parts.
It is unfortunate that neither of the Japanese studies has reported in detall the techniques and procedures used. In any event, the data are of limited use for other than Japanese because of the significant differences in body propartions of the Japanese when comparod with a United States population. ${ }^{1}$.

[^3]TABLE 6
WEIGHT OF BODY SEGMENTS OF JAPANESE EXPRESSED AS A PERCENT OF TOTAL BODY WEIGHT

(Cadaver)	Mori and Yamamoto					Fujikawa*	
	I	11	III	IV	V	VI	
(Sex)	M	M	M	F	F	F	
Head	12.3	11.7	13.9	8.1	11.5	13.8	8.2
Torso	58.7	52.3	50.0	55.1	55.1	50.0	53.6
Entire Arm, Right	3.8	4.9	4.6	4.9	4.4	5.5	$4.8+$
Entire Arm, Left	3.8	4.6	4.6	4.1	5.5	5.2	$4.6{ }^{\text {+ }}$
Upper Arm, Right	1.9	2.9	3.6	2.8	2.2	3.0	2.6
Upper Arm, Left	1.9	2.9	3.6	2.4	2.7	2.6	2.5
Forearm + Hand, Right	1.9	2.0	1.1	2.0	2.2	2.7	2.21
Forearm + Hand, Left	1.9	1.7	2.1	1.6	2.7	2.7	2.17
Forearm, Right	1.3	1.4	0.7	1.4	1.4	1.9	1.4
Forearm, Left	1.3	1.1	0.7	1.2	1.6	1.9	1.3
Hand, Right	0.6	0.6	0.4	0.6	0.8	0.8	0.8
Hand, Left	0.6	0.6	0.4	0.4	1.1	0.8	0.8
Entire I.eg, Right	10.7	13.4	13.2	14.2	11.8	12.7	$14.4{ }^{+}$
Entire Leg, Left	10.7	12.6	13.6	13.8	11.8	13.6	$14.5 \dagger$
Thigh, Right	6.0	8.3	8.2	8.7	6.8	7.5	9.4
Thight, Left	6.0	7.4	8.6	8.3	6.6	7.5	9.5
Calf + Foot, Right	4.8	5.1	5.0	5.5	5,2	5.3	5.07
Calf + Foot, Left	4.8	5.1	5.0	5.5	5.2	5.3	5.07
Calf, Right	3.2	3.7	3.2	4.1	3.6	3.4	3.3
Calf, Loft	3.2	3.7	3.2	3.1	3.6	3.4	3.3
Foot, Right	1.6	1.4	1.8	1.4	1.6	1.9	1.7
Frot, Left	1.8	1.4	1.8	1.4	1.8	1,8	1.7

*Ayerage of six spectomens, male and fomate.
Culaduterl vahe from stim of purts.
In 1960, Drillis and Contini publishod a detailed study of charucteristic bexly segments. This investigation, carriod out over a number of yoars, appeared to he extremely thorongh'. Their initial interest was in tho design of improved prosthetic devices, but this necessitated good estimater of the weight, center of mass, and monents of inertia of limb segments. Their dissatisfaction with availnble segment parameters led them to attempt to develop tedmiques to provide improved duta. The most recent and complete work undertaken by this group induded a study of volume. weight, and center of mass of the segments of the living. A smmple of 20 young male subjects was stadiex, and complete data wore obtained from 12 (Drillis and Contim, 1900).

Boxly segment volumes were determined using fmenerionard segment zone methods. These methods are generally similar; however, the latter is acermplished in small equidistant stepas in order that the distribution of volume throughout the length of the segment can ie determined. As the center of mass was assumed to be coincident with the mid-volume (following Bernstein). the segment zone method provided un estimate of the center of mass of the segmont. These ap-

[^4]proximations were then combined with the previously published center of mass data (table 4) to give an overall average value.

The weight of segments was determined by the method of reaction change, using a highly sensitive apparatus based upon the general principles illustrated in figure 1. The weights of the whole arm and whole leg were first determined, after which the weights of the forearm-hand and calf-foot were determined. The weight of the proximal segment of each extremity was then computed by subtracting the appropriate value. The hand and foot weights were not experimentally determined but were estimated, using proportional values from earlier cadaver studies (table 2). The weights of the forearm and calf were then determined by subtracting the estimated hand and foot values. A summary of their analysis is given in table 7.

TABLE 7
BODY SEGMENT VALUES, NYU SAMPLE ($\mathrm{n}=12$)

	Volume (1)			Weight (kg)		Density (g per ml)	CG Ratio
	Mean	SD	\% of TB	Mean	\% of TB		
Total Body (TB)	100.0	73.420	100.0
Head, Neck \& Trunk	42.606	58.04
Total Arm	3.971	. 376	3.73	4.384	5.97	43.1
Upper Arm	2.412	. 334	3.495	2.819	3.57	1.086	44.9
Forearm \& Hand	1.765	2.40	38.2
Forearm	1.175	. 084	1.702	1.324	1.80	1.127	42.3
Hand	. 394	.035	. 568	. 441	0.60	1.148	39.2
Totalleg	10.091	1.758	14.620	11.023	15.01"	39.7
Thigh	6,378	1.464	9.241	6.946	9.48	1.059	41.0
Calf \& Foot		4.077	5.55	...	45.0
Calf	2.518	. 309	4.083	3.086	4.20	1.095	39.3
Fort	. 695	. 175	1.297	.991	1.35	1.107	44.51

 Messured ! town heed

This study was well thought out and carefully exectited. The anthors, fully aware of the many diffienties in deternining loody seghent debsities, suggested that the results should be "comsidered as good first approximations." They do provide, in addition to the results of their study of segment parameters, a detailed procedure for applying their results to orthosis and to the design of prosthesis for specific individuals.

A number of theoretion studies of body seginent parameters have heen made, beginning with the early model developed by von Meyer (1863), and continuing througl the sophisticated computer simulations of today (Mellenry and Naab, 1900). An element common to cach of these studies is the attempt to represent tho irregular shapes of the differeni body segnuents with geo-
metric forms which are capable of simple mathematical descriptions. ${ }^{1}$ Before developing such a model it is necessary to assume, as did Whitsett (1962, p. 6), essentially that:
a. The human body consists of a limited series of linked masses.
b. The masses are linked at pivotal points (joints) which have a limited number of degrees of freedom.
c. The masses are internally stable, rigid and homogeneous.
d. The masses can be closely approximated by simple geometric forms.

The segments and their most commonly associated geometric forms are:
a. Head - elipsoid or elipsoidal cylinder
b. Trunk - elipsoidal cylinder
c. Arm, Forearm, Thigh and Calf - frustum of a right circular cone.
d. Hand - sphere or elipsoidal cylinder
e. Feet - parallelepipeds

The models are usually based upon data from Braune and Fischer (1889), Fischer (1906), or Dempster (1955). Skerlj (1954) developed a series of formulas for computing the volume and surface area of the body from anthropometric dimensions. His formulas are based upon treating the body segments as a serios of simple geomotric forms. The general formula for segment volumes suggested by Skerlj is:

Segment volume $=r^{2} \pi h$
where
r is the average radius of the segment and h is the longth of the segment.
As the radius of the segment at specife levels camot be measured directly, Skerlf modifes the formula for use with body circumference as:

Segment value $=\mathrm{c}^{2} \mathrm{H}_{2} \mathrm{k}$
where
k is a constant 0.70 which approximates 4 蕅 and c is the average circumference of the segment. For example, e fer trunk is expual to th of cheat plus waist plus hip circmimference.

The compowite formula for total body volume developed by Skerlf was tested by Bushikirov (1958) who found it uffered a good appoximation to empirical findings. Bashanow determined the total body volume for a large sample as 60.68 ± 0.55 liters with a deasity of 1.0413 where, as. with the computed volume lased upon anthroponetric dimensions. We obtained values of 60.00 and 1.0514, respectively. This conrespendence between the theoretieal and empirical total boxly volume speaks well for the use of models in this type of study. It is unfortunate that the formulas for individual segntent valumes have sar been compared in a similar manuer.

The widespread availability of high speed computers in rewent years has intensified the interest in the developmeat of mathematical models of the human body. Whitsett (1962) developed a mathenatical model to approxinate the mass distribution, center of amss, mounents of ineria

[^5]and mobility of the human body. His primary purpose was to use the model to predict the biodynamic response of the body to specific conditions associated with weightlessness. The basicparameters of the model were obtained from the data of Dempster (1955) and the regression equations of Barter (1957). Whitsett attempted to validate his model by recording on film a free-floating subject in an airplane flying a Keplerian trajectory. The maximum impact-free periods were found insufficient to demonstrate conclusively the validity of the theoretical formulations.

In 1963, Santschi et al., reported their study of total body moments of inertia and locations of the center of mass of 66 subjects in each of eight body positions (standing, sitting, etc.) Fifty body dimensions were measured on each subject. They found that the moments of inertia of the body in the various positions correlated well with stature and weight ($\mathrm{R}=.77$ to .98). The authors concluded that the location of an individual's center of mass and his moments of inertia can be effectively estimated from easily obtained anthropometric dimensions.

The high degree of relationship between stature and weight and moments of inertia encouraged Gray (1983) to derive from Santschi's anthropometric data three models of differing body size. Gray, as had Whitsett, used Barter's regresssion equations for assigning weight to the segments of the model and Dempster's center of mass data. In comparing the calculated moments of inertia and center of mass values to these experimentally determined parameters of the subjects who served as bases for Gray's models, he found the calculated results differed disappointingly from the experimental values and concluded that the model must be refined to represent the mass distribution of man more precisely.

A more refined mathematical model to predict the inmertial properties and the location of the center of mass of the buman body was developed by Hanavan (1964). Hanavan restricted the motion of his model to that of the arms and legs. The sizes of the segments of Hanavan's models are based on the individual anthropometry of the 66 subjects used by Santsch. Again the criteria for segment weights were based on the regression equations of Barter (1937), but the center of mass of the segments was dependent solely on the geometry of the segment. The fommutated model was then evalazted against the experimental data developed by Santsebs for each of his 60 sub. jects for seven body poxitions. Hanavan found that the predicted center of mass of the model was faitly comparalile to the empirical data and the predicted moments of inertia gosterally fallias within 10% of those experimentally determimed.

More recent work with mathenational modeling of the human boly is that of Mollenry and his asseriates at Cornell Aeronatical Laturatones. The object of this research has been the approximations of whole-body kinematies and the inettal foading of restraim twits in autonotive collixim rather than a study of human bomechanical daractoristies (MeHenry and Nabb, 1900). The fommatated model was evahated by compating the predicted rexponses with the results obtaued in cxutrollexi impacts of an instrumented anthropomarphic dunany. The resutts of the comparison of the theartical and empricicial data were sufficiently impressive to warrant further dewelopunents atued towari general improwenemt in the simutatom.

From the precreling general outise of research that has heen accomphashed in detemining swnent characteristics of bixdy segames it is appareat that a number of apporaches ase paxible. with each requiring centain explect or inplicit agomptions. It is beyond the seope of this fepent to discuss in detail each of the above studies or to point out all their merits and weakuskes: rather, a discussion of the classes of studies and a critique of the assumphions which underlie thets are presented.

The two most ofvious types of studies are those that differentiate lietween the chaice of suls. fect unaterial to be studied. The preference for live subjects as opposed to cadovers is obviour. The
use of the live subjects, howe : \cdot, assumes that the weight and center of mass of segments and linked segments can be estiu..ated with the required degree of accuracy. The most critical approach to this with live subjects appears to be that of Bernstein and his associates in Russia during the early 1930's. They were reportedly able to demonstrate that the mid-volume of each segment was coincident with its center of mass. Establishing the center of mass with accuracy is important as it becomes the critical variable for estimating segment weight using the reaction change method. The validity of segment weight determinations is obviously a function of the accuracy of center of mass estimates; but if we accept them as accurate, what errors remain in the actual determinations of weight by the reaction change method? Preliminary work with this method indicated many potential sources of error. If the scales are sensitive enough to detect changes in mass with great accuracy, they respond radically to changes in the body center of mass during respiration. Indeed, the beat of the heart will register on the scales as a slight oscillation. With movement of a segment from one position to another, the muscle masses, which act as the prime movers of the segment, also shift to some extent. For example, in determining the weight of the forearm-hand, the scale is first read with this segment held in a horizontal position (figure 1). The forearm-hand i_{i} then moved to a vertical position and the scales read once again to obtain the reaction change. 'ith flexion of the forearm, the belly of the hiceps brachii and the underlying brachialis are displaced proximally as much as two to three centimeters during muscle contraction. Fur c :uposite segments, such as the arm or log, the proximal shift in the mass of the flexors could introduce a significant bias in determining the segment weights. Moreover, we cannot assum. that the proximal shift in the muscle mass of the flexors is necessarily compensated for by a dist i: movernent of the extensors.

The use of cadavers, the second major type of study, while overcoming the above difficulties, sequires a new set of assumptions, the foremost being that the relationships found in a cadaver population are equally valid for the living. Changes that take place in the tissues and boniy fluids at death are not well understood; nor has a serious attempt been made to document the .hanges that occur or to estimate their significance. The possible sources of error in this type of study are many, a few of which have been cited by Barter (1957). Some of the sources of error, such as gross tissue pathology in general, and the effects of wasting diseases specifically, can be markedly reduced with the careful selection of the cadavers. It does not appear illogical to assume that changes which do occur are nensperific, that is, they oceur throughout the body rather than only in certain portions of segments. If this is true, then the relationships in the cadaver wouk remain the same as in the living: only the absolute values would change.

The third type of study, that of the mathematical models, has contributed little to our understanding of body segment parameters. Most of the models that havo been formulated so far are rather specific in design and have not been fully validated. In additia, with the exception of the work by McHenry and his associates (1960) at the Comell Aoronautical Laboratories, nome of the models were apparently revised on the basis of the information obtaned in the valibating tests. It should be possible through the use of computer simulations and Monto Carlo techaiques to prepare a series of gamitig solutions that could be ovaluated against the resulta obtained in limited high stress studies with human subjocts. Such an approach would repuire the devolopment of new and sophisticated simulation techmiques and demand a major effort by a number of highly skilled spechalists.

There is neither a simple nor easy approach to the study of body segnent characteristics. Fach type of investigation discussed previously has some definite limitations that reduce confalence in the accuracy of the resulis obtained. Thus there is a major neod for research designed to answet cor-
tain pertinent questions. Of primary interest is whether or not body segment parameters can be predicted with any degree of accuracy from anthropometric dimensions. If this can te answered in the affirmative, then it wo:Id be important to know if such predictions provide sufficient accuracy for estimating paranieters for individuals as well as for the corresponding populations.

We thuught an investigation based on the extensive knowledge gained from previous researchers and the results subjected to more elaborate statistical analysis would best answer these questions.

Methods and Techniques

The methods and techniques used in our investigation are similar in many respects to those established by Braune and Fischer (1889) and Dempster (1955) for their studies of the weight, volume, and center of mass of segments of the body. In the earlier investigations, unpreserved cadavers were used, which restricted the selection of subjects to those cadavers that could be brought together in a relatively short period of time. This factor effectively reduced the probability of obtaining a wide range of physical types and ages for inclusion in the sample. In this study preserved specimens were used, which permitted the selection of the sample from a relatively large population of cadavers. ${ }^{1}$ The use of preserved specimens is not believed to have introduced a significant bias in the results obtained. In a recent study, Fujikawa (1963, p. 124) reported, "There was little influence of the injected formalin-alcohol about the ratio of weight of each part to the body weight and little individual difference of the physique." Dempster (1955) included one presorved specimen in his sample and did not thereafter differentiate between the preserved and unpreserved specimens in his analysis. This would indicate that he believed, as did Fujikawa, that the data from the two types of specimens were reasonably comparable. ${ }^{2}$

The cadavers used in this study had been treated with a solution containing equal proportions of phenol, glycerine and alcohol. Three gallons of solution were injected by gravity flow through the subclavian and femoral arteries. The cadavers were then stored in tanks containing a 2% solution of phenol. This was the normal technique used by the preparator although there was no attempt at a strict standardization of the procedure. Todd and Lindala (1928) reported that three gallons of preservative would probably be the amount necessary to restore the mean living circumferences on a male white cadaver. Their findings are discussed in more detail in Appendix C.

The effect on the weight of body segments of adding a preservative has not been studied in detail. The density of the preservative used was found to be $1.0615\left(25^{\circ} \mathrm{C}\right)$., which closely approximates the average deasity of healthy young men (1.063) as found by Behnke (Behnke, 1961) and others. If an equal volume of preservative were injocted as a replacement for the blood of the Lody (density 1.050) the differences would be relatively insignificant. If the preservative, however, is an addition to the body fluids then the cadavers should, on the average, gain approximately 20 pounds after treatment. It is fairly obvious that the preservative is not retained in the body tissues for any appreciable length of time in the cuantities in which it was injocted, rather the tissue appears only to retain the amount of preservative to replace body water, etc., lost through the skin immediately after death. It is our opinion then that the cadavers, if properly treated during storage to retard fluid losses, and if selected for general normal appearances, will be closely comparable in mass distribution and density to living subjects.

The study sample was selected according to the following criteria listed in descending order of importance:

1. Ageal denath
2. Overall physical uppearance, including evidence of pre- or postmortem wasting

[^6]3. Evidence of debilitating diseases or accidents before death, including coroner's statement as to cause of death
4. Body weight
5. Stature

After each cadaver was selected for inclusion in the study it was treated to the following sequence of steps:

1. The cadaver was cleaned and the landmarks to be used in the anthropometry were made. The body measurements were made and somatotype photographs taken.
2. The total body center of mass and volume were measured.
3. The planes of segmentation of the arms and legs were established and the segments severed. The weight, volume, and center of mass for each of the segments were then established. This procedure was continued for the remainder of the cadaver until the data were gathered on each of the major segments of the body.
The specimens selected were photographed by the authors and then somatotyped by Dr. C. W. Dupertuis, Case-Western Reserve School of Medicine. Observations made on each subject are outlined in Appendix A as are the more detailed step-by-step procedures used in the study.

The technique of measuring the cadaver established by Terry (1940) was not used in the study because of the need for a special measuring frame and the necessity for severing the tendons of the ankle to allow proper dorsiflexion of the foot. In this study sach cadaver was measured in the supine position with the head oriented in the Frankfort plane (relative) and the trunk and limbs aligned. The inelasticity of cadaver tissue was a constant problem, consequently a rigidly standardized position could not be attained. A headboard, attached perpendicular to the table, provided the base for the anthropometer with all body height measurements being taken from the headboard (figures 2 and 3). A test with live subjects positioned in a similar fashion indicated the correlation coefficient botween standing and supine length measurements to be about 0.99 . The best approximation of standing stature was found to be the dimension Top-of-Head to Ball-ofHeel with the foot relaxed (see Appendix C).

The body dimensions were measured using primarily the landmarks and techniques of Martin (1928), Stewart (1947), and Hertzberg ot al. (1054). Many of the landmarks were diffeult to pulpate and locate accurately on the cadavers. Thorefore, Huoroscopy and X-ray were used to establish the exact position of the landmarks needed for the anthropometry. The layout of the Guoroscopy unit is illustrated in Ggure 4. Where diffeulties were oncountered and landmarks could neither be located by \#luoroscopy or X-ray, they were establishod by dissection (e.g. corvicale).

After the anthropometry was completed, the location of the center of mass of the total lxody and its segments was detemined using bulance tables developed by Mr. John J. Swearingen (1902). The larger center of mass machine consisted of a table and a series of platforms mounted one above the other with each counterbalanced so that the equipment as a unit remained in perfect balance with the bottom platform regardless of the shifts in pasition of the upper table on which the subject was positioned. The platforms were mounted to a base by means of a ball and socket joint and four electrical contacts, one at each comer. When the table was not in balance, the upper platforms tited to the side so that a metal pole touched a contact on the base completing an clectric circuit that indicated the direction the table had to be moved to obtain balance. This equipment is iliustrated in figure 5. After locating the center of mass in one axis, the table was tilted

Mgure 2. Autapy Teble with Headboard in Place.

vertically, approximately 20 degrees, and the center of mass along a second axis was obtained. The center of mass equipment did not provide for a ready determination of the center of mass in the transverse plane, and no further attempt was made to obtain this measurement. ${ }^{1}$ For this study, the center of gravity is assumed to lie in the mid-sagittal plane of the body.

A table designed to measure the centers of mass of infants was used for the smaller segments. This equipment was similar in principle to the larger table but not as elaborate, consisting only of an upper platform separated from its base by a ball and socket joint in the center and four electrical contacts. This derice is illustrated in figure 6 . The center of mass was determined by moving a segment slowly about the surface of the table until both the segment and table remained in balance. A plumb line then indicated the location of the center of mass. Repeated trials with the same segment indicated that the maximum variations in reading were within $\pm 3 \mathrm{~mm}$.

The equipment used in determining the volume of the body and its segments is illustrated in figures 6,7 , and 8 . The volume of the body $\left(V_{b}\right)$ and its segments was computed as the difference between the weight in air and the weight in water.

$$
\begin{equation*}
V_{b}=\left(M_{n}-M_{w}\right) / D_{w} \tag{16}
\end{equation*}
$$

where
$M_{n}=$ weight of the body in air
$M_{w}=$ weight of the body in water
$D_{w}=$ density of the water at a specific temperature

With the exception of total body and the trunk and the head-trunk segments, the volume of the segments was also determined by the water displacement method. This method follows closely that outlined by Dempster (1955) for measuring the volume of segments of the body. Each segment was weighed immediately before its volume was determined by either the water displacement or underwater weighing method. The equipment used in measuring volume by water displacement is shown in fgures 8 and 9 . The water displaced was weighed and corrected for temperature to give the segment volume. Each segment was measured twice by the water displacement method as a check, and the two values were then averaged. If the difference between two trials for the same segment exceeded 1%, the trials continued until successive measurements of volume differed by less than 1% of the total segment volume. In general the differences between two successive measurements of volume were less than 0.5%. Errors caused by changes in the surface tension of the water were reduced and kept to a minimum by flushing the tanks during successive trials, by draining and refilling as needed, and by keeping the tank mouths free of oils and debris. The techniques of volume measurement are illustrated in fgures 10 and 11.

Methods of dismembernent of body segments were similar to those used by Braune and Fischer (1892), and Dempster (1955). Cind- and still-roentgenograms were made of each joint to be studied throughout its range of motion on a serios of living subjects. A plane passing through the primary centers of rotation was then ostablished using bony lrndmarks as reference points. It was hoped that each cadaver joint could be flexed to midrange before freezing and cutting; however, the tissue could not be stretched sufficiently to permit this. The altemative, severing of the tissue to permit flexion to mid-joint range, was not considered as this would have resulted in a significant loss of body fluids before olservation. Bofore dismemberment of the cadavers, each plane of seg-

[^7]

Figure 6. Conter of Muas Mocauring Yalbla for Smell Segmonts.

Hgure 7. Equipment Used to Detormine Segment Volume by Underwafor Weighing

figure 9. Large Tank Used to Determine Seyment

Figure 8. Small Tank Used to Determine Segment

Hgure 10. Technique Ueed in Determinine the Volume of the Eedy and the Segmeris.

Howe 11. Tockrine lyod in Momeriay the Volume

Figure 12a. Trecing of a lioentgenegram of the Shoulder Segmentation.

Frowe 12h. Croen sectico of thoulior Sequamelion

mentation was marked with a thin lead strip and studied under a fluoroscope to assure that it would coincide with the desired reference landmarks. The segment to be cut was then irozen. Each segment to be severed was spot frozen along the line of segmentation by packing small pieces of dry ice completely around the segment. Extersive freezing of tissues beyond the plane of segmentation was avoided as much as possible. Immediately before any segmentation was made, the part to be cut was weighed, and immediately upon completion of the dissection, the resulting segments were weighed. All cuts were made with a paper towel under the area being dissected, and the few grams of tissue that fell on the paper or remained on the saw were weighed and one-haif the weight was added to each segment.

The shoulder segmentation plane is illustrated in figure 12a. This is a tracing from a roentgenographic plate. As illustrated in the figure, the arm was abducted laterally approximately 15° before freezing. This abduction rotated the shaft of the humerus laterally enough to assure that the cut line would pass from the acromial tip to the anatomical neck of the humerus and into the axillary region without touching the shaft of the humerus or the medial surface of the upper arm. An actual cross section of this shoulder-arm segmentation is illustrated in figure 12 bb .

The hip plane of segmentation is illustrated in the tracing in figure 13a. The legs were abducted about 20° in order to assure that the plane of segmentation would pass high into the groin. This plane extends from the level of the iliac crest inferionly atong the external shelf of the ilium. cutting the rim of the actetabulurr and severing the ischial tuberosity fosteriorly at the level of the attachmen (M. Semimembranots anteriorly at the mid-point of the ascending ramus of the ischium. A cre section of this line of damemberment is shown in figure l3b.

After the appendages were removed, the : :nter of mass of the head-trunk segment was estab. lished; and after therwing, the volume of the headraun secon it was meastred using the fech. nit of of rew. Weighing. The exter of mass was the : : maned for each appendage after whoh twe measurements of volume were made using both the water disphacement and the under. water weighing technique. This procedure was repeated if each segnent upon dismemberment. In ordey to reduce lhad losses to a minamum, ach at was sealed with a wate:proof platic fim applied hy an acrosol spray While the Gim did not complewly prevent the lass of fluids from the sereed xurface, i lid reduce seepare and evaporation.

The heer: Wo. severed from the trume olome the line illustrated in figue tha. The herad had tren poxstioned in the frunfort plane. The cut began at the chin-neck juncture, fust inferior to the
 of the serond ownal verthara. A cruss section of this plant is shown in figure 1 th.

The thigh was severed at the kite atong the plane ithe trated in figure 15a. The knes was
 third of the patella and bisected the maximum protnaions of the medial and batesad epiondyles
 through the postorior superior tip of the lateral equowdyle A crows section through this plane is illextrated in Ggure 15h.

The feet of all the specionens were nombally plamtar extented. The plane of separation for the calf and foot is ithotrated fa figure 16a. The phane of cut began at the antering superior poike of the nock of the talus and paxsed through the pasterior supertor surface of the calcaneus. A cross section through this plane is shown in Gigare lib.

The forearm was normally flexdi aloott 45° and was severed in that poxition. The plane of separation (Ggure 17a) begin by bisecting the area of insutan of the triceps on the olectianan pro-

Ryure 14a. Traciny of a Roentgeacgram of the Meck Segmentertion.

Figur 14h. Crone Soction of Noct Soqumentetion.

Hegure 15n. Tracing of a Reentgenogram of the Xnee Segmentation.

Figure 16a. Yracing of a Roenigenogram of the Ankle Segmentation.

Fixur 10t. Crum Section of Anklo Sorometation.

Figure 170. Tracing of a Roentgenagram of the Elbow Segmentation.

Hywre 17in. Crous section of thbow Semementallen.

Figure Ito. Tracing of a Reentgenogram of the Wriat Segmentation.

cess, crossed the greatest projection of the medial epicondyle of the humerus and ended at the skin crease of the anterior surface of the elbow. A cross section of the plane of segmentation is shown in figure 17b.

The hands of the cadavers were flexed to approximately 30° with the fingers slightly curled in the relaxed position. This was not a desired orientation for measuring the center of mass of the hand; however, the inelasticity of the tissues prevented the straightening of the fingers. ${ }^{1}$ The plane of cut for the wrist began at the palpable groove between the lunate and capitate bone, bisected the volar surface of the pisiform and ended at the distal wrist crease. The plane of separation and a cross section of this cut is illustrated in figure 18.

In all, the body was divided into 14 segments. Fourteen cadavers were used in this study and data were gathered fully on 13 . The first cadaver was used as a test specimen to evaluate the techniques to be used; therefore data on this cadaver are not included in the analyses that follow.

1Dempster found that the locsation of the center of gravity of the hand is not signilicantly affectod by the fantteaing or loose cuppting af the hand (1055, p. 125).

Summary Statistics and Predictive Equations

As previously pointed out, no attempt was made to select a fractional or stratified sample. In choosing the sample of cadavers, a list of all the available adult males was ordered according to age. Starting with the youngest (age 28), each was examined for condition of preservation, evidence of debilitating or wasting disease, deformities, etc. Every specimen that met the requirements previously set was included in the study. Though the cadaver poyulation from which the sample was drawn was large, there was a paucity of specimens that met the stringent requirements for this study. The final sample consisted of 13 specimens on which the data were complete for all variables studied.

The physical evidence for emaciation, debilitating diseases, etc. was determined by visual inspection. An attempt was made to select only those spec:mens that appeaxed physically "normal." This could have biased the sampling process if the subjective criteria used were invalid. There is no absolute method to determine if a sampling bias existed. However, no consistent bias is believed to have existed in the method of selection that would invalidate the assumptions necessary for normal statistical analysis.

The summary statistics for the variables of stature, weight, and age of the sample are listed below. In comparison, the same variables for a USAF persornel sample (Hertzberg et al., 1954) and a male civilian work force sample (Damon und McFarland, 1955) are also listed.

Cadavers

$\overline{\mathbf{x}}$	SU
172.72	5.94
66.52	8.70
49.31	13.69

USAF Personnel

\bar{x}	SD
175.54	6.19
74.24	9.46
27.87	4.22

Civilian Workers

$\overline{\mathrm{x}}$	$\mathrm{SD} *$
173.6	6.5
75.75	13.15
37.0	8.2

*SD estimated from s.e.
The cadaver sample was shorter, lighter and older in terms of mean values than either the military ol civilian sample. The differences in stature among the three samples is relatively small, but the differences in weight are larger than were desired. The standard deviations for both height and weight are reasonably comparable except for the civilian sample. It is unfortunate that a closer approximation to the adult male porulation in respect to body size was not achieved. A comparison of the anthropo etety of liying samples and the cadaver sample is discussed in some detail in Appondix C. It was from this comparison that we concluded that the anthropometric dimensions of tie cadavers are reasonable apprciximations to those obtained on the living and can be used withit: the framework of this study. Aiso of interest is the effect of the preservatives used on the densities of cadaver tissues. This is discussed in Appendix G.

The discriptive statistics for the anthropometry of the cadaver sample are given in table 8. These statistics include the range, i:ean, standard error of the mean, standard deviation, standard error of lie standard deviation, and coefficient of variation. As these statistics are meant to describe only the sample and not a population, none of the conventional techniques for providing an unbiased estimate of the population variance has been used. A brief outline of the statistical formulas used in this study is given in appendix E. The coeffcients of variation indicate that these data reflect the level of relative variability common for anthropometric data on the living. Exceptions to this are restricted primarily to the dimensions of the abdomen where greater relative variability

TABLE 8
ANTHROPOMETRY OF STUDY SAMPLE*

VARIABLE NAME ($\mathrm{N}=13$)	RaNGE	MEAN (SE)		S.D. (SE)		CV
1. ACE	28.0-74.0	49.31	(3.80)	13.69	(2.68)	27.76
2. ENDOMORPHY	$3.0-5.5$	4.04	(0.16)	0.57	(0.11)	14.13
3. MESOMORPHY	$3.0-5.0$	4.31	(0.18)	0.84	(0.12)	14.78
4. ECTOMORPHY	$1.0-5.0$	2.38	(0.29)	1.04	(0.20)	43.64
5. WEIGHT	54.0-87.9	68.52	(2.41)	8.70	(1.71)	13.07
6. ESTIMATED STATURE	162.5-184.9	172.72	(1.65)	5.94	(1.16)	3.44
7. TRAGION HT	151.2-172.8	160.45	(1.57)	5.67	(1.11)	3.53
8. MASTOID HT	147.4-169.4	157.18	(1.59)	5.72	(1.12)	3.84
9. NECK/CHIN INTER HT	139.3-161.1	148.70	(1.54)	5.55	(1.09)	3.73
10. CERVICALE HT	140.1-160.6	148.98	(1.42)	5.11	(1.00)	3.43
11. SUPRASTERNALE HT	131.8-151.8	141.05	(1.38)	4.98	(0.98)	3.53
12. SUBSTERNALE HT	105.9-134.2	120.72	(1.84)	8.82	(1.30)	5.49
13. THELION HT	119.9-138.1	128.91	$(1,36)$	4.92	(0.98)	3.81
14. TENTH RIB HT	103.6-120.8	110,91	(1.31)	4.71	(0.92)	4.84
15. OMPHALION HT	96.7-114.0	105.50	(1.25)	4.49	(0.88)	4.26
16. PENALE HT	78.7-95.4	85.99	(1.23)	4.43	(0.87)	5.15
17. SYMPHYSION HT	$81.6-98.5$	89.60	(1.10)	3.98	(0.78)	4.44
18. ANT SUP SPINE HT	88.7-107.1	96.59	(1.23)	4.43	(0.87)	4.59
19. ILIAC CREST HT	$95.9-116.9$	104.27	(1.42)	5.12	(1.00)	4.91
20. TROCHANTERIC HT	$83.0-99.7$	90.81	(1.13)	4.08	(0.80)	4.49
21. TIBIALE HT	40.9-50.9	45.88	(0.65)	2.34	(0.46)	5.12
22. Lat-L Malleolus ht	6.4-7.9	7.13	(0.11)	0.41	(0.08)	5.73
23. SPHYRION HT	$5.8-8.8$	7.05	(0.23)	0.83	(0.18)	11.84
24. HEAD BREADTH	15.3-16.6	15.75	(0.11)	0.38	(0.07)	2.41
25. HEAD LENGTH	18.6-21.2	19.98	(0.20)	0.73	(0.14)	3.65
26. NECK BREADTH	11.0-14.6	12.45	(0.27)	0.86	(0.19)	7.75
27. NECK DEPTH	12.3-15.3	13.53	(0.29)	1.03	(0.20)	7.61
28. CHEST BREADTH	29.1-39.4	33.23	(0.70)	2.53	(0.50)	7.62
29. CHEST BREADTH/BONE	28.7-33.9	29.99	(0.51)	1.85	(0.38)	6.17
30. CHEST DEPTH	17.7-24.8	21.06	(0.52)	1.88	(0.37)	8.93
31. WAIST BREADTH/OMPH	25.8-- 38.8	30.59	(0.90)	3.26	(0.64)	10.65
32. WAIST DEPTH/OMPH	15.1-23.5	18.17	(0.71)	2.56	(0.50)	14.10
33. BICRISTAL BREADTH	23.5-34.0	29.08	(0.75)	2.72	(0.53)	9.35
34. BI-SPINOUS BREADTH	20.6-27.5	24.08	(0.58)	2.09	(0.41)	8.68
35. HIP BREADTH	29.6-40.8	34.62	(0.75)	2.69	(0.53)	7.76
36. BI-TROCH BR/BONE	28.5-38.7	32.51	(0.58)	2.10	(0.41)	6.47
37. KNEE BREADTH/BONE	9.1-11.1	10.01	(0.14)	0.52	(0.10)	5.21
38. ELBOW BREADTH/BONE	6.6-8.0	7.27	(0.12)	0.43	(0.08)	5.94
39. WRIST BREADTH/EONE	$5.2-6.1$	5.72	(0.08)	0.30	(0.06)	5.22
40. HAND BREADTH	7.4-0.5	8.50	(0.15)	0.54	(0.11)	6.31
41. HEAD CIRC	53.9-60.0	57.06	(0.49)	1.78	(0.35)	3.12
42. NECK CIRC	36.6-45.0	40.43	(0.71)	2.56	(0.50)	6.34
43. CHEST CIRC	84.5-103.8	93.39	(1.59)	5.74	(1.13)	6.15
44. WAIST CIRC	70.3-103.4	80.65	(2.15)	7.74	(1.52)	9.80
45. BUTTOCK CIRC	80.4-102.2	89.87	(1.53$)$	5.51	(1.08)	6.13
46. UPPER THICH CIRC	41.4-53.7	47.36	(1.01)	3.64	(0.71)	7.69
47. LOWER THIGH CIRC	30.3-41.4	35.55	(0.74)	2.65	(0.52)	7.47
48. CALF CIRC	26.8-35.1	30.82	(0.69)	2.50	(0.48)	8.12
49. ANKLE CIRC	18.0-22.4	20.05	(0.34)	1.24	(0.24)	6.17
50. ARCH CIRC	23.4-27.5	25.80	(0.35)	1.28	(0,25)	4.95

*UNITS OF MEASURE -
Age in years, somatotype in half units (0-7), weight in kilograms, body fat in millimeters, all other dimensions in centimeters.

\%	ANTHROPOM							
	VARIABLE NAME ($\mathrm{N}=13$)		RANGE	MEAN (SE)		S.D. (SE)		cV
		ARM CIRC (AXILLA)	26.1-33.0	29.38	$\text { (} 0.58 \text {) }$	2.08	(0.41)	7.07
		BICEPS CIRC	24.9-32.2	28.05	(0.61)	2.19	(0.43)	7.79
	53.	ELBOW CIRC	24.1-31.3	27.85	(0.58)	2.01	(0.39)	7.22
		FOREARM CIRC	$24.3-29.7$	26.27	(0.38)	1.41	(0.28)	5.36
	55.	WRIST CIRC	14.8-18.6	16.54	(0.29)	1.05	(0.21)	6.38
		HAND CIRC	18.0-22.6	21.06	(0.25)	0.90	(0.18)	4.28
	57.	HiSAD + TRUNK LENGTH	$78.2-87.1$	81.92	(0.84)	3.02	(0.59)	3.68
	58.	HEIGHT OF HEAD	22.4-26.6	24.02	(0.30)	1.06	(0.21)	4.43
	59.	TRUNK LENGTH	$53.2-62.1$	57.89	(0.73)	2.65	(0.52)	4.58
	60.	THIGH LENGTH	$42.1-48.8$	45.14	(0.51)	1.84	(0.36)	4.08
	61.	CALF LENGTH	35.1 -- 42.9	38.65	(0.56)	2.00	(0.39)	5.19
	62.	FOOT LENGTH	$23.0-28.8$	24.78	(0.28)	1.00	(0.20)	4.05
	63.	ARM LIENGTH (EST)	$72.3-84.2$	77.45	(0.90)	3.24	(0.64)	4.18
	64.	ACROM RADIALE LGTH	$30.2-37.4$	33.35	(0.56)	2.01	(0.39)	6.03
		BALL HUM-RAD LGTH	27.8-33.6	30.68	(0.43)	1.56	(0.31)	5.07
	68.	RAD-STYLION LENGTH	23.5-28.0	25.90	(0.34)	1.22	(0.24)	4.70
	67.	STYLION-MET 3 LGTH	$7.6-10.5$	9.05	(0.20)	0.71	(0.14)	7.79
	68.	META 3-DACTYLION L	9.7 - 11.1	10.43	(0.12)	0.44	(0.09)	4.23
		JUXTA NIPPLE (FAT)	0.5-25.0	8.85	(2.00)	7.21	(1.41)	81.53
		MAL XIPHOID (FAT)	0.1-15.0	5.70	(1.17)	4.23	(0.83)	74.22
	71.	TRICEPS (FAT)	$1.0-23.0$	8.23	(1.45)	5.22	(1.02)	63.43
		ILIAC CREST (FAT)	$1.0-27.0$	10.58	(1.87)	6.72	(1.32)	63.58
	73.	MEAN FAT THICKNESS	0.9-22.5	8.33	(1.48)	5.35	(1.05)	64.23

*UNITS OF MEASURE -
Age in years, somatotype in half units (0-7), weight in kilograms, body fat in millimeters, all other dimensions in centimeters.
occurs than is normal, and we believe this reflects the wide range of age and age-related changes in the physique of the abdomen associated with the cadaver sample.

The 73 variables listed here are considerably less than the total number collected (99). A number of dimensions such as Top-of-Head to Heel, Top-of-Head to Ball-of Foot, etc., were all estimates of stature and therefore were eliminated in the final analyses (Appendix C). Early during the collection of data, it became apparent that the shoulders could not be measured in any standard way; therefore, Acromial Height and Biacromial Breadth were both deleted from the analyses. In addition, a number of body dimensions were measured on both the right and left side of the body. These measurements were then averaged to give a single value to be used in further analysis. The right and left side measurements of these body dimensions were found generally to agree within measuring error; therefore, averaging did not result in a significant numerical change. Several circumferences measured on the right and left sides did show some differences, primarily for those measurements of major active muscle masses, such as over the biceps, forearm, and upper thigh. Before the right and left values could be averaged, it was necessary to determine if the relationships between these and all the other variables were essentially the same for the right and the left side. This was accomplished by computing the correlation coefficients for the right and left measurements with all other variables used in the study. The right coefficients were then used as ordinate or X coordinates with the left coefficients being used as abscissa or Y coordinates for plotting as rectangular coordinates. If a perfect relationship existed between the right and left measurements, the points on the graph would fall along a line that passed through the origin of the graph and bisected the first and third quadrant. The variables treated in
this manner indicated that the relationship of other variables with the measurements made on the right and left sides was high, with most of the points being rather tightly clustered along the line that would indicate a perfect relationship. It is believed on this basis that the measured values of the right and left sides could be averaged without a significant loss in information. ${ }^{2}$.

In addition to deleting or combining anthropometric variables, there were a number of additional variables calculated from other data. The computed variables are numbered 57 through 61 and are all concerned with seginent length. These variables are largely simple subtractions of measured anthropometry and are described in appendix D. Arm length (variable 63), however, could not be measured directly on the cadavers owing to the flexion of the elbow, wrist and digits. A summation of the lengths of the individual segments normally gives an excessive value for arm length. In the 1967 Air Force anthropometric survey, ${ }^{2}$ for example, arm length measured as Acromial Height less Dactylion Height is one centimeter less than the sum of Acromion-Radiale Length plus Radiale-Stylion Length plus Hand Length. In order to estimate arm length more effectively on the cadaver population, a series of regression equations was prepared, using Air Force data, to predict arm length from measured values of Acromion-Radiale Length and Radiale-Stylion Length. These two dimensions were measured in the same manner in both the Air Force survey and in the cadaver series. The multiple correlation coefficient ol ed was 0.892 and the regression equation:

$$
\begin{aligned}
& \text { Arm Length (estimated) }=1.126 \text { Acromion-Radiale Length }+1.057 \text { Radiale-Stylion } \\
& \text { Length }+12.52(\pm 1.58) . * \\
& * \text { (All variables used in the equation are in centimeters) }
\end{aligned}
$$

This equation estimates an average arm length, which was about a centimeter less than the sum of parts for the arm in the cadaver sample. This variable is used only in the descriptive statistics and the segmental ratios that foliow (tables 9-22) and not in any other analysis of the data as it is considered an approximation and not a measured variable.

A comment is appropriate at this point about the statistical analysis presented in the remainder of this study. In previous studies of segmental parameters, the statistics presented in the analysis were, in general, limited to simple ratios and averages. The reasons for this are understandable, as either the statistical techniques had not been developed or the samples were extremely small. Sample size can be considered as an effective limiting factor on the degree and sophistication of the statistical analysis. The sample size in this study is significantly larger than in previous studies of this nature, but is still extremely small for the type of analysis that is desired. The small sample size does not, of course, invalidate the statistical analysis, but does demand m, re caution in the interpretation of the results. In this study we have two levels of data interpretation. The first level of interpretation is associated with the descriptive statistics. Random experimental errors associated with data collection are magnifed, in a sense, because of the small number of observations made for each variable. They affect the descriptive statistics to a greater extent than an error of a similar magnitude affects the descriptive statistics for a large sample. Care in collecting and editing the data helps reduce such errors but does not assure that the data are error free. A brief summary of the editing procedure used is given in appendix \mathbf{E}.

A second level of interpretation is involved when the statistics are used to establish population parameters from the sample or when the results are applied to a different population. Here

[^8]again, the sample size is a limiting factor, as the precision of an estimate is a function of the sample size. The first factor is of less moment in this study, because an attempt is made only to relate segmental characteristics to body size characteristics of the sample rather than established population parameters. The difficulties in application may not be so lightly dismissed, however, since the ultimate goal of this investigation is to transfer the findings of the interrelationships of the cadaver population to the living, as a first approximation for determining segmental parameters from body size characteristics.

An approach that strengthens the confidence in the interpretation of the statistical data from a practical, but not a statistical point, is to examine the data for patterns of values rather than for individual values. In table 8 , for example, we find the relative variability, as expressed by the coefficients of variation, to be that: normally associated with anthropometric data. In a similar fashion, the interrelaticnship of these variables may be listed. The intensity of association among body size dimensions is best expressed by the product-moraent correlation coefficient (r). This statistic is a numeric measure of the degree to which varables chaige together. The correlation coefficient measures the degree of linear relationship. Since most pairs of body dimensions exhibit an essentially linear relationship, its use here seems appropriate. The total intercorrelation matrix has been computed but is not presented here because of its excessive length (6,903 individual values for the 118 variables used in this study). A partial correlation matrix is given in appendix F, which illustrates only the relationship of the anthropometry with the segmental parameters.

The interrelationships am:ong human body dimensions are relatively well understood but less well documented. A number of correlation matrices of anthropometry have been prepared from military anthropometric survey data, but these have not been fully published or widely circulated. These matrices show a common series of patterns of relationships between body dimensions which have practical applications in many design problems. ${ }^{1}$ A comparison of the cadaver correlation coefficients with the 1967 Air Force correlation coefficients indicates that the two samples exhibit a similar series of relationships and that the individual coefficients are alike in magnitude despite the great differences in the sizes of the two samples. This suggests that the body dimensions of the cadaver sample exhibit essentially the same type and degree of interrelation as are found in the living.

Despite these findings, the analysis presented below is based upon a very small sample and considerable caution in interpretation is warranted.

The descriptive statistics for the weight, volume, and center of mass of the body and its segments are given as variables 74 through 132 in tables $9-22$. A single table is devoted to each of the body segments as well as to the total body. Each table is divided into three parts with the upper section containing descriptive statistics, the conter section predictive equations, and the lower section simple ratios.

Each of the body segments is described by a weight, a volume, and a center of mass location. For the smaller segments, the center of mass is located in the X as well as the Z plane with the anteroposterior depth of the segments at the center of mass (AP at CM) also being given. The location of the center of mass in the Y plane was not measured on the body segments and is assumed to lie in the mid-line of the segment in cach instance.

The results obtained in measuring both the right and left sides for segmental variables have been averaged in a manner similar to that carried out for the anthropometric data. The rationale

[^9]for this is the same as was used in averaging the anthropometric data and involved an identical type of evaluation. The average weight of segments from the right side was found in each instance to be greater than the averages for the left, with the differense being 1% or less of the total segment weight for the leg and leg segments. The difference in right and left average arm segment weight was found to be proportionally greater with the largest difference, $4.8 \%(81 \mathrm{~g})$, being associated with the weight of the upper arm. This difference is assumed to be due to muscle development related to ase and handedness. The combining of the data from the right and left sides is not believed to have resulted in a significant decrease in information and greatly simplifies the presentation of the analysis that follows.

The total body weight given in table 9 (variable 74) differs from that given in table 8 (variable 5). This difference reflects the body fluids lost during the course of the work. The body weight given in table 9 is the one used in the following analysis and is the value that reflects more closely the actual sum of the weight of segments. Despite numerous precautions to retard fluid losses and grevent evaporation of body fluids through the epidermis, the segments lost weight during the various steps of the study. For example, the sum of the weight and volume for the foot plus calf plus thigh was always less than the measured weight and volume of the total leg. To prevent carrying this type of discrepancy into the analysis, an adjustment was made to the values for the segments so that the sum of parts and the total segment values would be equal. Thus, if the sum of the parts was 50 grams less, for example, than the total segment's original weight, then the weight of each part was adjusted upward by that amount of the difference so that each part was as a ratio of its mass to that of the total segment. The volume was then adjusted upward to maintain the density of the segment at its original level.

The descriptive statistics are followed by a series of equations that permit the prediction of a segment variable trom atthropometric dimensions. The multi-step regression equations were obtained by using a step-wise regression computer program. This program selected body dimensions (variables $1-73$) having the maximum power to predici a given segment variable. The initial anthropometric variable was selected on the hasis of the largest correlation coefficient, and then partial correlation coefficients were computed from whicin the next variable having the greatest predictive power was selected. The process was then repeated to cubtain the third prediction variable.

The predictive equations were restricted to three or less steps because of the small sample size. There is, also, a decreasing effetency (in terms of predictive power) in the addition of steps in the regression equation ufter a certain level is reached. Here again, the small sample sias ef a limiting factor, as one degree of freedom is lost for cach added step in the regression equation.

Body size variables nsed in each equation were restricted to those measures diberty en the segment involved and laxly weight. If, for example, the weight of the arm were io as areiticted, the only variables that could be solectex are measurements of arm size or total ts se esighe. The Lutter was included as it often provided a better prediction of segment weight: than say other \sin gle variable. In addition, when two anthropometric variables bad escontially the same level of predictive power, the one that we believed wonld the the easist to messure with the greatest accuracy was selected. This selection was mado possible by weighting certain variables so they would appear first in the equation. The cut-sff point in terms of the number of steps in any gquation was tased upon the rate of decrease in the standard error of estimate ($\mathrm{Se}_{\mathrm{mw}}$). Fer mosi variables. a three step equation is given, although tho Seat may not show a marked decrease in the third step. In a fow instances, the second and third steps are not given, indicating that the Serat shown is the lowest that could be oltainexd by using the available predictive variables.
table 9
TOTAL BODY
DESCRIPTIVE STATISTICS

		RANGE		MEAN	(SE)	S.D.	(SE)	cV
74	WEIGHT*	53.240	86.819	65.606	(2.40)	8.640	(1.69)	13.17
75	VOLUME	51.740	33.721	62.989	(2.34)	8.451	(1.66)	13.42
76	CM-TOP OF HEAD	65.2	74.4	71.11	(0.66)	2.39	(0.47)	3.3

PRELICTIVE EQUATIONS

	$\begin{gathered} \text { WEIGHT } \\ \hline \end{gathered}$	CHEST CIRC	$\begin{gathered} \text { WAIST BREADTH } \\ 31 \end{gathered}$	CONSTANT		SE ESt
75 VOLUME	0.970			- 0.650	. 992	1.13
	0.802 0.703	$+\quad 0.288$ $+\quad 0.299$	+ 0.305	= 16.5825	.998 .999	1.179 0.79
	WEIGHT	est stature	CHEST CIRC			
	74	6	43			
76 CM-TOP OF	0.199			+ 58.052	. 720	1.73
HEAD	0.139	+ 0.147		+ 36.598	. 777	1.63
	0.357	+ 0.239	- 0.441	+47.591	. 914	1.11

LOCATION OF CENTER OF MASS AS A BAILO OF SKCMENT SLZE

133

 "Sep per 4 .

TABLE 10
head and trunk
DESCRIPTIVE STATISTICS

PREDICTIVE EQUATIONS

LOCATHON OF CENTEH OF MASS AS A BATHO OF SEGMENT SIEE

	range	mean	(SE)	S.D. (SE)	cv
194 CN-TUP OF HEAOTH*TRUNK LTH	96.4-82.0	59.21	10.441	1.60 (0.31)	2.70

MATO OF THE WEGCHT OF A SECAMET AS A PEBCENT OF TOTAL BODY WEICHT

| RANGE | HEAN (SE) S.O. (SE) CV | CV |
| :--- | :--- | :--- | :--- | :--- |

TABLE 11
TOTAL LEG
DESCRIPTIVE STATISTICS

	RANGE		MEAN	(SE)	S.D.	(SE)	CV	
80 WEIGHT	$8.672-$	13.935	10.563	(0.42)	1.516	$(0.30 ;$	14.35	
81 VOLUME	$8.254-$	13.362	9.955	(0.41)	1.468	(0.29)	14.74	
82 CM-TROCHANTERION	31.6	-	39.3	34.68	(0.53)	1.90	(0.37)	5.48
83 AP AT CM	10.2	-	13.9	12.04	(0.30)	1.09	(0.21)	9.09
84 CM-ANT ASPECT	5.9	-	9.1	7.59	(0.23)	0.83	(0.16)	10.99

PREDICTIVE EQUATIONS

location of center of mass as a rat!o of segment siat

ratio of the welciht of a segment as a
PERCEN' OF TOTAL bODY WETCHT

	RANGE	MEAN (SE)	S.0. (SE)	GV		
158 LEG WEIGHT/BODY WEIGHi	$14.3-17.3$	16.10	$10.26)$	0.94	(0.18)	5.84

-Additicmal steps do not innprove the effectivenest di prodletiua.

TABLE 12
TOTAL ARM
DESCRIPTIVE STATISTICS

		RANGE		MEAN	(SE)	S.D.	(SE)	CV
	WEIGHT	2.647 -	4.177	3.216	(0.13)	0.464	(0.09)	14.44
	VOLUME	2.383	3.956	2.978	(0.12)	0.445	(0.09)	14.96
87	CM-ACROMION	29.2	37.i	31.98	(0.61)	2.20	(0.43)	6.87

PREDICTIVE EQUATIONS

				CONSTANT	R	EST
	WEIGHT 74	$\text { WRIST }_{55} \text { CIRC }$	$\operatorname{BICEPS}_{52}^{\text {CIRC }}$			
85 WEIGHT	0.047			+ 0.132	- 883	0.23
OS WEIGHT	0.031	+ 0.186		- 1.894	. 929	0.19
	0.014	+ 0.182	$+0.083$	- 3.041	. 952	0.16
	WEIGHT	WRIST CIRC	BICEPS CIRC			
	74	35	52			
88 VOLUME	0.047			- 0.106	. 907	0.20
	0.032	$+0.165$		- 1.850	. 945	0.16
	0.025	$+0.161$	$+0.080$	- 2.913	. 968	0.13
	B HUM-RAD LTH	FOREARM CIRC	ARM CIRC $\mid A X)$			
	65	54	51			
87 CM-ACROMION	0.986			+ 2.336	. 684	1.67
	0.947	+ 0.391		- 7.353	. 729	1.64
	0.963	+ 0.918	- 0.571	- 4.909	- 842	1.35

LOCATION OF CENTEL OF MASS AS A RATIO OF SECMENT SIZE

	Range	MEAN	(5E)	S.0. (SE)
157 CM-ACROMION/ARM LENGTH	$39.3-44.8$	41.26	(0.44)	1.59(0.31)

HEAD
DESCRIPTIVE STATISTICS

		RANGE			MEAN	(SE)	S.D.	(SE)	CV
	WEIGHT	4.333	-	5.307	4.729	(0.091	0.324	$(0.061$	6.86
	VOLUME	3.929	-	4.925	4.418	$(0.101$	0.350	(0.07)	7.92
90	CM-TOP OF HEAD	10.0	-	12.6	11.15	(0.21)	0.74	(0.15)	6.65
91	CM-BACK OF HEAO	7.0	-	9.0	7.98	(0.17)	0.60	(0.12)	7.54

PREDICTIVE EQUATIONS

					CONSTANT		R	SE EST	
	WEIGHT *	HEAD CIRC		WEIGHT					
		41		74					
		0.148			-	3.716	. 814	0.20	
		0.104	+	0.015	-	2.189	.875	0.17	
89	VOLUME *	HEAD CIRC 41		$\begin{gathered} \text { WEIGHT } \\ 74 \end{gathered}$					
		$\begin{aligned} & 0.173 \\ & 0.139 \end{aligned}$	+	0.012	-	$\begin{aligned} & 5.453 \\ & 4.301 \end{aligned}$	$\begin{array}{r} .883 \\ \bullet 912 \end{array}$	$\begin{aligned} & 0.17 \\ & 0.16 \end{aligned}$	
90	$\begin{aligned} & \text { CM-TOF OF } \\ & \text { MEAD } \end{aligned}$	HEAD CIRC 41	HT	OF HEAD 5\%					
		$\begin{aligned} & 0.293 \\ & 0.246 \end{aligned}$	+	0.159	-	$\begin{aligned} & 5.573 \\ & 6.711 \end{aligned}$	$\begin{aligned} & .704 \\ & .731 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.55 \end{aligned}$	
$91 \text { CM-BACK OF }$		HEAD CIRC 41	HEAO	BREADTM 24					
		0.158 0.238	-	0.570		$\begin{aligned} & 1.039 \\ & 3.376 \end{aligned}$	$\begin{array}{r} .468 \\ .541 \end{array}$	$\begin{aligned} & 0.55 \\ & 0.55 \end{aligned}$	

LOCATION OF CENTER OF MAGS AS A RATIO OF SEGMENT SLZE

					RANEE		MEAN	(SE)	S.O.	(SE)	CV
138	CM-TOP	OF	MEAD/HF OF	HEAD	42.2	- 30.4	46.42	(0.73)	2.63	10.521	5.66
139	CM-BACK	Of	F WEAD/HEAD	LGTM	35.0	- 44.7	39.96	(0.82)	2.97	(0.58)	7.44

RATLS OF THE WEICHT OF A SEGMENT AS A PERCENT OF TOTAL, BODY WEICHT

	HAMEE	mean	(SE)	S.O. (SE)	CV
160 HEAD VEICHTYBODY MEICHI	309-0.2	7.28	(0.26)	$0.59(0.12)$	8.16

TABLE 14
TRUNK
DESCRIPTIVE STATISTICS

	RAMGE		MEAN	(SE)	S.D.	(55)	CV
92 WEIEHT	25.809	45.337	33.312	(1.37)	4.931	(0.97)	14.80
93 VOLUME	26.127	44.386	32.691	(1.35)	4.860	(0.95)	14.87
94 CM-SUPRASTERNALE	19.8	24.2	22.02	(0.40)	1.43	(0.28)	6.48

PRFDICTIVE EQUATIONS

				CONSTANT	R	SE EST
	$\begin{gathered} \text { WE IGHT } \\ 74 \end{gathered}$	TRUNK LENGTH 59	CHEST CIRC 43			
92 WEIGHT	0.551			- 2.837	. 966	1.33
	0.494			-19.186	.979	1.11
		$+0.423$	$+0.229$	- 35.460	. 986	
	WEIGHT 74	$\begin{gathered} \text { WAIST GREADTH } \\ 31 \end{gathered}$	CHEST CIRC 43			
93 VOLUME	0.534			- 2.343	. 949	1.59
	0.389	+ 0.476		- 7.392	. 968	1.33
	0.179	+ 0.502	+ 0.347	- 26.817	. 988	0.86
	OI-SPIMOUS BR 34	ILIAC CR FAT	TRUNK LENGTH 59			
94 CM-SUPRASTERN	0.578			$+8.202$. 846	0.79
	0.622	- 0.056		± 7.741	. 900	0.68
	0.471	- 0.058	$+0.166$	+ 1.683	. 926	0.61

LOCATION OF CENTER OF MASS AS A BATIO OF SEGMENT SLZE

TABLE 15
THIGH
DESCRIPTIVE STATISTICS

PREDICTIVE EQUATIONS

LOCATION OF CENTEH OF MASS AS A RATHO OF SECMBNT SLLL:

HATIO OF THE WEICHT OF A SEGMENT AS A PRHCENT OF TOTAL BODY WEICIIT

| RAMGE | MEAN (SE) S.D. (SE) CV | | |
| :---: | :---: | :---: | :---: | :---: |
| $8.9-11.4$ | $20.27(0.23)$ | $0.82(0.16)$ | 8.00 |

[^10]TABLE 16
CALF AND FOOT
DESCRIPTIVE STATISTICS

	RANGE		MEAN	(SE)	S.D.	(SE)	CV
	2.913	4.518	3.805	(0.12)	0.442	(0.09)	$\begin{aligned} & 11.61 \\ & 11.59 \end{aligned}$
100 WEIGHT 101 VOLUME	2.691	4.166	3.505	(0.11)	0.406 1.07	$10.08)$ (0.21)	11.59 4.93
102 CM-TIBIALE	19.7	24.4	21.67	(0.30) (0.25)	0.90	(0.18)	10.60
103 AP AT CM	7.1	9.9 3.9	8.48 2.84	(0.17)	0.62	(0.12)	21.83

PREDICTIVE EQUATIONS

100 WEIGHT	PREDICTIVE EQUAIIONS			CONSTANT		SE EST
	CALF CIRC 48	$\begin{gathered} \text { TISIALE HT } \\ 21 \end{gathered}$	ANKLE CIRC 49	1.279	. 934	0.16
	0.165 0.172			$-\quad 3.279$ $-\quad 3.824$.971	0.11
	$\begin{aligned} & 0.172 \\ & 0.130 \end{aligned}$	$\begin{array}{r} +0.051 \\ +\quad 0.058 \end{array}$	+ 0.103	- 4.915	.982	0.09
101 VOLUME	CALF CIRC 41	$\begin{gathered} \text { TIBIALE HT } \\ 21 \end{gathered}$	ANKLE CIRC 49			0.17
	0.148			1.056 3.555	. .955	0.17 0.13
	$\begin{aligned} & 0.135 \\ & 0.103 \end{aligned}$	$+\quad 0.050$ $+\quad 0.059$	$+0.127$	- 4.910	. 975	0.10
102 CM-TIBIALE	$\underset{21}{\text { TIBIALE HT }}$	CALF CIRC 48				0.68
	$\begin{aligned} & 0.360 \\ & 0.335 \end{aligned}$	-0.159		+15022 +11267	.871	0.57
	$A P \operatorname{AT}_{103} C M$	CALF LENGT				
104 CM-ANT ASPECT	0.539			-7.732 -7.044	.782 .850	0.35

LOCATION OF CENTER OF MASS AS A HATIO OF SEGMENT SIZE

		RAMGE	MEAN	(SE)	S.0. \|SE]	ev
$\begin{aligned} & 143 \\ & 146 \end{aligned}$	CM-TIBIALE/TIBIALE MT CM-AMT ASPECTAP AT CM	$\begin{aligned} & 41.7=50.7 \\ & 23.1=40.6 \end{aligned}$	$\begin{aligned} & 47.47 \\ & 33.23 \end{aligned}$	$\begin{aligned} & (0.43) \\ & (1.46) \end{aligned}$	$\begin{aligned} & 1.54(0.30) \\ & 5.26(1.03) \end{aligned}$	$\begin{array}{r} 3.25 \\ 15.81 \end{array}$
Batio of the weicht of a seciand as a PEACENT OF TOTAL BODY WEICHT						
		Rance	MEAN	1SE1	S.D. (SE)	6V
103	CALF*POOT vEICHT/800Y W	$3.2-6.7$	3.32	(0.12)	0.44 10.093	7.33

TABLE 17
CALF
DESCRIPTIVE STATISTICS

		Range		mean	(SE)	S.D.	(SE)	CV
105	WEIGHT	2.125	3.419	2.842	(0.10)	0.363	10.071	12.77
106	VOLUME	1.950	3.194	2.620	(0.09)	0.340	(0.07)	12.99
107	CM-tibiale	12.9	16.5	14.32	(0.22)	0.81	(0.16)	5.63
108	AP AT CM	8.9	11.7	10.06	(0.28)	1.00	(0.20)	9.93
109	CM-ANT ASPECT	$2 \cdot 9$	5.7	4.28	(0.19)	0.68	(0.13)	15.97

PREDICTIVE EQUATIONS

location of center of mass as a hatio of segment size

		RANGE	MEAN	(SE)	S.D.	(SE)	CV
145	CM-TIBIALE/CALF LENGTH	34.7-30.6	37.03	10.361	1.30	10.261	3.52
	CM-Ant Aspect/ap at Cm	34.1-49.6	42.47	(1.42)	5.12	(1.00)	12.05

ratio of the weicht of a segment as a
PEACENT OF TOTAL BODY WEICHT
ramge mean (SE) S.D. (SE) cV
164 CALF WEIGHY/BODY WEIGHT $3.9-3.1$ 4.35 $10.1010 .36(0.071$ 3.38

TABLE 18
FOOT
DESCRIPTIVE STATISTICS

110 WEIGHT
111 VOLUME
112 CM-HEEL
113 CM-SOLE

111 VOLUHE

112 CM-HEEL

113 CM-SOLE

LOCATION OF CENTER OF MASS AS A RATIO OF SECMENT SIZE

	RAWEE	MEAM	(5E)	S.0.	(8E)	6V
147 CM-HEEL/FOOT LENGTH 148 CM-SOLE/SPHYRION HEIGHT	$\begin{aligned} & 43.1=47.7 \\ & 33.3-73.5 \end{aligned}$	$\begin{aligned} & 44.05 \\ & 53.78 \end{aligned}$	$\begin{aligned} & (0.44) \\ & (2.80) \end{aligned}$	$\begin{array}{r} 1.59 \\ 10.09 \end{array}$	$\begin{aligned} & (0.31) \\ & (1.98) \end{aligned}$	$\begin{array}{r} 3.55 \\ 18.76 \end{array}$
gatio of The weicht of a segment as a PERCENT OF TOTAL BODY WEIGHT						
	RANSE	MEAN	(St)	S.O.	(se)	cV
165 FOOT WEIGAT/800Y VEIGMT	1.2-1.0	1.47	10.031	0.10	10.021	0.82

[^11]TABLE 19
UPPER ARM
descriptive statistics

114	WEIGHT	1.365	2.305	1.730	(0.08)	0.290	(0.06)	16.78
115	VOLUME	1.243	2.250	1.638	(0.08)	0.293	(0.06)	17.91
116	CM-ACROMI ON	14.2	20.3	17.13	(0.44)	1.60	(0.31)	33
117	AP AT CM	8.9	11.8	10.16	(0.25)	0.90	(0.18)	8.90
118	CH-ANT ASPECT	4.5	5.9	$5 \cdot 18$	(0.13)	0.46	(0.09)	8.87

PREDICTIVE EQUATIONS

location of centek of mass as a ratio of segment size

		RANGE	MEAN	(SE)	S.O.	(SE)	CV
149	CM-ACROM/ACROM-RAD LGTH	$46.2=55.6$	51.30	(0.75)	$\begin{aligned} & 2.72 \\ & 2.29 \end{aligned}$	10.531	$\begin{aligned} & 5.30 \\ & 4.50 \end{aligned}$
150	CM-ANT ASPECT/AP AT CM	46.4-56.3	51.00				

RATIO OF THE WEICHT OF A SEGMERT AS A PERCENT OF TOTAL BODY WEIGITT

| HANGE | MEAN (SE) | S.D. (SE) | CV |
| :--- | :--- | :--- | :--- | :--- |
| 2.2 .3 .1 | $2.63(0.06)$ | $0.22(0.04)$ | 8.35 |

[^12]TABLE 20
FOREARM AND HAND
DESCRIPTIVE STATISTICS

PREDICTIVE EQUATIONS
CONSTANT R SE EST

119 WEIGHT	WRIST CIRC	FOREARM CIRC 54	$\underset{66}{\text { RAD-STYL LTH }}$			
	0.168			1.295	.874 .919	0.10 0.09
	0.132	$+0.049$	$+0.043$	1.987	.919 .940	0.08
	0.103	+ 0.046	$+0.043$			
120 VOLUME	WRIST CIRC 55	FOREARM CIRC 54	$\begin{aligned} & \text { RAD-STYL LTH } \\ & 66 \end{aligned}$			
	0.153			1.181	-890	0.09 0.07
	0.117	+ 0.048		1.847 2.279	.943 .760	0.06
	0.093	+ 0.045	$+0.035$	2.278	- 760	0.06
121 CM-RADIALE	WRIST BR/BONE	RAD-STYL LTH	FOREARM CIRC			
	39	66	54			0.72
	2.765			0.405	- 764	0.72
	1.962	$+0.379$		4.822	. 8478	0.62 0.46
	1.617	$+0.385$	0.331	0.510	-929	0.46
123 CM-ANT ASPECT	AP AT CM	ELBOW BR/BONE	STYL-META 3			
	122	38	67			
	0.890			2.355	. 913	0.25 0.23
	0.900	0.280		0.385	-936	0.23
	0.890	-0.313	0.229	2.153	. 974	0.16

LOCATION OF CENTEA OF MASS AS a RATIU OF SEGMENT SIZE:

TABLE 21
FOREARM
DESCRIPTIVE STATISTICS

		RANGE		MEAN	(SE)	SOD.	(SE)	CV
124	WEIGHT	0.850	1.380	1.055	(0.04)	0.152	(0.03)	14.41
125	VOLUME	0.781	1.250	0.961	(0.04)	0.138	(0.03)	14.40
126	CM-RADIALE	8.1	11.6	10.10	(0.23)	0.83	(0.16)	8.22
127	AP AT CM	6.6	9.3	7.61	(0.18)	0.66	(0.13)	8.68
128	CM-ANT ASPECT	2.4	5.1	3.72	(0.17)	0.62	(0.12)	16.65

PREDICTIVE EQUATIONS

location of center of mass as a ratio of secment size

[^13]

TABLE 22
HAND
DESCRIPTIVE STATISTICS

129	WEIGHT	0.334	0.540	0.426	(0.02)	0.063	(0.01)	14.72
130	VOLUME	0.302	0.480	0.384	(0.02)	0.057	(0.01)	14.73
131	CM-META 3	1.1	2.3	1.63	(0.11)	0.39	(0.08)	24.10
132	CM-MED ASPECT	3.7	5.5	4.77	(0.13)	0.47	(0.09)	9.95

PREDICTIVE EQUATIONS

location of center of mass as a batto of segment stze

		range	MEAN (SE)	S.0. (SE)	cy
$\begin{aligned} & 153 \\ & 156 \end{aligned}$	CM-META 3/STYL-NETA 3 LGTH	13.0-24.7	10.02 (1.26)	4.17 (0.82)	23.13
	CM-MEO ASPECT/MAND BROTH	45.7-67.1	36.13 (1.33)	4.80 (0.94)	6.55
	Batio of the weicht of a skgment as a PERCENT OF TOTAL BODY WEICHT				
		Rance	mean (se)	S.D. ${ }^{\text {S }}$ SE)	cv
169	HAND WEIGAT/800Y WT	9.5-0.0	0.6510 .021	0.08 (0.011	11.64

[^14]The regression equations presented in these tables are relacively simple to use. For example, in table 18, the weight of the Calf and Foot (variable 100) is given with relation to one, two, and three anthropometric variables. The dimension of Calf Circ (variable 48) gave the highest correlation coefficient with Calf and Foot x -ight ($\mathrm{r}=.932$). The regression equation is: Weight of Calf and Foot (kg) $=0.165$ Calf Circ (cm) $-1.279(\pm 0.16 \mathrm{~kg})$.

If the average values for the cadaver sample (table 8) are used for the independent variable, the three step equation becomes: Weight of Calf plus Foot $=0.130 \times 30.82$ (Calf Circ.) $+0.058 \times$ 45.68 (Tibiale Ht.) $+0.103 \times 20.05$ (Ankle Circ.) $-4.915=3.306 \mathrm{~kg} \pm 0.090 \mathrm{~kg}$.

The predicted value of the Calf plus Foot weight for the sample is 3.806 kg with the true value for such a sample falling between 3.716 kg and $3.896 \mathrm{~kg}(3.808 \pm .090)$ in two out of three such samples.

Simple ratios for predicting weight and location of the center of mass as a function of body weight, segment length, and the anteroposterior depth of the segment at its center of mass are given at the bottom of each table. The ratio of segment weight to total body weight and center of mass from proximal end as a ratio of segment length have been the most widely used methods of reporting segment data and are given here to facilitate comparison with previous studies (tables 2 and 4). Such comparisons are necessarily gross because of the variation in methods of dismemberment used by different authors. In this study, the length of a segment is defined as the distance between specific bony landmarks that approximate, but are not necessarily coincident with. the ends of the segment. Trochanterion, radiale, and tibiale are traditional anthropometric approximations for the "hinge points" at the hip, elbow, and knee but are all somewhat distal to the act bal plane of segmentation used in this study. The ratios for the center of mass often, therefore, are not precisely comparable to the ratios obtained by other investigators who may have used caly approximately the same plane of segmentation for that particular segment.

There are a number of patterns that bexome apparent when the predictive equations are viowed together. Total body weight appears as one of the best anthropometric variables for predicting the weight and whome of segments, oceurring more often than any other single variable The body circumforences are also often selected to predirt segment weight, whereas segnent haugth most often gectur in the prediction of the location of conter of mass of segmends.

A number of methods for estimatiag weight and copter of mass have been given in the preceding discuesion. It is a mafural desire, when altornative methads of making an approsimation ate given, to know wheh method is the moss accurate ar appropriate for a piven problem. The regrasion equalions were used to predice the weight and the iocation of the copter of mass for each segment of each cadsvor. The various gatios wers thes computed and the resultiog talues compared to the actual weight and location of center of mass of each segmont. These comparisons show that the three step regression equations, without exception, provide the smallest average orror for pedicting the unknown variables on the cadavers. In fact, the thene step equations gonerally rextuce the average error (actual-predicted) to one half, or less, of the azemage error obtanod by using the ratios or single step equations. Withuit exception, the simple ratios poovided the porest average estimate, with improvenemt fonnd with the addition of each step of the equation. This is ant in soy that the muiti-step equations always provided a better estinate for a siagte seginental value than did the simple ratio; in a fow instancos, the simple ratio provided the lext estimate for a single segment from a single cadaver. In terms of all the siggecats fram all of the cadivers, the multi-scep equations were charly more effextive in providiag an swimate doscer to the mea-

[^15]sured value. The multiple step equations, however, necessitate the meximum amount of information concerning the anthropometry of the sample. On the other hand, the simple ratios can be used when the minimum anthropometric data are available, and provide the first but least accurate prediction. For these reasons, the alternate methods of computing unknowns have been provided in order that the techniques of computation can be tailored to the availability of body-size information.

It is also pertinent to determine the appropriateness of these equations for the living. The ability to transfer the equations formulated on a cadaver population to a live population is not without danger because of the numerous uncertainties that have prevously been cited. A validation of the predictive equations developed in this study is clearly desirable.

In working with many biological populations, the general validating procedure would be to select a representative sample from the population, make the necessary measurements, and then compute the values for the unknown variables. Animals could then be sacrificed and the unknown values measured. If the values computed should provide a sufficiently accurate estimate of the true values, the equations would be considered to have been validated for the represented population. In working with human populations, the validation procedure is indirect and may pot be fully satisfactory as rigorous proof.

If the volume of body segments could be measured accurate.y on the living, then it would be possible to validate the predictive equation for the segment volume and indirectly validate the approach that was used. In obtaining the volume of the cadaver segments, we found that repeated measurements of a segment could be held within a range of $\pm 0.5 \%$ or less of the segments average volume. The experimental error has been found to be much larger than $=0.5 \%$, hovever, when segmental wolumes of the living were determined using the same eguipment and landmarks as had been used for the cadavers. For major segments such as the arm or log, the range of repeated observations became as high as 3 to 5% of the total average volume. The higher error was related to the diffeulties encountered in maintaining a subject's body segment relatively motionless at a specifie depth in the tank for the period of time necessary to allow runoff of the dis. placed water. Contini indicated that his group has been able to abtain the wolume of the more distal segments on the living with a small error, using spectally dovedoped equipmebt.' This equipment doer not, hawever, appear to be usable for the lapger segmenis of the bexly. Until new tech. nicues of measuring segmental volumes accurately on the living ean be developed, this apprach to the calidation of the prodictive equations dees not appear to tee satisfactory.

As it is ant possible to validate satisfactorily the predictive equation on the living an attempt was made to determine the reasonablenexs and condistency of predicted segment raviables for the living. Three itslividuals were selected that repressented a wide range of adult mate bekly tymes. The sulbects were measured fur the lmady dimension nexded, and the weight for each segment was computed, uing the three step equations giver: in tables 0.29 . The results obtaired for the segucot weights ure given in table 23.

The column to the left for each subiect pives the predicted waines for the weight of each seguont, and the column on the right (values in parmateses) gives the sum of the componen segnents. In general, the internal consistency. that is, the sum of the suall component sepments equaling the value of a total segment, is remarkably goord. This, of course, shouk twe true when the same antluoponetric dimmosions are used to predict the sexmental parameter for both the total segment and the segments parto. Where this is not true, the values of the total aud sum of garts

[^16]appear to be very comparable. The greatest discrepancy in values is in the difference between Head-Trunk weight and the sum Head weight and Trunk weight for subjects A and B. This difference is larger than expected, and the reason for it is not understood.

TAELE 23
PREDICTED WEIGHT OF BODY SEGMENTS OF THE LIVING (kg)

Subiect	A	B	C
Stature (cm)	161.5	178.3	175.5
Weight	$58.523(57.937)$	$71.200(73.210)$	$84.350(84.333)$
Weight of:			
Head-Trunk	$32.368(30.737)$	$41.575(40.030)$	$48.931(48.905)$
Leg	$10.320(10.430)$	$12.574(12.716)$	$13.580(13.572)$
Arm	$3.103(2.900)$	$3.440(3.874)$	$4.142(4.124)$
Head	4.357	4.976	6.140
Trunk	28.380	35.054	42.765
Thigh	6.298	8.394	8.663
Calf and Foot	$4.173(4.133)$	$4.322(4.322)$	$4.909(4.909)$
Calf	3.144	3.279	3.669
Fooi	.989	1.043	1.240
Upper Arm	1.425	2.114	2.218
Forearm and Hand	$1.455(1.425)$	$1.741(1.760)$	$1.915(1.906)$
Forearm	1.045	1.314	1.358
Hand	.380	.446	.548

A second area of discrepancy is in the sum of parts not equaling the total body weight. For subject A, the sum of parts is less than the total body weight; for subject B, the sum of parts exceeds the total; and for subject C the sum and the total body weight are essentially equal. Initially we believed that the sum of the predicted weights of segments would always give an overestimate of the actual total body weight on the living. The logic involved was that the cadavers had certainly lost body fluid after death that would effectively reduce the body circumferences on which the predictive equations were based. The use of the body cricumferences of the living would, therefore, tend to overestimate the weight of each segment so that the sum of the weight of segments would exceed the actual live weight. If it can be assumed that the fluid losses are equal throughout the body, then when the sum of parts needs to be equated to the body weight, the adjustment should be proportional for all segments. For example, for subject B, live body weight is equal to 07.25% of the estimated sum of component weights. In order to adjust the sum of parts to the observed lxaly weight, each of the smaller segments must be multiplied by the constant 97.55% to arrive at the adjusted weight for each of the component parts. This process will preserve the relationships of the weights of the various segments, while making the sum of parts equal to the observed toual body weight.

The methods of predicting the weight and the location of the center of mass of body segments presenied are believed to represent a marked improvement over the methods used in the past, but must still be considered as approximations for the unknown quantities. They do, however, permit the estimates of the weight and the location of the center of mass of the segments to be based upon the individual variability in body size, which until this time, had not been adequately considered.

Summary and Conclusions

It is desirable to determine how the results obtained in this study compare with the results obtained by earlier workers. As previously pointea out, differences in the techniques of dismemberment, etc., are such that any comparisons are necessarily gross and only indicative of similarities and/or differences between results or both.

The comparisons of primary interest are those of (1) the segmental weight as a ratio of total body weight and (2) the location of the center of mass from the proximal end of the segment as a ratio of segment length. These two comparisons are shown in tables 24 and 25.

TABLE 24

SEGMENTAL WEIGHT/BODY WEIGHT RATIOS FROM SEVERAL CADAVER STUDIES*

Source	Harless (1860)	Braune and Fischer (1889)	$\begin{aligned} & \text { Fischer } \\ & \text { (1906) } \end{aligned}$	Dempster (1955)	Dempster ${ }^{\text {f }}$ (1955)	This Study
Sample Size	2	3	1	8	8	13
Head	7.6\%	7.0\%	8.8\%	7.9\%	(8.1)\%	7.3
Trunk	44.2	46.1	45.2	48.6	(49.7)	50.7
Total Arm	5.7	6.2	5.4	4.9	(5.0)	4.9
Upper Arm	3.2	3.3	2.8	2.7	(2.8)	2.6
Foreram \& Hand	2.6	2.9	2.6	2.2	(2.2)	2.3
Forearm	1.7	2.1	1.6	(1.6)	1.6
Hand	0.9	0.8		0.6	(0.6)	0.7
Total Leg	18.4	17.2	17.6	15.7	(16.1)	18.1
Thigh	11.9	10.7	11.0	9.7	(0.9)	10.3
Calf \& Foot	6.6	0.5	6.6	0.0	(6.1)	5.8
Calf	4.8	4.8	4.5	4.5	(4.6)	4.3
Foot	2.0	1.7	2.1	1.4	(1.4)	1.5
Sumt	100.0	100.0	100.0	97.7	100.0	100.0

```
(Studies of Jupanexe populations by Muri and Yamanato (1950) azai Fujihawa (1000) are nat bretuded in this compartson.)
Ad/ustod values Erplanation tu text.
```


Table 24 indicates that the results of this study are most simitar, in terms of the simple seg. mental ratio, to the results obtained by Dempster. This fanding is not completely unexpected as the techuiques of this investigation were based on those Dempster had used in his work. Note that Dempster's sum of the ratio of parts is 97.7% rather than 100%. It is assumed that this discrepancy reflects nuid and tissue losses during segmentation although: this is not explained in his text. If the loss is added proportionately to each segment, the values given in parentheses (column, Dempster 1955, adjusted values) will be obtainod. The data from Dempstor's and this study thus appear to to very couparable.

> If the center of mass determinations from the various investigators are compared in a similar manner, the results are as given in table 25.

TABLE 25

CENTER OF MASS/SEGMENT LENGTH RATIOS FROM SEVERAL CADAVER STUDIES

		$\begin{gathered} \text { Braune } \\ \text { and } \end{gathered}$			
	Harless	Fischer	Fischer	Dempster	This
Source	(1860)	(1889)	(1906)	(1955)	Study
Total Body	41.4\%	\ldots		41.2\%
Head	36.2	\ldots	43.3\%	46.6
Trunk	44.8-..-	.-.--	38.0*
Total Arm	-...-	44.6\%	...	41.3
Upper Arm	47.0\%	45.0	43.6	51.3
Forearm \& Hand	-	47.2	46.2	67.7*	62.0*
Forearm	42.0	42.1		43.0	3.90
Hand	39.7		49.4	$18.0{ }^{*}$
Total Leg		41.2	43.3	38.2*
Thigh	48.9	44.0	43.6	43.3	37.2*
Calf \& Foot	...	52.4	53.7	43.7	47.5
Calf	43.3	42.0	43.3	43.3	37.1
Foot	44.4	44.4	\because	42.9	44.9

These values are not directly comparable due to varations in the definition of segnent length used by the different investigators.

This comparison is less helpful than the previous one for segment weights as so many of the values can not be equated. In our study, as we have pointed out above, segment lengths were determined from roadily identifiable bony landmarks and not from the actual overall length of the segment. A major criticism of the earlier work has been with the inability to determine accurately the length of body segments of the living based upon the planes of segmentation used by different workers. The use of bony landmarks to approximate segment lengths eliminates this diffeculty. but at the same time nimost ontirety prechudes meaningfal comparisons. The data in table 25 do. however. illustrate the wide range of ratios that have been obtained for the center of mass of bedy segments. From the above comparisons, particularly the first, we may conctude that the results ob. tained in this investigation are not grossly different from the results of earlies investigations and that the ratios are approximately the same magnitude.

The spredic goals of this study were to investigate two hasic questions concerning the estimation of body segment parameters:

1. Can ixoly segment parameters le predicted from one or more anthropotnetric dimensions with the neevied degree of aceuracyi?
2. Cun predictive equations for estimating the weight and the loeation of the center of mass of boxdy segements provide accurate estinates for individuals as well as for populations?

To answer the questions satisfactorily, it was necessary to undertake a basie study of the reLationships of anthropomatry to the weighe and center of mass of loody seyments. The approach
to this study was neither new nor unique but followed closely the guidelines of the classic studies undertaken by Braune and Fischer (1889) and Dempster (1955). A major difference between this investigation and those previously undertaken was in the choice of study specimens. In this study preserved specimens were used so that the selection of subjects would more closely approximate the wide range of physical body sizes found in normal populations.

Data developed in this investigation indicate that the anthropometry of the body can be used effectively to predict weight and location of the center of mass of body segments. In earlier investigations, the simple ratio of segment weight as a percent of body weight and the distance of the center of mass from the proximal end as a percent of segment length were the primary methods for prediction of these variables on the living. This study indicates that these predictive variables were well chosen in that they occurred more often in the predictive equations developed in this study than any other single variable. ${ }^{1}$ The fact remains, however, that in using the ratios, the assumption is made that all individuals have essentially the same hody proportions, with the variance from the group "average" being disregarded. This should lead to major errors in estimates made for those individuals and groups that differ in any significant way in body size from the civerage of the group from which the ratios were calculated. This was indeed found to be so with the ratios having a greater average error in estimating segment unknowns than the one, two, or three step predictive equations based upon body size variability. One may draw from this the possibly self-evident conclusion that the greater the amount of information available concerning the individual's body size, the more accurate becomes the prediction of the segment weight and its center of mass location.

It would appear, therefore, that the two questions can be answered in the affirmative. A key word, accuracy, in each question has not been adequately dealt with in this study owing to the inability of validating the findings of this study on the living, As with any statistical prediction, accuracy must be thought of in terms of probability, with the standard error of the estimate providing a measure of the accuracy of a predictive equation. As the standard error of the estimate is reduced through the use of the multi-step equations, one may assume that the relative accuracy of the predictions is also improved.

The predictive equations developed in this study are believed to provide a better estimate of weight and location of the center of mass of segments of the lucly for individuals and popula. tions than were previously avallable. They should not however, be considered as other than good furst approximations until they can tre adeguately validated on live populations.

[^17]
Appendix A

OUTLINE OF PROCEDURES AND DATA FORM

The general step-by-step procedures followed in this study are outlined below. Detailed descriptions of the procedures are in the text.

1st Day

Step. 1. The cadaver was cleaned, examined, and its condition noted. It was weighed, and landmarks required for the anthropometry and the planes of segmentation for the arms and legs were established.
Step 2. The cadaver was weighed in air and weighed under water.

2nd Day

Step 3. The cadaver was measured.
Step 4. The total body center of mass was located, and its distance from selected landmarks was measured.
Step 5. Somatotype photographs of the cadaver were taken.
Step 6. The areas of segmentation of the arms and legs were packed in dry ice.

3rd Day

Step 7. The cadaver was weighed, and the arm and leg segments were removed.
Step 8. The arm, leg, and head-trunk segments were weighed.
Step 9. Photographs of the planes of segmentation were taken, and the cut ends of the segments were sealed.
Step 10. The center of mass of the leg and head-trunk segments were located, and their distances from selected landmarks were moasured.
Step 11. After complete thawing, the arm and leg segments were weighed and their volumes measured by the water displacement method.
Step 12. The arm, log, and head-trunk segments were weighed in air and weighod under water.
Step 13. The planes of segnemtation of the head, forearm-hand, and calf-foot segments were detormined.
Step 14. The areas of segmentation of the head, forearm-hand, und calffoot segments were packed in dry ice.

4th Doy

Step 15. The head-trunk segment was weighed, and the head was separated from the trunk.
Step 16. The head and trunk segments were waighed.
Step 17. The plane of segmentation was photographed, and the cut surfaces were sealed.
Step 18. The log sagnents were woighod, and the thigh segmonts were separatod from the calf. foot segments.
Stop 19. The thigh and calf-foot segaxents were weighod.

Step 20. The planes of segmentation were photographed, and the cuts ends were sealed.
Step 21. The arm segments were weighed, and the upper arm segments were separated from the forearm-hand segments.
Step 22. The upper arm and forearm-hand segments were weighed.
Step 23. The planes of segmentation were photographed, and the cut surfaces were sealed.
Step 24. The center of mass of the head, trunk, thigh, calf-foot, upper arm, and forearm-hand segments were located, and their distances from selected landmarks were measured.
Step 25. After complete thawing, the head, thigh, calf-foot, upper arm, and forearm-hand segments were weighed and their volumes measured by the water displacement method.
Step 25a. OPTIONAL. The volumes of selected segments proximal to their centers of mass were determined.
Step 28. The head, trunk, thigh, calf-foot, upper arm, and forearm-hand segments were weighed in air and weighed under water.
Step 27. The planes of segmentation of the hands and feet were determined.
Step 28. The areas of segmentation of the hands and feet were packed in dry ice.
5th Day
Step 29. The calf-foot segments were weighed.
Step 30. The feet were separated from the calves.
Step 31. The calf and foot segments were weighed.
Step 32. The planes of segmentation were photographed, and the cut surfaces of the segments were sealed.
Step 33. The forearm-hand segments were weighed.
Step 34. The hands were separated from the forearms.
Step 35. The hand and forcann segments were weighed.
Step 30. The planes of segmentation were photographed, and the cut surfaces of the segments were sealed.
Step 37. The conter of nass of the segments were located, and their distances from selected landmarks were measured.
Step 38. After complete thawing, the feet, calf, ferearm, and hand segmonts were weighod and their volumes were measured by the water displacement method.
Step 38. OPTIONAL. The wolumes of selected segments proximal to thetis center of mass were deternined.
Step 39. The foot, calf, forearm, and hand seggents wore weighod in air and weighod under water.
Step 40. Small areas of the upper arm, chest, and hip were dissected and the thicknesses of the stin and panmiculus adiposus were measured.
Step 4i. OPYIONAL. Samples of skin, fat, tusele, and bow tissue were dissected for density doterminations.

	SAIA smatr (Comrd) Page 2
	subject no.
BREADTHS AND DEPTHS (Cont'd)	
Weitt (0) Depth	Wriet r.___ ${ }^{\text {L }}$
Blcristal Breadth	Mand 5.
Blipfinal Breadth	LENGTHS:
Hip Breadth	Acromion-Radiale F.____ ${ }^{1}$
Bitrochanteric Breadth (Bone)	C. T. '-Radiale $\mathrm{r}^{\text {_ _______ }}$
Knee Breadth (Bone)	Radial -Stylion $\mathrm{x}_{\text {. }}$
Elbow Breadth (Bone)	
Wriet Breadth (Bonc)	Meta ILI-Dactylion r .___ ${ }^{1}$.
Hand Breadth	FAT THICKNESS:
CIRCUMEERENCES:	Dircet Meamurentent
Head	Fit Sain Tocal
Neck	N^{2}
Chest	Mall ${ }^{3}$
Walut ${ }^{(0)}$	Tricep:
Buttock	Hise Crent
U. Thigh r.____	DENSITY OF BODY TISSUE
L. Thigh r . ${ }^{\text {a }}$	Fat
Calf r .____ ${ }^{1}$.	
Ankle r .____ ${ }^{1}$	
Arch of Foot r .___ ${ }^{\text {. }}$	Muscle
Axillary Arm ${ }^{\text {P }}$	
Blceps r .	
Elbow r._____ ${ }^{1}$	Bone
Forearm r.______ ${ }^{1 .}$	
a aracer Tubercle of Mmenn 2 In - ducta mipile	

quace tuberce of miper
 ming = Med-Aritleary Une at xyphaid

coor sements - wiont, voumm, C. M data meit (Cmed)
 Page 4

SUBJECT NO. \qquad
TOAAL LEGS:
R. Wt. in Air Pre $\mathrm{H}_{2} \mathrm{O}$ Wt
R. Welght in $\mathrm{H}_{2} \mathrm{O}$ \qquad

A. C. m. (rom Trechanterion
R. C. m. from Tibiale
R. C. m. from L. Malleolut
R. C. M. above Table
R. A-P* Dapthat C. m.
R, C. m, from enterior surface
R. 3. B.
L. Inltiel Wh. in Alr
L. Wh. In Air Pre $\mathrm{H}_{2} \mathrm{OW}$ W.
L. Weluht in $\mathrm{H}_{2} \mathrm{O}$ \qquad

L. C. m. Irom Trochanterion_
L. C. m. from tiblale
L. C. m. from L. Malleolus
L. C.m. from Table
L. A-P Depth at C. m.
L. C. m. from materler aurface
L. s. s.

*ateneposterian

CALF AND FOOT:

R. Initial wi. in Air__-	date____ ${ }^{\text {dme }}$
R. Wi. In AirPre $\mathrm{H}_{2} \mathrm{O}$ wt.	date______ ${ }^{\text {time }}$
R. Weight in $\mathrm{H}_{2} \mathrm{O}$	
R. Prencut We. In Arr	date___ time
R. C. m. from Tibiale	
R. A-P Depth at C. Tr.	
R. C. m. from antertor eurface	
R. 5. 8.	
R. L of Foot	
	dare___ dime
L. Wt. in Air Pre $\mathrm{H}_{2} \mathrm{O}$ Wt.	date__ time
L. Weight in $\mathrm{H}_{2} \mathrm{O}$	date_____ time___ temp__
L. Pre-cut Wt. In Atr	date__ ${ }^{\text {time___ }}$
L. C. m. from Tiblale	
L. A-P Depthat C.m.	
L. C. m. fromenterior surface	
2. 5. E.	
L. L of Foot	
CALF:	
R. Inital wi. in Alr_+	date___ ${ }^{\text {dme }}$
H. Wh. In Air Pre $\mathrm{H}_{2} \mathrm{O} \mathrm{Wr}$.	
R. Welight in $\mathrm{H}_{2} \mathrm{O}$	datt___ time___ temp_or
R. C. m. from Tlbiale	
R, A-F Dapth at C. mor	
A. C. minfom anterior murfas\%	
R. s. E.	

CALF (Cont'd):

L. Wt. In Air Pre $\mathrm{H}_{2} \mathrm{O}$ wt \qquad date__

SUBJECT NO. \qquad
L. Initial Wi. In Air
L. Welght in $\mathrm{H}_{2} \mathrm{O}$ \qquad date \qquad Ime__.
L. C. m. from tiblale

L. A-P Depth at C. m \qquad
L. C. m. from anterior surface
L. s. s.

FOOT:

R. Weitht in $\mathrm{H}_{2} \mathrm{O}$

R. C. m. from gt . wa
R. C. m. Irem heel
R. C. m. from table
R. 5. s.

L. Foot Lengh \qquad dive__ time___ temp_o
L. C. m. from it. toe
L. C. m. from heel
L. C.m. from tabla
L. 5. :

soev smamens - Whown, voumat, C.M	dara mert commin Page
	subsect no.
UPPER ARM:	
	dete___ time_
R. Wt. In Air Pre $\mathrm{H}_{\mathbf{2}} \mathrm{OW} \mathrm{t}$.	date_______ dime
R. Weight in $\mathrm{H}_{2} \mathrm{O}$	
R. C. m. irom G. T.	
R. C. m. from mid-olecrenon	
R. A-P Depth at C. m.	
R. C. m. from anterior ourface___	
R. S. .	
	date \qquad Hime
2. Wi. in Air Pre $\mathrm{H}_{\mathbf{2}} \mathrm{O}$ Wt.	date \qquad Ime
L. Welight in $\mathrm{H}_{2} \mathrm{O}$	
L. C. m. from G. T.	
L. C. m. frommd-olecranon_	
L. A-P Depth at C.m.	
L. C.m. from anterior surface_	
L. 5. E.	

soor secments-weont, voume, C.m bata seat ficmith
Pege 11
subject no. \qquad
TOREARM* (Cont'd):
L. indital we. in Air \qquad
 dme
L. We. in Aip Pre $\mathrm{H}_{2} \mathrm{O}$ we. da \qquad Heme
L. Weight in $\mathrm{H}_{2} \mathrm{O}$ d
 _
L. C. m. from Radala
L. C. m. from Ciectamen
L. A-P Depth as C. m.
L. C. mi. from antortor aurfiact
L. 3. 8 .

HAND:

- Welaitin $\mathrm{H}_{2}{ }^{\mathrm{O}} \mathrm{W}_{2}$
 ${ }^{4} \mathrm{~mm}$ dete__Hinnor \qquad tump
R. C. m. fromp meta in \qquad
R. C. m. Rrom Medal (Itete Aloger) Aapect \qquad
R. s. s.
L. Indtal Wt. in Air \qquad cate_ \qquad Hime \qquad
L. Wit in Ar Fre $\mathrm{H}_{2} \mathrm{O}$ Wh. date \qquad Hener
L. Waiget fa $\mathrm{H}_{2} \mathrm{O}$ \qquad
L. C. m. irom Meta 8 路
L. C. m. Arem Maclal quthe Amarl Arpect \qquad

2. A. E.

DEGREE OF WAETENG - MALNUTATTION: DEEICCATEON

Moderate
Then apeloctec, meavion 44 that ath.

subject No.
Page 10
\qquad

FOREARM-HAND*:

R. Intidal wt. in AIr \qquad date______ _ ime_

R.

R.
R. Weightin H_{2}
R. Pre-cut Wt. In Air
\qquad dat \qquad

\qquad dat \qquad 4 me
A. C. mo from Rediale \qquad
R. A-P Depthat C. mi. \qquad
R. C. m. from anterior aurface
R. 8.
L. Intilal Wt. in ${ }^{\prime} \mathrm{Ar}$ \qquad tme
L. Wt. In Alr Pre $\mathrm{H}_{2} \mathrm{O} \mathrm{Wt}_{\mathrm{t}}$.
 date_ time
L. Weight in $\mathrm{H}_{2} \mathrm{O}$ \qquad dete \qquad 4 me \qquad temp_o L. Pre-cut Wt. in Alr \qquad
L. C. m. from Ractale
L. A-P Dopth at C. m. \qquad
L. C. m. from anterior aurface
L. 5. E .
\qquad

FOREARM*:

Page 12
subject no. \qquad

 sumpef No. +

Yotugk itiunt

Appendix B

MID-VOLUME OF SEGMENTS AS AN APPROXIMATION OF A SEGMENT'S CENTER OF MASS

A few investigators, notably Bernstein, et al., (1931), Cleveland (1955), and Drillis and Contini (1968), have assumed that for the required accuracy the center of mass of a body segment can be considered coincident with its center of volume. Salzgeber (1947), using this assumption, treated the body segments as a series of geometric forms from which he developed mathematical formulas to predict the weight and the location of the center of mass of body segments of the living.

This study offered an excellent opportunity to ascertain the correspondence between the plane of mid-volume and the plane of the center of mass of segments by using a number of segments from a series of cadavers all being treated under the same experimental conditions. Twenty-four body segments were selected on a random basis for use in this test. The center of mass was first established for each segment on the medial and lateral surfaces by an observer, using the small electric balance plate described previously. A second observer then independently redetermined the center of mass after reversing the position of the segment on the balance plate. A line drawn around the circumference of the segment perpendicular to its long axis then joined the center of mass points established by the two observers. The total volume of each segment was measured using the water displacement technique. This was done twice with the average tatal volume being recorded. The difference between successive trials was small and generally ran to 0.5% or less of the total volume of the segment. The volune of the proximal end of the segment (measured to the circumferential line at the center of mass) was then measured in a similar maner. The data from this investigation are given in Table 26. The last column represents the percont of the segment volune that is proximal to its center of mass.

TABLE 20

IOLUAE OF SKCMENT PROXIMAL TO ITS CENTER OF MASS AS A PERCENT OF TOTAL. SECBMEST VOLUME,

Seganent	Total Segment Volume	Folume Proximal to Conter of Mass	\% of Volume 10 Center of Mass
Nighe Leyg	9492 ml	5395m	55.2\%
Left leg	978	554	50.6
Risfle Thigh	0891	3374	53.7
Lofl Thigh	6002	3419	54.6
Night Thigh	4 SOH	2301	540
laft Thigh	8096	4152	51.7
Hight Calf and Fort	3020	1685	\$1,
Left Call and Foot	3423	1827	50.4
Might Calf	9350	1294	54.4
Lericall	2083	1325	55.0
Calf	1814	1012	55.8
Call	1904	1084	55.2
Call	2094	1160	55.4

TABLE 26-(Cont.)

Calf	1819	967	53.2
Calf	2037	1120	55.0
Right Upper Arm	1642	882	53.7
Left Upper Arm	1784	943	52.9
Left Upper Arm	1613	913	56.6
Right Forearm and Hand	1360	751	55.2
Left Forearm and Hand	1370	744	54.3
Right Forearm	869	489	56.1
Right Forearm	977	562	57.5
Left Forearm	937	518	55.3
Left Forearm	865	485	56.1

These data are summarized in table 27 with the minimum, maximum, and average ratio for each group of segments being given as well as the mean ratio for all segments. From this summary, it is apparent that segment mid-volume is not coincident with segment center of mass; in each instance, the volume of the segment proximal to its center of mass exceeds one-half the total segment volume.

TABLE 27

SUMMARY OF MID-VOLUME AS PREDICTOR OF CENTER OF MASS

Segment	N	Percent of Volume Proximal to Center of Mass		
		Minimum	Maximum	Moan
Legs	2	56.6\%	58.2%	57.4\%
Thigh	4	51.7	54.6	33.5
Calf and Foxt	2	53.4	53.7	53.8
Calf	7	53.2	55.8	34.9
Upper Arm	3	53.7	53.6	54.4
foverm and Hand	9	54.3	55.2	54.8
Forearm	4	50.3	57.5	50.3
Mean of All Segments				54.9\%

If the mid-volune were to be used to apposimate the location of the center of mass of seg. mentx, the estimated center of mass would be proximal to its true lecation. The actual error involved in using this assumption is dificult to determine for the irregulareshaped segments of the human bexly. It is beleved, hovever, that the mad-whme of the segment will be, at most, some two to three contimeters proximal to the actual segment woter of mass. No attempt was made to criablish the plane of the actual mid-volune of segments in order that the distance between the cmater of mass as measured and as approximated by its mid-solume could be detcmined. In retrospect, it is unfortunate that this was ant done. The error involved in using mite-volune to locite the center of mass of bedy segtoments may not be se great ax in invalidate this approach for some prob). Lens, but it is important to understand that an error of constant direction is imparted with fls use.

Appendix C
 STANDING AND SUPINE ANTHOROPOMETRY AND POSTMORTEM CHANGES IN BODY SIZE

Considerable attention has been given to the standardization and replicability of anthropometry on the living with the subject in the standing and seated positions (Randall et al, 1946; Stewart, 1947). The anthropometry of a supine subject has received little attention, with the exception of workspace anthropometry to determine supine clearance dimensions (Alexander and Clauser, 1965) and a comparative study by Terry (1940) of supine and ercet anthropometry.

In the present study, it is necessary to understand the relationships of anthropometry as traditionally taken on the living to the anthropometry of the cadaver measured in the supine position. Terry (1940) made a detailed study of measuring and photographing cadavers and, in addition, compared the standing and supine anthropometry of live subjects. His analysis was primarily concerned with the changes in body length, with the exception of a single dimension of body breadth. A summary of his results is presented in table 28A. In an extension of his study, using a specially designed measuring panel that vertically supported the body, Terry measured ten cadavers in a supine and an erect position. He found that by careful positioning of the cadaver on the panel, characteristic features of the standing posture conkd be reproduced. A summary of the results obtained in this test is given in table 28B. From his analysis of the two studies, Terry ($1940, p 438$) coneluded that, ". . measurements made on the supine body should not generally be aceepted as equivalent to those taken with the body erext." His fndings on the living series showed that the differences were relatively constant in direction; that is, in all but a fow instances, the supine value exceded the stanting value for the same mosurennent. This fonding was not as well substantiated in the measurement of the cadavers, which moditates that a geater measuring error is associatexd with this saries.

Toodd and Lindala (1988), using a steted sofes of cadavers, made an intonsove study of the postmorten changes in the thickness of fedy tisme and their comsequent offect on the anthropometry of ilw cadaver. They observed that the weighe of cadavers was almost always less than might be expected. This weight loss did not fully remblifrompanation assoctated wilh a lingering illioss, but persisted after death, with a calavey boving a pound and a balf for the first and seowad days after death and thergafter pregressively maller cmounts. Thry attributed the woight last primarily to tisme detrydration of hutds braugh the epidernis. We obverved a sitnilar weight loss when dealing with preservex cariavena. However, an effective reduction in the weight losses can be achieved by keephas the sthen temperature low and by coworing the cadaver with most sheets whenterer pussithle.

Todd and Lindala idespad an experiment in which a series of cadavers were neasured before and ather the ingetion of a krown quantity of emtalming flud. Sublien Bud was fojected in each instance to restone the tixtue to a "normal" appearance. In general, approximatuly two or three gallons of Bugd wire reguired for a satisfactory restoration of the appearance of the tistre. This amount of Gind was found to ancrease the radius of the head, chest and ajpendages of adult white male catavers by an average of 6.2 nun, ranging from 16.0 num at tive level of thigh circomferenee to 23 mm at wrist circunference. This ditereme, white not large, will imerease the citrcumference at thigh and wrist respectively by 10.0 and $1,4 \mathrm{~cm}$. Todd concluded from this experiment that the results obtained on different cadavers were lighly varialse and quite unsatisfactory for predicting accurately the living bady size from moasurensents of the cadaver. As Todd pointed
out, the fault lies not so much with the technique he used as with the problem under consideration.

TABLE 28
COMPARISON OF ANTHROPOMETRY:
STANDING AND SUY ${ }^{\top}$ NE*
(All Values in Millimeters)

A. LIVING

Acro	Sternal	Xiphoid	Umbil.	Pubic Height	Biacromial Height	Height		
Height							\quad	Headth
:---:								

1	7	91	-7	24	20	5	2
2	2	51	6	18	10	14	-7
3	13	41	11	12	15	12	-1
4	5	27	12	5	25	17	2
5	24	39	21	24	22	5	0
0	23	61	27	38	\ldots	18	-2
7	8	41	11	29	28	3	-8
8	7	26	8	4	8	11	1
9	11	19	15	14	6	3	15
10	28	01	30	30	16	22	-1
Moan	12.8	45.7	13.4	20.5	17.6	11.1	.03
SD	8.55	20.22	10.17	11.46	7.43	6.56	5.69

B. CADAVERS

Subject							
734	1	46	-5	-19	30	10	-34
792	7	50	14	-7	20	12	7
797	0	24	3	-i	38	3	-3
837	-14	90	-16	-20	1	-3	3
8×3	5	41	6	11	41	31	9
809	1	23	7	-7	2	2	-2
904	1	23	1	1	30	40	1
945	1	50	10	13		10	10
1101	-14	94	-2	-13	\cdots	4	-22
1029	18	63	-15	-15		5	-87
Mean	0.6	33.0	0.3	-5.3	33.0	12.0	-5.3
SE	8.64	14.31	9.33	10.71	14.18	1285	15.18

In table 29 ase summarised Todds recomumeded increments in radii necessary to approx:neate tiving dinemorasi m the male. The varialility of the data from whil these recommenda.

TABLE 29

AVERAGE INCREASE IN RADIUS OF CADAVER DIMENSIONS TO APPROXIMATE LIVING DIMENSIONS (in mm.*

Circumferences	Male Caucasian	Male Negro
Head	3.5	3.9
Chest	7.7	7.8
Upper Arm	5.2	5.6
Forearm	3.4	3.9
Wrist	2.3	2.8
Thigh	16.0	17.0
Calf	9.9	14.5
Ankle	7.6	6.0
*After Todd and Lindala (1928) table 14, page 194.		

From their analysis, it appears that any attempt to obtain living dimensions of the body from cadaver measurements, even when the tissues are returned by injection of a fluid to a normal appearance, must be acknowledged as approximate. A significant finding by Todd and Lindala (1928, p. 177) stated that ". . . sudden death brings in its train no marked changes of radii from those characteristic of the living body and therefore calls for no correction of (body) dimensions. In the lingering deaths accompanied by emaciation, however, the subcutaneous tissues are dehydrated and one is fairly safe in correcting the several dimensions."

On the basis of Todd and Lindala's research, we decided to select for our study only those cadavers having a medical history that indicated "sudden death" and those having postmortem appearances that showed signs of minimal desiccation. Because of the limited number of cadavers in our study, it was possible to be highly selective, using only very well preserved specimens. This does not imply that the cadavers can be assumed to be fully representative in all their body dimensions to those of the living. Hewever, because it was possible to be highly critical in selecting the sample, the anthropometry taken on the cadavers is believed to be a "reasonable approximation" to that of the living.

Terry's study (1940) indicated that the measurement of stature in the supine position is significantly different from the in normal standing position. In order to understand these differences more fully, a brief study of certain measurements with subjects in a supine and a standing position was carried out. ${ }^{1}$ The supine position was one similar to that observed in the cadavers, the body being fully relaxed with the feet in plantar flexion and rolled slightly laterally. Table 30 gives the statistics for the variables considered in the 30 subjects studied. The correlation coefficients between paired variables are quite high for the dimensions of length and somewhat lower for the dimensions of girth. Estimates of stature were computed for the cadavers based upon the simple and multiple regression equations using variables 2,3 , and 4 . The estimates of stature predicted from these variables appeared excessively large. The possibility that the factors involved in diurnal variation in stature may affect estimates of stature in the cadaver cannot be overlooked.

[^18]\[

$$
\begin{aligned}
& \text { Linear Dimensions } \\
& \text { 1. } \text { Correlation Coefficients } \\
& \text { 2. } \text { Vertex to Ball Foot } \\
& \text { 3. } \text { Vertex to Ball Heel } \\
& \text { 4. } \text { Vertex to Arch Foot } \\
& \text { Dimensions of Weight and Girth } \\
& \text { 5. } \text { Werrelation Coefficients } \\
& \text { 6. } \text { Stand. Chest Circ. Exp. } \\
& \text { 7. } \text { Stand. Chest Circ. Nor. } \\
& \text { 8. } \text { Stand. Buttock Circ. } \\
& \text { 9. } \text { Supine Chest Circ. Exp. } \\
& \text { 10. } \text { Supine Chest Circ. Nor. } \\
& \text { 11. } \text { Supine Buttock Circ. } \\
& \text { * Weight in kilograms; all other dimen }
\end{aligned}
$$
\]

Estimates of diurnal variation are given as averaging 0.5 inches in children (Kelly et al, 1943) and 0.95 inches in adult males (Backman, 1924). This type of variation could be expected in a cadaver population in which the muscles and ligaments are without tension, giving a body stature in excess of that for the same individual during life. A more refined estimate of stature was therefore believed necessary.

If samples of live subjects could be matched to the cadaver sample on the basis of certain critical body dimensions, then the live samples should serve as a basis of validating estimates of body dimensions in the cadaver series. Body stature and weight, for example, are relatively sensitive indicators of many other body dimensions (McConville and Alexander, 1963). Three samples from live populations were therefore matched to the cadaver sample on the basis of weight and various estimates of cadaver stature. ${ }^{1}$ The most reasonable estimate of stature proved to be the dimension, Top-of-Head to Ball-of-Heel. The results of this comparison are given in table 31. The comparisons are surprisingly close considering the inability to match the samples on the basis of age. Differences in technique and in the interpretation of landmarks are apparent in those instances where the comparisons show gross difierences. The factor of age, which could not be controlled in matching the samples, is undoubtedly also responsible for some of the variations seen in the comparison.

It was on this basis then that the dimension, Estimated Stature, was determined. In order to make the anthropometric data of the cadaver sample more readily usable by others, the vertical distances on the body (that is, the heights) were determined by subtracting the Top-of-Head to, etc., distance from the estimates of body stature. This means that errors associated with estimated stature are also reflected in these height dimensions This propagation of possible error in stature determination is unfortunate but is unavoidable if the data are to be presented in the simplest and most usable form.

Referring to table 30 , note that the correlation roefficients for paired dimensions of girth, standing ver' ' supine, are somewhat lower than those for the linear dimensions but are still quite high. Of impir mize here, are the means and standard deviations of the measurements. In the first two cases, the means between the standing and supine measurements are nearly identical and the SD's are reasonably close. The third dimension, Buttock Circumference, is significantly different between the two measurements, with a marked tissue compression occurring in the supine position. The difference is about 1.5% of the standing value. The weight of the cadavers rested on the heels, occipital area of the head, the scapula, and the buttocks. Of these, the buttocks are obviously deformed by flattening; but the others, because of the bony structures just beneath the subcutaneous tissuc, exnibited only minor distortion and flattening. The buttocks may therefore have the maximum compression of tissue, which is approximately 1.5% of the standing dimension.

In summary, while no attempt is made to suggest the anthropometry of the cadavers is identical to that of the living, the assumption is made that their anthropometric data are a reasonable approximation of those obtained on the living and can be used within the framework of this study.

[^19]

Appendix D DESCRIPTIONS OF ANTHROPOMETRIC DIMENSIONS

1. Age: As recorded on the coroner's report.
2.* Endomorphy: The relative predominance of soft-roundness throughout the various regions of the body. An expression of the relative amount of body fat.
3.* Mesomorphy: The relative predominance of muscle, bone, and connective tissue.
4.* Ectomorphy: The relative predominance of linearity and fragility. This is, in part, expressed by $\mathrm{Ht} / \sqrt[3]{\mathrm{wt}}$.
2. Weight: Body weighed with scales read to the nearest gram.
3. Approximate Stature: Cadaver supine with its head oriented in the Frankfort plane (relative) and firmly touching the headboard of the measuring table. Using an anthropometer, measure the horizontal distance from the headboard to the most distal portion of the heel. The distance to both the right and left heels is measured and the two values averaged. Note: All anthropometry which follows was measured to the nearest millimeter.
4. Top-of-Head to Tragion Length: Cadaver supine with its head oriented in the Frankfort plane (relative) and firmly touching the headboard of the measuring table. Using an anthropometer, measure the horizontal distance from the headboard to the right tragion.
5. Top-of-Head to Mastoid Length: Cadaver supine, with its head oriented in the Frankfort plane (relative) and firmly touching the headboard of the measuring table. Using an anthropometer, measure the horizontal distance from the headboard to the apex of the right mastoid (or to the mastoid landmark).
6. Top-of-Head to Chin/Neck Intersect Length: Cadaver supine with its head oriented in the Frankfort plane (relative) and firmly touching the headboard of the measuring table. Using an anthropometer, measure the horizontal distance from the headboard to the anterior intersection of the chin and neck (or to the chin/neck landmarks).
7. Top-of-Head to Cervicale Length: The horizontal distance between the headboard and cervicale. This dimension is computed from the difference between top of head to thelion and the horizontal distance between thelion and cervicale.
8. Top-of-Head to Suprasternale Length: Cadaver supine with its head oriented in the Frankfort plane (relative) and firmly touching the headboard of the measuring table. Using an anthropometer, measure the horizontal distance between the headboard and suprasternale.
9. Top-of-Head to Substernale Length: Cadaver supine with its head oriented in the Frankfort plane (relative) and firmly touching the headloard of the measuring table. Using an anthropometer, measure the horizontal distance between the headboard and substernale.
10. Top-of-Head to Thelion Length: Cadaver supine with its head oriented in the Frankfort plane (relative) and firmly touching the headboard of the measuring table. Using an anthropometer, measure the horizontal distance between the headboard and thelion.

[^20]14. Top-of-Head to 10 th Rib Length: Cadaver supine with its head oriented in the Frankfort plane (relative) and firmly touching the headboard of the measuring table. Using an anthropometer, measure the horizontal distance between the headboard and the most inferior point on the margin of the 10th rib.
15. Top-of-Head to Omphalion Length: Cadaver supine with its head oriented in the Frankfort plane (relative) and firmly touching the headboard of the measuring table. Using an anthropometer, measure the horizontal distance between the headboard and omphalion.
16. Top-of-Head to Penale Length: Cadaver supine with its head oriented in the Frankfort plane (relative) and firmly touching the headboard of the measuring table. Using an anthropometer, measure the horizontal distance between the headboard and penale.
17. Top-of-Head to Symphysion Length: Cadaver supine with its head oriented in the Frankfort plane ' relative) and firmly touching the headboard of the measuring table. Using an anthropometer, measure the horizontal distance between the headboard and symphysion.
18. Top-of-Head to Anterior-Superior Iliac Spine Length: Cadaver supine with its head oriented in the Frankfort plane (relative) and firmly touching the headboard of the measuring table. Using an anthropometer, measure the horizontal distance between the headboard and the anterior-superior iliac spine.
19. Top-of-Head to Iliac Crest Length: Cadaver supine with its head oriented in the Frankfort plane (relative) and firmly touching the headboard of the measuring table. Using an anthropometer, measure the horizontal distance between the headboard and the iliac crest.
20. Top-of-Head to Trochanterion Length: Cadaver supine with its head oriented in the Frankfort plane (relative) and firmly touching the headboard of the measuring table. Using an anthropometer, measure the horizontal distance between the headboard and trochanterion.
21. Top-of-Head to Tibiale Lenyth: Cadaver supine with its head oriented in the Frankfort plane (relative) and firmly touching the headboard of the measuring table. Using an anthropometer, measure the horizontal distance between the headboard and tibiale.
22. Top-of-Head to Lateral Malleolus Length: Cadaver supine with its head oriented in the Frankfort plane (relative) and firmly touching the headboard of the measuring table. Using an anthropometer, measure the hrizontal fistance between the headboard and lateral malleolus.
23. Top-of-Hcad to Sphyrion Length: Cadaver supine with its head oriented in the Frankfort plane (relative) and firmly touching the headboard of the measuring table. Using an anthropometer, measure the horizontel distance between the headboard and sphyrion.
24. Head Breadth: Using spreading colipers, measure the maximum horizontal breadth of the head.
25. Head Length: Using spreading calipers, measure the maximum length of the head between the glabella and the occiput.
20. Neck Breadth: Using the beam caliper, measure the maximum horizontal breadth of the neck.
27. Neck Depth: Using a beam caliper, measure the maximum depth of the neck perpendicular to the long axis of the neck.
28. Chest Breadth: Using a beam caliper, measure the horizontal breadth of the chest at the level of thelion.
29. Chest Breadth (Bone): Using a body caliper, measure the horizontal breadth of the chest at the level of thelion exerting sufficient pressure to compress the tissue overlying the rib cage.
30. Chest Depth: Using an anthropometer, measure the vertical distance from the measuring table to the anterior surface of the body at the level of thelion.
31. Waist Breadth: Using a beam caliper, measure the horizontal breadth of the body at the leve! of the omphalion.
32. Waist Depth: Using an anthropometer, measure the vertical distance between the measuring table and the anterior surface of the body at the level of the omphalion.
33. Bicristal Breadth (Bone): Using a body caliper, measure the horizontal distance between the right and left ilia exerting sufficient pressure to compress the tissue overlying the bone.
34. Bispinous Breadth: Using a beam caliper, measure the horizontal distance between the right and left anterior-superior iliac spines.
35. Hip Brevdth: Using a beam caliper, measure the horizontal distance across the greatest lateral protrusion of the hips.
36. Bitrochanteric Breadth (Bone): Using a body caliper, measure the horizontal distance between the maximum protrusion of the right and left greater trochantor exerting sufficient pressure to compress the tissue overlying the femurs.
37. Knee Breadth (Bone): Using a beam caliper, measure the maximum distance between the right femoral epicondyles exerting sufficient pressure to compress the tissue overlying the femur.
38. Elbow Breadth (Bonc): With a spreading caliper, measure the maximum distance between the humeral epicondyles exerting sufficient pressure to compress the tissue overlying the humerus.
39. Wrist Brcadsh (Bone): With a spreading caliper, measure the maximum distance between the radical and ulnar styloid processes exerting sufficient pressure to compress the tissue overlying the radius and ulna.
40. Hand Breadth: With a sliding caliper, measure the maximum breadth across the distal ends of metacarpal II and V.
41. Head Circumference: With the tape passing above the brow ridges and parallel to the Frankfort plane (relative), measure the maximum circumference of the head.
42. Neck Circumference; With a tape in a plane perpendicular to the axis of the neck and passing over the laryngeal prominance (Adam's Apple), measure the circumference of the neck.
43. Chest Circumference: With a tape passing over the nipples and perpendicular to the long axis of the trunk, measure the circumference of the chest.
44. Waist Circumference: With a tape passing over the umbilicus and perpendicular to the long axis of the trunk, measure the circumference of the waist.
45. Buttock Circumference: With a tape passing over the greatest lateral protrusion of the hips, and in a plane perpendicular to the long axis of the trunk, measure the circumference of the hips.
46. Upper Thigh Circumference: With a tape perdendicular to the long axis of the leg and passing just below the lowest point of the gluteal furrow, measure the circumference of the thigh.
47. Lower Thigh Circumference: With a tape passing just superior to the patella and perpendicular to the long axis of the leg, measure the circumference of the lower thigh.
48. Calf Circumference: With a tape perpendicular to the long axis of the lower leg, measure the maximum circumference of the calf.
49. Ankle Circumference: With a tape perpendicular to the long axis of the lower leg, measure the minimum circumference of the ankle.
50. Arch Circumference: With a tape perpendicular to the long axis of the foot and passing over the highest point in the arch, measure the circumference of the arch.
51. Arm Circumference, Axillary: With a tape perpendicular to the long axis of the upper arm and passing just below the lowest point of the axilla, measure the circumference of the upper arm.
52. Biceps Circumference: With a tape perpendicular to the long axis of the upper arm, measure the circumference of the upper arm at the level of the maximum anterior prominence of the biceps brachii.
53. Elbow Circumference: The elbows of the cadaver were lexed to about $125^{\circ}\left(\overline{\mathrm{X}}=125^{\circ}\right.$; S.D. $=16^{\circ}$). With a tape passing over the olecranon process of the ulna and into the crease of the elbow, measure the circumference of the elbow.
54. Forearm Cincumference: With a tape perpendicular to the long axis of the forearm, measure the maximum circumference of the forearm.
55. Wrist Circumference: With a tape perpendicular to the long axis of the forearm, measure the minimum circumference of the wrist proximal to the radial and ulnar styloid processes.
50. Hand Circumference: With a tape passing around the metacarpal-phalangeal joints, measure the circumference of the hand.
57. Head-Trunk Length: A derived dimension calculated by subtracting Trochanteric Height from Stature.
58. Height of Head: A derived dimension calculated by subtracting Chin/Nock Intersict Height from Stature.
59. Trunk Length: A derived dimension calculated by subtracting Trochanteric Height from Chin/Neek Intersect Height.
60. Thigh Length: A derived dimension calculated by subtracting Tibiale tisight from Trochanteric Height.
61. Calf Length: A derived dimension calculated by subtracting Sphyrion Height from Tibiala Height.
62. Foot Length: Using a beain caliper, measure the distance from the dorsal surface of the heel to the tip of the longest toe.
63. Arm Length, Estimated: A derived dimension calculated by the following: Ann Length (Est.) $=1.126$ Acrom-Radiale Length +1.057 Radiale-Stylion Length +12.52 (± 1.58) (in centimeters).
64. Acromion-Radiale Length: Using a beam caliper, measure the distance along the long axis of the upper arm between acromion and radiale.
65. Ball of Humerous-Radiale Length: Using a beam caliper, measure the distance along the axis of the upper arm between the superior portion of the intertubercular sulcus of the humerous and radiale.
66. Radiale-Stylion Length: Using a beam caliper, measure the distance along the long axis of the forearm from radiale to stylion.
67. Stylion-Meta III Length: With a sliding caliper parallel to the forearm-hand axis, measure the distance between stylion and metacarpale III.
68. Metacarpale III-Dactyion Length: Holding digit III as straight as possible and using a sliding caliper, measure the distance between metacarpale III and dactylion.
69. Juxta Nipple (Fat): The thickness of the panniculus adiposus dissected from a site approxi mately one centimeter lateral to the right areola.
70. MAL X (Fat)*: The thickness of the panniculus adiposus dissected from a site on the miduxillary line at the level of the distal end of the xiphoid process.
71. Triceps (Fat)*: The thickness of the panniculus adiposus dissected from a site on the posterior aspect of the uppar arm midway between acromion and olecranon.
72. Iliac Crest (Fat): The thickness of the panniculus adiposus dissected from a site in the midaxillary line, just superior to the crest of the right ilium.
73. Mean Fat Thickuss: A derived dimension calculated as the arithmetic mean of the values obtained in varisbles e2-72.

[^21]
Appendix E

STATISTICAL TECHNIQUES

The statistical techniques used in this study are those most commonly used for a random sample. In selecting the sample there was no attempt made to select a stratified or fractional sample.

Prior to preparation of descriptive and analytical statistical analyses, the data were treated to an extensive set of editing routines. Any large body of data is likely to contain errors of observation and transcription. While the number of subjects in this sample was small ($n=13$), the numter of observations per sampling unit was large (approximately 510). A number of these observations, however, were redundant in that they were duplicate estimations of the same variable. The volume of segments, for example, was measured by both under-water weighing and by water displacement.

Despite the rigorous checking of observations, which normally consisted of indepondent checks by two observers, the probability is high that errors exist in the more than sixty-six hundred observations made, recorded, and transcribed to punch cards. In order to determine if and where errors in these data might occur, a series of test or editorial routines were used. These routines have been developed by Professor Edmund Churehill, and while rather widely used, have never been adequately described in the literature. The simplest and least expensive routine is that which he terms the "X-VAL" routine. This is a computer program that orders each variable from its smallest to the largest value and then prints out the ten lowest and ten largest values with the \bar{x}, SD and CV of the total sample. In addition, this routine doletes the top and bottom values and recomputes the \bar{x} and SD. This allows a close look at the two tails of the distribution of values and often permits the pinpointing of values obviously out of range as a result of transposition or dropping of digits.

A socond editing rontine that we used extensively (termed EDIT) is more expensive and time consuming but is correspondingly more sensitive in error detection. This routine requires that all vahes of a variable be tested against values predicted from one or more multiple regression cquations. The multiple regression equation contains independent variables that have a high correlation with the variable being tested. If the predicted values are greator than a specilied number of Strat units away from the actual recordexl value, the information is printex.' While the X.VAL. routine treats only the ends of the distribution, the EDIT routine examines each value against the values of two or more closely related variables. The use of a sufficient number of combinations of the variables in various regressions permits the pinpointing of possible ervors. It is important to stress thex the editing routines camot offer a "crerrect" value for an "incorrect" observed value but can only furmish a value in line with those observed in the rest of the sample. It rests with the investigator to deternine in the final stage where possible errors exist and bow the data should be treated when such questions urise.

In this study many observations were made using two independent techniques so that suspected values could be checked against their companion walues as well as the values suggested by the editing routine. Values for any variable were not changed except in those instances whore the burden of proof was overwhelming and cousistent that a change was necussiny to correct some form of error.

[^22]The general formulas for statistics used in this study are as follow::

$$
\begin{aligned}
& \overline{\mathbf{x}}=\frac{\Sigma \mathbf{X}}{\mathbf{n}} \\
& S^{2}=\frac{N \Sigma X-\Sigma X^{2}}{N^{2}} \\
& \mathrm{CV}=\frac{\mathrm{SD}}{\overline{\mathrm{X}}} \times 100 \\
& \mathrm{Se}_{\overline{\mathbf{x}}}=\frac{\mathrm{SD}}{\sqrt{\mathrm{~N}}} \\
& S_{\text {esp }}=\frac{S D}{\sqrt{2 \mathrm{~N}}} \\
& r=\frac{N \Sigma X Y-\Sigma X \Sigma Y}{\sqrt{\left[N\left(\Sigma X^{2}\right)-(\Sigma X)^{2}\right]\left[N\left(\Sigma Y^{2}\right)-(\Sigma Y)^{2}\right]}}
\end{aligned}
$$

The stepwise regression program used in this study is a modified form of the computer program prepared at the School of Medicine, University of Califorma. The program was extensively modified to expand the number of variables to be considered in the amalysis but otherwise remains similar to the form described by Dixon (1864). The program computes a sequence of multiple linear regression equations with an independent variable being atided at each step. The first independent variable to be added has the highest correlation coefficient with the dependent variable. The remaining independent variables are then selected from the highest partial correlation coeflicients, partialed on the variables already in the equation.

The program permits the weighting of the indeqendent variables so that they can be forcedinto the equation at any step in the sequence. The general background for this type of computer program has benn well described by Efroymsen (1960).

Appendix F

CORRELATION MATRIX OF SEGMENTAL VARIABLES

LIST OF ANTHROPOMETRIC VARIABLES

1. Age
2. Endomorphy
3. Mesomorphy
4. Ectomorphy
5. Weight
6. Estimated Stature
7. Tragion Height
8. Mastoid Height
9. Neck/Chin Intersect Feight
10. Cervicale Height
11. Suprasternale Height
12. Substernale Height
13. Thelion Height
14. Tenth Rib Height
15. Omphalion Height
16. Penale Height
17. Symphysion Hoight
18. Anterior Superior Spine Height
19. Iliae Crest Height
20. Trochanteric Hoight
21. Tibiale Height
22. Lateral Malleolus Height
23. Sphyrion Height
24. Head Breadth
25. Head Langth
26. Neek Breadh
27. Neck Depth
28. Chest Brendth
29. Chest Breadth/Bone
30. Chest Depth
31. Wuist Breadth/Omphalion
32. Waist Depth/Omphulion
33. Bicristal Breadth
34. Bisphnous Breadth
35. Hip Breadth
36. Bitroch Breadth/Bone
37. Knce Breadth/Bonce
38. Ellow Breadti/Wone
39. Wrist Areadth/Bone
40. Hand Breadth
41. Head Circumference
42. Neck Circumference
43. Chest Circumference
44. Waist Circumference
45. Buttock Circumference
46. Upper Thigh Circumference
47. Lower Thigh Circumference
48. Calf Circumference
49. Ankle Circumference
50. Arch Circumference
51. Arm Circumference (Axilla)
52. Biceps Circumference
53. Elbow Circumference
54. Forearn Circumference
55. Wrist Circumference
56. Hand Circumference
57. Head and Trunk Length
58. Height of Head
59. Trunk Langth
60. Thigh Longth
61. Calf Leugth
62. Foat Langth
63. Arm Length (Estimated)
(4. Acromion-Hadiale Length
ai. Ball Humerous-Radiale Length
i6. Radiale Styllon Length
64. Stylion-Mcta 3 Length
65. Meta 3-Dactylion Lengh
66. Juxta Nipple (Fat)
67. Mal Xiphoid (Fat)
68. Triceps (Fat)
69. Hac Crest (Fat)
70. Mean Fat Thickness
71. Ai at Cm^{*} (Leg)
72. AP at Em ${ }^{*}$ (Thigh)
73. APat Cn* (Calf and Foot)
74. APat Cm ${ }^{*}$ (Calf)
75. APat Cin* (Upper Arm)
76. AP at Cm* (Forearm and Hand)
77. AP at Can* (Forearm)
[^23]CORRELATION COEFFICIENTS OF SEGMENTAL VARIABLES WITH ANTHROPOMETRY

WEIGHT OF TOTAL BODY

11	.074	.838	.099	.105	.999	61	.599	.561	.538	.493	.408
111	.540	.654	.526	.501	.323	161	.039	.246	.198	.251	.325
211	.288	.207	.038	.539	.558	$26)$.598	.746	.859	.907	.085
311	.807	.436	.772	.297	.906	361	.902	.821	.568	.262	.596
411	.605	.676	.875	.813	.953	461	.785	.814	.716	.641	.518
511	.705	.843	.756	.737	.733	561	.306	.741	.770	.534	.364
611	.315	.469	.568	.551	.385	661	.474	.381	.515	.269	.600
711	.481	.257	.408								

75 VOLUME OF TOTAL BOOY

1)	.100	.836	. 108	.121	. 992	6)	+642	. 600	- 582	. 543	. 466
11)	. 590	. 719	. 584	. 580	. 403	16)	. 114	- 313	. 266	. 313	. 397
21)	. 360	. 261	. 076	. 489	. 541	26)	. 599	. 729	. 877	. 904	. 130
311	. 838	. 444	. 784	. 332	. 923	36)	. 926	.840	. 586	. 254	. 547
41)	. 570	. 663	. 914	. 837	. 968	461	. 754	. 823	. 862	. 602	. 522
511	. 709	. 828	. 774	. 731	. 714	561	. 281	. 728	. 750	. 527	. 433
61)	- 382	. 529	. 541	. 529	. 360	661	.446	. 407	. 481	. 321	. 646
$1)$	537	. 321	. 469								

76 (M-TOP OF HEAD (TOTAL BODY)

11	. 169	. 671	. 026	. 220	. 720	$6)$. 665	. 615	.599	. 593	. 517
111	. 573	. 489	. 582	. 467	. 406	16)	. 119	. 217	. 272	. 361	. 398
21)	. 376	-373	. 545	. 491	- 344	$26)$.135	-442	. 559	. 604	-044
311	. 739	. 285	. 894	. 594	. 791	361	. 802	. 692	. 815	.465	. 431
41)	. 592	.148	. 463	. 624	.745	461	. 635	. 713	. 635	. 341	.569
311	. 293	. 370	. 320	. 192	.414	361	. 434	. 773	. 620	-631	-408
611	. 216	. 202	. 687	. 782	. 771	661	. 368	.336	.494	. 206	. 369
711	. 241	-076	. 177								

WEIGHT OF HEAD ANO TRUKK

11	. 196	. 770	.035	-10\%	. 968	6)	. 673	.638	. 622	. 597	. 522
111	. 631	. 713	. 619	. 573	. 419	161	.102	. 311	. 200	+322	. 391
211	. 389	- 310	. 141	. 559	.614	261	+530	. 643	. 390	. 894	. 118
311	- 60	-444	. 823	. 395	.921	361	. 412	-711	- 312	. 390	. 374
41)	. 615	. 610	- 878	-655	. 917	461	.679	. 739	. 582	- 536	. 401
911	. 645	. 743	. 686	. 642	. 755	561	. 220	. 796	. 641	- $\$ 49$. 409
611	. 367	. 540	. 371	. 539	-383	661	.501	. 432	.519	. 310	. 58 \%
711	.476	-215	-405								

VOlume of mead and trunk

11	. 218	2	-024	-	. 951	61	. 722	. 680	. 612	O	
111	.890	. 74	. 682	.657	- 517	161	. 199	. 400	. 36t	-605	- 4 B 4
211	. 439	. 384	. 183	- 4.91	. 587	261	+524	. 830	. 887	. 879	.196
311	- 372	. 432	.822	- 110	. 923	361	. 929	. 718	. .565	-380	. 313
411	. 563	. 594	.925	. 861	.929	461	. 631	.732	. 329	. 403	. 424
511	.631	. 7 E1	. 699	. 838	. 723	561	.187	. 767	. 638	. 618	. 499
611	. 433	. 621	. 350	. 522	. 360	66)	+479	. 478	. 481	.349	.614
711	. 521	. 273	. 452								

CORRELATION COEFFICIENTS OF SEGMENTAL VARIABLES WITH ANTHROPOMETRY

CM-TOP OF heAd (head and trunk)

$1 \prime$.482	.683	.130	.079	.712	61	.591	.552	.552	.555	.477
$11)$.503	.426	.544	.397	.290	$16)$	-085	.117	.103	.173	.204
211	.236	.459	.519	.565	.557	261	.216	.308	.702	.662	-215
311	.856	.336	.897	.734	.780	361	.756	.711	.331	.674	.481
411	.473	.150	.431	.795	.714	461	.489	.680	.520	.614	.411
$51 才$.359	.363	.283	.200	.628	561	.337	.889	.406	.849	.161
$61)$.063	.206	.542	.546	.548	661	.417	.362	.454	.181	.385
$71 才$.214	-080	.163								

80 WEIGHT OF LES

| 11 | -087 | .839 | .180 | -055 | .919 | 61 | .420 | .380 | .344 | .286 | .204 |
| ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 111 | .346 | .497 | .340 | .374 | .182 | 161 | -034 | .131 | .072 | .133 | .213 |
| 211 | .150 | -011 | -098 | .415 | .417 | 261 | .594 | .774 | .707 | .812 | .033 |
| 311 | .654 | .365 | .642 | .159 | .796 | 361 | .793 | .786 | .524 | .046 | .523 |
| 411 | .523 | .695 | .772 | .659 | .909 | 461 | .879 | .842 | .836 | .701 | .668 |
| 511 | .673 | .856 | .746 | .754 | .532 | 561 | .334 | .540 | .852 | .212 | .291 |
| 611 | .212 | .300 | .451 | .487 | .319 | 661 | .289 | .234 | .398 | .189 | .572 |
| 711 | .472 | .300 | .388 | | | | | | | | |

8) VOLUME OF LEG

11	-066	. 857	.214	-002	- 724	61	. 438	. 393	. 366	. 311	4
111	. 366	. 535	-371	. 427	- 215	161	-013	. 150	. 089	. 146	. 235
211	. 176	. 031	-082	. 401	. 413	261	. 618	.777	. 747	. 829	. 025
311	. 700	. 378	. 661	- 204	. 022	361	. 818	-813	.535	.053	. 498
41)	. 509	. 690	.794	. 701	. 923	461	-875	- 868	. 793	+682	. 650
511	. 705	. 861	. 768	. 756	- 538	301	. 121	- 545	. 821	. 290	. 307
611	. 235	.317	- 117	. 955	. 287	681	.281	.234	.170	. 248	.637
711	. 530	. 365	.655								

02 CM-TROCHANTERION IREGI

11	-340	. 065	-347	. 567	. 10	6	. 663	. 649	. 647	. 703	1
111	.651	- 367	. 638	.697	.643	181	-692	. 370	. 592	. 636	. 610
211	. 638	. 624	+813	.038	. 229	261	-264	-117	. 050	.031	. 159
311	- 316	.034	. 576	. 612	. 295	361	-321	.177	. 282	. 544	-070
411	-130	- 320	.02A	. 203	. 176	461	-125	.056	.030	-019	. 245
511	-362	-353	- 71	-300	-006	561	.109	. 46	.048	. 534	. 540
611	. 610	. 2.9		.711	.773	$68)$. 315	.301	. 288	-120	-142
711	-195	- 580	- 824								

84 CM-ANT ASPECY (LEGI

1	-213	- 219			. 108		-137	-213	210	20	-
111	-233	-140	-164	-127	-231	131	-342	-360	-346	4	8
211	-25	-130	. 049	-079	-120	261	-147	-002	. 033	. 025	-303
311	. 120	-130	.230	. 101	. 155	361	-181	.090	-122	-188	-014
411	.033	-125	-078	. 076	. 187	*61	. 437	. 448	. 393	- 419	. 504
311	-013	.004	-227	-203	-189	561	-104	-015	. 301	-138	-159
611	-305	-279	-210	-026	-010	661	-476	. 073	-148	115	219
711	. 113	-014	.107			83)	. 69				

CORRELATION COEFFICIENTS OF SEGMENTAL VARIABLES WITH ANTHROPOMETRY

WEIGHT OF ARM

11	-099	.704	.145	.112	.883	61	.458	.451	.420	.340	.234	
111	.384	.477	.342	.239	.088	161	-070	.138	.069	.123	.160	
$21)$.145	.124	-079	.525	.400	261	.586	.710	.697	.755	.037	
$31)$.570	.377	.499	.063	.697	361	.709	.714	.512	.352	.628	
$41)$.489	.586	.692	.631	.762	461	.633	.579	.662	.657	.390	
511	.728	.861	.750	.779	.843	561	.500	.686	.783	.466	.179	
$61)$.193	.367	.633	.541	.434	661	.653	.343	.597	.151	.411	
711	.265	.181	.255									

86 VOLUME OF ARM

$1)$	-086	. 745	. 178	. 089	. 907	$6)$. 501	. 490	. 467	. 390	. 288
111	. 431	. 546	. 402	. 326	. 152	16)	-018	. 185	. 115	. 165	. 211
21)	. 197	-172	-064	. 500	-400	26)	. 640	. 742	. 765	. 802	. 023
31)	. 636	- 371	. 540	. 123	. 752	35)	-7C)	. 763	. 530	. 339	. 593
41)	. 490	. 611	. 741	. 685	. 804	46)	. 651	. 632	. 324	-6'J	. 375
51)	. 780	. 882	-8CC	. 796	.845	56)	- 478	. 702	. 761	. 493	c226
611	. 248	- 206	. 602	$\checkmark 517$. 406	661	. 619	. 340	. 583	. 226	. 504
71)	. 360	. 278	. 352								
87		-ACRO	OMION	(ARM)							
11	. 190	. 096	-314	. 709	. 406	61	. 624	. 645	- 393	. 580	. 518
11)	. 625	.411	.488	. 360	. 150	15)	. 440	. 369	+56?	. 623	. 571
211	- 520	. 253	-220	. 128	.186	$26)$. 011	. 300	. 146	. 222	. 541
311	. 162	. 238	. 306	-083	. $35{ }^{\circ}$	36)	. 399	. 211	. 524	. 427	. 394
411	+178	. 207	. 407	. 155	. 287	461	. 013	. 001	. 228	. 077	. 156
511	-135	. 118	. 201	. 287	. 403	$56)$. 287	-498	. 056	. 338	. 605
611	. 508	. 527	. 848	. 814	. 684	661	. 709	. 371	. 522	-391	-304
71)	-298	-429	-365								

88 WEIGHY OF HEAD

1)	. 058	. 573	-635	. 308	. 748	61	. 528	. 502	. 438	. 476	52
III	. 317	. 572	-492	- 377	. 364	161	. 104	- 289	. 251	. 257	333
21)	. 354	. 345	. 217	. 668	. 711	261	. 425	. 524	. 568	-6t0	. 030
311	-387	.257	.734	. 414	. 625	361	-611	- 116	. 313	. 143	. 241
41)	. 014	. 435	. 575	. 583	.694	461	.849	. 492	. 628	. 410	. 479
311	. 477	- 530	. 469	. 423	. 40 ?	36)	. 035	. 609	. 518	. 485	. 293
611	. 321	. 267	. 687	. 860	. 580	661	. 575	. 331	-481	. 136	. 478
711	. 288	. 171	. 270								

$1)$	-017	. 578	-473	. 389	. 716	61	. 624	. 383	.571	. 5	85
(1)	. 627	. 710	. 620	- 540	. 364	161	. 308	- 142	. 432	. 419	. 500
211	. 498	. 315	. 235	. 527	. 729	261	- 610	. 520	. 604	. 73	. 069
311	. 571	. 042	. 753	. 411	. 565	361	. 676	-470	. 359	-113	.136
$41)$. 863	. 308	. 708	. 496	. 758	401	. 672	. 571	. 350	. 263	. 488
311	.336	. 563	. 332	. 354	. 296	56)	-097	. 353	- 339	. 413	. 170
611	. 400	. 509	. 311	. 519	. 466	651	. 381	. 293	. 519	. 364	S
711	.565	. 352	. 485								

CORRELATION COEFFICIENTS OF SEGMENTAL VARIABLES WITH ANTHROPOMETRY

90 CM-TOP OF head (head)

| 11 | -129 | .687 | -022 | .027 | .851 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 111 | .434 | .679 | .431 | .488 | .306 |
| $21)$ | .250 | .120 | -194 | .491 | .570 |
| 311 | .660 | .276 | .578 | .167 | .762 |
| $41)$ | .704 | .757 | .877 | .671 | .804 |
| 511 | .822 | .846 | .792 | .698 | .539 |
| $61)$ | .365 | .489 | .261 | .232 | .066 |
| 711 | .726 | .561 | .679 | | |

| 61 | .434 | .396 | .399 | .365 | .328 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| $16)$ | .095 | .226 | .193 | .184 | .283 |
| $26)$ | .688 | .753 | .833 | .874 | .067 |
| 361 | .741 | .606 | .466 | -125 | .371 |
| 461 | .757 | .692 | .450 | .304 | .215 |
| 561 | .003 | .474 | .522 | .329 | .317 |
| 661 | .256 | .248 | .374 | .507 | .785 |

91 CM-bACK OF head (head)

1)	-426	-0:7	-353	. 457	. 102
11)	-194	. 275	-167	-005	. 171
211	-139	-069	-111	. 103	. 242
311	-177	-347	-039	-296	.036
41)	468	-249	. 343	-229	. 115
511	- 329	. 261	. 149	-032	. 121
61)	- 222	. 609	-091	1	-095
11)	. 365	.135	.291		

$6)$. 155	. 187	. 164	. 117	. 120
16)	. 186	. 171	. 222	- 172	. 158
26)	-001	.021	- 127	- 229	.076
36)	-100	-186	-041	-435	. 017
46)	. 065	-047	-006	-146	-2194
56)	-189	. 092	. 255	. 002	. 143
631	-688	. 465	.46?	-984	. 080

92 WEIGHT OF TRUNK

	. 20				,	6)					
11)	. 627	. 710	. 616	. 577	. 415	101	. 09	. 306	. 276	319	10
21)	. 352	, 322	. 134	. 543	. 600	281	. 517	. 661	. 897	99	
31)	. 865	446	.817	-390	. 926	36.	. 917	. 788	.537	56	
41)	- 594	. 611	. 883	. 859	. 915	461	. 672	. 767	. 370	535	
911	. 647	. 743	-689	. 644	. 762	261	. 235	. 795	.637	649	+

93 VOLUNE OF TRLNK

11	. 229	. 763	. 069	. 209	. 949	b)	. 709	. 668	. 658	637	. 570
$11)$. 674	. 171	. 668	. 648	- 498	181	. 111	.112	. 349	. 389	. 467
211	. 441	. 317	. 178	. 462	. 367	26)	. 523	. 626	. 190	. 612	. 199
(1)	. 877	. 473	. 809	. 402	. 922	361	. 927	. 797	. 366	. 352	. 534
411	. 933	. 389	. 922	.871	-924	461	. 620	. 753	. 321	. 503	. 416
511	.630	. 723	. 700	.645	. 711	361	. 215	. 765	.631	.617	.48s
611	. 436	. 613	. 313	. 506	. 340	66)	.472	. 472	. 465	344	. 608
711	. 311	. 266	. 445								

CM-SUPRASTERMALE (TRUNK)

11	. 535	. 171	-050	-073	. 366	$6)$	-331	. 217	.114	. 301	. 346
111	. 289	.190	- 369	. 191	. 130	161	-233	-047	-0.69	-049	-015
211	. 071	- 418	. 342	. 483	. 354	261	.067	-035	-439	. 315	370
311	. 676	. 213	. 728	.846	. 454	161	. 398	-384	-082	. 399	.198
41)	- 366	-105	. 081	. 644	. 103	461	. 239	. 416	. 289	. 108	.246
511	- 125	. 050	-090	-080	. 328	361	-014	. 673	-033	. 719	-116
611	-136	-0e2	. 271	. 249	. 331	661	. 248	. 131	. 227	-08	260
711	. 079	-120	. 062								

CORRELATION COEFFICIENTS OF SEGMENTAL VARIABLES WITH ANTHROPOMETRY

WEIGHT OF THIGH

	16	. 821	. 211	-117	. 893	61	. 38	. 338	. 315	. 257	. 18
11)	. 322	. 521	-320	. 406	. 173	161	-00	. 142	. 082	. 130	22
21)	. 152	024	-211	. 331	. 354	261	. 673	. 822	. 717	798	. 05
31)	. 624	371	. 562	. 090	. 777	361	. 767	. 780	. 541	04	. 46
411	. 482	. 737	. 792	. 645	. 875	46)	-868	. 820	37	. 59	57
511	. 716	. 879	. 799	. 811	. 499	56)	. 273	. 452	. 790	. 197	. 306
611	. 260	. 307	- 374								
711	539		-477								

96 VOLUME OF THIGH

1)	-153	. 830	. 244	-138	. 888	6)	. 396	. 330	. 335	. 278	. 214
11)	. 339	. 559	- 347	-448	. 205	16)	. 025	. 161	. 101	. 148	. 242
21)	-177	. 012	-194	. 313	. 345	26)	. 690	. 819	. 748	. 808	. 046
31)	. 656	- 968	. 569	. 126	. 793	36)	- 784	. 770	. 551	-042	. 436
41)	. 468	. 725	. 807	. 672	. 881	46)	. 856	. 836	. 687	. 512	* 548
51)	. 748	. 880	. 819	. 804	. 502	561	. 266	.453	. 758	-211	+321
61)	. 282	. 330	. 335	. 370	. 187	661	. 202	. 162	. 319	.310	. 701
71)	. 597	. 486	. 544								

$1)$. 465	. 39	-01	. 473	. 466	61	. 887	. 856		8	
11	. 860	. 758	. 853	. 861	837	161	. 691	-783	. 765	21	
21	. 820	. 632	. 680	. 104	. 25	261	. 102	. 35	92	.428	.25s
311	. 665	. 161	. 715	. 592	. 701	361	. 743	.611	. 726	.479	.111
11	. 257	. 015	. 906	.503	. 545	461	. 186	44	. 042	. 028	21
$1)$. 168	. 114	. 355	. 090	. 293	581	-364	.611	. 318	. 368	. 823
11	. 673	611	.631				-344				

99 CM-ANT ASPECT (THIGH)

11	-143	. 412	. 072	-264	. 357	6)	-1	-170	-214	52	-284
111	-162	. 074	-174	-154	-216	16)	-367	-294	-331	-296	-284
211	-263	-346	-222	. 534	-634	$26)$. 048	. 327	.240	369	. 186
31)	-237	- 474	. 252	-191	-313	36)	. 383	. 310	.043	-216	. 449
411	. 510	. 368	. 460	-303	. 312	461	- 745	u918	. 752	. 110	.635
511	- 414	. 618	.297	. 309	. 197	\$61	.150	.038	. 689	-243	071
611	-213	. 040	. 039	. 101	-047	681	-078	. 260	-026	29	
711	- 278	. 080	.243			98)	.830				

100 WEIGHT OF CALF AND FOOY

	. 126	725	039	. 125	. 814	61	-445	.423	. 362		21
111	-39	34	. 332	. 237	. 170	161	11				135
211	. 122	. 033	. 213	. 557	498	261	-	. 50	. 353		
311	. 609	-278	. 733	. 311	. 698	361	.713	71	0	27	
411	. 334	459	. 575	. 370	829	$46)$	739	.740	34		
511	. 440	. 637	. 466	. 463	523	361	425	. 673			
611	. 054	. 225	. 374	604		661	- 95				
$1)$. 086								

CORRELATION COEFFICIENTS OF SEGMENTAL VARLABLES WITH ANTHROPOMETEY

101 VOLUME OF CALF AND FOOT

$1)$. 165	. 749	. 119	. 092	. 817	6)	. 467	. 439	- 382	. 339	. 236
111	-367	- 370	. 359	. 289	-204	16)	-089	. 105	. 052	. 135	- 179
$21)$. 145	. 060	. 249	. 539	. 479	26)	. 294	. 507	. 587	. 715	-058
31)	. 659	. 211	.761	. 366	. 727	36)	. 744	. 780	-406	. 289	. 553
41)	. 501	-449	\% 590	. 608	. 851	46)	. 740	. 782	- 911	. 841	. 789
51)	. 460	. 634	. 484	. 457	. 522	561	. 442	-679	-139	. 436	. 218
611	. 067	. 231	. 543	. 583	. 504	661	. 383	. 389	442	. 043	333
71)	. 260	-020	. 138								

102 CM-TIBIALE (CALF AND FOOTI

| 11 | .109 | -339 | -365 | .776 | -047 | 61 | .580 | .612 | .610 | .633 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | .665

$1)$	-184	. 4	1	-083	- 393	6)	. 09	. 105	. 04	02	20
111	. 046	- 016	. 035	. 055	-027	161	-160	-039	-107	-088	007
21)	-072	-141	-134	. 197	. 126	261	- 460	. 379	. 274	. 462	364
311	. 219	-131	. 374	. 203	. 212	361	. 202	. 340	.030	-012	. 072
411	-219	. 540	. 175	. 210	. 432	461	- 478	. 400	. 706	. 541	. 561
511	. 201	. 341	. 256	. 360	. 101	561	-041	. 295	. 318	. 181	-096
61)	-026	-223	. 283	. 282	. 201	661	. 217	066	. 246	3	.085
711	. 015	. 022	-114			1031	.712				

105 weight of calf

11	. 102	. 7	.026	.1	.793	61	- 1	- 422	- 2	0	. 225
111	.350	. 334	+ 339	- 238	. 171	161	-121	, 012	037	-113	.149
211	. 125	. 053	- 211	. 319	- 482	261	. 326	. 495	- 344		094
311	.598	. 233	.736	. 342	. 680	361	- 688	. 709	. 348	. 244	. 51
411	. 322	. 481	. 540	. 560	. 817	461	. 728	. 729	.933	. 21	. 782
311	. 421	.613	. 452	.438	+ 489	361	. 376	. 676	. 820	- 410	.171
611	.059	. 117	.976	.802	.532	661	. 402	.350	. 498	-043	.273
711	.193	-057	.070								

106 VOLUAE OF CALF

11	.136	. 786	-079	. 044	- 808	61	. 079	- 411	.389	. 397	.262
111	- 310	-375	- 380	. 299	- 213	181	-081	. 112	. 063	.141	. 182
211	. 100	. 094	- 246	.503	. 611	261	. 389	. 800	. 380	.718	-104
311	. 656	. 240	. 771	. 401	-723	36)	. 730	. 763	-381	. 247	.504
411	. 301	. 456	. 565	. 608	- 848	461	+733	. 774	. 108	- ${ }^{3} 18$. 785
511	- 434	. 621	-4t2	. 461	- 302	361	. 394	. 697	- 820	- 448	. 208
611	-005	. 207	- 538	. 591	. 523	661	.377	. 383	. +73	. 009	.385
711	- 258	.001	.132								

Correlation coefficients of segmental variables with anthropometny

1)	. 080	-336	-436	. 822	-041	6)	. 598	. 627	-623	645	685
11)	. 672	. 554	. 591	. 539	. 719	16)	. 793	. 816	. 816	. 795	.777
21)	. 800	. 613	. 351	-267	-150	$26)$	-091	-104	-004	-092	. 589
31)	-017	. 026	. 032	-013	. 035	361	. 122	-127	- 262	. 200	-292
$41)$	-153	-109	. 270	-040	-059	461	-503	-374	-44	-419	144
51)	-218	-253	-617	-075	. 113	561	-092	- 128	-026	. 156	. 701
611	. 778	. 666	.453	. 378	.331	66)	.483	. 516	. 195	004	42
711	-118	. 008	-055								

109 CM-ANT ASPECT (CALF)

11	. 191	. 506	-037	-090	. 513	$6)$. 278	. 208	. 226	. 241	. 211
$11)$	-239	. 207	. 235	- 334	. 180	16)	-050	. 101	. 031	. 069	. 115
21)	. 128	. 174	. 077	- 230	. 159	26)	. 469	. 382	. 415	. 472	-126
$31)$. 538	. 300	. 573	. 455	. 465	36)	-384	- 526	. 190	. 258	- 109
41)	. 074	. 431	. 299	. 960	. 529	46)	. 417	-478	. 602	. 561	. 646
511	. 1110	. 263	. 265	- 424	. 226	58)	-004	- 392	. 295	-328	. 100
611	-122	-189	. 440	. 463	. 280	66)	. 300	-009	. 041	96	. 215
711	-020	. 012	-092			108)	. 865				

110 WEIGKT OF FOOT

$1)$. 212	. 638	. 109	- 17	. 810	6)	-423	. 395	. 329		-136
11)	. 325	- 346	. 282	. 207	. 152	16)	-100	.083	.036	. 130	. 164
21)	. 098	037	. 232	. 649	. 527	26)	. 121	. 493	. 529	.657	34
31)	. 588	- 375	. 663	. 171	. 698	361	- 749	. 741	. 183	. 27	. 729
41)	. 536	-391	. 640	. 533	. 796	46)	. 724	. 720	- 853	. 786	677
21)	.466	. 660	. 469	-415	. 987	561	. 590	. 607	. 906	. 327	252
	. 019	. 395	. 512	. 562	. 471	561	- 312	. 496	. 415	-10	278

71) -262-121 -145

111 VOLUAE OF F00Y

1)	. 292	. 66	. 249	. 1	. 820	61	- 440	44	-3	. 313	190
111	. 330	-379	. 319	. 280	. 207	16)	-063	-113	.063	. 158	. 203
211	. 231	-027	- 288	-640	. 529	26)	- 108	-491	-964	. 671	.131
311	. 697	. 388	. 707	. 294	. 738	361	. 786	. 002	- 518	. 302	. 713
411	.928	. 373	. 657	. 584	. 822	461	. 728	. 713	- 1220	. 774	. 633
911	-474	. 640	- 485	- 307	. 369	361	. 600	. 809	- 171	-343	. 288
611	. 035	- 362	. 471	.540	.447	661	.250	-460	. 356	.242	. 330
711	.327	-072	. 206								

112 CM-NEEL (FOOTI

$1)$.134	. 506	-370	.930	. 629	61	. 773	. 742	. 730	.710	. 703
111	. 746	. 780	. 738	.615	. 703	161	. 437	.600	. 353	. 561	. 639
211	. 686	. 624	. 002	- 460	- 5 ar	261	-256	. 100	. 546	-5 54	098
311	. 629	.093	. 775	. 596	. 617	361	- 68	. 571	. 346	. 222	. 007
41)	. 638	-188	+614	. 242	. 720	$46)$. 419	. 414	-451	. 377	. 51
511	-485	. 426	-447	. 212	.365	361	-194	-639	. 568	. 922	. 546
61)	. 547	. 586	. 642	. 620	.655	661	. 542	-644	. 497	380	540
711	.430	. 352	. 455								

CORRELATION COEFFICIENTS OF SEGMENTAL
VARIABLES WITH ANTHROPOMETRY
113
CM-SOLE (FOOT)

	-048	104	22	, 320	.		-01				
111	-037	001	-106	-133	. 014	16)	-112	-01			-
21)	-003	058	. 151	. 450	. 158	26)	-190	-017		-	18
311	-001	. 215	. 176	-057	-029	36)	. 039	. 035	-162	146	1
411	- 225	. 076	. 166	.015	. 176	46)	. 204	. 040	. 530	487	2
81)	-013	. 096	-145	-061	. 038	56)	.042	-021		205	02
	-0	0	. 222	- 232		661	. 158				

114 WEIGHT OF UPPER ARM

| 11 | -127 | .749 | .172 | .009 | .879 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 111 | .981 | .523 | .974 | .106 | .129 |
| 211 | 166 | .149 | -030 | 0834 | .446 |
| 311 | .631 | .283 | .567 | .194 | .743 |
| 11 | .591 | .569 | .674 | .651 | .809 |
| 511 | .837 | .893 | .808 | .739 | .730 |
| 611 | .203 | .320 | .538 | .507 | .442 |

61	2461	.440	. 425	. 348	.253
161	-036	. 147	.075	. 121	. 178
26)	. 645	. 766	. 741	. 301	-095
361	.746	. 773	. 338	. 245	. 516
461	. 750	. 689	. 662	. 625	. 408
56)	. 485	. 666	. 753	. 455	. 189
66)	. 526	. 262	. 568	-319	.604

115 VOLUME OF UPPER ARM

1)	-115	. 822	د180	017	. 888	6)	. 493	.466	. 464	. 393	08
11)	. 422	. 516	.432	. 308	. 192	161	. 010	. 185	. 116	. 154	222
211	-218	- 206	-012	. 302	. 435	261	. 691	- 776	. 796	. 634	116
311	. 688	- 268	. 606	- 268	. 782	361	. 780	. 798	.546	. 222	440
411	. 596	. 579	. 706	. 698	. 839	461	. 737	. 730	. 613	. 513	. 308
511	. 894	. 696	. 839	. 739	. 711	561	-429	. 674	. 709	. 412	225
611	. 252	. 330	. 513	. 467	. 403	66)	-A84	. 249	. 349	- 391	. 694
711	. 547	. 472	.351								

116 CM-ACROMION (UPPER ARM)

11	. 39						.				
(1)	. 701	. 549	. 308	. 64	- 6	261	. 605	.092	677	. 741	-
211	. 625	. 203	. 340	. 205	- 309	261	. 058	. 511	211	. 370	909
91)	. 398	. 209	. 224	. 164	. 576	361	. 591	. 478	. 05	-213	370
411	-329	272	. 316	. 276	. 137	46)	. 2918	.318	246	-001	214
511	-02	. 166	. 363	. 265	. 204	361	. 351	. 405	d 19	. 285	. 008
011	. 586	S	.7								

11	-228	. 45	. 103	-199	. 630	$6)$	-04		-	-159	-223
111	-039	. 175	-137	. 040	-1.3	16)	-289	-087	-177	-167	-098
211	-174	-390	-533	-475	-263	261	. 572	. 7at	. 398	. 547	. 177
311	-237	- 379	. 133	-281	- 369	361	. 338	.470	. 365	-239	. 439
411	- 370	. 762	. 371	. 352	. 511	461	-488	.444	. 617	- 430	. 351
311	. 580	. 788	. 601	. 806	. 359	361	. 109	.032	. 556	-187	. 017
61)	.015	.014	.197	. 183	075	66)	. 109	-063	. 019	. 024	. 390
711	. 289	. 211	. 246			1171	. 874				

CORRELATION COEFFICIENTS OF SEGMENTAL VARLABLES WITH ANTHROPOMETRY

119

WEIGHT OF FOREARM AND HAND

1)	-049	. 477	. 083	. 239	. 758	6)	. 383	. 397	. 347	. 278	. 170
11)	. 327	. 338	. 244	. 106	. 013	16)	-108	. 102	. 049	. 106	. 107
21)	. 087	. 069	-140	. 433	. 275	26)	- 119	. 825	. 329	. 576	. 214
31)	. 396	.451	-325	-134	. 526	36)	. 545	. 520	. 395	. 447	. 689
41)	. 272	. 525	. 611	- 507	. 578	46)	. 373	. 332	. 365	. 604	. 304
51)	. 466	. 688	. 555	. 720	.874	56)	.444	. 609	. 702	-410	. 135
611	. 190	. 373	. 644	. 508	. 356	66)	. 735	.403	.549	112	. 075
71)	-046	-120	-070								

120 volume of forearm ano hand

$1)$	-034	. 517	- 099	. 240	. 787	61	. 438	. 449	.405	. 335	. 233
11)	. 386	. 412	- 310	. 188	.080	161	-050	-161	. 105	. 160	. 170
211	. 150	. 125	-119	. 414	. 282	26)	. 464	. 589	. 584	. 614	. 230
311	. 454	. 465	- 362	-090	.579	36)	. 399	. 567	. 142	. 436	672
411	. 277	. 542	. 664	. 599	. 621	461	. 385	. 371	. 537	-583	299
511	- 508	. 713	. 608	. 751	. 890	561	-439	. 633	. 700	-439	. 195
611	. 215	. 425	. 650	. 517	. $3: 9$	661	. 737	-412	. 553	053	146
711	. 022	-046	. 004								

121 CH-RADIALE (FOREARM AND HANDI

11	- 34	23	21	. 679	. 211	$6)$. 620		3	2	557
111	. 576	366	. 320	. 270	. 424	161	. 320	. 467	10		
211	. 915	. 638	. 686	. 237	. 100	261	-212	-130	. 17	. 095	94
311	. 211	. 159	. 354	-313	. 240	361	. 332	-243	. 23	. 764	. 134
41)	. 037	-290	. 156	. 240	. 165	461	-212	-03	00	. 219	.130
511	-025	-074	-0.0	-127	. 354	361	-456	-618	. 265	. 593	. 330
611	. 314	. 449	. 683	. 304	.673	661	. 709				
111	-251										

CM-ANT ASPECT (FOREARM AND HANDI

11	-63s	- 200	-049	-027	10)	(1)	-0	.	-	-24	001
111	.083	. 208	. 070	12	169	16.	-36	-200	-220	-247	-193
211	-141	-136	-203	d	423	261	. 342	-103	. 42	. 37	. 097
311	. 312	. 440	. 115	023	219	361	-225	+220	-15	. 33	. 454
411	. 237	. 319	-422	. 514	948	461	-137	. 110	. 24	. 42	.067
311	.491	-. 375	. 349	. 365	723	561	-014	.300	.23	. 34	246
611	~091	.221	. 163		130	61	.536	. 237			
711	. 033	. 085	. 101								

124 wetgnt of forearm

1)	-182	- 41	. 017			6)	. 3	2	. 231		
111	- 275	. 336	-191	.000	-024	161	-110	.e72	. 01	. 033	.067
211	. 048	.007	-277	- 421	-273	261	- 523	. 574	, 3	. 097	.181
111	. 348	-613	274	202	491	361	- 500	474	. 346	292	.624
411	. 310	-634	639	-479	. 380	461	- 424	325	Ses	343	305
511	. 927	. 752	606	. 792	. 127	561	. 329	. 533	. 699	327	. 094
611	. 161	-3n3	. 384	. 637	262	661	-700	135			

CORRELATION COEFFICIENTS OF SEGMENTAL VARIABLES WITH ANTHROPOMETRY

125 JOLUME OF FOREARM

$1)$	-180	. 542	. 060	. 169	. 807	6)	. 362	. 373	. 329	. 252	. 162
11)	. 322	. 411	. 249	. 167	. 035	16)	-082	. 118	. 057	. 094	. 119
211	. 097	. 038	-277	. 404	. 280	$26)$. 590	.634	. 612	. 669	. 188
31)	. 418	. 419	. 318	-158	. 561	36)	. 567	. 541	. 403	. 275	. 614
41)	. 322	. 680	. 708	. 539	. 643	46)	. 467	-397	. 576	. 574	. 307
51)	. 598	. 803	. 682	. 838	. 842	56)	. 327	-553	. 706	. 346	. 149
611	. 217	. 391	. 564	. 425	. 241	$66)$. 680	. 351	. 523	42	. 231
111	. 112	. 084	. 087								

126 CM-RAOIALE (FOREARM)

1)	. 232	. 008	130	. 663	.280	61	.612	. 653	. 635	612	358
11)	. 625	. 524	. 538	. 393	. 498	16)	. 473	. 610	. 559	. 566	. 534
21)	. 578	. 529	. 317	. 200	. 110	261	. 092	. 092	. 271	. 208	. 408
31)	. 254	. 171	. 178	. 108	. 241	36)	- 315	-301	- 388	.609	. 193
$41)$. 008	. 034	. 389	. 268	. 202	461	-292	-145	-123	. 037	061
511	. 180	. 164	. 315	. 245	. 636	561	-357	-483	. 222	.461	. 450
611	. 509	.615	. 631	. 463	. 451	661	. 788	. 544	. 412	. 040	-056
711	-082	-030	-026								

120
CM-ANT ASPECT (FOREARM)

11	. 03	. 3	1	-397	. 291	61	-276	30	-902		333
111	-299	-189	-286	35	469	16	-601		10	-50	
1	-429	118	35	21	. 142	26)	. 26	. 026	08	. 050	29
31)	-10	633	080	-13	001	36	-037	. 152	28	. 332	. 419
41)	-160	. 182	. 093	08	153	461	. 115	. 044	. 189	. 529	. 310
(1)	+119	. 311	. 186	589	-12	361	. 019	. 098	150	. 009	431
(1)	-339	-298	. 088			66)	. 328				
$11)$											

129 WEIGHT OF HAND

11	. 267	- 41	. 223	. 30	. 634	61	. 48	. 3	0	. 419	294
111	-415	. 292	. 348	- 166	. 106	161	-0.3	. 162	. 124	. 216	163
211	. 171	- 228	. 223	. 403	. 234	261	- 189	. 337	- 466	.450	165
311	. 475	. 430	. 432	. 096	. 547	361	- 518	. 363	-454	. 737	. 717
411	. 198	. 200	- 440	. 508	.497	461	.706	. 318	. 420	. 574	.247
511	. 266	-427	+347	. 423	. 863	361	. 640	. 735	. 597	. 396	. 194
611	. 102	- 369	. 696	. 608	. 542	661	. 096	. 160	. 546	-033	-050
111	-155	-3s4	-180								

130 VOLUME OF HAND

11	. 304	. 4	-268	. 280	. 673	$6)$. 53	. 542	. 306	. 459	. 333
111	. 453	. 349	. 391	.240	.134	161	-012	. 194	. 134	. 246	. 221
211	. 205	-296	. 232	-414	.249	26)	. 176	. 379	. 334	- 500	. 173
311	. 548	. 459	. 678	- 141	. 610	361	. 640	- 23	. 507	. 763	. 724
411	. 166	. 230	. 497	. 572	. 543	461	. 235	. 378	. 407	. 363	. 236
311	. 311	-454	-393	. 447	. 885	561	. 642	. 754	- 599	. 621	. 236
611	.139	. 403	. 679	. 600	518	661	.667	. 412	. 533	018	. 029
711	-079	-273	05								

CORRELATION COEFFICIENTS OF SEGMENTAL VARIABLES WITH ANTHROPOMETRY

CM-META 3 (HAND)

1)	. 317	7.372	-422	. 093	- 294	$6)$. 238	. 195	. 189	. 224	. 260
111	. 229	. 233	. 289	. 147	. 253	16)	-092	. 057	. 024	. 004	. 092
21)	. 178	. 402	. 458	. 391	. 507	26)	. 084	-177	. 175	. 216	023
31)	. 410	- 244	. 527	. 639	. 183	$36)$. 186	. 211	-29:	. 272	-077
411	. 259	-009	. 161	.477	. 403	46)	. 174	. 228	. 499	. 503	. 709
511	. 052	. 115	. 035	. 095	. 077	36)	-218	. 345	. 160	.328	-019
61)	. 019	-061	. 302	. 242	. 257	661	. 339	. 263	.034	15	.172
711	-009	. 019	-014								
132		CM-MED	Asp	CT 1HA							
$1)$. 481	-010	. 197	. 149	- 109	61	. 112	. 129	.091	. 096	0.013
111	. 043	-238	-007	-197	-173	16)	-290	-171	-152	-060	-143
21)	-146	. 060	. 281	. 184	. 022	261	-355	-200	-020	-064	. 068
31)	. 134	- 342	. 170	. 069	. 101	361	. 102	. 201	. 018	. 769	. 533
41)	-201	-229	-126	. 165	-008	461	-1146	-039	. 282	. 373	. 082
511	-372	-190	-309	-107	. 436	561	. 396	. 413	- 122	. 421	128
61)	-283	-064	. 376	. 341	- 328	661	. 349	.212			
711	-620	-	670								

Appendix G
 DENSITIES OF HUMAN TISSUES

A number of studies reporting the density characteristics of freshly isolated (nonpreserved) human tissue are found throughout the literature. The more recent studies are concerned with the density of tissues from which the fat has been removed by chemical extraction and the water removed by hydration or prolonged drying. Few studies report densities (or specific gravities) of fresh "whole" tissues" and with the exception of bone, the densities of tissues from embalmed cadavers are apparently undocumented. The lack of comparative information presents a serious difficulty in properly assessing the relationship of freshly isolated and preserved tissue. Our study afforded an opportunity to measure the densities of samples of skin, fat, muscle, and bone tissues dissected from cadavers randomly selected from the study population.

In all, the density of 135 tissue samples was determined. Skin, fat, and muscle samples were taken from sites at which the thicknesses of the skin and panniculus adiposus were measured. Soft tissue samples weighed about one gram, and bone samples were halved disks cut from the shaft of the humerus. As much dissimilar tissue as possible was dissected from each sample, but no drying or fat extraction was attempted since the primary purpose of the study was to compare only the densities of whole fresh and whole preserved tissues.

The volume of each tissue sample was determined by placing it in a 25 ml pyenometer filled with tripledistilled water, measuring the weight of the water displaced by the sample and correcting for the temperature of the water. All weighing was done on a balance which measurex grams to four decimal places. The water and tissue samples wewe at room temperature (23.6 to 25 C). Care was taken to remove any air that was trapped in the samples.

Table 33 lista the results of this study and permits comparing the data of this study with what is believed may be the most comparable data on nompreserved whole hwman tissue. Since very few modern investigators have measured the density of fresh, untroated human tissue, the works of Davy (1840) and Krause and Kapif (as given in Viorordt, 1900) are reported here oven though their methols of derivation are not known. The dota of Levider and Duncke (1054) an skin and Blanton and Biggs (1968) on bone are considered directly comparable. The standard deviations of the densities decrease with ead cadaver studied in this present effort. This undoubtedly redects an inprovement in measuring techaques as the study progressed.

We do not beliese that this study has demnustrated adequately the similarity or diference hetweon preserved and unpreserved tisste, suce so little fresh tissue has been tested in a maner similar to the treatiment of the preserved tissue. With the exception of musite tissue, however, it is encouraging that there are no appareat gross differences between the densities of the two typess of tissucs. Our data on the density of amsele tissue apmar to be high. We cen offer no explamation for this chlur than to suggest that the techuique of measuring the dowsity of muscle tissue was at fuult.
table 32
densities of boiv tissues

*Spedfic gravity (a)

References

Alexander, Milton, J. T. McConville, J, H. Kramer and E. A. Fritz. 1964. Height Weight Sizing of Protective Garments, Based on Japanese Air Self-Defense Force Pilot Data, with Fit-Test Results, AMRL-TDR-64-68, Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base, Ohio. (AD 608 039)
Alexander, Milton and C. E. Clauser. 1965. Anthropometry of Common Working Positions, AMRL-TR-65-73, Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base, Ohio. (AD 632 241)
Allen, T. H., H. J. Krzywicki, and J. E. Roberts. 1959. Density, Fat, Water and Solids in Freshly Isolated Tissues, J. of Applied Physiology, 14(6):1005-1008.
Amar, J. 1920. The Human Motor, E. P. Dutton Co., New York.
Bachman, G. 1924. Korperiänge und Tageszeit. Upsals Lakar. Forharull, e9:255-282.
Barnes, B. A., E. B. Cordon and O. Cope. 1957. Skeletal Muscle Amalysis in Health and in Cortain Metabolic Disorders. I. The method of analysis and the values of normal museles. J. Clin. Invest., 36:1239-1248.
Barter, J. T. 1957. Estmation of the Mass of Body Segments, Wright Air Development Conter TR-57-200, Wright-Pattorson Air Force Base, Ohio. (AD 118 222)
Batter, J. T., Irvin Emanuel and Bruce Truett. 1957. A Statistical Evaluation of Join Range Data, Wright Air Development Center Technical Rpt. 57311, Wright-Putterson Air Force Basa. Ohio. (AD 131028)
Busikirov, P. N. 1938. The specife gravity of the human bedy in the light of its practical signifconce for anthropology and mexlicine. Sowetskaia Anthropologia, 8:85-103.
Basler, A. 1929. Zur Plysiologie des Hockens, Z. Biol. 89:583.530.
Masler, A. 1031. Die Lage der Schwerpuakes in lebenden Menschen, Foreseh. Med., 11:310-328.
Basder, A. 1036. Methode zur Bestinnung der auf die eimedmen Sohlenkezirke wirkenden Telf.
 Arbetrmethoden, Urian und Sitiwarzenberg. Berlin.
Beluke, A. A. 1961. Comment on the dotermination of whole bexly density and a resume of bedy composition, pp 118.133 in Brozek, Josef (ed). Techniques for Moasurites Body Contrasi. tion, Nathonal Research Conncil, Washuggon, D. C.
 tion of the Centers of Gintetty and Mass of the links of the Lating Huawn Beaty (In Russian). All-Union Lustitute of Expertuental Medicine, Moscow.
Lesustein. N. A. 1936. Die kymeryckgyaphische Nehtude der lhewegungsuntorsuhtung, frim Abderhalien, Eanil. Handisuch der biokogischen Arbeutsucthoden, Uiban und Schwartenberg. Betín.
Bernstein, N. A. 1967. The Co-ardinatien and Regulation of Moweswhes, Perganon Press, Landon.
Blanton, P. L. and N. L. Biggs. 1988. Detwity of fresh and cabbalined humain compact and cancellous bove. Atw. I. Phys Anthropol NS $29(1): 39-44$.
Borelli, C. A. 1630-1681. De Motu Amivaliumn, Lugduni Betavarum.

Boyd, E. M., L. M. Knight. 1963. Postmortem shifts in the weight and water levels of body organs, Toxicol. Appl. Pharmacol., 5:119-128.
Braune, W. and O. Fischer. 1889. The Center of Gravity of the Human Body as Related to the German Infantryman, Leipzig. (ATI 138452 . Available from Defense Documentation Center.)
Braune, W. and O. Fischer. 1892. Bestimmung der Trägheitsmomente des menschlichen Körpers und seiner Glieder., Abh. d. Math. Phys. Cl. d. K. Sächs. Gesell. d. Wiss., 18(8):409-492, Leipzig.
Brozek, Josef. 1963. Body Composition, Annals of the New York Academy of Science, 110:11036.

Brunnstrom, Signe. 1966. Clinical Kinesiology., F. A. Davis, Philadelphia.
Calvit, H. H. and A. F. Rosenthal. 1964. Analysis of the Structural Dynamics of the Human Body, Department of the Army, Project DA-36-034-AMC-0207R, AD 610 394, Penn State University.
Cleveland, H. G. 1955. The Determination of the Center of Gruvity of Segments of the Human Body, Dissertation, University of California, Los Angeles.
Comroe, J. H. 1965. Physiology of Respiration, Year Book Med. Pub. Inc., Chicago.
Contini, Renato, Rudolfs Drillis and Lawrence Slote. 1959. Devclppment of Techniques for the Evaluation of High Altitude Pressure Suits, Wright Air Development Center TR-58-641, Wright-Patterson Air Force Base, Ohio. (AD 240 563)

Contini, Renato, Rudolfs Drillis and Morris Bluestein. 1963. Determination of body segment parameters, Hum. Factors, 5(5): $493-504$.
Cureton, T. K. 1943. Warfare Aquatics, Course Syllabus and Activities Manual, Stipes Publishing Co., Champaign, Ill.
Damon, Albert and R. A. McFarland. 1955. The physique of bus and truck drivers; with a review of occupational anthropology., Am. J. Phys. Anthropol., 13(4):711-742.
Damon, Albert and H. W. Stoudt. 1963. The functional anthropology of old men, Hum. Factors, $5(5): 485-489$.

Damon, Albert. 1964. Diurnal variation in stature. Notes on Anthropometric Technique, Am. J. Phys. Anthropol., 22(1):73-78.
Damon, Albert, H. W. Stoudt and R. A. McFarland. 1966. The Human Body in Equipment Design, Harvard University Press, Cambridge.
Deniels, G. S. 1952. The "Average Man"•, Technical Note WCRD 53-7, Wright Air Dovolopmeat Center, Wright-Patterson Air Force Base, Ohio. (AD 10 203)
Davy, John. 1840. Researches, Phystological and Anatomical. Waldir, Philadelphia.
Dempster, W. T. 1955. Space Requirements of the Scated Operator, Wright Air Development Center TH-55-159, Wright-Patterson Air Force Base, OHio (AD 87 892)
deVries, H. A. 1988. Physiology of Exercise for Pluysical Education and Athletics, W. C. Brown, Dubuque.
Dixon, W. J. (Editor). 1964, BMD Biomedical Computer Programs, Department of Preventive Medicine and Public Health, School of Medicine, University of Culifornia, Los Augeles.
Drillis, Rudolfs, Renato Cazitini and Morris Bluestein. 1984. Body segment parameters: A survoy of measurement techniques, Artifictal Limbs, $8(1): 128-136$. Nat' Acud. of Science, Weshington, D. C.

Drillis, Rudolfs and Renaio Contini. 1938. Bociy Segment Parameters, Office of Vocational Rehabilitation, Department of Health, Education and V'elfare, Report 1166-03. N. Y. University School of Eng. and Sci., New York.
DuBois, Raymond, R. 1900. Uber die Grenzen der Unterstützungsfläche beim Stehen., Arch. Anat. Physiol., 23:562-564.
Duggar, B. C. 1962. The center of gravity of the human body., Hum. Factors, 4(3):131-148.
Efroymsen, M. A. 1960. Mathematical Methods for Digital Computers, V:17, Edited by A. Ralson and H. S. Wilf, Wiley, New York.
Emanuel. irvin, Milton Alexander, Edmund Churchill and Bruce Truett. 1959. A Height-Weight Sizing System for Flight Clothing, Wright Air Development Center TR-56-365, Wright-Patterson Air Forre Base, Ohio. (AD 130 917)
Eycleshymer, A. C. and D. M. Schoemaker. 1911. A Cross-Section Anatomy, D. Appleton-Century Co., N. Y.
Fedotenkov, A. C., L. A. Danilova, L. D. Pupnva. 1762. Study of the histological changes in cadaver skin doring the process of its preservation in solutions. Probl. Gemat., 7:44-47.

Fidanze, Flaminio, Aucel Kers, and J. T. Anderson. 1953. Density of body fat in man and other nammals. J. Appl. Physiol., 6(2)252-256
Fischer, Otto. 1906. Theoratical Furdamentals for a Mechanics of Living Bodies with Special Applications to Man as Well as to Some Processes of Motion in Machinss. B. G. Teubner, Berlin. (ATI 153688. Available from Defense Documentation Conter.)
Fujikawa, Katsumasa. 1963. The center of gravity in the parts of the buman body, Okajimas Folia Anat. Jap., 39(3):117-126).
Gibson, J. G. and W. A. Evans, Jr. 1937. Clinical studies of blood volume, J. Cim. Invest., 10(3):317-328

Coto Koji and Hideki Shikks. 1058. Concerning the measure of the weight and center of gravity in the parts of the human body, Tokyo Ijishinshi, 73(2):45-49.
Gray, M. A. 1983. An Analytic Study of Man's Inertial Propertios. MS Thesis, Air Force Institute of Techuology, Wright-Patterson Air Force Base, Ohio.
Hanavan, E. P. 1964. A Mathematieal Model of the Human Bexdy. AMBL-TR-64-102, Asfospace Medical Besearch Laboratories, Wright-Patterson Air Force Base, Ohto (AD 608 463)
Harless. E. 1800. The static monents of the component masses of the human body., Trans, of the Mart.Phys., Royal Bavarian Acd. of Sel., 8(1, 2):69-96, 257-294. Uupublished English TransLution, Wright-Patterson Air Force Base, Ohio.
Hertabers. H. T. E. C. S. Daniels and E. Churchill. 195s. Anthropometry of Flying Personinel 1950. Wright Air Developmemi Center TR-5. 301, Wright Air Developunent Center, WrightPatterson Air Force Baso, Ohio. (AD 47 953)
Kazemier, B. H. ank D. Vuysje (Ed.), 1961. The Concept and the Role of the Model in Mathemotics and Natural and Soctal Sciences, Reidel, Dordrodit. Holland.

Koully, H. J., H. J. Souders, A. T. Johnston, L. E. Bound, H. A. Munscher and 1. C. Macy. 1943. Datly docrease in the body cotal and sten lengths of nornal children. Hum. Biot., 15:65-72

King, B. C., C. T. Patch and R. G. Shinkman. 1961. The Center of Mass of Man, Paper 60-WA306, Amer. Soc. Mech. Eng., N. Y.

Laubach, L. L. and J. T. McConville. 1986. Relationship betv.een flexibility anthropometry and the somatotype of college men., Res. Quart.,37(2):241-251.
Laubach, L. L.. and J. T. McConvilie. 1967. Notes on anthropometric technique: Anthropometric measurements - right and left sides., Am. J. Phys. Anthropol. 26(3):367-370.
Laubach, L. L. June 1906. Body composition in relation to muscle strength and range of joint metion., J. Sports Med. Phys. Fitness, 9(2):89-97.
Laubach, L. L. and J. T. McConville. 1969. The relationship of strength to body size and typology, Medicine and Sclence in Sports, 1(4):189-194.
Lee, M. M. C. and C. K. Ng. 1985. Postmortem studies of skinfold caliper measurement and actual thickness of skin and subcutaneous tissue, Hum. Biol., 37(2):91-103.
Leider, Morris and C. M. Buncke. 1954. Physical dimensions of the skin. Arch. Dermat. \& Syph., 69:563-569.
Leighton, J. R. 1958. Flexibility characteristics of males ton to eighteen yeurs of age. Arch. Phy. Med. Rehabit, 27:494-499.
Lisco, H. 1949. The Standard Man, Quarierly Report. Nov. 1948-Feb. 1949, ANL-4253, Biol. and Med. Div., Argonne Nat'l Lab., Lamont, III.
McConville, J. T. and Milton Alexander. 1083. Anthropometric Data in Three-Dimensional Form: Development and Fabrication of USAF Height-Weight Manikins., AMRL-TDR-63-55, Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base, Ohio. (AD 408 980)
McConville, J. T. and Edmund Churchill. 1984. Source Data for the Design of Simulated Children's Eociy Fomm, U. S. Rublic Health Service, Washington, D. C.
MeHenry, R. I. and K. N. Naab. 1968. Computer Simulation of the Crash Victim-A Validation Study, Cornoll Aeronatical Laboratory, Inc., Buffalo, N. Y.
Martin, Rudolf. 1898. Lehriuch der Anthropologie (2nd ed) 3 vol. G. Fischer, Jena.
Meeh, Carl. 1894. Volummessungen des menschlichon Körpers und seiner ainzelnen Thaile in den verschiodenen Altersstufen, Z. Btol, 31:126.147.
Mori, M. and T. Yomanoto. 1059. Die Massemantelle der cinzolnen Körporabschuitto der Japaner., Acta. Anut. 37(4):385-388.
Randall, R. E., Albert Damon, R. S. Benton and D. 1. Patt. 1940. Human Body Size in Militury Aircroft and Personal Equipment, Army Air Force Technical Report 5501 , Wright Field, Ohio. (ATI 25H1日)
Rendeanu, F. 1875. Theoretheche Kinowatik, F. Viehwog und Solix, Braunschwoig.
Salzgeler, O. A. 10s7. Method of determinution of the mass and nuss centers of stumps (In Fiussian), Trars Sede. Res. Insitut. Prostetics, Musiow 8:14-20.

Suntschi, W. Ah., Jeam Dubuis and Constance Omoto. 1983. Mommes of Inertia and Centers of Gravily of the Liting Hunan Body, AMRL-TDR-63-36, Aerospace Modical Rescerch Laborateries, Wright-Patterson Air Foroo Bace, Ohio. (AD 410 451)

Sinelkinoff, E. and M. Grigorowitsch. 1931. The movement of joints as a secondary sex and constitutional characteristic. Zeitsch. fll Konstitutionslehre 15(6):679-693.
Skerlj, B. 1954. Volume, density and mass distribution of the human body by means of simple anthropometric measurements, Bull. Sct. Conseil. Acad. RPFV., Lubljana, 2(1):14-15.
Skerlj, B. 1959. Toward a systematic morphology of the human body. Acta. Anat. (basel), 39:220243.

Spector, W. S. (Editor). 1956. Handbook of Biological Data, Wright Air Development Center Technical Report 56-273, Wright-Patterson Air Force Base, Ohio. (AD 110501)
Spivak, C. D. 1915. Methods of weighing parts of the living body. J. Am. Med. Assn., 65:17071708.

Steinhausen, Wilhelm. 1936. Die theoretischen Grundlagen der Methoden zur Prüfung der elastischen Eigenschaften des Muskels, pp 575-610, from Abderhalden, Emil. Handbuch der biologischen Arbeitsmethoden, Urban und Schwarzenberg, Berlin,
Siewart, T. I. 1947. Hrdlicka's Practical Anthropometry, Wistar, Philadelphia.
Swearingen, J. J. 1962. Determination of Centers of Gravity of Man., Report 62-14, Civil Aeromedical Research Institute, Federal Aviation Agency, Oklahoma City, Okla.
Sytcheff, A. i. 1902. Measurement of the Volume and Surface of the Body According to Age, Dissertation. St. Putersburg, Russia. (Translation by H. B. Dine, Carnegie Institute of Washing. ton, D. C., 18, , ${ }^{\text {a }}$
iarry, R. J. 1940. On measuring and photographing the cadaver, Am. J. Fhys. Anthropol, 26:433447.

Todd, TT. W. 1925. The reliability of measurements based upon subcutaneous bony points, Am. J. Phys: Anthropol., 8:275-273.
Toudd, T, W. and Anna Lindaia. 1928. Thickness of the subcutaneous tissue in the living and the dead., 4m. J. of Anat., 41(2):153-169.
Vierordt, Hermam. 1903. Anatomasche, phystologische und physikalische Doimn und Tabellen, C. Fischer, Jena.

Ven Meyur, H. 1803. The Changing Lecations of the Centur of Gravity in the Human Body: A Contribution to Plastio Anatomy (in German), Engelmama, J.etprig. Unpublished English translation, Wright-Pitterson Air Forec Base, Ohio.
Von Meyer, H. 1873. Statics and Mechanies of the Human Bedy. Engelmama, Lopaig. Unpublished English translutioa, Wripht-Matterson Air Force Base, Ohio.
Weluer, Wilh, and E. Wehor. 1836. Mechank der menschithen Cehtwerkzotys., Cuttingen.
Whitsett, C. F. 1082 . Some Dynamic Response Cheracteristics of Wetghthess Man, Master of Selznce Thesis, Air Force listitute of Teclinology, Wright-Patterson Air Force Buse, Ohio. (AMILL-TR-6S-18, AD 412541)
Yates, Frank. 1060. Sompling Methodi for Consuses and Surveys, Hafner, Now York.
Zowk, D. E. i832. The मhysical growth of boy", Ain. J. Dis. Child., 43:1347-1432.

[^0]: - All values recorded in grams.
 (Average of right plus left

[^1]: Sased on average of rixht ghas left.

[^2]: While a number of authors have cited this cariy work by Bemstein and his assoctates, none contacted had read the thudy and ill knew of it only through mecondmry sources. Attumpts to otvain copies of Berniteln's works
 Wahlagtom, D. C. and the Prealdeat of the GSSA Acadeany of Science.

[^3]: 'For a brief discussion of the differences in body proportions betwoen Japanese and United States pilots see Alexandor, McConville, Kramer and Fritz, (I日04)

[^4]:

[^5]:

[^6]: The authors acknowledge thotr dowp gratitude to Dr. K. K. Faulkner and the faculty of the Departanent of
 suppurt of this lavertigation.
 which he lewzed the center of maxi of segments both belore and after they wrere pronited to lose mont of their flucts. Ite found that the loxsi of terste Rufds did siot significantly chasige the lowetion of the cemter of mats. Ife was abo of the opinton that preserved specimens which look natural (not excersively puify ar dexiccated) have in all prohatulity, a weight and volume sinilar to that which they had at dooth.

 - Handlanat of Biotosical Data, 1050, p. 51.

[^7]: 1Sweariagen (1962) reported tha lateral displacement of the center of gravity of the total booly from the midzagitial line to be small for an isdividual aupine with arms und legs adducted. The mean center of gravity for Give subfocts lay in the mid-ragital lise with all values falling within $\pm \%$ of an fach of this line.

[^8]: 'Correspondence in anthropometric measurements mado on the right and left sides of the body has been studied for a number of body dimensions on the living with essentially sunilur findings to those reported alove. (See, for example, Laubach and McConville, 1967.)
 ${ }^{2}$ Unpubilshed data, Anthropology Branch, Aerospacs Medical Research Laboratory, Wright-Pattersou Air Force Baso, Ohio.

[^9]: In generul, body lengths correspond most highly whit stature and boxly girths with weight, with only a moderato relationship boing found between stature und woight. For a practical applicution of these relationships see Emanuel of al., 1050, or McConvillo and Alexandor, 1063.

[^10]:

[^11]:
 -Aiflitcocal etope do nue leaprove the effectivences of prodictiona.

[^12]: - Alifitional mipe do not tasprove the atiativeaces of proelkitiona

[^13]:

[^14]:

[^15]:

[^16]: tiai (19sch.

[^17]: There is an dement of bias here in that varbables that could Ire selectod in this study were Itmiled to those
 true.

[^18]: ${ }^{1}$ The authors wish to express their appreciation to Capt. W. Bennett, Mr. D. Walk and Capt. Henniger, then of the Anthropology Branch, Aerospnce Medical Research Lanborntory, Wright-Patterson AFB, Ohio, for theit work in obtaining the data used in this section.

[^19]: It is unfortunate that extensive anthropometric data are available for rather tew populations. The matched samples used here were selected from: the USAF flying population survey of 1950; Hertzberg et al., 1954; the USAF milltary population survey in 195', using a photometric technique to supplement the traditional form of measurements, unpublished MS, Anthropology Branch, Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio; and an older civilian population survey made up of Spanish-American veterans residing in the Boston area, Damon and Stoudt, 1063. The military samples are composed largely of men younger, and the civilian sample men older than those in the cadaver series.

[^20]: *Somatotype Components: An anthroposcopic methol of classifying the conflguntion of the human form according to an established typology. The somatotype of an indivilual is the numerical expression of the strength of three body components based on a seven point scale; 1 is the least expression, 7 the maximum expression of the component. The first number of a somatotype rating is the strength of tile endomorphic component, the second is the streugth of the mesamorphic component, and the third is the strength of the ectomorphic component.

[^21]:

 MAL. X (Fat) $=0.00$ Skinfold MAL X $-0.94(\pm 1.55)$
 Tricepu (Fat) $=0.89$ Skinfold Triceps $-0.44(\pm 1.78)$

[^22]: 'A stuplified veriou of this type of editing routino is outimed by Yates (1000, pp. 382.394).

[^23]: - Auseropastatior deptin at the level of the aeder of masi.

