
t-
^

COMPUTER-AUGMENTED MANAGEMENT-SYSTEM
RESEARCH AND DEVELOPMENT
OF AUGMENTATION FACILITY

Ü. C. ENGELBART and

STAFF OF AUGMENTATION RESEARCH CENTER

Stanford Research Institute

Distribution of this document is unlimited. It may be released to the Cleonng-
house. Department of Commerce, for sa'e to the genera! public.

Thp. research was supported by the Advanced Research Projects Agency of the
Department of Defense and was monitored bv D. Stone. RADC (EMBIHi, GAFB,
Nr 13440 under Contract No F30602-68-C-0286.

!

^1
f

Best
Available

Copy

When US Government drawings, specifications, or ether datci are used
for any purpose other than a definitely related government procure-

ment operation, the government, thereby incur? no responsibility nor

any obligation whatsoever; and the fact that the government may have

formulated, furnished, or in any way supplied the said drawings, speci-

fications, or other data is not to be regarded, by implication or other-

wise, as in any manner licensing the holder or any other person or

corporation, or conveying any rights or permission to manufactuie, use,

or sell any patented invention that may in any way be related thereto.

RAOC-Tf<-70-e2
lim ' ftsf.art
A,:.-, nm

COMPUTER-AUGMENTED MANAGEMENT-SYSTEM
RESEARCH AND DEVELOPMENT
OF AUGMENTATION FACILITY

Contractor: Stanford Research Institute

Contract Number: F30602-68-C-Ü286

Effective Date of Contract: 10 April 1968

Contract Expiration Date: 10 April 1970

Amount of Contract: SI ,515.222
Program Cede Number: 8D30

Principal Investigator: Dr. D. C. Engelbar»
Phone: 415 326-6200 Ext 2220

Project Engineer: D. Stone
Phone: 315 330-2600

Sponsored by

ADVANCED RESEARCH PROJECTS AGENCY
ARPA Order No. 0967

Distribution of th;s document is unlimited. It may be released to the Clearing-
house, Deoa'trnent of Commerce, for sale to the general public.

The views and conclusions contained in this document are thost of the euthors
and should not be mterpreted as r.ecessa i'y representing the official poiicies,
either expressed or implied, of the Advanced Research Projecu Agency or the
U.S. Government.

ROME AIR DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND

GRIFFISS AIR FORCE BASE. Nf.W YORK

AQSTRACT

Thia report covers two ^esrs ot reieaircn in 4 continuing crogrun m
th« AUfnantAtion Hesearcn Center (ARC) of tne infcrnfttlon sciences
LÄboratory o£ Stinford Researcn Inctltute, supportea oy AKPA ar.a RAOC
under Contract F30602-6ä«c-02ö6.

Sore of the work reported was also supported ov AKPA and SAi>A
unuer contract KASi-Yö97.

The research reportea is aimea at the flevclopment of n-line conputer
aido lor increasinf the performance of individuals ar.ii teams en^ared
in intellectual worK, and the development of techni':-»es for the use
of such aids« The report covers hardware and loftvsre development,
applications in several areas relatinc to nanatene t of a comrunity
of workers who use on-line aids and to informatio; management for
such a community, participation In tne AHPA eompuutr networx, ano a
summary of plans for the continuation of the research.

PKEFACE

The researcn described in thia report repreaents concsptu*!, design,
and development work oy a large number 01 people; the progran ^iJ
tseen active as a coordinated tear, effort since 1963. The research
reported here was a cooperative tean effort involvin« tne entire ARC
staff, ^he followlni is an alphabetical llstin? of the current ARC
staffi

Geoffrey h. Ball, Walter L. Bass, Vernon R. Btuihman, M^ry G.
Cildwell, Roberta A. Carillon, David Caaseres, Mary ü« Cnurcn,
William a. Duvll, Dougla6 C, Engeibart, wmian K. Englisn, Ann
P. Geoffi-ion, Martin L. Hardy, Jared M. Harria, J. David Hooper,
Charles H. Irby, L« Stephen Leonard, John X. MeXvin, N. lean
Meyer, Jane» c. Norton, Bruce L. Parsley, rflllian H. Paxton, ja<e
Ratliff, Barbara l, Row, Martha £. Trundy, Edward K. Van de Rl^t.
John H. Yarborou^h.

The followini ferner ARC staff nenDers also contributed to tne
research»

Donald I. Andrews, Roger D. Bates, David A. Evans, Stephen P.
Levine, Stephen H. Paavola, Helen H. Prince, Jons F. Rulifson,
Elmer 3. Shapiro, F. K. Tomlln.

PUBLICATION REVIFW

Thts technical rtpoft has been reviewed and is approved.

RAOC P'Oiect Engineer

ill

TLQ'.ilCAL EVALUATION

The Augmentation Research Center (ARC) is a community of
about 28 researchers, supported by several different contracts
since 1963, in aich all the research activity is aimed at
(1) exploring the possibilities for auginenting the performance
of intellectual work with the help of real-time computer aids
and (2) the experimental development of computer aids and
augmentatiov; syitems.

All the researchers within the ARC do as much of their work
as possible at display consoles (depending on console avail-
ability and whether a specific tasl can appropriately be done
at a ccasole). Thus they serve no^ only as researchers but
as th? subjects for the analysis snd evaluation of the augmenta-
tion systems that they are developing.

Consequently, an important rspect of the augmentation work
done within the ARC is that the techniques being explored are
implemented, studied, and evaluated with tue advantage of
intensive everyday usage within a coordinated working environ-
ment that is compatible with ?.he particular techniques being
studied. This strategy, called '•bootstrapping," is a key con-
cept in much of the ARC desitn philosophy.

The focus of the augmentation is on "text" manipulation,
where text is defined as strings of characters, mathematical
equations, programming stat-ments, line drawings, columns of
figures, etc. A powerful .".et of cumiAands allow instantaneous
composition, editing, copying, printing, analysis, calculation,
etc. through interaction via a TV display, binary keyset, key-
board, and display pointi g device.

The system is succes.vfully used at the ARC in all phases
of daily activity including: program writing and debugging,
report preparation and printing, conducting meetings and demon-
stration, project manag«-^ent, note taking, etc. At least psrt
of the success of the s^. stem is due to the dedication and zeal
with which the ARC pers incl use aid develop it.

.//C..
ÜUANH L. STONh
Technical Evaluator

CONTIHTS

ABSTRACT* 1
PREFACI ,. „ e...-...,, t.. ill
TECHNICAL EVALUATION BY SPONSOR,...., .,V
LIST OF ILLUSTRATIONS , r ,...,ix

I INTRODUCTION 6 , 1
II MANAQEHiNT SYSTl'-M „.. i 3

A« Minigenent-Inlonution operatlona ..e.i«...5
1. Introduction...,«^ • • • • 4 «... .3
2. Project Ccsts«.,,».. e............, h
3. Activity Planning tnd Statut.,.,., .'J2

B. OrganiY&tion Studies. e.. r •«••«36
1. On*Line community.,.. • •...,., ».(.37
2. Experiment« on internal

Activity Structure«.,.., ., e,lil
3. Obiervationa From study

of on-line Community • .*.k7
C. Team Augmentation and Dialogue Support...,.,,,50

1. Recent £ffortf,v «,....30
2. Future Approaches to Team Augmentation, „ t, „ .50

III HARDWARE 3YSTSK .„. E. ...57
A. Xntroauction. 37
B. The Compuver facility • .•#•••••• 5?
c, Hodificaticns in Progress « 62
D. Notes on system Design and Reliability,,.,.,,eA6

IV SOFTWARE SYSTEM. o. • .77
A. Introduction^..... • «••77
B. Timesharing system «..,. ...,...•. .,00
C. Compilers••,,,,,. •...•....•.,•,•,•.....•••,..ö2
D. Response Studies >.(.....^ ■ 9k
to The on-line System, NLS ••...,...10^
F. ARPA Conputer Netwox k 119
F, NLS Utility Subsystei 123

V FUTURS PLANS, , o, 127
A« General ,127
B, Shifts in Emphasis 127
C. Transfer of Results,.,., 129
D« Short-Term and Long-Term ootls, t...l3i
5, Selected Plans Under other sponsorship .131

OLOSSARY ,, , 133
REFERENCES ,, • 135
BIBLIOORAPHY, , a.., 137
Appendix Al USER FEATURES OF NLS AND TüDAS 139
Appendix BJ DIALOGUE SUPPORT .SYSTEM IDSS) 137
Appendix Cl REFERENCE MANUAL FOR

PERIPHERAL EQUIPMENT.,.. .*.. ...103
Appendix Di TECHNICAL DESCRIPTION OF

NLS/TGLAS IMPLEMENTATION .,.,...,»199
DD For" U73 ,„..... 269

vii

ULlSIkATICNS

Fir. II-l A Brancn of File HISCO..... .c

Fif, II-2 A Hrancn of File hisco,..,- *

Fir. II-3 A Br»nch cf File HISCO •}

rtt. II-l; A Branch of File HISCO.....,.,, ^

riK, II-3 A Branch of Fil* rilSCü 10

FiK. II-6 Initial View of File HISCu
Upon Entry via Li™, B. 10

Fiz. II-7 A Brancn of Kile COSTS, ihovin«
Entries for l-weeK. Accounting Peric is ^..li

Fir. II-6 Same as rij. II-Tj but Lxpanöeü to Snow
WeeKly Entrie« , , 13

Flu. II-9 Same as Fi«. II-ö tut tor a Jifferer.t
brtnch of File COSTS Showini Data for i
Different Prolect. •.... «.la

Flu. 11-10 A Brancn of Jile CoSTS Showing combined
Data for all APC Projects la

Fig. II-ll Initial view of File COSTS
Upon fntry vli LinK... .16

Fif, 11-12 Sane as Fig. II-ll but -1th liiferer.t
VIEWSPECs to Show Content-Arülyzer
Patterns stored in First ötawcr.ert
of File 16

Fig, 11-13 View of File COSTS witn Content Analyzer
in operation. Snowing Data for only a
Single «feek (This it done by using tne
first pattern appearing in square bracKets
in Fig. 11-12.) .16

Fil. II-U iane as Fig II-li, but After a User Has
inserted cumulative Totals in the coljnns id

Flg. 11-15 View of a User's File Directory, Shewing
First-Level statements only 20

Fig. 11-16 btme as Fig. 11-15 but witn axi
levels Displaved , 20

IX

Flg.. 12-17 Part of a Kile containxni InlormnUon
on ARC Pencnnel (Not all levels
are snown. K..« •....«... 21

flg. 11-16 A View Obtained by Jumping to one of tne
Statements Shown in Fig. il-17 and
Opening an Additional Level,... P.21

Fig. II-}5 A View Obtained bv Jumping to the Last
Stateaient Shown in Fig. Il-le, wltn
no Changs In vlEWSPECa. „ ,...22

Fig. 11-20 Content-Analyzer patterns Stored in the
Personnel-Information File (Each set of
square brackets contains one pattern,
used to search lor hidaen Mtag3M in
iUtenent« in the file.). 22

Fig. 11-21 View Obtained by (fsing content Analyzer
to Select iintriea in Personnel-Information
File that Ar^ Taggtd for «Hardware« .2u

Fig. I!-22 View obtained by Usirg content Analyzer
♦o Select Entries in Personnel-Information
/lie that Are Tagged for "Software"....« 24

Fig. II-23 Pirt of an C?>-Line Cost estimate for use
In a Proposal» ^....26

Fig, Il-iii Part of an on-Line Cost cstiniate for use
in a Proposal *a «.^26

Fig. 11-25 Pert cf an On-line Cost Estimate for Use
in a Proposal *.......^..^ ...27

Fig. 11-26 View of a portion of tne Purchast-orde
Processing File, showing contents of
individual Statements,.... P .,, 27

Fig. 11-27 View of a Portion of tne Purchase-order
Processing File, Showing outstanding orders
Located in a separate branch -- Upper Part
of Screen Snows a Branch Containing
Content-Analyzer pattern« « • .30

Fig. 11-28 A Content-Analyzer Pattern for searching
in the Purchase-order File. • .^ ,..*.. 30

Fig. 11-29 View aene/ated by a Search on the pattern
Shown in Flg. II-2Ö 31

Fig. 11-30 Task Milestone Chart from File UPLAN ..3^

Fie. 11-31 Tcp-Level View 01 Hie LMthT, Snowin«
Accumulation of Noters fron a Series of
Meetings in a Single fii" 3?

Fig, 11-32 Views of Consoles in Use
in the AKC worv Area 3>

Fig. III-l XJS9U0 cenpute- Facility 30

FiK. Ill-i1 ipecial Levices Ch*nnei,. • t., ^^

Fig, III-3 Special Deviceo LManrei witfi txternal Core....r5^

Fif. III-U Networic Interface Constructicr,
snowing hountlng bystens tor Circuit
Arrays and Multiplex switcr., «... 72

Fig. IV-1 Current system: Average »nj bO-^ercent
belays for his Intut-iceaoack anfl
File-Reference Taa<s -- users fcqually
Dividea between hi* anu TOLAS.... 97

Fig, IV«2 Percentage 01 Time spent in various
Sy«ten Functions -- Jscrs rauaiiy Ijvifled
between MS and TOIAS..,,., t9j

Fig. IV-3 System With and witnout WN*.: Eistriiution
01 Delay Times urn Seconds) for MS
Flle-Kcference TasKS -- 3 MS wsers,
j TODAS Users, 1 OIHER user ,<.100

Fig, IV-u System With w'^L ana New Drums: Average
and öO-Percent 'rires for MS Input-fee^ttcK
and File-Reference TasKs «»1th 1 OTHfcP User
and Hemainlng Users ivenly Dtviced
between MS and TOCAS , 102

Fig, IV-5 current system Witn Various ivl Sreeas
Relative to current system CPUl SO-percrnt
Tines for MS flle-Keference TaeK.. -- i'sera
aquallv Cividei between MS »na Tu?AS iOu

fig, IV-6 Current System With Various core Siztfs:
ÖO-Pcrcent Times for N^S File-neference
lasKs -- users Equally divided oetween
NLS and TODAö 10i

Fig, IV-7 System with wNL and New Drums, "*itn and
Without IDS: 60-percent Tines for SIS
File-Reference TasKs -- 1 OTHEK Vser,
Remaining Users Equall> Cividea
between MS and TODAS 107

xi

7xi, IV-6 System, with QNL ana New Drums, witn *nö
without IDS: ftO-Percent Tinea lor Sequence
of 3 Input-FeedoacK TaaKa and 1
File-Keterence Task -- 1 OTKtk U*er,
kemaining 'Jaers Equally Divldefl
between NLS inl TOLAS fc lOo

fiK. IV-9 Locical Orjanlzation of MS..... ..».Hi

xii

INTRODUCriON

A. General

Th2 Augnencation Ke«earch Center ikUd 1« a comnunlty of aboct 2ö
re«carcher«, aupperted &y «cveral different contracts,« in wnicft
all the research activity ia iimed at (X) explor. .g the
posfibilltic« for augpientlng the performance of intellectual work
with the help of real-tine computer aids and (2) tne experimental
development of computer lids and augmeniation systems.

Several different coordinated research activities nave been
developed, sponsored py different contracts, to pursue tne various
aspects of tnls auimentatlon research. The ascects reported here
arei

(1) Tne Management system Research Activity, which naj been
supported oy RADC under this contract,

(2) The development, operation, and maintenance of a real-time
computcr-dlffplay system, including Doth hardware and software
aspects and participation in the ARPA computer networx
experiment. This nas ceen supported by ARPA and RADC under
this contract, and by ARPA and NASA under Contract NAS1-7997,
The facility is dedicated solely to the ARC'S activities.

All the researchers within the ARC do at mucn of tneir work *s
possible at display consoles (depending on console availability
and whether a specific tasx can appropriately be done at a
console). Thus they serve not only as researcners out as tne
subjects for the analysis and evaluation of me augmentation
systems that they are developing.

Consequently, an important aspect of the augmentation worx done
within the the ARC (for instance, of the RADC-sucported Management
Systems Research) is that tne techniques belnr explored are
implemented, studied, and evaluated with the advantage of
intensive everyday usage within a coordinated working envl^on^.en,^
that is compatible with the otrvicular techninuos being studied.

This strategy, called "bootstrapping," is a Key concept in mucn of
our design philosophy,

S. on-Line Aid Systems iri the Augmentation Research Center

This section very briefly describes the twe ma.lOi* augmentation
systems available to workers in the Augmentation Rescarcn center.
These systems are the on-itne system (KLS) and tne
Typewriter-oriented Documentation-Aid System ITODAS).

Aopendix A is t more complete description of the aser features
of these systems; the reader who is not already acquainted -itn

Sec. i

ARC'a reacarcn vlll find tntt thit appendix prcviaea a jaeful
bacKground for tne main body of the report.

In addition, Aroenaix D fivet a aetailea aescrlption of
NLS/TODAS implementation,

1. The on-line syatem (NLS)

NLS, ai currently inpleminted, la eaaertially a nicniy
interactive, diapiay-oriented text-raanlpulation «yater,

NLS is intended to be u^ed on a regular, mere or less full-tine
baaia in a time-anarinf environÄent, by uaera vno kre rot
neceaaarily computer profcacionala. The practices ana
techniques developed by uatra for exploiting NLS are as rucn a
aubject of research intereat ta the development of NLS itaelf.

a structured Text

All text handled by NLS ia in "atruetured-atatenent" lorm,
Thia special formit is ainply t> hierarchical arrangenent of
••atatementa," resembling a conventional "outün*'1 form,

A atatenent if aimply a atrlnf of text,, of any lenfth;
thia sjrve» as tne basic unit In the conatruction of the
nlerarcny. Etch paragraph and neadin? in this document
ia an NLS statement,

b. Use of the syatem

The creation cf new text material aa content for a file is
achieved by typing the new material on a Ke ooard, under any
of several possible NLS conmandSo

The study capaoilitiea of NLS constitute its most powerful
and unusual features. The follovinf. is a brief, ccni«r:.sed
description cf the operations that are possiole.

The process of moving froa one point in an NLS file to
anotaer, whicr. corresponds to turning pages in nard ccpy, is
called "jumping," A very large family of "Jump" commands
alloi»0 the user to specify locationa In the file in a numrer
ol waya -- e,r,, by apecifically identifymf » »latenent or
by apecifying a strueturai relationship to aone other
atatement.

The NLS content analyter permits automatic aearching of a
file for atatements satiafylng aome content pattern

Sec. I
IHTHODUCTION

specified fty the user, rne pattern is written m a scecial
laneutge as part of ir.e file text«

A lance repertoire oi editing comranaa is provided lor
modification of the text in a file.

2. The Typewriter-Oriented Documentation-Aio systen (TüDAS)

TODAS i» a lext»hanälln« Äyatem aesi^n^a a* a "tvpewnter"
counterpart to NLS. TOüAS can oe operated fron a Teletyoe or
any other Kind of nard-copy terminal, incluiirc terninals
linked to the AKC tireaharing conouter facility (ar x^j 9a0
with special hardware) througn acoustic ccuniers and ordinary
telephone lines las oppoaed to His, which requires mcrcwav*
transmiaaion to achieve the neceasgry Bandwidth for dianlavs),

3. output facilitiea

The facilitiea for producing hard-copy output fron NLb/TüJAS
filea include t line printer^ a papcr-tape»driven typewriter,
and the Oraphica-Orientrd Document Output 3yatei ("•ODJS).

The line printer, Pecauae of ita apeea of operation, is the
routine neana of producing hard copy for uae within ARC. It
ia uaed heavily ay all NLS/TCDAS rcaearcnera.

The paper-tape typewriter is uaed for prcducin«
report-quality typing, auch aa thia report, AS it is
relatively alow and inconvenient, it is not nornally used
except for final output of material tc se nubliahed.

to m
n

OODOS producea wagnetic tape which ia then turned over to
out-of-houae facility where it ia run on Stronberg-Carlaor
microfilm equipment to produce frames of microfilm (or
microfiche) correaponding to pagea of full-size hard copv.
The advantage of this system la tnat it ran handle drawings
produced in NLS filea py meana of the Nis graphics
capaPility. G0JD03 is atill in the experimental stage ani
haa not been uaed extenaively,

k. Tnia Report aa an Example of NLS/T0DA5 Capability

The following diacusaion may be taxen as a very rougn
indication of the power of MS and TODAS as applied '\o a slnrie
*pecific proplem -- namely, the writing, editing, ar.c
production of this report.

The above descriptions cf NLS and rr-DAS were produced bv

See, I
IHTWODUCTION

mcÄiftcatlon, ualni NL3, of th« more ae^tiled descriptions in
Appendix A.

The entire taaK cf piodificition, includini fornattlnR,
insertion into the &ody of ihe report, ana til other
details, required about half an hour of work by an NLS user
who was already familiar with the contents of the
descripttcn», if the Joo had been done by scneone who was
not .familiar with the material (but who was familiar vitn
NL3) it nifht have taken fifteen ninute» longer.

The original description wa» written for an earlier report
and then kept available as an NLS/TODAS file in anticioation
of future opportunities for Ufln* it.

indeed, a considerable amount of the material in this report
was deve2 ^ped by modification of existinf: flle29 and we may
expect ths new material generated for tnis report to continue
in use ai a collection of KLb/TODAS llles to* as long as It can
be updated to reflect curr<«.nw reality.

TODAS was used orimarlly for the tasx of entering new
material into en-line files, considerable portions cf the
material were put on line by a secretary using TODAS,
working from handwritten material and from recorded
dictatioru

rtnaliy, we may note that the writing of this report, using NLi
and TOA)AS throughout, was achieved under considerable tine
pressure by a team consisting of about a dozen peoole, all of
whom were doing other important work at tne sane time.

II MANAGLMENT SYSTf!

Our Manaüenenx, System Research Activity nas involved tnree -a.1or
areas of concentration. in practice these areaa overlap
conaiderably, so tnat there is in integrated rese^rc^. effort or r.anv
phases oi n^naifenent technique ani theory that inolnitc aror t^.e
operation of AFC. Kor purooses of descx-iption, nowever, «e disc- *>
each area of concentration as if it were ar infl^c^nnent effurt.

The three areas are:

(1) .»-unagenent-ir.forr.ation Coeration» •- research on tec/.nlcsues
for using nanaeenent infornfttion in the AhC environment, i^clunl'U
the developnent of conputer aias for the «tcrire ani nampulation
of such inforrriation

(2) Organization St.uaies -- researcn or the A^C on-line connunity
of worKers and expermentation witn organization structure and
planninj nethous m the on-line conmunity

{Jl Team Augmentation ano DiaiOfue support-- researcn or
auginentinK a tears or cor.nunity of intellectual workers cy -'eans ol
•yotcr.« that support the intellectual alalogue of the tean.

A. Managenent-inforr.ation operations

1. introQuction

In accordarce with ou»* usu^i strategy, we Mve pursues our
investlgaticn of nanagenent-mfornation cuerations oy jsmz ^i*
anö TODMS to develop and provide aids for nanageTient oi tne A«C
on-line connunity.

There are nany areas of potential application for on-line aids;
we i.ave chosen those which appear to pe r.ost useful
operationally for exrerinents with the development of on-line
Mda.

This section gives detailed descriptions of several
applications that have neen aeveiopeu, illustrated witn
photocrarhs of the HIS oisDlay screens tc snow sequences of
informatlon-nanipulatlon operations, A familiarity with the
basics of SIS is assumed; Appendix A is intended to provide tie
necessary information about MS.

in following the cescriptions, it is vortn <eecing in r.lrd tnat
the speed with which NLS serve« its users is an incortant part
of Its utility. The nrotograpas indicate tranaltiors that
normally taKe only one or two seconds. Tnii sceed lenas great
power and flexiPllity ic the relatively si-rle service
functions perforned ov MS,

Sec, 11
MANAQ&MENT SYSTfcM

2, Project costs

The most obvious area for appUcition of on-line aids to
«anagenent within AHC is proooct cost accounting, considerable
worK has been done on the development of several
cost-infornation files and c techniQues for their use,

a. Cost Records

The institute's accounting system provides ARC witn detailed
cost records for tne various «SKI projects" (i.e.,
individual contracts) being carried out In ARC.

The primary input» to SHI'« system are (1) weekly time
c»4rd9 rcportinf hourly charges to various projects cy
individual staff members, and (2) non*labor costs cnarttea
directly to projects, includinj actual charges to
projectt and commitments (uncompleted orders).

for each SRI project, the accountinj syctem computes
dollAr costs based on actual salary data for each staff
member's hours charged, adds payroll burden and overhead
amounts at current rates, comöines these costs with
non-labor totals, adds appropriate fees,, and totals all
fueli charges each week on a cumulative basis*

Current charges are reported to ARC each week on the
Project Status Report,

we need frequent and rapid access to project cost summary
data for operational use, with less reference to
lower-level details, exceot as the costs are first
checked for reasonableness and accuracy. Therefore we
decided to start by putting «uomary data on-line at ARC.
As needed in the future, we can add more levels of
detail.

File HISCO

we first constructed a cost-history file for 1968-1969
costs on SRI projects £SÜ 7101 (RADC contract
r30602«'6e-C-02fe6) and £SU 7079 (NASA Contract NAS
l-7ö97!o This file is called HISCO.

We aeexded that the elements o£ HISCO would include tne
following for ea-h of the two projects, on the bas?.s of
l-week accounting periods (as used ov SRI's accounting
system):

Sec. II
MANAO£M£NT 3Y3T£M

is,) s*liry

lb) Hurdun

(c) overhead

(d) '^otal cc«t

(e) r'ee

it) rot&i cfttriet.

See rigs, n-i, IX-2, and II-3. iacft of theae fifuret
ihowa a diasiay of one tranch of tne file, containing
the infornation for a «pecific rroiect and year,

we «iio nes^ea a aection ahowin? cojablned aaiary com
and conbmec total charge» for all of our projects
(sec »iga, ll*k and II-5)» "'e put theie coats in
«eptvite oran-nes of the file. The laat branch shows
total costs for öotn projects combined, we
retroactively studied existing records for all 196^
data and Kept up tne 1969 costs every a weeks,
entering tne new data by hand.

We exrerinented with the use of «raohic representations
by enterin* charts in rilSCO. These charts snowed the
cunulative c^st trends for each project in a separate
branch of the file,

V« cstablisj-^d links between tabular data and cnart
prcjecticns. This maes it quite easy to refer to both
formats altern*tely,

Tf>e use o£ iraphic» in HISCO save some indication of
the usefulness of such linkinr, out the existinc
pftCkace has linltations in the form of a few CURS and
capacity that wckes its use of narRinal value, work is
currently under way to improve this capability, we
also need local hard-copy output to naxe these
features of real value.

HIScO was a testini irou'-.d for the first version of tne
NLS calculator package, AS tfte file was updated, cost
data were entered into new statements, and tne calculator
WAS used to check til« cost data and to deternin^ tne
total ARC project costs.

m nn^ m P m m m ■
fflrT • i i

By ,m t* ticcntft

sBU "'* i

tSSKSl »»»» IM««! (Mft)••
aSjm '*""' Ul*i »<'<.. MM »•»13»' '*<(••(tu

^S ! DII tMl Ml) II' («in ' III
^sf^ * iW»i Ml« IM»| •1» Mitt UM

^^H i Itltl 'rt* un IMI mit '1'*
MB 1 ! t«IM ■M» Mill Mil :»)•» ' •<!

'**-i? & ' ittM INI IHM t|J» HIM III
,"J''~i%S i titd UM riM4 IIU MMI Ml'
'^■^■n, i Mil m» ••m ut* »I'll (1

5^yS
it Mil '►» «in Ml inn ' ill

'ä&%jk !! " ■!' MI» Ml. • »)! IMC Ut
''^^0 lUtl ■1'» Mir t«li mti 111

i ii •

i
'»»9 rin •!Jf« MM nni IMI

••m|i

FIGURE IM A BRANCH OF FH.E HISCO

FIGURE 11-2 A BRANCH OF FILE HiSCO

% >

FIGURE 11-3 A BRANCH OF FILE HISCO

%.

c

FIGURE 11-4 A BRANCH OF FILE HISCO

FIGURE II-5 A BRANCH OK FILE HISCO

FIGURE 11-6 INITIAL VIEW OF FILE HISCO
UPON ENTRY VIA LINK

10

Sec. II
MANAQEMtNT SYSTEM

Tnla enployM tne kDD, 5übTr.Är'Tl MULTIPLY ar.ä :: v:;>u

caoablllties an^ used x*ne four nolain« reiister»,

Tne calculator pacKaee nas an 'INS^äT' corr.^nj tnat
inserts tne current contents of the calculator's
accunulator Into the file text as Indicated zy a bue
selection. WorK witr, rilSCC indicateä that a 'replace'
conntnn would oe very defliraole.

Ifte uaual wa> of accessing HISCo was via pre-esta&lisne i
links fron other working files whenever the user nad a
question about recent costs. Tne viFWSPECs in tne link
usually caused Hisco to be brought in witn only
high-level statements on display, snowine only tne
hetdinga for project name, conoined salary, total
cn»rges, and total APC costs (see Fie, 11-6).

Tne user could then select tne project ne was
interestei in (oy tne command JUMP TO ITEM) open uo an
additional level for viewne, ana see coiu.nn neadm^s
and numerical data (Fig». 11-1. 11-2, am 11-3),

Then he could .jump down throuRh the accour.tine
periods to the one ne was loccing for.

If he was making a calculation (pernaps already
started in the file he was worKin«» m before he
Xlniced to HISCO), ne could then calx tne calculator
and add, subtract, multiply cr iiviae oy anv of tne
nui-.Ders in HISCO, His previous calculations while
in the crevlous file would remain intact,

If finishej with HISCO, he coul? then return to tne
previous file (by the command JUMP Tu Tllz. Ri.TUW*r,
»nd continue wltn the calculation, navin« found m
HIiCC the input number or nunoera he was looKine
for.

SUu'n a sequence occurs very fast, experience witn
HISCC seems to prove the value of havins a simole
calculator built into NLS, wnere it is instantly
available when reeded and can interact directly with
dat^ in an NLS file.

DeaK calculators are available for most ceonle who
need to do basic arithmetic wor<, but when one is
looKini throuth extensive flea for incuts tc
calculations, the conventional calculator is not

11

Sec. II
MANAQrMEMT SYSTEM

nearly aa utefu? as thii on-line version.

Suamary: AS an arena £or experimentation, HISCO oroved
very valuable. Operationally, it was useful from tine to
tine out rcvealeo a need fc. »ore frequent ucdatini of
tn« suanary data. Our experience with HI5CC led to the
aevelcpaent of a redesisneä cost-history file called
COSTS.

File COSTS

This file is audited weeKiy, wit^. k-week and cumulative
sunnaries.

Th^ COSTS file is referred to frequently, because the
weekly inputs now show trends with ccrslderiöle
sensitivity.

We decided that the elements roost useful to us for this
year »re the followingi

(a) aalary costs

lb) Total personnel costs

(c) son-labor costs

(d) Total costs

(e) Total charges rfith fee

(f) Balance renalninf

See rifs. II-?, II"0, and II-9. Fibres II-7 and Il-d
show tne sane bran-.n of tne file with different
VlEWSPECsj ?ig. ir-ö displays one nore level than rig.
II«?! and this level shows «ne weeKiy data. Ficure
11-9 snows the weeKiy data for another project.

we also de:lded to include funding infornttion shoving
current total», unfunded totals, and total contract
mounts in the categories cost, fee, and total.

we use separate oranches for each project and for total
ARC project costs (TU* 11-10). The skeleton format for
the file WiJ set up in advance for the entire year of
1970.

12

FIGURE Ü-7 A ORA.NCH OF FILE COSTS, SHOWING
ENTRIES FOR 4-WEEK ACCOUNTING PERIODS

m ftl HI IS
M/|t,'« .„,.„ ^H Ü

tntmi ^pss
wsgm *«* • K
^■^f imu&i nm tmm^tr s
M*^ mOm* (Mt

» MM» 1 ' lui ^H
» • t • t • S^^;

WSm. H»»/ tmmmo* <••*«•* • OW i»i||,f 33
atm . m*wmvt •IMMI »•«»•*» ^ r*ttM

■" ""• ^^^ fsmz -t I«MMM« «tn (Mt 1 M»«-!
lO?« W •••• •»!<< «Ml i-i j fin: INNI HMu
ESShB ' ' " »•4> HM (Mil tftf» itiwf /^i^Sp
g^l •*• •••• MM f>>l! itMi HiM ■I'll* MBMBI
^^ r««»» i «MI» in . •MM .> . HIM '•IIM siBr
wSSfi f-» im • »'i f* MM »m »I'll P^^
[^@s *'' "■' • ••i Mtf i. •. 'tt»t ■IMU ^^^ J^^ r-* IM« «»» tm !HII -wu ■IM«- S^^M;
^^ •-> '•" Ml UK .♦». -wti ••♦•l» S^§« 1^3 ua MUl Mtltl MM«I 'irfif „'»• ••»•1« j^^^

Itltt 1«" lit»! »It« '•'••• aüiai

^jj
m HBSSf »^BR-SBSSHK*^.-*'^^ m

FIGURE 11-8 SAt^E AS FIGURE 11-7, BUT EXPANDED
TO SHOW WEEKLY ENTRIES

13

•-O

FIGURE 11-9 SAME AS FIGURE !I-8, BUT FOR A
DIFFERENT BRANCH OF FILE COSTS
SHOWING DATA FOR A DIFFERENT
PROJECT

03

FIGURE 11-10 A BRANCH OF FILE COSTS SHOWING
COMBINED DATA FOR ALL ARC PROJECTS

14

Sec. II
MANAGEMENT SYSTEM

our approach waa to create a separate statenent for
each veekf one level below the "total" itatenente for
each ii-veek period. For the secona week of 1970
(which ia in the first accouniiru oeriod) the
«tatenent «tart» with t 2-1 and then, proceeding
acroaa the line, show» the amounta ilstea above m six
colunna {Tita, II-ö and Il-y).

Before entering any actual data, tne first top-level
branch {containing fone 70 atatenenta) was copied
within the file at the aane level four or five times.
Then each blank branch simply had the project name
headinjja inaerted for the project uaini that branch.
We keep one extra blank format branch available in
eise any new projects ahould arrive.

Like HISCO, COSTS is uaualiy reached throutn a link from
aome other workinc file, perhaps wnile a study of
near-future coata la in progresa, or from an on^oin?
proposal coat estimate. Afain »he file is uaualiy
entered with only the top-level atatementa or project
headlni« ahowins: (aee Fij. Ii-il).

If a particular project la of interest, that oranch is
selected and another level opened for view. The
accond level snowa perlod-by-penod subtotals in eacn
coat category (rig. II-7). If weekly data are
deaired, another level ia opened by changing the
VIRVSPiXs (Fig. II-o) and a particular week ia
selected by the command JUMP TO irtM.

The atatemerit for each wee< haa the weeK ending
date as its na.^ne. The reason for tnid is not only
ao that the atatement for a particular week can be
accea/icd by the JUMP TO NAML comnand using the
«nding date, but aiso ao that the date may
optionally be suppressed from the display, NLS naa
the capability of auppreasing all statement names
from the display.

The nornal way of looking at the file is with
na.^efl suppressed; thua the dates do not clutter
the display; however, a uacr who needs tc Know
the ending date for a particular week can aec» it
by executing a aingle command.

To acceas the information for another project within
COSTS, one executes JUHP TO RtTüSH twice to see the

15

%

\

FIGURE IM1 INITIAL VIEW OF FILE COSTS
UPON ENTRY VIA LINK

FIGURE 11-12 SAME AS FIGURE 11-11 BUT WITH
DIFFERENT VIEWSPECs TO SHOW CONTENT-
ANALYZER PATTERNS STORED 'N FIRST
STATEMENT OF PILE

.16

Seer II
MANAGEMENT SYSTEM

^op-level ftatenerai a^tm (Fig. 11-11),

One can aove very qulcKiy gnd accurately t.^rougn a file
that ia ae^ up In tnia faanion, even without any
familiarity with tne information it contain".

The primary function of CCSTS i« to fhow a consistent
weeK-by-wecK progrcssicn of costs for each project oy
category. The file can also be usea for atudy purposes,
tnrough the use of content-analyzer patterns, son«» of
which are stored In the header statement (see Fig. 11-12,
wnich is the same as Fig, H-ll but. with different
YIEWSPECs). Any other patterns can ce createa as needea.

This allows a user to extract scecial categories of
information from the file very quicxly. For example,
a user may easily create a display snowing all project
costs for the eighth weeK of lyvo, for eacn AHC
project, it is also possiole to output sucn a
"filtered" display via a line printer, tnus obtaining
hard copy of a special-purpose extract from the total
file.

The content analyser is helpful when usin-: the calculator
on all the data for one weex, project by project, to fina
total AHU chirges bv category,

when only one week's data are displayea, one can add
iter.s down each column ana insert the answer m the
"ARC total" space, one can tnen clear tne
accumulator, ana ada down tne next column. Tnis is
done very rapidly tnrough bug selection oi input
numbers and Keyset entry of commands -- ADD, ADD, ADDj
ADD, INSEHT, CLEAR, KZO, ADD, ADD, ADD, INSERT, CLEA^,
and so forth.

Figures 11-13 and II-U are pefort/after photos of
this process.

The COSTS file is now operationally useful to us, and we
expect it to pe useful for future experimentation with
automatic processing techniques.

b. Estimates

proposals

another use of the system is in creating proposal cost

17

\

■%.

FIGURF. 11-13 VIEW OF FILE COSTS WITH CONTENT
ANALYZER IN OPERATION, SHOWING DATA
FOR ONLY A 1<NGLE WEEK. This is done by
using the first p^Uern appearing in square
brackets in FIGURE 11-12.

i Hp Si m m m
it,r •

BH B
Ü Br m • HI H ^H

mm • t ,*** ti .;u «M

wBB **** «|
!'S^s • *'*•• ••'•»» »**«•»» ..■*.>. rrft.tf !**%%% »I Mt. »^ SB m »M witst fttu Hff^^ '&!*'& immit '■•■ I*«N-*I4I jjgHHj
r'^Ä |-> MM »Mt im Mil UTI Ilttll Mar^i
<^^K CM tH*M Mt<i; UfMI 'l|tt»| ■ll'tll Mill V^B JRHS f*»ftl.' reo IM«*< ZHH
W'Wi |.| 111 !«ll M INI ••It (•Ml ffttf
ßiÄi tjm IfMI! 'IMU »•' , ll.li> «Mir r-if ^pT^^
l$\ f*»iC«r MI* IMMM<> ■H
'w&t M* ttti Mil 1» l-l» tl! !Hf'|» '^ä
Wtm fIHKir UM i»Ml !^^
^M («• I •> t ifclil
f*e*

fits- »*** l»%\'.tft\ 1 BED
IS '** •1 J •1 •IM JH
HB «M rtm »f«i<tfl ■E

1
^ !-• MM Mfl IM1 •J4'» mi u ••»

m
Jl

I l^^^^^f m HI ■ «nrai IS
FIGURE 11-14 SAME AS FIGURE 11-13, BUT AFTER A

USGR HAS INSERTED CUMULATIVE TOTALS
IN THE COLUMNS

18

Sec. 21
MANAGEMENT SYSTEM

e«tim»tef. rfe firtt estimate the amount of effort
reaulrcd tor the propoaeci work. To eftimate tn« coat of
thii effort, we naKe reference to vtnoua on-line filea.
The ^atiwatinc proceaa typically proceede alone the
Xollowinf :ine«.

Pcraonnel coatf

The eatjlnator loada a special file, maintained by
hinaelir, which is a directory to all of hia other
filea and perhaps to a few filea fcelon^in« to other
people. Firurea 11-15 and 11-16 are two displays of a
user's file directory. In KIK. 11-15, only
first-level statements are snown; these are uaeä for
estaolishinR catesories. in Fif. II-16, another level
is ahown, containing the actual directory liatinca in
each category.

This "file directory" containa linxa to each of tne
files that it lists, in the present caae the filea
probaoly would be cost hlatorlea, oersonnel
listinfa, previoua apecial atudles of costa, and
other adninistratlve information.

He loads a previous cost estimate, makes a workin«
cooy of it, chances the heading to reflect tne name of
th» new proposal estimate, and eliminates the amounts
from the old estimate.

This produces a Blank cost estimate format, if any
items from the old estimate are inappropriate, they
are easily deleted; new items are easily added as
separate statementa. when the format ic ready, it
ia output aa a new file.

He can tnen load a file that lists names of people in
the group and some projection of expected additions.
Figures 11-17, JI-lo, and H-19 snow portions uf ajcn
a file,

uaini this peraonnel-liating file6 he obtains
information about labor categoriee, A branch
containing content-analyzer paLterna ia kect in the
file. These can be eaaily reached by jumping to a
link which cauaea all the oatterna to be diapiayed
{Fig. i:-20),

Eacn pattern will select aome particular

19

FIGURE ii-15 VIEW OF A USER'S FILE DIRECTORY,
SHOWING FIRST-LEVEL STATEMENTS ONLY

mMmmr i»« "''■' '* 'HI 1 ^1
i^mw , in»" '*** ^J|

jS a»*M «
^^1 ti'tf..', .»■!»«'* HI'"* ■• MB
«MR rfj lf-.lfll '> I. wm^Bk
SB ijfi«.»HrM it» ttVf ..M n ««tti !^g§Ej:

2QQH 1 »^ •• t.'»«*>- : ;J|.» ' ifl U'f uiMfe* ÜÜIi ;*^KP M'M >'^' <(!/»« ••<«« M Ml |K< «f t»t« .»».»t ^^Kgl
^^Bf ail! «MH-I. »IM fl< »»«i,!- t ,i .-,•., Uf< 1^^^'.

BS I^(4I.tti*t<t*»U4t«< M; «i» <.«•..■-,(,. Mt tM '(a^p
^gjj ^1,4, .U. «f-i(^f IOC r-ti -ire i.ttt <^^S
''^§St ictatt.nt««) <!.ttiit' «f i.o tM(It!' HE

fJS^ f If««««.!«««! »«•«rtttf :'M<t M l|(t :i«^^
x^^t .#•««•. ll»^f 1*»»»« }**\n* i»tt» jfi C^^?
wbj/Bi »!M., 1»»' •»»ftfl tMl M«tt»| Ml »84 til U" SM
l^^^m tMM«. iliMsi I»« («iMlJi III M ■<• U'j •••l/l> fi^^l
WzmP f MM». •r«Mg«> lrta<iltff. (ti II-<M tf» • ,-.,II SSR
fSssMli :MM«4. <t«t***l Itil ll' ..U 111 IV'I ••! 1,11,»1 <«'■ 9HB
m££& if%iM.tt*Mt»i l«t«4|lMi it» i| ••» «H •«/M.i» if- JR
Ip^^g, •**•• »«»»i«'» "'M HHI
^^^^ ^».•».:fMl Ml ' i t B|

mB '«•*.'!. tltal «SI

1
^ »fo.-itif .«m. c» ri»i«' > r'iM J

1 K Ä#iÄä8 j^^^i^S! 1
FIGURE 11-16 SAME AS FIGURE ii-15, 3UT WITH ALL

LEVELS DISPLAYED

20

FIGURE IM7 PART OF A FILE CONTAINING INFORMATION
ON ARC PERSONNEL. Not all levels are shown.

BSBB8 HHHH i^gWM| gH^OTP'**1^
iMSS&F ^ * mmum »l«lfl» UM.f ^HPKJpi

\WM|
i^^^p ,«*». »■ U^
■BK^"-?^ -»» P»H* . E
S -^ ^^ *»^'«* H
msms*- - — - - '"^ ^*,*5S*i "^ SM
Wij^i-!,.;-. . J 1tflt1Ht!lfittilfl wstB
SW ■ SSCJuT" WSM wß& -•**»**&. 9B9 '^pp
^^i ftmiM. »Jt*" t cBH
<S£-^^ BiMltfWlI'lr *.*. ■HH ■t =-:' , »% 1ML ' S3SM

W <k«ift.«Jt I^^S
iilil '-' '**^ ■ *■• jB
^^^^^ WWlll jjj. flHH
Ü^Ä ■ ,'*,*fc **• j^

SEEa
^^f iV

Mk^
Bfldg^n ^i!Ä5fö-J i^lBffiKBB MHHKrö

FIGURE 11-18 A VIEW OBTAINED BY JUMPING TO ONE OF
THE STATEMENTS SHOWN IN FIGURE 11-17
AND OPENING AN ADDITIONAL LEVEL

2]

FIGURE Ii-19 A VIEW OBTAINED BY JUMPING TO THE LAST
STATEMENT SHOWN IN FIGURE 11-18. WITH
NO CHANGE IN VIEWSPECs

FIGURE II 20 COM U NT ANALYZER PATTERNS STORED IN
mi PS MSONNEl INFORMATION FILE. Each

•.«•I ot •.(luurti brackets contains or.e pattern, used
?(> v.in '< lor hidden "tags" in statements In the
file

Sec. n
MANAO£M£NT SYSTEM

Citeiory of itatenenli! Iron tne file, vor
example, the eatlnttor will necdl to Know wnich
people hive tne itatui of Senior Profeffaion*,!,

He icle-jta the appropriate pattern with the
coaaand ZXiCUTE CONTENT ANALYZER, and then
ju^pa on a link which turna on the content
analyser, atarting the aearch at the
ce«inning o£ the branch containing ceraennei
Itatinga and reatrictin* the search to that
branch.

Thia produces i diapiay snowinir only the
liatlni of senior profesaionala in the group^
This aet of statements can then be
transferred to tne new propoaal coat estimate
file.

vTwher oattorna can be used to extract aets of
atatenienta accordxnf to other criteria -- for
example, a.M the hardware or aoftware people
in the group (Figa. 11-21 and 11-22).

Thua tne eatimator can aelect, by labor category,
representative people who na.v be involvec with the
proposal; aa he selects then, he can tranafer their
names and the information that goea with then to the
file where he is building up hia estimate.

At present we do not Keep individual salary
information on line, although we could do this if
we added aone security measurea. Calculations for
the average salary category, based on the acecific
people contemplated, are made off-line at present.

These average aalary amounta ire inserted into the
on-line coat estimate. The calculator is used to
multiply numoera of nan-mentha timca average
salariea per mr ith to determine total salary costs
per labor category and overall direct labor totals.
All of this is achieved w?thin the actual file that
will pecome the finished estiwate,

Tne payroll ^ur en and overhead rate« are checked for
currency and inierted into tne estlnate, using tne
calculator to apply them to the uirect labor. At this
point the labor oortion of the estimate is completed.

21

FIGURE II-21 VIEW OfcT'AINED BY USING CONTENT

ANALYZER TO SELECT ENTRIES IN
PERSONNEL-INFORMATION FILE THAT

ARE TAGGED FOR "HARDWARE"

FIGURE '1-22 VIEW 0 -iNfcD BY USING CONTENT

ANALYZER TO SELECT ENTRIES IN

PERSONNCL-INFORMA^'ON FILE THAT

ARE TAGGED FOR "SOFTWARE"

24

Sec. II
«ANA.GFMEHT SYSTEM

A typlc&l estimate wlli Involve aone trÄV^i cost«,
sofle ccniuittnt costs, anö «one report costs. Data
«upportinc *hc cost of consultants nay be checked oy
Reviewing current consultants' costs fcy project anl oy
consultant. Trtese arc Kept in a separate file anä
reached tnrough a HHK for review. The data nay oe
copied into the estimate if some of the information is
of use.

Reoort production costs are estimated using current
Institute schedules, which are based primarily on the
numoer of pages expected in the end product. Thes^
computations can he made uaxnz thr calculator, and tne
existini cost factor« fror, tne last proposal, checKed
for current applicaoility,

in addition, there may oe plans to add equipment in
the proposal* in this case, tne estimator will use an
equipaent study written In another file by the people
involved m hardware design.

Tfte equipment cost« contained in the special study
are nuaauriied in total and reached by a linK4 The
special «tudy can be vievec and updated as
appropriate and can oe copied to eo with the
prcposal as an appendix or used later for back up,

in this fashion, various information is gathered from
various files md transferred into the developinr cost
cftiraatc, rifure« 11-23, II-H, and II-2i> show
various portions of a completed on-line cost estimate
as actually used for a recent AKC proposal.

WorKlng forecasts

Operational use of Estimates

AS the project progresses, proposals and estimates can
also be used as guide« for nanager.ent of the project,
•t is useful to forecast tne expected project costs on
either a four-week period or monthly basis.

This can be done by creating a new file using the type
of format that the COSTS file uses, we insert total
figures from the cu't estimate, using the calculator
to determine average rates and specific eatimated

2S

F ,JRE 11-23 PART OF AN ON-LINE COST ESTIMATE
FOR USE IN A PROPOSAL

FIGURE l!-24 PART OF AN ON-LINE COST ESTIMATE FOP
USE IN A PROPOSAL

26

S^-JjBP' -r

P^wSiiiS
,'-'' •» Ml M ^ÄÄ$Ö

..if n it»» ^Kypfeji
^<*^^' •»•

fMta» c«ri K
M H«W rw*tici MNi » .»«».«II ^^
Sc mm*m fmtui, «.»>^ •n iff IÜI

tSM^e1 »f«M M«(• ir.i'i j^C^^;

R NWN—W M4 <►.'•< .. 1 .IK ^^
^6 MttvtrsfN ^ Mt 1' «. ^ft paB ;n«rwf(,, JHH-., I*«4 ^^ 91 Kf »»Ml«j '».!■, I.IM IKBL
»^^^ {««♦ t WcltMafCwrw- 11 IM zJ^S1

^^0» M(»M i*~* 7HC^M« 1 Ml S^BKJ

In »yal «M i»»Mil«» II.M« ^HA^ ^Q

MBBBBB

■1 M« ^^^

FIGURE fI-25 PART OF AN ON-LINE COST ESTIMATE FOR
USE IN A PROPOSAL

^^r „, »i» men fC }»<.' VB

Ww ** ^m

M c»-»t^ «•«*•» ti»o. H4tl '••■. «. «I.*.. r.i»,i.'„
:•*.. 1 twft «1 Mt.n 'trfilt M .is-;- r ||«. r«».(«'i •

ntwt. * mnt. r,w,-, u. HI«, -I

#I MMf toi. us» IN. wtf IMI. .«T». .,»•«. ii.« ri
•It. M»MJKi l^l«^ |M,,. rttf». <,»M^ H MMI- «•« H
tieiW. rrt>«apv it. n ,if

« f*«». N»t<«M)«». n«r. j «i MI.II. MIMI c« MM|,

K H ««»t. w.,» i»»i . IM., r,«^,., :„ rt ,„ M ,t Hr

o

FIGURE 11-26 VIEW OF A PORTION OF THE PURCHASE-
ORDER PROCESSING FILE, SHOWING
CONTENTS OF INDIVIDUAL STATEMENTS

Sec. II
HANAOIMSNI SYSTSM

Afnounta, *n<S insert answers Into in« file as it
build*, mia Ticnth-ty-montn estimate can be reacne-l
throuin a link from «orKin« cost files, from the
oricinai estimate, or any otner file wnere the
question of mcnthly estimated project costs may arise.

c. Purchase-order Processing

in Bilking an estiwate of costs for new ecuipment being
constructeu at ARC, reference to previous cost information
is very useful, we have constructed a
purchase-oräer/requisition processing file which contains a
aeparate atatement for eacn i "-en purchased for tnc past two
years at ARC. figure 11-26 shows a portion of this file.

Each statement contains the following information aoout
each purchase!

(1) Total price

This is entered as the atate^ent name.

At present this is not used as an NLS name, but as a
way of eliminating information from the screen at
will. Keeping a conaiatent location in columnar form
for such totals.

(2) Description of item

(3) vendor

U) Numcer of units purchased and price per unit

(3) Purchase Requisition nuncer

(6) Date requiaition aenl

(7) Purchaae order number when order ia olaced

(d) Date order ia placed

(9) Project or account charged

(10) Dfcte order ia received

(11) When the order i* completed, it ia marked with the
apecial code •comp'-. this can oe detected by a
content-analyaer pattern.

2d

Sec, II
MANAGEMENT 3Y3TEM

All outPttndlnij oräeri are contained at. a second level linger
a ■iniic brancn (fee fi«, 11-27); therefore tne distinction
öctween outjtanding and completed order» is easy to see just
by reference to level. To reduce clerical error, we
conilder an order completed when tne »conp» pattern la
inserted and tne statement is moved to its alpnaoetical
position on the top level.

This file can b€ scarcned uaxni the content analyzer in some
interestini ways, we can ^sx for all items purchased from a
particular vendor on any parcicul^r project and see only
those. If we wonder apout the unit price of a thermal wire
stripper, model 2W-1, wt can quicxiy fet that information.
If we wonder what we purchased on PR k06*i7, tnat comes
sinply py executing a content analyzer pattern jp*',ifying
the number. We can see •!! outstAndinf orders charred to a
particular project quickly, Figur* II-28 snows a
content-analyzer pattern that has Been temporarily written
into the file, for finding any entries pertaining to orders
for relays under Project 7101, figure 11-25 shows & view
generated by usins this pattern.

This file is useful, then, from a project-adminirtration
standpoint, from the standpoint of following a purchase
requisition fro« the oner stage through completion, and
also for providing backup information for cost estimates.

This file can also be used as a tlcicler file cy inserting
a pattern in the "outstanding requisitions" branch which
shows the date we feel we should follow up on tne order.
£aeh da/ one can as* for all tnose items tnat have the
current date as a follow-up date.

This file is kept up-to-date oy the secretary of the
hardware group, who is most involved with requisitioning.
Sht does this updating entirely with TODAS.

d. suaaary on the systematic Uae of Project Cost Files

One by one «acn of these files mignt be interesting, AS a
combination, quickly available to many usars, their utility
seems remarkable.

A cost study, as discussed above, can rely on ill
previous pro3ect costs as recorded in the system and can
draw on those files for inputs, one can 'raw or, the
personnel roster file by labor category, work interest or
as exter.Ced into a skills inventory.

29

j» »• »3 «• §#» :• »• •: »•• »•';•»«.«»«•.

(• M •] *•• e«? [*IIMH'1I

t'lnfflt
N|M t« tM« Mtfi r

pM^l *«*•*♦«.•:,
iWJtWWWI •*«« IM» t* » KtM» imi

MW«. ff A* N*«rt*> '{»•to'* l«M>vi«tM. IVttWHt. iM't«
8it««(H>*i*« t it »IM M, Mt», M MNP. rM»««»f t. II»«. ;».
MM. »«ntt Sate* »f NlitttltM« i* »"•■->< ti rn.t.^ !« ft«

tmttt »tfc»tM.' »M'yHw* MtMMHfli ■♦»>«»« •»•?•?. ' »I
»».*», M<M»tNlMMi I. <»'». {M.
tliClM 1-fMllM OtMtil. Mil». »»t*t N f« I «WMtr« |Mf.,

♦ >»J» It Mt.»«. »I»t-|l. M ll'IU »«»l* |«. 'f't. »I*.
mm*. »HMMftr ft». »iMII'l«, »»♦».. • ft lfl.lt. Ifl«. '«
 , »«»»upf i». -m. IM.

^
^ ̂

o^
Q) ,\)' ̂

 ̂
^ V V

FIGURE 11-27 VIEW OF A PORTION OF THE PURCHASE-
ORDER PROCESSING FILE. SHOWING
OUTSTANDING ORDERS LOCATED IN A
SEPARATE BRANCH--UPPER PART OF
SCREEN SHOWS A BRANCH CONTAINING
CONTENT-ANALVZER PATTERNS

FIGURE I!-28 A CONTENT-ANALYZFR PATTERN FOR
SEARCHING IN THE PURCHASE-ORDER
FILE

30

'or *^OüUCl SiE

FIGURE 11-29 VIEW GENERATED BY A SEARCH ON THE
PATTERN SHOWN IN FIGURE II--28

31

Sec. II
KANAßEMENT SYSTEM

We ctn örowfic tnrouch tne purchafe-ord^r tt'e, re/lectln<
tnt current or previoua coats psr item, we can link to
activity-plannini file« to see vrhteh peopie are involved
with various onjolni; tas.<s and to see on wnat tasks ve
are conteraplatinj certain equipment rurchases, nt can
llnK to crcposal cost estimates for rcnth-oy-nonth cost
projections.

These files can fce accessed In any order, fro!^ any
direction, at any tine, witn only a few Keystrokes py the
user. T^ey are also accessible remotelv tnroujr. tne use of
T0DA5, thereby givin? "nobility to the user witn less loaä on
the systen.

Our aain objective In r.tKlng cost studies Is to arrive at
fclld sets of projections or other answers as qulcKly and
effectively as possible. Direct on-line access to Lnput
inforraatlon is extrenely nelpiul,

3. Activity Planning ana Status

a. Introduction

Section 11-^-2 describes the experiinental estsblishnent of a
TODAS Devfi'pnent Activity and discusses its method of
operatior.. One facet of I0DAS worx is the extensive
experimental use of on-line files as aids in conductin*
neetin?s and forwulitlnf plans. This section fives some
details on the construction and use of these files.

b. Plannlni and Status Files for TODAb Develooment Activity

File UPLAN

The planning file for the TODAS Development activity
contains a branch with comments on how to use the t^ie, a
branch for content-analyxer patterns.- and a branch
containing actual tasK plans.

The tasx-planning branch has, as substatements, task
categories which include documentation plans, teaching
plans, design plans, MtTA plans, and inactive task
plans. The levels under u.ese cateiories contain
separate task plans, sucn as "TODAS REFERENCE auiDE
DEVELüPKtNle

H "USER tXPERmNTS RELATED TO TODAS, M and
"TEXT MANIPULATION SYSTEMS dlSLIOGRAPHY."

Eacn tasK branen contains comments by the task

3 2

Sec. II
MANAGEMENT SYSTEM

letcjer ön t,ne following:

(1) DeicriDT,ion of tne ta3<, with llnKa to otrter
worictrn files ufed xn :ta development

(2) conment» on tne relationship of tne ta3< to
other ARC tasKS

(3) Eitlnates of ceocif involved (rfitn levels
cf effort ana tir.ine)

(li) status comments

UPLAN is llnKed to fror anotner file called ÜME&l
lüescribed oelow), whien ü used for on-line note-taKin?
csurin« meetings of the TODAS group. Portions of UPLAN
can be temporarily copied into 'JMtET for use durint
meetings,

ÜPIAN contains a blan« tas<< formst in a separate oranch.
whenever a new tas« is added» tnis oranch is copied into
the appropriate planning area (such as documentation
plans). Then the name of the tasx is inserted as a
heading along vith the initials of the tas* leader.

Certain itema in this file are useful in content-analysis
searches, rne most useful are the initials of oeopie
involved in tasKs, the milestone«, the estimates, and tne
status, TO make content-analysis searches more
consistent, astcrlsKs are placed oefore such items,

with tn appropriate pattern, one c^n tnen a3.< a
question such as "what is the involvement of a
Particular person in tnis activity?" tas« ty tas«.
All oranches with eitinates containing tht specified
initials and an asteriSK will then oe shown. The sane
branches show exuectec levels of effort.

Since this is the only information displayed on the
screen, it is relatively easy to see potential
conflicts in the allocation of a person's timt between
tasKs for this activity or to ma.<e a hard copy of this
displayed information on the line nrinter.

The content analy::er can also return statements
commenting on the status of tasKs, sc that a quic^ survey
of all such comments can be made. Tnis is particularly
useful for coordination of several tasKs and for

33

Sec. II
MANAQEMENT SYSTIM

preparing for neetlnirfl of the «rouo.

When many people try to update tne aa^e file, «erious
oroblcms are created. This is a well-Known situation
(discussed further in Appendix B). If two peoDle are
toth worKin« on the file, one person's worK nay oe
lost when someone else who has pcen usinR the file
writes his copy ba^K out on the disc. Therefore we
tried to introduce a convention where people place a
sljnal of some sort in the file wnen it is in use.

This procedure was not well used, nrobably because
people were generally in too much of a hurry.
Therefore, some work wae lost. We found that it was
easier, with the present file-handlin« limitations, to
have research assistants do the upaatin« on the file,
fathering information from various people as n?eded.

Part of tne description for a tasx involves the
specification at aiienlficant milestones, if possible.
The task leader has to have some idea of important
milestones during the progress of the wcr< and must
develop some feeling for whether these milestones ire
occurring within the resources expected to be allocated
to the task,

we tried an on^iine tasx-planninp; cnart, sho-inc
10-weck periods where milestones could oe marked for
each task. Milestones were indicoted oy showing an
NLS name for each milestone statement (see fig,
11-30). Therefore, viewing this task-planninj cnart
on a display, we could "JUHF TO NAME", selecting one
of the milestone points on the chart, anu a
description of the milestone and It» relaticnship to
the task would then be displayed, A "JUMP TO RETURN"
brought back the planning chart.

This »hows some promise of being useful in the
future, but some refinements in display techniques
and milestone selection are necessary before it can
become operational.

Another use of the content analyze- is to search for
entries made "since or before" a «• %in date, or for
entries made by certain people. nakes it easy to
sec who has been updating the flit i..tly, and what
they have dene to it.

3u

rIGURE 11-30 TASK MILESTONE CHART FROM
FILE UPLAN

FIGURE 11-31 TOP-LEVEL VIEW OF FILE UMEET,
SHOWING ACCUMULATION OF NOTES
FROM A SERIES OF MEETINGS !N A
SINGLE FILE

35

9ct. II
MANAQEMENT SYSTEM

Tnls la of l^-ii inoorttnce for t pc^ion wno 1J
updatmi nu c n file, for he pro^aoiy re.^enbera
tne Klnai of tninfi ne has er »ed. -nen nsany
people work on tne fame file, it la nclpfui to Know
wno nia been chanslng it and in what area« they
have been wcrxim.

File UMEE:

We created a separate file called ürttET for Plans and
notes fro.-n the TODAS activity nestln«»,

This file is sirllar to tne UPLAN file in forr.at.
On-line note-taking by a rcaetrcft aaaistarit, as
practiced in the user syster*. and software KTOUPS, naa
proven quite uai 'ul for recording Important oarta of
discussions dur^n? neetinga. The on-line note taker
ha» not been a aistracting influence in nettinssj In
fact, she hsa cont^iouted at times. She is «vailable
for findinf Information in the file and for recordinr
special ic^eas in other files upon request durm« tne
neetlngs.

Meetings are conducted with nard-copy agenda
distnouteu before each aectinf, Tne on-line
notetaKer has an on-line version cf the sane a*enaa in
front of her, AS tne discussion proceeds, she makes
her no^es risnt in the on-line agenda.

Items left for discussion In following neetings, or
as special Questions tc oe resolvetf before the nexr,
meetini, can be narked by the ncte-taker and
retrieved fron the file for later «tudy.

when the meeting is completed, tne notea ^re conoer.aed
to a neaninglul aumMary.» diatriDut?d to the
participantk?, si*d displayed on a bulletin ooard, in
other words, the agenda for a particular "leetini is
developed, during tne meeting, Into ninutes of ^e
meetirg. A copy of the unaltered agenda is also kept.

Successive i^eetinc agenda and minutes arc ^eot in one
file (see Fif. 12-Jl)e This oernits us to search for
discussions of various topics and to receive anawera
in chronological croer,

36

Sec. n
MANAOEMEHI SYSTiM

b, orctnlxatlon stutfic«

Our orjaniZÄtional a^u^ies nave cenierea en two topics, T^.e first
of these is tne ituay of the "Gn-Line Comr.u itv" -- our owr kr.Z
?rouD seen as a unique exarple of a ^mall, close cor.r.unity of
workerj wno naKe Intensive -se of cn-iine computer ales m tneir
cSaily worK.

The second area of concentration r.as Deen tne inplenentatior cf
two expeniicnts or. orjanizaticr. structure and piannin« r.etnoas In
sucn a connunlty.

1. On-Lme conmunity

our study of tne on-line Connuynity is ceacioed nere ir t^r-s
of the total worKin« environ.»ent of tne eroup am tne
structuring cf staff roles rfitnin tne zroup,

a. environment

We consider tne total worKing environment, for purposes ^f
tnii study, to consia . of tne pnyaic*! environment and tne
"user environment," rne matter is a general tern intended
to indicate the exietence, availaCillty, and ceriorr.ar.ee cf
the numerous on-line aids used oy tne group.

Physical tnvironnent

we nave changed tne basic worK roor cr lacor*tory
configuration fror isolated one-nan offices and a remote
snon and computer/work r^-on to one-nan offices openirjf
directly onto an open, courtyara-li^e worK area, we still
use a remote sr.op and computer roor. due to oulldin«
layout restrictions, Ine consclcs were fnövei out of tne
offices into this central worKing area, we nave cut in
fcoaratc lighting circuits »o we can turn off lights ir
different parts of the room, reducing reflection» on tne
displays, within tne worK area, the consoles can easily
oe regrouped to permit users to vor'^ cooperatively.

On^ effect of this was to change the personal
interaction pattern dramatically, simply cy mcressln^
the amount of interaction.

A second effect \i\% to permit much more effective
utillistion of he display facility; tne facility is
much nore "available" tnan it otnerwis«» wouifl hav?
&eet

37

Sec. II
MAKAOEMENT SYSTEM

within tn« (fffncril worn are», the conaolef (wnicn ire
of Beveral öifferent ^efiini offerlnf different
tdvantigea) are set up in varylnf configarations, witn
differini arrangemcnti for lifntin«, •'-♦-inf.
proximity to otner corsolea, etc. In icneral, tne
individual configuration« can be quickly and flexibly
altered as variouf need» arite. k» a result, an
individua who ia aoout to atart a worninf aeaalon at
a coniole naa a conaiderafcle cnoice of ate
condltiona. figure 11-32 »nowa four vicwa of conaoles
in the work area, in actual uae for varioua »node^ of
work.

A further modification to the phyatcal environment waj
the addition of linht r.ovaole partition«, for visual
privacy. Tneae are low enoufh ao that a peraon. when
aittini, does not aee otner people working out can, by
atandinu or moving hia chair two or three feet, contact k
or 5 other people working at consoles. Moat people
apparently prefer to partition off only the front of
their work atatlona, partitions are rarely moved into
poaitiona completely aurrour.ding the work atationa, ^hen
»eciusicn is wanted, people tend to work in the Herman
Miller experimental office, which is iaolated from the
general work area by high partitions.

The Herman Miller office haa also become the place
where ^e aystem is demonatrated to viaitora.
Visit have the feeling that they are inside the
working environment, and no one eiae ia mothered by
the viaitcra' preaence.

we have adopted the practice of holding aome typea of
ffieetin;s in the Herman Miller area around one or two
diapiays, with a research assistant taking on-line notes.

dt have found that display viewing is difficult, and
multiple-p«rticipant acceaa tc the svstem ineffective,
with meetings of more than three or four people.

on the basis of our expc-iences with such meetings, we
aro now redesigning the ccmc^enci facility (sec Sec.
II-C-2-d).

we have found that It ia Uighiy deairable to make uae of
the «yaten bcth ni$ht anj day. Night access to our work
area ia incor.vsnienccd wo «one extent by tr*e exüting
security measurea, particularly when we wian to work with

35

FIGURE 11-32 VIEWS OF CONSOLES IN USE IN THE ARC WORK AREA

39

3tfC, II
HANACJEMhNT SYSTEM

non-SRI pereonnel., sucn ts consuiLtnta, A much nore open
*nd acceislble working environment wouJid be ire»tiy
preferred.

we see ireat practical utilitv in navlnf a naxinaliy
flexible physical envlronnent. Sach tine we nave
Increased the flexiollity of the envlronnent, wor*
interaction has Increased without jir*y daraaglnc
increase in social Interaction.

user Envlronnent

During these two years we have provided a useful, thou«n
stjli evolvin?, on-line text editing and til*
Manipulation systen, NLS. This system provides new tods
for personal and group use. Appendix A describes M.S In
considerable detail fron a user's point of view.
Appendix D is a teennical desenrtion of M.S.

afe have also develooed the Typewriter-ürlented
Docunentttion-Alc Syste.n, TODAi (see Appendix A). This
provides sone of the sane features as Hl$ out can ce useo
rcnotely by people not physlcall:- m the facility. TODAi
will produce consiaersoly less load on the tinesharing
systern than NLS. i»e nave experimented with renote use of
TüDAo using portable typewriter ternlnals with acoustic
couplers. The resulting nobility, with direct access to
all of our files, shows interestinr oossiuillties for
tean colXaboratton, together or physically renote.

with the introduction of TOuAS, we have provided nore
opoortunity for people to interact vitn the Ai<C files
from their offices, aithougn «one of tne processes are
slower. There has not yet been widespread use of
70DAS, but this will change with inprovenent in
service caoacity of the systen and addition of new
features to T0DA3, Availability of several
30character/«econd typewriter ternlnals will also
greatly increase the value of TODAS.

b. Staff Functions and Activities »ithin APC

Activities we htve identified as basic include the
following?

(1) Hardware

(2) Software

:--

Sec. II
MANA3*;M£NT SY^Tiirt

{}) Managenent bysten f<escarcr.

(ü) Uaer Syat*'. Hcsnrcu

IS) AR^M NetwcrK ?articipaiiür.

(6) Ooerational Sanagenent of ^c.

Stiff functions for c.cn activity mvülve ».ne
»PeclfIcation, ce.siKr, ip.piemcntation, iccu.-nentatlon,
eviluation, and malnttr.dnce prccesa aa new syster.
features nre idnea.

As we hire nardware and software oeorle, researcr.
assistant«, and secrrtarles, our colicv ^as oeen tr.at a
person's capaoiilties must eo ceycnd ar.v narro«
specialisation, A hi^niy akilled svsttrs progran^er rust
have additional &tck*round before he c^n ^e used cltective^y
in this troup.

We need people wno are capadie of sotn lonf- anc srcrt-
rtnge pXannanßx participatir.»: In goal and suceoal settirr,
and contributing to tr.e tne ueeign, i^rienentatior, an
other processes.

For nost AH^ work it is important that ueocle pe primarily
oriented toward designing ana buiuine tasks and less toward
contemplative and reflective ones, riowever, since cur worK
nixes both researcn and developnent noaes we r.ust ce
capacle of acting in either capacitv at different stages In
the in.Tlenentation of any given tasr:. it is also a
requirement that neocle have tne ability to focus en
different levels of the endeavor, alternating noaes
frequently a? the needs arise,

2, Experiments on Internal Activity structure

We conducted two experiments on the use of augmented methods
for plannine; work. These exi-er^nents were conducted with a
newly estaolishea group, the TOuAS development «roup, and with
a well-establisned, fairlv tigut-Knit »roun, tne software
Kroup.

Ill

Sec. II
MANAOEMENT SYSTEM

t, TODAS Development Activity Pl^nninc

A otrc of AKC uier system reietrch involves tne
«reclflcatlon, oeaign, InplenentÄtion, ie*chin(|, use, an-j
evaluation of new feat-urea öelni added to TODAS as related
to anticipated A«C and ARPA Ketwor< needs;.

The T0DA5 planning experiment was initiated along; these
lines)

we first developea a strategy for use as tne grouc forned
and for encourtrln« it to naKe further plans directed
toward AkC and TüDAS-reiated goals. The sters considered
necessarv for the group were:

(1) Identify both internally and externally generated
goals

(2) A?ree on structure and node of operation of the
TODAS «rouD, with tne following features:

(a) A «roup repretentive reporting to the ARC
Manager and to external activities

(D) A team approach to tasKfl and planning, with
one leader for each task

(c) investigation of decision techniques,

(3^ Plan tasKs for the group ana for the indivluals
in the group (including taaxs already in progress,
where apPlicaole), we were to do this according to
the foilowint outline:

(a) Build an easily vlsiole collection of tasK
alternatives, to pe modified zs apprcpri&tf after
analysis and review,

(o) identify and use the skills in the fcrcup,
securing other needed sxiils if not available in
the group,

(c) tstlF.&te participants' level of effort and the
timing invo^/ed, assessing the net effect of the
coEnpir.ed Plans,

U) Meet periodically to review progress, usually
every two wee^Se

u2

Sec, 11
MANAamNT SYSTEM

Meetlnia w<?r«» Ir.tendea 10 tc onen to interctea
staff of AKC, with use of in srre^d upon fümt.

Special discussion meetings (and otner for-.s of
cor.nunication) for "nelp" wr.en special procle-
sxtuations arose were also antlcipatea.

(5) .Maintain a TO--AS "Infornation center" on-line an:
off-line. The basic files were the follorfine:

(a) Kile FT3: File Directory for TüDA5-orit;ntei
XinKi, This flic auso contains lir.Ks tc TCDAS
group Pirticipants' personal file airectcries an1
linKS to the fcliowing ules:

(D) File UM&KT: Meeting plans and notes

(c) file UPLAN: Task plans and status notes

(6) cornunicate status of TODAS work to tr.e ARC
Manager and tne ARC sta-f,

Havin- determine- ^nis strategy, accropriate initial
particlptnta were contacted ana tne zroup was
esta&lisncd.

The srout started having meetings and aeveloped a rteetini
«trategy that contained tne fclloving elements:

IX) A "Xacilitatcr," wnose role includes tne ioilewi«r;

(a) Preparation of tr.e reetmp plan, wltn inputs fro?
the rest of the group

(D^ Quidarce during tne meeting to ensure tnat all
important items are discussed

(c) providing an orderly wav for new or unexpected
items to oe discussed as appropriate, or deferred.

This role was rotated ».mon? the r.enoersnip ~i tne
group fron meeting to meeting, depending or. f-e
expected agenda suojectf,

(2) A "process watcher/' wncse role involves attention
to processes in operation during the neeting, Inia
includes verbal and nor- -bal interactions cctween
people, decision procei etc.

k}

Sec- II
MANAGEMENT SYSTtM

Thl« wia done to jive the ptrtlciranta »aaed inal^nt
»bout lesa obvious Xeutures of tne meeting.

This role wts rotitea amonf the ^emöership of the
group from meeting to meeting, depending on the
expected Agenda subjects,

(3i An on-line note tAKer, whose role includes the
following:

(a) Distribution of the meeting plan and preparation
of the ir»eting notes outline before the meeting

(b) Careful recording of important discussions and
points made during the meetinr

(c> retrieval of needed information from on-line
files during the meeting

(d) summarising the Keeti.:g notes and diatri.outing
them after the meeting

The role of the on-line note-taker was filled by two
research assistants on an alternating basi-'i. This
provided flexibility and ensured that an experienced
note-taker was available for each meeting.
inforaation güircd at tfi^se meeting wao valuable to
the note-takers in tneir otner day-to-day work,

(U Regular participants

(5' invited specialist»

(6) A meeting plan and agenoa

(7) Relevant docurents ^reduced on-line by any member

Distribution of docuiaents was arranged before each
meeting. Document» included deacriptions of deaign
changes In TODAS, drafts of teacning documente, etc.

IS) Tentative plan for the following neeting

(9) An evaluation of the utility of the meeting.

^u

Sec. II
MANAaEMENT SYSTEM

Notes from meetlnes were Kept or, an evolutionary basis g»
«eparate oranchee In one file, UhEET, »nci also m ^ard
copy for distribution to ail nenoers \n6 to a r>uileti•,.
öoard.

Planning

We made an eacily accessiPle l.stxn^ of tas^a In progress
and under consideration, In a seoarate file called UPIAN
(deacrloed above in Sec, Ii-A»ji-o), wnicn can ce ncdifie-
by individual taJK leaders or cv research assistants.,

This file nelpec increase tne extent to wnicn ricetings
were usea to evaluate and redcrsi?^. tasKS, ir.atead of
to report information that would not pe changed cy
<rroup interaction.

It facilitated tne exchange of reportcriai
information outsiae tne neetlngs, when individuals
could five their full attention to the file.

It rfas also avtilaöle aurlnj meetings for
reference or modification.

Another use of tne file «fa« to cor-unicate irfon atlon
to peoplf not directly involved in the act vxty, i.e.,
the AHC .Manager and otners in AKC,

Most cf the planning dealt with scheduling ^na patterns
for necessary interaction between tasK« a;<d tasK leaders,

ine short-tern goals appeared firm enough that we cnoae
not to divert our resources to longer-term goals while
this activity was starting.

interaction

Since this group included peopie who were involved with
other AäC activities such as software, the N'ctworx
Information Center, and Management science Research
(MSRJ, it explored seme interaction between activities.

It also prcvided an opportunity for the activity memhers
to be involved in a smaller group tnan tne ARC as a
whole, mis changed tne group dynamic« considerably.

The process of identifying internally generated goals
stimulated exploration of personal needs of the rr-pers

15

3ec, II
MANAOEMSNT SYSTEM

of tue froup to increai« solldirlty, nutual llKin«,
underotancJlng, reepect, and the desire to cooperate.

Altnough iocial interaction initiat«<S at early
raeetinjf was beneficial in developins a conesive
working croup, projrc«a «valuation at various tine«
indicated that it could then be more effectively
continued outsiae of group neetin?s to allow mere
focui on tne primary group taiKs related to TODAS.

b. Software Activity Planning

The acftware activity is airected toward the design and
implementation of new systen software features.

Strategy

This was tne second experiment, following the Initial
results of the TODAS experiment described above. In the
two years of the contract, the software group has
progressively b-cone moi «t interrated into the total ARC
functioning and has doubled in cize. one result Xs that
more tasks that depend upon each other are being
performed concurrently. The need for each member of the
«oitvare group to oe aware of the progress and design
modifications of the tasK. undertaken by every other
member ci the group has increased significantly as ^hc
size of the group has grown,

preplanning by thJ MS» and group management team included
t^oae features found to be most useful from the TüDAS
activity experiment.

It recognized tne ex ^ ice of leadership
rcaponsioiliti/js alrtw , in effect-, and formalised
them.

The same meeting format was used as for the TODAS group.
We found imnt'dateiy that there was more interest In task
discussion and Plan reformulation and less interest in
social interaction and «roup process than in the TODAS
group, AS a result, changes made in the planninc
procedure simplified the documentation to include only
essential el^ent.a n«?#;i?d for communication vy tfie sroup
aembcrs. We also went through the prose«? of listing all
current and planned taeks in one consistent format in a
file called SOFT?, This resultea in a preliminary
listing of 30 critical and separate tasK«, with truly

k6

Sec. II
MANAGEMENT SYSTEM

Öiitrlbuteö tasn leaderanip.

Leaaership

Le&derahip waa nlninal at tfte iroup irvel, and sufficient.
because of ni«h noilvailon to complete tasKa on schea-iie.
The strongest leaaership wta at the task icvel.

Tni« experiment is stiii in progress. Longer-ranee pcai
£nd ta«K planning, vim cetter integration witn other knZ
activity planning, are currently Dcina developed.

c. summary Comnents on planning Experimente

Active community teamworA, warm human relationships, and
pooti wcrx attitudes are neceraary for our organization to
function effectively, we nust encourage and develop
feelings of trust ^nd common goal acpreciation so tnat cur
people can vor* cloaely together over a long üeriou of tine,
vitn #o much of themselves open to view to others and with
such interrelated ana challengin? tasks to oe undertaken.
ire founc that the TODAS group benefited from the initial
energy soent on interpersonal relationships, although tl*ere
wat evenv.ually more effort appliea to theae factor» than we
found useful for task iicconpliah.ient. A careful balance
between application of social and werk-orientea energy is a
necessity.

Although the TO vAS exoenment was not successful in all
respects, it wa.s ar* experiment where the particular oeople
involved stand a better cnance of succeeding in a future
experiment with a reoriented group.

Software meetings were judged by particirants and outside
observers as ex:reme\y efficient and effective in meeting
predetermined goals, while little attention was paid to
interpersonal variables, group morale waa strengthened hv
the meeting procedure, uncertainties in task definition and
individual reaponiibilitiea were clarified. The feedbac<
WM reporter to &s useful rather than eitner flattering or
critical« This, again, was a cnance tCi the particioants to
be involved in a smaller group than ARC. TJiia contributed
to tne hi&her -ora.-e.

We feel that Ir.e techniques deveiopea lor neetmg and taa«
planning and for on-line note-taking will oe useful as mcy
evolve in future activity planning, »e need to learn more
about realizing the potential of imcrovei interpersonal

.7

w^ec. II
MANA3EMEhT SYSTEM

relttionahip» In ARC, while expendinj only A reasontäle
ifflount of effort In dotni io»

3. Observtttona From study of Cn-Llne conmunity

a. UM of Public File«

The uie of public file« containim the work of many
individual people »eeina to be well acceeted by the group.

Far »ore connvmication potential ^xlsta in thtt environmen'
than has yet been realised, although aone people nave
started in aome intereating way«,

our need for development of a Dialogue support System i«
clear.

worK habitr of the on-line conmunity «t%ff also need
4evelopaent «o that they can use the pr-fer of existing
feature« and information in the «yatere.

Now ia the time for furtner worK on methodology and
procedurea for uae of the system, with the continued
parallel .volution of tne -yatem itaelf,

b. system Dependence by the Group

A« we a^ent., we tin/* that it aeema leaa desirable to uae
conventional vuois for many tasks*

This is a problem to be resrlved for good use of resources
and for th« purpose o£ not overlooking appropriate
conventional tools where they can still be very effective.

The various way« that information new gets into the system
arc i

(1) Direct»

(a) on-line MIS or TODAS use by originator?

Entry of new material

Duplication and/or modification of exiatin?
information

(b> On-line NLS or TODAS note-taking at discussicna

kS

Sec. II
MANAOEMENT SYSTEM

(2) indirecti

(a) Trtnacrlptlon flourceai

Handwritten

Kxterntl docunenti

StcnogrisPhic dictation

Recordinf«

individaal uae of dictating equipment

Tape recordlnia of group neetinja

it) Tranacription proceaaes»

Direct NLS uae

Direct TODAS uae

paper tape

tf# are workinj toward a better aaaeaanent of wnlcft toola
are moat approprlat♦ for tfte varioua tasks to pe performed
in ARC.

e« Mlacellaneoua o&aervatlona

Ihte la a work-oriented group. Most people worx loni ncura,
uaualiy at an intenae rate; little tine la spent not
actually wording.

There are flany nore work opportunities ^or tue «roup and for
aost indivlduala than there arc resourcea -- in terns of
both tine and funda.

oroup and veraoaal work oiefiagenent involvea many
difficult cholcea of taaxa to be performed, poatponed, or
dropped.

The croup frequently seta goala at higner levcla than It la
likely to attain.

Ihia ia partly pecauae we want tne new featurea that will
make the syatem pore powerful; we are uaera of our own
reaultf.

W

See. XI
MANAGEMENT SYSTLM

Sorcetlne«, tlso, we overistesi the po*,entiftl power of the
jy»ten, Icriettln« that It still has linilt&tlons,
particularly in the area ox conalfftent^y utood service
levels. This problem is getting a ftrcat äeal of
attention» however«

The interrelatcäness of the on-line community tasks maKes
plannini very difflcultj out obviously more necessary.

C. Team Aufmentation *nd Dialogue support

Our efforts in management research have oeen centered on the
attempt to developing a ff.';rf closely intetrated, participatory way
of organizing people, effort, and »"esourcea toward specific goals
than is provided by classical management theory.

Toward this goal» we are currently focusing our attention on the
probl^i of iaprcving the mmaKement 01 a working
systea-developnent teaa, using our own orraniiation as the subject
of experimentation* This involves two facets of augmentation «-
namely, individual augmentation and team aucr.^ntation.

individual augmentation is simpjy our continuing effort to
provide ways of improving the working capability of individual
member» of a team.

T^am augmentation involves the development of improved means
for coordinating the effort» of individuals and for integrating
their individual contributions into coherent teaw action,

1. Recent Efforts

A portion of wur recent MSR effort has been invested in
formulating a "tean«augmertationN approach. Tbe initial
emphasis ia strongly oriented toward the means for
coRAunicating and collaborating effectively on issues embedded
within a complex and evolving problem domain.

An important ftcet of th^s approach nas been a preliminary
study for a "Dialogue support system** (DSS) •- a special system
of coordinated features which could support the communication
and integration of collaborative dialogue among team members.

Appendix B is a more detailed diccuscl^n of this
formulation, as extracted from the PhD thesis of David A.
Ivans (see Ref, 1),

50

Sec. II
MANAGEMENT SYSTEM

2, Future Approacftea to Tean Augmentation

Exocrinentation with roles, record-Keeelng conventions,
coliaboration picceiurcs, cjeciaion-naKin« practiceai
documentation, etc. will be a rich doraair for exploratory MiP
work.

The followlnf aiscussion of fast eaitinj? and puolication,
M«uper-vlocunent«," and aujfnented conferencing give» a view of
»o^e features needed for tear, aujmcntp.tion.

2, Fast Editing and Publication

Our already fast editing techniques will continue te evolve,
and we plan to concentrate early upon •utonttic production,
from our on-line files, of r.ard copy i avinj a very flexible
compofiition of text, diagrans, tables, equations, footnotes,
and indicesc

The design of hard-copy formatting conventions must be
related airectly to the way in vhicn the associated file
naterial can be studied and manipulated on-line,

b. "super-Documents"

we have been doing rescarcn leading to the development and
production of very large, very complex aocur.ents containing
numerous sections wncae details are highly interdeoendent.
These documents will be subject to frequent updating. This
will involve further work on techniques for creating and
using special indices, footnotes, reader-supporvive
comments, cross-references, etc.

we currently have quite powerful techniques fo,- aiding an
individual or a small report-writlne team to produce
documents of the usual research-report size ^nd complexity,
part of our approach to team augmentation will be the
expansion of these techniques to allow for much greater
scope and complexity m documents and much nore fluid
interaction among the team member* who create them.

A team tacKling a complex system-cevelooment orojfet must
provide itself with the nigneet possible visibility over its
KorKmg environment -- i.e., ever the following factors:

Planning: plans, contingency alternatives, resource
commitments, status, criticisms

31

Sec. II
MANAOEMEHT SYSTEM

D«algnt ic^igns, dealgn principles, conftrfciito,
eitiMtei, Analyses, supportive data, relevant neeäs and
pofiibilltlea

Operationj roles, tas« flefinxtions, assignments,
policies, operational procedures and convontions.

we intend to develop ana keep up to date a larr.e, detailed,
highly cress-referenced and well-indexed "super-document"
that contains Just such a description of our own
project-tcan activity, our techniques for facilitating its
modification and republication will be under constant
evolutionary preflsure,

c, collaborative use of on-line File Systems

On-line access by collaborators to each other's files, as
provided ^y a numoer of today's time-sharing systemf, leave«
muct to be desired in supporting effective dialogue.

An effective dialogue-support system is essential to team
augmentation« Hand in hand with the "super-document'1

facility descrloed above must go «one ?dch ability as the
following

Any team member at a display console can study swiftly
any portion of the super-document's «tructured files,
our current system is fairly good for this purpose, but
not yet adequate fcr dialogue study.

whenever he wishes -- as though he were pencil-marking
hi« private uraft wltn marginal comments, underlines,
encircled passafes, arrows, etc. -- he can iritrofluce
•'comments" that ar* freely sprinkled with explicit
references to any »pacific item (e,g, any character,
word^ graphic entity, or expression) within anyDOdy's
prior entry. (Hotel the term "comment" is used here and
in the following discussion in a very broad sense -- a
comment is any entry which In some way point» to a
previous *ntry,)

This commenting capability must pe managed oy the
computer «o that it doe« not matter if ether peoole
are siaultanrously scanning the same material or
affixing comment» to th.* »ame it-^s,

when creating a comment entry, he need« flexible ai<5s
and methods for arranging interspersed or concurrent

S2

Sec. :i
MAlUOfc-MtHT SYSTEM

display 01 trie referenced passafes, for iieslenating;
the explicit entities he wiBnes ^o reference, anc3 for
suspending operations temporarily rffclle he checks
related .material.

Conversely^ ne neeos a way of seelnsr any comments tnat
reference a passage ne is inspec'in?.

Cateifories nl?nt ne defined oy autnorsnip, dale of
creation, text content, or asairn^i r.en^ersmp In
predefined categories.

he also needs a great aeax of control ever tnis,
however; much of tne tine ne will not -v;int to see
any conr.ent?, or only comnents falling into certain
categories.

He also neeas consiacracle control over tne vay tne
sywten displays the connente that he wants tr see
-- in specifieo portions of tne screen, in
full-text or ccnoensed forn, ftc.

He neeas the aoility to set up "annunciator call-t" to
various people, or sets of people, to request their
special attention, (at scT-.e level of rncrity) to a given
coflncnt.

All of the interactive-dialngue entries immediately
become part of tne super-oocumeni, i-D-:sin? a potentially
very complex comment network r'netwerk" necause comments
can refer to comments in incefmite extension).

It will oe hard to keep track of tne relationships
among these comnentd and the supst^ntive records aoout
which the dialogue is oriented.

Their relaticnsn.ips need never oe amoiguous, out
conslaer tne oropicm of trylne to study such a
structure to determine where we now stand in our
developnents and discussion, especially wnen it is
the record of a complex system-oesign process and
the interactive aialogue arong very active people.

This is about the most difficult central challenge in
effectively augr.enting & team -- t at of developing
computer aids, working methods, etc. to allow a
skilled person to te highly effective in digesting the
content and implications of such a record, and to

*3

3ec. IX
KANAOEMÄNT SYSTEM

develop s aub«tAntlve next-tt*<e desljn rr pl»n that
intecr&tei the diAloeue contrlbutlo.if.

tsoen^^ally flinlXtr technlaues are required to
AUfnent *ny indlviduAi'a central intellectual
capability for syntheaising the next stage of
development tr a plan or de9icn(To the extent
that we are fucceaeful with this, we nhould be able
to offer streng lutdance for capability
AUgnentation over wide rcnres of individual and
team activitie«,

d. Conference Augnentation

There it great potential value in direct augmentation of
conference« and meetingf, when people are gathered together
to conaider a propoeal or argument« or to coilaoorate
actively on a problem« there are mahy poaeibilitiea for the
development of technique« ana facilitiee t^ make their worx
«ore effective.

There i« a wiöe range of poaaiole approachee to
conference augmentation..

At one extreme« each participant would be an
experienced NlS uacr *r.d woul<i have hia own conaole;
aopniaticated facilitiea would be provided for
••linxin«" the conaolea in varioua waya to augment
communication.

At the other extreme, there would be only a aingie
conaole with a apecial operator; special techniques
for integrating the NLS facility« the operator, and
the conference participtnta into a working «yatcm
would be needed«

Between these two extremes, a variety of intermediate
apprcachea ia poaaiole.

ror any of theae approachea, a central problen ia the
development of conference procedurea and the organisation
of on-line information; both procedurea and informaticn
atractures muat be developed in auch a way aa to gal« ttie
greatest poaaible advantage from the computer facility.

Thia development of conference procedurea and
information atructurea ahould be done experimentally«
under actual usage condition«.

51

Sec. II
MANAOZMCNT SYSTiM

We have t?,reeciy experlmenteü with auinentlm nectinga
by hftvlr.g one person operate NL3 IB an on-line
ncte-taker, where all partlciPantf can »ee tne diaplay
(»ee Sec. n-A-i-b),

On the basii er recent experience, we plir to provide oetter
facllitlea tor group« of people vcrking together at conaoleJ
and for «nail meeting» where coneole« are net available for
everyone (or where not all participant« are nl$ uaers).
Thi« will permit experinentttlon with intsr^editte
approache« lying between the two extreme» :e«crlbe(3 abovff.

The facility will con«lat of a meetini room equipped with
projection TV, «everal appropriately aeiifned con»oie»9
and furniture designed so tha* three or four people may
work at the console« with ten o, «o les« active
participants.

35

j
•äBP^"

-

v

BLANK PAG

.\ «Hlte i

Ill HARDWARE SYSTEM

A, Introduction

Thl« aection reviews the current etatus of the ARC computer
ficllity and deacrtbea the hardwire development that has been lone
durinf the course of this contract.

The first part oriefly describes the computer facility,
includlnic both the computer as leased from XDS and the scecia?.
equipment that has been added by ARC»

Tha second Part discusses modifications and improvements to tne
facility that hive been planned and are now in progress.

The tnird part prejent« oome comments on features of the system
design and discuases some of the reliability and maintenance
experience, because of it» unique deslm, the display system
is emphasized, A summary of maintenance costs for the
display-fenerator and television portions of t.ie system is
included.

B. The Conputer Facility

The confifuration of the ARC computer facility has oeen relatively
stable over the past two years. There have been some peripheral
additions, in particular the ARPA wetwor* interface and an
extern&l core system; these are discussed below»

The current facility is sho'-n in fits, m-l and III-2.

1, The Leased Computer

riiure III-l is a oloeK diagram of tne facility as leased from
XDS.

A central processor with timesharing hardware operates from a
6ijK iRewory in k banics wilh 2k- it words anö a cycle tine of 1.8
»icroseconds.

On channels sharing memory accrss with the CPU are 3 magnetic
tape drives, a paper-tape station, and communication« equipment
for 16 Teletypes.

A second memory buss provid'.-s direct access to memory for the
RADs (Rapid Access Devices, i.e., drums) and the non-XDS
portion of the facility, designated "Special Devices Channel"
in Fig. III-l.

There are tnrec drums on the system, operating from a common
ccntroller and accessing memory through an XDS device called
a Direct Access Commmunications Channel IDACC). Each drum

Preceding page biank
'•-

1

«to
! ■*€.

1 "*

i ...

. J

ac ^ o

r

r—

r:

*~ "^ ^ «^ s Ä « = -c S
"J S tZ ^ <*c ^ ^ = «^ 5

as irrt

2 i ! I« M

at a.
CD —

X
J

EJ

r1111 i
-J «^ i i

s ^ *«
a- ^ ^ <-o '^ t>

>
H
-J

O
<
u.

QC
LU
h-
D
a.

8

C2

LU
ac
D

38

■üü
Si

5

> V i

-111 1 i i i 1 i I I

1

E
>
<
0.

O
<
(E -

SA tu
0 z

Ul o

% z
= o

J L

z
z
<
i
u
co
uu
U

>
UJ
D

UJ

!

Ui > O (— et
D H
u Z
Ui o
X o
UJ

.
T

39

See. in
HARDWARi; SYSTEM

haa R capacity of 500#000 2k-tlt woria, a transfer rate of
l«c#ooo wora» per »cconö, and an average latency of 17
* illiiecondit

2, special Devices Cftannel

Fifure III-2 ü a block diairam of x-he portion of the facility
that has been put toeethcr by AR(J. The followinir sections
describe the major units,

ac Executive Control

The executive control provides an interface to the 9k0
through the Memory Interface Connection («IC), It acts as a
multiplexer that allcws asychronous access to cere ov any of
the 6 devices connected to it.

The executive control decodes computer input/output
instructions and passes them aloni as signals to the
various devices. It accepts interrupts from the devices,
synchronize* then« and passes then; along to the computer.

It aceepts addresses and requests for memory access from the
various devices, determines relative priority amont them,
and synchronises their access to j*C core.

The executive control includes extensive debugging and
monitoring aids, it allows the nonltorlnc of data and
addresses for any Jelected device and permits "off-line"
operation of any of the devices,

t. Disc File system

The disc file system consists of a Bryant Model 4061 disc
file and associated controller. The system has a capacity
of 32 million worda, a/1 average access tine of 165
millisecond«, and a data transfer rate of u3,oco words per
second, A relatively simple field modification will double
the present capacity.

The disc controller w*s designed and built by dryant to
interface with the executive control, soeciflcatlons for
the controller were developed Jointly by Bryant, Project
OEHII at UG Berkeley, and Ski.

c. Display system

The display system consists of two identical suosyatema.

60

Sec. Ill
HARDWARE SYSTEM

tich vith A dlaplty controller, g diapitv generator, »nä 6
hlgln-reioiutlon 5-inch CttTfti A cloiea-clrcuit television
«yatem carrief «aiipiay iaaKti from tne CRTa to televi»lon
monitors in v>he workin? »ret.

The aifpiay controllers were desifned anä MJllt at SRI.
They access and process "conmanci tables'1 that are resident
in 9k0 core.

A cornnanc is roujhly associated witn », user and points to
a "display list" in tne user's core space. The display
list in turn points to puffer» containln« actual display
instructions (commands to the dioplay generator to
produce images)•

The display controller candles all core accessring,
includlni memory mapplLnc for tne user's core ssace, it
passes the display instructions alonit to the llsplay
generator.

The display generatorj and CRas were purchased from TasKer
Instruments to SRI's specifications. They have general
character and vector caoaPilities.

Presentations for each of tne 6 CRT« are generated
sequentially« and unbla^K signals from the display
controllers select one or more of the CRTs at a given
time.

A high-resolution (d7Winel closed-circuit television
system transmits display pictures from each CRT to a
television monitor at a corresponding work-station console,
(Figure 11-32 »hows several worK-station desitns.)

d. input Device control

in addition to the television monitor, each worK station has
a Keyboard, binary keyset, and mouse, Aopendix A describes
the use of these devices.

The state of these input device* is read oy the input device
controller at a preset Interval (about 30 milliseconds) and
written into a fixed table in 9k0 core,

Bits are added to information from the keyboards,
keysets, and mouse switches to indicate wnen a new
character has been received or when a switch has changed
state during the sample period, A new character or

61

Sec. Ill
HARDWARE SYSTEM

switch crunge cauiet an Interrupt to oe iitued at tne «»na
of the sample period.

house coordinates ar» diKitlKed öy an A/D converter and
formattea oy the input device controller as eean-oosition
instructions to the display generator, A user proirairi
may inciud« tht mouse coordinates, as written oy tne
input device controller, as part of a display list, this
allows the mouse position to öe continually disolayed
without ittention ircm tne CFU,

e. Line Printer

The line printer ic a 96-character drum printer leased from
Data Products Corporation (Model M600-11Ä). tfitn the 96
characters, printing speed is 3UO lines oer minute.

The line printer controller processes print ouffers of
arbitrary length <sinjle line puffers are normally used)
that have been set up in core by a controlling program.
Operation of the printer controller is described in Apoendix
C.

f. Hetworfc Interface

The networK interface provides communication cetween tne 9kO
and an Interface Message Processor (IMP) on tne ARPA
Computer NetworK. The interface operates fron message
puffer« in 9^0 core. Messages to the Netwcrx are read by
the interface from these buffers and transmitted to the IMP.
Similarly, messages received from the IMP are written into
buffer space in 9k0 core. Instruction« from tne 9uo enable
the system for receiving raeasages and control the sending of
messages« A

,>linked-oufferH scheme permits flexible memory
allocation.

Operation of the network interface is described in pore
detail in Appendix c. The interface message processor and
its communications protocol are discussed in detail in Pef.
2.

C. Modifications in Progress

Two modifications to the facility chat will provide fignlflcant
iaproveaent in service are now being implemented. These are an
external core system and faster drums, in addition, an accurate
clock system is being added.

6i

Sec. Ill
HARDWARE SYSTEM

External core systerc

Tht extern»! cere lysten haf oeen completed and win be
Intefrated into tne tacllity in the near future.

The primary purpoae of thli core aysten ia to provide storage
for display reieneration. Diapliy buffe/s are presently in
"frosen paiea" In 9k0 core -- a flfnlflcant factor in Uniting
syoten reapont«, aince thay taice up apace tnat could otherwise
be uaed for swapping. (See Sec. IV for a älscussicr. of factors
affecting reaponae.)

Figure XIX*3 anowa tne special devices channel as it rfill be
reconfigured when the core aysteu la integrated.

The iriter-core controller controla tranafer of data between
external core and 9li0 core. It has two modes of operation!

(1) A blocK transfer node allows the tranafer oz blocks
of up to 20k6 words between any two locations in the two
cores, (Note that transfer can be between two locations
in the sarce core.)

(2) A snort tranafer node allows the tranafer of snort,
fixed«lengtA buffera between fixed locationa in 9U0 core
and external core. Thia node la eaaier to set up than
tlu bloc* tranafer, and requirea fewer nenory acceases
for control, it will be uaed for auch functions aa
tranaferring aingle charactera or other control
infornation between the two core ayatens.

The operation of the inter»core controller la deucrioed
in nore detail in Appendix c.

The external core itaelf currently conaiata of a ainfle
32,000-word bank with accesa awitching to allow acceas by up
to eight devicea, Prcvisiona are included ir. the d^aign for
expanaicn to 16 device« and two core toanK.« of 6U,ooc worda
each. The core cycle tine is 1,3 nicroaeconds and the word
length is 7.k bita.

The interface to external core has been deaigned so that
it is identical to the interface to 91i0 core (through the
Executive Control). A device nay be simply plugged into
either core ayaten,

Aa shown in Fig, XII-3, we will initially be operating both
diaplay systena, the network interface, and the line printer

63

EXECUTIVt
CONTROL

INPUT
DEVICES

CONTROL

Display Controller 1

Display Controller 2

Network Interface

Line Printer Controller

TA-7101-4

FIGURE III-3 SPECIAL DEVICES CHANNEL WITH EXTERNAL CORE

64

Sec. ill
HARDWARE lYaiEM

from external core, Theae grt the device! tnat need
conittnt bui^fer» for relttivciy Ion? period« and therefore
require frozen pafe« when ooeratini from 9kQ core.

2* faster Drumi

rroft the syatem reipome itudle« dee Sec. IV) it. ü apoarent
that a prlnary factor in retponsa ia the awappinc bandwidth.
To iaprove reiponse (and add «ore über*), we are in the proces«
of replacini tne XDS druaa with Univac rH«k32 drumi.

Theae drum» rotate at 7200 RPM, «uvini: » transfer rate of
365,000 word« per iecond (aa compared to 120,000 for the
preaent druna) and an average acceaa time of a&out it
milliaeconda.

in addition, w« arc foraattini the new druma in a ^/ay that
will allow a pace tranafer to befin at any poaition on tne
drum. Since a 20^-word page filli two-thirde of a bande
thia will give an average page tranafer time oi about 8
milliaeconda.

The interface for the druma will te deaigned and built by ARC,
It will connect to the 9a0 through a aecond Memory interface
Connection (MIC), replacing the current RAD-DACC combination
shown in Fig. III-l.

3. Clock Syatem

An accurate clock ayatem ia oeinK added to aaaist ua in »yatem
meaaur^aenta.

Thia clocK ayatea providea two typea of time information —
»baolute and relative -• that are written into fixed
locationa in 940 core at resular ir.tervala.

Abaolute tilt contiata of binary repreaentatlona of year,
aonth, day, hour, minute, and aecond.

Relative time informttion conaiata of a aingle 2a-bit
number, incremented and written into core every loo
mlcroaeconda.

The long-tero drift en the clock will be leas than 1 aecond
in 250 d&ya.

A more complete dcacription of the clock avatem ia given in
Appendix c.

65

Sec. ill
HARDWAk?. SY5UM

D. Note*« on syst-em Dctisn and reliability

1. DlapUy System

Tftt display system in use is som«vnat unusual in th it uses
central disolay-generatinK equipment and a closed-c. -uit
television system to distribute images to the worKin« area.
This approach to a display system was chosen on the basis of
ceift and fltxibtlity. A description of the system and of
considerations that went into its deslfn is given in an earlier
report (Ref. 3).

we new have considerable experience in operating thir system
and are still very pleased with thw basic approach, but we have
had some problems with the component equipment involved.

The closed-circuit television system offers several distinct
advantages over other means of producing display« at a worK
station.

The system is extremely flexible as to the location and
deflgn of working conioiesfl since only a television
monitor and a video line are required to present the
display at each console. This allows freedom to
«xperiment with different types of consoles Uef. h) and
to move consoles about without cabling problems.

Vhe video signal is inverted to provide a biacK-on-wnite
display. This presentation is usahle in higher ambient
light conditions than the usual bright-on^darx
presentation, and fliocer in the display imare (due to
low gtneration rates) is much less noticeable to the
user.

with proper adjustment of the television camera, a
significant storage time c^n be obtained on the vidicon
surface. This srestly reduces the flicker effect that is
present in the original CRT presentation, rfitn this
system wt find it possible to regenerate displays at
about 20 cycles per second.

Maintenance feature» are another significant advanta?«.

The displftv equipment at the actual work etation is quite
simple, consisting of only a television monitor which can
be replaced by a spare for raintenance.

The display-generating equipment, which requires more

66

sec. in
HARDWARE SYSTEM

complex maintenance tnci repain, 1« located centrally In
the computer room, inis make« It vcrv eaay to maintain
an uncluttered office environment in tne worKin« area.

jurthermere, aince there ii not a fixed one-to-one
relttionihip between diaplay-ienerating equipment and
work itationi, when a portion of the display system is
down for repairs the workini consoler that remain
operative may be freely selected on the b»fl- jf current
needs.

Havln« two identical display systenri, from display
controller through actual monitors, has been a ma.jor
factor in maintaining up»tine in spite cf the
unexpectedly high level of maintenance required on the
system»

The use o2 vifleo to distribute disolay images offers several
other possibilities that we nave not yet fully expioitea.

Tor the television monitor on which tne ima^e is
presented, a wide range of accessory equipment is
commercially available. For example« we nave used
nifh-quality projection television at the Fall Joint
Conputer Conference in 1966 and at the A5IS Conference in
1969. It is possible to use multiple TV mcrltcrs ©r
inter!*ediate-«l2e projection equipment for smaller
groups. This will be a major factor in the
team-augmentation work to be carried out under the next
contract, -,

The video capability offers additional flexibility in the
images that may be used on the screen, for example, in
the conferences mentioned above, live iv pictures of the
people and equipment involved were freely used, mixed
with the computer*generated imagt. Thic, again, win be
a significant factor in team collaboration at a distance
where pictures of the people involved can be used, either
Bixed or inserted with the cosputer-senerated image.

Another use of the video that will become increasingly
important is the viewing of microfiche documents. Many
systems are now available and more are cominjr on the
market for the storage, retrieval, and viewm*; of
microfiche on closed-circuit television.

67

Sec. XII
HARDWARE SYSTEM

2. Maintcntnce Experience

A. General

in genenl the rclitfeility of the facility ha» öeen very
good; the computer up-tine has been extremely high. The
reliability of the disc-file aystem has been fair, we had a
period of ••veral montha of aöovc-normal error rate, and 5
day» down while CIOCK» were rewritten; however, the troubles
now seen to have been corrected.

One notable exception to tnls has been the line printer,

we originally bought a potter chain printer which
turned out to have marginal print auality and was very
unrollable, we had great difficulty in getting
maintenance from Potter, and we finally replaced tne
unit with a Data Products drum orinter, UKe the
Potter printer, this has 96 printing cnaracters with
upper- and lower-case alphabet. The print quality is
excellent and so far it has been v v reliable.

b. Display system

We have spent »ore effort on maintenance of the display
system than any other part of the facility; since it is
somewhat unusual, wa will discuss some of the problems
encountered and summarize the maintenance costs.

One of the basic limitations of the system is the lack of
enough total light on the vidicon surface. This means
that many design factors ar^ marginal. The TasKer CRTs
run at such nigh Intensity that their life is relatively
short. This high intensity also causes difficulties in
maintaining gcod focus over the entire imige. To operate
with these low light leve3,s, the vidlcons must be qui'e
sensitive; since sensitivity droüs off with age, they
have a relatively short useful life«

Because the writing speed of the TasKer display
generators Is 1 wer than expected, we still have a
flicker problem when all 6 screens on the system In use
are reasonably full of text. To some extent we are able
to compensate for this by careful ad^ustnent of the
vidicon beam current and target, but this adjustment
needs frequent attention, ae have considered
longer-pcrsistance phosphors on the TV monitors and will
experiment with this in the near future.

66

Sec. in
HARD-fARn; SYSTEM

in addition to th«fle aifficultiei there ire aone oasic
weftKn«:*3e8 in the äeiign of the Taakcr avatem and the
television aystera,

(1) TAfiKer Svoten

SocKeta for circuit carda are not of hi«r= quality.
Thia reaulta in cont#ct-reai.atance prcölena,
eapecially in t^e analog circuitry.

Deflection circuitry, with ita many adjuatnenta, la ao
hard to fet at that it ia left in a partially
aaaem&led atate«

Logic circuita atili do not have all pull-up proplema
corrected, reaulting in a narrow range on the clock.

The active deflection^acnaing circuit requirea
frequent -djuatroent.

The focua va, bean poaition circuita perform very
poorly,

(2) Televialon Syaten

The preanplllier tupea on tne television caneraa tend
to fee very noiay. Theae tupea must initially te
aelected for low noiae to get really good pictures,
and their life is very ahort.

We are currently in the r^occaa of replacing all of
the preamplifier circuit poarda witn a new
aolid«atate circuit now delivered in new &£ caneraa
of thia type. Thia circuit uaea an ?ii
oreanplifier with very low noiae and hopefully no
probleaa in reliability.

Controller power auppliea arc poorly deai«ned and
require toe frequent replacewent of parts.

Maintenance Coata

The following ia a sunnary of the coata for maintenance of
the diaplay and television ayatema for the paat > ^r. Both
include the frequent "tuning' neceasfry to maintain gnod
picture quality. These are the coata for maintaining 0
operating work atationa, but ione effort has been spent on
the equiönert not in regular uae, we expect ihis to go up

69

Sec. Ill
HARDWARE SYSTEM

töoui 50 percent when 12 atttlon« are in opemtion.

TV Syateu
Libor 25,663
Vidiconi 3t365
Picture Tubea Ö95
Pre»inp Tubei i.aoo
All oth«!r parti lf0k0

Total
Tasker Syatcm

laftor 7,905
CÄT'i 3,000
hiseellaneoua 200

Total

32,165

11,105

Not«? Tne leaker aytten ia Maintained at a
"Keep«it•goin^•¥ell-e^ou|n"ao•people-can-rforK,4 level, anfl
it lives witn nany weakneaaea,

3. Hardware Deaign anö Conatruction Technlaues

a, Ldfilc Deaifn Aid«

TKe wireliat lererator program deicribed in an carl^r
report (Ref, 3) i» «till o^ing uaed, Tfte input forr.at,
iagnostie aida, and general for» of tne prograa are

eiaentially the aame aa in the r"«t, in the paat the
wireliat output was uaed to produce doeuntntation that aided
a technician in hand virlngi now it pModucea a punched tape
that in turn controls a aeniautonatic wire-wrapping nachine.
Thi» wire-wrapping service ia obtained fron a local supplier
and reaulta in »ore accurate wiring, lower wiring coat, ana
faster turnaround in going from logic equations to finiahed
wiring,

Regarding accuracy, no miaolaced wirea hive been found to
date, although a very minor nuoer of broken wirea and
wires snorted to pins have been observed.

The wiring itself costs about 23 cents per wire. Also,
above the cost of running the basic wireliat generator
program, there ia an additional coat of 20 cents per wire
for preparing the paper tape uaed to eont'-ol the
wi-e-wrapping '■achinco

Turnaround time for wire-wrapping ie anort, typically
less than a week for a design containing kOO
integrated circuita, of course, thia is aubject to

70

Sec, ill
HARDVARS SYITXM

eonfiderabl« y«ri»tion, ^tptndlng on the vorK lo&a of
the coiptny performtm the wire-wrtpptnt.

Hoit of the fenenl cojEoentt tn the oreviou« report
concernini the utility of the wlrellft «enerator .rognn
•till hold.

However, experience hai «hown the cieiir»Dility of
mlnttininf a fairly conpiete set of loclcal
scheiatica« complete with circuit location« and pin
nusfeerf, in addition to the deeignsr'i sketches and
llftiafi prcvlded öy the wireliat fenerator.

The prevloui report on thü contract (Rcf, 3)
Implied that the sketche« and liatlnc were
fufflcient for equipment maintenance and
trouble-fhootlne« Thla la true aa long a? the
original dealgner oerforma the naintenance, with
the Inevitahle turnover of personnel that takes
place on a long-tern project, someone other than
the dealgner eventually become« responsible for
ketping a given device operating. Under this
clrcumatance, a schematic is an invaluable aid.

b. Construction lechnlquea

The construction techniques of the most recent units can be
seen in fig, IH-k. The hardware implementation consists ol
an array of sockets that will directly accept a dual inline
pac^-ged integrated circuit (comr.only called a "DIP"). The
arrays of DIP« are mounted perpendicular to the horizontal
Plane on th« front of the rack in which they are mounted.
The circuit arrays can be pulled out for access, wiring
connections »re mads directly to the pins of the sockets.
This scheme ha* several advantage«,

rlrft, the cost i* low* The previous construction
technique ueed prlnted-circuiv boards for tsountin« the
Integrated circuits. Thus the cost of mounting the
circuits on the board and the cost of the board itself
were Incurred.

Second, there Is greater flexiöility in tne location of a
given circuit type, with the Integrated circuit* mounted
on prlnted-clrculw boards, a complete board consisting of
up to 12 circuits would have to be use^ in case« where
only 1 circuit waa actually needed.

71

FiGURE UM NETWORK INTERFACE CONSTRUCTION, SHOWING
MOUNTING SYSTEMS FOR CIRCUIT ARRAYS AND
MULTIPLEX SWITCH

72

Sec, HZ
HiRDWAgl -SYITEH

TMrily, an in-llviöutl Dl? CAH oe renoved and replaced,
Xhif if t freat aid in the maintenance of a device. A
DIP wiin a luapect circuit can qulcKly be removed and
replacti öy onq that it Khown to be food,

jn afldition to tht tecnniquei of Hardware realization of the
baaic logic deaign^ many otner detail« of the hardware
öeti'n are important,

one feature that the hardware nuat provide itt so!ne neana
of aceeaa to both the integrates circuits and tne wiring
•- this feature is an absolute necessity during initial
checkout and is an aid m later »aintenanee ^nd changes,

in provldint access to the axternal core, the
multiplex switch posed a particularly aifficult
proble», since ik cable« connect tr it. in order tc
allow easy access to this unit, the nour.ting system
shown in rig. lll«k was developed,

A very flexible cable is used, with a rather elaborate
method of strain relief and cable «uidancc. Altnoufh
tne original aechanical de«ign was quite expensive,
requiring about 3 months of a design draftsnan's tine,
pa»t experience ha« shown the difficulty of
maintaining equipmera that dio not have easy access.
To date this design cost has been spreaa over several
units and its anticipated use in future units will
reduce the per-unit cost for the desijtn. The expense
of hand-fabricating the parts for a pull-out drawer is
estimated to be around »300, wnich 1« slightly leas
than «1 per socxet.

In the recent equipment, light-emitting diodes (LEDs) have
been used instead of incandescent lights for panel
indicators. The result« have been very satisfying.

Tne LXDs .^ave a higher initial coat (about »3 each) than
the incandescent lights previously used. The lights,
however, have a limited life while the lifetime of the
L£0s is essentially infinite. This leads to essentially
zero maintenance and replacement cost for the LED«,

This long service life al»o means that the expensive
•oefcet« required by the incandescent units, in order to
facilitate their replacement, can be «Xlninated.
indicators were mounted simply by drilling holes in the
front par.el and retaining the LEDs with RTV slllcone

73

3ec. Ill
HAKDWARI SYSTEM

rubber,

A further coit «avln« 1« effected «Inc« taeae lljht» ire
driven directly from tfte locic, saving not only \.he cost
of the driver« themaelvea but *lso th« coat of tne extr»
«ocketa «.nd wiriri they would require.

The LIDa hive a relatively narrow vlewinf ar.fle and leas
intensity than the incandeacent lishta, but we nave found
the« enti.*iy iattgfsctory in uae.

Typical Conatructlon Coata

A fairly careful atudy was rude of the actual cost of the
ARPA Network interface. This is typical of the type of
control unit ♦hat is now oelnf built.

Hardware and Construction •- tne figures *r? ilven on a
per-socKet basis. Technician time involved in construction
ia included,

rrame^ cennectora, ic aocKets, etc. 53.50

Mounting hardware «2,00

Compute time 32,li0
(preoarins wire-wrappin? control
tape, 3> cents per wire and an
average of 6,0 wires per aocKet)

inteir&ted circuit» (averafe) 12,00

wire-wrappinj 61,60
(25 cents/wire and 6,a wires/socket)

Total hardware and conatruction »11,50
(per socket)

Total hardware and censtructior 16900,00
cost for Network interface (600
sockets)

Dealer.

The deslm cost is expressed in mar.-days for a defl^n
•nfineer.

Initial design io days

71:

sec. Ill
HARDWAftK 3YSTSM

Preparation of equation» 10 days

Drawing! and dQCumenvatlen 10 days

rinai aflienöly and debug 20 days

Total 30 days

73

FÄnv---

i

! |

.

■

BLANK PAG ii

■
'

.1— ättta

^—«. 7"
&

IV SOFTWARfi SYSTEd

A. introduction

The central focus of ioftware activity at the AUfmentation
Bcflearch Center ia the evolutionary development of tne on-line
Syften (HLS), and dunnf the contract period tnia worK has
continued in the «pifit of bootitrapolnc which Aa» been
conacioucly applied iince the project's inception, m aadltion to
RADC fundinj, this work has received substantial support ircn NAiA
under Contract HAS1-7697.

The orljinal version of NIS (then called M.TS for On-line Text
System) resided first in a CDC160A computer (Refs, 3 and 6); it
wa« later transferred lo a CUC3100 on wnich further development
took place (Fef. 7/.

The experience and tools developed with tne 160A and JIOO
uystems were tnen applied to the design and construction of the
present NLSg which provides multi-console service from an
XDS91iO computer and associated ipecial-purrose hardware.

As has been true throughout it» development, the on-Line system
is now oeln« used principally ts an instrument for plannlns and
engineering it« own evolution ana AS a tool for composim,
editini, and publishlni docuaents (such as this report) for
distribution outside of the Center.

The bpcration and evolution of NLf takes rlace within a rich
environment of software systems, many of wnich were created
specifically to aid in its development.

Kost basic U) the optration of NLS is the timesharini avstem
(TSS) running on the XL59UO.

TSS was orUinally developed by Project 5£N1£ at tne
Berkeley campus of the university of California, tut
responsibility for maintenance of the ARC version presently
lies with the Center itself.

Sach user runs MS as a subsystem of TSS and consequently
has access to ether TS3 subsystems such as the Küif file
system, the QED text-handiim system, and the DDT symbolic
debugjtin^ system.

work done on T3S during tne contract period is described in
Section IV-6.

Preceding page blank

7 7

Sec. IV
SOFTWARE SYSTEM

The evocation of NLS ht» Been facilitftted rr^ttiy tnrouuh the
use of an extensive collection of languates anö their
respective compilers, most of which were developed by ARC
itself. These languages and compilers are discussed in Section
IV-C.

The program coae for NLS resides in such a large number of
files that compiling, leading, ana debugging the system ia 4
complex process, TO make these operations more manageable, a
T3S subsystem called NLS UTILTY (not to be confused with the
internal utility routines of NLS itself) has been constructed
during tne past year, A description of ma VTlitt win be
found in Section IV-G,

During the contract period extensive cnanres have been made to
NLS, both in user service features and in internal system
organiiation.

Development was begun on the Typewriter-Oriented
Documentttion-A^d System (TODAS), which will maKe much of the
power of NLS available to users at remote locations through
hard-copy terminals such as Teletypes, implementation of TODAS
is one of the major steps beinr taKen in setting up tne Networx
Information center (NIC) for the AHPA KetworK.

The ability to examine the contents of NLS files has been
enhanced oy the implem^ntaticn of a powerful set of J"^P
commands, including provision for ounping between files usinf
file links, (A file linK is simply an occurrence of a file
nase, properly emoedded «itnin the text of another file.)

racillties have been provided to enable the NLS user to request
that each file statemrnt displayed be tagged with the initials
of the pers'n who last modified that statement alor.j with the
date of moaiflcation.

Conventions for handling keyset input have been changed so that
the 31 input characters Kay be interpreted in any of four cases
(lover case, upper case, numbers and special characters, and
VISWSPJLCS). The case is determined oy concurrent input from
the center and left pushcuttons on the mouse (lower case is the
normal easel.

Conraands have been added to enable the user to set any text
entity in a variety of type styles (upper case, lower case,
italic* boldface, flickering, underlined), and the
display-generation routines have been modified so as to display
text in the specified forms.

76

Sec, JV
■sormP-E SYSTEM

A limited output-proceaaor cipAbility has been orovided so that
projrafjs maintained as NLS text files can oe compiled directly
irom NtS (rather tha" having to be converted to WED files
first).

Several other new features have peen added to MS, including
the foil^winsi

(1) Vector package -- a oasic grapr«ics captoility
perinittlni the user to insert siiupie line drawings irto a
file

(2) Keyword system -- a means of information retrieval
worKin* upon special information inserted in a file, with
user control over categories of information to be retrieveo

(3) Calculator pecxage -- a calculation capability for the
NLS user, providinf four storage registers and an
accumulatorj ADD, SUBTRACT, MUUIFLY, and DIVIDE operations,
and the aoility to select operand numbers iro* file text an3
insert results oacK into the file text

U) substitute command — cause« automatic suostitution of
one user«specij:is*d character string for another, throughout
ioae user-specified portion of the file

(5) File cleanup and compaction •- automatic
user-controlleri correction of certain Kinds of system«causea
errors in a file, and reduction of the storage needed for
the file by means of special garbage-collection methods

(6) output of NLS files to microfilm (via an out-of»house
facility).

in addition, the overlay structure of NLS nas Deen reorganized
te provide room for growth of the system, and numerous ether
internal system changes have been made to provide improved
service and reliability.

An overview of the current structure of KLS is provided in
Section IV-E, and a more detailed description will be found in
Aopenciix D.

Descriptions of earlier work bn the design and development
rf NLS for the XDSno are contained in Refs. 7, 6,, a.^d 9.

O^her software development activities covered fn this report
include preparations for interfacing with the ARPA Networx (see

79

Sec, IV
SomARfc SYSTEM

Section IV-f), anc a iinuiation study of factors affecting the
response tine of trte tinesharin* system when a number of NLS users
»re being dervej (cee 9fct,ion 3V-D).

B, The Timeshgrinjc system (TSS)

The support of nev hardware and improved response to the NLS user
are the two main reasons for the expenditure of effort on the
timesharmi system (TS3).

1. Disc Support

The Bryant disc device was recieved in August I960. This
device has the capability of storing 32 million 21i-olt words,
with whe acceptance of tnis device, a file-storage program
called KDf was implemented to provide users witn a means of
storing information. The earliest form of KOT orerated
essentially independently of tne TSS I/O nandling system, A
later version was Integrated with Mie TSS system, and made all
accesses to the disc via calls on the supervisor.

During late 196d and the early months of 1969, the TSS system
waei extensively modified to include scratch disc files. These
files are handled by the sane calls on the supervisor as are
the drum files, in this way, the aisc files have whe
fltxltility of the drum files as well as freeing tne user from
KIEF'S restrictions on the nunoer and size of file«, ri«c
scratch files may be used for all the same functions as drum
files, while KüF is used prinarily for storage. The disc file
space is pooled by all the users and thus has tne additional
advantage of more economical use of this space than is possible
under KDF. The deveiopnent of improved garrage-collection
facilities permitted the use of MpermanentH «cratch file» on
th« disc for longer-term storage of heavily used files,

2, Magnetic Tape Support

The new TSS developed in late 1966 and eirly 1969 incorporated
the direct tape I/o pacxage, which permitted trore efficient use
of tape file«. The Increased «peed and efficiency of the tape
file« nade it more practical to copy Information stored ander
KDf to majnetlc tape, thus protecting this infornation from
loss in the event of serious disc failure.

Further worK ha» been done to improve the reliaolllty and speed
of access of tape files, as required by the Arcnlve/Journal
sy»teB (see Appendix B), The magnetic tapes serve as the main
storage facility for most of the older or less used file«, and

60

Sec, 2V
SOFTWARE SYSTEM

thut relieve XD5 of the ourden of »torinj these file«,

3. Exterrul core

Tho Inter-core controller (ICC) and trie external core neporv
tec%me avallaöle in early 1570, Several supervlaor call« have
teen written to «now the u«er to ace«« • thi« device«

TSS allow« a u«er to obtain up to 16 thou«and words of
external core menory, and maintain« taolea wnich perform i
United relaoelinf function between uaer-provlded ftddre«ses
and physical addresaes.

other call« permit tne user to maKe data transfer« via ICC
between external core and 9^0 memory tnd vice ver«a, as weil
at tranafcr» from one area of external cere memory to
another area of external "ore memory, or from one area of
9kQ memory to another ar<--* OA 91i0 mer.ory.

t. other Devices

A crogram ha« oeen written to oermt th.e queuein« of print
file«, Thi« program allow« tne u«er to place hi« file in a
print queue and continue on to other taJK«, The queueim
projraw inforn« the user of ni« file'a po«itiön In the orinter
queue and the approximate amount of material to be outcut
before hi« file will be eonpletea.

Minor addition« and modification« to the TSS system have oeen
Kade to »upocrt the Data Proauct« printer and «everal new
Teletype and typewriter-style terminal«,

5, Research on schedulini Alforitnms

Tne system simulation (discussed in sec. IV-C) has indicated
Syhat system response to the NlS user might oe improved by
redesign of tne scheduling axgorittiru Toward tnls end, we have
experimented with several modifications to the scneduling
alfcritftn, particulary with respect to the assignment of
priorities tnd the queue-assignment schemes.

One such experiment consisteu of assigning a special c,ueue for
MS users, giving them higher priority than other I/o user» or
users who place heavy computational loads on the system.

This queue measurably improved tne response for the Kis
user, but so impaired the response to otnar users tnat in
some cases it was not possible to run the executive

ftl

Sec. XV
SOFTWARE SYSTEM

prof ram':»,

Since mat early tri»l, we nave twplcmented a new scheme
that favor» NLS users and any otner users wfto are enraged In
freQUifnt tout »l.ort I/O processes. The Improvement nas not
seen a« noticeaöle as wttn tne earlier scheme, out has not
resulted In such severe impairment of service to other
users0 This algorithm tenas to favor the user who is
eniaged in cditlnf text, as opposed to tne user who is doinc
a ireat deal of file manipulation. Another part of this
effort has snown that another queue was not serving a uaeful
purpose, and this queue has since oeen discarded.

6. G«nera^

Much work has peen done in restructuring tne TSS system to
provide space for accommodating t^c storage requirements of the
AfcP/, Network Several routines have ceen rewritten and moved
to the Executive, and others have been moved tr norresident
rages, in this way, several hundred core locations have been
made available for Ketwork use.

Because of the jtreatly reduced level of effort of Project QEMh.
at UC Berkeley, it has become necessary for us to further tne
Uevelopment of TSS e^ientialiy indepandentlv.

C* Compilers

1. introduction

The development cf SIS nas been greatly facilitated through the
use of a oowcrful complement of lanjtuapes and compilers, most
of which were designed at ARC.

The Isngua^es tised range in generality from the SARP
assembly language tnrouth a collection of soecial-purpose
language? (SPl's) unique to NLS implementation.

Having such flexible set of languages from which to choose
makes it possible tc select for each programming task the
language in which the desired operations cm be expressed
most naturally.

t. HARP

There are a few carts of HIS that can ce fiost conveniently
coded in asseröly language (e.g., the oata page and the
display-buffer page), and for these the NARP assembly

a 2

Sec. IV
SOFTWARE SYSTEM

ianiutee is used.

Alao, for historlcil retaoni, the tlmeth&rirg jystcrr (TSS)
and nost of it? auoiyften« (e.«., KDF and DDT) are coded In
HAMP.

The NARP R«»emDier la öascd on another »si^moler, AkPAS;
Both of theae laneuaic« were produced öy Project GENIE for
uae In tne ceveloDncnt of TSS (ant Refs. 10 and 11).

fc, MOL9kO

MOLJliO (or fiwply MOD ia a nachlne-onented ianeuafe for
the XDS91iO %nd waa createa öy ARC to aid in the proRranwlng
Of MS.

HOI conoinea the flexioility of aaaerably language with tne
alforlthnic clarity cf hi?her-level procedure-oriented
larguacea. iuch of N'LS ia cooed in MOL,

The original veraion of M0L9UC ia deacriced in Ref. 12,
while thia report containa a brief cescription cf the
current veraion.

During the contract period .MOL haa Been aubatantiaily
rewritten to improve its performance and provide new
proirannln? features.

Ihe current MOL conpiler waa produced using tne new
veraion cf Tree Meta (deac" ea below); consequently, tne
hOL conpiler new rcnerates oinary machine code directlv
rather than protfucin? assenoiy-lanfua?e cole,

AS a result of thia change, aaaembly-lansuage
instructiona are now treated as built-in functicna,
whereas previously they were handled using escape
conventions which provided for tnem to be passed
directly into the output stream without translation.

optional mechanisms have oeen aaded to facilitate the
wrltin« of reentrant code, usin? a software stacK for
procedure calls and for storage of local temporaries.

The syntax for procedure calls has oeen modified so that
an entire NLS file linK may be used in place of the
procedure nanse alone-

The presencs of the file lin« augments i crogramflier'a

5 3

sec. iv
SOFTWARE SYSTiM

»oility to ituoy a complex ■yf^ew of profnns
occuDyin>< several NLS lilea, by ntKing it very etsy
for nlfl to .iunp fron a file containing a reference to
some procedure into tfte file containing the procedure
it»el?. In ccnpilmj a prcgraw only tne name part of
tne file IXn* ia used; tne reit of the link is treatea
as corcnentary inior-.ation, ai-ce it is irrelevant to
tne compilation process.

Tree ^eta

Tree Meta is a compiler-compiler developed at ARC; it is
used to produce compilers for MOL and all tne
special-purpose languages (and for itself as well)«

Section iv-C-2 contains a brief overview of tne current
version of Tree heta, and a more detailed description la
in preparation for release as a »eoarate report.
(Pendinf publication of tne Tree Meta document, a
description more complete than that contained in the
present report can be found in Ref. 8.)

Durin« the contract period, the only ma^or chanfe to the
Tree srta system was a modification to the basic way in
which compilers produced by Tree Mete generate c^de,

ComDiierfl produced py Tree ".eta ased to translate a
civen source lanKuage into assembly lantuage, which
then had to be translated by tne NAKP assembler to
obtain machine code.

with the new Tree Meta, the coupilers generate Btchin«
code directly, thu^ eliminating one step of the
translation process.

The 3PL's

j --v of the higher-level operations of NLS are carried
out by programs written in one of a set of
special-purpose laneuages (SPL's). each of tnese
languages is translated into machine code oy a compile:'
produced witn the Tree «eta system.

Each SPL represents an attempt to formalize a particular
function of KI.3, aiming at a syntax aopropriate to the
oats base tna operation« required for NLS, while at the
same time embodying the potential and peculiarities of
*he XDS911Q computer.

Su

Sec. IV
SOFTWARE SYSTEM

Tfte four SPL's curren'wiy in use sre tie lnput-feedoacic
lanjuaice, the »tructure-inanlpul4t.ion Itngutge, the
content-tnUysi» linKUitie, and the »tring-construct.ion
XAIlKUtC««

Detailed detcrlpttoni of the SPL's will be found tn
Appendix D of tnis report ts well as in Ref. 6,

Althouin extensive chanies in tne SPL's are planned for
the near future, no basic conceptual cnanies were made
durin« the contract period,

2. Tree Mctaj A Compiler-writing System

A compiler-writing syster was implemented within the AkC for
use in writing compilers for tne M0L9ii0 language and the
soecial-purpose languages (SPLs) used in implementing NL3.

The Tree Meta language allows one to concisely specify the
syntax of a langu&ge, in a notation similar to bacKus-Naur
Form, Emoeaded v .thin this syntax specification are rules
and directives deacriblng exactly now the compilation of a
program written in the language is to take place.

The Tree Meta compiler read« a textual program written in
the Tree Meta language, and directly produces a binary
machine-language program which is a compiler for the
specified language. The new compiler is then capacle of
reading a textual proirt« in the specified language and
producing a binary program accoramg to tne compilation
rules embodied in the comciler.

Tree Meta is expressed in its own language, and is thus
self-compiling. The current version has ocen produced from
previous, more limited versions by the process of
bootstrapping.

Tree Mtta ha« proven to be a particularly valuable tool in
«yste^j development at ARC, öecau«c of the experimental nature
of the development peing done here.

perhaps the most valuable feature of Tree Msta is itc ease
of use, A complete compiler description is container in a
single text file and is reaflily edited and recompiled, A
change in a compiler can oe tried in two or three minutes.
This allows experimentation that otherwise would be too
time-consuming, and make« tne debugging of language
specification« quite fast. This flexipility is very

sec, IV
30rTWARE SYSTEM

important when i Itn^utxe It bein« developed •• ts oorcsec
to having oeen preapecified and fixed in ita definition.

?he relatively ainole Tree Meta notation deacribes a
lanjuace precitely, and anyone familiar with the notation
can tee what the fyntax if, ihe code for the compiler it
alao the formal definition of the language to be compiled.

Kl^o, aince the «ource ccce for tnc Tree «eta compiler 1»
alaply a deacriotlon of the Tree ueta compiler expreaaed in
tne Tree ^eta language itae^f« it ia poasiole to produce i
new veraion of Tree Meta merely oy editing and recompiling
thia deacription.

The Tree Meta ayatem conaiita of thia flynöolic deacription, the
Tree Meta compiler, and a library of support routines in MOL.
The support routines perform functions such as input/output ana
symbol-storage operationa.

The Tree Meta coapiler is relatively fist« It compiles itself
In about 30 aeconda from about ö pages of text input. Yhe
compiled program ia about 12 thouaana words of memory.
Including tables and atorage areas,

in the formaliam of Tree Meta, a compiler consiata of (1) parse
rules, which parse the input in a top-down manner and nulid a
tree structure, and (2) unparae rulea, which then test the tree
structure and produce machine cede. The tree consists of
syiubols tiken fron the input, values and flags inserted in the
tree by the oarae rulea, and nantermmai nodes that correapond
to unparse rulea.

The parse rules teat the input stream to identify the
constructs it contains.

For example, to test the input stream for an assignment
statement, tne following rule called Ma8sifnH night be
used.

assign » identifier "•-* expression istore/2;j

This parse rule defines an "assign" to be an "identifier"
followed by a left-arrow followed by an "expression,"
where Mtdenti/ier" and "exprestion" would be defined by
otner parse rules.

If toe input stream is matched oy tr.ls rule, a node will
be constructed in the tree and tagged with the name

S6

StC« IV
SOFTWARE aXSTEM

"•tore."

ThU nof\e will nave two ncöe« un^er it, correiponding
to "identifier" and ^expresnon," reipectively.

Th^ unpane rule« are executed be^innini with the iaat node
built into the tree. The node name« in the tree determine
which rule« rfill be invoiced to conpile code from that node
of the tree,

in the example above, the unparae rule named "«tore" will
teat the node for several different form« and output code
depending on the form, A test might be

adeni if ^er, add/•!,-;;

Thl« te«t reads a« follow»! The "«tore'' node muat have two
node« under it. The first node must be an iaentifier. The
second must be a node named "add," which has two noae« under
it. Furthermore, the first ncde of •'add" must be exactly
the same as the first node of "store,M Tnis test would be
satisfied oy input of the form

x «• x ♦ (anything)

Another test ni«ht be

/identifier,add^l,Hl"y;

which is the same but witn the additional requirement tnat
the second node of "aad" must be tne number "1", This is
checKlni for input of the form

y <• y ♦ i

The unparse rule "store" might befln:

store /identifier,add^l,"!";; ■> MIN «1, ;

(fidentifier,add/#i,-y; ■> ^[•2i*] ADM *i. i

If the test or. the first line succeeds, "store" produces a
single memory-increment instruction, HIK, operatintc on trie
meMory word addressej py the identifier (the first node of
"«tore"), otherwise, if the second test succeeds, an
unparse rule named "Ida" is called with the second no-ie of
"add," aa argument in order to produce code to load the
A-rcnister. Then an add-io-mcmory Instruction la produced.

67

Sec, IV
SOFTWARE SYSTlrt

again ocerating on the memory word addresicd oy the
identifier, T»ie rule "itore11 would then continue by ieitln«
for other form» of expression», until all le«tl form» have
been taken care of.

The tree aerve» a» an .Vnturmediate form of the brogram -- a
form which facilitRte» exn.enfive testin« by the unparse
rule», and which usually contain» no redundant Information,
The compiler author decerminea the forms of the trees
completely when writin? the compiler. Hi» ij;5enulty in
determinin? the tree form» and compilation »chemes is
generally not restricted by tne Tree Meta lanfuaje.

Symbols (which may be of aroiti'ary length) arc read from the
input and kept in a symbol-storage area where they are
referenced via a hasn table, symool» may also be created
and entered into the symbol-storage area by the compiler.
Each symbol has a 2t-bll value as well as 2k attrioute bits.
The meanings for most of tne attrloute bits may be defined
by the compiler writer, and symbol values and attribute» ma
be «et, reset, and tested during the running of the
compiler.

The output troro any Tree Meta generated compiler 1» a
relocatable Dinary file, produced in tne proper form for DDT
(the loader and debufging system). This binary file
includes the symbols from the program, so that programs can
be debuggea symöolicalxy,

3, A Machine-Oriented Lanfuage, hOL9UO

In spite of the quite sophisticated understanding of compilers
and compiler-compilers in computer science, assembly language
is »till used for tne bulk of »y»tem programming,

APO ha« used a machine-oriented languare as a replacement for
assembly language in the writing of system programs. The
mRcnine-orlented language^ M0L9k0 (or sircoiy MMCLH) offers the
bower of an assembly language wr.ile providing the algorithmic
clarity found only in a higher-level language,

A machine-orHnted language is deslrnec to give the
programmer a block-structured language with many of the
usual ascociated features, such as conditional and iterative
»tatements, suoscripting, and arithmetic expressions.

At the same time, the language 1» designed to reflect the
Idlosyncr&sies of the actual machine on which the programmer

se

See, iv
SOFTtfARt SYSTEM

is writing nis prc«rap*s, TO inla erm, snccial constructs
*re incorporatec! in the languare wnlch allow the proprarmer
to have «one control over the code which 1« produced and the
wanner In which the central registers are useu.

The idea of a irucnine-orlented lanjuase la net new,

Erwm Book of jy^tem Developaenl Corporation tirat developed
an rtOi for the y-32 ana later an KOI for the lb." 36v.

Nl^lau« wirth'a PL-360 waf an MOL uaed to implement a
veraion of .^LGOL on the 360,

An MOL for tne XA:3940 waa a early aevelopnert of AHC, and
was uaed in the Initial Implementation of HIS, A nodified
veraion of this language, developed with Tree «eta, is the
MOL deacrioed in this section.

The general deaign of nOL9kO is actually machine-independent.
Only the inclufion of apecial logical forms and rullt-m
functiono gives the languare a specific orientation towards a
particular machine. Thus it may serve as a oaaia from which
MOLa for other machines may De acrived oy fuostltutinf other
logical forma and other built-in functions.

Among the distinguishing factors of any protramminj language
are the means provided for referencing information and for
controlling the flow of execution,

in M0L9i*0 tne means for referencing information »re as complete
as in an assembly language.

The central registers of the machine are represented as
oaaic element« in the syntax of the languafe. Thus M.AR"
stands for tne A-register, ".A/^l" causes a 1 to ce loaded
into tne A-reglster^ and "x^.AR" causes tne contents of the
A-register to oe stored in location x.

Assignment la made one of the binary operations that can
occur in an arithmetic expression.

Tnis allow: the programmer to refer to the valut of
subexpressions in a very straightforward manner,

for example, one can write "K«-U^n) «lOj or "k*-10* j*-n; ^
inetead of "j^n; «♦-.AR ♦ 10;". While both forms would
result in the same code, the use of tssignnent as a
binary operator avoids tne explicit reference to the

^

See. IV
SOFTWARE SYSTEM

A-reiliter.

An 4po«trophe followea by g »injie cntracter rty be u«e<5
interchanietbly with trie numericÄi cede for thit, cngrtctert

Tnia Cftn be of greit value in clarifying the intent of a
ttst. For example, a»aume tnat the nunerical code for a
;ue8tion marK is 16, Then a teat for a question mtric rray
be made by "■,?K ratner than tne less informative "«16",

Tne term "literal" rfiil be used to denote a tern that can
be either a number or an apostrophe followed by a single
character.

Two nodes of referencing information are provided to give
addressing completeness. These MOaes are sinilar to the
"left-hand value" and "right-hand value" concepts found in
CPL and BCPL.

The modes are differentiated by the presence or absence of a
dollar sign in front of the reference. The former will be
called "dollar mode." and the latter "normal mode." The
values referenced by identifiers, literals, and strings in
the two mocies are as followsi

(1) Normal Mode

(a) identifier! contents oi tne cell whose address is
tne value of the identifier,

(b) Literal: the numerical value of the literal

(c) Strin?» cortents of the first cell used to hold
tne string

(2) Dollar Mode

(a) Identifiers the value of the identifier (i.e.,
the address of a me.xory cell)

(b) literal: contents of the cell whose address
equals the value of the literal

(c) atringj the adoress of ^he first ceil used to
hold the string.

The tern "value of an Identifier" as used here la equivalent
to the left-hand value of an identifier in C?L.

90

Sec. IV
SOFTWARE SYSTEM

Ihus if cei.l kOO corrcftponds to tht identifier K or if K
n&i been set equal to uOO, && in an EQU itatement of an
csaenfcler, wnen tnc value of K ü U00. It rnij;ht also be
called tne symool-table value of tne identifier.

Notice that the normal node of an identifier or literal
corresponds to usaee in problem-oriented laneuages,

indexing and indirection are allowea wnere approoriate vitn
the above for'-.d.

indexing is specified by following the reference with an
expression enclosed in square orackets, while indirection
is ftpecified by enclosing the entire reference in square
bncKets.

The syntax disallows such dubious constructs as indevln*
with a literal or indirection witn a strin«. The
following shows in which cases indexing and/or
indirection arc allowea.

(1) Normal mode

(a) Identifier: indexing «nd indirection

(b) Literal» neither

(c) String? indexing

(2) dollar node

(a) Identifier: neither

(b) Literali indexing and indirection

(c) String? neither.

The means mentioned above T.aKe an HOL at least as powerful as
an assembly language in referencing information, in specifying
the control of activation flow, an HOL is clearly superior.

Flow cf activation it determined by the results of logical
tests. It is in the clarity of expression of these lorical
tests that an MOL is particularly valuable.

To facilitate congruence between program construction and
the idiosyncrasies of a given machine, the syntax of an MCL
should contain constructs that reflect the logical tests

yl

Sec. IV
SOFTWARE :.YSTEiM

made poasibie öy the instruction s-t..

rcr example, the xljS9Jit nas an inttruction that «kips if
the contents of the A-reRister and the effective address
do not nave ones in any correspondlm ait positions.
Thus M0L91i0 has a lORical construct "sunl CB suin2" which
is true if and only if sum has a one in a common Pit
position with Sum2.

in addition to locical constructs, tnere must be means to
specify the repeited «xecution of a fiven statement and the
choice for execution of a particular statement out of
several. The main constructs for reoetition in MCL?)iO are
the LOOP and WHILE statements.

The LOOP statement is cased on a suggestion of r.nuth. It
provides the most general possible form of control of
repetition.

The statement following the word "LOOP" is executed
reoeateöly until an MEXITM statement embedded within
the loop is executed.

Execution of an EXIT statement causes control to leave
the innermost LOOP containing it.

There may be an arbitrary number of EXIT statements
within a LOOP, placed arbitrarily, and nested within
blocKfi to an arbitrary level.

The WHILE statement simply serves as a convenient
alternativ* way of writing a commonly used form of the
LOOP statement, namely the form with a single EXIT
occurring at the start of the LOOP.

Selective execution is orovided by IF and CAöL statements.

The IF statement is tne standard Algol-liKe IF with an
optional tli>K part.

Since the 91i0 uses sxip instructions for logical
tests, it 11 possible to optimize tne cranciies
required if there is no false part and the true part
consists of a single instruction. This is done if the
user wriles "D0-5INGLEM instead of "THEN",

The CASE statement corresponds to a special form of the
I* statement in which the case is selected for execution

97

Sec, IV
sonwm SYSTEM

according to the class Into ^hich an expression falls,
ine syntax is roughly

"CASE" expression "OK" sequence of cases "LNrCASE"
statement

where each case in the sequence consists of one or nore
tests followed by a statement,

A test conftists cf a binary-relation symbol followed cy
the ri(?ht-hanö side of the binary relation. The test is
true if the oinary relation formed by usln« the
expression at the head of the case as the left-hand side
is sttlsfieä.

The first case with a true test is the one executed. If
none of the tests ire true, then the statement following
"äNDCASS" is executed.

A Common use of the CASi statement is in determining the
proper response to a character input from a terminal.

finally, W0l9k0 oermits the use of machine instructions as
built-in function». The syntax of such a built-in is
roufhly

function-name address-reference actual-arguments.

T«ie function name is simply the standard mnemonic operation
code for the instruction*

The address reference i* optional; if present, it may pe an
Identifier, literal, or string, with optional indexim or
indirection,

T.ie actual arguments are also optional; if present, they
consifit of a sequence of expre.Jions to De loaded into
registers, separated by commas and enclosed in parentheses,

S'ich a cuilt-in function may be used either as a statement
by itself or as a primary in »n arithmetic expression.

It »nould be clear that this allows the proirarmer complete
access to the instruction set of the machine and gives the
opportunity to produce is efficient code as could oe core m
assembly language (where this is deemed necessary).

experience at AfrC htc shcv.n that machine-oriented Iznguaies are

93

Sec. IV
SOFTWARE SYSTEfi

an ittrtctlve fr.cdiun tor sysi*n« Drogrtmming, incy permit
efficient code, unroatrlcted dttt structure!, »na complete use
Of tne nacnine Initruction ael, jlvlnj a flexlDlilty usually
aiaoclated onl> with aesently lanpuaiea, while ■till providlrjt
the alforlthmic clarify of hipher-ievel lanaua«ef.

D. Rearonfe Studlti

we conducted a «tudy of factor« alfectirf tne response tine rf tne
ti»e«harinR syster ">n our XDS9JiO computer,, which serves a numcer
of NLS display tei.. r.als reoutrln« very rapid response to user
actions« The netrod of approach was a hithly Darametcrlzcd
simulation of the tin« :arir.ir system, whicn permits experimental
evaluation of various possltle retnods of impro^inj system
response time. A summary of the approach and the results 1« riven
here.

1. OPjectlves of the studv

Although this study wet conducted specifically on the
tir-.'^harinc system ir use at AkCf it is of general interest (1)
because of the unique method of apprcach, which permits easy
implementation of results, and (2) bcciuse it may be expected
that systems resemblini NL3 ir some ways will be cominf into
more gener ' use in the future. The -.'incipal characteristic
of NL5 that affects the behavior of the time.?harlni s>stem is
it* dependence on fait, hirhly interactive operation of display
terminals, and computer technology ifi already respondlnr to a
«tror.f demand for this Kind of user interface

It should oe emphasiJ^J that we are deglin* here wi;n the tire
reQUired for the «y.f*^« to respond to individual commands from
interactive users, and not with the system's «peed in
perfornini lar?e numrrical-computfttion tasks.

Interactive display u«a«e for t^xt manipulation, if it is to be
really effective from the users point of view, rccuires much
shorter response time« than have normally been considered
satisfactory for timesharin? systems^ in the case of HIS, the
desired respon«' time for a typical command is a fraction of a
«eccnd »• delay.» "U no** than a second can seriously Impair the
user'i tasx perfc unce if ^hey occur too frequently. By
contrast, the response of a less interactive syitefl such as
TODA^, which i« not designed around an interactive display, is
considered satisfactory if th *vrlcal delay in executing a
simple command is no more thar. few seconds.

The inmediat* goal of the current «tudy is to develop an

9u

2cc, IV
SOJIWARI SySTk.-»

uncerittndlnf of tne interrelated factors affecting tfte
rtiponfc time of AkC's ttifleananng ayateni and to identify
poftibiiitiei for nodlfyint the hardware and software of the
ayttcn ao as to improve the reiccnaiveness of this systen.

2, Approach

T^e tpproach taKen wia to write t almulation of the tire«harln«
tvitera (TSS) operating on the XD59iiO. The atRulation
Incorporates the scheduling and awappirg aleorithr.s of TS5 and
allow« chan^lnr of oaraneters to represent various facility
confiiuraticn« and uaagea.

Thii allowa an evaluation of the Impact of changes in the
hardware confliuratlor, such as faster drura or larger core
nenory, as well a* the effect of various mixes of uaer
deminda on the reaponte of the ayatem,

in additlo!:, tne prosrarc waa written in such a way ths , with
minor modificationa, the aimuiattor of the acheduler i.r.d
awapper ceuld become part of an actual timcaharinf ay tem
noniter. Thus changes in tne acheduling and swappir?
alxorlthnc can be tested by alnulation and, if they rrove to
be valuable, incorporated into the actual aystem,

3. Results

Throughout thia aectlon the number of uaera is assumed te be
ec? ully divided between TODAS and KL5 unless otnerwise stated,
-..i jiving the results of the study, the averafe anc the
60-percent delay tlr.ea are ueed rather than the maximum.

a^ Standard Panmeter values used for Simulation

Hardware parameters

memory aliet 32 pagea, less 7 pages for resident monitor
and leas 1 page for each ms user (for display buffers)

Drum laten.yi 17 msec

Transfer ratei 17 msec

F^le reference times jü ?.sec

CPU scree: X0«9k0,

95

Sec. IV
SOFTrfARI SYSTEM

Softwtre Parameters

öhcrt Muantusii 1/k aecond

full lonj qutntunj l second.

Uicr parameter«

j user tyrcsi KLS, TODAS, ana o'pHER

6k tasM for HIS

32 tasks for TCDAS

1 task lor OTHER

Tne task detcrlptionf ior NLS and TODAS are based on
•turtiei of the actual syatems,

fc. User Tyoes coniidereo in simulaticr

in the actual use of tne simulation, tnree types of users
were considered.

Two of the types correspond to ufcers of tne two
subsystems NLS and TODAS.

Users of type NLS or TOiJAS are assumed to oe workins
steadily and at a relatively rapid pace, out their
worK is also assumed to be limited to tasks tnat do
not require large amounts of computation to complete,

Tne third type of user is called OTHER, and is assumed to
working on t^sks that consist of large amounts of

v. .iputation. compilation is an example of tnis kind of
tasK.

One of the main concerns tnat prompted this study was to
find means to maintain fast response for users of type
hl$t and to L lesser degree those of type TODAS, when
users of type OTHEH are on the system.

c. Simulation of Current Systpn

The facility assumed in tnii simulation has 6UK of core
meaory and swapping drums with 4.>-megaDyte total capacity.

Two views of the results of tnis simulation are shown in

9*

NUMBER OF USERS

TA 7^01 6

FIGURE IV-1 CURRENT SYSTEM: AVERAGE AND 80-PLRCENT DELAYS
FOR NLS INPUT-FEEDBACK AND FiLt-REFERENCE TASKS
— USERS EQUALLY DIVIDED BETWEEN NLS AND TODAS

97

w

NUMBER OF USERi

TA-7101-7

FIGURE IV-2 PERCENTAGE OF TIME SPENT IN VARIOUS SYSTEM
FUNCTIONS—UcrRS EQUALLY DIVIDED BETWEEN
NLS AND TODA^

93

Sec, T.v
SO/TaAlU SYSTEM

Fig«. IV-1 and IV-2, For botn of these in- r.umoer of users
is taiumed \o b« ecually üividea ceVween Lypcs TOIAS and
HIS, witn no users of tvpe CTHbR.

firure IV-i shews ooth tne averÄe«? and tut bO-percent
delays for NLS tnrut-'fcedbtcK and fup-referencing tasks,
in tne current syster, the data for file referencing
indicate tfte Kino of aelay experienced by a user when he
asks the syster tc perfor" an edltinr function or to
display a different section of ".is text. These results
are very consistent witn actual experience on tne system.
In actual use, subjective evaluation leads u« to conclude
that the systen becomes virtually unusable wnen the
delays as shown in th:s figure exceed about 2 seccnds.

Figure IV-2 snows row the tire aistributlon vanes as the
number of users increases. it is tnterestlng to note
here how quickly the snapping delays become the major
factor m affectlni response time and new small the
delays due to computation tine are. section IV-E-3-i
below goes into mere detail on the effect of computation
time.

d. Addition of the QKL iueue

Tne simulation «as rerun with the addition of a special
queue (QNU for interactive users. This queue nas the
effect of assigning a hltjner priorty to hifhiy interactive
functions, at the expense of other t^sks. Fifure IV-3 snows
the (approximate) distributions of delay times f0' MS
file-reference tas<s witn and without «Ht, wnen trie syster.
is serving > NLS users, 3 rcOAS users, and 1 Olhck user.
The improverent resulting from the use of CNL is clear.

with respect to FiR. IV-i, it is informative to consider
what happens to the single program of type OTHtR in tnis
situation. It was expected that the use of CM would
result i? «lowing the OTHtk program; however, tne actual
effect w^s a slight increase m its execution speed.

This is caused ry 1 decrease In swapping in the syster.
when wNl is used. Since interactive jobs are
reactivated more quickly, tnere is a greater chtncc -f
needed pages still being tn memory, thus reducing the
swapping. The overall effect is an increase m system
efficiency.

in general, however, tne use of CM may result m a

99

10

c <
7
Mi
U

DELAY — second:

FIGURE IV-3 SYSTEM WITH AND WITHOUT QNL: DISTRIBUTION OF
DELAY TIMES (IN SECONDS) FOR NLS FILE-REFERENCE
TASKS—<3 NLS USERS, 3 TOOAS USERS, 1 OTHER USER

TA-7101-8

100

Sec, IV
SOFTWARE SYSTEM

•Xowlnf of OTHEH profrana. During i given interval of
tinsCi the pro«rans ior cTHtR users tai<e up all tnc syste*
resources tnat are not useo oy NL3 or TOLAS users. When
QNL is incluaed In tne scnedulme alcoritnr. HIS ana
IODAS users are able to stet better response and tuus they
work faster, taking up more of tne system's resources
during a given interval. Thus if tnere Is a larfe rumoer
of interactive tasks, the proprans of tvce QIHtK will
receive less tine.

e. Drum Access and Band-idth

It is apparent Iron Fi«. XV-2 tnat tne njor factors
Affecting resnnnse tine are the delay encountered ir.
sw^ppin« ana, to a lesser extent, file mout/output, The
otvious way of improvin* tnis situation is to provioe i
cJevicÄ with hi^ner bindwicitn for svappin« and file
input/output.

in this stuay we have not attempted to present lenenl
results relating response to these factors. Insteaa, we
have ta^en as a soecific example a Particular drur that
could replace tne present druns used with the 9a0 syster,

ine current drums have a rotation tine of 3u niiliseconas
and a tranöfer tine of about 17 niliiseconäa tor t 2V.
page of 2it-Dit woras. The or"fli« used for ccnpariscn have
a rotation tine of öO nlllis :onds and a transfer time
of about 3.7 milliseconds per .aie,

in addition, the new drums will allow a page transfer to
bcKir. at any point. This means that tne average tlpe to
read or write a page will be approximately equal to the
duration of a single revolution.

The effect of tne new drums at predictea by the simulation
is very stnKing,

A larce part of this is due to the consistent completion of
interactive tasKs within a snort auantum. with slower drums
these task« often take several short quanta.

Figure IV-a shows the average and the oC-percent times for
NLS input-feedback and file-reterence tasks for a system
vith QNL, one OTHER user, and the remaining users evenly
divided between SIS and TuDAS,

Notice that the difference between the categories remains

101

8
S

>
<

18 20 22

NUMBER OF USERS

TA-7101-9

FIGURE IV-4 SYSTEM WITH QNL AND NEW DRUMS: AVERAGE AND 80-PERCENT
TIMES FOR HIS INPUT-FEEDBACK AND FILE-REFEhENCE TASKS
WITH 1 OTHER USER AND REMAINING USERS EVENLY DIVIDED
BETWEEN NLS AND TODAS

102

Seca IV
SOFT^ARfc SYSTfcM

relatively small and constant, Tfila Is hecauje both are
öelng conilstently cor.oietea witnin a single activation, so
that tne difference in elaosed tire is simply the difference
in tiwe required to do the actual task.

As thf nu^oer of users increases, the «elays increase
because of longer queues. Thus the Ximittnp factor with tne
faster drums Kill be congestion ir the Queues and resulting
delays for Input-feedoac* tasks, rather than the delays for
file-reference tasks, a? is tne case in the current syster*

f, speed of central processor

In view of the very sr.all percentacr of time spent dolnc
computation, it is interesting to consider tne effect of
varying the speed of the central processing unit (CPU).

figure IV-5 snows tne 60-percent time for N'LS file-reference
tasks with tne current system and CPU's of various speeds.

The difference is small even with a range of kOO to 1 for
CPU speed«. Clearly, improvement that will oeneilt a syste-
such as NLS should be sought elsewnere than the CPU,

?, Size of core Memory

Although the XEsnc is iirltea to 6MK of 2^-olt words for
cere remory, it is interesting to study tne e'fect of adding
more core.

Figure IV-o shows tne SC-percent times for HIS
file-reference tasks vith the current system and various
sizes of core memory.

These results should be considered only as lower bounds,
since different scheduling algorithms could be expected to
make better use of a larger memory.

n. Interactive Display Subsystem {li)$}

From the above discussion, it it clear that the greatest
improvement in system responsiveness result« from the use cf
filter drums.

The limitations of the system with new drums are the
followingi

(1) L^ng queue lengths resulting in coor response for

10J

4 6

NUMBER OF USERS

FIGURE 1V-5 CURRENT SYSTEM WITH VARIOUS CPU SPEEDS
RELATIVE TO CURRENT SYSTEM CPU: 80-PCRCENT
TIMES FOR NLS FILE-REFERENCE TASKS—USERS
EQUALLY DIVIDED BETWEEN NLS AND TOOAS

104

oo
<

00 Q
-1 C z i~
re c
O z u. <
CO 00
UJ -J
^ ^
r1 z
h- tu
Z
UJ
J

UJ

ac LL:

L.^ DO
Q.

1 G
§ uJ G

>
UJ G
rs; >
Ui -i

™J

<
0
CJ

D
C
lU

CO
D (/j

O or.
UJ

ac co < ?
> |
I to
~ CO

$ <

UJ
CJ
Z

z
dJ
DC
cn
D
CJ

UJ

D
a

LL!
a.

spuooas Avnaa

105

Sec, IV
SOFTWARE SYSTEM

input-fee^Df.c* tas^s

12) j-«creA»inc number of *v*il*ble pages «c number of nis
uiera increasei (oecnusc of p^iea needed for display
Duffer«)•

The interactive diapiay iU&fys-.eK (IDS) 1« proposed »• a
posiifcle solution to these liraitations. It is made up of
the following:

(1) A separate core memory for display Puffers so that
the number of availatle paies renalnj constant

(2) A separate processor o perform inout-feedbÄcK tasks.

A single input-feedbacK ".Tsinlprccessor," exccutins resident
code, should oe able to service a large nuntsr of NLS and
TCDAS users. This has the effect of giving virtually
instantaneous response f'T input feedback, as well as
reducing the load on the aain processor,

Since input-feedback tasks are by definition independent of
the contents of the file currently being referenced, the
niniprocessor needs only « small description of the current
comsand stale of the user. Feedback is the same for all
users, so a 3ingie program win suffice. This prograr will
be resident in the separate core, so swapping will not be
necessary.

When a user c?Us for the execution of a file-reference
task, the mmiproceffaor passes identifying infornaticr. to
the main processor.

This approach should be applicable to any timesharing system
that is concerned with servicing a large number of users for
a Bflfcll number of interactive programs.

Figure IV-7 shows the O0«percent delay for NLS
file-referer'jc taek^i in a system with QNL and new drum«,
with and without IDS. There is one QThE* user; the
renaining u^ers are ecually divided between NL3 and TODAS,

The »inimu» totil eltpsed time lor a sinolc editing
operation shows the value of IDS more vividly, (An
"operation'' here means the sequence of actions that an NLS
u«er gees through to icnicve son« desired effect; the
sequence typicaüy includes several actions that require
input fee^.bsck and one that requires file reference,)

106

24 26

NUMBER OF USERS

30

TA 7101 12

r GURE IV-7 SYSTEM WITH QNL AND NEW DRUMS. WITH AND VV1THOU1

IDS: 80-PERCENT TIMEÜ FOR NLS -ILE-REFERENCE

TASKS—-1 OTHER USER, REMAINING USERS EQUALLY

OIV'CtD BETWEEN NLS AND TODAS

107

6 —

>
<

ü 3 —

2 —

0 I-
20 24 26

NUMBER OF USERS

TA 7101-13

FIGURE IV-8 SYSTEM WITH QNL AND NEW DRUMS, WtTH AND
WHKOUT IDS: 3(>-PERCHNT TIMKS FOR SEQUENCE
OF 3 INPUT-FEEDBACK TASKS AND 1 FILE-REFERENCE
TASK — '. OTHER USER, REMAINING USERS SQUALLY
DIVIDED BETWEEN NLS AND TODAS

108

Sec. IV
S0f::W4Ri, SYSTirt

Figure IV-o sncws Lhe total bo-pTcent d^iwyi for «
seouence of three input-feedbac< tasKS ana ore
file-rtference t^aK, in tne aar.e ayst*y configurations as
smwn In figure iV-7.

With IDS, Input-feedtacK tasks .iay ne assure^ to re
completed in a quarter of » second (for tne nur.oers of
users considered], Tne curves of Figure IV-e sho^ »he
resulting dramatic inprove-nent in service ic tne uier,

£. i.^e On-Line Systen, MS

1. Introduction

HlH, at currently Inple'entcd, is a hlihly sopMistlcated
text-'tnanlnulatlcn systen orlentea toward on-line use with
displays, its use as an augmentation tool t» discussec in
Aopcr.dix A.

The profran Is a su^systen of tne tiresncrlng systen cescrlbed
above, its size is currently aöout tnlrty tnoujand machine
Instructlonfl, of which aoout naif na<e up the noat frequently
used portions. Tne source langutKes used are riOL^iiO and a
collection of «pecial-purnöse languages (SPls) for ccnrand
»aeclficatlor, content analyala, and strlnr -narlpulation.

This aectlon contains an overview of the creanizatlcr. of sis, a
diacuaslon of tne relationship of NLö to the 91^ tmeanarlng
ayaten, and a brief dls-ussion of ccsslpie future aevelopments
ir the prograR«

AoPendix D contains a flore detailed descrioticn cf tne procrar.
ana the languagef«

i, overview

a. Xntrcduction

The following la a ccnceptuai overview of the internal
organization of sis. It is conceptual :.r. that the cverlay
atructure, forced upon KIS ey the United address space and
jfixed pafe size of the 9ii0, does not alwayj correspond to
this description. Altnough efficiency considerations have
entered into the actual mpler.entatlon of NLS» the fcliowing
conceptual aescriotlon nay still oe used. It represents the
design pnilosopny that cuidea the implenentation, and that
philcscohy was followed unenever practicacle.

109

sec. IV
SOFT»URK SYSTEM

b, Loiical OrianiiAtion ot his

Tner« »re tnree loficil leveXi to NLS («ee fir. IV-9).

(1) The coaaand *p«ciJf3.c*tion level 1« tne hl|tne«t
control level. It doei co^nund recoinltion and handlei
tnt soeciflctticn of »^tuti opersndSc T.h.ii ta t.nc
intenctivc part of His •• tne part wlih which a u»er
alwayt eonnunicate». Thi« level of the «yatern i§ written
in the input-feedback SPL.

(2) The «econd level of control if the command algorlthn
level. It contalrti the alioritnn.i for perfornini th*
varioua commands. Large part» of tnli level of the
•yatem are written in the content-analysia and
ftrln^-conitructlon SPLa.

(3) Utility routinea make up tne tnird and leweat level
of control. Theae are the routine» that actually change
the data Date,, perform I/o, etc« Each of tneae routinea
ia uaed by aeveral routine» on the aecond level and
aonetircea by the fir»t level. The utility routine» arc
th« only par^ cf NL3 that 1» significantly depencent on
the hardware, operating »y«tf.'n, or data »tructure. The
higher level» are all algorithm» written with little or
no con»iöeration for the environment in vhicn tney
operate. Thi» iowe»t level of the »y»tem i» written In
MOl.

Connand Specification Level

The command specification part of NLS take» input from
the uaer to determine what command i» to be executed and
the actual operand» for the operation. It then tr«n»£arf
control to the appropriate place in the second level to
execute the comiuario. Tnua, thi» i» the level where
commands and actual operand» are »fiecified, but no actual
execution o* the command» ia done.

The coaa^nd »pecification i^goritnm or NLS i» implemented
t» a large »et of ne»ted case »tatesients. The code gets
an input character and test« 4t in a case statement,
which reault» in »orae feedback to tne uper and tranafer
of control t4' the head of another ca«e »tatement to te»t
the next character of input.

UO

Sa
I- tu

^8

in

o

o

3 u

1

o
EC
O

2 »- <
a:

a LLi

IX z
O

1 =
w UJ

85

x v;

—

G
R

A
P

H
IC

S

E
D

IT
IN

G

\u

 1

X

?
u »- , 1) ?: ac Q !
K UJ

I

!
i
i

-i

<
N

<
o
x
c

<

Ö
o
-J

en

cc
D
c

> UJ
cr N
UJ > <
C
u f-
a; e

111

3cc. IV
SOFTWARE SYSTEM

command Alforitnni

Tne second level ct control conalots ot the code that
ImplenentJ tne aliorltninJ for tne v&rioua conmtnda. This
level consists priT.irily oi cilU on utility routines
that iccesi the data files, test the data elements to
determine exactly wnat should oe done, and call on the
appropriate utility routines to perform tr.e actiorc
required py the command Deins executed.

The command aHoritnm cod* has been organiied into
several divisions based on the commands tney effect, T^ie
code for each division of commands is further divided
into a part that includes the alcorlthms proper and a
part that is more related to Und tnus dependent on) the
locical aata structure,

Trtöre a.'e eight main divisions»

(1) structure Eflltint

sis files have a rini structure, Fach element in
the rin« represents a statement and its »ssociated
character string and/or line drawing. The
character string itself is stored in a statement
data blocK (SDP), while the line drawing is stored
in a vector data blocK (VD8), Each ring element
contains pointers to its associated SDS and VDB as
well as the information that determines its
position in the ring.

There is a full set of editing commands that
involve the manipulation of the ring structure
alone and do not alter tn.c contents of the
statements (e.g., the HKove Statement*1 command),
Tr.e algorithms £or these commands are in this
section. They are inoependent of data structure
and use the structure-manipulation machinery to
actually effect changes in the file.

The structure (ring element) manipulation section
contains the algorithm* ioi altering ring elements
in order to effect structure editing. They are
dependent on the logical data structure, but not on
the physical data structure (utility routine- are
used to actually chan-e tne physical data).

112

Sec. IV
SüKT^ARi. SYSTEM

(2) Text fiditin«

Tnis section contains tne al^orith^s for ioinir
eaitlnf on the text of ataten^nt«, e.«,, tne
"insert word" con'nana« Tnese algcritn^s are
independent of oata sT.ruct'Jre. Th^y use the
ccr.tent-analysis macmnery to aeternine where
cnan^es mould take place, ana tne
string-ntnipulation ana SDF-nantpulation nacr.inery
to actually effect cnanges to tne file (through tne
use of utility routines).

The content-analysis section (ust-a for locitlnn
textual oatterns wltmn a string) and tne
strine-mmipulation section *re independent oi
tne ohysictl and logical structures of t^e rile.

Tne SDö nampulation section, used for altering
SDö DIOCKS, is not dependent on tne physical
data structure out is dependent on tne lorical
data structure,

(3) Graphics editing

This section contains the alrorith^.s for commands
tnat edit line drawings le.c, tne "Insert vector"
corwand), and is independent of the logical and
physical structures of tne data. This code uacs
the VDfl nanipulation machinery to effect changes to
the file.

The VDP nanipulatjjn section, used for altering
VDri blocKS, is dependent ^n noth tne logical
data structure and tne int-rnti rsprsssntstlon
of vectors.

(a) Display Control

NLS has an assortment of contrcls that permit a
user to specify which statement is to 5e displayed
at the top of the screen (the "llspiay-start
statement") and whe selection processes to fce used
in determinint wnicn statements of the file will
actually oe displayed.

(a) Junp and linx Hachir^ry

The firs^ function ic lenented in tne "junp"

11.3

acrmR£ SYSTEM

And Hltnk', jntcninery.

The Jur.o machinery If uses to ielect a
dl»play-itart itatemcnt, A ring of pafAw
dlfplay-ftart «tatement identifierj and
asiociated display paraniÄt^rs in maintained
to permit tn«* Nl-3 user to return to previous
views of his file.

The lin!c machinery is similar to the jump
machinery, except that the new display-start
statement may he in anoUicr file, in wnich
case a linic stack is used instead of the jump
rini,

(ö) Sequence Generator

one« the display-start s^atenent has öeen
determined, the sequence generator is used to
select ctatements from the file accordint to
currently invoitea fiiterinj criteria.

The sequence cenerator uses tne display
parameters, content analysis, and keyword
reorganiaat?on wnen appropriate. These
Ikvilities are discussed oelow«

The sequence generator oegina at the
display-start statement and goes through the
ring structure of the file, testing each
statement against the filtering criteria and
returning those statpaents that pass.

for instance, the user may have specified
that he wishes to see only the first two
levels of the ring structure, or only
those statements which meet seme criterion
specified ey a concent-analyser pattern
(see oelowl,

(c) Display Parameters

Display parameters controlling tne «election
processes of tne sequence generator may Oe set
at any point in the specification of a command.

The user also has at his disposal ? ^et of
display-format contrcl parameter« (VIEWSPECS)

m

Sec, IV
SOFTWARE SYSTEM

for raodifyim nil view of the file.

(a) Content Analyzer

A compiler is ui«<i to genertte code from text
written in a fpecitl hi«h-levei u«^r Iftnguasit,
anä thif code if uaed to tc«t a otatement for
specified content, me cont^nt-anaiysis
lansuace available to the user is a suoset of
the cont-snt-analysis aPL mentioned earlier,
which is uaed for other content-analysis code in
the fystviM (e.g., for delimiter identification
In text-editing comnard").

If content-analysis filtering is oeinj
invoK^d, the sequence generator uses the
compiled code tc test statements that have
passed all of the other criteria,

(e) Keyword Reorganiaataon

A list of statement identifiers is constru^ted
in response tc user selection ana weigntini, of
keywordfl (named statements containing lists of
other named statement«). This list is saved
with the file.

If keyword reordering i« seing invcXed« the
iequence generator uses the list in
generating a sequence of statements,

itl create Display

The set of routines cailec "create display" uses
the displav-start statement identifier, the
sequence generator, and the display parametirs
to format and construct a display for the user,

(5/ Calculator

The calculator divisicn is a group of routines that
effect arithmetic manipulations on numcers stored
in an HIS iiXt, providing the user with on-line
numerical calculation cipafcillty,

(6) Preceisors

The processors are not pe.rT, of NLS proper, but ar#

11J

Sec* IV
SOFTWARE SYSTEM

activated oy HIS a« suoprocesscs of MS, Tney uie
*IJ nacnlnerv -- prinartly the sequence ^enerstor
-- to provide input fro1»! >15 files.

Tnoae currently j.^plenented are rne MOL
compiler, tne s?l compiler, tne ^ree Meta
conoiler, and tne outoat proc'^or^ whic*
fornatc HLS files for nardccpy output to various
device».

17) Kile i/o

Tne file I/O division effects file inadin« and
output.

(8 1 kecov«»ry and Initialisation

Routines in tnis section are executea wnen NLS is
started up or continued after exiting to the
tiFesn^rins executive.

Utility Routines

Tne utility-routine level of NLö is a collection of
sunroatines (written in lOL) that actually de tnings, in
a sense tne nigner two levels merely decide wnat tc rto
and in wnat order, Tnese levels are essentially
independent of the macnine, operatim sy'tem, file
system, and physical dat* structure.

On tne utility level, data flics .T.re cnanged and I/O
occurs, some of the utility r' -"nes are used py tne trfC
higner levels to reaö tne curr. . jtate of the data
files. The hiiher levels use tr.^j Information to decide
what to do.

This level contains all routines that actually read or
cnange data files, interact wicn the operating systen, or
do I/o to tne worK stations, ir this manner all code
that is dependent on tne envirnnment (hardware, so/twarc,
or onysical data structure) gets put in one place. The
advantages wnen noving to a new machine or when the
environment changes are obvious. Another considerttton
is tne nope that a fairly complete library of routine»
will öe ouilt up and tne subsequent implementation of a
new command should then oe quite easy.

116

5«C. IV
SOFTWARE SmiM

3. RelÄtion of NLS to the XüS9üO and the Tlmciftarlng system (T5S)

Th« mont alicniflctnt fe«turei of tr,e XCS9U0 tlwemtrlni üyatew
that Affect NLS and »re used by it ire profrtwned ODcr&tcra,
the file system, ptuinc, and forxa,

a. .r-roiräinfled operRtors

progrÄffined eperatora (called "POPa'-) arc uaed extensively in
N13 and tne corapilera.

öy meana of 4 POP, a auoroutlne »ay be called Juat »a if
it were a macrtine matrvctxon.

T^ia meana that tne address field of tne instruction -nay
oc used to pass an arfumer.t to tne «uproutine, rcsu.rttni
in hlRn^r code density.

in tddiMon, for reentrant code, the transfer tc a
iuoroutlne as a POP can De executed sienificantly faster
than the transfer to a noraal aueroutine,

b. rile System

It is important that the tirse required to tarry out an
operation on an HIS file not xncre&ce treatiy as the file
becomes larger. This requires the aPillty to access random
secments of the file with a delay independent of the
location of the segment in tne file. The TS^S random file
system mAkes this possible.

Any bloc* of informstion in a random file msy be referenced
by ^ system function which is civen the file identifieation.
an address in tne file, an address xn me'
of words to be transferred as arfunents.

The address space of the file is oroken up iftto a number of
biocie« of fixed ler.fth (currently 256 words). Additional
biocxs, net in the file's address space (ar.d hence availaMf
only to the system), are used to record the locations of the
file blocks in seronuary storajfe. The first such index
block contain« ad^ resscs for the first luii blocks of
addresses in the file. If nifher addresses are used then
additional index blocks may te used,

c. P&finc Mechanism

The tddress ürace of a profram on the 9kQ can consist of up

1X7

Sec. jv
SOFTWARE SYSTEM

to eimt pages of 20lö words eacn. This is not iÄr»e enougn
to hold all of HIS, an? necessitates a rather complex
overlay structure. Before this can be exolained, a brief
discussion of the paginn raecn&nisji in TS5 is needja.

While a proiran can nave only eignt pages in its add-ess
apace at any one time, it can have up to 63 pages tc choose
from. These correspond to the 63 possible entries in the
job's program memory table (PrtT).

»'ages may oe made availaoie (entered in pf.T) in two ways:

(1) wnen a program is first activated by tne user, the
(up to 0) pages maKinc UP tne program are Placed in the
PrtT.

(2) additional pagei may be added to the FMT by the
program itself.

To ao this, it executes a system function with a file
name as argument. The named file anouid contain up to
eight additional page of program.

The system enters tnese pages into the PMT ana returns
indices py which the pages may be referenced. Such an
index into tne pf^T is oilled tne "relabeling byte" for
the page.

The relabeling for a program consists 0! the exrnt
relabeling bytes for the pages currently making up the
program. (unused pages have tne relabeling oytc set to
zero.)

A program nay read and set its own relabeling oy means of
system functions. This allows the program to bring oages
from it« ?A1 into its adaress space by simply puttine the
appropriate relabeling pytes into its relabeling.

ror a more cetailed discussion of these features the reader
is referred to nef. 13.

d, ForKs

The final feature of tne TSS uatd by NLS IS the ability to
create independent processes (called forxt) within a tingle
job.

The particular uses of foi'KS in MS ire discussed in

11Ö

•te. IV
SOFTWAF.£ SflTIM

Appendix D.

Future Development!

The •hort-rtnge extentiona oi NLS will include öotn
stodificfttions of exiating feature! and introduction of new
onca. The follovxnc ia a partial list of the poaaibilitiea
currently under conaider&tion.

The iraphic« capability will have a wider variety of entitle»
ana tditinf operation«.

The caicu'ater win allow »everal named function« to be
naintainf^ aimultaneouaiy &nc will be r.ble to produce plots,

11 will be pocaibls to «plit the text area into several
window«, allowing multiple «imultaneou« view« of a file« A
later itace will allow different file« in the window« and
cro««-file editinfe

Tables will be introduced a« apecial entitie« -.onaiating of
twe-4iaen«ional arraya of «trings, witi^ columns either left or
right justified. It will be poaaible to diaplay 8Ub«ets of
row« and column».

Special featurea will be added to facilitate the uae of NLS in
support of on-lin* dialogue. Theae include explicit structures
for bacfclinKs and commenta,

Th« Keyword systeia will pe replaced by t r.are «ophiaticated
retrieval ayatem, including automatic generation of inverted
list« from catalogs. The uaer Mill nave languagea to define«
store« and display aats of catalog sntries,

A general interface between His and proceaeors, auch a«
compilsra, win be developed.

A proceuscr will be written which will reconstruct a file in
such a way that statement« that are structurally ncloaeN will
alae be phyaically cloae, thua minimising file i/o for diaplay
:instruction.

It will be posaible to have linka converted to page-number
referencea in hard copy.

119

sec. iv
SOFTWARE SYSTEM

F. ine ARPA Computer Network

1. History

Two prototyoe u-ser-Droinm interface« to the ARPA Network were
written, *nd were useö in primary communications between UCLA
ar.<S Srfl and oetween SRI and the University of Utah, The first
of these went into operation m late November X969e

2, Current status

The permanent Network ope^atxnK system is now bein« finished,
and will oe operational is. April 1970,

The Network monitor will be cnaracterixed by two different
interfaces, one to be used oy persons operating on the Network
using the ARC 9]|C, and the other to oe used by prorrams running
on the 9U0 and communicatinj with other hosts on t.ne Network.

To a person on tne Network, the 9k0 will InU^ally appear
(with the exception of certain procedural rtuiacterlstlcs)
as It would were he connected to it via an ordinary Teletype
linkage.

Tne 9ii0 monitor, after dispensinj with the procedural
transmissions necessary for establishing a primary link,
simply reads characters from tne Network and places them
into the Teletype inout buffer ot* an unattached ^kO
ctatlon.

in parallel with this operatlcn, it transmits the
contents of that station's Teletype output buffer over
tne Network,

The 9k0 user wiehing to use another host on the Network must
do so either by writing a user program which contains the
necessary monitor calls or by calling a special Network
subsystem (running on the 9k0) wrilch interfaces to the
monitor and makes the necessary calls for him.

Tne monitor calls are aesigned in such a way that the
programmer may consider the Netwtrk to be an input/output
oevice. Accordingly, calls are provided for the following
functions»

(1) OPEN PnmRY LINK

A primary link is established by calling a system

120

3tc, 3V
SOFTWARE SYSTEM

function wlvn piraneterc üdignttlnj the desired
destination host.

When an »ttempt la ntde to open & primary link,
•ucc^ii 1» Indicates by a ■kip return and a file
number (which nay be uaed in successive
t;insactions fsr identifying the linK/j failure is
refiected by a non-sKip return and an error code,

Assumini a successful return fron an OPfcN PRIMARY
LINK request« tne user nay imnediately oe^in
transnittin« inforfiation over the link, ueini the
input/output functions described below,

OflN PRIMARY LINK is a special system call which is
unrelated to the other systei co»nanrts for opening
files,

(2) CIOSE PRIMARY UHK

CLOSE PRIMARY LINK causes the system to disconnect
a primary link (identified oy the file number
obtained from 0P£N PRIMARY LINK) after checking its
validity, A failure in closing the link results in
an illegal-instruction trap,

CLOSE PRIMARY LINK is a special system call which
is unrelited to the the other system commands for
closing files.

(3) INPUT/OUTPUT TO PRIMARY LINK

input/output is handled in the eamt way as the
otner file I/C on the 9ii0.

The initial Network monitor vflll periorn
single-character output over the Network.
Provision has been made for multiple-character
output, and it is expected to be implemented
shortly after the initial network monitor is
operational.

Ifipienentatlon

There are two basic tasks for wnich the network monitor nust be
rtsponslblei vhe provieion of tne I/o drivers necessary for
using the Network, and the development of a protocol for
host-hojv comaunicatlon.

121

Sec. iv
SOFTUKä SYSTEM

ine I/o driv^ra have fuch functions as the following:

(i) Initiation c* input./cutpia connanda to the hardware
interface

»2) Detection of hardware interface error* and execution
of proper corrective or evasive actions

(J) Puffer allocation and manipuXation

ih) Correct formatting of messages so far as the IMPS
and the Network are concerned

(3) Detection of XMP/^etworK errcrs and prooer error
action

(6) Mctification of 910 status to the IMP and Network

(7) initialization and recovery after 9U0 system crashes

(o) Allocation ana maintenance of links over tne
Network, includinf the handlini of HFNMs

(9) Maintenance of necessary internü taoles pertaining
to the Network

(10) communicaMon between the Ketworx and ARC 9li0 work
stations.

This includes tne basic syster calls required fcr
input/output, tne manipulation of Teletype i/o buffers
when a remrte user is -onnected tu the 9ii0 ae a
telephone-l*ne tvpe user, notification of work
stations ibaut Network errors, notification of work
stations »oowt illegal requests, etc.

A protocol nas been established whicn hosts must adhere to
in order to communicate effectively,

Tne monitor must be able to respond to this protocol in
order to use the Network.

Although the orotocoi is not yet in final form, some of
the probaole areas of concern wij.1 be;

(1) ODemng and closing of primary links

(2) Opening and closing of auxiniary (file-transfer)

122

See, IV
SOrmBI SY3TEH

linkf

{3) *ie»8*r« fornattln« (hoet-hoit)

(U) Control neiiAie öecodlnj ».nö interpretation

IS) Connunicatior of status.

Since tfte funöanental Netwerk driveri will be itttle once they
are iitpleEcrtcö, they have Deen intesrtted intc the existing
acnitor as efficiently as possible.

The protocol, however, win proBably ee suc^ect to chanfe for
so'Ae tine; therefore, it is beim implemented in a less
integrated but more flexible manner.

ABoni other thinst* it is bein« coded in «019^0, wnich win
maks it easier to dcbui and modify tnan if it were coded in
asseably language.

The general implementation approach is to a Isrge extent
dictated by the space restrictions in the 9JiO monitor.

We have tried to put as little code as possible In the
resident monitor pages, and as much as oossible in a
separate page which may be relabeled in and out of the
monitor's relabeling,

Thus the resident routines In the monitor are mainly the
ones that are necessary for proce^Mng interrupts and
certain communications (there «u't* cftsei when the Network
code must communicate with another ^agc whicn runs in the
same position). The remainder of the Networx cedek and
buffer space, resides in the separate page.

The Nis UTILTY subsystem

Manipulation of the large number of files which are directly used
in connection witn compiling, assembling, loading, and debugging
HIS is a significant problem. Accordingly, a subsystem called
"MU ÜXUTY,, has Deen written to help handle these files.

»13 UTILTY perfor^.j the functions described selow for the
lyabolic^ binary, and core-image files of NL3 and PASSu (the
output processor).

123

Sec, iv
SOFTWARE SiSTüM

i. Archiving

All file» rel^t-inj to NLS trs permanently ttored on the disc
under an archiving aysten.

In order for the filea ^o be accesses, tftey must be cxpllcity
read from the arcnives to temporary storage, and Any perranent
chanfea to a file must be recorded by writing the updated
version of the file from temporary storage to archive storage.

NLS UTILTY nerforna these functions for the user, as well as
ensurin« the integrity of f.Uea written into archival storage.

2, Compilation

Subprograms for NLS are written in tnree different programming
languaces.

Ths compilation process is different for different langutfes,
and there is in some instances an interaction between one
svnbolic file and another.

The concern tnat an NLS proirammer need have with the details
of NIS compilation is minimized by NLS UTILTY,

with MS UTILTY, any or all of the NLS suoprocrams may be
compiiedj the compilation results are reported to tne user in a
nmncr which he designates.

3o Loading

The loadini process for NLS ii scmewnat complex.

The unloaded NLS system consists of more than 30 binary files,
and they must be loaded in a certain order *nd in a certain
relationshlo to each other.

As in compilation, ms UTILTY makes it unnecessary for the MLS
programmer to concern nimself with the peculiarities of
loading.

The loaded system conjists of 7 core-image files.

While the files are closely related, there is frequently value
in loading only one or another of them.

For this reason, NL3 üTUTV allows a variety of loading
options, including one whltn loads tne entire system, and one

12k

See, IV
SoriWASS SY3T2?:

which loadi & fpeclfic file.

k. listini

^ecaüic of the size of HIS, the maintenance of up-to-date
ll»tinii t» a tedious job.

Functions provided in NLS enaole the pro?ra^^er to produce any
nuntier of liatims of any or all NLS symbolic files py a simple
process.

More details on the individual functions and the operation of sis
UT1LTY may Pe found in Appendix c.

123

r

'^Ciidpi

i wmm^ümüm

Sec. V
FUTURE PLANS

V FUTURE mtfS

A« General

Future direction« sor work In the ARC wlix öe influenceä by forcef
orllinttlng both inside fcmj outalöe ^a centfr.

Forcei «enertted by our cunulntlve experience in the
development of auc^entation fyiteai within the Center indicate
•one new öirection» for our own bootftrtpped renearca efforts

Eviterntl forcei are cencratcd by our participation in the tRPA
NetworK experiment and by an increaaeü 5-wtrene88 for the nv»ed
to communicate with the "outiidc world" -- people outside the
Center who are engaged in reiat^o worx.

The internal force« and thote generated by our Network
participation combine to produce a fhift in our internal reaearch
emphaiic toward« two specific activities: (1} team augmentation
and (2) the development of a «yctem de«ign discipline. rhe«e are
discussed below under "Shiftn in Cnpha«isv

H

Increased awareness of the r.^ed to communicate and Interact with
the outside world will lead toward the development of a new area
of specific concern, discussed below under "Transfer of Results,"

The goals associated with research in tean augmentation, with the
development of a system design discipline, and with the transfer
of results are related to one *nother within tna ARC goal
structure as described below in the section entitled ^Short-Term
and Long-Tcrm Qoals,M

in the section "Selected Plans under other aponsorshia," we
discuss the system Developer lnt«r*iö€ Activity (S^DIA), for whicn
we are seeking additional sponsorship» it is intended that this
activity will be the primary effort in the area of the transfer of
results>

B. Shifts in Emphasis

Our nlans reflect a maturing shift In emphasis in our research
work. We plan to shift our emphisis toward two ba*ic actlviticsi
(1) team aufmentation and (2) the development of a system design
discipline.

Preceding page blank

127

sec. V
rüTURJ- PLANS

Teu. ,l!.u*..,.sn*5.tion

Whereaa In the pas^ »<e ntve yiven moat of our tV^entlon to
ÄU«ncntlnf the inclivlöu»! yorKer, we »re nov fGcuifim on the
%u|nient»ti^^ of a team of collaborating workerSi ea.:ft of vnor*.
Is indivldu. ly autmentea.

Tfte high mooil.ty tnCi manipulative capaollity 01 a ikiiled
"augmented IncUviöual" haa a ur^ue potential wni^n can be
realizes ih»n a number of autmented inälvidu^lt ^9lr. ^nto a
collaborative team. Not only can eacn individual move very
rapidly througn the Joint worKim fllea to study \,nem, enter
new information, and upo&te old material, bit tnia rower c^n ot
amplified by special computer aid», conventions, and skills
tr..; v directly fft^iiita^ th« proceaeea of intcrcommunicition
i^iU ccordir.ati.or..

in« contcm^l^-jd efforts in "team augmentation" involve
a^v^ral facetsi

(1) The development ;r ccnventiona and procedures for
orfinising the working record« of our plans, lesicns»
oojectivcs, deaim principle», achedules, etc., so «a to
live effective mutual Htaak orientation" to tlu memaera
of a team by enauring optimal accessibility of ail
information related to the team's objective.

(2) The special development of a "Dialcaue Support
System" to facilitate the lapio evolution of theae
working records via dialogue among members of the dtaign
team,

(3) The development of tcchniquea to farliitate
aimultaneous remote collaboration among people at
Physically remote on-line tercinals (of any sort), by
giving then direct communication with one another,
independent of their current individual work interactions
with the computer. This includes provision, where
feasible, for the followlnfi

(a) video and/or voice intercommunication

(b) Easy and flexible control of means for
di-Dlicatlng, at any terBinal, all or part of the
type-out or display from another terminal

itf fe€ady transfer of control of one terminal's
computer interaction to another terminal's input

126

Sec. V
mjRE PLAN3

device«.

Theee technique« will evolve %ithin ARC under condition« of
applicttion to our own coordinated «yiten-developinent wor*,
tnd will be applied ever a wide ranire of collaborative
action«, fron «inple que«tion-an«werins facilities to
coaplex dtaign work invoivim inttn«e mutual participation
by the team member«.

A« applicable technique« become effective within ARC, we
will explore their use and value for the following!

*:.) support of Network Infar^ation center (NIC) «ervice«
«ueh a« teaching, queetion-anawering, and «ome type« of
query «ervicine

(2) working collaboration between ARC «taff and peraonnel
at other Network iite«

(3) working collaboration between people at remote
Network «ite«, independent of ARC «taff.

2« Development of Uaer» and Servicc-syatem Design Discipline

The functional feature« of the "user «yetem" •• the large
collection of computer aid« available to an ARC worker -• have
evolved with «one ingenuity, a sreal deal of cut<>tnd*try
experimentation under actual-u^ge condition«, and a certain
«pecie.1 orientation offered by our overall reeearcn framework.
However, up to now there ha« been a «ignificant lack of
objective, methodical engineering deaign for the overall u«er
«yatem.

A u^er-syatea design di«c\pllne i* definitely needed, and w«
intend to devote an incrcaaing amount of effort toward
developing «uch a di^ci^line.

Like the u«er «y«tea, th< "«ervice «yfltem" -• the h^räware and
«oftware underlying the feature« for augmenting u«er« •- ha«
evolved in an ad hoc fa«hion.

Here there la al«o a «ignificant need for a «y«tem«de«^n
discipline,

A «y«teB»de«ign diacipline wculd nave a communicable,
teaeüable« generally applicable framework «uoporting a
coordinated «et of concept», terainologle«, principle«,
method«« and kpecial tool«.

129

Sec. V
FUTURE PLANS

C. 'irtnafer of Result»

Behini ihcst oasic a»r«cti o£ our worx in Lhi ARC (tetm
aui^entation ana aeaiiri dijcipimes) lies an essential feature 0/
our long-tern stratesy, naircly, the poal tf producing results tnat
will be of öi.-ect value to other frcups of system developers -- in
Particular, to tnose who will be developing augmentation ayitem«.

This is in contrast to peins ol öirect value to customers who
will want systerns for their o^n direct use Je^jc., to auenent a
ntn^ger, a designer, an editor^ or a researcher).

Display terminals, communication channels, and computer service
are destined to oecoae both cheap and plentiful, and it is certain
that a very large number of organizations win want to use them.
They suit rely upon system cevelopers wno will need to be capable
of the followinü:

(1) Analysis of system-usage environments

(2) Desi^.. and implementation of a smooth, powerful, and
coordinated system of user aids, convention», methods, etc.

(3) Traininr and "education" of new users, »nany of whom will be
completely unfamiliar with the potential of this new technology

U) subsequent rtcnltorinK of user performance so as to
implement the chan/es necessary to tracK the evolution of
users' attitudes, concepts, snilis, usage habits, and wantSj

Although i-t is important to stimulate the eventual customers for
augmentation systems, and to maKe them aware of the potential for
these systews in their work, we feel that our results should be
directed primarily toward helping system develooers. over the
longer term, wc plan 1 u do this py pursuing the following roalsi

Item 1: MaKim visible an auvanced, integrated system,
operating in a heavy-usage environment, that can orient system
developers to 'ihe available cost-vtlue tradeoffs

Item 2t Developing m effective system-design discipline to
Sid in developing augmentation systems, whether or not these
systems resemble ours

Item 31 Maintaining thorough, highly current, comprehensive
documentstion, designed for qulcx location of relevant rRteriil

Item kl E'tablianing broad-oand communication channels over

130

3ec. V
FUTURE PLANS

which 4 dyiumlc is<terchance of inforaation c«n t&ke place, so
that a naxlmuB proportion of oar knorfledce can be quickly
available in vsefal form

Item 5t Offering« at a model« a complete prototype ceaign of
an aufaen'ation ayaten eapecially designed for augaentini
system development.

This system would be compatible with the systencdesign
disciplines described above« and would include techniques
for planning« analyzing« designing« programming« debugging«
documenting, and teaching.

D. Ähert-Tcrm and Long-Tarn Goals

Our approach to the planned work will be as followsi

(1) Achisve the short-term goals implicit in the team
augmentation activity« in the development of a system design
discipline« and in the tasks ittnised under Transfer of Result!
(Section V-c above)

(2) contribute to the long-term goal of directing our results
for maximum ^^enefit to future developers of augmentation
systems«

There is considerable overlap between short-term and long-term
goals.

For instance« in the case of the transfer of results» the basic
boctctrapplng development of techniques within the ARC seems to
guarantee t very good basic buildup toward items l« 2« 2« and S
of section V-Cj our participation in the Network experiment
contributes directly to item u and the development of the NXC
service vill contribute toward Items 1 and k.

E. selected Plans Under other Sponsorship

To pursue directly the itemized long-range goals of section V-G,
we currently have other plans ynder consideration, coordinated
with those outlined in this proposal. These plans would be
carried out under other sponsorships

we are formulating plans for what we tentatively call the
System Developer interface Activity (SYDIA). rfe expect to oe
approaching representative candidates during 1970 with
proposals for multiple sponsorship. The initial purpose of the
SYDIA will be to develop the follorfings

131

Sec. V
FUTURE PLANS

(1) A ftciiity for tn effective intercn»n«e of informtlon,
sKl.Ua, orientation, etc. between ARC and the exlstinc and
pottntial community of augwentatlcn-aystem developers

(2) The ability to aaiiat other croups to transfer our
aystom, or parts of it, directly into another hardware
environment.

132

caOSSARY

ARCi Acronya for the Auicentatlon neaenrch ctnter tt Stanford
Refesr« h Initltute,

ARPAi Acronysn for the Aöv*ncca Reiearch Project« Ajencv.

AUitnentttiom ueed In thli report to Inflictte the extcntion of human
InteMectutU »nd oriftnlsatlonfl CAp&bllitlea by rtetna of close
interaction vitu conput^r alUs and &y uae of special procedural and
orcanifational techniquaa deümed to support and exploit thü
5.nteractiar..

Centert Another tern ufcu for the ASC.

Coneolet A« used here, thü means specifically a user's control
console for the ARC'S Cn-line Systen {NIS). The consoles presently
in use consist of a display screen,, a Keyboard, a MnouseN, and a
"Keyset,*

Filei As used here, this refers to a unified collection of
information held in conputtr storage for use with the On-line System
(HLS) or with T0&A3, A file nay contain text (natural lancuaxe or
program code), numerical information, graphics, or any combination of
thfst* Conceptually, a file corresponds roughly to a hard-copy
document«

a^HIEt Project OINXS« at the University of California at Berkeley,
developed (under ARPA sponsorship) the timesharing software for the
XDmo computer used by the ARC.

OOOOsi Acronym for QraPhice-Orienteci Document output system, & means
for converting KLS/TODAS files to microfilm. OODOS is capable of
handling the line drawings produced with the vis graphics capability.

IKPt Acronym for interface Message processor, a component uied in t-e
äSPA NetwcrK.

Keysetz A device consisting of five Keys to be struck with the left
hand in operating the On-line aystem (MIS).

MOli See K0l9a0.

MOlHOi A machine-crlented language for the XDS9bO eomeuter. H'j^kO
(or simply noi) was developed at ARC.

Hcusei A device operated by the right hand in using the on-line
System (>as). The mouse rolls freely on any flat surface, causln« a
cursor spot on the display acreen to move correspondingly.

NASA; National Aeronautics and Space Administration.

133

GLOSSARY

NÄtworKi The planned Advanced Keaearch projects Ä«ency network of
research conputer jnstallations,

NIC: The Netwcr* Information Center, to be incorporated in tne ARPA
network. The NIC will operate as a conputer-aasisted library service
for infornation pertaining to the network, to be iiaei cy networK
nenbcrs, and will be operated oy ARC.

NLSt See On-Line Systen.

On-Line System !NL£)i Tnis is the ARC'S principal and central
deveiopmsnt in tn^ area of computer aids to the numan inteliect. As
presently conatltuteap it Is a display-oriented, timeshared,
multiqonsole systei-n for the coroositlon, study, and n.odificiticn of
files (see definition of "fiie"), A counterpart system, TODAS,
operates fron hard-copy terminals aucn as Teletypes and offers ™ny
of the same capabilities as NLS.

?A3S4i An output-orocesttinj profran: used to convert NLS/TOüAS files
tc hard-copy format for output via one of a number of different
devices.

KADC; Acronym for Rome Air Development Center«

S?Li Acronym for Special-Purpose Languare. Specifically, this tern
la used for the SPTJs developed at ARC for use in programming NLS.

SRII Acronym for Stanford Research institute

Statemcnti The basic structural unit of an NLS/TODAS file, A
otatement consists of an arbitrary string of text, plus graphic
infornation. A file consists of a number of statements in an
explicit hierarchical structure,

TOSASJ Acronym for the Typewriter-oriented Docunentation-Ald System.
TODAS Is a counterpart of MLS designed to operate from hard-copy
tcrmintl« such as Teletypes.

Tree Meta: A compiler-compiler system developed at ARC-,

TSSi Acronym for 'me-Sharing system, specifically, the system
developed by Project QKNZE for the XDS9U0 computer.

XD89kOi The conputer facility used by AkG is cased upon a Xerox Data
Systems (formerly Scientific Dcta öyfctcms or SDS) model 91*0
tlmsharing conputer.

9h0: See XDS91iC.

13Ü

RSmSNOSS

The followlnc i» A Hit of re^erencea spcciflctilv cited in the
report.

!• !)• A« ivtn«, "Mftn/Comoutcr AufmÄntition Syetem for Qualitative
Plfcnnins," Pt^.D. Thesis, Departnent of Civil Engineering» Stanford
yntvtrtity, »tanforö, Cfclifornia (December 1969)«

i* "Speciftcttion« for the Interconnection of a hoat and an IMP,"
aepert Ko, 1*22, contract Wo. I;A«CIW9-G-0179, ARPA order HO. 1260,
holt Beranek and Newsan inc.« Cambridge, Masaaenuaetta (May 1969).

!■ r* 0« ERgeldart,, V. K. Engllab« and J. r« Rulifaon, "Dcvdopinent
of s MulUdiaplay, nse-snared conputer Facility and
CORputer»AUgnented Hanagenent-Syaten Research," riual Report,
Contract AF 30(602)4103, SR: Project 5919, Stanford Beaearch
Institute* Menlo Park, California (April 1966), AD 6^3 377.

i. Dt C« Engelbert, w. K» Ingliah, and D. A. Svana, ''Study for the
Development of Computer Augmented manafesent ?echniquea,* Interim
Technical Report RADC-TR-69-96, Contract y3O602-6e"C-O286, SRI
Project 7101, Stanford Reaearcn Inatltute, Menlo Park, California
(March 196^)f AD 655 579.

5. D« C Xngeioart and i*. Huddart, "Reiiearcv. en computer-Augm«nted
information Management,^ Technical Report £SD-TDR«65«160, Contract
A? 19(626)«k06S, Stanford Reaearch matitute, Menlo Park, California
(March 1965), AD 623 520.

6. tf. K, Ingliah, D> C. Ingeldart, and B. Huddart, "Conputer-Aided
Diaplay Ooatrei," ?ihil Report, Contract NAIlOfdl, SRZ Project
5061, Stanford Reaearch institute, Menlo Park, California (July
1965)5 CFSTI Order NOr *66-3020k,

7* D. c. Engeioart, v. K. Engliah, and J. r. Rulifscn, "study For
The Development oi Human Intellect Augmentation Techniques,1* Interim
Progreaa Report, contract ^ASl-590ii, SRI Project 5690, Stanford
Reaearch lnatitutef Menlo Park, California (March 1967).

6, D. C, Engelbart, w. K. Engliaft, and J. F. Rulifson, ^Development
of a Multidiaplay, Time-snared computer Facility and
Computer-Augmented Manafement~Syatem Reaearch," Final Report,
Contract AF 30<602U103, SRI Project 5919, Stanford Reaearch
Inatitute, Menlo Park, California Upril 1966), AD 6U 577.

9. D. C, Engelbart, "Human Intellect Augmentation Techniouea," Final
Report, Contract NAS l-590ii, SRI Project 5690, Stanford Research
Inatitute, Menlo Park« California (July 1966), CFSTI Order NO.
N69-16U0.

135

REFERENCES

io, rf. w. Lichtenbergcr, "ARFASi Reference Manual for Time snarine
Asaerstler for SDS 930," Docunent NO. K-26f Office of jecretary of
Leicme, Advanced wesearcfi Projects Agency, Wtihlngton ^i, D. C.
{Revüert 2k february 1967).

11« K. House, D. Anfluln, and L. r. ddKcr, "Reference Man. . for
NARP, an Assembler for the SDS 91i0,n Document ho, H-32, Office of
Secretary of Defense, Advanced Research Projects Afencv, Wasnington
25, i), C. (Reviied 21 November 1968).

12, R. E. rity and Ja F. Sulifscn, MMOi9tt02 A Machine-Oriented
ALOOL-llke Laneuage for the SDS 9*0»" Technical Report 2, Contract
(«AS l-i>90li, SRI Project 3ö90, Stanford Research Institute, Menlo
Park, California (April 1968).

13. R. w, Watson, "Introduction to Tinc-iharlnK Conceo^s," Tecnnicai
Progress Report No, 21^9-68, Project NO. 7ölu0, Shell development Co.,
Emeryville. California (January 1969).

136

BIBLIOGRAPHY

The following ii a chronolojical lift of documents puDiished By the
Augmentation Heseirch Center.

D» C. Engelbtrt, "Special Conslderatlona of the Individual HS a User,
GcnerAtor, and Retriever of information," Paper presented at Annual
Meeting of American Documentation InftituteP Berkeley, California
(23-27 octoöer 1?60>.

D. Ce Kngel&art, ^Augmenting Human intellecti A Conceptual
franeworlc," Summary Report, Contract AF H9 (636)-1024, 3PI Project
357*« Stanford Reaearch Inatitute, «enlo ParK, California (October
1962), AD 2dy 565.

D, C, Ingelbart, "A conceptual Framework lor the Augmentation of
Man'i Intellect," in Viitai in information Handling, volume 1, D. u.
Howerton and D. C. Weeks, cds.. Spartan BOOKS, Washington, D.C
(1963).

D. C. Ingelbarts "Augmenting Human intellects Experiments, Gonceots,
and Possibilities,^ summary Report, Contract Af k9,;638)-i021i, SRI
Project 357fi# Stanford Research Institute, «enlo Park, California
(March 1965), AD 6^0 909.

D. C. Engelbart and B. Huddart, "Research on computer-Augmented
Xnforaatlon Management,H Technical Report i;SD-TDR«65-16ö, contract
/v 19(Ä2S)-U06d, Stanford Research institute, Menlo Park, California
(March 1965)* AD 622 520,

Vf. K, English, D. C. Engeibart, and 8. Huddart, "Ccmputer-Aidcd
Display control," Final Report, contract NA81-3966, SRI Project
5061, Stanford Research institute, Menlo Park, California (July
1965), CFSTI order No. N66-30201i.«

¥. K, English, D. C. Engclbart, and M. L. Berman, "Display-selection
Techniques for Text Manipulation," IE££ Trans, on Human Factors in
Electronic«, Vol. HFS-d, NO. 1, pp, 5-15 iMarch 1967).

D. C. Engelbert, w, K. English, and J, Fe Rulifson, "Study For The
Development ef Human Intellect Augmentation Techniques,* Interim
Progress Report, Contract iUSl-590u, SRI Project 5690, Stanford
Research Institute, Menlc Park, California (March 196?).

J. D, Hopper and L, P, Deutsch, "COPEi An Assembler ana Qn-Llne-CRT
Debugging System for the CDC 3100, •• Technical Report 1, Contract NAS
l-590k, SRI Project 5690, Stanford Research Institute, Menlo Park,
California (March 1966).

137

BIBLIOGRAPHY

H. E. Hay ana j. F. Kulifson, "MOL^JIOI A Mtchlne-oriented ALüOL-LIKC
Language for the SDS 9140,'* Technical Report 2t contrcct NAS i-590a,
üf: project 5090, Stanford Pesearcn Institute, Menlo farK, California
«April 1966).

D. C. tngelbart, J. S. Engliah, and J, F. Rulifion, "tevelorment 0? A
Multidisplay, Tlne-Sn^ieü Corputer Facility anc Conouter-AUKwentel
Managenent-Syatem i<e»earch,M Final Report, contract AF 3ü(60i)ui03,
SRI Project 5919, Stanford Researcn Institute, nenlo ^arK, California
(April I960), AD dtj 57?,

D. C. fcnielbart, "hunan intellect Augmentation Techniques," Final
Report, Contract NAS l-390k, SRI Project 5090, Stanford Research
Institute, Menlo PrrK, California (Jaly I960), CFSTI order NO.
N69-I6II1C,*

D. C, Engelbart, w. K. tngliih, and L'. A. ävans, "Study for the
Development of Conputer-Augnented «anifement Te^nniques," Quarterly
Progress Report 1, contract F30602-66-C-'0266, SRI . reject 7101,
Stanford Research Institute, Menlo par*, California (October I960),

D* C. Engelbart and V, A. tnglish, "A Research Cinter for Augmenting
Human Intellect," in AFIPS Proceeamgs, vol. 33. Fart one, 1968 Fall
Joint Computer Conference, pp. 395-klO (Tftononon 3OCK Co.,
Washington, J;.C., I960).

D. C. Engeloart and Staff of the Augmented Human intellect Research
Center, "Study for the Jjevcloonent of «uman Intellect Augmentation
Techniques," semiannual Technical Letter Report 1, contract HAS
1-7Ö97, SRI Project 7079, Stanford Research Institute, rtenlo ParK,
California (February 1969).

D. C Er.gelbart, w. K. Englisn, and ü. A. fcvans, "Stuay for the
Development of Computer Augmented Management Techniques," Interim
Technical Report RADC-TR-69-9Ö, Contract F30602-6ö-C-02d6, SRI
Project 7101, Stanford Researcn Institute, Menlo park, California
(Harch 1969), AD ft^i 579.

D. C. ^ngelbart and staff of the Augmented Human intellect Research
Center, "Study for the Development of human Intellect Augmentation
Techniques," semiannual Techrical Letter Report. 2, contract NAS
l-7fi97, SRI Project 7079, Stanford Researcn institute, Menlo ParK,
California (August 1969)>

♦Note: Reports with AD number« are availatle from Defense
Documentation Center, Building 5, Cameron Station, Alexandria,
Virginia 223U. Items marxed with jn asterisk mav be oataind fron
crSTI, Sills Huilding, 5Ö25 Port Royal Road, Springfield, Virginia
22151; cost »3.00 per copy or 65 cents for microfilm.

13Ö

ADpenf.ix A
USfcR F£ATUkES 0/ NLS AND TOÜAS

I The ön-Llne 3ysteK (M^S)

A. Introduction

HL5, aa currently irnpleRerted, la esientially a hifnly
■ophiatlctted text^ratnipulition fyaten oriented primtnly
toward on-line uac; i.e.,, it la not primarily oriented toward
production of nard copy, althou^n fairly aophiaticated
Jiard-copy fcraattine and output are included in the ayaten«

WLS la intended to be uaed on a regular, wore or leaa full-tine
baala in a iime»'aharlni environment, by u»er^ wno are not
ncceasarily computer professional«. TM uaera are, however,
aaauued to be "trained" aa nppor%d to "naive," Tnue tne aysten
la not dealmec for extrame ainpllcity, no^ for
aelf-explanator/ featurea, nor for compatibility with "normal-'
worKinj procedure«.

Rather, it la aaauned that the uaer has »cent conaiderab''^
tine in learning tne operation of the syatem; that ne uaea
it for a major portion of hia worx; and that he la
conaequently wixAing to adapt hia workin« procedurea to
exploit the poaaibilltiea of full-time, interactive computer
aaüatance,

Thua the practicea and techniquea developed by u«?r» for
exploltini NLS are aa much a aubject o£ reaearch interest aa
the developnent of NLS itaelf.

Section :v of thla appendix la a gloaaary of -pecial NLS/TODAS
terBinoiogy,

B. work-station conaole

The uaer aita at a conao:e whoce main clementa are a diaplav
acrcen, a typewriter keyboard, a curaor device called the
"mouae," and a aet of five »ceya operated by the left hand,
called the "Keyaeti"

The acreen ta uaed for diaplaylng text. In various forr&t«.
The top portion of the acreen (approximately 1/5 of the
total area) la reaerved for feedback information of variou»
kinaa; the name of the uaer command mode currentl'- in
effect^ a "reilater" area uaed for viricu« kind« oi
feedback, an "echo regiater" which diapliya the last «ix
charactera typed oy the uaer^ and other items which are
explained below.

The keyboard closely resemble« a conventional cyperfritcr

139

Apper.ülx A
NLS/TODAS USEH ?aiATüRES

Keyboard, witn * few exir?, K.-ys for •pcci*1. chrracterÄ md
control functions. It ia UJCO for typing text as content
ior i. file and for aptclfying c^nnanda, wnlcn ar^ given as
two- or tnree-cnaracter rnenonici.

The nouae is R ro'igniy box-ahaped object, about four Incnes
on its longest side, wnicn is inoved Dy the nsnt nand. it
is noUiited on wneela, and rolls on any flat surface» The
w.neels ^rivs potentioreters wnicn ase read by an A/D
convener, and the systen causes a tracKini spot C'cur") to
niove on the screen In correspondence to the motion of the
isouae.

The user specifies locations in the displayed text ty
p^intin* with the nouse/cug conöinatlcn. This eilr.inates
the need for upecifyini a location by entering a cole of
»orce kind, 'jse of the nouse is very easily learned and
Äjon becomes unconscious.

on top of tne mouse ire three special control buttons,
whose uses are described oelcw.

The Keyset has one Key for each fin«er of the left nand.
Lie keys ire struck in combinations called "chords," and
each chor'i corresponds to a char«.-ter or combination of
characters from the Keyboard, There are 31 possible chords;
beyond this, two of tne buttons on the mouse may be used to
control the "case" of the Keyset, sivln« alternative
meanings to each chora. There are four ooaslble cases, for
a total of 12)1 poaaioie combinations.

A simple binary code is used, and has proved remarkably
easy to learn, rwo or three hours' oractice are usually
sufficient to learn the most commonly used rhoras and
develop reasonable speed.

The keyset Wis developed to increase the user's speed and
smoothness in operating MS, it was founa that users
normally keep the right hand on the mouse, because the
great madoritv el command operations involve a pointing
actionj efficient uae of the keyboard4 no'---ver, requires
the use of both hands, and shiftin« the rirnt hand (ard
the user's attention) to the keyboard is mistracting and
annoying 11 it must be done for eacn two- or three-letter
cor.nand mnemonic»

Uae of the keyset permits the user to Keep Ms right
hand on the mouse and his Itft on the keyset.

ikO

Appendix k
NLS/TOD*S UdBR FfiATURES

reverting tc the Keyboarä only tor entry of loni
•trinfi of text (typically ^ive or more ci. tctera).

oriiintlly, the Keyset exactly duplicated tne keyboard in
functionj in the development of NLS, hovever, certain
control functier.f have been made two-stroKe operations
from the K^yiet where they would oe three» or four-strode
operation» from the Keyboard. Ncvercheleaa, it is still
possible to operate all of the features of His without
using the Keyset; thus the beginner may defer learning
the keyset code until ne has gained some degree jf
mastery over the rest of the system,.

C. Structured Text

"Text" is used here as a very general term, A "iile" of text
(ecrrssponding roughly to a NdocuBentN in hard copy) may
tdnsist of Snglish or some other natural language« numerical
datat computer-program statements, or anything else that can be
expressed as a structure of character strings. Simple line
drawings can also be Included in a file.

All text handlird by KLS is in "structured-statement" form.
This special format is simply a hierarchical arrangement of
"«tateiöents,* reseabling a conventional "outline" form.

Each statement in a file may be considered to possess %
~ tatement number,* which shows its position and level in
toe structure. Thus the first stitestent in a file is
Statement lj its first substatement is 1A« and its next
substatenent is IB; the next statement at the same level as
the first is Statement 2; and so forth. Statement numbers
have been suppressed in printing out most of this document«
but are printed out for the remainder of this section as an
example.

Ia3bla Every »tatement also bears a «signature* whicn
nay be displayed on command. The signature is a line of
text giving the initials of the user who created the
statement (or modified it most recently) and the tine and
date when this was done.

Ia3b2 A statement is simply a string of text, of any
length! this serves as the basic unit in the construction of
the hierarchy, in English text, statements are normally
equivalent to paragraphs, section and subsection headings,
or items in a list, in other types of tekt, statements may
be data ite::.?, program statements, etc.

ai

Appendix A
Niä/IODAS U5EK FLATURES

Ia3b2a Kacn ptragraph ana heading m thii cocutnent la an
NLS atatenent, Eacft statement io indentea accoraing to
It« "level" in the hierarchy; this caragrapr. is \
•ubstatenent of the one aocve, which is in turn a
oubstatenent cf another stater.ent, A statement nay have
an> nurrper of suostatenenta, ana the overall structure
nay have any number of level».

Ia3c Kote that wnen a user creates a iile, ne nay let all of
hi« statements oe first-level ones, I.e., 1, 2, i, etc. In
this case he will not have to consider a nierarcnicaJ structure
but simply a linear list, as is founc in conventional text.

Ia3cl However, nany of tne teatures 01 '-"IS are oriented to
maxe use of hierarchy, and the cenefits of tneae features
are lost if hierarchy if not exploited.

Ia3c^ TTiia is an exanoXe cf an NLS feature to wnich the
user nust acconodate his nethodsj however, tne experience of
users has been that hierarchical structure very raplrtly
becomes a completely "natural" way of orranizinr text, Many
automatic features of NL3 naxc the structure easy to use:
for example, atatenent numoen are created automatically at
all time.:* ana the u?er need not even be aware of then, it
is sufficient, when the user creates a statement, to specify
its level relative to the preceding statement,

D. Use of the system

Text manipulation is consi-erea to involve three basic types of
ictivity py the user: composition, study, and modification. In
practice, tne three activities are so intermingled a> to oe
indistinguishable,

1, composition

composition is simply the creation of new text material a»
content for a file.

in tne simplest case, the user gives the command "insert
Statement" by tycing "is". He then colnts (with tne mouse)
to an existing statement; tr.e syatem display» a new
»tatenent number which is tne logical successor, at the same
level, as the statement pointed to, Tne user may cnange the
level of this numoer upward oy typing a "u" or downward by
typing % "d",

NOTE: Even if no previous stitemen» ha» been created,

U2

Appendix A
NL3/T09AS USE« FLATURfS

the fyittm ditplftya a N^usnyN Jtatenent at the top ct the
text-cJispiay area, and tne uttr pointa to this öun^y.

The user then type» the text of the new atatement from the
Keyfcotrd. On the acreen, the top part of the text-diaplay
ar«a if cleared and characters are displayed ftera as they
are typed. When the atatenent is finished, the user hits a
CA icommand accept) button on the Keyboard or ffi?>ufle, and tne
eysten recreates the display with the new statement
follovinf tne one that was pointed to.

Hew naterial nay also be added to existing statements by
means of conaands such as insert word. Insert Text, and
others. Properly speaKing, these operations are
aodification rather than composition, and are discussed
below.

Simple line drawings nay be compoaed and added to the file
by neans of the "vector package,;< This is discussed in
another section of this report,

2. study

Tha study capabilities of NLS constitute its most powerful
and unusual features. The following is only a orief,
condensed description of the operations that are possible.

a. Jumping

NlS files nay, of course, contain a great deal more text
than can be displayed on the screen, just as a document
say contain nore than one page of text, an NLS file is
thought of as a long "scroll." The process o? moving
fron one point in the scroll to another, which
corresponds to turning pages in hard copy, is called
"dumping." There is a very large family of JURP
cosnands.

The basic juap command is jump to Item. The user
specifies it by entering "ji", and then points to some
statement with the »oust. The selected statement is
moved to the top of the screen, as if the scroll had
been rolled forward.

.-lost of the jump commands reference the hierarchical
structure of the text. Thus Jump to Successor Prints
to the top of the display the next statement at the
same level as tne selected statenent; Jump to

1*3

Appendix A
NLS/TODAS USER FEATURES

Prftdec«asor aoc* g^e reverse; Juno tc UP flt^rt• the
display with the statement oi whicn the selected
statenent la a substatemeni, and so forth.

The Jump to Name command uses a different way of
addressing statements. If the first word of anv
statement is enclosed in parentheses, tne system win
recognize it as tne "name" oi the statement. Then, if
this wora appears somewhere else in tru text, the user
may Jump to the namea statement by pointing to the
occurrence of the name, or py typinj the name.

This provides a cross-referencing capability whicn
is very smooth and flexible; the command Jump to
Return will always restore the previous display, so
tha tne user may follow name references without
losing his place.

It is also possible to Jump to a •t»tenent by typinc
its statement number.

b< view Control

If a file is lonf. It may &? impossisle for the user to
orient hinstf.l.i tc its content anrt structure or to find
specific sections py jumping trrouRU it, rne principal
solution to tKs proolem is provided by level control and
line truncatioi.

Level control permit« tne user to specify soi^e number of
level»; tne system will then display only statements of
the specified level or higher. Thus 11 tnree levels are
specified, cnlv first-, second-, and tnlrd-level
statements are displayed,

line truncation permits specification of how many lines
of each statement are to be displayed, Tnu« if one line
is specified, only the first lint of each statement win
be displayed.

Common usage is to use the first two or three levels in a
file as headings describing the material contained under
each heading in the J?orm of substateme^ts. Thus the user
may start by looxlni at a display snowing only tne
first-level statements in the file, one line of each.
This amounts to a table of contents.

Ke may then select one of these statements and jump to

1U

Appendix A
NLS/TODAS USER F^ATURKS

it, specifying one more level. He will then aee r.ore
aetftlls of the content of trut part, of tne file. Thia
process of "exoandmg the view" mty be reoetted until
the uier has founä what he i« iooklnaE for, at which
point ne may soecify a full dlsclay of the text,

üaer.« rsoon develop a habit of structurinf file- in
auch a way that thia proceaa will work well. Af it
happens, such a atructure is usually ^ jooa, loeical
arrangement of ^he material, reflecting the
relationsnips inherent in the content.

The level and truncation controls are designed ao that
the necessary specifications ray be made with only one or
two stroKea of the keyboard or Kcyaet, Tneae controls
are only the moat important of a large aet of
view-control parameters called "ViEWSPEca," otrtr
viEWSPEca control a number of special NLS features
affecting the display format,

c. Content Analysia

The NLS content analyzer ptrrait» automatic searching of a
file for atatements satisfying some content oattern
■pecifiea by the uaer. The pattern ia written in a
•peclal language aa part of the file text.

content patterns may oe simple, spacif/ing the occurrence
of some word, for example, xhey may ai"0 he highly
complex, specifying the order of occurrc ce of two or
more strings, the absence of som^ text co.struct,
conditional ipeciflcaticna, etc. Simple patterni #re
extremely easy to write; complex ones are correspondingly
more difficult.

d» "Keyword" system

A keyword statementh is a named statement which
references other statesents in the file by name, in a
ipecial format. The name of the keyword statement la
then understood to be a "Xeyword" apciyirg to the
statements referenced by tne keyword statement.

Suppose that a file contain« a list of Keyword
statements. The user may study this Hat and select
several keywords with the Keyword select command
(pointing to the keywords with the mouse).

US

Appendix A
NLS/TCDAS USEH FÜATUHES

He may specify a wenht iron; 1 to lo for each
Kcyworu; if no weight la specified, a weicht of I
is aasumed.

When the user fiives tne Keyword Execute co^rand, a
scarching/scorin« procesi la executed« Each of the
selected Keyword statenenta is scanned for the nanes
of atatements that it references. Each referenceä
statement receives a "score" equal to the weight cf
the keyword. If a statement is referenced in more
than one Keyword atateitient, the scores aad.

when this process i« completed, NLS constructs a
display picture shewing only the statements tnat hive
received nonzero scores, in order of decreastnr
acorcrf.

in other word«, each Keyword is tne name of a statement
tnat leflnes some category of staLements in tne file,
when a user selects and weients keywords, he is
expressing nis interest in certain of these categories«
NLS then displays all of the statemerts in these
categories, beginning with the "most interesting.'

because the re«»tlonflhJ.CJ usea in tnis system are s^t up
explicitly when a user write« Keyword statements, the
system is very flexipls hlthougn not hifhly automated.
It nay oc regarded as a reneralized method of reordering
some cf the statements in a file on the fcasis of
user-selected criter^ chosen fre® a supplied list (the
Keyword statements).

Note that this reordering is on the display, not in
the file proper, ihe file proper is not affectsd In
anv way, except that '-he list of selected Keywords and
weights is saveu in the file.

This list my be displayed on command. Individual
Keywords may be deleted from the list or their
weights changed, or the whole list can be deleted
on command,

LinK jumping

A "linK" is a string of text, occurring in an ordinary
file statement, whicr tncicates a cross-reference of some
Kind, It may refer to another statement in the file, or
to a statement in some other file, possibly belonging to

lk6

Apptndix A
HIS/TODAS USER FEATURES

another NLS user. The text of the link is ootn
huntn-retdÄöle and macnlne-readaMe, and tne ccnmard Ju^no
to LinK permits the user to point to tn^ link with the
nouae and imnedlately see the material referred to.

An exampie of a link is {smith, Plans, LonirangetebtnO.

The first item in the link indicates that the
referenced file belonits to a user named Smltn; tne
secono is the name cf the file; the third is the name
of a statement In the file (a «tatenent number nay
also De used^; and the string of character? following
the colon controls tne VIEWbPECs to set up a
particular view of the material.

The use of interfile links permits the construction cf
lane linxed structures maae up of many files, and
study of x.hese files as if they were all sections of a
sinjle document.

3. Modification

A large repertoire of editing command« is proviced for
modification of files. The basic functions are insert,
Delete, Move, and Copy,

These functions operate upon various kinds 01 text entities,
Within statements, they may operate upon •ingle characters,
words, and aroitrary strings of text defined cy pointing to
the first and last characters.

This set of commands is not restricted tc operation
vithin one statement at a time; for example, a word mav
oe moved or copied from one statement to another.

The editii.g function« also operate at the structural level,
taking statements or sets of statements as onerands, A
number of special entitles have oeen defined for this
purpo«ei for example, a "branch" consists of some specified
statement, plus all of its suostatements, plus all of their
substatements, etc* A branch can br deleted, moved tc a new
position in the structure, etc.

As noted above, the modification activity tends to merge, in
practice, with study and conoosition.

117

Appendix A
NLS/TODAS USER FEATURES

E, Surmary

It nuat be noted tntt MS Is not a system ^esiened for eenerai
usage, but a specialized tool designed for a ?troup of people
worKing on the development of computer aids to numan
intellectual processes. It is for tnis reason, for example,
that :!LS is not really a text-edltin« system oriented toward
hard-copy production, bat ratner something simultaneously more
general and more specialized.

It ii in the process ot manipulating a file •• studying it,
naKing nodifications, adain? new material as an integrated
process lasting for minutes or nours at a time and having a
continuity extending for dayi, weexe, or even years -- that tne
real benefit of NLS appears.

An hLH file tends to become an evolving entity, suoject to
constant moaification, updatinr, and reevaluation. Its
dcveiopme-it may have r.o clearly defined endpomt. It may
cease to ;xist as a file by being incorporated in another
file, or *t may eventually ^e abaracnec; however, it will
probably never oe "finished1* in the usual sense of the wora.

Continuous use of NLS to store Icis, study the-, relate
then structurally, and cross-reference vnem results in a
superior organization of ideas and a greater ability to
manipulate then further for special purposes, as the need
arises -- whether the Hidea«,, are expressed as natural
language, as data, as programming, or as graphic
information,

II The Typewriter-oriented Documentation-Aid system (TODAS)

TOßAS is a text-hanalmg system designeo as a "type^ritür"
counterpart to NLS. In principle, TODAS can be operated from a
Teletype or any other sort of hard-copy terminal, including
terminals linked to the HO through acoustic couplers and ordinary
telephone lines (as epposea to NLS, which requires special
transmission arrangements).

The present implementation allows for the use of Teletyoe
Models 32, 3^, and 37, Termmet and ixecuport terminals (the
letter having a built-in acoustic coupler), and NLS display
terminals,

£»ch cl these terminals has its own character set, no two sets
being exactly the same except Teletype Models 33 and 3^. As a
result, special-character assignments are device-dependent, A

,Uft

Appendix A
NLS/TODA'S UStR FEATURES

SODAS feature allows the user to redefine characters at will to
• uit niß inned.iate purposes.

The primary purpose of TODAS is for access, within the ArPA
computer Network, to the Networx Information Center (Nie) operated
by ARC. TODäS will give NetworK users access to flies of
information created either with TODAS or with Ni,s, since files
created bith the two systems are identical in structure ani
format,

TODAS has many of the same capaoilities as HIS for the
manioulation of text; it differs Iron NLs as requireö by the use
of a "typewriter" device instead of a casplay, Tne important
differences arise from the xact that TODAS has no analog cursor
device to correspond to the KLS nouse.

For this reason, raitine of text within a statement cannot be
done by means rescüiblinK these of NLS, since all of the NLS
editint operands are indicated by the user with tne mouse,
TODAS uses two alternative metnecs.

One is the loDAS "alter" command, which operates very much
HKe the "modify" command of the Wtr line-editin, system
developed by Project SEMIfc at uc. "Alter" creates a new
statement to replace the original one, by jtoing through the
original from besinnln? to end; unoer user control,
characters are (1) copied from the old statement to the new,
(2) skipped over, or (3) inserted into the new statement
from tne keyboard.

The other is the TODAS "substitute" command, which allows
the user to specify that a certain ■trint of characters in
the itste^ent is to be found by TODAS and replaced with
another speci.ficd string.

At t^.e structural level (where the user wisnes to manipulate
statements and sets of statements aa units), NLS permits the
Maer to identify statements by pointin« with the mouse; TODAS
requires that itatements be identified from the keyboard.
Considerable flexibility is provided in t.is operation.

The user may identify a statement directly by typing its
statement number or Its name; he may also Identify it
indirectly by specifylni its structural relationship to some
other statement whose numoer or name he knows off-hand.

indirect specification corresoends to the use of NlS
commands such as "Jump to hekd," "jumo tc successor,"

U9

Appendix A
WL3/T0DAS USER FüATüRtS

etc., but with the added fetture tnat relationahlpi n»y
toe concatenated «- tnus tne user nay, in a single
operation, specify a complex relationsnto such as tne
successor of the first substatentnt of the predecessor of
a riven statement,

A fpeclal TODAS capability not yet tnplenente^ in NLS is
"executable text,"

A TODAS sta-enent nay consist of the spring of characters
that a user would tyoe from the keyooarn to perform some
complex sequence of operations, xnis statement may then be
executed with a special command, an'l tne result will be
exactly as if the user had actually typed these characters,
causm? the sequence to be carrieo out.

The sequence may, in principle, be arbitrarily complex; an
executable statement might, fc;* example, contain tne
following sequence:

(1) Load a file whose name is specified elsewnere in the
current file

(2) Search this file with the content analyzer, findim
statements with a specified pattern of content

(3> write these statements out in a temporay "buffer"
file

(a) Reload the original file

(5) Copy the statements in the "buffer" file into a
specified location in the working file,

A special "switch" cnaracter may be used in the executable
text, iahen the switch character is encountered, execution
of the text is interrupted and control reverts to the
Keyboard, Tne user then enters part of the control sequence
manually} when he types the sitch character from tne
Keyboard, execution of the executable statement resunea at
the point where it left off. This features affords great
flexibility, since it allows part of the sequence tc be
specified ahead of ime and part at "execution time,"

Besides its primary purpose as a Networx user's interface to the
NIC, TODAS is used within AHC as » supplemental tool to NIS.

TOPAS can be used ccnvenlentlv for many tasKs tnat do not

ISO

Apps'fitix A
NLS/TODAS USEH FEäTURFÖ

require the rs^id display resnonae of NL5, anfl nas tne
advantage of creating significantly leps load on the overall
tinesharing system. We currently have one clerical worker, vno
is not an NLS user, operating TODAS routinely for entry of
information and ior some limited retrieval vorK,

Additionally, we fmd X0DA3 useful for remote accessing of cir
systepi. We have made TODAS available to selected consultants,
who use home terminals with acoustic couplers, and re^jlar «nZ
personnel occasionally do work froM tneir homes p/ tne same
means.

The prototype version of TOLAS went into service in seot^nncr
1969J a second version, with greatly txpandea cipaoilities, pecame
operational early in 1970.

Ill Output Facility

NLS and TODAS both use the same facilities for producing formattea
hard-copy output from KIS/TOOAS files.

The devices In ordinary use at ARC for lurd-cooy output are a line
printer that proauces upper/lower-case print of adequate quality
for local use,, and a paPer»tape-driven automatic typewriter used
for final output of reproducible copy for reports, proposals, etc.

The output-processing program (Known as "PASSk") can Pe controlled
by the user to a considerable extent. This is done py nesns of
"direc^ves" embedded in the file text, Tne directives can oe
used to reset page parameters, control pa^e numoering, znd turn
various format features "on" or M&ff0

M

For example, directives can be used to suppress indentation of
statements or change the amount of indentation, to create
"running heads" that are automatically printed at th tor of
each page, suppress statement numoer«, etc. one cf the
directives causes all directives to pe suppressed from the
output,

in addition to the line printer and the automatic typewriter,
PASSt can output a file to magnetic tape^ appropriately formatted
to drive CRT»to«»film conversion equipment for croduction of
microriln.

in all cases, the user may elect to output an entire file or only
part of the file, in the latter case, hf may c use output to
begin at some specified ooint in the file instead of at the
beginning, and he nay cause the printout wo be limited oy the sa:ne

151

Appendix ä
NtS/TODAS USEh FEATURES

kinds of criteria that n^y be used on tne OiaDlay -- i.e,,, content
analvsia, limited numoer of structural levels, etCc

IV Glossary of scecial NL3/To:AS Terminology

BRANCH? A s^ecifisd atatenent, plus all of its »uoatructure --
1 e. all of it» suDstatepents, plus all of tneir subataterents,
et ^c

BUG: Tne nark on the screen whlcn i« noven by tne nouse and wnicn
!• used for selecting (pointing to) entities on tne display.

when tne bug is "active," i.e. *nen a selection can be made, it
aopears as an up-arrow; when it is inactive it appears as a
plus sign.

CHARACTER: Any let , digit, punctuation r.ai^, soace, tab, or
carriage return; an indivisible entivy.

CHORDS A conbination of Key« on the keyset (see KEYSET).

£NDJ The l£it statement in any branch; specified by upeclfying tne
branch.

FILE: A conplete tree structure of itatementf with a sinsie root
(the origin statenent'.

FILENAME: The nanc of a file. It apocarrf as tne first won in tne
origin statement cf an existing file, and must be supplied by the
user in creating a new file,

QAV CHARACTER; Any space, tab, or carriage return.

OCHARi Abbreviation for GAP CHAHAGTEft.

GROUP: A subset of a plex, consisting of all trancne.* fron or^e
specified branch to anotner, inclusive.

HEAD: The first statement in a sublist.

The head is apecifitd by pointing to any statement in the
sublist.

INVIÄIöLEJ Any consecutive stnrg of gap characters, bounded bv
<but not including) printing characters or the end of a statenent»
see PRINTING GKAKACTfc^, SA: TrtAHACTER, STATEMENT.

Specified by pointing to any cnaracter in the string, if a

152

Appendix A
NLS/TODAS USER FEATURES

•infle prlntinf character lyinr. Detween two mvisiolea is
pointed to, both inviiiMe« (and the printing cn*r*cter) are
pelected,

KEY5ETJ The device at the left-rand aide of the console, »hen a
coRöination of Keys (a chord) is depressed on the Keyset, the
effect it the sane as striking a Key on the xevooaro.

KEYWORD: The name of a "Keyword statemcnL."

KEYWORD SXATIMENTi A statement which lists, in a special lornat,
the nanei of all statenents in the sane file that fall into sen«
arbitrary category.

The "Keyword systen" of NLS/TODAS connanca, operating uoon
Keyworo statenenta, performs infornation-retrieval operations
ba««d on the sets of stattwents defined in Keyword statement«.

LABELi A string of text placed in a picture oy means of a command
in the vector pacKage,

LEVADjt The specification of level when a statement, branch, plex,
or group ü newly created or moveo.

LEVEL» The "ranK" of a statement (see STATEMENT) in the hierarchy
of the file (sec riLE).

Tfte level is equal to the numoer of fields of letters or digits
in the statement numberj thus statement ^ is a first-level
statement, statement kal0g3 is a fifth-level statement, etc.
Level ia nt great importance In understanding the hierarchical
structure of an NLS file,

MOUSEi Tne device at the right-hand side of tne Keyuoard. «hen it
is rolled around on the taoletop, it causes the bug to n.ove
correspondingly,

NAHEi It the first word of a statement is enclosed in parentheses,
it is th« KAHE of the statenent.

The co»aand jump to Kane can then be used to place the
statement at the top of the aisplay. This is done ty entering
the name from the Keyboard or Keyset, or by finding an
occurrence of the name as text on the display and pointing to
it with ihe bug.

ORIQIHI The first statement in a file; it contains information
about the file, plus any other text the user inserts, it has a

1S3

Appendix A
NLS/TODAS UwSEH FtATUREä

level of ü, ana nen*. ; no atonement numoer*

PATTERN: A string of «pecltl-linsuÄ^e text In a statement which
may i^e conpiled via the comr.and Execute content Analyzer, «^en
conpiledj it proauces a Drogran t^.at is jseo oy the
concent-analyzer xeature.

PCHAH: Abbreviation for PRINTING CHA^AOTER.

PlEXi Another name for a SUbSTkÜCTÜHE, wsed in command
Süecifications.

A Plex 11 aoecifleo ty pcintins to any one of its nignest-levei
itatements,

POINTER: A string of up to tnree cnaractera rfnicn i» attached to
acne character in the text with the pointer Fix conr.ana.

PK£CECESSOK: The atater.ent orecedini a «pecliied atatcnent in a
SUBLIST.

PRINTING CHARACTER: Any letter, digit, or punctuation narx.

SOURCE; The statenent of which a specified statement ia a
suDfltatenent.

siGNATiMt: Information at^red with a statement (and displayed on
command) giving the initials of tnc user who created tne statement
(or most recently modified it) ana the tine and date when this
occurred,

STATKMZNTi The oaaic structural unit of a file of text in NLS.
fornally, it is a string of text and/or pictures which is r.ounded
at the DCgmninit py the end of the previous statement or the
beginning of the file, and pounaed at tne end oy tne begmnlnf of
another at^tenent or the end of the file,

Staterentc are arrangea m a tree structure or hierarchy an^j
are assigned "statement nuBbers" which indicate their positions
in the structure. Each statement has a numoer, made up of
alternating fields of dirita and lettersj the nunoer of fields
indicates the "level" of the statement (see LK«£L)«

A statement is specified PV pointing to any Character in the
string.

SUBSIST: The set of all supstatements of a specified statement
(not Including the substatements of the substatenents),

15U

Appendix A
NLS/TODAS USER FtATUHES

SUBSTATLMENTI k itntewent WXM is ctllea a aueftatenient oi anotner
ttatcnent "y if it is deeper in the itructure than "y,"' if it
foJlova ,,y,M and if mere Is no intervening nlgner-orfler
statement, "Y* 1« called the source of "X." Ine «latenent number
of "X" will be the sar.e as that of "Y" except that it will nave
one more field at the end. The value of this field fives it«
ordinal position in a ,,subli9tM cf the subatatenents ^f "Y."

A substatenent is specifieo oy pointmr to tne source
statement.

SUBStaUCIUHl: The set of all substatemen^s of a specified
statement, plus all their substatements, eve. until no more are
found. Tne set of all tranches defined oy statements in the
sublist of a given statement.

SUCCESSOK! The statement following a specified statement in a
sublist.

TAIti The last statement in a sublist.

The tail is specified by cointini to any statement in the
sublist.

TEXT: Any strin? of characters within a statewent, bounded by
land includlnt) two specified characters: se*? CHARACTER
STATEMENT.

TRAIL: A set of statements in a file, whicn car be displayed
sequentially Dy using the trail feature.

VECTüRJ A line in a picture.

VlälBLEi Any consecutive string c-f printing characters, counted
by (but not including; gap characiers or the end of a statenentj
»fe PRINTING CHARACTER, SAP CHARACTER, STATfKXKT.

Specified by pointing to any character in tne string. If a
•ingle gap character oetween two visibles is pointed to, then
both visibles (anä the fap character) are specified.

MORDI Any consecutive strinn of letters and/or digits, poundea by
iput not including) any otner types of characters or the enU of a
•tateaenti see STATErttNT,

Specified by pointing to any character in tne string. If a
single character is pointed to which is not a letter or digit
and lies between two words, tnen botn woras (ana the single

155

Appendix A
NL3/T0DAS USER FUTURES

ch&ncter) tre ipecifled.

156

Apoenüix b
THE DIALOGUE 3UPPOST SYSTEM (DSS) AND Tht JOÜHNAL

I Preftc«

rcr hia dissertation study 9.1 Stknford University, Dr. David A,
Evsns (then tn AHC stafjf ncnber and associatea witn tnc Kana^enent
Systems Research Activity) developed tne c-.se for aupwentation of
planninf teams.

His thesis (Ref, 1), written with NiS« is over five hundred paj^es
in length, in it he presents fcr the planning comrcunity a Pre*- 1
description of ARC'S aunnjentataon approach, aevelopnenta achiev-n
by ARCf and extrapolationn relevant to the planning con-nunity.

As a special case study, Dr. üvans InteRrated tne considerations
and possihilities for the Dialogue bupport Sysfen, as developed
within the ARC over a number of years and as studied specially oy
Evans under this contract.

Selected extracts fron nis tnecis, sUgntl" condensed, are
included below as a good source of relevant concept material aoout
the DSS. These nay be considered as trial design ,tOtes; the final
deai^ns for the various parts of tne DSS, and their order of
development, are yet to be developed.

II Basic Components cf the Dialogue Support System (DSS)

The DSS can be considered to have two basic parts: (1) the
Journal, and (2) a set of NL3 features especially desi^nec to
operate on the Journal.

A. The Journal

Cht of the most dramatic things HIS enaoles its user to do is
operate on and maintain extremely "plastic" and malleable
records of his thoufht and worn.

This ever-changing plasticity is the root of basic difficulties
in extending NIS for dialogue support. When member« of a team
ai'e contributing to a plan or design, one of the nost important
things is that the "tarcets" of their contributions remain
stationary, as if in a diary, or journal, ironically, the
design of a "Journal" to maintain stationary-target records of
the transactions of members of a team proved to be innovative
in the HIS environment, whereas it would be "normal'' if we were
dealing with simple pencil and paper.

The Journal is a special repository for NLS files whlcn may be
"sent to the journal" and no longer modified, or changed in any
way.

157

Appenälx b
THE DSS AND THI JOURNAL

The äcfim oojective of tne Journ»! is to provide th^j ca»is for
evolution of a diary for a team, sufficiently rich to play the
sane role as a personal diary plays wnen used for record
keeping« and as the oasis for composition, reflection, and
extended menory.

B, Operations aased on Journal Entries

The second component of the D3S is a collection of special NLa
features, designed to ina<e the Journal useful as the oasis for
supportins team dialogue.

The Journal provides the team "le^Ders witn a chronicle of their
contrioutlona to plans and designs, NLS, as extended for use
as part of the DSS, is a vehicle that (for example) enatles
team members to annotate contriöutions from others, to call for
specific action, to make synopses of records relevant to
specific issue», and to naxe contricutions to the evolution of
plans and aesiins that are efficiently and appropriately
integrated and connected to the entire record of activity.

At another level, HIS is a vehicle enaolin« team memoers to
"brorfse* in tne Journal, to arrive quickly ind efficiently at
an understanding of the status of plans and designs tnat are
being documented, monitored, or evolved through the medium of
the DS3.

Interspersed with this and the previous roles, extended NLS
features enable team members to retrieve information from the
Journal, to modify and update tftifl information, and to return
it to the Journal without destroying the orifinal
contributions.

Ill Design of Architecture for the Journal

A. Introduction

Th« boundary between the Journal proper and the ML3 features
that support it is not cloariy defined, as those features
necessary for aervicing tne Journal also, indirectly, support
the special DSS features. However, t.ie discussion can oe
simplified by means of this di/lsion.

3. stationary Targets

The ideal record system for dialogue support would be some
large, central, evolving record that would ireep tracK of tr.e
team's activity as team members contributed modification*, new

156

Appenälx S
THE DSS AND Trifc JOURNAL

ide»ff new cJeai«ns, ■seclflcfttiont, and 90 on, over tirr^, «e
n&ve only to consider the problems raised bv the OäSIC
file-nindling operations of the current NLS to appreciate the
difficulty of creating such an evolvintr record of transactions.

In any attempt to use files for dialogue purposes, the first
protden encountered arises fron nultiple access to files, when
k file i* strictly the "rroperty" of its *uthorfl dealin« with
material for which he alone has prine responsibility, the file
owner can quite easily keep traci« of its developrent.

However, when several individuals nane active use of a file/
it becomes very difficult for the individuals to avoid
caneclin? each other's work or otherwise interfering with
each other. They cannot all access tne file simultaneously,
and so copies are created; *oon there are multiple copies,
each copy containing changes and additions made
independently oy varicus users. It is then impoasiole, in
the general case, to put these copies oacK tocetner in such
a way that all the work done on the separate copies is
preserved.

The proolens is much like trying to hit a moving target in the
dark, and the desired solution is to find some way to naKe the
target stop moving -- nence the phrase "stationary targets,"
The existinj capabilities of NLS and the file-handling
faciXtties used by riLS are not adequate for achieving this.

For exanplei it would be possible with existing capaMlities
to give all files a read-only status, so that once a file
was created it could never pe modified. This would overcome
many of the problems of multiple access; however, it would
also destroy most of the power and usefulness of NLS ss a
tool for manipulating Information,

Likewise, it would be possible to give all files a public
read/write status, permitting any member of the team to
modify any file at will, it can be seen that this would
lead to immediate chaos 1 a team member working on a file
and wishing to make reference t© another file would have no
assurance that the referenced file •till contalnea the same
information as when he looked at it last,

Tne concept of the journal is a way to create stationary
targets without the crippling effect cf a blanxet read-only
policy or the anarchy of a blanket public read/write policy,
files "entered in the journal" haver in effect, read-only
statws, but numerous capabilities are added to compensate for

IS9

Appendix B
TH* DSS AHD TH£ JOÜHNAL

tnifl; moreover, the Journal cont»tini only aelecteö files wmcn
are comidered \Q oe "ready" to become stationary targets,

C. The Journal

The Journal is a public repository for information of concern
to the team of users. A file sent LO the Journal becomes a
public record. In principle, j,t least, it cannot in any way oe
altered, or retr*ctec.

The autnor has "gone on record" witfi the statement male oy
the file's content. He may keep a copy of the file entered
in the Journal, a^.d make raodlMcations ana corrections in
that cooy, but cannot replace the oripinal ftle in the
Journal by over-writinc it with the revised version. Both
the original ana revised versions may be entered in the
Journal.

A basic Journal function is to provlae users with necfcanlfi»,i
and aids to reccgnlze that "later versions" in the journal
nave been entered, and to provide users with features to
enable tftta to retrieve and display the multiple versions of
a fiven file.

in keeping with other inon-computeriÄed) Journals, the only
ordering imposed on Journal entries is cnronoloiical.

in NL3, "Journal" becomes a distinct user name, with a status
similar to all ethe5" users,

However, the Journal adds a second distinct domain of files to
the HLS file universe. Journal flits iuve special features.
They are all read-only. They possess two carts -• the
text/ttraphies portions written oy their author, and clocks of
data containing information added to the file after submission
to the Journal.

The first coraponent is totally frozen? once a file is "sent
to the Journal" the "maximum" user representation for that
file may not be subsequently altered.

But the second component, d*ta blocks, may be changed
through the addition of new data over time.

1. Journal Entries

Although wc have been discussing "files" in the Journal, we
should refer to a module of information m the Journal as an

160

Appendix B
THE DS3 AND THE JOURNAL

'•entry,H from the viewpoj.nty of the NLS file system, an
entry is synonynoua with a file. However, we wish to
cnphasixe the notion of collecting information from nanv
files tofcther into one nodule, ana sending that module to
the Journal as an entry. For tnls reason, we will persist
with the terninolocy "entry* rather than Mfl*e" wnen
diicussini the Journal from the point of vl«w of a user
(contrasted to the viewpoint of the System),

D« Sending an Entry to the Journal

Because of the exlttence of two file universes (rcfular NLS
filei, and Journal entries) a user is not compelled to sunmit
all of his filaa to public scrutiny.

He nay yceep his personal collection of files containing als
notes, plans, special reminders, etc., separate from the
collection of files he supmits to the Journal.

within this personal collection he retains tne option of
controlling read and write access by other users. He may,
for instance, have several files that contain
private/confidential infornitlon that is ef no concern to
the teas as a whole.

However, the decision to submit one of his owi, files to the
journal is not totally the prerofative of the user himself,
unless all his files have private status.

Files stored under a civen user name, nith otner than
private status, nay be entered to tne Journal by any other
user. This is similar to the procedure of havinc testimony,
or a speech, or other data, read into the (Con?ressional)
Record*

However, in most cases. Journal entries ar^ submitted by the
user who has the file (or component files) stored under his
name, as part of the standard NLS fll« universe.

For one user to submit another's file to the journal, he must
first load that file, maKe a temporary copy, and submit that
copy as a Journal entry as if it was one of his own "normal"
NLS files.

Enterinj a file to the journal involves the foliowint
operations!

(1) A copy of the file beim submitted is made.

161

Appendix B
THE D33 AND THE JOURNAL

(2) Xn&t copy is igatn copiea, oy the syatcm, End
(automatically) written as a new file urier the UST name
"journal," It is Riven a new name, wnicri is a unique
"Journal Lntry Nuncer," and set tc read-only stavja,

(3) Trte user suofflittinn this iile is given a "receipt" py
tne system, indicating tnat entry to tne journal nas been
successful.

The result is that a "snaosnot" of the user's file has been
recorded as a Journal entry. The user nas complete control
over the VIErfSPECS controlling the view and amount of the file
submitted to the Journal. For Instmce, if ne so chooses, the
user may submit only the first level statements in the file.
Or he may submit only selected statements in the file -- for
instance, only those that satisfy a specific content pattern..
He may, of course, choose to employ no special VIEi»SP£CS, and
submit the entire file to the Journal. The VIEWSP&Cs used at
time of entry to the journal determine the maximum subaecuent
view for that Journal entry.

Subsequent readera of the journal entrv may employ all
avajlable VIErfSPECS to help them study the content of the
entry, out are constrained to this "maximum'» view. This means,
for example, if a file is submitted to the journal with a 1-1
VIEHSPEC (i.e., only too level statements, and only one line of
these), suDsequent readers can view no more information in that
entry, otner tnan the l-l view, even if he uses a VIE«SPEC such
as ALL-ALL (i.e., ail statements, and ail lines of eacn
statement).

Thus the result of this entry procedure is the creation of a
new read-only file, a stationary target,, under the user name
Journal, with a unique journal üntry Number as its name.

E. Journal Entry Linkage Systems

Once we have procedures for submitting entries to tne Journal,
the next major need concerns linKinr the Individual stationary
target» -- the journal entries -- into a faoric of
interconnected information.

162

Appendix B
THE D3S AND THE JOURNAL

cttten^nt» witni.i the «äITJC file. This baue wea-Kneaa leads to
inölscrlffilnate deletion or alteration of file»»

To solve thlf problem In the DSS, journal entries will nave
"bacfcllnkf.w Tnis weans that wr.en a link Is establlsned in a
file (for instance, a file not in the Journal), a special
maricer will oe written automatically by NLS in tfce appropriate
location of the referent file, indicatlni that a link it
pointinc at that entity.

This «arker will five subsequent readers of the referent file a
visual signal that the raarkeo entity is tne target of a link m
another file, A new HIS command. JUMP SACKLINK, will make it
posiible for the user to jump from tne entity in the re/erent
file "back* to the statement containinc the link in tne source
file.

There are five cases of file-pair linkages tnat produce
problems:

(1) Llnkaic between two standard his flics, A and B, from A
to fa, and file A subsequently becomes a Journal entry,

prc-ble»! The link in A continues to refer t^ 8, and is
unaware of the formation of a Journal entry fron B, If b
is deleted, the link points to a non-existent file.

Need: Additional bookkeepini to redirect links to the
appropriate Journal entry if P is deleted cr otnervia«
modified to make the link inappropriate»

(2) Linkage between two standard NLS files, A and fe0 from A
to B, and B subsequently oecome« a Journal entry.

Problem; The öacklink attached to the referent entity in
b points back to A, and is unaware of the Journal entry
made from A at a later date. If A U deleted after its
ccpy is sent to the Journal, subsequent efforts to JUMP
BACKLINK on the backlink marker from A in B will yie*d a
"no such1* message,

heedi Additional bookKeeping to redirect tne öacklink to
the appropriate Journa1 entry if A IS ever deleted or
otherwise modified to .ake the ötcklinJ? inapprooriate.
This le^ds to the concept of indirect linking.

163

THE 035 AND THE JOU?. ., L

(3) Llnktiiea oetween two atandtrü ^'LS file«, A and B, frrn
A \o 3, fcnd oota A ana d Juosequently oecome Journal
entries,

ConDination of rroole^j ana neeas of cases i ana 2,

U) LinKage frcn a Journal entry to a standard NL5 file
tnat suosequcntiy becones « Journal entrv,

Prc'liT.s LlnX in T.ne Journal entry is unaware of tne
exist«'""« of tne Journal entry ?iade from j.

Needs äcoKKeeoing necessary to redirect tne lln** if
requested, o the appropriate Journal entry i£ so
requested ay tne user,

<5) Linkage fro^ a standard NLS file to a Journal entry,
and the standard NLS iile supiequently pecoir.es a journal
entry.

Safflc a» Case u except we are concernei wltn Daci<llnKs
rather tnan linKS,

F, Otner Basic Journal Needs

In cur lrst»pass discussion of jo'/nal architecture and needs»
we snould consider two additional general needs, archiving and
catalcsuing.

Archiving is necessary because the current systen has United
storage area for files accessible to NLS, The only mass
storage devices presently avaiiaoie in the ARC facility arc
ntgnetic tapes, arj so, at first, the Journal will have a
sequential archive. All Journal entries nave arcnival copies.
The archivil, systen provides a iacx-up to tne colon copy of a
Journal entry in case of disaster, and a large tertiary storage
area for those entries not frequently referenced, that do not
have to be kept continually in colon file storage on the disk,

Kajor archiving problems arise because oi »ddiiional data
ilncludin' bacKlinks) associated with an entry after it is
submitted t- tne Journal,

riles are allocated a finite number of b:jcks on a
magnetic tape at the tia« .hey are written. Data added
after the entry is m •'* may be written in this "S1CDH

area until it is filj. . dut from then on, these data
must PC stored elsewhere, only minor proplePis arioe If

16li

Appendix B
TH£ n*S ^ND TH£ JOURNAL

lt\ti it4dlt.ion4l «Sat* can Be stored elsewhere on tnc sine
tioe, wltn a lln* from tfte orijjinal entry to a special
ille, eisewnere on that tape, associated with that entry,
containlni additional d*tft6

However, when the tape is filled, these dtti nave to be
stored on a separate tapee This causes considerable
difficulty when retrieving the entry and its associated data
fron the archive. There is r.j simple solution to tnis
proolen while magnetic taoe is the arcnlval media, Tnea.*
problems wlii not arise with random-access mass»storafe
media.

The final basic Journal feature is 4 catalogue., Obviously, a
Journal reader requires a guide to the contents of the journal,
and this is provided by the catalogue.

The Journal Catalogue will have tnree prlrcip»\ parts;

(1) Subject index

(2) Citation list for journal entries

U) Keyword lists.

IV Design for Detailed MIS features to support DSS

A* SubDlssion of an antry to the Journal

I« Entry/Receipt Procedure

«hen a file is submitted to the Journal, the first
operation« are concerned with creating a new journal entry,
allocating a unique number to that entrv, and giving tne
sender a receipt. This receipt acknowledges the entry ha«
been made sucessfuliy, and supplies the sc der with
sufficient information to enable him to locate and retrieve
the entry at a later date«, Details of this procedure are
illustrated in tne following scenario,

a« Scenario; kntry/Recelpt Proecedure

(1; Assume tne user, X, has asserbled a file (X,xl) to be
submitted to the Journale

(2) he activates the new .'13 command "iHTlR TILS TO
JOURNAL filename," enterlnr the filename XI, as the
operand for this command.

163

Appenelx B
THi D3S AND THE JOURNAL

(3) NLS rt4Ke« & copv of the file (X.XD as 4 teinpo^ary
file, (JOURNAL,Tl), l.Cc, under the user name "Journal."

(U) Iineätttely after naKing r«Ma new file, ^!ie syste-n
cnecKs ä special record, ccntamm? a '•journ«! bntry
Munter,H ta^lnu note of the tine anJ aate this cnecK is
made. Journal Kntry Nunoers nave the forn "^NNjitMy."

"NNN" is a serial nunoer, ir. the ran?e 1 to a where z
is aroiirarlly iar^e.

"jM is tne literal character "J," indicating that the
nunoer refers to a Journal entry.

"MM" is tne nontn tne entry was subnittei ;<!,«., 11 »
Novenoer).

"*" 1« the year the entry was suonlttea (e.i,, 9 ■
1969) ,

Tne ' -rial numbers, NWN, are initialized at tne start of
each flonth.

-xar.ple: If liS62Jll9 is the last entry submtted to
the Journal in tne nontn of Movemter, 1969 ixnCi •:* j.n*
that iiS62 entries were submitted in that nonth)B the
next Journal entry would be allocated the number
1J129.

Assume tnat the nunber in this location at the ti*e of
this particular access was Ji37J119„ and the exact time of
access was iii51:30, on 11/13/69. once thi« nunoer p.gs
been secured, the system updates the latest Journal Entry
Number in this location (to K57*l 3 kit)*

Tne system now copies the file {J0UH.NAL8T1) to a new
file -- a Journal entry with file name i57J119. It
sets the status of this file to oublic read-only, ana
notes the time and date of completion cf naKin« this
Journal entry: USIUSj 11/13/69.

Once tnis journal entry nas oeen made, the system
returns a message "lUB (X,X1J ENTERED TO JOURNAL A3
NUMBER i;S7J119 AT Uli7iii5M to the sender (user X).

This n^ssatic regains on user X's display until t
command accept (CA) is entered. Entering the CA
releases tne file (X,X1) for normal operations, and

166

Appenclx a
THE r>SS äHD THS JOURNÄic

rcliaplay« fstis file. U«er X is now free to continue
nifl nornal worK.

2. Ofttt Aasenbly procedures at Input Tine

The tine tn entry is submittea to the Jcurnai is an
opportune time to capture data associated with tne entry.
The Journal entry procedure will contain additional
operations, in which the system interrelates the user to
ootain an abstract and special descriptor tags for the
entry. The aestract will oe used in tne Journal catalogue.
Descriptor ta«s win ne used for retrieval of entries.

3. Collection Systen

Firt of tne journal entry system fives the user special aids
for asse^Dlmj tne entry oefore actual suonission. These
arc compound operations, combining several simpler ones.
These simpler operations include file norging ana tne
"executable statement-' capability,

B. Linkages

Special llntcin« features will öe added to NLS to support the
DSS needs, one of the most important classes of these new
features concerns NLS linxs.

1. MLinKM as an NLS Entity

in the current NLS a linx is a sinple text construct; it is
not a snecial entity, in the way that, characters, ^ords, and
statements (for instance) are entities«

There is no cowmand DELETä LINf In current NLS. A llr4;<
may be deleted using tne normal DELETE TEXT command,
requiring two bug selections, one at each of the link
parentheses,

A special NLS entity "llnJ(,, will be added to NLS. This will
be of particular importance in combination with indirect
llnKinj and executable statement operations.

To Insert a :.ink, the new comaand INSERT LINK is used. This
command requests user input of data necessary to construct
tn« link, and organizes these data in the appropriate synt^
(see below),

167

Appendix b
THE DSS AND THE JOURNAL

2. New ML3 Lin< Syntax

a. Additional time Data

Aaditlonai a&tt will oe aaaea to tne current MS linx
construct. Tnese data are (a) lin* tvoe, (o) tine arc
date tne imK was first constructec, or last "stanped,-1

»nd (c) Improved resolution to Identify iinx referents.

LlrtK type data are one or r.ore d^scrlrtor^, Dein% a
simple text name, or collection of nares, lndlcatir.R
memPersmp of a class, or classes

Example: Pcssiole imK types woull Pe "footnote,"
;,conjment," "reDUttai;M "owner-evans,M etc. A link
"owner" could be different from the owner of the file
in wfticn tne link resided* Tne definition of triese
types and their respective mnemonic- would be
determined by aRreement ajionj DS3 users,

A most important addition to N*S links will be the acdea
power to refer to ANY entity. In tne current version of
NLS, a link nay point only to statement entitles,

with greater resolutio.. for link references, for
instance, a lin* may oe constructed to refer
specifically to another xinx. This is the basis for
indirect linKin«, to o^ discussed below,

b. Possible Syntax for .sew sis Lin* Entity

<TYPEjDATi,TIk-E> (USEUNAME, FiLENAMfc,
tOCIHTXIYiVXIWSPfiCS)

TYPE is any number of descriotor mnemonics defining the
type of the iinK. Eacn descript^; would oe delimited by
i comma«

MhDDYY HHHHiüS is the date and time the link wts created,
cr the date and time tne link was last "atanoed," in the
rormat <inorsth, day, year, nour, second).

At any time, the link's ownc* »aay initialize the tine
and date for tne IinK, usini a date-ti.-ne "star.pinr,:

command,

USERMAME, FILEHAME, and VIEWSPEC have the same meanin? a»
in current NLS llnxs.

'*.ö

Appendix s
THE DSS AND Th£ JOURN'Ai

LOCENTITY iöenttliea g «peclfic tarfet entity.
Detailed syntax for tne LOCENTITY nay be ar&itrarily
complex. Tne foliowinj example indicate» a «imple
«tateraent-number syntax,

c. üxampie

<connJuri,Svanflj09/17/69 OOlkUii)
iin«elbart,plans,n-Pixi)

TYPE is Hcomm,ur5,£vanj"

DATE,TIME if "09/17/69 OOUUu"

USEPNAME Is "Engelbart"

riLEHAME is "plans^

LOCENTITY is Mm»P" (the raarxer "?H)

VIEVSPEC3 are xi, raeanins dxsplay only one line of
top-level statementa, and switch on tfte content
analyzer.

TJili linx refers to the entity with marker "P" afiixed
(Hm-Pn) in the file ":planfM owned oy user name
"Encelbart. ^ It points from a comment ("cciTim") that is
urgent {"urc"), and should be brouint to the attention of
user name H£vans," The link was last stamped U9/17/69 at

3. New viEWSPICs for Linxs

Increased link complexity denands more ocwerful viE^SPECS to
simplify displayln« the lln« construct, so linxs do not make
the renainder of the text illegible.

Additional VIiWSFIC3 will be available for totally er
partially suppressing display of tne link construct. Tor
instance, the user could control which fields in the linx
were displayed it the link's location in a statement (this
VIEW3PEC would apply to the entire diaplay). If the link
w^s to be totally suppressed, an additicnal vIh>SPtC would
allow the user to control whether or not special Hiin«
aarkers" were displayed at th< link's normal location,

A user would interrogate an individual link marker, to
display the pfertdculir link represented by that marker,

169

Appendix B
THÜ DSS AND THE JOURNAL

vithout «aisplayinn all linKt,

k* Llnxs Not tmöedaed Directly in Text

aecauie of the "stationary target" concent and tnc freavent
need to attacn ilnxs to existing Journal entries, it will oe
necessary to nave a new NLS comraand to enable a user to
associate an NLS llnK witn any selected text entity, cut
nave tnat linx displayed only as an overlay v.c tne Xile,
ratr.er f'jan an integral part of tne normal text. Link
markers, sifnilar to those ufied for öacklinKing, will ee used
to indicate tne presence of one of tnese iin<s. New NL3
corainands will be available to enable tne user to control tne
display of the lir.K and narKcrs^,

5. Indirect LinKtru

Once it is possible to "aim" a linx at any aroitrary entity,
sucn as anotner link, or at a simple cnaracter in a
statement, indirect linking becomes possible, Tne followinz
example illustrates detailed operation for indirect linking.

txample: Tne following link is disolayed tn a statement
of the file (Evans,ddci) : <comm;>(£ngelbart.,nlan8,p-Pi) .
Note tnat the dateotime field nas been suppressed by the
new link vifc;»3PECS described previously, Tnls link is
embedded m a statement (or orancn) constituting a
comment on its riS£CT tareet.

In tne file (Engelbart,plans) there is a marker "P"
affixed to a character ^ust preceding another link, as
followsi <P>xx yyy cc <comm;>Uvans,rrr,12bjw), This
link is a comment on 12b in ehe file »iv».ns, irrr).

Use of the new command JUMP INDIRECT LINK, with the
original link as operand, causes the statement 12b to oe
displayed under the control of vizwapsc "w (all lires of
all statements),

6, Backlinks

The most important aaaltions to existing KLS linking
features for use in the DSS are the backlink operations,

öaeklinking means tnat a special executable link marker is
dcpoalttd in the referent being pointed at by a link, Tnis
enables a user, viewing the referent entity, to "JUMP
BACKLINK" and display the entity containing the original

170

Appendix B
?K£ DS5 AHD 7KE JOURHAl

llnx.

Tfte exlatence c£ *n NLS linK reier?nce to any aisDl&ycd NLS
entity will be indicated oy special btcKiink ^arK*^fl.
Display of tftese markers will oe under u«er control in a
manner similar to linK marKers, deacrioed previously.

A user may interrogate a öaCKlinK marKer, to nave data on
the source entity displayed. Execution of tne new command
JUM^ BACKLINK witn a DacKlink marxer ss operand displays tre
source entity a'v the top of the display.

Indirect PacKiinKing will also oe available, indirect
backlin* jumping neans tnat a user executes JUMP BACKLINK
IKDIRSCT, and the system displays tne statement conttinini
the linx th»t points at the source of the bacXlink marKer
entered as the operand for this commana,

7. demote LinKing

The basic concept for remote linKinr is tnat of attaching
tn« "head" of a linx to its referent entitv, followed by
insertion of the linx itself in tne source entity, remote
from the referent, at some later time.

This may be accomplished by the following stepsj

(1) Assigning a temoora; ' marker to yet another entity,
"link referen;M

(2) Depositing th«t marxer at the apnropriate location
in the referent statement

43) later, while inserting the basic link construct in
tne source statement, calling for tne referent entity
data to be inserted in the link by using a special INSERT
SiriRENT DATA cocmand, entering the referent marxer as
operand.

This «ype of operation depend« upon each user having at
least two NLS files open simultaneously. If links and
baekllnki are considered te be completely symmetrical, this
procedure may be used interchangeably witn tne conventional
INSIRT UVK command.

171

Appendix B
THfc DSS AND TKE JOURNAL

C. Conyinj a Journal Entry

A problem arises wnen a Journal entry, stored as a colon file,
is copied to a new filename. All baci<lir.:\ narxers are
retained, out trie links generating ^nese narkers continue to
refer to the ori|ina3 journal entry, and üO not ooint at the
new file. Thus an additional type of bacKllnK is oroauced --
one that has no forwarö-polntine linx associated with it,

These asymmetrical oacklinK markers make it possiole to .lump
to files and entries that referred to the original entry.
They may be deleted if Juaged to ce inapurooriate for the
new file.

At the time the new file is created, the system will
automatically insert a link in the file's header statement,
pointing at the header statement in the Journal entry from
which it has been copied, and depositing a backlink marker in
the header of the journal entry.

D« Ordered Sets

A set i» a special new NLS entity -- it is a collection of
other entities (eftg., of characters, files, statements, links,
other aets, etc.). The design and implementation of operations
associated with sets is a complex proolem. The following
indicates what seem to be the most promising possibilities.

An "ordered" set nas «. specified order associated w:^n its
member entities. Sets are given unique names for
identification. For convenience, a set wjll be attached to a
"parent" file, selected arbitrarily by the user, /'Evans,xxx;
is the set narocid "XXX" owned by the user name "r.vans." Set
names are similsr to statement names, exceot they must be
unique over the entire universe of a user's files -- it is not
potalble to have a set named "XXX- associated with the file
;ccc and another set "XXX* associated witn tne file :ddd, if
both JCCC a^d iddd are owned by the same user. However,
different user« ^ay own sets with the same name.

1, Admission to a Set

Other KLS entities, including other sets., way be "admitted"
to a set, using the command "ADMIT <entlty> TO StT
<seUaweV., and entering the appropriate operands.

"tntlty" is the NLS entity selected or specified by the
uscrj "setname" is the name of an existing set •- the set

172

Appenaix B
THE DSS A^D THE JOÜKNAL

to which the entity ia to De aamitted.

Not only entities, but ipecific views an^ specific subsets
of entitiei, may be admitted to a set.

Extmplci The first line of the first two levels of
itfctement« in a file satisfying a «iven content pattern,
may be admitted to a set. The remainder of that file,
unless specifically admitted on another occasion, does
not oelong to tne set.

2. Direct and indirect use of sets

There are three modes for usin« sets: "normal,,; "direct,"
ind "inülrect.M

"Nornil" mode corresponds to normal His usafe in which the
set entity has the sane status as normal NLS entities
(words, characters, etc.).

Thus in normal node, the command DELETE SET erases the
set wnost name is liven as an operand. Kote that the set
is erased, not the members of the set.

In '»direct" aode, operations performed on a set produce
changes in the actual entities admitted to the set.

Ixawplei A (hypothetical) command "DELETfi WORD m-soec IN
SBT Aevans^x;* is entered; "spec'1 is an NLS marKer name.
Upon execution, in direct mode, all words so atrxad in
the entities that are members of the set /'evans.xy will
actually be deleted. That is, they will be deleted in
the sane sense as if tne user displayed each entity in
the set containing the mÄrker, and manually deleted the
aarKed word, followed oy the command OUTPUT FILE.

Intities changed through operations performed on sets in
Mdlrect•, J^ode remain changed after the system Is returned
to "normal" node.

In ■Indirect" mode, operations performed on entities that
are numbers ui a set (by using the ^et name itoelf as the
operand) produce changes In *.hose entities ONLY while the
user views then ''through" the set.

for instance, if in tne previous example the same
operation was performed in "Indirect" mode, the marked
words would not be deleted in the files ccntalnint the

173

ADPendlx B
THE DSS AND THE JOURNAL

marked entlcieä in question, but would only "appe&r,, to
be deleted wnen the viewer was workine wltn the set
/"evanSjX; controlling tne entities he could display.
This »ppearance would oe negated as soon as tne user
returned to display any menöer-flle in normal riode,

3. Open and closed Sets

£-■- Closeo oeta

A close*; set is one whose rembersnip if specified
explicitly. I.e., there is a finite fully aetermned
nenbershlb list associated wiCn the aet. for example,
«tateraent entities might be specified by a .Ust of NLS
links. There are three types of closed sets; frozen,
unfrozen, ana nixed.

A frozen closed set retains the exact content and
structure of each entit: , In the state in which it was
orif-r.ally admitted to ne set. Even if (say) a
member statmen\. is oeleted, a "copy" is retained in
the aet*

An unfrozen closed set retains a finite membership,
bu- permits each member entity to adopt its latest
actual state. Por example, a whole file, containing
three statement« admitted tc an unfrozen closed set on
day 1, subsequently undergoes major modifications. If
the set is used a» an operand on day 3 'after the
modifications), the file's state at that time is ui:ed.

A mixed set contains entities whose frozen/unfrozen
status is determined indiviaually. In other words, a
Met may contain some entities whose original status is
retained, and some whose status is the latest status
of the entity Itself,

b? Open Sets

An open set is one whose membership la not fixed by
explicit identification of its member entities, cut
rather by the specification of conditions to He met to
admit member entities.

For example, an open set's inemoership may oe -mined
by those statements in a given file universe satisfy
a given content patternt

17k

Äspsnäix B
THE D3S AND THK JOURNAL

Cn dty 1, this may yield a dlf *ent nenberahlp than on
day ii, if modifications were mad^ to files in that
univerwe during this period.

3et Operations

There »,re two major anrt distinct classes of operations
aseociatsä with sets -« operations on sets, and operations
within sets. The distinctions between these classes are
iRpcrtant,

a. operations on Sets

operations on sets use entire sets as operands.

Simple operations on Sets

These operation« Include the sta'dard HIS operands --
INSERT, DELETE, REPLACE, etc., in addition to a new
claso af conmandd -- seg-thecretic operations,

INSERT SET creates a new i'-t.

REPLACE SET makes it possible for a user to make a
r.rw set as the u.iion of one or nere existinc set«,
and to simultaneously delete the original seta
(their names, not member«)«

DELETE SET erase.« the set (but not ii« members).

Set-Theoretic Operations on Sets

There will be new hL3 coRnands to enable a user to
perform «et-theoretic operations on sets^ The
following set-theoretic commands will ce available:
UNION, INTEHSECTION, COMPLEMENT, and DI/FERENCE, where
each operation ha* it» usual mathei.atical neaninf.

b. Operation« within Stta

Operation« within set« have entirely different neaninr«
from operation« on sets, and from operations on member
entities outside the influence of the «et construct.

When under the control of operations within sets, the
conventional NLS commands taKe on the fcllowlng meaning:

MOVEJ Change the OkDfcR of member entities in the set.

173

Appendix B
THE D33 AND THIL JOURNAL

UELtTt,'. kenove t.re operand-entity tv ^.e-noTsnlf: oi
the set.

COPY: Inclufltf tne operand-entity once nore in tne set
memoeranip (in a dufere^t position vitnin tne set's
order) .

ISSEHC: AdniL tne operand-entity to membcrsftlp in the
set»

REPLACt: Heoiace the ner.öer entity ä^lectea is operand
wltn the entity «elected. The entity selected as a
ren.lacenent nay or n*y not DC a neater ot the set.

E, Executable Statements

An executable «tatenent will be a new text construct,, using the
current HLS statement as a öaais. NL3 cor.nands will DC
pre-ipecifled as a teia string in an executable statement.
They will be executed by using tne connand EXECUTE STATEMENT,
giving the statement nunner of tne stfttepten* as operand.

An txccutatle statement 'fill be the neans to effect conoound cr
concatenated operations, including set ooerations. The
strutture and rjeamng of the executable statenent features ctn
beat be illustrated by examples.

Example: The following is an executable ■tatenent.

{XXX) (evan3,aaatl2ixj <^ngel&art,plans,^iw) L c CA
/■"retrieve *J OP j/,,Petrlevew; j CA {evans,rrr, :wi) END

(i; ay activating tr.e connand EXECUTE STATEMENT, and
entering the operand "XXX" (the na-.e of the executable
statenent), followed by a slntle CA, tne first lln*
will be executed *s if JUMP FILE LINK was used wltn
that lln* as its operand,

(2) The user views the file (evanSjtss) with stcte.nent
12 at the top of tne »cr«* i, displaying only the first
lines 01 suoaequent top-l-vel statenent«? lr the file.

(3) A second CA causes t::e second Imx to be executed,

U) The user views t*\f file lengelbart,plans; , wit.n
stitenent 2 it the top of the screen, displaying all
lines of all statement».

176

Appendix 8
THE OSS AND TH£ JOURNAL

(5) A third CA causes the content oattern / retrieve;
OR ^"Hetrieve'V to Oe compiled, auton^ticilly followed
by the execution of the last link. Note thtt the
VXEWapÄC "i" in the last llnK activate« the pattern.

(6) Thevresult is that the file <tvana,rrr) is
aearcnedj all statements containin« the text construct
••retrieve" or "Retrieve" are displayed,

Example: The following executable statement illustrates
more complex operctions on set».

UVY) CHQDJ ■ [WhiJ UNION (hAVYJ ; fVSkJ « [DOT,]
INTERSECTION [HICJ ;£ C CA r^eacon"; j CA
(Nixon, ruaA/^wi) CA fc3SPUY:w OUTPUT TILE 'larsenal'
DELETE .SET {tiODJ AND SET [VSAj END

(1) The conmand EXECUTE STATEMENT ia executed with the
operand YXt, the name of the »tatcmcnt.

(2) A CA causes a nev set "üOD* to oe for-nea as the
union of the two existing sets "army and "navy." This
•et will öe attached to the file containing tne
executaole statement,

(J) Another CA causes a second set, "USA" to oe formea
as the intersection of the two sets "DOD" and ".vie,"

15) Another CA causes the content cuttern "weipon" to
öe compiled, immediately f flowed ty execution of the
.link transferring control to the first entity
containing the tsxt conjtruct "weapon" in the set
^üJA" (which is owned by the user "Nixon"),

(5) The «ystem searches all entities in this set, and
displays, under VIE*SPEC contol "wM (all lines of all
statements) those statements containing tne text
string "weapon",

(6) A final CA causes this collection of entitles tc
be output as the new file 'iarsenal.' Another CA
causes both the lets us distinct fron tß« set
aembersnip) TUSA/ and /"DOD; to tc deleted,

rxampie« The following cxecutcble statement illustrates now
the ae.Tiber entities of a set may be displayed,

'111) riiPLAilw /KEREANDNO*; TND

177

Appendix B
THE DSS AND THE JOURNAL

By giving trft« conmand EXECUTE STATKr.SNr vx^n III aa the
operand, ioilowed oy a CA, all entitle! In the s«t
"HEREANDNOW^ will oe displayed, un^er VIE^SPEC control
"w" fall lines of all staternems) .

Example: The followini; is an cxanple of sirole "chain
generation" using an executaoie statenent,

(AAA) MÄHKr.p.aAl CHAI.N («vans, sa, 1^ J «w) (evans.ss, S:«w
{Sngelbart,plans,?jMn) END

By giving tne connand tXECUTE STATEMENT witn tne oeerana
"AAA", followed by a CA, tne display starts witn an
all-all view of the brancn starting ultn statenent 12 in
(Evans,JSS). formal text operations nay oe perforne"! on
this brancK.c If a second marker Al is entered, the
all-all view of th.- branch starting with statenent 5 in
(evans,:ss) is displayed, and so on.

Here a narker is used as the means to advance the view
along tne chain. This permits normal text operations
{requiring CA's) to oe performed at euch view along me
cnain.

In all examples, the maximum VIE^SPEC operative on any
entity is controlled by the VIEWSP^C assigned to tne set
member entity itself at the time it was admitted to tne set

F. :r,ry descriptors

Descriptors will be t«,cned directly to journal entries,
eitner at tine of e: j to tne Journal, or at some later date.
T:.,«ie descriptors will cover at least the following classesj

(1) Subject matter/tvpe of entry

Examples', comment; message^ annouuncencntj injunction

(2) Urgency

Examples! urgent; rot ursent

(3) Names of uses those attention is sougM,

txarpie: attention; evans, engeibar;,.

U) Authci/source of entry

176

Appendix B
THE DSS äND THE JOURNAL

fesample; auinor: evtn«;

(5) jjate/tire oi entry tc journal

ixanDlft! en-wered 9/26/69 1006:30

0. interrofÄtion

Commtnöf will &e availiSic to enable a user to interrelate i
Journal entry In order to ask tne followlnt typea of questionsj

(a) Which Journal entries cr other files are oointinf at tne
interrogated entry?

(p) To whicn sets does the Interrogated entry oelong?

wnen Interrogatin« to deternlne which entries or other fll^s
are pointing at the entry, the a«er will oe able to control the
universe ever wnich the search for theae entries is to be
performed.

For instance, the user nay ask for only tnosc entries that
point at the interrogated entry, or are attached oy links of a
specified type, fron entries of another sptciflea lyoe, that
were raade after a specfied date,

Exaraple: Display Journal entries of type "consent" or
"injunction" ta&t are attached with link types "urfent" "nade
after 6/12/69 to Journal entry Nunper XXXXX.

Example: Display thoise newbers of the set /"evans.xxxy admitted
to the aet after lC/li/69.

H, Miscellaneous New HIS Features

Kunerous new HIS features win have * major effect on the
usefulness of the DSS, although they are not designed
exclusively for DS3 usage. These features include split
screens, file merging- new VlfiWSPECS, »:nd "file history."

I. Split Screen

The "split screen" feature generalues ♦.'.? characteristics
of the "freezing" option in the current version of HIS,
with a split screen, the user is able to display two
different views of the sane file, or two different and
independent views of any two files, one on each side of thr
screen. He will be acle to work with the displayed

179

Appendix B
m D3S *h\) THE JOURNAL

Information m rach "window" ta it it was a separate and
independent file. The auccesa ol this option dependi uoon
havinn more than one file open for a «riven user at any ?iven
time. The aplit screen 4ill naKe interfile ertitinf, and
more cornplo file nergin«, easy and useful.

2, File Mergir.K

The split screen and other new features -.ake tne capaCility
for Biercini any two files to form a third conposit? file a
necessity. In the current version of NLS, only the si-nolest
file merging operation -- ^orending -- is possinie. iiore
useful file raergir« would include the facility to interleave
statements in a specified order, and to transfer pictures
from one file to another.

3. File History

Keeping trace of a file's nistory peconts more important in
the Journal and D3S than in current NLS operations. For
this reason a new NL5 feature will Pe added to capture all
necessary identification informatior. from the source file
every tine a file is output or copied. This information nay
Pe cooied directly from the header statement of the source
fil«, and written into the header statement of the object
file at the time it is created.

Exanple: The following is an example of a standard file
header.

JXVIII, 9/26/69 120y:30 DA£;

Here iXVUI is the filename; 9/2e/6? 120yi3C 1« tne
date and time the file was laet output to the nare
:XVi:i, and DAE are the inititl« of the file owner.

3Uppoce tne file ?XVIII ie output to tne new file name
":CHAPl6f,.

After the operation is ccmpietec, the neader of the
object file (rCHAPlo) reads as follows:

iChAPlö, 9/26/69 1211:u!> DAE; (evans,Xv'111,:)
9/26/69 12111143;

The systen has rewritten the source file's hetder data
as an NL3 linx following tne opject file's
conventional reader data. S'ote that as later versions

160

Appendix B
THE DSS AND TH2 JOURNAL

of iCMAPlc *re made, data preceding the lirst
semicolon cnang;ea. With ffUDsequent CODV oorrations,
or output file operations to new filenames, onese dati
from the file »XVIII will be retained in ine neu
file's header, along with all records of subseauent
operations.

Cataloguing

A catalogue of all entries in the Journal will oe nuintalnei,
providing the nain conventional ?.la for retrieval of tnese
files. The catalogue will have three nain sections! a suniect
index, a Keyword list, and citations for journal entries.

The ■abject index contains a hierarchical structure of tne
subjects doscriblnK Journal entries, with their respfctive
Keywords attacned. A user nay scan this index and select
Keywords attached to the suojects that neet nis needs.-

Tht Keyword List will contain Keywords -as used in the
subject index), followed oy llnxs pointing tt appropriate
citations.

The citation for each Journal entry is stored in tne
catalogue by order ox Journal Entry Number, Each citation
will constitute an NLS branch, with the Journal Entrv
Wurcfcer, and UnK to the cited Journal entry, as the
first-levci •tttenent of each branch.

Each such citation branch will contain the entry nunber^
the source filename, the name of the user submitcing the
entry, the date and tine when the entry was submitted,
and a list of descriptors for entry.

These data will be stored in a nanner tnat ma.^es them
useful for further Ui5 operations. For exanole, the
data on source filename is stored in tne forra rf 3
conventional HIS lin« referring to the source file.
Similarly, eacn catalogue entry contains a link to tne
Journal entry Itself.

I. Retrieval System Based on the Journal Catalogue

The existing KLS Keyword retrieval system will DC* extendeo
for use as the basic retrieval tool for operaticnü on tne
catalogue. The major drawoacK of the current ayatem is tnat
lists of citations can be assembled only fror, within t
single file.

m

appendix B
THE OSS AND THE JOURNAL

Kor tne OSS, this syatcn will be wotiifled \o operate across
an artitrary nuntsr of files, .sucn orcrallona, of course,
expend upon otner features discussed previously ieo?.i file
ncriinii wne capaPiiity of havinK nore tnan one file op-n ai
any instant, etc.).

The standard Keyword statement, wnlch currently uses
statement names as keyword arguments, will pe cnan<ed to "se
full NL3 links as Keyword argument«.

example;

(keyj) This is Keyword three ♦ (JOU»*NAi.tX3>J99, ?)
(Journal,lu6j$9,:)

The user will then have tne following options:

(1! AssenPle the citations derived from a selection of
keywords from one or more riles (which may themselves oe
stored in several cataloKue files), as a list in one
file, and use the standard JürtP LINK command to view tne
actual Journal entries cited, one by one.

(2) ASK ior consecutive display of tr.e actual Journal
entries c^tca, under tne control of the vici*3PtCS in tne
keyword referent ImK». Consecutive entries cite'i would
ce displayed as if part of the same file.

This operation could Pe accomplished oy special new
NLS machinery, or py comcinin? the capabilities of
executable statements and indirect linKing.

In all case«, all current NLS Keyword option«, including tne
allocation of weightn to Keywords, will oe available.

182

Appcnaix C
RKrFREKCE MANUAL FOR PERIPHEHAL EQUIPMENT

I Introduction

This appendix 18 tn adcienciuni to the previou« Hardware Hef.erencf
Manual, Appendix b of Ref. 3. It conjiat« of a prorrammer•a
reference catnual for the fcilöwinK equipment;

A line printer (replacini the line-printer description
contained in the previoui manual)

An inter-core controller for transfers Detween 5*aü cor*? und
external core ("Xcore")

A Network interface conncctinK the y^C to the ARPA Network via
the Interface rtessaKe Processor (IMP)

A precision clock,

II Line Printer

A* General Information

The printer i« a Data Pre ts Model M600-11A with 96
characters and a prlrtin* speed of aoout 340 lines r*r minute,
It will accomodate paper from 2-1/2 to 16-1/2 inch« in width.
Character spacing is 10 per inch and line ftpacing is 6 per
inch. The maximum nunDer of characters per line is 132.

The printer is controlleo by EOM instruction« and 1 "unit
reference cell" (UHCK The URC points to a print ouffer
rciident in core that contains data and control codes. An 3KS
instruction incicates "printer ready" and an interrupt
indicates "end of operation," either normal or error. Error
conaltions are detected by the controller and an error code
written in the URC.

The cells immediately following tne URC in core are called
,,URC*1,M MURC*2," etc.

Fixed core assignments for tne printer arei

URC 10
Interrupt 211.

3, EO« and SKS codes

The EOM codes are;

20230106 initiate
202301i06 Reset.

10:

Appendix C
REfERENCE MANUAL FOR PtRIPHfcRAL EQUIPMENT

The "initift'-c" üOM st»rt« the printer wi^n tne word and
cnancter dealgnited by the contenta 01 tne üRC at tne time
the ÜOM is Kiven.

The printer controller continues to proces« tne printer
suffer until an illegal cn^racter or erd-ol-öulxer coae
i« read, or until a ••reset" £0« is issued.

An "initi*te,' £OM ?:ivcn wnile the printer is ouay is
ignored.

Tne "reset" £0« imnediately terminates all printing and
returns tne system to a reset state.

A "reset" EOK, eiven wnile tne printer is disconnected la
ignored.

One SKS code is provldea for the printer. Tne cede is

Qk030l06 SKip on ready,

TJvi» SKS •Kips if the printer la ready to besin operation.
If tne printer is not ready, an interrupt ia issued when it
ia nade ready.

C. unit Reference Cell

The URC associated with the printer systen nas the following
formats

0 3 3a 23

error aidress

Sit* 6-23 contain tne absolute address of the first
c.iaracter of the line to oe printed (or currently oeinc
printed).

Kita d-23 denote tne absolute word address.

Sits 6-7 indicate the character in the word.

A 00 code Is tne leftnost character. The 11 code is
not used but is interpreted as the ieft^oat cnaracter.

After a line has been successfully printed, th- address

m

Appendix C
SEriRJNCE MANUAL FOR PEHIPHERAL EQJIPrtüNT

in the UPC la updated to poJ..t to the Xirai cnartcter of
the next line,

Biti 0-3 are written py the controller with an error code
when errors are detected» Srror conditions ana codes are
öeicrlbeö fcelow.

Bits k-5 are ignored by the controller,

D. Print Buffer

Tne print cuffer is a contiguous sequence of words in core that
It interpreted py the prince;* controller as three ö-pit
characters per word.

Characters in the print buffer may ^e either data characters or
control characters.

The control characters arei

373 (NOP) No operation
375 (£08) End of print Puffe*-
376 (EOL) End of line
377 (NOP) No operation
015 inift to lower case and locK
035 Shift to lower case for one character
055 Shift to upper case and lo^ic.

An EGL or EOB code cause« the current line \,o Pe printed
with any characters already in tne line left-Justified.

An EOB code generates an interrupt to the conputer after
the line is printed and any spacing *ctlen hai been
conpletea.

Tne three case-shift codes are aeif-explanatory. They
can aopear anywhere within a line of data characters and
cause the indicated case-snift actions.

in addition to the explicit control characters, the first
character in each line is interpreted as a paper-ieed code.
These codes are as follows (the word "space" here refers to
line spacing, not the "space- character)j

020 Space 1 line
021 Space 1 line
022 Space 2 lines
023 Space 3 lines

1*5

Appendix c
RfiFERENCE MANUAL FOR i'tHlPHciH^L EQUIPMENT

02k Space k lines
025 Sptc« 5 lines
026 Space 6 lines»
027 Space 7 lines
000 Space on channel 0 of forr.at ctpe
001 öpace on channel i 0^ fornat tape
OCk Space on cnann.l 2 of fornat tape
003 Space on channel 3 of forr.at tape
cok Space on channel Ü of formal tape
005 Space on cnannel 3 of formal tape
006 Space on channel 6 of format tape
007 Space on channel 7 01 fornat tape.

Vno action tndlcsted by tne jpace cod- taKes place before
tne line is printed.

Two successive spacing operations can be caused py
ser.iinjj one of the above space codes followed by "end of
line" (376), then another spa^e code.

If no spaclni is desired, as wnen printing the top line
on a Page, a no-op code (377) snoula ^e sent in tne first
position of that line.

Cnannel 1 of the format tape is used for "too of forn."
Tft« numcer of lines on a page is normally set to ou,

Except for the first character, the print buffer contains
only printlni characters (Including space characters) and
control character». Any other cr.Aracter codes In the print
buffer ar« considered illegal a.^ ^ause an error condition.

Print buffer« may be as large as de ed, tut no relocation
napping i« provided. If a buffer is to extend acrcss a page
boundary, the software system must ensure that the two pages
are consecutive In memory,

E. Error Conditions

On the detection of any error, an interrupt is issued and the
error code is written In the use.

The error cedes and conditions detected are?

OUO NO error
101 Illegal character code
110 Printer not ready
111 Excessive time.

m

Appendix C
REFERENCE MANUAL FOP PEJUPHERAl EQÜIPMbNT

Zeroi in the «rror*coae bit« of ine URC After an Interrupt
inaicite & normal interrupt (printer made reidy or £OB),

The I0X CP<S« inälCÄtei that an illecal cnaractcr haa been
detected in the print buffer.

Tht 11Q sode indicates printer off-line, paper outr or
ribbon failure.

The .111 code indlcite« tnat in a normal orintim operation.
exceptive time hat been required for printing a line.

The timer i« normally «et for 2.5 seconds. Tnis error
indicate« printer failures not detected by otner printer
error circuits.

la?

Appendix C
RSFEREHCE MANUAL FOR PfcRIPHtRAL EQUIPMENT

r. Character Codes

The printer cnaracter coaea ire given below. The caae orlntea
i« deterr-lneö Dy the snift-control character.

CODE UPPEH LOWER CüD£ UPPE« LOWER

GOO 0
001 1
002 2
003 3
OOli k
005 S
006 6
007 7
010 ö
Oil 9
012 null
013 a
Olli »
015 null
016 >
017 null
020 • pace
021 A a
022 8 ö
023 C c
021; D d
025 £ c
026 r f
027 Q i
030 H h
031 I 1
032
033 »
031t) ;
035 null
036 < *•
037 ? *

OliO m unrterbar
0U1 J d
Oli2 K k
Ok3 I i
ouu M m
OkS N n
Oli6 0 Q

Ok7 p P
0^0 Q Q
05 H r
05-
0S3 1
osu * ♦

055 null
056 ; !
057
06C null
061 / *
062 s a
063 X t
061i u u
065 V V
066 V w
067 X X
070 Y y
071 Z 1
072
Ü73 i 3
071; (/
075 &
076 V i-

077 overbar

156

Appendix C
REFERENCE MANUAL KOR PEWIPKI^AL EQUIPrtSNT

III inter-Core controller

A« 5«ner4l

The inter-core controller controls trtnafer of oat* between
externtl core (often referred to aa "Xcore") »nd vkO core. It
ha« two modes of operttiom

il) A ölocK transfer mode »Hows th^ transfer of Dloccs of
up to 20^6 words between any two locations in the two cores.
This transfer can be between two locations in the sane core,

(2) A short tr&nsfer mode allows the transfer of snort,
fixed-lenjth buffers between ft!ted locations in 9k0 core and
external core.

Fixed core assignments for the inter-core controller arei

URC, 940 c^re 53
Fixed transfer address, Xcore 100
Interrupt 21S«

9« tön instructions

Four SOM instructions are used for the inter-core controller.

The EOK codea ar«M

20230103 Block transfer
20230203 Xc^re to 9k0 fixed transfer
20230303 9k0 to Xeore fixed transfer
20230^03 .Disconnect

The &0M actions are:

Block Transfer — Thla EOM starts a variable-lenjtn
traiiöfer, ^he number of words to be transferred and tne
startlnc addresses in source core and destination core
art determined by the contents of three consecutive juo
aeraory cells starting with the URC. source and
destination may be in the same core.

Xcore to 910 fixed transfer -- This EOM initiates a
transfer of a fixed number of words befinnim at a fixed
address in Xcore to a location bejinnim at the URC in
9^0 corefl startin? witn the URC address in the 9ii0
coasputer to a fixed atarting address in the external
core.

189

AppÄndix c
RO'ERÄHCK MANÜAl TOP. PERIPHERAL EQUIPMENT

The nunjber öf worös ü determined by a card tr. the
controller and nay be set to ftny number between l and
7. The number currently used la 3t

9k0 to Xcore fixed transfer —* This EOH initiates a
transfer of a fixed nuaber 01 words (same number as
above) from y^O core to Xcore, wiu tne same fixed
locations In each.

i^sconnect -- This fio.M terminates any transfer in
progress and oiaces tne controller in the disconnect
stale.

C, unit Bfeference Cell

The URC and th« next two celU have the followinf codin« when
used to control \ blocK transfer operation!

0 3 > d 23

»0 0 0 li s j i ;

ID I word count

81t« Q-3 contain an idantification code, it any other code
is detected, the controller disconnects and writes an error
code In the URC.

Bit 3 is ret ♦o i if tn Interrupt is desired at the
ccmfletion of the transfer cyciJe.

Bits S-23 indicate tha number of words to be transferred.

Bits k and 6-7 arc ifnorea.

The cell URCtl contains informatior relating to L.ne destination
of the transfer. It has the following formats

0 3 5 6 23

10 0 0 Is I : s

IQ d destination address

«its 0-3 contain an identirication code as tbove.

Bit 5 speciCiet the destination core, A 1 indicates
transfer to 9li0 cere and a o indicates transfer to xcore.

110

Appendix C
RimSNCK MANUAL ?&« PERIPHSPAJ. EQUIPMENT

Bit.» 6-23 äftifnnt« the £ir»t •• ciöre«» in the defltination
core.

Til« cull URC*2 conttin« informttion rel^tin« to the aource for
tht trftnf£er. It run th^ followini formtti

0 3 5 6 23

:0 0 0 It t t t

ch«c)c u source aadreas

Bit« 0-3 contain tn identiflcAtion code ta toove.

Bit 5 «pecifies the scarce core. A 1 incicttes transfer
fro»» the 9*0 core and a o indicates transfer from xcore.

Bits 6-'23 designate the first address in the source core.

D. £«it Routine

At the enö of any transfer, or when an error is detected, the
«xit routine is perforaed. This routine writes the UPC and
then places the unit in its disconnect** state. The UKC is
written with the following format?

0 2 3 7 23

I 10 0 0 0 Ol t

error word count

Bits 0-2 contain an error code. The errors are reported as
follows:

Ölt 0 is «et to 1 if any error Is detected.

Bit 1 is set to 1 for an er^or in any of the URC
locations (incorrect ID code detf:ted).

Bit 2 is set to 1 if the controller wilted more than 1
nllllsecond to jain access to the external cor«.

Bits 3-7 are set to 0.

Bits Ä-23 contain the contents of the wora-count register
at the end of the transfer. For & successful transfer
tais wlU bo 0,

191

Appendix C
REFERENCE MANUAL FOR P2*IPHARAL ESUIPMäNT

An interrupt li inued at, v.ie end cf the exit rouMne if called
for by the- URC, or if any error rut. öeen detected. No
interrupt is i«sutd for th* short tran«fers.

IV Network Interface

A, Oeneral

The netwerK interface provides conmiini^ation between the Q!i0
and an Interface heaiage Processor (IMP) on the ARPA Computer
Network, The interface ooerates from wessafe buffers in 91*0
core. A "linked-öuffer" scheme permits flexible memory
allocation.

The interface conttins two inoepcndent IOKIC systems, the input
controller and the output :ontroller. The former receives
information from the Network* and the latter sends iniormatlon
to the Network.

As seen cy the programmer, these two units arc almost
identltal in all aspects except the direction of data flow.
Differences between the two are noted in followini sections.

The two channels are independent In action, except that they
share the same channel into memory. Thus they cannot make
simultaneous core accesses.

Fixed locations assigned to the NetwcrX interface arei

Receive URC 60
Send URC 70
Receive interrupt 212
3end interrupt 213.

B. Communications witn tne IMP

Data movim between the host and tne IMP is In the form of
ferial bit strims with s. maximum length of 6096 olts and a
«axlfflu» rate of one illli?n olts per second.

Details of the comnunlcatiens protocol between the ir^iface
and the IMP are covered In Ref. 2.

c. I0M instructions

£0M Codes aret

2093010k Host up

192

Appendix C
REFJERINCE MANUAL FOR PEKIPHIRAL EQUIPMEKT

202}02Qk initiate receive
2023030k Initiate »end
20*3QhOk R^fet.

The "feost-wp^1 EQM reaetf the ,shoft-up timer," This if a
tiaer In %hn interface controiilm a »i«nal to the IMP
Indlcatlns that the host computer Is up, if the timer 1c
not reftt tt leaat once a aecond« indication la given to tne
IMP that the hoat la down.

The Hnitlate receive"1 EOM enafclea a "receive" operation.
supaequent to tnla EOM, data received fron the IMP will be
written in the "receiveH buffera. The £0M muat oe jlven for
each meaaace received. The controller nay be left in the
"receive enabled"1 atate indefinitely, waltln« for a neaaajfe
from the IMP,

The "Initiate acnd" EOM Inltittea a MaendM operation. Data
contained in the ^send'1 ouffers will be immediately
trananltted to the IMP. A "aend" EOM muat be clven for each
mesaage to oe tranamltted.

The "reaet" EOM cauaea both the controll-era vo Immediately
abort any operation in progreaa and go to the "reaet11 atate,

D. Linked Buffera

linked buffera are uaed for both aaendH and "receive'1 neaaagca,
Th« fornat of the linked buffer la aa followat

The flrat word 01 the ouffer contalna the byte count for the
buffer.

If the oyte count la zero, tne contrcV^er coea directly
to the noxt buffer.

A "olock of n öytea to be traneaitted will occupy the n/3
core addreaaea inmedlatel,? iullowlns the byte count,
ilnce there are three fi-tlt bytea in each ak-blt 9*0
word. When the lifii cyte doea not fall on a 9kO word
*iounciarV(the action depend« on the oeeratiom

In a "aend" operation, bytij reaalning in the laat
word are Ignored.

in a "receive'1 operation, byt^ remaining in the laft
word are fil\,. 3 witn O'a by the controller.

193

Appendix C
RSriRKNCE MANUAL TOR PEhlPHfiRAL SQÜIPrtfiNC

The Iftit wora o* the öufter contAin» the *öiolute tddreas of
the next buifer

If the la«t woL-<i contain« all 0'« In tne aaartas field,
no more buffers are proceisea and tne operation la
terminated,

Th« first buffer of a ^send* or "receive" nerjage alviya begin«
2 word« after tne "send" or "receive" URC, respectively (there
are two URC« -• «ee below).

The naximun neasage lenith a« determined by the IMP i« 3096
blta.

£• The Unit Reference Cella

There are two URC lecationa for the interface, one for "send"
and one for "receive." There are two word« at each location,
followed by the fi^at neaaate buffer (cee a^ove). The UKca
have the followlni format:

Firat wordi

0 12 5 23

lists :

Z F K end of data

bit 0 -- Erron Thi« bit ia aet by the controller when
an error ia detected (aee below),

Bit 1 — list fulli Thia bit indicatea tnat the linked
Puffere folicwini the URC cortain valid data. Ita
interpretation depends on tne operation.

on a "aend" operation the controller expects to find
tnia bit a 1, indicatin« valid iata to be tranflmittftd.

If the controller find* thia pit 0 wnen t "aen^1 ia
initiated, the Mneed*new»liatM bit will be set to I
and a "aend" Interrupt iaaued-

Wh«n the "aend" operation 1« completed tna
controller reaeta thia bit to Oc

on t "receive* operation ths controller expect« thia
bit to be a 0, indicating that the üuffera are ready

194

Appendix C
REfSRIHCI MANUAL FOR PEPIPHERAL ßQÜII ^'T

to r*üeivt & raesat^t-t

li thii bit i» found to be ft 1 when a "rectflveM

©perfttlon ii begun, the Hrjecd-new-lift bit" will ce
i*t &nd a "receive" interrupt iniueü,

Thii bit if »et to 1 by tht controller at the
completion of a ^recoive* operation.

Bit 2 «* Need new lifts Thi» bit if «et t?y the
controller to Indicate tftat the "lift-full'' bit waf not
correct at ^he beiinnin« of an opemtion .

ßltf 5*23 -• End of neffagei Thefe bitr are fet by the
controller at the end of a "aend" or ,,^eceive,, operation.

At the end of the "fend" operation theae bitf point to
the laft word of the l.*t buffer tranamitted. Thlf if
the zero pointer that i-errainated the tranfmisfion.

At the end of a '•receive* operation tneac bi'^f point
to the laft word filled witn data from the received
neffage.

Bitf 3-li are not uaed.

»eeonö word» The feconJ word <ü*C*l) containa error codea
and la defcribed below.

r, interrupt»

Two interruptf are ufed bv the controller, one for Hs»nd" and
one for "receive.^

At the normal or error termination of either a "aend" or
,,recciveH operation the reapective interrupt if iffued.

Qe srrora

Errorf are detected by the controller ff^r both "aend" and
"receive" opeiatlona, and t-rror codea are written into the
vorda followine the "»end" and "receive" üRCa respectively.
The "IMP down" error applies to both "aend" and "receive," but
la reported aa a ,,fend,• error only.

m

App«n^lx c
nEFSKfiHCE MANUAL FOR PEkIPHIRAL EQÜIPMINX

KRecetve•, errorj are reported in the worci inmediatelv
foXioving the "receive" üRö. The errori and Bit locttiona
in the error word tree

Bit 19 — Heatftce too longi The mefiafe has exeef.aed the
maximust lenith of 3096 olta,

Bit 20 •- IMP doca not respond* During the tranamiasion
of a neaaaie the IMP pauses for more than 100
niXliaecends between oits.

üit 21 •• Lift space exceeded« Space in the linked
ouirfert has Been exhausted and there are more bits in the
messftije from the IMP.

Bit 23 •- IMP was dowm Prior to this message the IMP
was down, as indicated by the ^iMP-down" line.

"Send" errors arc reported in the word immediately following
the "send* URC. The errors and ait positions are:

Bit 19 -• Message too longi T'.e message has exceeded the
maximum lentth of e096 bits.

Bit 20 -• IMP does not respondi During tne transmission
of a message the IMP pauses for more than 100
Billiseconds between bits«

Bit 22 •• IMP-ready line is dowm This error is reported
only when the controller is active -- that is, after a
"SÄnd" or "receive" IOM has been issued and before the
completion of the indicated operation.

Bit 23 •• IMP was dovm Prior to this message tne IMP
was down as indicated by tne "iMP-down* line.

V Precision Clock

A. General Information

The ARC clock system uses a high-stability Hewlett-Packard
Model 1058 quart* oscillator to drive two accumulators. The
accunulators are)

(1) An »bsolute-time accumulator with an output of year,
month, day, hour, minute, and second, updated once each
second

19Ö

ApPfHalX 0
REFERSNCE MANUAL FOR PBRIPHIRAL EQUIPMENT

(8) A rtiAtive-tlne tccumuir^or wnich conilflt« o£ *, 2k~t)ii
binary counter, 7ht§ cour.tt?' li s^vanct^ once etch
Billlieeendi

The ihürt-ierw jitter of botft the abiolute .r*! relative
ftccunuifttor« ia 10 to 20 ffiilliMtcondi, Tto'.« jitter la ctuted
&y the varittion in the tnount cf tl^e required to acces« the
9kO core «eciory.

The error cauaea by tr.e oacillator drift rate la leas than 1
•econd every 230 day«.

Xh« initial aettir.« nf the abaolute time ia accurate to vithin
1 aecond.

The prouraaaer ha» no contrcl ov«r the operation of tnia unit.
Ti»e ia written in csre whenever the ayaten ta operative,

3« word yornata

Tht abaolute time ia written once each aecond Into two words oi
the SkO computer.

The foraat of the XI:at word iat

0 7 e IS 23

i ; 8 i

»aonth cay year

Bita 0-7 contain the no .tft code in «traight binary with a
range of 1 to 12.

Bita a-15 contain the Gay code in atraifht binary with a
range of 1 to 31,

Bita 16-2J contain the year code in atralght binary with
a range of 9 to 99»

The fer«at ox th? second word la»

0 7 8 15 23

I ? t 8

hour ninvte aecond

IP"

Appendix c
BEFERJiNCE MANUAL TOR PSKIPHERAL EQUJP: &KT

8iii 0*7 contftln the hour code written In ««tr^ght uintry
with » rftRfe of 0 to 2.^.

Bits 15 conttln tne Minute code written ir. itrilfht
üln*ry itn A rtnie oi 0 vo 60.

Ölte 16-23 conttln tne fe,ond code written in «^r»ljnt
öintr/ with * rinje of 0 to 60,

4-h« rclttlv« time 1« written once etch niillaecünd into a fixed
iddrejf. Bit« 0-23 contain tne rei»tlvc time in atrtleht
blntry code with a range of 00000000 to 77777777 (cctÄl)0

L^a

Appendix D
TiCHNICAL D1SCRIPTI0N Of NL5

Contents

I introduction. •......., * «... 201
XI Utility Routine», - •..,.«.203

A. overlay Syftem in HU,,... • .203
1. aeneral ,...., ? 203
2V Xspleraentatlon , .203

B, WL3 RandcrD-FiXe structure inc HtndlinK.t «20k
1. General Confider&tions, ••...•. • «.•»••,20t
2. rile Structure , 203
3. Fin Hftndlinc• 211

III comffltnd Specif ication..« ••••••••«.• • 21^
A, roan&nd speciilcation in MLS 217

1. aener*! «> »..,..<•• .21?
2. ftefistera in tne comm&no

Specification Lanfuage., • • 217
3. Xntity Character and Entity strini;

Ooismanä äroups«,• ,m9 • 0 .«•«.. r »216
I. Cofflnand Stttc«••,•••••••» .«. ,2i>
5a Comreanü Paraing.«•.••,••••<.«...•.....•«...220
6, Paraneter Specification • *•«•••• 223
7. Subroutine Calls and paraoeter pasainc.«*«*225
ö. Input Machinery.,.9 A ..•227
9, Ou'.put (Diaplay) Machinery«., (••»•••230

6. command Specification in TOOAS.•.• «.«.233
1. Command FeedbacK.» • 231
2. Input Kacninery 1.« ...23k
3. Printing.,....,,. 0. • 236
it. Parameter Specification. ,237

XV Command AUoritnma... •«.. «239
A. Iditinc , 239

1. Text £ditlne • 239
3. Structure iditins , ...2kö
3. oraphica £ditin«v.. ,••<?••.•• 250

3, view Control.... •••••••••••••••••252
1, Jumpa and Linxa.......o.r•••252
2, Sequence Generator... ••••••• ...253
3, Diaplay Paranetera.,,.... > ••••• «255
k. The U^er'a Content Analyzer.» •••••••254
3« Keyword Syateic...(.256
6. Text Diaplay. ••>•••• 25d

Co calculator........; <?.... 262
D, Proceaaora. •«•• • 261

1. File Cleanup..........o.. .264
2. File ConpRCtion....,.. 267
3. Output Proceasor *•• ••••••267
li. Compiler a *,, 267

199

I introäuction

Thii appendix five« & technlc&l description of NLS ana exi-endi th-
overview given in sec. IV-E oi int si&in öo<jy of thif report,
coverini ih* utility routines, coma*nö ipeclficitlon, %nd command
tlsorithffls used oy NLS,

in addition, the special-purpose languagei (SPis) for command
•pacification, content analysis, and string construction, whicn
are used in large action: of NLS, are discussed in some detail.

This appendi.x assumes that the reader Is familiar with HIS from
the user's viewpoint to the level of the NLS*» User's Guide,

Preceding page blank
201

II Utility Routine!

The utility routinei in N1S fill into two citegoiie«, deilini witft
the overlay aypteni and with file htnOlinj,

Tne routlnea in tne overlty «yitem provide mechanisms for
chancins tne collection of paies of code in the addres« tipace
of the proframj the file-handlini routines provide necnaniams
for referencing and changing the actual data base.

A. Overlay System in HIS

1. Genial

The logic*! structure of the overlays in HIS is a tree
structure, with the most widely used code residing in the
overlay« near the root.

An overlay is confined to a single page« in order to make
efficient use of the paging mechanisms of the 91*0*

2t laplefftentation

The overlay structure is implemented through two tables and
several procedures which use them to manipulate the
relabeling.

For a given page of program, there is an entry in each
table. The indf:x of the entries for the page is the same in
both tables and Is called the "overlay ^1uaber

,, of the page.

one table gives the relabeling byte for the page, wnile the
other !Üves the overlay number of the parent overlay and the
position in the address space that the page should occupy.

Tne entries in the second table have a POP code in addition
to the other information. To relabel in an overlay (and the
overlays above it in the tree), the instruction
corresponding to that overlay in the second table is
executed.

If a call is to je made to a procedure in another overlay
Uigt occupiea tfe« same logical position in the address space
as the calling routine, the call is split into two
instructions.

These correspond to the execution of two POP«, the first
of which "selects the overlay* and the second of which
gives the address to branch to in thai overlay.

Two cells are used in the prograR to Keep a copy of the
relabeling.

Preceding page blank
203

Appendix Dl TECHNICAL D£SCfcIPllON OF MS
Sec. IIj utility Routines

When an overlay i» selected, trie overlay tables are
used to update these words witneut changing tne actual
relaocling.

This change is made when the second POP is executed
and after the destination address has oeen read.

On a call such as this, the overlay number of tne calling
routine, as well as the calling address, is saved on 4
■tack.

This allows the overlays to be restored to tfteir status
before tne call wnen the called routine returns.

The routine» that chan«e the relabeling are in the overlay
at the root of the tree, and are tnus always available,

in general the root overlay contains utility routines for
basic functions, such as changini relabeling and accesain*
elements of the file.

8, NIS Random»File structure and Handlinf

1. Qeneral ^cnslderations

The present format and structure of NLö files was deterninea
oy certain design considerations.

It xs desirable to have virtually no limit on the size of
a file. This rcans that it is not practical to nave an
entire file in core when viewing it or worKing on it.

A goal in the design was to »axe the time required for
most operations on a file independent of the length of
the i.Uc. That is, small operations on a lar^e file
should taKe roughly the saae time as on a smali file, in
this way the user and tne system are not penalized for
large files.

The system nad to include graphic statements, and, perhaps
other form« of data, as well as text.

As a result oi tneae coniiderationa, a random-file scheme
was chosen. Each file is divided into logical blocks that
may be accessed in a random order. There are several
different types of blocks, and each type nas its own
structure.

log

Appendix Di TSCHMCAL DESCRIPTIO».* OF hlfl
sec, %Xt utility routine«

2. File Structure

An VIS file 1§ nacse up of a neader ancs up to a fixed number
(currently 66) ©l .icm-woro file block«.

a. The Header Block

In e\ch file, there 1« a header block that contcln«
information about that particular file.

The header block rema-na in wewory while the file i» in
uee.

The header inclucea the iollovin? Inforrnatiom

il) General infcrnatlwn reiardinf the file, «uch as
the ^ollowinsi

(a) The iate of crettion of the file

(b) The file owner«t user nuaber (identifier the
ueer who created the file)

(c) The riw«o«r of word« in the file header block

(d) The Initi&li of the uaer who laft wrote thj
file out

(e) ;ne dat« and tine at the laat writim

{£) The Raner-delinlter character«

(f) Tne averafe lenfth of ctatenent« in character»

(h) The total nüBter of «tatement« fener-ited in
the life of the file.

(2) status table« for the file block«.

The fir«t and larfe«t «tatu» table ia the randow file
block «tatue (R/BS) table.

Each entry in the «fgs table correapond« to a
random file block, and indicate« the «t«tu« cf that
b3ock. The file header 1« file r-lock «ero. The
nuwötr in tne RFSS entry ha« one of the followirs;
meanini«!

2öS

Appendix Dl TECHNICAL DESCRIPTION OF NLS
3ec. IIJ Utility Routine«

ZERO: The biocK i» not illocated, ^nd does not
exist.

POSITlVii The olocK Is »llocated, and is in
memory rather man on the secondary storage
device. The positive nurncer is the actual
nartin« address for the tlocK,

HEQATIVfii The blocx is not in core. 11 the
entry equil« -l, then the rlocK is allocated,
out has not ocen initialized. In the cfcse of
text blocK«, -2 indicate« th?.t the bloc*
contains no garbage statement d«.ta blocks, and
need not be ^arbaie-coilected, otherwise the
number is the negative of the uaed-wora ccunt.

A given file clock ha« only one tyoe of information,
such as structure or text. There i« a separate status
table for each type of file OIOCK, These are called
«econdary «tatus tables.

An entry in such a table has one of the following
neaningst

Z£H0i The block is not allocated,

N0N-Z£K0i The value is the block number, that is,
the entry into tne R*BS for tnat block.

There are «econcary atatu« tables for «tructure, text,
graphic«, and keyword types of file blocks. The
internal structure of these different types of blocks
i« discussed in the following sections.

The u«e of «erarate «tatu« tables avoia« references to
absolute iccationa in the file and reduces the number
of bits required to specify the location cf a
particular piece of information,

pointers to various eleaent« («tructural, textual,
etc») consist of two fields: a secondary
itatus-table index and an address giving the start
<,: the element relative to the «tart of the block.
The status table entry contains the number of the
block» from which its absolute address can be
computed.

rower bits *re required, since the ranje of

206

Appendix. DJ TECHKICAI DtSCHlPTION Of NL3
Sec^ Hi Utility Routines

«econdary atfttu«-t»öXe indeyes !■ sniller thin tne
rtme of poasifcie file-Dloc* nuncera. The «rettest
gain from thin is in the identifier for & rinr
element, since a file can have 'inly eifht structure
Diocks in the current configu.atlon of His,

In spite of this, the use of the separate status
tables is of questionable value.

Value of Avoidinf Absolute Addressess By avoiding
absolute addresses in the file it is possible to move
a blocx to a new location in the file simply by
chanjln« a status-table entry, such a move can be
valuable if the file has become sparse and needs to oe
compacted.

If absolute addresses were used, then all
references to the blocK would have to be changed,
but it can be argued that sucn a process need only
be done on rare occasions and hence its efficiency
is not crucial.

Moreover, sufficient backpointers exist so that
the process of modifyint references would not be
difficult (although it misnt be lengthy).

Value of Fewer gits in J-olnterst The economy of bits
in pointers is a stronger argument for the use of
secondary status tables. However^ the total savings
per ring element (with the current sixe limits on
files) is only six bits.

Disadvantages of Secondary status Tablesi space in
the data page is used by the tables (which are always
in core) for information that would not be necessary
if absolute addresses were used.

Their use places arbitrary limits on the number of
file block« of t particular type.

For example. It is possible to exhaust the
structure blocks when the file actually contains
room for more information, if absolute
addresses were used, then blocks of a particular
type could be allocatea as needei, with a limit
only on the total number of bloc*c» rather than a
limit on eacn type of block.

20?

Appendix Dt TECHNICAL DESCRIPTION OF MS
S'ec. II: Utility Rout.inea

If further conaideratlon confirns tftit the seconötry
etAtu» ttoles «hould de elinin»te<l, it will not oe A
difficult tifK frecEuae of the methods used for
tccesiilni InfoniAtion in tnt files.

These methods tre discussed in a later aectlPn;
first the remainder of the file structure must öe
descrioed.

t. File-BlocK Format

tach random file oioex has an eifht-word neader, Tnis
header contains the foiiowingi

(1) The checksum of \.ne OlocK

This is computed before the block is written, and
verified when the block is read. In addition, if
room in core is needed for a block, then any wlock
in core that has not been chanced may be
overwritten without copying it to tne file. The
checksum provides an easy means of testin« whether
th« block has been chanced.

(2) The used-word count (always areater than the
neader sise)

(3) The block type, to indicate whether the block is
text or structure

U) in structure blocks, the free-list pointerj in
text blocks, the larbaKe-collection flac, indicating
whether there are ca;b^ge SDbi ^statement data blocks)
in the block,

(5) The secondary status-table index number.

c. Structure Blocks

The internal structure of NLS files is h rin| structure
represtntin» a tree structure. Each nods- in the rint
corresponds to a statement^ and contains pointers to the
"first s^n" (cabled tne sub) and the "first brother"
(caliea the successor). Tne last node in a list contain»
a flag ^arkinc it as tne tail and points tc the father as
its successor.

The nodes in tne ring are Kept in four-word rxng

20Ö

Appendix Dl TECHNICAL DESCRIPTION OT M.S
Setr II: Utility Routine«

eleaent«.

fc&^h structure clocR contain« 251 rinr element«. There
can be up to eight structure block« in * file« but not
til need be allocated,

Kach ring element in an allocated BlseK either t«
a««ociat«ä with a «tateoent in the «truer:.« of the rile
or 1« on the free li«t for the blocK.

A free ll«t con«l«t« of a chain of pointer«* «tartlng
in the block header and endlnr with a sero pointer.
(A« used nere a pointer 1« an addref« relative to tMe
«tart of the block») The pointer« are in tne first
word 9f the four-word element, and the other three
word« are zero,

A free list 1« entirely contained within a «ingle
block in order to minimize file reference«,

A ring element «««ociated with a statement contain« the
following information!

(1) flag« indicating wnether the statement

(a) has a name or not

(b) has been tested against the current
content-analyzer pattern

(c) passed tne pattern« if it has been tested

(d) is the head of its plex

(e) is the tail ft it« plex

{2/ A pointer to the text for the statement

(3) A pointer to the picture associated with t.ie
statement if there is one

U) A pointer to the sub for the statement (or a
pointer to the statement itself if there is no
substructure)

(5) A pointer to the successor for the stitement

20?

APPenälX D8 TECHNICAL DESCRIPTION OT NL3
3ec. ZI; Utility Routines

16) The haah of the narsc of the stitement if it haa a
name.

A rirt? element is pointed to by a permanent atatenent
identifier IPSID),

Thia ia an 11-blt integer between o ana 2CH7.

The three hicii-ordir bita civ« the atructure-blocK
nuauer (entry into the RSVST table), an<l the fiijht
low-order bita öeternine the location within tne
biocic.

The PS1D of a statement remains unchanted aa ions as
that atatenent ia in tue file. That is, the PSID ia
not changed by textual or atructural editing of the
fiXe. When the atatement ia deleted, that aame PSID
may later be uasd to identify a different statement.

Every file has at least one ring element in its
utructure, namely '-he element for the origin statement
(root of the ring, first statement in the file), which
always has PSID zero.

Text Blocks

In addition to the header, a text-type file bloc* is made
up of an arbitrary number of statement data blocK3 (3DBs)
and an area cf free storage.

The free storage area at the end of the file block ia
aimply a number of woros available for uae in creating
new SDB.j,

An 5DB ia a variablc-siaed blocK of words with a six-word
header.

The header contains the ft?llowinf information!

(1) The number of words in the 3D9.

(2) A flig indicating whether the 3DB ia unused
(ite. garbage to fct- collected by the garbage
collector)

(3) The PSID of the atatement

U) The date and the tine when the SDB was created

210

Appendix Dl TECHNICAL DESCRIPTION OF NLS
Sec, II: Utility Routines

»no t.ne initlils of the u?er who cretted i'w

15) The nunbei ot chirtetera In the «tttement

(6) The pofltlon of the llrat character in the
atatenent that li not part of the name, (Set to 1
If the ftatcnent doe« not have a naae.)

The vorda followini the header contain the text of the
«tateraent, three character« per word» The text includes
an end character (code 377ö) on each end of the
atatement. The ia«t wcrd i« filled to a word boundary
with end character«.

The character« in a itntenent are explicitly numbered,
the firft end characte: being number zero«

A twc*woM entity conaiatinc of a PSID and a character
count i« called a T<pointerf and indicate« a particular
character within the file,

A f-i-rim i« a strinf of text within a «in<le statement.

The text-editing routine« suKe u«e of T-pointer« and
T-«trini«.

c, Graphic« Block« and Keyword dlock

The format of the infornation «tortd in the«e block« will
be deecrifted in the section« dcaiinc with the vector
paokÄge anl the keyword ay«teffl,

3. File Handling

a. Core Table« and rile input/output

The random file« are read Into core by block«. Two page«
in NLS are logically aividod into four I02ä-word «ection«
to contain the file deck«, Thu«, up te four file blocx«
nay be in core at a tim«, when & file block i«
requested, if all four are in use, one block will be
written out. Core block« way ce "froaen* in, fiowever3 «o
that they will not be removed.

A «ingle procedure called LODRFd control« all file
input/output (other than file copying), xfhen any routine
want« a block loaded, it call« thi« procedure with the
nuaijer of tne desired clock. Tn« blo^k 1« then loaded

211

Appendix Di TECHNICAL DfiSCKIPXlÜN CF NLS
See. ^i: Utility aoutln«J

•.nd Iti location in aicmcry rttumed.

The proceaurrf ;r4Ke5 use ci several tables.

One taöle tn<3ic%ter vr.icn file blocx is in earn
core Dlock {lv« 1« called RFIFCH for "random file
iinäex for core blccka"). A zero in tnla table
ncLas that no file DIOCK IS tnere, wnile a positive
number is tne ranaoir. file fciocK numoer (index to
ÄFbS).

A ficcond table indicates wrucn of the core blocKS
have been irozen, "rrozen" Indicate« to the file
block loading procedure tnat the core OIOCK must
not be changed. This is tne case if some
operation., sucn «is editing, is ceir< performed or
data within tne DloeK,

A value in tne taole of -1 ".etna that tne blocx
is not frozen; this value is increnented cy 1
for each reason wr.y tne UIOCK is frozent

The alforithn of LODKfb is approximately a^ follows:

Firot, a core blocK is cnosen, A quicx scan of the
first table jnenticnea above is ^ade to find an
unused block, if all are in use, tnen a counter is
used to find tne next core blocK that is not
frozen, (If all are frozen tne system aborts.)

The counter provides a simple algorithm for
determining whicn block should be removed from
core.

If the chocen core block contains a file olock,
then one of the followini things happens:

(1) If the file block is empty, it is released
to the system and tne corresoonding status block
is set to indicate taat that block is
unallocated.

(2, otherwise, the block is written out on the
Illfi if the checksuifi has cr.anied, and the random
file status block is set to indicate tnat the
block i« on the file and rot in core.

At this point the desireu file Mock is loaded Into

212

Appendix Dl TICHNICAL Di,3CRIPTI0N OF HIS
Sec. Us ütilivy Routine«

the core block«

If the fancon file block n*» not beer. .nltlallzecJ,
the inititlizatlon is done now, otherwise the
chceKfum erd file type &re checKcd. AP error i«
reported if either of the«e checK» f&ll«.

Finally, the rtnuoa file block status is set to
show that the block ii now in core, and the index
for core block« (RFIFCB) 1« set to indicate which
randon file block is in that core block*

b. File Copying

The alforitnm for copying an NL3 file i« as follows:

Firsts the procedure nu»t obtain a core block to do
the copying, RFIFCfi i« «canned to find a block tnat
1« not u«cä. If there i« no unused block, then the
first block that lit not frozen 1« taken, and the file
block number in it i« saved. That block is
chrcksumaed and written out on the output file (in the
proper file block).

Having obtained a block« all of the allocated file
blocks (except for the one already written in the
event that no core blocks were free) are copied from
one file to the other. This includes the file header»

Finally» if no blocks were free, the block which va«
removed to reake room for the copy is restored from the
output file,

c. Referencing information in the File

A« much a« possible, Information in the file is
referenced indirectly through utility functions. This
ensure« that the file structure can be modified with
minimal chances in the aystem as a whole.

For each field in the ring element, there are procedures
vnich, given a P3ID as argument, either read the contents
of the Xield or store a new value into it.

only these procedures need know the actual format of a
ring element. Thus only these procedures need be
changed if that format is modified.

213

Appendix D? "SCHUCAl utSCHlrliuH Of UlS
Sec. II: Utility Routines

inere tre IIäO procedure« for retdinc tnd writing
chtracters in in SLB, Thi» serve« botR to ensure
fiexlöiiity in the forntt of the 9D9 and to ivoid
multiple procedures for performing a very comnon
functiono

Bectuse of the IscK of instructions for character
manipulation on the 9^0, a rather elaborate metnod iJ
used to read characters fron a statement.

Before any characters are read, the procedure FECHCl
is called to initialize a work area. It is called
with the address of the worx area and the direction in
which characters are to be reaa froK the siatement.

When calling FECHCl, the first two cells of the
vorK area must contain a T-pointer for the first
character to be read, A character count oi one
indicates tne first character of the siatement,
FECHCl will initialise the rest of the wcrK area,
which contains the folloviiig:

WORD 0: PSID

rfOHD Is character count

K0*D 2? return adcress fcr routines reading
characters

KORD 3J instruction to branch indirectly througn
the fourth, fifth, or sixth cells ,f tne wont
area

WORDS k, 3, and 6i address of code to pasü the
first, second, 3r third character respecti'ely
of the current word of text

WORD 7i address of the current word of text

WOKDS 6, 9» and lOt the first, second, and thira
characters in the current word of text

WORD 11: unused

WORD 12; the address of the start of the first
word of text in the SDB,

After the work arc> has oc^n initialized by calling

m

Appendix Dl TtCMNICAL DESCHIPTION CF NL5
Sec. Hi Utility Routine!

FEGHCl, any nunDer Qt chftricter« nay ce read from
th« «t&tewent ty «imply executinf a call to tne
«econa cell oi the work area. After returning the
laat character of the at^tcment (or first if the
flirecticn of reaaout 1? «?aclcv&rda), end characters
(code 377B) will be returned froa all «ufcsequent
calls.

The call to the work area places the return
location in the second cell and causes the
instruction in the third cell to be executed, mis
results in a branch to a routine wmch returns the
next character,

rfhen all the characters froa a particular word
have been reaa, the next word of text is
unpacked into the approrriate cells in the vork
area,

Whenever a character is read, th« branch
instruction in the third cell of the work area
is modified so that the next caU will result in
a branch to the appropriate routine to read the
next chared.er.

To chance position within the statement, change
direction, or read from a different statnent, the
work area auet be reinitialixsd by calling FICHCI
acaln, as described above.

Finally, statements may be read in sequence accordinj tc
7i«w parameter» by means of a croup of procedures
collectively called the «sequence ieneratoreM This is
described in detail in sect iv-ß*2 of this appendix.

It was mentioned above that it would be possible to
eliminate the secondary statue tables witnout an undue
amount of effort.

It should be evident now that this is in fact the case
as a result of the use of functions to reference
information in the file.

It would be possible to modify the field size« in the
rlni element by simply rewriting the routines that
access the affected fields,

in addition, a simple process could be written to take

215

AppencJix Dl TSCHNICU DESCRIPTION OF N15
Sec. Ill Utility Routine»

files in ^ne current NLS fora&t »nd convert tftCM to ?.
forn»t ujin« »bi6lute addrciae» for pointer« rttner
tn»n status uele«.

216

Ill Comnsand Specificition

A. Command Specification in NLS

i. General

The command »pecificatton «ection of NLS ia implemented in
an 3PL deaifned to facilitate itj deacription and
implementation»

The details of this ianruaie and ita use in NLS are
explained in the followini sections.

2. Registers in the command specification Lanjruaie

Two types of registers are used by the command specification
nachineryi strtnc registers and character registers.

Some of the registers are used internally in the
implementation of the language, some are used as
apecial-purpose registers for operations on certain tyoes
of operands, and some are general-purpose operand and
storage registers.

constructs in the input-fecdbacK SPL allow manipulation
o£ the string «and character registers.

The principal defined operations for string registers
are LOAD and DISPLAY.

The contents of a string refistcr are normally
designated in the SPL as the name of the resister
jmnediately followed by an asterisk (»}.

A regieter nay be assigned a value by a statement
of the form

register-name •»•" H»M expression.

Examples of expressions ares

(1) The name of any of the string or character
registers

(2) The designation of a character, such as 3P
for space

(3) The character 0, meaning to set the string
to null

ik) A string of text delimited by ^-pointers.

for example, LIT«i»0 clears the literal input

217

Appendix DJ TECHNICAL DiSCKIPTION Or MS
Sec, IIIi comrund Specification

regiater, while Ln*«(Bl B2) ioi<ls it, with the a
tezt •trine.

The content» of a r^iiuter n»y be diipiayea in the
na.Tie area by tne COIü. nd of the form

"DM" regiatef-nane •♦♦" ")".

Thus DN(STK») cauteo the content» of the statement
name rerlater to be displayed.

The input character reiijfter is normally available to
the 3FL profraramer a» a read-only refister, which
alway» contain« the laat character read from the input
»trin«.

inc content» of the reflatcr nay ee put into a
«trin« a» de»cribed above, or displayed in the text
area by writing DT(C»).

in addition, the input character i» implicitly
referenced in the ca»e »tatenent (defcribed in Sec.
III-A«^ of thi» appendix),

,1-, Entity Character and Entity stringj Command Oroup»

The command» in NLS are cla»«ified in group»« and with each
croup ia aseociated a particular entity (»ucn a» character,
word, »tatement, nr branch).

with thi» entity i» a«»otiated a character called the
"entity character" and a »trin« called the -entity »trinf."

The entity character is programmaticaliy a»»l«ned value» in
th'j S?L by the construct

"K««" character •'," »trinf.

Thi» cause» the entity character to be set to the value
of the character, and a»»lin» the value of the »trim to
th« entity «tring.

Thus "E«»B,BRANCH" set» the entity character to "B" and
the entity atring to ^BRANOHc"

The entity »trlns and entity character are u»cd to provide a
«^fault option in command »pecification.

21Ö

Appendix Dl TECHNICAL DESCKIPTION CT NLS
Sec» IJIr Conaftno Specification

Vben tue command operfttlon duch ts DELETE) naj öeen
•^eclfiefl, the entity itrlnf for the croup of the
operation if offered ai the type of entity for the
cojimand. The user nay accept this oy typin? a '-connand
accept" character (CA) or apecifv aome other entity by
typing the appropriate character*

The actual 3PL conatructa uaed to expreas thia uae of the
entity atrini and entity character ere oreaented in a later
example.

k. Command state

Except when a command la oelnj apecliiea or executes, the
uaer is in aone command atate.

It the uaer beflna parameter apeclficaticn without first
apGcifylnc a nev command, the command executed win be trtit
dealjnated by the current command atate.

The command atate ia defined internally by a apecial
refiater called the Matate re|later,M

Th* atate refiater alwaya containa the location of the
moat recently defined command at^te,

thia location ia in the aame format as a return
location placed on tne atacK in a subroutine call.

The atate refiater additionally containa the command
group of the command atate,

The SPL syntax for definim a command atate ia

"3<Mrt label ",* command-group,

which reaulta in a call to the atate definin« routine to
be produced by the coapller. The label ia defined as
being equal to the addrfeaa of thia inttructicn.

From the command state, control pasaea directly to a
parameter apeclfication point in the prorram, which acts as
an idle or "wait for next inputM point.

Control returns to the hifheat level of tne command
parainf code if the character read ia not * legitimate
parameter apeclfication character.

319

Appendix Dl TECHNICAL DESCRIPTION CF MS
Sec. Uli Command Specification

This la on« of the moat si|nific»nt featurea in »niKinf
the command ian^UMe efficient and easy to uae.

The content! of the state regiater may be uaed aa an co^rana
in öeaiinationa?. expresaiona.

Thus, one may proirammatlcaliy return to the previoua
command atate öy the 3PL atatement MQCT0 /"s;".

Th^re are several occaaiona where this eonatruct is used.

A7, any time during the command specification, a user
PU.y return to his previoua command state by typing a
"command delete5' character (CD),

From tne afcove description of command state, it may
be seen that the action of a command delete is to
reset any parameters entered durim the course of
the aoorted command and branch to the location
contained in the state refister.

If a specification error occurs during the execution
of a command, the command is aborted and NLS is
automatically returned to the previous command state,

3. Command parsing

The NLS input commands are parsed through the use of nested
case statements.

The depth in the nest of case statements corresponds to
ae position of the next character to be read in the

command input string.

Thus if a command were specified by «hree characters,
the first character would be read by a first-level
cass statement, the second by a second-level case
statement, and the third toy a third-level case
statement.

Two features of the case statement construct in the
input-feedbacK SPL make It especially suited for parsing
the command input strings.

The selection criterion for the execution of an
element of the case statement 1* equality of two
specified characters, one of which appears at the
front of ti.e element, the other of which is Implicit,

220

Appendix Di TECHNJCAI DESCRIPTION OF NU
Sec. Uli coraffianö Specification

The lotpiicit character if normally the last
character read from the input ftring. in addition,
it la poiaiöle to repeat a case (using a "KEPZAT"
construct) with some character other than the incut
character.

in particular, the entity character may be usea.
This permits the iaplenentation of the command
default option mentioned above.

At the head of the case statement, the entity
string is used to offer a default value of the
cooaand type. If the user types a command
accept, there is an element in the case
statement which is executed and results in
repeating the case statement using the entity
character in place of the input character.

The net effect is the same as if the user had
ty^ed the entity character rather than a command
accept.

If none of the tests succeed, then an "L "»CASE'1

statement is executed.

Whenever a case statement is executed, an entry is
made on a stack indicating the location of that case
statement,

A construct in the repeat statement aliovs the
execution of a previous case statenent 7ith a
particular character;

The word REPEAT is followed by an integer indicating
which of ths stacked cases is to be repeated.

Thus REPEAT 2 causes the second previous case
statenent to be repeated.

The integer is in turn followed by a character
specification in parentheses.

This may be any of the followingi

<1) An actual character to be usca, such a« 3P

(2) The enUty ch&ractcr (E*)

221

Appendix Di TÄCHNICAL DESCRIPTION OF NLS
Ste. XIIf eonatnd Speci^lcAiion

(3) ins next input charactftr, indicated by a
period.

k brief example of code for paraing an NLS-like command
laniuaie is preaenttd here.

It incorporate« moat of tne 3?L conatructw mentioned in
this section, a? well a3 ffo&e not mentioned.

The command lancuage deacrir)ed nere allows two srouos of
commanda, used for text editing ano structure editing
rtjpectively.

Four coßmands are specified»

Text editing! (initial entity ■ character)

Insert Character

insert word

Structure editingi (initial entity • stateroenM

Append statenent

Append Branch

(start) « case

(i) ^textedit; dsp(< insert t e8#) . case

(c) «•■ic,textedit cnp(•> < insert character)
e»»c»character ♦parnspec^prmspc -comex^exectr

(v) 8«»lwftexteait dip(» < insert word) e««w,wora
♦ parmspecprmspc -conex,txectr

(ca) repeat Ola«)

(cdl goto [§J

endcase goto start

(a) /stredit; dsp(< append r es*) . case

(s) s#»iC;StrtMit dep(^ < append »tateaent)
e»»«,statement, ^parmspec^praispc -coaex^exectr

2k2

A»pen6iX D5 TECHNICAL DESCRIPTION Of tilS
Set. Ill; Conmxnd Specification

(w) *«»iw,iitredlt csspi «f < append! wora) e*»w,word
♦ pariD«pe?,prnapc -co!H«x,exectr

(c*> repeat 0(e«)

(cd/ coto {aj

endcaie «oto iiart

endCÄ«e repeat o(.)

6, Parameter Specification

Parameter ipeciflcation 1« tnat portion of NLS wnicn la
invclved with the «electicn of operandt! Tor cc-nmanos.

Operand« may be «pecllied py felecting iocition« ana
entitle« in a file, by entry of «trinia from the keyboard,
or by the namins cf pointer« with t:ie Key«et and mouae.

Specification« of entitle« in the file are repre«ented oy
one or more entriet on a «tacK4, called tne specification
«tacK, (Thi« 1« Independent of the «ubroutine argument and
return «^.acK*)

There 1» one entry on the «peclflcation attcK for each
«election n4.de in parameter «pecification,

A normal entry on the «peciflcatlon «tacK {«pec atacK
for ahort) la called T-pointer (which conaist« of a
PSID and a character ccunt).

An SPL conatruct facilitate« the placing of artuncnt«
onto the apec atacK. The aynttx la

"SPECC argument *)%

where an argument can be any of the followlngi

ÖUöi Procea« the moat recent command accept as a
bug «election and place the corresponding T-polnter
on the apec atacK

POS: Load the la»t bug aelectior, snto the spec
atacK.

String regiatert the action of thl« command depend«
on the reglater apecifled, and tne content« of tne

223

Appendix D. TECHNICAL DiSCHIPT'ON Of NL?
See. Uli connand speclficallen

reglater.

If tne feiiiter tf the number reilater, then the
numeer string In tnc reKiater la converttei to «n
integer and puaned onto tne ipec »tack aa the
second word

If the specified reiiater is the fctatement
nutaber reiiater, it converts the »trinn in the
reiiater (assumed to be a statement number) into
a PSID, and pushes It onto the spec stack

in the case of any other register, if the first
character in the string is a digit, then the
content of the register is assumed to be a
ctatewent number, otherwise, a statement name,
in either case the correaponding P3ID ia pushed
onto the stack.

Number: The integer indicated ia puahed onto the
9ptc stack

Identifieri The value of the identifier is puiined
onto the apec stack

Jno a^sument): This causes the spec »tack to be
cleared of all entries,

A textual entity nay te specified (effectively) only through
bug selection(s) or with a pointer.

A atructural entity may be specified by bug selection(a), a
pointer, or keyboard entry of statement nane(s) or
nuawer(s},

in the case where the bug selection or pointer serves as
a text saifection which indicates a string identifying the
statement to be fpecified (s.g«, namerf, links), the
selected string is moved into a string register and
treat as though it wer- entered from the keyboard.

The algorithms for converting bug selections into 7-Pointers
are ciscussed in Sec, IV-B-ft-c of this appendix,

A rsinter is simply a T-püint«r which has been given a name
and stored in a taoi-.

It is ff^ecified by depressing the ri^ht button on the

22U

Appendix Dl TECHNICAL DISCKIPTIOH OF NL9
Sec, Ills ConnAnd Specxilcfttion

noufe, and «ntcnnf the n»rie of ;,he pointer with the
Keyset.

When A pointer has been specified, the Associated
T-polnter is simply loaded Into the internal register
containing the (processed) mouse locaticn, making it
appear as thouch a bug selection had been made.

A statement may be selected from the Keyboard by typln*
either the statement name or the statement number.

A statement number is c mvcrted into a PSID for a
T-pointer by simply runninf through tne ring at each
level (beglnnlnu with level 1) until the specified
statement is reached, or found to öe non-existent.

A statement name is converted into a T-polnter by running
throuuh the ring, looKlni for a statemnt which has a
name, %nc whose hash la the same as tne hash of the name
beins searc.ied for,

in the case where an operand is % textual entity which is
entered fron the Keyboard, -here need not be an entry on the
specification stacK for it,

father, it will go directly into a fpecifi^d register,
and be used in that form for the command.

It should he noted that the selections of textual
entities in the file arc processed during exrcutlon of
the command so that (when appropriate) the textual entity
is put into a reeister in the same form it would be in if
it hi^ been entered from .• Keyboard,

7. Subroutine call« and parameter Passing

The subroutine call mechanism in the SPL is very sinliar to
that used by ALQOL. It uses a stt.-K for containing return
information, parameters, and local variables.

Because of the overlay structure of NLS, it is necessary
to Indicate in a subroutine call not only the address of
the routine being called, but additionally the name of
the overlay In which that routine resides.

The name of the overlay containing the calling routine
is stacKed with the return location, so that the
appropriate overlay aay be relabeled in upon return,

225

Appendix D! TECHNICAL DESCRIPTION 0? NLS
3ec. Uli CoNinand Specification

There »re vwo typet of aubroutine calli, whicn liffer In
tnc return locations placed on the »tack.

The return location stacked by a normal suoroutine
call is tne address of the location followin« the
calling instruction.

The other subroutine call stacks the return loc*ticn
of cooe which will return HIS to the previous connand
state.

The format and operation of the stack (and suoroutine
call mechanise) are roufhly as follow»!

The stack is addressed tjy two pointers, one to the
current base and one to the stack top.

A suoroutine call instruction is always preceded by a
"nark stack" instruction.

The "inark stack" instruction pushes the contents of
the base-of-»tack pointer onto the top of the
stack, followed by a «ero (wnich will be used bv
the actual subroutine call for the return
location).

The top-of-stack pointer is incremented
accordingly, and the base-of-stack pointer is set
to point to the new top of the stack (wnich will
eventually contain tne return location).

Formal parameters are now loaded onto the top of tne
stack.

If an overlay has been specified in the suoroutine
call syntax, a cell 1» set to reflect the overlay
containin? the procedure beinst called.

Note that the actual prcgraa relabeiim is not
changed at this tiraei

The subroutine call is now executed

The return location Is computed.

This is a combination of the calling address and
the name of tne overlay containing the
»uoreutine call instruction.

226

Appendix Dl TECHNICAL DASCKIPTION OF N13
S@e« XZU CoiBSind Specification

Thia ifl true except in tne c»ae of the
•peciftX lubroutinc c&.ll wnich return« tc the
previous comnand «täte.

in the specltl tufcroutlne c&ll, the contents
of the «t»te v»rlEPle (which in fact la the
return location for the previous state, as
computed above) are used a» a return
locatione

The return location ii stored in the ceil
pointed tc by the basc^of-atack pointer.

finally, the overlay containing the called
procedure i« relabeled in if neceaaary, and a
branch ia made to the addreae indicated in the
subroutine call«

The ayntax of a subroutine call in the SPL la

{••♦- / ••«") procedure-name {*," overlay-name / EMPTY),

where " / EMPTY" mean« tne construct before the alaah is
optional.

in addition, parameter« may be specified by listing them in
square bracKels after tfrje call. Individual parameters in
the parameter list are separated oy comma«.

The "♦■ indicates a normal «ubroutxne call, and a "-"
indicates e special subroutine call which returns to the
previous command «t&tec

If no overlay name is specified, an overlay which is either
the overlay containing the calling procedure or an overlay
above it in the overlay tree is aa«umed, and thu« no chanre
i« made in the rclabelini.

An example of a «u.routine call i«

♦ subpat ♦wflr2»txtedt/,b,l,pl-li; -qdv, txteat.

Ö. Input Machinery

a. MorK station Input from Keyboard, Kevset, and Mouse

Charactera arc read fron the worK atation by a ayatem
routine in the following mannen

227

Appendix Dl TECHNICAL DtSCÄlPTIQN OF HIS
3tc. Ill» commtnd Specification

Whenever ä butt.on on tne keyboarC, Keyset, or mouae
chtngea state, tne TSS I/o software conaiders It a
character entry, ana piaces the following infornation
into its input ouffer.

(1) The device which caused inoui

(2) A code which is the input itself:

(a) A character in tne caae of tne Keyboard

(b) A code in the case of the Keyset

(c) A d^wn/up and button indication in the case
of the nouse

(3) The mouse coordinates at tne time the
character was read

U) The tine (16 mililsecend resolution) when uhe
character was read.

A system call is tnen used by NLS for readinc tne
characters from the system input bucfers which returns a
character (and related infcration as described above) if
there is one, and reports the status of the system inout
suffer (ewpty, another character waitin* m input buffer,
no character read),

b. Input Fork

Because of the necessity te read characters from the
system input buffer so that it does not cverllow -- an6
nore important, to provide a facility to interrupt NLS
while it is evecutinc a loni process -«» a fcrk is
activated to run asynchronously in oarallel with NLS.

This fork »ay be conceptualizea as an mdeoendent program
(called the input iorKi which reads characters from tne
worK station and places them in a procrammatic inout
buffer to be read later by NLS.

NLS always reads characters from v^he prorfraiinatic
input puffer before reading the« from the system, and
when it is reading a character from the system, it
checKS to ascertain that the input forK is not reading
Lhe same character.

22Ö

Appendix DJ TfiCHNICAL DESCRIPTION OF NLS
Sec» Uli ConBAnd Specification

Ift« input forx iddit.tonally r.ai the ctpatility to
interrupt NIS from t?»e process it 19 currently involved
in, and it doe» to wnen it retai an interrupt cnaracter
IRUBOUT) fron the Keyboard,

Since NLS alwaya reada charactera passed to it from t.ne
input fork oefore readini tnoae waiting in the syaten,
and there is no rest-iction on where tne input *ork ?ets
the characters it will pass to NtS, the input fork may oe
used to simulate an HIS user.

A simple facility is currer^ly provided along this
line, whereby the input forx can read characters from
a file, and (with a minimum of tracislation and
interpretation) pass them on t"^ NLS.

This feature is used mostly for merxini and
converting sequential files into NLS files.

Character Translation

The Keyset and mouse input requires translation from its
raw input form to a character which is meanlniful to NLS.

The Keyset Input is in the form of a number (0-31)
w.'ilch reflects the Keys depressed (and released) on
the Keyset.

This is combined witn the current state of the left
and middle mouse buttons (which provide a case shift)
to produce the translated character.

The translation algorithm is roughly as follows!

If both mouse buttons are down (case 3) then this
is a view specification character, so treat
specially.

Otherwise, use the Keyset character a? an Index
into a table of cnaracter values«

Tlus table of character values has three entries
for each possible Keyset value, one for each of
ths remaining cases.

The case is then used to determine the correct
table entry as the translated character.

229

Appendix Dt TECHNICAL DESCRIPTION OF NLS
Sec, Ills Comnanci Specl/ie»tion

Additional translÄtion is öenc when chtrtcters »re
entered frJm the nouie vitjiout concurrent entry from the
Keybotra or Keyset.

This translation altnply XooKf for combinations of
up/down »tropes cf nouse DUttona without intervening
character«, and translate» them to specific
characters.

TMs is used for tne comnana accept, connand delete,
backspace character, and backspace word cnaractcrs.

output (Display) Machinery

a. General

NLS communicates with the user via a diouiay screen
divided xnto six areas.

Each area is maintained separately of the others, and
contains a specific type of information.

The cr«anisation of the registers on the display screen,
and the format of the refietero themselves, are
parameterized.

There are many parameters wnich relate specifically to
certain registers, and some parameters vnlcn relate to
all rciisters. Among the parameters relevant to all
of the registers arej

location on screen

character size and type used in r;gistc*r

display of register on/off

Insofar as possible, %hese parameters are the display
control word« used by the hardware. This minimize«
tne software required for controlling the screen
format.

b, view Areas

(1) Echo Register

The echo register Is maintained &y the systeii and
reflects the raw character input to His,

2J0

Appendix Di TECHNICAL DESCKIPXIOK 07 HIS
3cc. Uli Commtnd spcclilcttion

NiS ia concerneö ^itn tnii regiater Mainly at
inltializationt when it muiJt be set up by a aeries of
nyaten calif»

(2) VlüwsPEC Area

The view apecification (ViEWSPtc) area reflecta thooe
text area ,Jiew parair.etera vhicn are not obvioua frowi
looking at the text trea«

The VIEWSPEC area ia changed by the tame routine wnich
changes the view paranctera tfteinaelvca,

(3) Connand yeedbacK Line

The command feeabacx line ia the major feedoac*
mechaniam of the coanund apecification machine.

There are two componentt in the command feedback line?
words which reflect in Engliah tne command beim:
apecified, and an arrow which indlcatea the uacr's
atate in specifying th^ command (the arrow moat
commonly indicatea whether the uaer may specify a new
command or parametera, or wnethek* he ia currently
apecifying an entity).

There are three possible poaitions to wnich a word mp,y
be moved in the command feedback line:

First position: This caaaea the command feedback
line to be cleared, and the designated word to be
diaplayed as the firat word in the line.

Next positioni This appends the designated word to
the end of the command feedback line,

Laat position? This rcplacea the laat word in the
command feedoack line with the designated word.

The arrow may oe pointed to the beginnxng of the word
in a specified position in the command feedback line,
or it may be turnei off.

THe SPL conatruct provided for the manipulation of the
command feedack line ia

M23P{H display-parta ")%

231

AppeMtK Di TKCHKICAL DESCRIPTION Of NL5
Sec. Uli Command apeciiicft^ion

where the »yntix oi t (Itiplay^crt la

word / "ES»" / ,,<H word / M.,.M word / "«." / "t".

The DSP command rearranief the command feedback line
ao that it if formatted in accordance with the
dlupiay-partf.

The meanlnRf of the display parts are aa follows:

word: A «trinÄ equal to tne text of tne the word if
placed In the Indicated poaition in the command
feedback line

"ES*"! The contents of the entity strins arc
displayed in the indicated position In tne command
feedback line

,,<M wordi The word ia placed at the left cf the
command feedback line

"•.." word: keplace the laat string in the current
command feedback line with the word

"*•* s Poeition the up-arrow to the front of the
command feedback lint.

wrM t Position the up«%rrow at the start of the
following string in the command feedback line.

There are three additional intrinsic functions which
are used in relatlcn to the command feedback line.
These are

A3r Turn off display of arrow

AK Turn on the diaplay of the arrow

Q.M Display queation mark beaide the arrow,

(4) Name Register

The name regiatcr is used for displaying statement
names and arbitrary strings rclatin« to parameter
specification.

An SPL function is provided which moves the contents
of an arbitrary string regiater to the name register.

232

Appendix DI TECHNICAL DüSCKlPTTCN UT NLS
Sec. Ill; Command 3pecifxcitlon

The lyntax if »DNC rejiater ")".

(5) Date/Time Register

The (Ute/trlae reilster tlwayi reflect« the date and
tXme.

It Is updated every 10 seconds ty 2 for« (similar to
vhe input forx in it« relation with NLS) wnosc sole
4ob is to read the date and time from tne system,
place it m a core location, and dismiss Itself for xO
seconds.

(6) Text Area

The text area serves as the user's window into his
file.

what is displayea in the text area is a view of the
user's file, subject to certain formats and
reorjanization, which i« described oy a set or
parameters (called view specifications or
VZ£WSP£CS).

The creation of new views is preerammatically caused
by the display SPL construct "DISPLAYC
optional»parameter *)*.

If there is a parameter, it is used to determine
the P52D of the startinf statefaent for the view
creation.

The process of crcatini a viaw of the file in the text
area is discussed in sec. IV-**6 of this appendix.

c. Literal reedoacK

when t literal string is entered as a part of parameter
specification, it is placed in thp text area (beiinninc
at the top) acviordini to the format of the text area.

The part of the file view whi^h w*« previously In the
«pace used oy the literal feedback is temporarily
replaced by the feedback.

B. coiamand specification in T0i?A3

Üht T0DA3 command specification system is much simpler than

233

Appendix Dl TECHNICAL DESCKIPTION OF NI-S
3ec, Uli Command Specification

that ci NLS, inaofar as it doc« not use tne state nacnine and
no command state is defined other th^n trie null command RESET,

1. Command Feedback

The command lanjuage input string is parsed oy eise
statements in a manner similar to NLS.

The command feedoacK may Pest De deacriöed as complex
character echoing, where eac^i command specification
character is reflected by the typinf of approoriate words
and the stite of tne command soecification if indicated by
the position of the carriage.

As in NLS, the user has tne ability to control parameters
relating to the command fcedbacK, including the nunoer of
characters of each word echoed8

2, input Machinery

Much of tne rtLS input macninery in used by TODAS,

Thert are, however, some difference«?

öecauac of the allowance whicn the system maxes for an
interrupt character (RUöOüT), ana tne feet that the
system teletype buffers are larger than tne system work
station buffers, an input fork is not required.

one may still be used, however, in special cases such
as sequential file input.

All characters reaa by TODAS undergo a translation on
input.

This facilitates the effective interfacinc of TODAS to
a number of Input devices (six different type» of
typewriter terminal« are currently provided for).

The cn»racter translation is accomplished by a
table look-up technique (the table is indexed by
the raw character value)«

The result of the look-up may be a normal text
character, or it may be a special character (which
is indicated by the high-order bit),

in the event that it is a special character

23U

Appendix dt TECHNICAL DESCRIPTION OF HIS
Sec. ITU connand SpecifIcatlen

(commAnd accept, coftnand delete, ihlft character,
csnterdot, etc), an appropriate action is ta;:en if
necetfiary. Tne cnaracter may be ecnoed (as aome
previcualy deaignated character), and it icay be
fpecially flagiea as a control character.

There ia, in addition to atraight cnaracter
translation, a facility to define shift characters
which allow devices witn restricted char»cter sets
(e<,p. upper case only) to work with full character
sets*

Four shift modes are currently defined in TODAS:

Nuili NO ahiftinf taAcs place

Mode OJ upper-case alphabetic characters are
translated to lower case

Mode 1: Low«r-case alphaoetic characters are
translatea to upper case

Mode 2) lower- and upper-case alphapetic
characters are tr^nalateci to control case

TODAS is in one of these nodes (as a case node) at
all times.

The mode nay be changed (either ter.porariiy or
;erman«;ntly) by typing a character which has been
defined as a shift character for the new node.

mere are currently three types of node-shifting
characters«

Character shiftt This causes the followin«
character to be transacted according to the
node for wnish the snift character has been
defined, if it is a character which would
nornally have seen translated in either the
base node or Uie shift node. If the
character would not have been translated,
then the shift character is treated as a
normal charactsr.

word shiJti This causes the foliowln* word
to be translated subject to tne sane rule as
given above for character shift *- i.e., if

235

AppenClX DJ IECHN1CU DESCRIPTION CP NLS
Sec, IIIi Corantr.d Sc :lflcation

\^e next cnaracter ii trin«l»tafcle, the woro
Is trailated; otherwise th utiiii character is
treated »* A ncraal cr.aricter.

Permanent snl^ti This cau«ca the base node
to be chanied, and all subsequent cnaracters
are translated according to tne new node.

The shifting is »ccompliined In the icliowmK
.tanner i

II, a permanent snlrt character is read at any
tine, the shift .-node is changed ana another
c racter is re»d normally.

II d word-shift or character-snift character is
read, the next cnaracter is read fron the input
string.

If the next character in a shiftablc
character, then the snifting is performed,
and the shifted character is tne result.

If the ah.ift character if lor ^ word
shift, then a global parameter in^icatin«
the current s^ift suite is set
accordingly, and will not pe reset until a
space is read.

Xf tne next character is not a shift
chanster, it is returned to the front of tne
input etring ana the shift character is
/eturned as a normal character.

Printing

printing of a structure in TODA3 is analogous to creating &
new view for the text aiea in HLS, insofar as the same view
specifications are used for interpreting and formatting the
file.

Three ^f-ere^cea are apparent:

The text area is of unlimited length, JO that a whole
file may be seen in one view, pagination is performed
when a long view '• created.

Text undTgces an output translation and anifting

236

Arptndlx Dl TECÜNZCAl. DfiSCRIPTION OF NLS
Sec, Uli Comnanc specification

whieft If a counterPArt of trie tranalatlon and aftlfttni
done on input,

me uier ha» * aefrte of Interactive control over the
view beim created, fpeclficallyi

The creation of a view of any ^articular atatenent
nav be Aborted at ^ny tiae.

The cretition of the «ntire view nay be aborted »t
any tine.

Inplenentationally, fonattini routine* different from
those used by NLS are enployed.

The output ia fornatt- #ne line a: a tine, and the
printing of an entire atitement must phyaicallv finian
before ehe firat line of the next atatenent will be
printed.

This reatriction is neceaaary becauae TODAS nuat
Know which atatea«nt la currently beinj typed in
order to respond properly to the uaer'a request to
abort the view of the atatenent.

The aane aequence jenerater is used, but the structure
being printed is »earchsd wne branch at a tine (except
in the case of trails and Keyword),

k, Paranever Specification

Paraneter specification differs fron NLS in ttirtc inpertant
wayat

All apeciflcatlon nuat be done via the keyboard,

A "current sta^aent" ia defined as an operand a^ all
Uitfv

The execution of any comand without a apecified
operand aasunef thia atatenent aa an operand.

The current statenent ia repreacnted internally as a
cell containing the ?SID of the laat atatenent
aödreaaed in the »ucctoaful execution of a command,
it ia updated each tlm^ a connand ia auccessfully
executed.

237

Appendix DI XECKNICAl DESCRIPTION Of HIS
Sec. Ill: Comnund Specilicailon

TJie one exception 10 tnis la t?ut curmp printlng,
it is set öy the print routines to tne PSID of tne
last statenent printed.

Operands (atate-nents) nay De addressed relative to eaclr
other in the tr^e structure of tne fii-i.

For example.- one nay specify a statenent whicft is tne
"successor of tne down of tne tail1, of tne current
statement -- i.e., tne successor of the first
suostatement of the last statement in the same piex at
the same level as tne current statement.

The relative addresses of operands ars interpreted as
tney are entered fcy accessing the rin* (as necessary).
Any error is reported immediately, and nullifies the
entire address (except in the case of iMxs).

' '..nKS are parsed whenever they are referenced In an
address fie*d, and executed immediately after
selictionc That is to say, wnen a iin* is
encountered in an aasress field, the current
statement ia changed imnediatelv to reflect the
value indicated oy the UnK.

236

IV COAüitnd Axjorithna

A» Editing

tflitir.R in NLS includef textual, structural, and graphical
noöiflcation« to trie file.

The textual and structural editing actions include intert,
move, replace^ delete, and copy. These actions :nay b«
performed on textual entities sucn as characters, words, and
viiibie strlngj, as well as structural entitiec such as
»tatements, branches, crour«, ana piexes.

The graphical editing actions include insert and delete for
vector labels, and insert, delete, r*ove, transpose, and
vertical and horizontal projection fcr vectors,

1. Text Editing

a. Qenerai Considerations

The process of textual editing will pc discussed first.
This process basically consists of delimiting tne
appropriate substrings, by means of the content-analysis
SPL, followed by construction of one or more new
itate-^nts witn tne desired aodifications. This latter
step la specified by a procedure written in another 3?L,
the stnng-copstruction SPL.

These content-analysis and string-construction procedures
arc written in such a way that in epite of the large
number of conbinatlona of editing actions and textual
entities, there la a single content-analysis procedure to
dcllnlt each entity and a ninflc nring-constructlon
routine to perform each action.

Tnla is done by standardizing the *ay in which a
•ubiitrlng is deliaited by tne content-analysis
procedures.

rour pointers are passed «o the procedure as
arguments, along with one or two selections made by
the user.

When the procedure returns, the appropriate substring
is delimited by the pointers in the following ranner.

The first and second pointers nark the firs» «r.u
last characters of the substring, respectively.
The third and fourth pointers r^rk the characters
to the left and right of the substring,
respectively.

2^9

Appendix D» TECHNICAL UhSCRIPTTOS OF HIS
Sec. IV: CommÄno Algoritnns

Thus if PI, P2, F3, And i»ii ar« the artumenti, the
en»r*cters froa the front of the statement up to P3
precede the dealred suDCtrine« the characters frcn
PI to P2 are the substring, and those f^on PU to
the end of the statement follow the su&stnnj.

A detailed description of the word-delimiter rcatine is
useful to clarify this process.

There are five arifumentf; the first is the position or
the user's selection, the remaininc are pomt^rj to oe
used to delimit the actual text ol the word in tne
manner descrloed above. The body of tne brcccdure is
simply

al > CH *LD ta3 t*5 «•a3 ai < CH tie raa raü •'a2

which has the meaninc "starting frow tne selection,
(al) scan to the right (>) past a character (CH) and
any number of letters or digits (iLD). set a3 and a5
to tne resulting pesition (taj» ra5) then move a3 bac<
(••a3) so that it points to the last character of the
word. Now reset the search pointer to the selection
(al) and scan to the Heft (<) to set a2 and au (t42
tali ^2) ."

Oace the substrings have been delimited in the aoove
manner, new statements are constructed under the control
of procedures written In the string-construction SPL,

The syntax of a statement in tne atring'construction SPL
is as follows?

scstat ■ "IF'1 posrelation "THEN" scstat "USE" scstat

"tJEQXH" scstat •(";'' scstat) MFNb" /

"ST" ros M*M pairiiit;

The position and pjsit301.-relation constructs are the
same as in tne content-analysis SPL.

A pairlist is a list of pairs, in this case separated by
commas.

A "pair" specifics a string of text, usually by giving
two positions which delimit the string.

21iO

Appendix D: TECHNICAL DESCRIPTION OF NLS
3ec* IV: Command Algorithma

In iddltlcn tht "pair" ttn öC a contttn*v itrln« or tne
content« of »one variable »trim «uch as the literal
tnput reiiatero

The meÄning of *ST poa ♦• pairltst" la "The statement-
pointed to py poa is constructed fror, the strings
•pccifled by the items in tne pairliat."

Thus, aasunlng that thd pointers have oeen set as
described atove, HSI bl «• SHfrl) P3i Pli 5fc<Bl)H would
cause the text tram pi to P2 to be deleted fro^ the
statement selected oy Bl.

The "move*' procedure offers a more complex examole, Tne
procedure haa ten arKumentai al and a2 are tne uaer'a
aelectlon«, a3 through a6 are tne pointers associated
with al, and a7 throufh »10 are the pointers for a2. The
body of the move routine ia

ir 3Fiai) > sma) THSN öKQIN
IF al < a2 THfcN

ST al * SFU1) ait, a7 aft, a6 a9. »10 SRU1)
ELSE

3T al «- SK(tl) a9, alO tk, a7 aö, a6 SF{al) END
ELSL ciGiN

ST al «• sr(a?j a^, »7 aö, af SE(al);
ST \2 - SF(a2) a>, alO SEU2) ZHQ

Tne Pair k7 »Ö delinita the text to »je moved. Tne
poaitions a9 »^ö alo viii oecone adjacent wnen the text
from a7 to ae ia novea. The destination of the text
between t7 and aö ia after ah and before a6. Tne reader
should convince himself tnat the aoeve procedure doea
this in all cases.

b. implementation

Ihi code coapiled for etring-conatruction SPL routines
consist« aainly of calls to MOL procedures.

At the start of the code for a pairlist there is » call
to a procedure called BSC iöegm string construction) and
at the end of tht pair list there is a call to E5C (end
string coratruction), for the actual items in the
pairliat, proceflurei are callec wnich append the
appropriate «trinsa onto the statement being constructed.

The BSC procedure must create a ne .• itatement data blocK

2fel

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec, IV: Connanö AlgoriUms

(SDB) to hold the text ft tne atatenent öelm
constructed. Since tne final aiie ot the statement is
not Known at the time bSC is called, tne Average size of
SD5s in the file is used as an estimate of tne nunDer of
words required for the new SDB.

The searcn for tne required amount Df room oeKina in
the file DlocK containini the old SDB, if there was
one.

If there is not adequate room there, then tne
procedure IOOKS for room in the file DIOCKS, atarting
with tne loweat index number.

This ensures that if there ia room in a clock
already allocated, then tnat room will pe used
rather than causing a new blocx to oe allocated.

The procedure ISROOM is called to determine wnetner
there is adequate room in a liven file PlocK.

If the bloc* ia unallocated, then laküOM returns
TRUL-

If the bloc* is allocated and contains adequate
free atoraite, then auch information ia held in the
atatua table, RFöS« This avoids the posaioility of
reading a file block only to find tnat it does not
contain adequate room.

If the blocK does not contain adequate free
storage, but does contain faroaR* M)üa (also Known
from RFW , then ISROOM calle the g^roaee collector
to proceja the elocKr

aaroane collection involves movin* non^arbage
SDBa to fill in the gaps occupied oy garbage
SDQ« and updating pointera in the ring elements
corresponding to the moved SDß«.

I thia produces enough room, tnen I3R00M returns
TRUE; otherwise it returns FALSE.

After sufficient room has been found by the above
process, the 8SC orocedure ^ullds a header for tne new
SDB and then sets up a worK area for trie subsequent
string transfers that will take clace during the
construction o* the statement, Thic WOTK area

2U

Appendix Dl TECHNICAL DESCRIPTION OF NLS
Sec, IV: Conuund Algorithm*

contain» information «uch as tne aödress of the SCH,
Thia completes the taak» of 93C, and it returns.

The actual conatructlon of the new statement consists of
appending character« onto t?ie new shB,

For those ctrt» of the statement that remain the aane,
the text is read out of the old SDH into the new. Sew
parts of the statement are simply characters from
other sources, such as literal input or ->ther SDBs,

The observant reader will realize that it is possible
to run out of room while apperuinr characters.

If this happens, the blocK is jarbace-collected.
If this »«eauits in room for at least 60 more
characters, then the SDB under construction is
simply moved in with the same file olocfc to maKe
more rcon.

If garbage collection of the file blocK cannot
produce that much more room, a location in a
different file blocK 10 found that does provide the
required space. The partially constructed SDB is
then moved to this new location.

wnen all the strings ha^- Seen appended to the SD3, the
procedure ESC is called 0 finish the job.

It first get» rid of the old SDa for the statement,
then does the oookKeeplng to establish tne new SDB if
the SDB for the statement. This involves updating the
SDB header, the running average length of SDB's, the
pointer in tne statement's ring element, an6 the name
hash for1 the statement in the ring elemenr,

in addition the "content analyzer oattern tested" flag
for the statement is turned off (see Sec- II*ö-2-c of
this appendix)•

This coapleteh the construction of a new statement and
our discussion of text editing in NLS,

Content-Analysis SPL

in HIS it is often necessary to analyze tne textual
content of a statement in order to delimit certain
substrings.

2U

Appendix DJ TECHNICAL DESCRIPTION 07 NLS
3ec. IV; Comraand Algorithna

for example, the user v\gy select 4 word of text for
editing by pointing to any cfiara;:ter vatnin tNe word,
Tne actual suostring naKing up tne wore is aeter^ined
by NLS.

A special langUÄje, the content-analysis SPL, is Jsed for
writing iucr» string delinitin? procedure«.

disically, tr.e Janguage provides constructs for
controlling tne position of a cesren pointer in a text
string and saving various positions in order to aellmlt
the desired ffUDStrlngr. (in the discussion of the
content analysis SPL, position refers to a stalener.t.
identifier and character number -- in other word«, a
T-pointer as defined elsewhere,}

The initial position of the search pointer is often
determined by a selection made by tne user. The
positions of sucn selections are stored in buffers ai,
E2, etc.

pointers PI, P2, ... may oe used to store oositiona. The
current position of the search pointer car oe stored in
pn by writing tpn.

Arguments may be passed to a content analysis procedure.,
such arguments are either bug selection« (i.e. ön) or
pointers (i.e. pn) . Since the procedure must be able to
«et the pointers to appropriate v&iues, tnese oarameters
are called by (simple) name rather than rty value. The
formal parameters are Al, A2, etc.

The three form», Bn, pn, and An, are the basic way« of
referencing a position, in addition, there arc two
function« taKinr a position ae argument and yielding a
position as result. These are SF and SE, which give the
position of the statement front and statement end,
respectively, of their argument.

The pos^ion of the search pointer can be set by simply
writing any of tne above form« to determine a position,
for example, "SFlBl)" put» the search pointer at the
first character in the »tatement first selected by the
user.

The search pointer i« also moved by te»ts for basic text
Clement», The >?a»ic text element» are »trinr», «ingle
cnaracters, and character clast« variable».

2iU

Appendix Dl TECHNICAL DESGHIFTION Of NLS
3ec. IV: Coir .ftnö Alforiinma

A ftrlnf Is t «equence of cfiAracterf dellnlted by
quote lurKf (") «

If the Firing watenef tue sequence of chtrr.cters
stftrtmi at the current location of tne searcn
pointer, tnen tne search pointer li moved to the
next position beyond the string and a feneral fltf
is set TRUE.

If, on the other hand, there is only a partial
match, or no rjatcht then the search pointer is not
moved anö the general flag 1» set FALSE.

The test for a single character is logically
equivalent to testing for a string of length one, out
is implemented in a more efficient manner. The single
character is specified by preeedirs it with an
apostrophe.

The impiercentation of these tests makes use of the
programmed operator (POP) facility of tne 9kQ,

Tor the single character test, tfr computer
produces a single instruction m which the address
field contains the code for the character and the
rest of the Instruction specifies the POP to
perform the test.

Similarly, the string test results in an
instruction specifying the number of characters in
the string and the appropriate POP, followed oy
words containing the actual string.

The basic text elements of the third type -- the
character class variables — are alio implemented
using a programmed operator. The character cltss
variables allow tests for any character in a
particular class. The classes, with their associated
variable names, are as followst

LD any letter or digit

L any letter

D any digit

NP any nonprinting character

215

Appendix DJ TBCHNICAL DtSCRIPTIOM CF NLS
Sec. IV! Command Algorlthmj

PT any printing character

SP apace

TAB tab

CR carriage return

CH any character

Tnetfe testa are Ir.pienented in a munner very similar
to tne »ingle character test, exceot tne address field
of tne instruction contains a class code rather than a
character code.

The successful completion of one of the above tests
causes the search pointer to be moved. The direction in
which it is moved, towards the end of the statement or
tne front, may also be controlled.

A ">M means scan (mcve pointer) to the rilht, or
towards the endfi while •"<" means scan left.

As mentioned above, the current Position of the search
pointer can be saved by writing "tM followed by either Fn
or An.

in addition the value stored in a baffer can be modified
to point to the preceding character, according to the
current «can direction, by writing *** followed oy pn or
An.

The rttson for this operation is that when an entity
nas been iucccssfully found the pointer is left
pointing to the character beyond the entity. Thus to
save the position of the last character in the entity
it is necessary to writ« tPn«»pnk

The remainoer 01 the language »imply provides for
building more complex expression? from the basic text
element« presented aoove.

one of the primary means of doing this -s the
arbitrary number operation. The genera forn of this
is m»n followed by a text expression gr iÄ the
meaning "from »n to n occurrence,! of th »n
expression."

216

AppCTlätx DJ TEOhNICAL DESCRIPTION Or KLS
3ect ivt Cenniind Algorltnms

Both the upper tnd lower COUTICB are optional^ with
default value« of 1G00 ar.ü - respecMvely.

This \B Inpienented In the following nanner.

The upper and lower bouna« tn«* \ count,
initially zero, are pushed on the «tacx. Then
the teat for the r^prc-ision 1» repeated until it
faila, wltn the count oelnp incremented at the
completion of each auccesafui teat,

when the teat for the expreaaion cioea fail, the
current value of vl^e count la checked asalr.st
the pounda and the general flas aet accordingly.

The other operatora, in order of dtcreafin«
precedence, are aa followas

- toinua ai(tn)i indicatea negicion.

After the teat for the text expreaaion foliowin«
the ninua aim, the value of the general fla? is
cjRplenented,

{apace)i Indicatea concatenation.

After the teat for eacn element in a aequence of
concatenate« teat^, the general flag la teated.
If it ia faiae, then the preceding element waa
not found and control tranches to the location
following the current aequence of
concatenationa. If the flag ia true, rhen the
next teat in the aequence ia performed,

/ («laaMi indicatea alternatlvea.

If the e«preaaion on the left of the alaah ia
found, then control Dr*.Rchea beyond the aequence
of alternatives otherwise, the acarch pointer
ia react to ita poaition prior to the test for
the previoua alternative end the next
alternative in the aequence ia teeted.

KOT: indicatea necation.

Equivalent to minua algn except for lower
precedence.

21i?

Appendix D: TtChWlCAL DESCRIPTION OF NLS
Sec, IV: Comminü Aluori.^hma

AND: indicRte» IOCACäI conjunctior.

If tne ex'jreaalon or me left of tne AND i? rot
founa, tnen control brtrc^ei Deyord the
expression on tne right of tne ASL. cinerwist.
the search polnte is reset to its eoiition
prior to test f the left expression and then
the riRnt expression is tested.

Oks indicates logical öisjunctior«

LlKe AND except örancn if flag true instead of
faiae.

Any expression Built uam? tne acove operations «ay oe
enclose^ in parents ses and used as a basic element m
a concatenation.

Similarly, any such expression nav oe enclosed tn
square bracKets and used as a oisic eler.ent. The
effect of the square bracxets is to "unancnor" tne
scan. In other woras, ac leni as .ne test fails, it
is repeated str*rtini one character larcher alonjc in
the statement until either tn^ statenent is exhausted
or tne test succeed«.

Thus /"äT-C"; is ottisfied if trc -enainder of the
slftt-eraent contain* tne strir- "abc".

Finally« a conditional statercent is included in the
language to allow a pattern to be selected for testing
on the baai^ of a compari8->n of positions.

If two positions are i»i different statenents, tnen
ail relations petween tn.;j are false except "not
equal." Otherwise, tne relationship ci- per.es on the
character .iu»ber of the position. For exanole, if
Bi and 52 are in the «arr.c statenent, Bl pointing to
character number 3 and B'i to character nunoer 20,
t.ien 31 is less than ö2.

Thld conpletcc the description of the content-analysis
S?L«

i. Structure tditinr

Lii:e text eoitinKr ^it.uctur^ editing consists of £ phase in
which the entity to be edited is celiniteo, followea rjv tne

Appendix Dl TECHNICAL DtSCRIFTIOH OF Nlfi
See. IV: Cowmtnd Al|erithi»i

ECtual tdttini action*

Since the structural entities "branch" ana "plex" are aimoly
«pecial cat«» of the troup entity,, the editing routines all
deal with either a sincle «tatcr.ent or a group.

The *5eliwitin« for the nove and oelete command« is the sa^.e.

in all cases a group, spe^i.ied by two PSiU's, is the
final entity on which the editing action is perforned.

For a branch the two F^^ID's for the group are set to
the P3ID of the selectee statement.

For a plex the PSID's are set to the neacj ana tail of
the plex of the selected atatenent.

For a statement, t test is made to ensure that the
atatenent ha« no substructure, after wnich it is
treated like a branch» (If the statement does ha^e
substructure the conaand is aborted.)

Finally, if the specified entity is a group, then the
two selceteä statements are checKed to verify that
they do in fact specify a valid group,

once the group ha« been delimited, the move commands perform
tha following sequence of operations,

First, the destination is checkeö to ^aKe sure it is not
within the specified group, me command is aborted if it
is.

The group is then removed from the rlnf structure py the
aop^'opriate changes In pointers and flags in the ring
flement of the predecessor (and posrlbly the successor)
of the group. The group is then reinserted into the ring
in its new location through another set of change« in
pointtrs and flags, Notice thtt no text is moved and no
statement identifiers are changed, Th« only changes are
in the successor and eupftateacnt fields and the head and
tail flags of four or five ring elements.

The executinn of delete commands naturally results in
greater changes. The group 1« first removed as in the move
operation. Then the ftawments making up to the group are
deleted 4Ccoi"",^g to the following alcorithm expressed in
MOL.

219

Appendix D« T£:HMCAl DESCRIPTION OF NLS
Sec. IV: Connind Aigorltnna

öi.*|rplj ftfttrt wltn tne first statenent in the group*
LOOP BEGIN

WHILE {42 ' |,*t«uD(ai)) NOT» 01 DO BEGIN
sal lui iuD«tructure*
fltOf"'b(äl,dl) j fcnarie sup-pointer

so th»l dl no lonfer ftpüears to nave
aupftr1 vlure*

fll ♦■ (32 *nore to iub* END;
*when exit th« WHlLri fltatenent,

a2 equii« dl and has no suPstructure %
dl ^ getsucldl); %Eove dl to the succctsor,

wnicn will pc bacK to the "fatner1" statement
when all of Its öescendenta have been aeletea^

relst(d2); « release 3DB for d2*
frer3v(d2); % free ring element for d2*
If d2 » grp2 DO-SINGLE RETÜJJN 2FD;
^finished when have deleted top statenent- of last
branch in group*

Note tnat since tfte successor of the la^t staterent in a
plex is ine father of the plcx, no stack is neeaed In the
above algorithm. Also note the manner in wnicn the
sup-pointers are modified to guiae the traversal of the
group»

AS miglt be expected, cnpying a sroup is «ore complicated
than deleting or since tne structure cannot oe modified
during the pro^.

in very JimpllfieQ form, t^e copy group algorithm is a^
follows:

Starting at the first sttttment in the group, if tne
statement ha« substructure, copy that first; taen copy
tne stttcment and move to its succesaor until the last
stttemcnt in the group has beer copied,

•hen the group has been copied, it is inserted in tfte
appropriate position in tne ring in the same manner as a
group being moved is reinserted into the ring.

ie Graphics Fditing

Blocks contfcining picture infcrmatlon grc virtually
inacntical to those containing text information. Tne main
difference is the replaceaent of statement data block! by
vector data blocks (VDB's).

250

Appendix Dl TECHNICAL DESCRIPTION OF NLS
3cc. IVi Comrctno Algorlthjus

A vtctor cJtti ö.^OCK la m»c3e up of & h.töer *na tn arbitrary
nurncer cr lines and ltb€li maKine up a picture.

The neader lont&inf nucii the lane information «s la neld in
the header of an SDö. Initead of character count«, however,
the VT53 header contains a couni of the number of lines in
the picture^

rcliowinr the header la a aequence of two-word buffer«, each
repreaentini a line In the picture.

The firat word |l/e« the pcaition ci ono end of the line
relative to the lover left-hand corner of the text of the
atatenent.

The aecona wcrd givea the poaitlor. of the aecond enl of
the line relative to the firat endpoint,

FüllowinK whe ouffera for the linea, ecch label in the
picture ia otored ae a poaltion (in the aane format aa the
firat word of a line buffer) and a text atring.

The current vector ptekf.ge waa develooed on a trl^l baaia
with a relatively tatll prcirattEint inveatment, A« a reault
of thia, the only graphic entities available are lirea
(vector?) and labela, A nore acphlaticated craphica ayaten
haa been dealjned but not yet implerentef.

Selection oi tneae cntitiea la handled in the followlat
tanner.

tine aelcction ic aone by findlm the line that r.ir.inizea
the difference between the aum of the square« of the
diatancea fron the cnüpointa oZ the line to the bui
«election and the aquare of tne leneth of the line.

Thia is a practical aljoritnp aince the nunber of
line« involved ia eaall (under 100J.

Label aelection ia done by finding the label that
ßlnittlieo tne n^utre of the distance D^tween the bug
aelection and the aecond character of the label.

The "move vector" command will be exoliin^d as an example of
vector editing»

Thia connand allowa the uaer to hove one end of a line to
a new position«

251

Appendix D! TECHNICAL DtSCRIPTION OF MS
Sec. IV: Conmand AlKorif.nm3

when the line is «elected, the end thtt Is cloaer to the
selection Is offerel as tne end to oe -lovei. The user
nay request to move tne other cnä Ir.Jtead oy enterinr a
bacKsptcc r.naricter.

The next ■«»lection by tne user specifies tne ne- location
fo? the eud which is to fc? moved.

Let ena-1 be the ena jpeciflea by tne first wore! of the
line buffer, and en(5-2 DC the cni specified by tne
flecond.

If end-2 is to oe moved, the second word of tne tuffer is
replaced by tne vector fron end-1 to the selectea
position.

If end»l ifl to oe r.oved, then the iecnnd word of the
buffer is replaced by tne vector fron the selection to
end-2, and the first word is replaced bv the vector fron
the lower left corner of the text of tne swtenent to tne
selection.

The o.her vector editinc commands are inclenented similarly,

B. view control

1. juPipa and Linxs

The jump ana lir.K machinery is used to select statements to
be displayed at the top ex the text-vievin« area of tn»
screen. 'Jenerally speaXing, jurp* are nade within a file
and links are used either within or between files. Jumps
may be made relative to the structure of ihe file, to
specific statements, or relative to the junp or link rm*.
Linxs are to a dynamically determined location in a
particular user's file, and can specify that display
parameters are to be set when the ilnK is taxen.

The jvimp ring represents the chronological history of tne
last five Junp« made within the current filec tach entry
In the rim contains tne PilD of the display-start
ftatement and a word representm? the display parameters,

Tne lini? stacH represents the last few linKc tnat have
been made, ana is only updated if the imx 1« to a
statement in another file, ihe entries in whl5 stacK
contain the user's numcer, tne file na^.e, the ^SIC of the
display-start statement, and a word rcpresentir.f? the

252

Appendix Dt TECHNICAL DESCkXPTIOH 0? »IS
3ec, IVI Conmiand Aljorttnna

diaplfty parftnetera.

Code written in the content^tmlyzer SPl Is UBed to locate
*rd Pirie links. The four optional fields of tne linK arei

user nanc

file nine

location witnin the file

display parameters.

In par&inj a linK, tiiose fields wnicn exist are delimited by
pointer», which are subsequently used by routines to effect
the linK.

2, Sequence Generator

The collection of routines known as the sequence generator
is used to generate % sequence of statements startlnc from a
liven PSID and governed by the current view parameters.

The sequence tenerator worx area is used to maintain
information controlling the ««quence. This work area Is
updated by tnc? sequence generator whenever it is called.

The work area includes the following

(1) ?SlD of current statement

(2) Maximum and minimum leve.l numbers for statements to
be included in the sequenca

(3) current statement's level

(k) Address of atateoent Vector wors Area (SVWA)

(5) Address of last cell in SVWA

;6) Address of current last ceil used in SV*A.

If statement numbers are bemi generated, the statement
vector is generated for the statement in the SVWA.

The statement vector is a list of words, starting with
the level of the statement and followed by entries
containing the position of the statement in the

253

Appir.dix it TECHNICAL DESCÄIPTION Of mo
Sec. IV: Conntna Algoritnns

correiponäin« ciexea.

For cxinple, if the scitenent vector contain« (u,l,5,3,2)
then the itÄtenent !■ at level four and h^s staier.er.i
nurnoer lejb,

once the worK area nao eeen inttiaiixeö, the foliowir«
algorithn is used to determine a c&ndiaate for tne next
statement in tne sequenre:

If Keyword reorganization if being usM, tnen tne next
PSID can ainply be read fron a file block.

If a trail la Dclfif fcillowed and tne current statement
contains the appropriate trail PiarKer followed ny t.ie
nane of a «tatement in the current file, then:

If the «tatenent point« to itself tn^n tne sequence Is
terminated by returnin* a -1;

Otherwise the PSIL oi the statenent pointed to by tne
trail is returned.

If the current statement na^ a substatenent which is
within the current level bounds, then its P51D is
returned.

If the current statement has a successor statement which
is within the level bounds, then its PS ID Is returned.

Otnerwise, a '1 is returned to indicate tne end of the
•equerce.

After a eanüidate statement has been selected tn the accve
tanner, it must be checked against the current
content-analyzer pattern if the content analyzer is in use.
If tne analyzer is not telnc used, then the candidate is
automatically accepted.

flat* in the ring element jTcr the statenent incicate
whether the statement haf been tested for the current
pattern and whether it passed

II the statement nas not been tested, tnen the sequence
lenerater calls the code compiled for the oattern to nake
the test. This code is aimiiir to tnat described for the
content-analysis 3?L in a previous section. The general
fl*f Si «e^ true if the statement pa55eä- trie pattern, and

25*

Appendix Dl TECHNICAL DESCRIPTION Of M.3
Sec. iV: Coffimirfl Alforithms

false If it does not.

The process of «electint canaidite st»tcnent3 is continued
until (l) a »tt^went uassei the pattern or (2) the sequence
is exhausted.

One of th« prloary use» of the sequence cener«tor is in
deternlnini statenents to &e displayed,,

3. Display Parameters

The user has av his disposal tvo Vyoes of disclay
parameters: those which control the selection processes
employed by the sequence generator, and those which control
the format of thu» display.

The formrt parameters control such things as the
sroü'cwinn

(1) The number C \ines on the screen

(2) The position of various viewing areas on the
screen

(3) The «iie of the character«

ik) Whether or not the nane, number, or signature of
a stateznent is displayed

(3) The number of line« per statement which are
displayed

(6) whether or not indentini is used to indicate the
structure of the file

(7) Whether the file is displayed as text or as a
tree (schematicj.

The selection partmeters control the following?

(1) whether content analysis is used

(2) Whether Keyword reorganization is used

(3) whether a trail is lowed

(M Whether frozen st-tc, ^nta are diipiayca

'*;>

Appendix Dl TECHNICAl DESCWlPTIOaV OF NLS
Sec. IV: Ccmnancs Algorlthwi

(5) Whether the view if limited to only one brancn

(6) To wrut extent the depth into the ring structure
i« limited.

with the exception of the display pao-ametera wr.lch control
such things K.a character size and location of viewma: areas
on the screen,, the alspiay parameters may be modified at any
point in the apeciiicatlon of a comrtnd.

At certain points In tne specliicaticn of some coMRands,
the 'Jscr is yiven the opportunity of changing tne dlsolay
parameters af part o2 the command. At other tines the
user mty chime them by using Case-3 keyset characters,
which are not interp'ret.ed as p^rt of a command
üpeeific^tior., furthermore, tne ivaiiabllty of a display
parameter which cauies the display to be regenerated
allows the user to treat the changing of disclay
parameters as a pseudo-command. This can ce done In the
midst of speciiyinr a norwftl ms command,

lu The User's Content Anßlyzer

The user's content analyzer is essentially a subset of the
programmer's content-analysis SPl, described eisewr.?™ in
tnis appendix, it is composed ol two part«: a compiler anJ
the code which is the proauct of c.he compiler.

The compiler is called oy a user commanc to compile
content-Analysis code from a "pattern^ written as text in
tne user's file (the »yntax is th^t of the
content-analysis SPD,

A display Parameter then determines whether or not the
sequence generator is to execute this code for each of
the statements which have passeo all other selection
criteria.

If exe-utedj tne code scans the given statement
searching fcr the specified content, if the search is
successful, the statement is displayed; otherwise. It
is not,

5. Keyword system

T.nc K-eyworc? sy.tem provides A rudimentary form of
information retrieval in NLS, The result of a keyword
search is a list of psir's. This list is stored in tne

256

AppenälX D: TECHMCAL DESCRIPTION OF MS
Sec. IV« Command Algoritftm»

Keyword flic biocK. The following ipeclal terms are used in
doeumentinK the keyword ayttein:

nit -'o Keyword that haa oeen selected and nai nonzero
weight

rtiult -- one of the PSID'« generated by KEYWORD EXEC'JTE

a. Keyword File-BlocK format

The Keyword aata conaidt« of two tableat

The first contains the PSID's of hits and their
weights, with the PSID In the lower 11 bit» and the
weigaL in the upper 13,

The secona contains tne results of tne most recent
search as an oroered list of PSID's,

The first few words of the blocK contain information
regardinc the current atatu» of these tables, suci as tne
following:

(1? Address of »tart of second table

(2) Audres» of item in second ttfcle last returned by
the sequence generator to create display

(3) Address of last entry in second table

(k) Number of hits,

D. Generation of Results

Ifts foiiowin* algorithm Is used to venerate a list of
results, given a set of »elected Keyword».

A table is built with an entry for each result. Each
entry taKes two words, the first being the hash for
the n»ae of the »tateihent. the second the score for
the result (i.e., the sum of the weights for all hits
referencing that result). Tne table is generated in
the following manner.

for each hit, the statement specified oy that PSID
la searched for a certain string, wnich is
currently sit to be an asterisk followed oy two
spaces. This search is done by the

257

Appendix Di TECHNICAL DESCRIPTION OF NJLS
Sec. IV: ConiinAnü Algorltnm«

content-analyzer POP th»t does unanchcred scans.
If the atrini 1^ not found, thc»n the next nit is
considered,,

If the siring is found, the algorltn^ then finas
the names in the remainder o'l the statement, Each
name ii copied out of tne text Into the statenent
name register (21N). The alKorithai tnen generates
the hash for the narit. This 1« compared to the
previous entries to »ee if it already occurs in tne
tafcle. If It docs, ^hen tne score is increased oy
tne w«ignt of the current hit; otherwise, a new
entry la created with score equal to tne weight of
tms hit.

After the entries nave ceen accumulated in the
above manner, the tubie is sorted according to
score,

Xhe sorted entries are used to produce a list cf
results. The results are P ID'S, so for tne hash of
each entry, the associated PSIi^ must be founa by
Jearchtng the rinf.

Finally, the irfomation at the front of tne file
olocK containing the results Is updated to snow the
new number Jf results.

This list of PSID'S is uaec • the sequence generator
when »ceyword reordering is L .ed for by tne user.

6, Text Display

a. General

Tne collection of routines Known a« CREATE DISPLAY is
used to display in the text area of the user's screen
those statements which are selected from the current file
by the sequence generator.

The Gtatement selection process and the format of the
display are under the user's control by means of
VIEWSPECs and the "vlewchangc" command.

CKEATE DISPLAY i* calico eacn time tne user modifies his
file, changes format parameters, selects a new candidate
■titement for the top of tne text area, cnanres the
btatenent selection parameters, or explicitly requests

256

Appendix Dl TECHNICAL DfcSCRIPTION OF NL3
3ec« IV» CoRntnd AlKorithna

ttut the (Jliplay be recreated.

A call to CHEATS DISPLAY doe« not Imply that the
entire äl»plty will öe recreates, in Xact, a< little
ia done as posaiblc In oraer to ninxmize file I/o,

ine entire diaolay if reconstructed from the
dl^playstart P3ID only in tne followini? caa»$:

(1) A chanrte in the display-start P3ID (ctuaed oy
junpf, "load file" command, etc.)

(2) Sditini Involving «tructunl elements parser
tnan «titencnt«

(3) Chanre« in foinat parameters

U) Explicit user command recreate display.

For stat«<nent-eältin| aisplay changes, the display is
updated only for those statements wnicn have changed.

The display recreaticn is fuided by the format
parameters, ^uch as truncation, and the output of tne
sequence generitor, vhich is called to find the first
statement in the sequence and for rupsequent statements
until (1) the last in the sequence has been creeuntereö,
or (2) the text area of the screen is full,

b. Implementation Details

The main data areas used by CREATE LI3P1AY are tne
following:

(1) Vhe display list

(2} The- display liat referente table (CLPT)

(3) The di-»Play buffers.

The entries in the display list are used by the display
hardware and have the form of a word count followed by a
buffer address. The display hardware processes the
specified nymner of word« fron the buffer pointed to sy
the entry.

For each line displayea in the text aroa, there vr# two
entries in the dirpiay list.

259

Appendix DJ XECHN2CAJ, DESCRIPTION OF NL3
5ec. ivj CenniÄnQ Äigoritnms

The *irat point« to & one-word buffer (thtt la part of
the DLRT entry for that line) that apeclfiea the
position of the start of the line on tne screen.

The secona points to a öuffer that contains tne actual
character string that makes uo tne iine«

For each line tnere is a four-word entry In the jylHI,
containing information aucn as the followingi

(1) A T-polnter for the first character in the line

(2) The first and iaat column numbers containing text
in the line (used in BU& selection)

(3) The position on the screen of the Xeft end of tne
line

U) YlM* denoting auc. things as the following:

(a) Tne line Is null

(bj The line contains special (nonprinting)
characters

(S) A copy of the second diaplay^list entry for the
line (used to restore the display list after
displaying an error message).

For each psiD which is returned from the sequence
generator, a display buffer, DLRT entries, and
display-iHt entries are created.

on the basis of the above description, the actions of
CREATE DISPLAY should be clear for cases where the entire
text area is being recreated.

The series of statements determined by the sequence
generator, starting from the statement specified for
the display top, is used to fill the lines of the
display^ with the appropriate information being stored
in the dlSDlay list, DIRT, and display buffers,

in the case of text-editing changes, the display is only
partially recreated» the process is a« followsi

The DLRT and display*llst entries for the statements
that were not edited are copied to auxiliary buffers.

260

Appendix D* TECHNICAL DtSCüIPTICN ÖF NLS
3ec. lYi Cowraana Algorithms

If the content-antlyzer flag is oi? or tnc ecited
statenent rr3»«» the pattern, then * new aiaolay
huffer, DLR'i, and diaplay-list entries are constructea
for it.

when this 1» connieted, the DLfcT and display list are
replaced öy the auxiliary buffers and CREATE DISPLAY
returns.

dug Seltction

It is appropriate to consider the problem of convertinc
«elections made oy the user to valid character and
•tattment specification« at thlff point, since bug
«election make« use of data areas constructed Dy CKEATE
DISPLAY.

Whenever input is read from the user wori« station, the
coordinates of the bug are saved aioni with it. In the
case whare the input is meant a« a «election by the user,
the coordinate^» must oe used to laentify a character on
the «crcen. The DLRT contains the information requirei
to do thi«,.

The text area 1» «homogeneous,w in that each line
take» a fixed amount cf «pace vertically and each
character take« a f.xed «pace n^ritontally.

Thu« the coordinatec of the selection can be easily
converted to a character ana liie oositic-n in the text
area.

Thi» rounding process 1» done uaing the information in
the DLRT.

The DLRT has a flat indicating whether a line is
null. These flag« are checKea and the selection
moved up the »creen until it is on a non-null line.

Tne DLRT also «pecifle« ta« first and last columns
in the line containing a character, on thi« oasis,
the selection is moved to the left or rignt, If

261

Apoendix Di TECHNICAL n^SCPZPTION OF KLS
secc IVJ Cownanca Algorltnms

nereaaary, to put it on a position containinf a
character.

It is c^ten tn? case that bug selections must be
converted to T-pcinter« for operations such as
edltirjr.

If tl^e line does not contain any special enaracters,
wnicn take up nore than one character position in the
SDB, tiie buy selection can ce converted into a
T-Pointer directly 5ron the information in the DLRT.

There is a flax in the DLRT which indicates whetner
the lint contains any special character», and a
T»pointer for the first character in the line.

If there are no special characters, the character
count for column k is simply k greater than the
count for the first character and is thus
cotainable fron the X-pointer in the DLRT entry.

If the line does contain special cnaracterc.. then the
number of special characters in the line to the left
of the selected character must be determined. Rather
than store this value, it is computed directly from
the SDö for the statenent. This amounts to
reformattin« the line up tc the selected character»

Calculator

The CGlculctor' gives the His user the ability to perform
arithmetic apcration» usinf numbers selected fron the text or
entereo from the keyboard.

in addition, arithmetic expressions (functions) with named
variioles inay be evaluated with the aid of a small compiler
built into ihe calculator.

The Cßlcula^or stores numbers internally in a fixed-lengvh
decimal notation (currently using sixteen digits to the left of
the decimal and seven to t^.e right).

The arithmetic routines work with numbers that have been
"unpacked* into an "accumulator," one digit to a word.

The fflultlplication algorithm will be briefly outlined as an
example*

262

Appendix Ds TECHKIO.U DfiSCRIPTIOH Qi HIS
S«c. JVi CORistna Algorithms

Ti^e raultiplicÄnd md the product are in unpacked form.

Digit« ere rea^ one at a tnuc from the low-order end of the
multiplier.

The multiplicand if initially "aligned" with th« low-order
end of the douole-length partial product. During tne course
of the multiplication, they are realigned by ""Jovinf,, the
multiplicanc toward tne high-order end or tne product.

The first step of the algorithm is to zero tue partial
product.

Then, until all the digits ir the multiplier have been
processed, the following algorithm is repeatedly executed<

(X) ftead, and convert to the equlviicnt oin^ry number,
up to four multiplier digits *.t a tine, tnus» forrcinfr a
composite multiplier aigit.

(2) For each digit in the multiplicand, multiply it
Using the hardware binary multiplication) oy the
composite multiplier digit, and add the result to the
corresponding digit in the partial product.

This takes advantage of the unpacked form to allow
"dlfiti" in the partial product to take cr4 very large
value«, carries out of th« partial^roduct digits are
propagated only once, at the end of tne algorithm.

(3) Realign the multiplicand to the left by the number
of digit« read from the multiplier.

Now propigate the carries in the partial product to finish
the multiplicition.

The calculator contains a faull operator-precedence compiler
for arithmetic expressions.

The cowpiler produces both code to re interpreted and a symbol
table of the variables used in the expression. The symbol
table grow« toward higher addrestes, while the code grows from
the ether end of the same block of memory.

When the user asks to evaluate the expression, the orogran asxs
him to supply values for the variables. The user may fix a
variable to a particular value and tell the program not to
demand a new value for it, when til variable« have been given

263

Appendix Dl TfcCkNIGAL DKSCKIPTION OT HIS
Sec. XVi Cownana Algorith^a

valuea^ the coöe conplledi for the expreasion If Interpreted and
th* result transferred to the "accumulator" of the calculator.

for each variable in the expresulon, the symbol table contains
the following infornaMon:

(1) The name of the variable Ua an A-string, to that it
can oe displayed in the command feedb^cK line when the user
is aaKed to Kive it a value)

(2) The current value of th* variable

(3) Flafs indicating whether the user should be asKcd to
supply a value for it when the expression is evaluated, and
if so whether it has been given a value durinf the current
evaluation,.

The code conpiied for the expression is made üp o*: the
following instruction types:

(1) Push values on the stack

(a* push identifier (specified by the address of the
value to oe pushed;

(D) push constant (the value of the constant follows the
instruction in the code)

(2) perform arithmetic operations witn values on top of
«taclc (unary minus, add, subtract, multiply, and divide)

(3) Halt

The interpreter for the code simply manipulates tne stack and
callc the appropriate arithmetic routines,

D. Processors

1. File Cleanup

The .Tile cleanup program serves to verify (and perhaps even
restore, with a bit of luck) the in*.erne,l doundneis of an
NU file.

The prcfram goes through thr . llowing »tagesi

(I) For e^ch structure blocki

26k

Appendix Dl TECMICAL DiSCRIPTION OF hi*
Sec. IVJ Co?na4nd Alforlthraf

S«t all the name haane» to xtro.

CftecK tfte free lift enä aar^ clenenta on tne free list
by i«ttln| their haahca to I,

Verify the used cell count for the block,

(2) For each text blocK?

Check the free apace pointer.

Check each 31)8 by doing the ioilowinrs

Compare the length clven In tne flrat wori of the
neader to the character count,

Che*k that the laat character la really an end
character.

Check that tne name character count la reaaonablc.

Mirk SDB'a that paaa theae teata by Mo>i"lni 3600ooooa
Into iirtti word.

If the SCO falla any of the teats, then move the free
apace pointer up to that point and rive ub on the reat
of that block.

i3> For eacr* frapnlcs block»

The proceba la alnlitr to the preceaa for text blccka.

At the end of theae atatea the entire file haa been
inspected once. During thia a apccial routine has
handled the loadim of file blocks. If at any time there
la a "bad" file OIOCK (i.e., one that containa an error),
it triea to recover by changing the type of the block if
that la in error anc recalculating the checksum if that
la in error.

File cleanup now continuca with a aecond pass.

U) check the actual structure of the ring.

Stti't fro» the origin and work tnrough, not truatinj?
the head and tail flac;«. This requires keeping a
atack of father PSID'a anc •omp.trlni each »ucceaaor t^
the father.

265

Appendix DI TECHNICAL DESCRIPTION OF NLS
Sec. IV: Connano Alcorlthina

MtrK ring element« tnat are u»ed in the structure by
aettlr': their haahe« to 2 (iirst maKin« ^ure that
their runei are zero, ^©anins unuteci, and not one,
meaning on the free iiat).

Mark data blocK» (both SDB and VD9) of ring element«
in the structure, r.s used, t>y chaneing the top «Ix
bits in the fir.it word to 3kB Instead of 36B,

Correct errors in head and tail fla^s if my are
found.

Error« in structure are handled a« follows;

If the bad statement is the head of a clex, then
that plex is discarded.

ot.herwl«e the remainder of the plex is discarded.

This discardin« is done by linkinc tosether K-JOI
part« of the ring.

Xhu« In the first case the father of the bad
»tatement «imply no longer haa any substructure.

in the otner cafe the la«t good njenber or th*
plex becomes the tail of the plex.

If a »tatement that ha» valid structure his a bad data
blocK associated with it, then a dummy SDP is created
for the statement and file cleanup continues,

($) LOOK for "lost" SDB's and ring elements.

Ring elements that still nave name hasncs cf 0 are
neither on the free list or in tne structure. These
are ncv put on the free list.

SDB's that still have 360COOOOÖ in their first word
are not pc^nted to by any statement. Th^e are ?\cv
marked aa garbage,

Marks on SDB'a are now erased,

(6) The name ha»h*s for all ring elements m the
structure are now recomputed.

This complete» the cleanup of the file.

266

Appenälx Dl TECHNICAL DESCRIPTION OT iilü
See. XVi ConiBAnd AJ^orlthrai

2. File Compaction

Tt>« c»aic objective of tne file cotipactor 1« to reduce tne?
number of Süö Mock« in A file by cowbining the contents of
these blocks and eliminatini resultant empty blocKs, in
aadition, empty spaces In tne random file are elimi^ted py
packing the file into contiKUOus blocks. Structure blocks
are not compacted.

SD3 blocks with fewer than a fixed nuaeer of unuseo cells
are not processed »- thus compaction for files whicn need
little or no compacting will be a relatively quick
operation.

3. Output Processor

The output irocessor is used to produce hard copy fron NLS
files. The output of this process includes formatted files
for a printer, a Dura typewriter, and a stromberg-Carison
microfilm machine.

The format of the output is controlled cv means of
directives.

These are parameters for numerous variables such as page
dimensions, pa«e numbtrini, and Mon/off switches" for a
large set of format option«. The user may control these
parameters ty means of special strinf« of text (i.e.,
output-format commands) embedded in tne file text. These
command «trim*«, which gre also called "directives," are
normally suppressed from the hard-copy output.

A full set of directive default vtlues for each type of
device has been establishedi these valuss may be
overridden oy directive« iabedded in tne text of the
file,

Thi output Procemsor runs as a ^ubprocess of NLS and has one
paie -- a buffer -« in common with it. This process, like
thÄ compiler«, utilizes the atate;iient-«election mechanisms
of NL3 to obtain it« input data. Thu« level clippint,
content analyai«, keyword reordering trails, and so forth
can be uscl to control what is output via the output
Processor«

k, compilers

The l&nsutgtff developt'd by ARC for internal use are

267

UNCLASSIFIED

Setiirtv CiiRsiticarion
Ä.ijinKr . ,.ia

DOCUMENT CONTROL DATA - R * D

OHi(. INA TING AC Ti VI TY {Corpoi*:* Author)

Stanford Research Institute?

333 Ravenswood Avenue

Menlu Park, California 94025

im. AK^omr «KCUWITY C L AISI FIC. * TJON

Unclassified

ib. cacuP

N/A
3 REPORT T!Tl. E

COMPUTER-AUGMENTED MANAGEMENT-SYSTEM RESEARCH AND DEVELOPMENT

OF AUGMENTATION FACILITY

4 DESCRIPTIVE NOILS (Typ* ol rmp&tl mnii inc/uaivr dmfi)

Final Technical Report 8 February 1968 - 8 February 1970
■■ AUTHOR<SI (Fitti n«K«, middlr iniUmt, l*at nmmm)

Dr. D. C. Engelbart and

Staff of Augmentation Research Center

6 RCPON t DA 1 E

8 April 1970
iT. TOTAL NO OF PACES

i«. COW HACT OR GRANT NO

F30602-68-C~0286
6. PROJECT NO.

0967
c.

284
76. NO. OF REFS

I 13
9«. ORIGINATOR'S REPORT NUW»ER(»»

Ft il Report

Project 7101

Sb. OTHER REPORT NO<S) (Any othir niiai^vra that mmy bm o*»lpTd
thia rmport)

HADC TR-7C-82

10 DltTRI PUTION STATEMENT

Distribution of this document is unlimited. It may be released to the Clearinghouse.

Department of Commerce, for sale to the general public.

11 SUPPLEMENTARV NOTES

Monitored by

D. Stone AC 315 330-2600

RADC (EMßlH).. GAFB, NY 13440

12 SPONSORING MILI TARY ACTIVITY

Advanced Research Projects Agency
Washington, D.C. 20301

13 ABSTRACT

This report covers two years of research in a continuing program in the Augmentation
Research Center (ARC) of the Information Sciences Laboratory of Stanford Research

Institute, supported by ARPA and RADC under Contract F30602-e8-C"0286. Sume of the

work reported was also supported by ARPA and NASA under Contract NAS1-7897.

The research reported is aimed at the development of on-line computer aids for

increasing the performance of individuals and teams engaged in intellectual work,

and the development of techniques for the use of such aids. The report covers

hardware and software development; applications in several areas relating to

management of a community of workers who use on-line aids and to information

management for such a community, participation in the ARPA computer network, and
a summary of plans for the continuation of the research.

DD ;rJ473
S/N 010!.807.6801

(PAGL 1)
VJNCLASSIFIED

Sicviritv Cl««iifu:«tion"

UNCLASSIFIED
Security Claseifictftion

K e v tiono»
ft O l~ C MT n o i. c

Computer Augmentation

On-Line Interaction

Management Research

.?o?„1473 (B^KI
(PAOE 2)

UNCLASSIFIED
Security CUttification

