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__ FOREWORD

M-M- This book presents a unified treatment of normative
theories for ihe evaluation of individuals' preferences in
a variety of types of decision situations. The material
w.:s o"!'- - ):A,.eloped as pAr. of RAC's Ad-anced

Research Department work program in decision and value
theory. Many of the results in the book were developed
as a result of basic research investigations under the
RAC Institutional Research Program in addition to ONR
and ARO support.

NICHOLAS M. SMITH
lHead, Advanced Research Department
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PREFACE

The underlying motive for this book is the widespread activity of human
d.ecis., making. Its bs i.notif is that decisions depend, at least in part,
on preferences. Its subject matter is preference structures and numerical
representations of preference structures.

Although utility theory has well-recognized roots that extend into the
eighteenth and nineteenth centuries, much of its significant growth has
occurred in the last two or three decades. This growth, whose major con-
tributions have come out of economics, statistics, mathematics, psychology,
and the management sciences, has been greatly stimulated by the use of
axiomatic theory. This is evident, for example, in the works of Frank P.
Ramsey (1931), John von Neumann and Oskar Morgenstern (1947), Leonard
J. Savage (1954), John S. Chipman (1960), and Gerard Debreu (1959, 1960),
all of which use the axiomatic approach. In this approach the investigator
puts forth a set of axioms or conditions for preferences. It might be said that
these conditions characterize a preference structure. Some of them may be
viewed as criteria of consistency and coherence for the preferences of a
decision maker; others may be viewed as structural andlor simplifying
assumptions. In any event, the investigator then seeks to uncover a numerical
model that preserves certain characteristics inherent in the assumed preference
structure. Further investigation might indicate how such a model can be
used to help decision makers examine and perhaps resolve decision problems.
This can jiclude methods of estimating the terms (utilities, probabilities)
that appear in the model.

During 1963 through 1969, while this book progressed through its own
growth Pnd distillation stages, I have been increasingly concerned by the
needs for a unifying upper-level text and a research-reference work on
utility theory. It is my hope that the book will satisfy these needs for at least
the next several years.

The book was written to be self-contained. My experience indicates that
many people interested in utility theory are not especially well trained in
mathematics. For this reason and to prevent any misunderstanding, I have
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included virtually all required background mathematics. This mater;Al is
introduced when and where it is needed. Those unfamiliar with it will of
course find much of it difficult going, but at least I hope they will be spared
the trouble of searching elsewhere for it.

Also by way of self-containment, proof% are provided for all but a very
few theorems. Browsers will want to skip the proofs, bmt they are available
when desired. In most cases, source credit is given for more involved proofs.
In some cases I have expanded others' proofs to make them more accessible
to some reader. This is most noticeable with =,-._- t.. Der... ac+::.:-y
theory in Chaptef 5 and Savage's expected-utility theory in Chapter 14.

Set theory is the cornerstone mathematics of the text. With no significant
exception, all utility theories examined in the book are based on the theory
of binary relations. The main binary relation is the preference relation "is
preferred to." Algebra, group theory, topology, probability theory, and the
theory of mathematical expectation arise at various places.

The exercises are an integral part of the book. Those with boldface numbers
cover important material not presented elsewhere in the chapters. Other
exercises offer practice on the basic mathematics and on the utility theory
and related materials discussed in the chapters. Answers to selected exercises
follow Chapter 14. A preview of the book's contents is given in the first
chapter.

Finally, you should know about two other books that present a significant
amount of material on measurement theory (of which utility theory may be
considered a part) that is not found in this book. The first of these is John
Pfanzagl's Theory of A•eavurenzent (John Wiley & Sons, Inc., New York,
1968). The second is being prepared by David H. Krantz, R. Duncan Luce,
Patrick Suppes, and Amos Tversky.

McLean, Virginia PETER C. FisHBURN

June 1969
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Chapter 1

INtrODUCTION AND PREVIEW

Decision making serves as the foundation on which utility theory rests, For
the purposes of this book we envision a decision maker who must select one
alternative (act, course of action, strategy) from a recognized set of decision
alternatives. Our study will focus on individuals' preferences in such decision
situations. For a connection between decision and preference we shall assume
that preferences, to a greater or lesser extent, govern decisions and that,
generally speaking, a decision maker would rather implement a more pre-
ferred alternative than one that is less preferred.

In the axiomatic systems examined in this book, an individual's preference
relation on a set of alternatives enters as a primitive or basic notion. This
means that we shall not attempt to define preference in terms of other
concepts. We shall, however, suggest that, by self-interrogation, an individual
can identify at least some of his preferences.

As we proceed through various types of decision situations it will become
apparent that, under specified assumptions, preferences between decision
alternatives might be characterized in terms of several factors relating to the
alternatives. In cases where alternatives can be viewed as aggregates of several
attributes or factors, holistic preferences might be represented as aggregates
of preferences on the several factors. In other cases, as in decision under
untertainty, holistic preferences may be represented in terms of utilities for
consequences and probabilities for consequences or for "states of the world."
These special ways of representing preferences do not of course explain the
meaning of the term although they may help in understanding how holistic
preferences can be described in terms of other factors.

1.1 GENERAL ORGANIZATION

The three main parts of the text comprise two main divisions of our subject
as follows:

Part I. Individual decision under certainty.
Parts II and 1II. Individual decision under uncertainty.

1i
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Part 1, titled "Utilities without Probabilities," covers situations where
uncertainty is not explicitly formulated. I use the phrase "decision under
certainty" as an abbreviation for something like "decision making in which
"uncertainty, whatever form it might take, is suppressed and not given explicit
recognition."

Parts 1I and iII explicitly recognize the form of uncertainty that is charac-
terized by the question: If I implement decision alternativef, then what will
happen ? Parts It and MU differ in their formulations of an uncertain situation,
although under appropriate interpretation the two formulations are equiva-
lent. In Part 11, titled "Expected-Utility Theory," the uncertainty is expressed
in terms of the probability that consequence x will result if act f is imple-
mented. In Part MU, "States of the World," uncertainty is expressed in terms
of probabilities for contingencies whose occurrence cannot be influenced by
the specific act that is implemented but which determine the consequence that
results uader each availb!L act. The Part II formulation is the one used in
Fishburn (1964). The Part IH formulation is the one adopted in the version
of statistical decision theory sponsored by Savage (1954) and Raiffa and
Schlaifer (1961).

In the actual presentations of Parts II and III there is another noticeable
difference. In Part MU, especially Chapters 13 and 14, the state probabilities
as well as the utilities are derived from the preference axioms. In Part II
probabilities of acts for consequences are, so to speak, taken as given and
enter into the axioms. This is partly rectified in Section 13.4, which presents
an axiomatization for the Part II formulation in which the consequence
probabilities are derived from the axioms. An alternative axiomatization of
the Part II model that also does not use consequence probabilities in the
axioms has been developed recently by Duncan Luce and David Krantz.
Since this awaits publication as I am completing this book, its important
contributions do not appear here.

1.2 PART I: UTILITIES WITHOUT PROBABILITIES

A natural first topic for a study on utility theory is the elementary prop-
erties of a preference relation on a set of decision alternatives. The next two
chapters go into this in some detail. Their main concern is what might be
called the fundamental theorem of utility. This has to do with axioms for
preferences which guarantee, in a formal mathematical sense, the ability to
assign a number (utility) to each alternative so that, for any two alternatives,
one is preferred to the other if and only if the utility of the first is greater than
the utility of the second.

These two chapters differ primarily in the size assumed for the set of
alternatives. Chapter 2 assumes that this set is finite or denumerably infinite;
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Chapter 3 covers cases where the alternative set is so large that it is uncount-
able (neither finite nor denus erable). After dealing with the fundamental
theorem, Chapter 2 discusses ordering properties on preferences that are not
strong enough to yield the fundamental theorem. Here we shall not assume
that indifference ("no preference") is transitive. Along with the fundamental
theorem as such, Chapter 3 gives sufficient conditions for order-preserving
utilities when the alternative set is a subset of finite-dimensional Euclidean
space, and then goes on to consider continuous utility functions.

Additive Utilities

. Chapters 4, 5, and 7 deal with cases where each alternative can be viewed
as a multiple-factor or multiple-attribute entity. In more mathematical terms,
each alternative is an n-tuple of elements, one element from each of a set of n
factors. Unlike the other chapters in this trio, Chapter 7 deals explicitly with
the case where the n factors are essentially similar. A prototype example for
Chapter 7 is the case where n denotes a number of time periods and an
alternative specifies income in each period. Time-oriented notions of per-
sistent preferences, impatience, stationarity, and marginal consistency are
examined in Chapter 7, as well as a persistent preference difference concept
that draws on material in Chapter 6.

Chapters 4 and 5 deal with preference conditions on a set of multiple-factor
alternatives that not only yield order-preserving utilities as in Chapters 2 and
3 but also enable the utility of each alternative to be written as the sum of
utility numbers assigned to each of the n components of the alternative. In
simpler language, these chapters deal with conditions that imply that the
utility of a whole can be expressed as the sum of utilities of its parts. In
Chapter 4 the alternative set is taken to be finite; in Chapter 5 the number of
alternatives is infinite.

Strength of Preference

Chapter 6 is the only chapter in the book that deals primarily with utility
concepts involving strength of preference or preference intensity. It is con-
cerned with comparisons between pairs of alternatives and raises the ques-
tion: Is your difference in preference (degree of preference) between these
two alternatives less than, equal to, or greater than your difference in
preference between those two alternatives? Chapter 6 is concerned with
utility functions that preserve such preference-difference comparisons.

1.3 PARTS II AND EII: UTILITIES WITH PROBABILITIES

As noted above, Parts II and [II differ in their formulations of decision under
uncertainty. Both parts are concerned with simple preference comparisons
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between alternatives whose consequences are uncertain, and with pref-
erence conditions that not only yield order-preserving utilities for the
alternatives but also enable the utility of an alternative to bc written as a
mathematical expectation involving consequence utilities and consequence
probabilities.

In this book, probability is interpreted in a subjective or personal way.
Roughly speaking, a probability is a numerical expression of the confidence
that a particular person has in the truth of a particular proposition, such as
the proposition "if I implement f then consequence z will result," or the
proposition "this coin will land 'heads' on the next flip." Such probabilities
arc required to obey well-defined rules of coherence and consistency. In those
cases where probabilities are derived from preference axioms, the primitive
notion for probability is preference. Early in Chapter 14 we shall see how
probability can be axiomatized in terms of a relation "is less probable than"
on a set of propositions or events. Later in Chapter 14 we shall see how "is
less probable than" can be defined in terms of "is preferred to." My own
viewpoint on probability is heavily influenced by de Finetti (1937) and
Savage (1954). Kyburg and Smokier (1964) is recommended for further
introductory reading in subjective probability. Chapter 5 of Fishburn (1964)
discusses other interpretations of the meaning of probability.

Part II
The first three chapters of Part 11 derive the expected-utility representation

for alternatives with uncertain cinsequences. In these chapters the conse-
quence probabilities are taken as "givens" so that the alternatives in the
preference axioms are probability distributions or measures on a set of
consequences. Chapter 8 concentrates on simple probability, measures, where
each alternative has probability one (certainty) of resulting in a consequence
from some finite subset of consequences. Chapter 9 considers simple measures
also but, unlike Chapter 8, it does not assume that indifference is transitive.
Chapter 10 admits more general probability measures on the consequences.

Uncertainty in combined with multiple-factor consequences in Chapter 11.
This chapter identifies conditions that enable the expected utility of an
uncertain alternative with n-tuple consequences to be expressed as the sum
of expected utilities for each of the n factors. Section 11.4, like Chapter 7,
examines the case where the n factors are essentially similar.

Part il
The three chapters in Part III deal with the basic states of the world Jecision

formulation. Chapter 12 introduces this formulation, demonstrates its equiv-
alence to the Part 11 formulation, and considers some axioms that do not
yield the complete expected-utility subjective-probability representation.
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Chapter 13, whose material rcfiects some investigations carried Out byHerman Rubin and Herman Chernoff in the late 194&'s and early 1950's,Presents axioms that yield the complete expected-utility subjective-probabilitymodel in the states formulation. Probabilities are used in the axioms of thischapter, but they are extraneous measurement probabilities and not the stateprobabilities. The latter are derived from the axioms.Chapter 14 presents Savage's (1954) expected-utility theory. His axiomsare free of the extraneous measurement probability device but impose somerestrictions on the set ofstates and the state probabilities that are not imposedby the axioms of Chapter 13.
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PART

UTILITIES WITHOUT
PROBABILITIES

With few exceptions, most of the significant developments in individual
utility theory for preference structures that do not explicitly incorporate
uncertainty or probability have occurred since the beginning of the twentieth
century. Economists and mathematical economists are largely, though not
exclusively, responsible for these developments. The basic theory (Chapters
2 and 3) deals with the existence of utility functions on a set of alternatives
that preserves the ordering of the alternatives based on an individual's
preference relation, and with special properties-such as continuity-.of
utility functions. A secondary basic development (Chapter 6) centers on a
strength-of-preference concept that concerns comparisons of preference
differences.

Although the assumption of additive utilities for multiple-factor situations
(Chapters 4 and 5) was widely used by economists in the mid-nineteenth
century, it was discarded by many toward ihe end of the century. In more
recent years, principally since 1959, axiomatic theories for additivity have
been developed. These theories show what must be assumed about preferences
so that the order-preserving utility functions can be written as combinations
of utility functions for the several factors.

7



Chapter 2

PREFERENCE ORDERS AND UTILITY
FUNCTIONS FOR COUNTABLE SETS

Throughout the book we shall let X denote a set whose elements are to be
evaluated in terms of preference in a particular decision situation. Depending
on the context, the elements in X might be called alternatives, consequences,
commodity bundles, cash flows, systems, allocations, inventory policies,
strategies, and so forth. This chapter is primarily but not exclusively con-
cerned with cases where K is a countable set, which means that X is finite or
denumerable. A set is denumerable if and only if its elements can be placed in
one-to-one correspondence with the elements in the set {1, 2, 3,...) of
positive integers. The set (... , -2, -1, 0, 1, 2,.... of all integers and the
set of rational numbers (expressible as ratios of integers) are denumerable.

Throughout the book we shall take strict preference < as the basic binary
relation on X or on a set based on X, and indifference -,. will be defined as
the absence of strict preference. One could also begin with a preference-
indifference relation < (read x < y as x is not preferred to Y), but I have
come to prefer < for several technical reasons plus the fact that we tend to
think in terms of preference rather than preference-indifference.

The first main result of this chapter is that, when X is countable, numbers
u(x), u(y), ... can be assigned to the elements x, y,... in X in such a way
that x -K y <- u(x) < u(y/)

holds if < on X is a weak order (Definition 2.1). The 4 means "if and only
if" and its companion =ý- means "implies." A second main result says that
there is a real-valued function u on X such that

X <. y =:- u(X) < u(y)

when < on X is a strict partial order (Definition 2.2), provided that X is
countable. Several other utility-representation theorems are presented later
in the chapter.

9



10 Prefereace Orders for Coantahme Sets

2.1 BINARY RELATIONS

Thi entire book is based on binary relations. A binary relation on a set Yis a set of ordered pairs (z, y) with x c Yand y c Y. The x e Ymeans that xis an element in Y; we often abbreviate z e Y, y e Y by writing z, y e Y.The universal binary relation on Y is the set {(x, y): x, y C- Y} of all orderedpairs from Y. In general {x:S) is the set of all elements x that satisfy theconditions specified by S. If R is a binary relation on Y then it is a subset ofthe universal binary relation. In general, A G B (A is a subset of B) means
that every element in A is in B also.

We often write xRy to mean that (x, y) e R. Similarly, not xRy (it is falsethat x stands in the relation R to y) means that (x, y) O R. In general a 0 A
means that a is not an clement in A. If R is a binary relation on Y then foreach (x, y) in the universal relation either xRy or not xRy, and not both.Because we are dealing with ordered pairs, (x, y) is not the same as (y, z)unless z - y. Hence, if R is a binary relation on Y and if x, y E- Y, then
exactly one of the following four cases holds:

- 1. (xRy, yRx),
2. (xRy, not yRx),
3. (not xRy, yRx),
4. (not zRy, not ygP).
Let Y be the set of all living people. Let R1 mean "is shorter than," so thatwjRay means that x is shorter than y. Case (1) is impossible. Case (2) holdswhen z is shorter than y. Case (4) holds when z and y are of equal height. R1is an example of a weak order.
Next, let R2 be "is the brother of" (by having at least one parent incommon). Here cases (2) and (3) are impossible. R2 is not transitive since ifxR2y and yR2z it does not necessarily follow that xRz. (Why?)

Some Relation Properties
The binary relations we use will be assumed to have certain properties. Alist of some of these follows. A binary relation R on a set Y is
pl. reflexive if xRz for every X E Y,
p2. irreflexive if not zRx for every x c Y,
p3. symmetric if xRy =:: yRx, for every x, y e Y,
p4. asymmetric if zRy =• not yRx, for every x, y e Y,
p5. antisymmetric if (xRy, yRx) => x = y, for every x, y e Y,
p6. transitive if (xRy, yRz) x zRz, for every x, y, z e Y,p7. negatively transitive if (not xRy, not yRz) =* not xRz, for every

X, y, z G Y,
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7v- p8. connected or complete if zfRy or yRx (possibly both) for every x, y e Y,

p9. weakly connected if x 0 y =>. (xRy or yRz) throughout Y.

Several other properties are introduced in Section 2.4.
An asymmetric binary relation is irreflexive. An irreflexive and transitive

binary relation is asymmetric: if (xRy, yRx) then p6 gives xRX, which violates
p2. It is also useful to note that A is negatively transitive if and only if, for allX,-Y z, C- Y,

R!,y =: (xRz or zRY). (2.1)

To prove this suppose first that, in violation of (2.1), (xRy, ncot xRz, not
zRy). Then, if the p7 condition holds, we get not xRy, which contradicts
xaRy. Hence the v7 condition implies (2.1). On the other hand, suppose the
p7 condition fails with (not xRy, not yRz, z.Rz). Then (2.1) must be false.
Hence (2.1) implies the p7 condition.

* The relation R, (shorter than) is irreflexive, asymmetric, transitive, and
* negatively transitive. If no two people are of equal height, R1 is weakly

connected. R2 (brother of is symmetric.

2.2 PREFERENCE AS A WEAK ORDER

Binary relations that have or are assumed to have certain properties are
often given special names. In this section we shall be most concerned with
three type3 of binary relations, namely weak orders, strict orders, and
equivalences.

Definition 2.1. A binary relation R on a set Yis

a. a weak order -'. R on Y is asymmetric and negatively transitive;
b. a strict order • R on Y is a weakly connected weak order;
c. an equivalence => R on Y is reflexive, symmetric, and transitive.

The relation < on the real numbers is a weak order and also a strict order
since x < y or y < x whenever x 0 y; = on the real numbers is an equiva-
lence, since z = x, x =-y = y = x, and (x = y, y = z) =. x = z.

An equivalence on a set defines a natural partition of the set into a class of
disjoint, nonempty subsets, such that two elements of the original set are in
the same class if and only if they are equivalent. These classes are called
equivalence classes. Let

R(x) = {y: y c-Y and yRx}.

If R is an equivalence then R(x) is the equivalence class generated by x. In this
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case you can readily show that R(x) = R(y) if and only if xRY. Thus, any
two equivalence classes are either identical or disjoint (have no element in
common). When R on Yis an equivalence, we shall denote the set of equiva-
lence classes of Y under R as Y/R.

Preferee as a Weak Order
Taking preference -< as basic (read x < y as x is less preferred than y, or

y is preferred to i) we shall define indifference :-' as the absence of strict
preference:

X <-(not x < y, noty y< x). (2.2)

Indifference might arise in several ways. First, an individual might truly feel
that, in a preference sense, there is no real difference between x and y. He
would just as soon have x as y and vice versa. Secondly, indifference could
arise when the individual is uncertain as to his preference between x and y.
He might find the comparison difficult and may decline to commit himself to
a strict preference judgment while not being sure that he regards x and y as
equally desirable (or undesirable). Thirdly, x - y might arise in a case where
the individual considers x and y incomparable (in some sense) on a preference
basis.

Asymmetry is an "obvious" condition for preference. It can be viewed as
a criterion of consistency. If you prefer x to y, you should not simultaneously
prefer y to x'.

Transitivity is implied by asymmetry and negative transitivity, and it
seems like a reasonable criterion of coherence for an individual's preferences.
If you prefer x to y and prefer y to z, common sense suggests that you should
prefer x to z.

However, the full force of weak order is open to criticism since it imparts
a rather uncanny power of preferential judgment to the individual, as can
be seen from (2.1). To see how (2.1) might fail, suppose that in a funding
situation you feel that $1000 is about the best allocation. Your preference
decreases as you move away from $1000 in either direction. Although you
prefer $955 to $950, it may also be true that you have no sure preference
between $950 and $1080 or between $955 and $1080. Then ($950 < $955,
$950 ,- $1080, $955 - $1080) in violation of (2.1).

In this example, indifference is not transitive. Armstrong (1950, p. 122)
speaks of intransitive indifference as arising from "the imperfect powers of
discrimination of the human mind whereby inequalities become recognizable
only when of sufficient magnitude." Later sections of this chapter take
account of such limited discriminatory powers by not requiring ,-, to be
transitive.

Our first theorem notes several consequences of weak order, including the
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transitivity of indifference. For this theorem and for later work we shall
define preference-indifference < as the union of -< and ,-•:

x<•y.-x<y or :x,-y. (2.3)

THEOREM 2.1. Suppose < on X is a weak order, being asvmmetric and
negatively transitive. Then

a. exactly one of z < y, y < x, z - y holdsfor each x, y C X;
b. < is transitive;
c. is an equivalence (reflexive, symmetric, transitive);

• d. (x-<y,•/,z)=:.-x<z, and(x-y,y-<Oz)=x<z;

e. < Is transitive and connected;
f. with <' on X/-, (the set of equivalence classes of X under ,•) defined by

a <'b .z y for some z e a and Y e b, (2.4)

on X1,-, is a strict order.

Proof Part (a) follows from asymmetry and (2.2). For (b), suppose x < y
and y < z. Then, by (2.1), (z <- or z < y) and (y< z or x < z). Since
z < y and y < x are false by asymmetry, x < z. Thus < is transitive.
Suppose x - Y, Y - z, and not x i- z, in violation of the transitivity of -.

Then, by (a), eitherx < z or z < x, so that by (2.1) one of: x< y, y -< z,
z < y, and y -< must hold, which contradicts x -a y, y~. z, and (a).
Hence - is transitive. Suppose as in (d) that x < y and y ~ z. Then, by (a)
and (2.1), x < z. The second half of (d) is similarly proved. For (e) ihe
transitivity of < follows immediately from (b), (c), and (d). For the corn-
pleteness of •< suppose to the contrary that (not x < y, not y z< ). Then, by
(2.3), (not x < y, not x - y, not y < z), which violates (a).

Finally, we examine the properties of a strict order for <' on X[-,:

1. asymmetry. if a <'b and b -<'a then:x < y and y" < x' for some
X, z' e a and y, y' c b, with x,. x' and y -,- y'. By (d), z' -< y. Again, by
(d), x' <y ', which contradicts y' -< '.

2. negative transitivity. Suppose a <'b with x e a, y e b, and : < y. For
any c cXlr, and any z E c, (2.1) implies that : < z (in which case a <' c) or
that z < y (in which case c < ' b).

3. weak connectedness. Suppose a, b e X/J- and a 0 b. Then a and b are
disjoint so that if x e a and y e b then not x y. Hence, by (a) either -< X y
ory< x, sothateithera-<'borb-<'a.
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An Order-Preservng Utility Function
THEOREM 2.2. If -< on X Is a weak order and X/,-. is countable then there
is a real-valued function u on X such that

S< y =- u(x) < u&y), for all x, y c X. (2.5)

The utility function u in (2.5) is said to be order-preserving since the
numbers u(x), u(y),... as ordered by < faithfully reflect the order of
x, y, .... under -<. Clearly, if (2.5) holds, then

x -< y -= v(x) < v(y), for all z, y c- X,

for a real-valued function v on X if and only if [v(x) < v(y) -* u(z) < u(y)J
holds throughout X. In the next section we shall consider the case where <€-

in (2.5) must be replaced by =-. In later chapters we shall meet utility
functions with properties beyond that of order preservation.

Under the conditions of Theorem 2.2, (2.5) implies that, for all z, y e X,
x -y -u(z) = u(!,), and x< y < u(x) u&), where -- and < are
defined by (2.2) and (2.3) respectively.

The following proof of the theorem is similar to proofs given by Birkhoff
(1948, p. 31) and Suppes and Zinnes (1963, pp. 26-28). As we shall see in
Chapter 3, the conclusion of the theorem can be false when X,'l- is uncount-
able (neither finite nor denumerable).

Proof of Theorem 2.2. Assuming the hypotheses of the theorem we shall
assume also that X/,-., is denumerable. The Xr-. finite proof is similar and is
left to the reader. Let the elements in XY/-, be enumerated as a,, as, as, . . and
let the rational numbers be enumerated as r,, r2 , r3 , . No particular <'
ordering (see (2.4)) or < ordering is implied by these enumerations. We
define a real-valued function u on X/,.., as follows, recalling that <'as in
(2.4) is a strict order on Xl.•.

Set u(al) = 0. For am it follows from the properties for <' and induction
that exactly one of the following holds:

1. aj <'a. for all i < m: if so, set u(a,) = m,
2. a. <'a, for all i < m: if so, set u(a,) = --m,
3. a, <' a. -<' a, for some i,j < m and not (a1 < ah <'a,),

for every positive integer h that is less than m and differs from i and j: if so,
set u(a,) equal to the first rk in the enumeration rl, rs, ra,... for which
u(a,) < r. < u(aj). Such an rt exists since there is a rational number between
any two different numbers.

By construction, u(am) ,A u(ai) for all i < m, and a, <'a, -= u(a,) < u(aj)
for all iQ - m. This holds for every positive integer m. Hence it holds on all
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of X/-'-. Finally, define u on X by

u(x) u(a) whenever x e a.

t Equation (2.5) then follows pi.ovided that, when a <'b, x y for every
x e a and y e b, which follows directly from (2.4) and Theorem 2.1(d). *

As you will easily note, if (2.5) holds, then < on Xmust be a weak order.
Hence if -< on Xis not a weak order then (2.5) is impossible regardless of the
size of X.

2.3 PREFERENCE AS A STRICT PARTIAL ORDER

Throughout the rest of this chapter we shall look at cases where indifference
is not assumed to be transitive. This section considers the case where < is a
strict partial order.

Definition 2.2. A binary relation R on a set Y is a strict partial order if
and only if it is irreflexive and transitive.

Since this allows (x --. y, y - z, x -< z) when < on X is a strict partial
order, - is not necessarily transitive and therefore may not be an equivalence.
However, a new relation -, defined as

x "• y - (x -. z t y , z, for all z G X) (2.6)

does turn out to be transitive when < is a strict partial order. z F Y holds if,
whenever z is indifferent to a z E X, y also is indifferent to z, and vice versa.
For comparison with Theorem 2.1 we have the following.

THEOREM 2.3. Suppose -< on X is a strict partial order, being irreflexive
and transitive. Then

a. exactly one of x -< y, y < x, x y, (x - y, not x y y) holds for each
X, y e X;

b. F is an equivalence,
c. x f y .# (x -< z -4-> y < z and z < x -=- z < y,for all z e X);
d. (x -< y, y -., z) =:. x -< z, and (x ý-_ y, y -<z) =*- z -< z;

e. with < * on X/w (the set of equivalence classes of X under ") defined by

a <* b <.ý z < yfor some xEa andy eb, (2.7)

on X/ e is a strict partial order.

Proof. (a) follows from asymmetry (implied by irreflexivity and transi-
tivity) and the fact that x s- y can hold only if x y. For (b), the reflexivity

- -*
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and symmetry of s follow directly from (2.6) and the reflexivity and sym-
metry of ,.-. Suppose ow y and y g z. Then, by (2.6), if z - t then y -. t
and, again by (2,6), if y ,' t then z -, t. Hence z=- i z z,-, t. Conversely
z - t =:> z - t, so that x 1 z as desired for transitivity.

For part (c) suppose first that x s y. If x < z then either y < z or Y , z,
for ifz -< y then x < y by transitivity of -<. But ify ,- z then x -,z by (2.6),
"which contradicts x < z. Hence x < z => y -< z. Similarly y < z =.- x < z.
A similar proof shows that z .< z 4 z -< y. (This also establishes (d).) On
the other hand, assume that the right part of (c) holds. Then, if x -, t, it
cannot be true that either y< I or t-< y so that y- t by (2.1) and the
asymmetry of <. Conversely y - t =:- x - t. Hence z y.

For (e), we cannot have a -a when a e X/ for then x < ! for some
x and y for which x w y, which is false by (a). For transitivity suppose
(a < * b, b < * c). Then (x < y, y ;y', y' < z) for some x e a, Y, Y' e b, and
z e c. x < z then follows from (d) so that a -< * c. 4

Zorn's Lemma and Szpllrajn's Extension Theorem

Before we can establish a utility-representation theorem for the case where
< is a strict partial order and X/1 is countable, we need to prove the follow-
ing theorem, due to Szpilrajn (1930).

THEOREM 2.4. If -< * is a strict partial order on a set Y then there is a
strict order <0 on Y that includes <* so that

X <* y >x <O°y, forallx, ye Y. (2.8)

The utility theorem given later as Theorem 2.5 is very easily proved from
Theorem 2.4 and the proof of Theorem 2.2.

To establish Szpilrajn's theorem, which holds regardless of the size of Y,
we shall need an axiom of set theory that goes by the name of Zorn's Lemma.

ZORN'S LEMMA. Suppose P on Y is a strict partial order and, for any
subset Z of Y on which P is a strict order, there is a y e Y such that zPy or
z = y for all z e Z. Then there is a Y * e Y such that y*Px for no x C Y.

Consider the real numbers in their natural order under <. Since < itself
on the numbers is a strict order but there is no number y such that x < y or
z = y for every number x, the "lexmma" does not imply that the real numbers
have a maximal element under <, as of course they do not.

Zorn's Lemma, used today by most mathe'maticians, is an assumption.
Kelley (1955, pp. 31-36) presents other axioms that are equivalent to Zorn's
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Lemma. One of these is the Axiom of Choice: if 8 is a set of nonempty sets
then there is a functionf on 8 such thatf(S) c S for each S e 8.

Proof of Theorem 2.4. If K is a strict order, there is nothing to prove.
Suppose then that < * is a strict partia order and that x, y in Y are such that
z vA•y, (not•* y, not y < * x). Define < on Y thus:

a<lb a<*b or else [(a<xora z),(y< *bor y b)). (2.9)

Clearly, a- b =.a < b, and z<'g. We prove first that <' is a strict
partial order.

A. -0 is irreflexive. To the contrary suppose a <La. Then, 'f either
(a <*x,y.<*a) or (a<*x,y = a) or (a -x,y<*a), we get y-<* z,
which is false. Also, a < * a and (a = z, y ý a) are false by assumption.
Hence a < * a is false.

B. -<I is transitive. Assume (a < b, b <1c). If (a <* b, b <* c) then
a <* c so that a < I c. If (a <* b, (b < * x or b = z) and (y < * c or y = c))
then a <* x so that a <'c by (2.9). If ((a <* x or a = x) and (y < *b or
y = b), b < * c) then y < * c and hence a <' c. Finally, if neither a < * b nor
b <* c then, by (2.9), (y <* b ory = b) from a <'band (b < * orb = z)
from b <I c, which are incompatible since they give y < * x or y ý x, which
are false. Hence this final case cannot arise.

We now use Zorn's Lemma. With A c B -c> A is a subset of B, we define
A c B -=- (A c B, not B z A). Let A be the set of all strict partial orders
on Y that include < *, so that R e A -4. (R cn Y is a strict partial order and
< * c_ R). In Zorn's Lemma as stated above, c takes the part of P and :R
takes the part of Y.

Clearly, c on 31 is a strict partial order. Let 8 be a subset of :R on which C
is a strict order. (We omit the trivial case where 8 = oi.) Let S be the set of
all (x, y) that are in at least one R e 8: that is, (x, y) E S or xSy if and only if
(z, y) e R or zRy for some R e 8. Clearly, R s; S for every R E 8. To apply
Zorn's Lemma we need to show that S c A., or that S on Y is a strict partial
order:

A. S is irreflexive. (x, x) 0 S since (x, x) f R for every R e 3.
B. S is transitive. If (x, y) e S and (y, z) e S then (z, y) e S, and (y, z) e S2

for some S, and S2 in 8. For definiteness suppose S, s S,. Then (x, y) E S$
and hence (X, Z) E S2 by transitivity, so that (x, z) e S by the definition of S.

It follows from Zorn's Lemma that there is a <o e A1 such that <9 c- R
for no R e R. Because <0 is in "A, it is a strict partial order. To show that it
is a strict order, it remains to note that <o on Y is weakly connected, for
when this is true <0 must be a strict order. (You can easily show that a
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weakly connected strict partial order satisfies (2.1), or negative transitivity,
and is thus a strict order by Definition 2.1.) Suppose then that contrary to
weak connectedness there are x, y e Y with z 0 y and (not x <0 y, not
y < 0 x). Then, by the first part of this proof, there is a strict partial order < 1
on Y such that a<Ob->a<1 b, and x <Iy. But then .<Oc <1 which
contradicts .<o c A for no R e R. Hence -<O is weakly connected. *
Another Utility Theorem

With - defined by (2.6), the following theorem says that when < is
irreflexive and transitive and X/A is countable, numbers can be assigned to
the elemeats of X so as to faithfully preserve both -< and w. However,
because i-, can be intransitive, we cannot guarantee that u(z) - u@j) when
x,. y and not x ft y. We might have any one of u(z) u(Y), u(M) < u(Y),
and u(y) < u(z) when (x - y, not x .

THEOREM 2.5. If -< on X is a strict partial order and X/l is countable
then there is a real-valued function u on X such that, for all x, y e X,

x<Y=>. u(X) < u(/)

x ýY => u(X) = U(Y). (2.11)

Proof. By Theorem 2.3(e), < * on X/ls as defined in (2.7) is a strict
partial order. By Theorem 2.4, there is a strict order <0 on X/l that includes
< *. With X/l countable, the proof of Theorem 2.2 guarantees a real-valued
function u on X/l. such that a <0 b .: u(a) < u(b), for all a, b c X/%. With
a c X/l,, set u(r) = u(a) whenever x e a. Then, if x s y, u(z) =-u(y), so
that (2.11) holds. And if x < y withx a and y e b then a -<* b by (2.7) and
Theorem 2.3(d): hence a .<0 b so that u(a) < u(b) and u(x) < u(y). *

2.4 ORDERED INDIFFERENCE INTERVALS

There are other interesting assumptions for preferences that add things to
strict partial order, but still retain the possibility of intransitive indifference.
Two such conditions were introduced into preference theory by Luce (1956).
They are stated here in the form given by Scott and Suppes (1958, p. 117).

plO. (x < y,z < w)> (x< worz K ),for all x, y, z, wEX.
pl 1. (x < y, y < z) =t- (x< w or w < z), for all x, y, z, w I X.

It is easily seen that if -< is irreflexive and either pl0 or pl 1 holds then < is
transitive. When -< is a strict partial order, the only instances ofpl0 and p.1I
that are not already implied by irreflexivity and transitivity are those illus-
trated in Figure 2.1. ForplO, we have the case shown on the left of the figure
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Figure 2.1 Cases not covered by irreflexivity and transitivity,

where x -< y, z < w, x - z, and y ,-' w, with x A z and y $ w. In a sort of
cross-connectedness, pl0 says that at least one of the dashed lines must be
strict preference: we can't have both x ,- w and y - z. For pl 1 we get the
picture on the right of the figure where x -< y < z and w - y with w 4 y.
Here p I says that at least one of the dashed w-lines must represent strict
preference: w can't be indifferent to each of x, y, and z.

Conditions pl0 and p11 may seem reasonable if the elements of X are
naturally ordered and preference is either nondecreasing or nonincreasing
as one proceeds along the natural order. For example, if you prefer your
coffee black it seems fair to assume that your preference will not increase as
z, the number of grains of sugar in your coffee, increases. You might well be
indifferent between x - 0 and x = 1, between x = 1 and x = 2, ... , but
of course will prefer x = 0 to x = 1000. Although - is not transitive here,
plO and pl I would probably hold along with irreflexivity.

However, if there are several factors that influence preference or if there
is only one basic factor along which preference increases up to a point and
decreases thereafter, < may fail to satisfy the cases of pl0 and pl 1 shown in
Figure 2.1. To continue with coffee and sugar, suppose you like about 1000
grains of sugar in your coffee. The left part of Figure 2.2 shows a case where
it might be true that z < y, z < w, z - w, and y -, z, in violation of pl0.
The right part of the figure suggests that p.1 may fail with x < y < z and

y W zV

y I V

0 1000 2000 0 1000 2000
p10  p11

Figure 2.2 "Failures" ofp10 and pl I for single-peaked preferences.
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w-'. x, w --, y, w ,-., z. We could expect both pl0 and plI to hold on a fixed
side of your peak or ideal (Coombs, 1964) but there seems to be little reason
to suppose that they hold for the cases illustrated. "he funding situation in
Section 2.2 gives another peaked situation where pi 'and pl I might not hold.

Definition 2.3. A binary relation is an interval order if it is irreflexive and
satisfies plO, and a semiorder if it is irreflexive and satisfies plO and pl 1.

The term "semiorder" was introduced by Luce (1956) and is now standard
terminology. The way I use "interval order" is not standard, but seems
reasonable in view of Theorem 2.7.

Interval Orders

In the rest of the chapter, e is defined by (2.6). For interval orders
(p2 ,plO) we shall use the following:

* <- y -e> (x ,-z, z < y) for some z e X (2.12)

* < 2 yty'-(x< z,z.-Zy) for some z E. (2.13)

THEOREM 2.6. 1f.< on Xis an interval order then each of <' and <2 is a
weak order, andx - y -*. (x - 1 y, z = 2 y), wherex -•- y (not z <' y, not
-Y <IX).

Proof. The final assertion follows from (2.6). To prove asymmetry for
<1 suppose to the contrary that (x <1 y, y <1 x). Then (x ,- z, z -< y) and
(y •-, w, w -< x) for some z, w e X, which contradict pl0. To establish nega-
tive transitivity suppose to the contrary that (not x <1 y, not y <' z, x <1 z).
By x <1 z, (x ,- t, t -< z) for some t e X. From x ,-. t and not z <1 y, (2.12)
implies not t -< y. From t < z and not y <1 z, (2.12) yields nct t ,-' y. Hence
y -< t. But then, by transitivity, y < z which implies y <1 z, contradicting
not y <I ,. Hence <I is negatively transitive. The proof for <2 is similar and
is left to the reader. +

THEOREM 2.7. If < on X is an interval order and X/5 is countable then
there are real-valued functions u and a' on X with ,r(x) > 0 for all x e X such
that

x <( y ¢'>u(x) + a(;,-) < u(y), for all z, y E X. (2.14)

Note also that if (2.14) holds then plO must hold.
Theorem 2.7 is like the weak order Theorem 2.2 with the addition of a

"vagueness" function a' which allows for intransitive indifference. The
indifference interval for x is 1(x)--- [u(x), u(x) + u(x)]. By (2.14), I(x) is
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wholly to the left of I(y) if and only if x < y. If two intervals intersect then
their elements are indifferent. As seen by the failure (x < y -< z, w -•,
w ^-• y, w ,-, z) ofpl 1, one indifference interval may lie entirely within another
interval: in the case at hand, I(y) must be shorter than l(w).

Proof of Theorem 2.7. Let < on X be an interval order. Using the Axiom
of Choice let Y consist of one element from each equivalence class in Xfe.
For each x e Y let x* denote an artificial element that corresponds to z, with
Y* the set of artificial elements. Define < 3 on Y U Y* (the set of elements in
Y or Y*) as follows:

X• <3 Y- <1• x ,, < x y(2.15)

* < y X < y(2.16)

X* < -<y(2.17)

X <3, Y x -< Y (2118)

where < = K U . as in (2.3). We prove that <' on Y U Y* is a weak
order.

Asymmetry. We want a <3 b --> not b <3 a. If (a, b) = (x, y,,) or (a, b)
(x*, y*) then asymmetry follows from Theorem 2.6 and (2.15) or (2.16).
Suppose (a, b) = (x*, y) and (a <' b, b <3 a). Then (x < y, y < x) by
(2.17) and (2.18), which is impossible.

Negative Transitivity. We shall suppose that (not a <3 b, not b <3 c,
a <3 c) and obtain a contradiction. The cases for (a, b, c) = (x, y, z) and
(a, b, c) = (x*, y*, z*) are covered by Theorem 2.6. The others follow.

1. (x, y, z*). Then not x <1'y, z < y, x --2 z. If x ,-z then x < 1 y, which
contradicts not x <1 y. If x < z then x < y, which implies ax <1 y, a contra-
diction.

2. (x, y*, z). Then y -< x, z < y, x <1 z. From the last of these, (x - 1,
t -< z), which along with (y < z, z -. y) contradicts p10.

3. (x*, y, z). Then y - x, not y <1 z, ax < z. Similar to Case 1.
4. (x, y*, z*). Then y < x, not y < 2 z,x z. Ifx -ztheny <2 z, and if

x < z then y < z and hence y <2 z, contradicting not y <2 z.
5. (x*, y, z*). Then y -<, x, z < y, x <2 z. From the last of ihese, (x -< t,

t --, z), which along with (y < x, z < y) contradicts plO.
6. (x*, y*, z). Then not x < 2 y, z y, ' X < z. Similar to Case 4.

Assume that X/l is countable. Then Y U Y* is countable and by
Theorem 2.2 there is a real-valued function f on Y U Y* such that, for all
b,cE Yu Y*,

b <3 C -.,:=f (b) < f(c).
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For x c Y let u(z) =f(x) and cr(x) =f(x*) -f(x). Then, using (2.17),
x < y u(z) + a(x) < u(y), for all x, y• Y. Since x <3 x* by (2.18), a > 0.
Let u(z) - u(y) and a(x) = #(y) whenever x -e y and y e Y. Then (2.14)
follows from Theorem 2.6 and Theorem 2.3(d). *
Semlorders

On addingpl 1 top2 and p10 we obtain the following extension of Theorem
2.6.

THEOREM 2.8. Suppose < on X is a semiorder and, with <1 and <11
defined by (2.12) and (2.13), <0 on X ig defined by

X<o0<:4-X<It or x<2, for allt, y EX. (2.19)

Then <0 on X is a weak order.

Proof. Asymmetry. (x <' y, y <i x) and (z <2 y, y <2 x) are prohibited
by Theorem 2.6. Suppose (x <1 y, y <2 x). Then (x -, z, z -< y) and (y < w,
w - x) for some z, w E X, which violates pl 1.

Negative Transitivity. By (2.19), not x <0 y ==> (not x <1 y, not x <2 yt)
and not y <<0 z => (not y <1 z, not y <'z). Therefore, by the negative
transitivity of <1 and <2, (not x <1 z, not x < 2 z), so that not x <0 z by
(2.19). *

When Xl/, is finite and < is a semiorder, it is possible to make a in (2.14)
constant on X. A constructive proof of this is given in Scott and Suppes
(1958) or in Suppes and Zinnes (1963). An alternative proof, similar to that
given by Scott (1964), uses the Theorem of The Alternative which will be
introduced in Chapter 4. Exercise 4.18 gives an outline of the alternative
proof of the following theorem.

THEOREM 2.9. Suppose -< on X is a semiorder and X/1 is finite. Then
there is a real-valued function u on X such that

z -< y /4=> u(x) + I < u(y), for all x, y C- X. (2.20)

With an appropriate change in u, any positive number could be used in
(2.20) in place of 1.

2.5 SUMMARY

A binary relation on a set is a weak order if it is asymmetric and negatively
transitive. Defining indifference - as the absence of strict preference, - on
X is an equivalence (reflexive, symmetric, transitive) when < on X is a weak



order. If the set X/l-, of equivalence classes of X under , is countable when
< is a weak order then utilities u(z), u(y),. .. can be assigned to the elements
in X so that z < y - u(x) < u(y). This gives x - V-= u(x) - u(y) also.

The preference relation is a strict partial order when it is irreflexive and
transitive. In this case indifference may be intransitive but r, defined by
z f y *> (x , z -<> y , z, for all z e X), is an equivalence. When < on X
is a strict partial order and X/; is countable, utilities can be assigned so
that u(z) < u(y) if z -< y, and u(x) = u(y) if x %z y..

Interval orders and semiorders lie between strict partial orders and weak
orders. When < on X is an interval order or a semiorder and XI; is count-
able, we get x < y -€z. I(x) is wholly to the left of 1(y), where I is a function
that assigns an interval of real numbers to each x e X. If -< is a semiorder
and Xfrt is finite then all indifference intervals can be made to have the same
length.

INDEX TO EXERCISES

1. Denumerable sets. 2. Binary relations. 3. Weak order, 4. Quasi order. 5-7. Asym.
metric transitive closure. 8. Equivalence. 9. Partitions. 10-13. Interval orders and semi-
orders. 14. Choice sets. 15-16. Cartesian products. 17-18. Lexicographic orders. 19.
Theorem 2.2. 20-21. Sets and relations.

Exercises

1. Prove that the following sets are denumerable: (a) {2, 4, 6,. .}, the set of all
positive, even integers; (b){.... -2, -1, 0, 1, 2,... .); (c) the set of all positive
rational numbers (Hint: place these in a two-dimensional array with 1/1, 1/2,
1/3.... in the first row, 211, 2/2, 2/3.... in the second row, and so forth); (d) the
set of all rational numbers.

2. With Y the set of all living people, identify the meaning of cases (1) through
(4) in Section 2.1 and state which of properties pl through p9 hold for the binary
relation identified as:

a. "is a blood-line descendant of,"
b. "is married to" (assuming monogamy throughout society),
c. "is married to" (admitting polygamy),
d. "is as old as,"
e. "has fathered or mothered the same number of children as."

3. Suppose t on X is transitive and connected, and -< and ,- are defined as
follows: x < y.:> not y• < x; x -.-y.-4> (x < y,y < x). Prove that < is a weak
order and that - is an equivalence.
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4. < on X is a quasi order if it is reflexive and transitive. Prove that if < on X
is a quasi order and <, - arc defined as in Exercise 3 then

a. on X is an equivalence
b. -< on X is a strict partial order
c. (X Y, Y -< z) =- X -< z, (z < Y, Y - Z)=> <z.

5. If -< on X is a binary relation, the transitive closure -<4 of -< is defined as
follows:

x -<1 y 4n.:> < y or there are x,, x2,.. x, - X such that
l ~ ~X "< X1, X1 '*< X2, I . X M--1 "•XM, Xin<:Y

Prove that if -<I is asymmetric then <I is a strict partial order.

6. (Continuation.) Suppose X is countable. Use Theorem 2.5 to prove that there is
a real-valued function u on X that satisfies (2.10) if and only if the transitive closure
of -< is asymmetric.

7. (Continuation.) Give an example of a -< on X whose transitive closure is
asymmetric and with u satisfying (2.10) and w defined by (2.6) it is not possible
for u to satisfy (2.11) also.

8. Using (2.2) and (2.6) prove that A is an equivalence when -< on X is asym-
metric.

9. A partition of a set Y is a set of nonempty subsets of Y such that each x C Y
is in exactly one element of the partition. Prove that any partition of Y is a set of
equivalence classes under some eqLhvalence relation on Y.

10. Prove that (p2 ,pl0) =:.-p6 (transitivity) and that (p2 ,pl 1) =:> p 6.

11. (From Fred Roberts.) (X, '-) is an interval graph ::- a real interval I(X) can
be assigned to each x c X so that, for all x, y E X, x - y if and only if l(x) and
1(y) intersect. Prove that if X is countable then -< on X is an interval order if and
only if -< is transitive and (X, -) is an interval graph.

12. (Continuation.) Roberts (1969). Suppose X is finite. Prove that -< on X is a
semiorder if and only if (X, --') is an interval graph and (x -- w, y - w, z -• w, not
x - y, not y - z, not x - z) is false whenever x, y, z, and w are in X.

13. Show that if (2.20) holds when -< is a semiorder and X is finite, then for
any o > 0 there is a real-valued function v. on X such that, for all x, y C X, x-<
j c=:* v.(x) + a <v MY).

14. Arrow (1959). Let F (the choice function) be a function that, for every non-
empty subset Y of X, assigns a nonempty subset of Y to Y, so that F(Y) g Y and
F(Y) # 0 for every Y 5 X such that Y .' 0. Consider the following conditions
on F.

TRANSITIVITY. y e F({x, y}), z E F({y, z}) => z e F({x, z)).
EXTENSION. F(Y) = {x: x C Y and x E F({x, y}) for every y Lz Y}, provided

that the set {x: • • } is not empty.
TE. If x, y E Y, x, y e Y*, x e F(Y), and y 0 F(Y) then y 0 F(Y*).
Interpret each of these conditions in your own words when F( Y) is the individual's

l l l l l l l l l l l l I I I I
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set of most preferred elements in Y. that is his choice set. Then suppose that X is
finite and prove that Transitivity and Extension hold if and only if TE holds. In
doing this it may help to note that, with z ,< y .. y e F({x, y}), < is transitive
and connected when Transitivity holds, and that, when tli- 4i"! two c--i""
hold then F(Y) ={ ( x: c- Y and y ( x for all y C Y}.

15. Show that {(xl, xg) : x,1 and x2 are positive integers} is denumerable.

16. (Continuation.) The Cartesian product of sets X1 and X2 is X1 x X2
&{(x, z) x, ce X1 and x2 E X.}. Use the preceding results to show that X, x X2 is
denumcrable if both X, and XK are denumerable.

17. (Continuation.) With X = x1 × X2 let X, = {1,2,...} and let X 2 be the
set of all rational numbers between 0 and I inclusive. Define -< on X by (x, z).<
(yr, y2) • x < Y or (xl - yl, x2 < y2). (This weak order is a lexicographic order
since it orders the pairs of numbers like two-letter words would be ordered in a
dictionary.) Write out an explicit formula for u on X. x X2 that satisfies (2.5).

18. (Continuation.) Let -< be defined as in the preceding exercise, except that X,
is the rationals between 0 and 1 inclusive and X2 - {1, 2,.. .}, the positive integers.
Theorem 2.2 says that there is a real-valued u on X = X,1 x X that satisfies (2.5).
Can you write out an explicit formula for u on X, x X2 that satisfies (2.5)? If not,
explain why not.

19. Prove Theorem 2.2 when X/,-. is finite.
20. Let A s B mean that A is a subset of B and A = B if and only if A 2 B and

B E- A. A Q B is the set of all elements in A or in B, and A rn B is the set of all
elements in both A and B. Let 0 denote the empty set (set with no elements).
With Y a set, let A = {(x,x):xc Y}; if R is a binary relation on Y let R' -
{(y, x) : (x, y) c R}; if R and S are binary relations on Y, let RS = {(x, z) : xRyJ and
ySz for some y e Y}. Express pl through p I of the chapter in terms of these defi-
nitions. For example, pl can be written as A G R.

21. (Continuation.) Verify that when the given sets are binary relations on a set
Y, then

a. A' = A; o' = .0 [0 is the empty binary relation]
b. (A uB)'=A' u B';(A r-B)'=A' rB'
c. (AB)C = A(BC)
d. A•=•A =0
e. AA AA=A
f A s BandCGDimplyACcBD.

(See Chipman (1960) for additional material of this kind.)



chapter 3

UTILITY THEORY FOR
UNCOUNTABLE SETS

This chapter extends the theory of preference-preserving utility functions to
include uncountable sets. A new condition of order denseness is used for this
purpose. After proving basic theorems for weak orders and strict partial
orders we shall consider preferences on subsets of n-dimensional Euclidean
space. The chapter concludes with a discussion of continuous utility functions.

An uncountable set is a set that is not countable: it is neither finite nor
denumerable. The following examples introduce some other new terms.

1. The set of all real numbers is uncountable. This set, denoted by Re or
El, is one-dimensional Euclidean space. The intervals of numbers [a, b]
{fz:a-x:b}, [a,b)-={x:agx<b}, (a,b]={x:a<x<b}, and
(a, b) = {x:a < z < b} are uncountable when a < b. [a, b] is a closed
interval: (a, b) is an open interval. (a, b) is also used to denote an ordered
pair of elements. The context should clarify the usage.

2. The set {(xl, x2, .... , x,):x1 e Re for i 1, .... , n}, denoted as Re" or
E" and called n-dimensional Euclidean space, is uncountable. E2 is the real
plane. In the vector (xi,;, ... , x,,), the ith component is x,.

3. The set {(4X, x2 1 ... ):xi E {0, 0} for i = 1,2,.. 2 } is uncountable.
Although {(&1, x2, . . . , xj):x, E {0, 1) for i = 1, 2, .. . , n) is finite for each
n, the given denumerable-dimensional set is uncountable (and not denumer-
able). On the other hand, {(x1, x2,):xa EF {1, 2, ... } for i = 1, 2} is denamer-
able.

3.1 THE DENSENESS AXIOM AND WEAK ORDERS

We shall now extend Theorem 2.2 to cover the case where X/-,'- may not
bc ;uuntable. To do this we shall introduce an assumption concerning the
concept of order denseness.

26
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Definition 3.1. Let A be a binary relation on a set Y. Then Z 5 Y is
A-order dense in Y if and only if, whenever xRy and x and y are in Y but not
Z, there is a z e Z such that (xRz, zRy).

Since there is a rational number between any two distinct real numbers,
"the countable set of rational numbers is <-order dense in Re. For the
following theorem, <'on X1,,- is defined by (2.4).

THEOREM 3.1. There is a real-valued function u on X such that -9

x < y 4: u(x) < u(y), for all x, y e X, (3.1)

"if and only if < on X is a weak order and there is a countable subset of Xl'-
that is <'-order dense in X/'.,.

Unfortunately, the countable order denseness condition does not have a
simple, intuitive interpretation. To see how this condition can fail, suppose
X = Re2 with < the lexicographic order

(x1 , 2) < (Y1, YS) .- x X < Y, or (X= Y1, X2 < Y2 ).

Then Xh, = {x}:X E X}, so that {x) <' {y} .t x < y. With x, fixed it takes
a denumerable subset of Re to obtain an <-order dense subset on {xz} x Re,
But there is an uncountable number of such x, and it follows that no count-
able subset of Re' is -<-order dense in Re2.

For another example let X I [--, I ]. The absolute value of x, written
jxJ, is defined by jzI = x if x _> 0, IxI = -ax if x < 0. Define < on X by

X<y zI < lyl or (xI= lyl, x<y).

Suppose Yis <-order dense in [--1, 1]. With x c (0, 1], -- x < ax and there
is no y with IJy $ jxj such that -- x < y -< x. Hence either -x or z must be
in Y for each x e (0, 1]. Thus, every <-order dense subset Y of 1-1, 1)
contains a subset that is in one-to-one correspondence with (0, 11], which is
uncountable.

Proof of Theorem 3.1

Before proving the theorem, several additional notions will be defined. If
A and B are sets, the union A U B of A and B is the set of all elements in A
or B. The relative difference A - B is the set of all elements in A but not B.

Let A be a set of numbers all of which are less than some number not in A.
Then the least upper bound or supremum of A is the smallest number that is as
large as every number in A:

sup A = smallest y such that z • y for all x - A.

If all numbers in A exceed some number not in A then the greatest lower
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bound or nfmnum of A is the largest number that is as small as every number
in A:

inf A = largest y such that y g x for all x e A.

For example, sup {1,2, 3} - 3, inf {1, 2, 3) = 1, sup (0, 1) =- and
inf (0, 1) = 0. In the last two cases sup and inf are not in A.

Proof of Necessity. Let (3.1) hold. Then < on X must be a weak order,
and <' on XI1. is a strict order, with a <" b .ý; u(a) < u(b), where u(a) -
u(x) whenever z e a. Let C be the denumerable set of closed intervals in Re
with, distinct, rational endpoints. For each I L C that contains some u(a) for
a eX K-', select one such a. Let A be the subset of XKb., thus selected. A is
countable. Next, let

K = {(b, c):b, c e XK', - A, b -<' c, b <'a <'c for no a e A).

If (b, c) e K, then b <' a <' c for no a e Xlr.,, for otherwise there would be
a d e A with b -<' d <' c since for every point in the open interval (u(b), u(c))
there is an I e C that includes the point with I c (u(b), u(c)). Hence no two
open intervals (u(b), u(c)) for (b, c) c K overlap, so that K must be countable.
Therefore,

B = {b: b e X/l-., there is a c E X/11. such that (b, c) c K or (c, b)e K}

is countable and hence A U B is countable. Moreover, if b, c e X1/, -
A U B and b <' c, then there is an a e A U B such that b <' a <'c. Thus
the countable order denseness condition is necessary for (3.1). *

Proof of Sufficiency. We assume that < on X is a weak order and will
woik with the strict order <' on X/,--. We shall assume that A includes the
least and/or most preferred (<') elements in X/.-', if such exist, and that A
is countable and is <'-order dense in X/.-. Let

B = {b: b e X/'.- - A, either {a :a c A, b -<' a} has a least preferred
element ab or {c: c e A, c <' b} has a most preferred element Cb}.

With b e Xf,.-, - A, {a: a E A, b <' a) and {c: c e A, c <' b} are two disjoint
subsets of A whose union equals A. It follows that a given a C A can be an ab
for at most one b c X/l-. - A, and that a given c c A can be a cb for at most
one b e X,-.' - A. Hence B is countable and therefore

C-=AUB
is countable. Moreover,

1. There is no least preferred a e {a.a c•C, b <'a} for any b e X/,.. - C
2. There is no most preferred c e {c: c c C, c -<' b} for any b e X/-.' - C.
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For proof, suppose (1) is false and ab is the least preferred element in
(a:ae C, b <' a} for some b e X/-.-- C. Then a. cannot be in A, for
otherwise b c B. But then c <' b <' ab -<' a for all c e {c:ee A, c <' b) and

C all a e {a:a E A, b <'a) and there is no element in A between b and a,, in
violation of the order denseness assumption. Hence (1) is true and, by rA

symmetric proof, (2) is true.
By the proof of Theorem 2.2 there is a real-valued function u on C such

that a <' c -u(a) < u(c), for all a, c c C. For each b e XI.,- C let

u= {u(a):a e C, b < a}

{ {u(c):ceC,c< b}
and set

u(b) = .(sup Ub + inf ub), (3.2)

where, since u(c) < u(a) for all c e uband a e ub, sup ub < inf u6. From (2)

and (1) above it follows that for each b E X/,r-, - C,

u(c) < sup Ub, for all u(c) C. ub

inf ub < u(a), for all u(a) e u".

Hence u(c) < u(b) < u(a) for all c e {c:c c C, c <'b} and all a c (a:a c C,
b <'a}. Hence u(b) # u(a) when b c X/,', - C and a e C, and the extension
of u by (3.2) preserves the ordering of the b e X'.•- - C and the a e C.

Suppose then that b, c e X/,- - C. If b <' c then b <'a <' c for some
a e C so that u(b) < u(a) and u(a) < u(c) and hence u(b) < u(c). Conversely,
if u(b) < u(c), there is, by definition of supremum and (1), a u(a) e d' such
that u(b)< u(a)< u(c), which yields b <'a and a <' c and therefore
b <' c by transitivity. Hence, for all a, b XJ,--,, a <' b <=:,- u(a) < u(b).
Defining u(x) = u(a) when x e a, (3.1) follows. *

The above proof is patterned after outlines in Birkhoff (1948, p. 32) and
Luce and Suppes (1965, pp. 263-264). Our proof is similar also to Debreu's
proof of his Lemma 11 (1954, pp. 161-162).

3.2 PREFERENCE AS A STRICT PARTIAL ORDER

We shall now consider an appropriate generalization of Theorem 2.5 for
strict partial orders. Throughout this section < * on X/1 is defined as in
(2.7) with ; as in (2.6).

THEOREM 3.2. Suppose < on X is a strict partial order and there is a
countable subset of XI ; that is < *-order dense in XI t. Then there is a
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real-valued function u on X such that

x < y u(x) < u(y), for all x, y e X, (3.3)

x s y y •u(z) = u(y), for all z, y c X. (3.4)

In this case the denseness condition is not necessary for (3.3) and (3.4).
Suppose for example that X - Re and define

z.-<!y x <y and y =z+ n for some positive integer n.

Then u(x) = x satisfies (3.3) and (3.4), and X/1 = {{}x:xz c X). If Z !2 X
is countable then there is an x such that neither z nor xr + 1 is in Z. But with
x -< z + 1, there is no z c Z such that z < z -< z + I. It follows that there
is no countable subset of X/1. that is < *-order dense in X/g.

Our proof of Theorem 3.2 is based on an ingenious proof of a somewhat
more general theorem given by Richter (1966).

Proof of Theorem 3.2. Let the hypotheses of the theorem hold. By
Theorem 2.3, < * on X/l is a strict partial order. Let A be a countable subset
of X1P that is < *-order dense in X1s. By Theorem 2.4 there is a strict order
<e on X/bi that includes <*:a <* b => a <0 b. Define a binary relation E
on X/P as follows:

aEb -,c- a = b or (a, b 0 A and a <0 c < 0 b or b <0 c < 0 ,a for no c E A).

Then E is obviously reflexive and symmetric and is in fact an equivalence on
X/w. For transitivity suppose (aEb, bEc) with a 5 b 0 c # a (to avoid the
trivial cases). If (a < 0 b, b <0c) or (a <1 b, c < 0 b) or (b <0 a, b -<c) or
(b <o a, c <o b), which are the only four possibilities, then there is no d e A
such that a < 0 d <0 c or c <, d <O a. Hence aEc.

Let r, s, and t be equivalence classes in the set of such classes in X/l under
E That is, r E (X/•)[E. Define -<I on these classes as follows:

r.<s : r # s and a <Ob for some (and thus for all) a e r, b e s.

Sinc, <0 on X/l is a strict order and E on X/l is an equivalence, <0 on
X1 -/E is a strict order. Moreover, B = {r:r cX/1/E and a e r for some
a e A) is < '-order dense in Xl/~iE. For suppose r, s are not in B and r < 1 s.
Then, with a e r and b c s, a <0 b and a, b 0 A. Since not aEb there must be
ac eA such that a < oc <ob. Withc e tit follows that t c Band r K' t -<'s.

It then follows from the proof of Theorem 3.1 that there is a real-valued
functionf on X/j/E such that

r<Is .- f(r) < f(s), for all r,s cX/,/E. (3.5)

Suppose that, with a c r and b e s, a -<* b. Then a <0 b. Therefore either
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r s or r -<1 s. If either a or b is in A then r 0 s since a 6 b and hence not
aEb. If a, b 0 A and r = s then a -< 0 c <0 b for no c e A, which is false since
A is < *-order dense in X/l and hence if a < * b and a, b 0 A then a <*
c -< * b (and thus a <0 c <0 b) for some c c A. Therefore a < * b =. r <1 s.
Defining u(a) =-f(r) when a -r it follows from (3.5) that if a < b then
u(a) < u(b). Defining u(x) = u(a) when z e a and observing that if x -< y
and (x e a, y e b) then a < * b, it follows that x < y=- u(x) < u(y). It is
clear also that u(x) u(y) when x, y c a. *

3.3 PREFERENCES ON Ren

Prefer-nces in many decision situations are influenced by multiple factors.
Hence a large part of our study will focus on sets whose elements are n-tuples.
When the components of the n-tuples are real numbers, the n-tuples are called
vectors.

This section looks at the special case where Xequals Re n or is a rectangular
subset of Ren, by which is meant the Cartesian product of n real intervals,
including perhaps infinite intervals such as (a, oo), the set of all numbers
greater than a, and (-oo, oo) - Re.

When (x 1,. , xn) and (y1,..., y,.) are vectors in Re"n and 0:, f# are scalars
(real numbers), we define multiplication by scalars and vector addition by

S+ fy = ( ,cx-,..., cx,.) + (fly,,..., fly.)

= (OCX + #y1, ,..., C, -- fly,,). (3.6)

After illustrating a utility function for increasing preferences in two
dimensions we shall consider some formal theory for such cases.

Example

We consider preferences of the president of a company on a set of two-
dimensional vectors (x,, x2) where x1 denotes net profit for the coming year
and X2 denotes the company's market share for the coming year. X1 =
[- $5 million, $5 million] and X2 = [10%, 30%]. A utility surface that
might reflect the president's preferences is shown in Figure 3.1. If -< on
X, x X2 is a weak order and (3.1) holds then all (x,, x.) e XK x X. with equal
utility constitute an element in XK-,. These equivalence classes are variously
called indifference curves, trade-off curves, indifference loci, isoutility contours,
and so forth. The family of indifference curves in the plane constitutes an
indifference map. Two curves of the indifference map are illustrated in the
figure.

If indifference were not transitive in this example then the preceding
interpretation for an element in X/l-. does not apply.
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Figure 3.1 Unidimensional utilitics on " two-dimensional space.

Increasing Preferences with Weak Orders

Let Xj, i = 1, 2,. ... , n be nonempty sets. Their Cartesian product is
X1 x X 2 x. x X1= {(x 1 , x2, .... x,,):x c-X, for i= 1,2,... ,n}. In
this subsection we assume that each Xj is an interval of real numbers, so that
X = X, x • -. x X, is a rectangular subset of Re'. Elements in XK could be
amounts of money allocated to activity i or earned in year i, or they could be
amounts of commodity i purchased during a fixed time period, and so forth.

Witi, - = (x,,...,x) and y = (YV .... y,), we define x < y -,€ x 0 y
and x, :g yj for i -. .... ,n.

THEOREM 3.3. Suppose that X is a rectangular subset of Re' and that the
folloi *-ig hold throughout X:

1. < on X is a weak order,
2. <y=> x<y,
3. (xz< y, y < z) ,-= x + (1 - oc)z -, y and y < fix + (1 - fi)zfor some

0c,/ E (0, 1).
Then there is a real-valued function u on X that satisfies (3.1).

The second condition (monotonicity, nonsaturation, nonsatiety, domi-
nar.ce, etc.) states that preference increases with any increase in quantity.
Condition 3 is an Archimedean condition that will be used to establish a
countable order dense subset. For the third conditior to hold it may be
necessary in some cases to have ot very near to I and f# very near to zero.

In proving the theorem we shall first prove the following lemma.
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LEMMA 3.1. The hypotheses of Theorem 3.3 imply that ifx, y, z e X and 4
x < y < z, then y - ax + (1 - c)zfor exactly one at - (0, 1).

Proof. If y -.•'x + (1 - oa)z for no c e (0, 1), it follows from the
hypotheses that there is a f c (0, 1) such that either

y -< ax + (I -- a)z for all a < fl(3.7)

ax + (l- )z -< y for all a >fi (3.8)

or
y'<0•x+(1 -c)z for all a <f (3.9)

at + (i -- )z -< y for all cfI . (3.10)

We consider the latter case. By (3.10) and the hypotheses, fix + (1 -# f)z <
y < z. Hence, by condition 3 of Theorem 3.3, there is an a c (0, 1) such that
ca flx+(1--fl)z]+(I - a)z<y, or acftx+(I-oafl)z<y. But since
afl < #, (3.9) says that y < afjx + (1 - •c#f)z, a contradiction. Hence (3.9)
and (3.10) can't hold. A similar proof shows that (3.7) and (3.8) can't hold.
Hence y -- ax + (1 - om)z for some a e (0, 1). If y -. Jyx + (1 - ox)z and
y '-. GC2x + (1 - 1 2)z then otlx + (1 - oc)z m. %x + (1 - v2)z by the transi-
tivity of ,-., which can only be true if a, m2: for if oa < O2 then ag +
01 -- OCOZ < OCXx + (0 -- oL.z since z < z. ,

Proof of Theorem 3.3. In view of Theorem 3.1 we need to show that X/-,.
contains a countable subset that is <-order dense in Xl-.

Let Y', be the set of all rational numbers plus any finite end point at any
closed end of Xi (if such exist). Let Z, = Xi n3 Y1. Zi is countable. Let
W, = {Yxx + (1 - Lx)y,: c is a rational number in [0, 1) and xi, y eZj}. W,
is a countable set. Let W = W, x WI2  - . - x W,,. W is countable. Let A
consist of all elements in X'/-. that contain one or more elements in W. A is
countable since any x e W is in exactly one a E Xl/r,,. Suppose a, b e XI'-' - A
with a <' b. We need to show that there is a c E A such that a <' c < P b.
To do this it will suffice to show that when x, y e X - W and x < y then
there is a z e W such that x < z < y. We consider two cases as follows.

Case 1: x <y. Then there are z1, z2 cZ, x .. x Z such that z' < x
and y < z 2. Lemma 3.1, weak order, and condition 2 of the theorem imply
that there are af# with 0< o < # <1I such that x -, flz' + (1 - f#)z 2,
y , %z1 + (1 - a)z2 . Let y be any rational number in the interval (oc, fl).
Then, by weak order and conditior 2, x -< yz1 + (1 - y)z2 -< y. Since
z1, Z2•cZ x ". xZ. and y is rational, yz1 + (I -y)z 2 e W.

Case 2: x <y is false (with x,ycX- W and x-<y). Let v,=
inf {x,, y,} and w, = sup {x,, y,}. Then v < x < w and v < y < w. It follows
that there are a, fl with 0 < a < f < I such that x -•fv + (1 - /3)w and
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y3-4a4v+(1--a)w. Since flv+(l--fl)w<owv+(l--( )w, it follows
from the Case 1 proof that there is a z t Wsuch that flv + (1 - fl)w < z <

V + (l -•a)w. Hence zx< z < y. *
If preference decreases rather than increases as x; e XK increases, Theorem

3.3 can still be used after a change of variable from ;i to yj = -x,.

Nondecreasing Preferences with Strict Partial Order

We conclude this sectiorn with a theorem that uses generally weaker con-
ditions than those of the preceding theorem. We shall use the non-negative
orthant ((x,,,... x): x > 0 for i = 1, ... , n} of Re'. This is often used by
mathematical economists in investigations of consumer preference or con-
sumer choice. In this context the vectors are called commodity bundles.

x<<y means that x <y, for i= 1,...,n.

THEOREM 3.4. Suppose that X is the non-negative orthant of Ren and that
the foliowing hold throughout X;

1. -< on X is a strict partial order,
2. [(x << y, y -< z) or (z -< y, y << z)] :-- x -< z,
3. x -< y =t z < y for some z such that x << z.

Then there is a real-valued function u on X that satisfies (3.3).

The notion of nondecreasing preferences comes from condition 2. Irre-
flexivity and condition 2 say that x << y =' not y K< x: an increase in every
commodity does not decrease preference. Condition 3 says that if y is pre-
ferred to x then increases (perhaps very slight) can be made in all components
of x, and y will still be preferred to the augmented x.

Proof of Theorem 3.4. Let the hypotheses hold. Define a <1 y 4--> x -< y
or x << y. Conditions 1 and 2 imply that .<1 is a strict partial order. From
-<I we can define -, and •, in the manner of (2.2) and (2.6). By Theorem
2.3, -' on X is an equivalence and -< , on X/1,', defined in the manner of
(2.7), is a strict partial order. To show that there is a countable subset of
X/ýý' that is -l*-order dense in X/'-,', it suffices to show that the set of
rational vectors in X (all components rational) is -<'-order dense in X.
Suppose then that x and y are not rational and x K<' y. If x << y then x <<
z << y for some ratioiial z, and hence x < 1 z K<' y. If x < y then, by condition
3, z -< y for some z such that x << z. Then x << t << z for some rational t. By
condition 2, t -< y. Hence x -<I t K' I y. Therefore, by Theorem 3.2, there is
a real-valued function u on X such that x <I y =:: u(x) < u(y). Then x K y t-

u(x) < u(y) sincex x y .x -<'y. *
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3.4 CONTINUOUS UTILITIES

Continuity formalizes the intuitive notion that if two elements in X are
not very different then their utilities should be close together. The difference
between x and y can be thought of either in terms of their relative proximity
under <- or in terms of a structure for X that is related to < in some way.

Part of the interest in continuity stems from the fact that, when continuity
holds, the utility function will attain a maximum value on a suitably restricted
subset of X. Suppose for example that X is the non-negative orthant of Re'
and that an individual can spend his income m > 0 on the n commodities
whose unit prices are Pi > 0, pg > 0,.... , p, > 0. His choice is restricted to
(p, m)= {x:x E X and I.. px, < m}. If -< satisfies the conditions of
Theorem 3.3 then there is a u that satisfies (3.1) and is continuous, and there
is an x* E (p, m) that satisfies I p~x, = m and sup {u(x) :x e (p, mn)} - u(x*').
Or suppose that -< satisfies the conditions of Theorem 3.4. Then there is a u
that satisfies (3.3) and is upper semicontinuous and there is an x* E (p, m)
such that sup fu(x):x c (p, m)} = u(x*). (See, for example, Thielman (1953,
p. 102).)

Definitions for Continuity

To consider a general definition of continuity we require the following
notions. The union (U) of a set of subsets of X is the set of elements that
appear in at least one of the subsets. The intersection (r)) of a set of subsets of
X is the set of elements that appear in every one of the subsets.

Definition 3.2. A topology ' for a set X is a set of subsets of X swuh that

1. The empty set 0 (which is always a subset of X) is in 'G,
2. XC'G,
3. The union of arbitrarily many sets in 16 is in '6,

4. The intersection of any finite number of sets in '6 is in V.

If Z; is a topology for X, the pair (X, -6) is a topological space. By definition,
the subsets of X in 'G are called open sets.

The usual topology 91L for Re is the set of open intervals along with their
arbitrary unions and finite intersections. The relative usual topology for
X _ Re is {A ( X: A c '11). When X = [0, 2], the closed interval [0, 2] is
an open set in the relative usual topology, but it is the only nonempty closed
interval in X that is an open set in the relative usual topology.

Definition 3.3. If (X, 16) is a topological space then a real-valued function
u on X is continuous in the topology V if and only if A c 9L1 => {x:X E XK,
u(x) c A) e V.
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Suppose X = [0, 2] and V3 = {A n [0, 2]: A E:'U}. Then the function
u(x) - x for all x e Xis continuous in 'G, but the two-part function f(x) = x
for x e [0, 1] andf(x) = x + I for x c (1, 2] is not continuous because of its
gap or jump at z = 1. For example, (1/2, 3/2) c 11L but {x:x e [0, 2], f(x) c
(1/2, 3/2)) = (1/2, 1] is not in Z".

Necessary and Sufficient Ccnditions for Continuity

Assume that u on X satisfies (3.1) and is continuous in the topology 'G.
For any y e X the sets {b:b < u(y)} and {a:u(y) < a) are open sets in q,:
hence {x:z e X, x -< y} and {x: xE X, y < x) must be open sets in r for
every y c X. Again, if u is continuous in the topology 16 and if x < y, so that
u(x) < u(y), then there are open sets A,, A,, E 'U such that u(x) E A,, and
a < u(y) for every a c A4, and u(y) c A, and u(x) < b for every b e A,: hence
there is an open set {z: u(z) e A4)} containing x such that z < y for every z in
this set and there is an open set {w:u(w) E A,} containing y such that X < w
for every w in this set.

The foregoing paragraph sets forth two necessary conditions for continuity.
Each condition is also sufficient for continuity.

THEOREM 3.5. If (X, -3) is a topological space and there is a real-valued
function on Xsatisfying (3.1), then there is a real-valuedfunction on Xgatisfying
(3.1) and continuous in the topology -6 if and only if

1. {x:x e X, x -< y} c T; and {x::x c X, y < x) c 73for every y E X, or
2. If x, V E X and x -< y, then there are sets T., T, ,e such that x E Tx,

y c T,, x' < y for every x' e T,, and x -< y'for every y' L T,,.

Proof. The sufficiency of conditions I and 2 for continuity can be estab-
lished by showing that 2 implies 1 and that 1 implies that some u satisfying
(3.1) is continuous in Z,

Let y be any element in X. We show that condition 2 implies that {x: x G X,
x -< y)} e 1; a symmetric proof suffices for the other part of condition 1. If
x< y for noxeXthen {x:xEX,x<y} = o, which is in Z. If x<y,
then by condition 2 there is a set T. E 6 containing z such that x' < y for
all x' c T,. The union of all such T. is {x:x c X. x -< y}, which is in 'G by
part 3 of Definition 3.2.

To show that condition I implies that some u satisfying (3. 1) is continuous
in Z;, we follow Debreu (1964). l.et u on X satisfy (3.1), with u(X)--
{u(x) : e X). A gap of u(X) is a nonempty interval I in Re such that no point
in u(X) is in I and, with a El, 1 = {b:u(x) <b <u(y) for all u(z) e
{u(z):x E X, u(x) < al and all u(y) e {u(y): y e X, a < u(y))}. Debreu's basic
theorem (p. 285) asserts that, with u on X satisfying (3.1), there is a function



Contiawoes Utilities 37

v on X that satisfies (3.1) such that all gaps of v(X) are open intervals in 'U.
Debreu's proof of this (pp. 285-289) will not be repeated here.

Let v on X satisfy (3.1) with all gaps of v(X) open. With a e Re, let
(- oo, a) e ' be the open interval of all numbers less than a. If a C v(X)
with a = v(y), then {x: v(x) G (- oo, a)} = {x:z < y} which by condition 1
is in Vt. If a 0 v(X) and a is in a gap of v(X), this gap has the form (a,, a,)
with ae(a,, a2) and a, a.cv(X): then, {x:v(x)c(-oo, a)})={x:x-< z}
where a2 = v(z), and again by condition I this set is in 'G. Finally, if a 0 v(X)
and it is in no gap of v(X), then either

1. a infv(X)so that {x:v(x)E(--oo, a)-- ,inG,or
2. sup v(X) < a so that {x:v(x) e (--oo, a)) X, in 16, or
3. a = sup {v(x):x e X, v(x) < a) so that {x:v(x) e (--oo, a)), the union

of all sets of the form {x:x -< y, v(y) < a), is in T; since each set in the union
is in 16. Thus {x:v(x) e (- oo, a)} e 16 for every a e Re, and, by a symmetric
proof, {x: t,(x) c (b, oo)) c 16 for every b e Re. Since any bounded open
interval (a, b) E•L is the intersection cf (a, cc) e•L and (--c, b) e U,
{x: v(x) e (a, b)} is the intersection of two sets in 16 and hence is in 16. Since
any A e 'It is formed by arbitiary unions and finite intersections of open
intervals in Re, the corresponding set [x:v(x) -A} can be formed in a similar
way from sets in IG and hence is in `C.

Contributions to continuity in the context considered in this subsection
have been made also by Eilenberg (1941), Newman and Read (1961), and
Rader (1963). Condition 2 of Theorem 3.3 is identical to Condition B, p. 160,
in Newman and Read. Debreu (1964) includes most of the important results
in this area.

Continuity of Increasing Utilities on Re'

For Re" we shall let 'ItL be the set of all open rectangles along with their
arbitrary unions and finite intersections. With X a rectangular subset of Re'
this subsection examines the continuity of u on X with respect to the relative
topology {An X: A e U')}. The following theorem is slightly different than
very similar theorems on continuity discussed by Wold (1943), Wold and
Jureen (1953), Yokoyama (1956), Debreu (1959), and Newman and Read
(1961). The proof is similar to Yokoyama's.

THEOREM 3,6. The hypotheses of Theorem 3.3 imply that there is a real-
valued function on X that satisfies (3.1) and is continuous in the topology
(A C1X: A c-'11 ").

Proof Considering Theorems 3.3 and 3.5 we need only show that
condition 2 of Theorem 3.5 holds under the stated hypotheses when
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S= {A C)X:A e-4}. With " = {A r) X:A e U1} and x -< y we show
that there is a T, e Z such that y e T, and x -< z for every z c T,. The
proof concerning T,, is symmetric to this proof and is left to the reader.

With x -< y, let v, = inf {xj, yj} and if v, is greater than some element in
X, let vi' be any element in Y1 less than vi: otherwise let v, = vp. Then v' <: v,
v c x, v < y. If v' = x, then x < z for all z 0 x, z - X, and any T, containing
y but not x suffices. Henceforth we assume that v' < x, so that v' -< x -< y,
implying by condition 3 of Theorem 3.3 that for some a e (0, 1), x < cv' +
(1 - c)y. Now av' + (1 - a)y y, for all i and strict inequality holds for
some i. Let c > 0 be smaller than the smallest y, - [zv' + (1 - x)yj] for
which the difference is positive. Then av,' + (1 - cM)y, < y. - e for all i
for which y, - [av 1 + (1 - o)yij > 0. If v, = y1, then any z, less than y, is
not in X,. Let T,,-=(yl- -,yl+f)X (Y2 -- ,Y2 +C) x ... X (y.--,
y, + e) and let T, -= T, rt X. Then T, e 1 and for every z e T, cv' +
(1 - oc)y < z, so that x -< z for every z LT. T

Upper Semicontinuity with Strict Partial Order

Definition 3.4. If(X, ") is a topological space then a real-valued function
u on X is upper semicontinuous in the topology r- if and only if

{x:x C X, u(x) < C} e T; for each real number c. (3.11)

Lower semicontinuity is defined by (3.11) after < is changed to >. Given
a bounded, real-valued functionf on X let u on X be defined by

u(x) = inf {sup {f(y):y E T}:x c T, Te c }. (3.12)

For a given real number c suppose u(x)< c for no x. Then {x x c X,
u(x) <c} = 0, which is in V. Suppose u(x) <c for some x E X. Then
there is a Tc 'G such that x e T• and sup {f(y) y c- T,} < c. It follows from
(3.12) that u(y) < c for every y e T,. Hence, for each x such that u(x) < c
there is a T, e G such that x c T, and u(y) < c for every y c T,. The union
of all such T, will equal {x:x e X, u(x) < c}, and this union is in ( by
Definition 3.2(3). Hence u iL upper semicontinuous in 16. We shall use this
observation in proving the following theorem.

THEOREM 3.7. The hypotheses of Theorem 3.4 imply that there is a real-
valued function on X that satisfies (3.3) and is upper semicontinuous in the
topology {A n X: A e 'L"}.

Proof. As in the proof of Theorem 3.4 let -<' on the non-negative orthant
of Re,, be defined as the union of < and <<. From that proof there is a real-
valued function f or X that satisfies x .<I y -;-f(x) <f (y). By a simple
monotonic transformation if necessary, we can suppose that f is bounded.
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Then, with u defined as in (3.12), u is upper semicontinuous in the relative
topology 16 = {A n A: A e 1'U)}.

* It remains to show that z < y => u(x) < u(y). Suppose x < y. Then, by
condition 3 of Theorem 3.4, z < y for some z c X for which x << z. There is
then an open rectangle T,, - "G that contains x and has all elements << z, so
that f(t) <f(z) for all t - T., so that u(x) 5f(z). Along with f(z) <f(y)
from z < y, and f(y) : u(y) by the definition of u, this gives u(x) < u(y)
as desired. *

I am indebted to Hurwic7 and Richter (1970) for the approach used in this
proof.

3.5 SUMMARY

When X is uncountable and -< on X is a weak order, preferences can be
faithfully represented by a real-valued function if and only if there is a
countable subset Y of X such that whenever x -, y there is a z c Y such that
(x < z or x - z) and (z , y or z < y). Lexicographic preference orders give
examples where this denseness condition fails. With -< assumed only to be a
strict partial order, we have given a sufficient but not necessary countable
order denseness condition for real-valued utilities.

When X is a rectangular subset of n-dimensional Euclidean space and
preference increases (or does not decrease) with increases along any dimen-
sion, conditions that make better intuitive sense than plain order denseness
lead to real-valued utilities.

If (3.1) holds for u on X then there is a continuous (in a specified topology
"-6) utility function on X if and only if x -< y implies that there are two
subsets ofXin 'G one of which contains x and has every element less preferred
than y and the other of which contains y and has every element preferred to x.
The conditions on < used in the weak order and strict partial order theorems
for utilities on regions of Re' also imply the existence of continuous (weak
order) and upper semicontinuous (strict partial order) utility functions.

INDEX TO EXERCISES

1. UJncountable sets. 2. Denseness of rationals. 3. Lexicographic order. 4. Theorem 3.1.
5. Theorem 3.2. 6-7. Vector operations. 8. Indifference map. 9-10. Lemma 3.1. 11. Asym-
metric transitive closure. 12. Discrete topology. 13. Closed intervals not open. 14. Dis-
continuity. 15, Theorem 3.5. 16-18. Connected topological spaces. 19. Theorem 3.4.
20. Lower semicontinuity. 21--22. Wold's continuity condition. 23. Convex sets.
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"Exercises

1. Prove that Re is uncountable by supposing that {0 . xlx x.. :x iE {1, 2}
for i == 1, 2, 3,.. ..} s Re is countable and showing that this supposition is false.
Note also that {(xi, x, .. .):xi - {0, 1} for all i} is uncountable.

2. Let a and b be numbers with a < b. Show that there is a rational number ;n
the open interval (a, b). Use the fact (or axiom) that there is a positive integer n
such that 1 < n(b - a). Let m be the smallest integer greater than a and show that
m/n e (a, b).

3. For the second example following Theorem 3.1 where X = [-1, 1], show th.t
preferences can be represented by two-dimensional vectors (uA(x), u2(x)) in Re2

under a lexicographic order.
4. Prove statement (2) preceding (3.2) in the proof of Theorem 3.1.

5. Describe in your words the effect of E in the proof of Theorem 3.2.

6. Use (3.6) to evaluate: a. (1, 1, 2, 3) + (0, -1, -10,6); b. 6(1, 2, 3,4);
c. 3(0, 0, 1, - 1) -- (-1, 2, -1, 0); d. oc(2, 4, -6, -8) + (I - oc)(5, -1, 3, 1).

7. The scalar product of real vectors x - (x1, .... , x,,) and y = (Vl .... y,) is
X I V - X1YV + .+ Xn xjY,. Evaluate a. (1, 2, 3, 4, 5) • (6, 7, 8, 9' 10);
b. (3(0, 1, 2) + 4(-2, 1, 3)). (-5(1, 0, -1)).

8. Use an indifference map in Re 2 to argue that the hypotheses of Theorem 3.3
do not imply the following: if < y and 0 < % < I1 then flx + (1 - P)y-<
azx + (0 - a)y.

9. Show that (3.7) and (3.8) cannot hold under the stated hypotheses.

10. Show that Lemma 3.1 remains valid when "x < y < z" is replaced by
"x -< y .< z and x < z.-

11. Prove that the conclusion of Theorem 3.4 remains valid when condition 1
of its hypotheses is replaced by "the transitive closure of -< on X is asymmetric."
(See Exercise 2.5.)

12. The discrete topology for any set X is the set of all subsets of X. Is every real-
valued function of X continuous in the discrete topology? Why? What does this
say about continuity when X is finite?

13. Show that any bounded closed interval [a, b] in Re with a < b is not in 9U.

14. Let -< on X - [0, 2] be defined by: x -< y if (x < y and x, y - [0, 1]) or if
(y < x and x, y c (1, 2]); x -. (2 - 2x/3) when x e [0, 1/2) and x - (5/3 - 2x/3)
when x c [1/2, 1]. Show that there is a u on X that satisfies (3.1) and that no such
u can be continuous in the relative usual topology.

15. For the proof of Theorem 3.5 show that {x:v(x) e (b, oo)} e Z for every
b c- Re.

16. A topological space (X, 'G) is connected if X cannot be partitioned into two
nonempty subsets both of which are in IG. Prove that if (X, Zt) is connected, if u
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on X is continuous in G, and if u(x) < u(y) for z, y e X, then for each c G (u(x), u(y))
there is a z E X such that u(z) - c.

17. Show that any rectangular subset of Re" is connected.

18. Let X be a rectangular subset of Re". With x, y c X, the line segment L
{jex + (I - a)y:c a [0, 1]} between x and y has the relative topology 'G' = (A r)
L:A e UlP}. (a) Given the result of the preceding exercise show that (L, V') is
connected. (b) Suppose u on X is continuous in {A r) Y':A - 'U!}, and let u'(Z)
u(z) when z E L. Argue that u' on L is continuous in ';.

19. In the proof of Theorem 3.4 show that if x -< Y, then there is a T c-, -r-
{A r% X: A c_ ;'") such that x c T. and z -< y for every z C Ta,.

20. Letf be a bounded, real-valued function on X and let v on X be defined by
v(x) = sup {inf {f(y):y e T}:x c 7", TE V}. Show that v is lower semicontinuous in
the topology V.

21. Wold (1943). Condition W: if x -<y and y -< z then %x + (1 - oc) z - y
for some c G (0, 1). Show that the conclusions of Theorems 3.1 and 3.6 remain
valid when condition W replaces condition 3 of Theorem 3.3. Also show by in-
difference curves in Re' that at need not be unique. (See Exercise 8.)

22. Use the results of Exercises 16 and 18 to show that if X is a rectangular subset
in Ren, if u on X is continuous in {A n X:A e 'Un}, and if conditions I and 2 of
Theorem 3.3 hold, then condition 3 and condition W (Exercise 21) must hold also.

23. X _ Re" is convex .4=:. x + (1 - cx)y c X whenever x, ylc X and a e (0, 1).
Show that "X is convex" and "(X, (A r) X:A c %ct1}) is not connected" cannot

both be true. Assuming that X is convex, use this result along with that of Exercise
16 to conclude that if there is a real-valued function u on X that satisfies (3.1) and is

continuous in {A rn X: A c- WL)} then condition 3 of Theorem 3.3 and condition W
must be true. Thus, regardless of whether condition 2 of Theorem 3.3 holds,
condition 3 must hold when X is a convex subset of Re" in order that there be a
u en X that satisfies (3.1) and is continuous. But note also from Exercise 14 that
there can be a u on X satisfying (3.1) when condition 3 fails and X is convex.
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AD1DITIVE UTILITIES WITH
FINITE SETS

Except for Chapter 6, the remaining chapters of Part I examine special kinds
of preferences and utilities that might arise in multiple-factor situations.
Chapter 3 has already considered some basic theory for n-dimensional
Euclidean spaces. This chapter and the next deal with additive utility repre-
sentations for preference orders on sets of n-tupies. Section 4.3 considers
lexicographic utility.

Throughout this chapter we shall usually assume that X is a nonempty
subset of the Cartesian product

fix,=x 1 x x x2 x x

of n other finite sets. Thus, each alternative in Xis an n-tuple x = (x,,... ,).
Each X, is a factor or attribute set. For convenience we assume that each
Xj C X, is the ith componient of some x e X.

The subscript i could refer to n different attributes or performance charac-
teristics of competing a!tenatives, it could refer to a time factor (n periods),
and so forth. We shall identify conditions for -< on X that lead to additive
utility representations such as the one for weakorders: x -< y .':, u,(x,) +
+ u,(JX) < u1 (y1 ) + "". + u,(y,).

It should be emphasized that -< is applied to pairs of complete n-tuples, or
whole alternatives. In multiple-factor situations it often seems natural to
think in terms of a preference order for each factor and then to wonder how
these ought to be combined or synthesized into an overall preference order.
However, this approach presupposes a certain kind of independence among
the factors, namely that the order for a given factor is independent of the
particular levels of the other factors. This can of course be false. For example,
suppose that (chicken for dinner tonight, chicken for dinner tomorrow
night) -< (steak tonight, steak tomorrow night) < (chicken tonight, steak
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tomorrow night) <. (s.eak tonight, chicken tonorrow night). in this case,
preference for tonight clearly depends on what is assumed about tomorrow
night. Under the hypothesis of chicken, tamorrow, atcak h; preferred tonight.
Under the hypothesis of steak tomorrow, chicken is preferred tonight.

For situations where the independence conditions seem reasonable and
additive utilities apply, Fishburn (1967) summarizes a number of ways to
estimate factor utilities so as to satisfy the additive representation,

4.1 PREFERENCE INDEPENDENCE AMONG FACTORS

Consider a two-dimensional case where X = X, x X,, < is a weak order
and, for each x•, y, e X1 and -,,, ys e- X 2,

(X1 X2) < (YI, X2) (XI, Y2) < (Yr, Y2), (4.1)

(XI, X2) "< (X1 I Y2) ( (yI, X2) <- (Y1, Y2)" (4.2)

The first of these says that, if we define x, <-I y --=> (x1, x2) < (y,, z2) for
some x2 c X2, then -<I is a weak order on X, that is independent of the
particular element used from X2. Similarly, the second says that, when the
first factor is fixed, there will be a weak order <, on X2 derived in the natural
way from -< that does not depend on the element used from X,. In the
simplest possible way this suggests that X, and K2 are indeperdent in a
preference sense.

As demonstrated by Scott and Suppes (1958), even in the two--imensional
case considered above it may be necessary to go beyond (4.1) and (4.2) to
obtain an additive-utility representation of the form (xj, x2) -< (Y, Y2) '4:

u1(x,) + u2(x2) < u,(y,) + u2.,(y,). Clearly, (4.1) and (4.2) are necessary for
the existence of such a representation, but they are not sufficient. Suppose
for example that -< on X = {1, 2, 3} x {1, 3, 5} is a weak order with

(X-1, x2) < (Y1, Y2) '#>" xIx2 + (X)I' < YIY 2 + (YD)V (4.3)

Since u(x. ",'--- , (x.+ is st,';"-. increasing in x- for a-', LJ q!,I

is strictly i,,,...iug in x. for any fixed x1, (4.1) and (4.2) hold. However,
additive utilities do not exist. To the contrary, suppose that there !ire real-
valued functions ul on X, = f1, 2, 3) and u2 on .2 = f1, 3, 5} such that
(x1 , X2) `< (Y1, Ya) • uI(Xa) + u2(x2) < u1(AY) + u2(y2). Then, since (2, 1)
(1, 3) and (1, 5)•- (3, 1) by (4.3),

ul(2) + u2 0() = u10) + .2(3)

u1(l) + u2(5) - ul(3) + u2 (l).

By adding these equalities and cancelling identical terms we get

u,(2) + U2(5) = u,(3) + u2(3)
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which, according to the presumed existence of an additive representation,
yields (2, 5) -, (3, 3). But, by (4.3), u(2, 5) = 42 and u(3, 3) = 36, so that
(3, 3) < (2, 5). Hence there is no additive representation for this case.

Additive Utilities

In generalizing independence conditions like (4.1) and (4.2) we shall use a
sequence of equivalence relations E,., on Xml (m = 2, 3,...) where Xm is the
in-fold Cartesian product of X with itself.

Defnition 4.1. (x,... , x1) E,, (y 1 .... , y1O) if and only if m > 1, xJ,
yJ c X forj= 1,..., m, and with X 11! X, Xj it is true for each i that
X1,. .. , P is a permutation (reordering) of yl,. y. ,

Thus, for (4.1), (& 1, x.), (yr, y2)) Es ((yr, x,), (x1, y.)), and in the example
refuting additivity for (4.3), ((2, 1), (1, 5), (3, 3)) E3 ((1, 3), (3, 1), (2, 5)).
With n = 3 and (xj, x., x.) = (net profit, market share, dividend per share
of stock), the following arrays reveal that (z,... , x4) E4 (yl,. . ., y4).

profit share dividend profit share dividend
X $1 m 20% 30N 1 $2m 20% 50t
X2 $0m 10% 50 y2 -3$1m 10% 45¢
X3 $2m 30% 45¢ 0 Sm 15% 10€
X4  -$1M 15% 10o y $Om 30% 30€

For the purpose of further discussion we shall first present three additive
utility theorems. For comparative convenience they are presented together
in Theorem 4.1. There is a theorem A, a theorem B, and a theorem C, with
"hypotheses" and "conclusions" noted accordingly.

THEOREM 4.1. Suppose X 11 'nf i is finite. Then

A. [(y",...,x"')E,,(y 1,...,yi), x1 < y. or xz=yl for j=1,...,
m - !1=> not X -< y';

B. [(x,.... ,xm)E,(yl, ... y), x-< y1 or xyi for j=l,...,
M - 1 ] not X1' < yfl;

C. [(x,.. .,XM)E.m(yl,... ,ym), xý < y3 or xI ..'yY for j- 1...,
m - I ] not x -< y1;

for all x1, .... ý X", y 1, ... , y14c X and m = 2, 3,... , if and only if there are
real-valued functions u1,. .. , un, on X1 , .... X,, respectively such that, for all
X, YE X,

X* < Y Z-1~ u,(•,) <1"=1 u,(y,);
B*. x < Y 1_1L u,(x,) < D"=, u,(yd,, . X -, =,>, IL Ui,., ,j(Y,)
C*. Y < v.1.L u,(,,) < 1"', aky,)



I ndiffferencc k,-) and are defined as L - y (not x < y, noy -< x)and
x y <-y (z -• z 7-,'- z -' y, for all z e X), a-s in Chapters 2 and 3.

Unlike (4.1) and (4.2), the conclusions of A, B, and C are stated in the
negative. It is easily seen that A is necessary for A*, that B is necessary for
B*, and that C is necessary for C*. For example, suppose that A* holds and
that the hypotheses of A hold with (x' ... , x) E,,, (y'.... y'4) and xj < y,
or xj = yý for each] < m. Then, by A*, • • u•(x) 1 -, in.,.(y4).

But, by Em, , , u(-(,) I--! u, (y,). Therefore 2,, 1 i((,) <
1-1 ui(xiV'), which by A* implies not x" -< yi, which is the conclusion
of A.

We shall consider the sufficiency of A for A*, B for B*, and C for C* in the
next section. These sufficiency proofs will be based on a theorem from linear
algebra called the Theorem of The Alternative, which will be proved in the
next section.

Further Remarks on Independence Conditions

Each of conditions A, B, and C in Theorem 4.1 is actually a denumerable
bundle of conditions, one for each equivalence E,, m = 2, 3, .... If we let
A,., B,, and C,, denote the part of condition A, B, and C that applies to
E,m, then Am+i => A,.,, B,+l =, B,, and C,,+ =.. C,,, for all m > 2. However,
as suggested by Scott and Suppes (1958), there is no one finite value of m for
which A- 4 A* or , - B* or C, =:; C* for all finite sets X. We now

consider some of the other aspects of A, B, and C.
Our main purpose in including x -= yJ in the hypotheses of A was to get

.A,.,, A., but the equality part of the hypothesis of A is unnecessary.
Although A does not imply that -< is a strict partial order since it does not
imply transitivity, it does say that if x1 -< x, x -< X3, ... , x'-'- -< z• then
not x1 < x1. This follows from the fact that (zxl, x2,... , x") E, (x 2,... ,
x14, XI). Hence when A holds, the transitive closure of < (Exercise 2.5) is a
strict partial order.

Like A, B does not imply that -< is a strict u.-.aal c-:.zr. For cxample,
su,,pose X = {x, y, z, tJ and < = {x < y, y < z, x < t} with ,-. elsewhere.
Then - holds for no distinct pair of elements in X so that B reduces, in
effect, to A. Since A is consistent with -< as given and < is not transitive, B
does not imply that < is a strict partial order.

On the other hand, B does imply that - is an equivalence since it implies
asymmetry on considering (x, y) E2 (y, x), and asymmetry of -< implies that
F is an equivalence (Exercise 2.3). B implies also, as in the conclusions of
Theorem 2.3, that (x < y, y - z) . x z-K z and that (x s y, y < z) =- x -< z.
For example, since (x, y, z) Es (y, z, x), x < y and y • z imply not z -< x by
B. Hence either x -< z or x -. z. If x - z then x --, y by the definition for
y - z. But x <y. Hence x < z.



C of cur•se imphis that-I'. i s a weak crder. Suppose not x y and not
ty < z. Then y i x or y - x, and z - y or z • y, se that since. (y, z, e) E,
(z, y, z), C implies not x < z. Hence, C implies that < is negatively transi-
tive. Asymmetry follows from (x, y) Eg (yg, ).

Remarks on Additive Utilities

It should be noted that if additive utilities exist in the sense of A*, B*, or
C*, then it does not follow that any utility function u on X that preserves the
preference order can be written in an additive form. For example suppose in
connection with C* that x -< y ý- u(x) < u(y). Then it may be impossible to
write u in an additive form when C* holds. What C* says is that, among all
functions u that satisfy x -< y - u(x) < u(y), there is at least one that can be
written in the additive form as u(x) = u&(x1 + -± - + u,,(x.

It cannot be emphasized too strongly that additive vt,_'ittes might not exist
in some situations where their use seems attractive for ease in analysis.
Possibly the best way to test condition A, or B, or C, is to try deliberately to
find n-tuples in X that violate the condition. An inability to construct a
violation would lend support to the credibility of the condition. Another
obvious way of testing for additivity is to obtain a set of preference state-
ments, convert these into additive utility inequalities and equalities (for C
when , arises) and test this system for the existence of a solution. If no
solution exists then a violation of the appropriate condition has been
uncovered.

4.2 THEOREM OF THE ALTERNATIVE

To prove the sufficiency of the conditions A, B, and C of Theorem 4.1,
we shall use the following theorem, which is discussed by Tucker (1956, p. 10),
Goldman (1956), and Aumann (1964, p. 225), and which has been used by
Tversky (1964), Scott (1964), and Adams (1965) to prove theorems like
Theorem 4.1. Reyv is N-dimensional Euclidean space and c -x = c cX'?.

THEOREM 4.2 (THEOREM OF THE ALTERNATIVE). If x 1 ,...,

x,1 e Re"' and i < K s M, then either there is a c • RefN such that

c *Xk>0 for k= 1,...,K (4.4)

cx.z=0 for k=K+I,...,M, (4.5)

or there are non-negative numbers r1.... , ric aot all of which equal zero and
numbers rK+1 , . . , rM1 such that

Srk. 4 =O for j= 1,...,N. (4.6)



Proof. Let S (z', .... x} and T = , .... fR}. 1 M t 'be Th
convex closure of S so that

S= {X:x = E),a' with I A, = 1, m >0, and)2, Ž0 and a', S for all ,

and let T' be the vector space generated by T so that

T' = . x:x 1C aob withm > 0and aeReandbWeTforalli A u0

where 0 is the origin of ReO. When K . M, T = 0 and T' = 0.
The two alternatives depend on whether S and T7 have a common element.

If 9 r) T':A o then (4.6) holds as is seen from I 0 or 7 ;Aa -

]E ab = 0 with the obvious definitions of the ri, in terms of the A, (¢c g K)
and a, (k > K).

On the other hand, (4.4)-(4.5) hold when S n T' = o. Since both S and
T are finite sets (and this is critical to the conclusion), it can be shown that
there are vectors s e S and t e T' such that (x - y)2 ; (s - t)2 > 0 when
x e S and y • T'. The x2 = x x (not to be confused with x2 c S). Let x e S.
Then, with 0 A- I < 1, (1 - A)s + Ax e S. Since t e T, (1 - A)t 7- T. Hence
K(( - A)s - Ax - (1 -+ )t]2 > (s - t) 2 , which reduces to 2A(s - t) -
(x - (s - t)) + A2((s - X ) - x)2 > 0. Take A > 0, divide by A, and let
2. approach 0: this leaves (s - t)- (x - (s - t)) > 0, or (s - t).
(s - t)2 > 0, or (s - t), x > 0. Let c = s - 1. Thus c. x > 0 for all x e 5,
so that (4.4) holds.

To verify (4.5) when K < M and S n) T'= o, take y - T'. Then ay +
t C T' so that (ay + t - s)2 > (s - t)2 , or ay 2 ýŽ 2ay. (s - t)= 2ac y.
First, take a > 0, divide by a and let a approach 0. Since y' • 0 this leaves
0 t c- y. Second, take a < 0 and divide by a giving ay2 g 2c. y. Letting
or approach 0 from below gives 0 <: c y. Hence c. y = 0. *

In the following I shall detail only the proof that B =;- B* in Theorem 4.1.
The proof that C =- C* is entirely similar since C* is equivalent to x -< y =:>

. u,(x,) < I u,(y,) and x - y => ,I u,(x,) = I u,(y,), which is like B* with
Sreplaced by -. The proof that A =- A*, as given by Adams (1965),
involves only (4.4) from Theorem 4.2 and not (4.5) since there are no
equality implications in .4*.

Sufficiency Proof of Theorem 4.3B. Let B hold. For the application of
Theorem 4.2 we let N equal the size of X, plus the size of X 2 .' • plus the size
of X, and let c = (u 1(xit), u&1(x•) ..-. , u,(x,,)) with N components. Let J1,
be the size of < (the number of x -< y statements) and let M - K be half
the size of • - =, containing exactly one of x • y and y - x for each such



z, Y pair for which x - y, The K < statements in the conclusion BV and the
A- K statenients transiate into the eqvivalent system

c-a'> 0 for k =- , .... ,K(?<' Y I) (4.7)

c'a'---0 for k= K+ I ..... A,(zII L) (4.8)
where each a j {-_ 1,0, 1} and a;'- a = 0 for each k, B* holds if and only

if (4.7) and (4.8) have a c solution.
Suppose there is no such c solution. Then, by Theorem 4.2, there are

r.kŽQ fork= 1,- Kvwith r,,> 0 for some k• K, and rK .... r,.
such that

Irka'=0 for j=-- ,...,N. (4.9)
k~

Because each ak is rational there is a set of rational and hence integer rk that
satisfy (4.9). If some of these integer rk for k > K are negative they can be
made positive by replacing aAý with -a' in (4.8) and (4.9) and replacing r,
by -rt in (4.9), which does not essentially change (4.8) or (4.9) and is
legitimate from the standpoint of (4.8) since - is symmetric. Then, with
all rk > 0, (4.9) says that (rlx"s, r 2 x•s . ... , rj•,x1's) £r2++. (rxy"s,fork y1,...,Kn Z y
,y' 2's,. . . , rMy s) with x1 < for k -- 1 K and 0 • yk for k =

K + 1, .,.. , M. Since some rk > 0 for k :! K it follows thai B does not hold.
for if f, rk 1 then irreflexivity of < (implied by B) is violated and if
Sr > i tmen B is violated as it stands. Since B is in fact assumed to hold it
must be false that there is no c solution for (4.7) and (4.8). *

4.3 LEXICOGRAPHIC UTILITIES

The purpose of this section is to note an affinity between additive utilities
and lexicographic utilities. For the latter case we define <L for real vectorsl a =- (al,,. . .•, a.,) and b = (b,, .. ... bj:

a <L" b-4a qb Oand bk <ak=:>a,< b,
forsomej<k, k= 2,...,n. (4.10)

Thus a<Lb.ý a,<b, or [a, =b1 ,a 2 <b,] or'"or [a, =b 1,...,
n-1 -- = b._1 , a. < bn].

In comparison with Theorem 4. IA we shall consider the existence of real-
valued functions ut,... , u,, on X,, .... , X, such that

x < y =t (u01(x), .. . u,(X.)) <L (ut(Y), ..... uJ(yJ)). (4.11)

The comparison for Theorem 4. 1 C is

x -< y -=> (u•( x . . uj(x,)) < .I (u (y,),. , u (Yj)). (4.12)



In bth• - the order c! rhL-, si very s gnthcant In a preference sense,
(4.! I) or e4 12) sa):; approeimatcly uhat A', dominates XA. A',, dominates A',,.

• ~~and aafath

The main point io be made1 abotut (4.1 1) and (4.12) is that codition A of
Theorem 4.1 is necessary for (4.1 1, and condition C is necessary for (4.12).
For example, suppose (4.1 1) holds along with, the hypotheses of condition A:
(x ,.. , x"') E, (ay ,. y"') and x3 -< y•' or xi forj = 1,... , m - i.
Then ui(x) u1(yi) for all j < m, and since • u.(x) u ) by E
u,(y[) . u l(x'•). If u,(X4) < u1 (yJ) for some j < rn then u1(y7) < u,(x") so
that (u(y•"). .... , u(y,,)) <L (u 1(Q ... . L ,( f """ -y) fol,, ~~~~1 . . ,f u( . "U, for all

j < m then u1(y7') - ui(x•"), in which case we repeat the analysis just given,
using u.. itnstead of u. Continuing this we conclude that either (u,(Y-)
u,,(y)) <L (U1(x-) . , u,(x•)) or else that the two utility vectors are equal.
It then follows from (4.11) that not x" < y", which is the conclusion of
condition A.

Thus, if X is finite and lexicographic utilities exist in the sense of (4.11)
then additive utilities exist in the sense of A* in Theorem 4.1. A similar
assertion holds for (4.12) and C*. Clearly, the converses of these assertions
are not generr"'y valid.

What is required for (4.12) in addition to condition C? Clearly, something
like the following is needed.

Condition L. If x < y when xi = yifor all i except i == k, then x* -< y*
when (x* = x,, y* yi) for all i < k, provided x, y, x*, y* C X.

Interestingly enough, when this lexicographic dominance condition is
used and X -= Xi, it is no longer necessary to use all of condition C. The
following uses only the m = 2 part of C. We can also remove the strict
finiteness assumption for X.

THEOREM 4.3. Suppose X is countable and X = H- , Xi. Then (4.12)
holds for all x, y c X if and only if

1. <, is negativeI' transitive,
2. [(x. z) E, (y, w), x -< y or x - y] :=> not z-(w

3. condition L holds.

Sufficiency Proof Under the given conditions define xi < i Yi -z 7-< w
for some z, w c- X such that zi = w, for all j 9 i and (z, = xi, wi = y,). Then
-<i on Xi is a weak order: asymmetry follows from condition 2 and negative
trtransitivity follows from condition 1 and X = I-1 Xi. Then, by Theorem 2,2,
there is, for each i, a real-valued function ui on X, such that xi <, y, -4

. uidxi < u,(i).

Suppose that (u1 (x1), . . . ,u,,()) < L (u1(yl), ... , u,,(y.)) and let t be the
smallest i for which ui(xi) < u,(y,), with ui(x.) = u,(y2 ) for all i < t. We wish
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to show that x < y. To do this we first note that, if I < t, (not x1 <1 Yl, not
Yi <1• z) XI - (XL, r2'... , x,) ,-' (yi, -, ... , x,,). Similarly, if 2 < t, ua(xs)
u2(y 2) (y 1 ,x 2 ,. ••, x,) -. (yx, 12, X3 , . .., X,). Continuing this and using
the transitivity of ,- (from weak order), we get (X1, ... , x",), (Y19...

Ye-1, Xt,. .• , x,,). Now x, < t Y,- Therefore (yi,. • , I xt, x,) <
(Yi,... Yt-1, Yt, xt+,... , x,, by the definition of < , and condition 2.
Hence, by condition L, (yl, . . ., y,-,, xt, ... x,,) < (YI, • • -, Yo,

Yt+l, • - -, Y,). Thus, by Theorem 2.1, x < y.
On the other hand suppose that not (u&(x1),..., u,,(x,)) <L (u1(y 1 ,..",

uj(y.j). Then either (u%(y), •. ., u.I(yn)) <' (u&(x), ... , u,(x,)), in which
case y < x and hence not x -< y, or else the two utility vectors are equal, in
which case the - analysis of the preceding paragraph leads to x -, y and
hence not x <71. .

4.4 SUMMARY

When X is a finite subset of the Cartesian product of n other sets, additive
utilities for several cases considered exist if and only if appropriate independ-
ence conditions hold. The finiteness cf X is crucial fbr these cases in the
absence of additional conditions. However, in a weak order case with
X = 'i Xi, the finiteness condition can be replaced by a countability con-
dition in a simple axiomatization for lexicographic utility according to a
definite dominance order for the n factors. With X finite, lexicographic
utilities imply the existence of additive utilities, but the converse is not
generally true.

It cannot be emphasized too strongly that additive utilities might not exist
in some situations where their use seems attractive for ease in analysis.

INDEX TO EXERCISES

1. The size problem. 2. Weak orders and additivity. 3-4. Functional forms which may
or may not admit additive utilities. 5. Condition C4. 6. The necessity of all of C. 7-8.
Variations on C. 9. Em. 10. Necessity of B* and C*. 11-12. Band A. 13-18. Applications
of the Theorem of The Alternative. 18. Proof of Theorem 2.9. 19. <L. 20. Admissible
transformations.

Exercises

1. Suppose X = JT., Xj and each XK has 10 elements. Then X has 10 billion
elements but there are only 100 xi. Discuss the potential attractiveness of additive



utixties fromn rhe standpotni of nsic arid the nUMber (If urrltt\ alh;C that ;CCd t9 be
estimated.

2. Let X aa, bh x ic, d). 1Hlow many preference weak )rders can be defiaed
on X? List those for which additive utilities exist as in Theorem 4 !C*.

3. With X NX, x X, Xj i2,.., MI with M iarge, and x -yc.y
a2(XI I.X2' < ukty, y_), for which of the following cases do there exist U, arnd U2 .0

thatx +< y.=udx1 ) + u2(r0D < v1(y) + uj()? (a"'(zt p-O =- xjX42; (b)4(;-,, X2 -
X! 4 x-x 2 ; (c) u••X) = x1 + ±x + xý 2 ; (d) 1'( 7, -)bp {,,k 2 }; (e) u(=1 ,
X2) = ]XX-21 (absolute value); (f') u(•,1 •.r -/(-'): (t x 4
(xi + -q). For each that admits additive' utilities, teli why this is so.

4. Let X = X, x X., with X, .•rd X2 z,,is of positive integers and suppose that
ax(x1, x 2) = x1x, + (x~x2 )' and x -•, y.--u(x., xr.) < u(y1 , y2). Show thit additive
utilities exist in the sense of Theorem 4.1 C*.

5. The accompanying utility matrix gives u(a, p) for (a, p) e X - (a, •.. . , 4 x
{phold ?,. Assume that (a, p) -< (a, p') ti(a, p) < u(a',.p'),

a L 0 4 8 9
2a 5 9 12 14

a3 8 11 13 15
a, I0 15 16 17

and show that condition C4 (C with m = 4) of Theorem 4.1 fails. Does condition
Ca hold'?

6. Le-t X ={(I, 1), (2, 2),. , (m, m), (1, 2), (2, 3), .... , (m - ,m), (.,, I))-

Let u(j, k) 0 for all (j, k) CA X except for (m, 1) where u(m, 1) > 0, and take
x .< y u(x) < u(y). Show that condition C, of Theorem 4.1 fails but that
condition C,,m,- holds.

7. Show that condition C of Theorem 4.1 implies t.hat if (xi, ... x1)E,(y.,
y"') and a4 -< yJ for all]j < m then yf -< x".

8. (Continuation.) Tversky (1964) uses an axiom he calls the cancellation law,
which in our terms reads: if (@l ... xam) E,. (y9 . y... ,y), if x1 -•< y or xi - Y Ifor
all j < m, and if .< y1 for some] < m, then ym -< xm . With - defined by (2.2)
as usual, show that Tversky's condition is implied by C and that C is implied by
Tversky's condition plus the assumption that -< is irreflexive.

9. Prove that Em, on x" is an equivalence.

10, Show that B* -> B and that C* = C.
11. Prove that B implies that x < z when x y y and y -<z.

12. Does A of Theorem 4.1 imply that ;,: is an equivalence? Why?

13. Write out the sufficiency proof for Theorem 4.IA.

14. Write out the sufficiency proof for Theorem 4.1C.

I I I I I I I ....... 1E'
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15. With <I defined by (2.12) for inte,-al orders, let condition D be: [(x',..
X') EL, (y, ... - yY"), X! <1 1 yforj = 1,.... m - 1]=> notxM <,y4. Suppose
X S jj x is finite. Prove that -< on X is an interval order and condition D holds
if and only if there are real-valued functions u% .... , u, on X1... , X, respectively
and a nonnegative real-valued function a on X such that, for all x, y 6 X,

X; < Y .-4=ft ui(xi) + a(x < u~(vd.

Use the Theorem of The Alternative in your sufficiency proof.

16. Let condition E be: rf, x, . Xm)E, (yl,. yl-),Xj

m andx -< y• orj =- n + 1,... 2m - I=• not x2l" < y2mn. Show that if E holds
and not x -< x for some x e X, then -<on X is irreflexive and asymmetric, -< is
transitive, and -< satisfies plo and pi I of Section 2.4 and hence is a semniorder.
(Do not use the Theorem of The Alternative here.) Note the necessity of using
not x. -< x for some x L X, for without this we could have X = {x} and x -< x with
condition E holding.

17. (Continuation.) Suppose X _ II Xi is finite. Prove that -< on X is irreflexive
and condition E hoids (for in = 1, 2, .... ) if and only if there are real-valued
functions ul,.. . , u, cn Xl,... , X,, respectively such that, for all x, y c X,

n

X _< Y ui(x) + 1 < ui(yd)

18. Scott (1964): Proof of Theorem 2.9. With X/l finite select one element from
each -, class and call the resu ting set Y. Henceforth, work with Y. Each x -< y
statement translates into u(y) - u(x) - I > 0 by (2.20), and each x ,-, y statement
translates into u(x) + 1 - u(y) > 0 and u(y) + 1 - u(x) > 0. [;>0 might be used
in the latter two, but >0 will work also.] Let N equal the size of Y plus 1, with
c = (u(x),.... , u(t), 1) being N-dimensional.

a. Use Theorem 4.2 to show that if there is no c solution to the stated inequalities
then there are sequences X., - - , ZI, - . ., ZT, and y,... , yT,, w,, .... , W2,
such that each is a permutation of the other and xk -< Yk, Zk - wk for k =
1' ..... T.

b. Show that T = 1 is impossible under the semiorder axioms.
c. Consider T > 1. Form a cycle through the two sequences by starting

with some Xk. yk is the second element in the cycle. Find yk in the first se-
quence. Then the third clement in the cycle is the element in the second
sequence under Yk in the fi-st. Continue this until you reach Xk in the second
sequence. Show that if any such cycle stays wholly in the X', Yk pairs then
"transitivity of -< is violated.

d. Hence, with T > 1, a cycle beginnir., with Xk must pass through Zk, Wk pairs.
Suppose some Y -- Xk. Then usepl 1 of Section 2.4 to show that you can reduce,
by deletion and rearrangement, the two T sequences to T - I sequences (one
of which is a permutation ofthe other, with T - I < and T - I - statements
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betwewn the two). Suppose no Zk - xA. Use plO of Section 2.4 to show that
the two T sequences can be reduced to correspon~ding T - 1 sequences.

e. Conclude the proof of Theorem 2.9.

19. Verify that <L on a set if n-dimensional real vectors is a strict order. (See
Definition 2.lb.)

20. When Theorem 4.1 C* holds with X finite, discuss the nature of transfor-
mations on the u, under which C* will remain valid. Do the same for lexicographic
utilities when (4.12) holds.



Chapter 5

ADDITIVE UTILITIES WITH
INFINITE SETS

This chapter presents two well-structured theories for additive utilities on
infinite sets. The earlier theory, due to Debreu (1960), is presented in Section
5.4. It is based on topological notions that are defined in Section 5.3. The
other theory, due to Luce and Tukey (1964) and Luce (1966), is given in
Section 5.2. As Krantz (1964) has noted, proofs in the latter theory can be
based on the theory of ordered groups. Section 5.1 presents some of this
theory.

Throughout this chapter, Xis a complete Cartesian product, X = all X0,
and < is assumed to be a weak order. Partly as a result of these assumptions
along with a rather "tight" structure for -< on X, we shall not require all of
condition C. of Theorem 4.1. When n = 2, C3 (condition C with m = 3) will
suffice, and when n ý> 3, C2 as in Theorem 4.3 will do. The assumptions of
the theories imply the existence of additive utilities that are unique up to
similar positive linear transformations. By this we mean that if real-valued
functions u,,. ... , u,, on X,.... , X, satisfy x < y <-> J:j u&j() < j, ui(yi),
for all x, y c X, then real-valued functirms v,, . . . , v. on X1, . . . , X, satisfy
x -< y -ý: v,(xj) < j, vi(yi), for all x, y c X, if and only if there are
numbers a, b1 .. . , b,, with a > 0 such that

vi(xi) = au,(xi) + b, for all x, E X,; i 1,... , n. (5.1)

5.1 STRICTLY ORDERED GROUPS

A group is a set Y and a function that maps each (x, y) E Y x Y into an
element x + y in Y such that for every x, y, z e Y and some fixed element
e6 Y,

GI. (x + y) + z = x -+ (y + z) (associativity)
G2. x + e = e + x = x (identity)
G3. there is -x E Y such that x + (-x) = -x + x = e.

(additive inverse)

54
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e is the group identity and -x is the inverse of x. A group (1Y, +) is com-
mutative if the following holds throughout Y:

G4. x+y=yy+x.

(Re, +) with + natural addition and e 0 is a commutative group. So is
({0,1}, +)with -0 = 0, -1 =1,0+0=1 + I-=0,0+ 1 =1 +0=1
and e = 0.

When m is a positive integer, mx = x + x + + x (m times). When m
is a negative integer, mx =-x- - x (-m times). Ox =-e. If
(Y, +) is a group and m and n are integers, it is not hard to show that
mx + nx = (m + n)x.

Defimit~n 5,.1. A strictly orderedgroup (1', +, <)is a group (Y, +) and

a strict order -< on Y such that, for all x, y, z e Y,

x.<y=.-x+z-<y+z and z+x<z+y. (5.2)

A strictly ordered group is Archimedean if and only if for all x, y c Y,
(e < x, e < y) =- y < mx for some positive integer m.

Let Y = {(j, k):j and k are integers), let + be natural addition, and let
=< _<, so that (j, k) < (j', k') -<:>j <j' or (j =j', k < k'). Then

(Y, +, <) is a strictly ordered group, but it is not Archimedean since
(0, 0) -< (1, 0) and (0, 0) -< (0, 1) and m(0, 1) = (0, m) < (1, 0) for every
positive integer m. However, additive utilities exist for this case (Exercises
I c, 2). On the other hand if Y = {(r, s):r and s are rational numbers} then
again (Y, +, <L) is a non-Archimedean strictly ordered group but additive
utilities do not exist for this case (Exercise lb).

The following theorem, due to H61der (1901), is used in the next section.
The proof given is similar to Fuchs' proof (1963, pp. 45-46).

THEOREM 5.1. Suppose that (Y, +, -<) is a strictly ordered group. Then
(Y, +, <) is Archimedean if and only if there is a real-valued functionf on
Y such that, for all x, y c Y,

X -< y .-:ýf(X) <f (y)(5)

f(x + Y) =f(x) +f(y). (5.4)

Moreover, if (5.3) and (5.4) hold and if a real-valued function g on Y also
preserves order [as in (5.3)] and is additive [as in (5.4)] then there is a real
number c > 0 such that

g(x) = cf(x) for all x e Y, (5.5)

and c is unique if e < xfor some x E Y.
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Procf. The fact that (5.3) and (5.4) imply the Archimedean property
follows from f(e) = 0, using G2. To show the converse we assume that the
Archimedean property holds and consider two exhaustive cases.

Case 1: set Y has a smallest "positivce" element x so that e -< x and
e < y < x for no y e Y. By the Archimedean property and e --, x < 2x -< -. •,
0 < y implies that mx <= y < (m + l)x for some positive integer in, where
z y -y-:7 z -< y or z = y. Therefore e y -- mx < x by (5.2). G3, G2, and
(m + 1)x - mx + x. But then, by hypothesis for this case, e = y - mx,
and thus y mx by (5.2), G3, and G2. Likewise, if y < e then y = mx for
some negative integer m. Letf(y) = m when y =- mx. If (y = mx, z = m2x)
theny < z -=i m: < ma, so that (5.3) holds, andf(y + z) = f(ml.x + m2x) -
f((min + mn2)x) = mi + mi, verifying (5.4).

Case 2: if e < x then e -< y < x for some y e Y. For this case we first
establish G4 (commutativity). Suppose e < y < x. Then either 2y <_ x or
x < 2y. In the latter case x - y < y by (5.2) and 2y - y = y, so that
(x - y) + (x - y) < (x - y) + y by (5.2) and hence 2(x - y) < x by GI,
G3, and G2. Moreover, e < x - y by (5.2) and G3, and y - x < x since
y - x < e and e < x. It follows that if e < x then there is a z e Y such that
e -< z < x and 2z -< x. Now suppose that Yis not commutative: for definite-
ness assume that e-<a, e-<b, and a+bv#b+a with b+a< a+b.
Then let x = (a + b) - (b + a) so that e < x by (5.2) anJ Gý, and let z be
such that e >- z < x and 2z • x as just established. By the Archimedean
property (mz < a < (m + l)z, nz _ b K< (n + l)z) for non-negative integers
m and n. Hence a+b< (m+ l)z+b< (m+ 1)z+(n+l)z=(m+
n+2)z and (n+m)z=nzmzz< b+mz-<.b+a, or -(b+a)<
-(n + m)z, sothatx = (a + h) - (b + a) < (m + n + 2)z - (n + m)z
2z, or x < 2z thus contradicting 2z -< x. Hence G4 holds.

For Case 2f is defined as follows, assuming e < x for some x e Y to avoid
the trivial situation. Fix a with e < a and setf (a) = 1. For x e Y let

x {m/n:ma < nx, m&n integers with n > 0}

U, = {m/n:nx < ma, m&n integers with n > 0}.

{L,, U.) is a partition of the rational numbers with m/n < r/s whenever
m/n e LX and r/s e U1, as is easily seen. (For example, if e < x then ma <•
nx => sma <= snx and sx -< ra = nsx < nra so that sma < nra, or sm < nr
(since nr > 0), or m/n < r/s.) It follows that there is a unique real number
f(x) such that

f(x) = sup L, = inf U,.

To prove that f(x + y) = f(x) + f(y) suppose first that m/n e Lx and
rls c L. Then ma - nx and ra < sy. Hence sma< snx and nra < nsy so
that (ms + nr)a :_ ns(x + y), where nsx + nsy = ns(x + y) on using G4
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repeatedly to get nsx + nsy = x + y + x + y + --• + x + y. Therefore
(ms + nr)/ns = (m/n) + (r/s) is in L Similarly, if ra/n G U• and ris E U"
then m/n + ris is in U.,4. It follows that

sup L, + sup L, g sup L,+ ---f(x + y) = inf U,+, :! inf U. + inf U,

and hence that f(x + y) = sý,p L. + sup L, =f(x) +f(y). This proves
(5.4). -

To establish (5.3) suppose e < x. Then a < mx for some positive m and
hence 1/mn e L, so that f(x) > 0. Similarly if x < e then f(-x) > 0, and

(e) 0 by G2 and (5.4). Hence e < x <e> 0 <f(x), which is easily seen to
imply (5.3).

The final part of the theorem, namely (5.5), is proved as follows. If Y = {e}
thenf(e) = g(e) = 0 and every c satisfies (5.5). Next, suppose that e -< x for
some x e Y. If Case 1 above holds then, with e -< x and e < y < x for no
y E Y, f(z) =mf(x) and g(z) = mg(x) when z-- mx so that g(z)=
[g(x)/f(x)Jf(z) for all z c Y. On the other hand suppose Case 2 holds with
e -< a. Then, by (5.3) and (5.4), rnf(a) ! nf(x), mg(a) _! ng(x), sf(x) • rf(a)
and sg(x) , rg(a) for all m/n E L, and ris e U•, from which it follows that
f(x)/f(a) = g(x)/g(a), or g(x) = [g(a)/f(a)]f(x) for all x E Y. ,

5.2 ALGEBRAIC THEORY FOR n FACTORS

The additive-measurement theory developed by Luce and Tukey (1964) and
Luce (1966) is based on the idea that a difference in two levels of one factor
can be offset by a compensating difference in the levels of any other factor.
For example, given z9 E X, and x9, x' e X2, the compensation or "solva-
bility" assumption says that (xO, x1) - (xi, x) for some x , E K1. If X =

X, x X2 then (xl, x') e X and again by solvability (xl, x.1) -, (x, xe) for
some x, • X,. Under the cited conditions this gives rise to the picture in
Figure 5.1 where the broken curves represent indifference sets. Suppose

X2 N

0 1 2 3 4 5

Figure5.1 X X1 X X2.
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additive utilities exist for this two-factor case and that, for points on e, such
as (x4, xO), u1(xO) + u,(z)= 0, and for points on a, such as (xl, X),
u1 (x1) + u2(X2) = 1, with (4, x42) -< (xi, x). Then, as is easily verified, the
value of u, + u. for the first curve to the right of a must be 2, for the next
curve uI + ua = 3, and so forth. Thus, if x < y - u1 (x1) + u2(x,) < uj(yj) +
uQ(ys), then, for any y e X there must be a positive integer k such that
y < (e, x.). Hence, under unrestricted solvability, we have a necessary
Archimedean axiom for the two-factor case. It is P3 in Theorem 5.2.

Two Factors

In the following Theorem P1 (C3 of Theorem 4.1) and P3 are necessary
conditions for weak-order additivity when X- X, x XA, but unrestricted
solvability (P2) is not. Except in the trivial case when XI,-- {X}, P2 requires
both ul and u. to be unbounded above and below. Luce (1966) shows how to
weaken P2 to avoid the unboundedness implication: see also Krantz (1967,
pp. 25-27).

THEOREM 5.2. Suppose X = X, x XK and the following three conditions
hold throughout X:

PI. [(xl, x 2 , x") E3 (y', y2 , y"), xj < yj or xJ - yJforj < 3] :* not x1 < y.

P2. (xI, I/ A X 1; x2 CA X 2) =:- (xI, x2) - (Y., Y2) for some ys e X., and (xz e
X ; x2, y. c- X2) =. (xl, x,) -' (yr, y2) for some j e- XA.

P3. [(x(, , -< (x,, x.), ( x1, X)r-. (e, x) for k = 1, 2,... ; y E"]=-
y< (xlt,zx2)for some ke {1,2,...).

Then there are real-valued functions ul on X1 and u2 on X 2 such that

X _< y - UA(XI) + U2(x2 ) < UA(Y) + U2 (Y 2), for all z, y e X, (5.6)

and u, and u2 satisfying (5.6) are unique up to similar positive linear trans-
formations.

Proof. P1 implies that -< is a weak order (asymmetric, negatively
transitive) so that - is an equivalence. Let X/- be the set of equivalence
classes of X under - and fix (x, x2) e X. By P2, each element in Xf-.-
contains elements in X of the form (x1 , xO), (xO, x.). Define + on X1'-, as
follows:

with a, b e X[l-, a + b is the element in Xl-' that contains (x,, x.)

when (xj, x") e a and (xO, x.) e b. (5.7)

With a <' b -*• x -< Y for some x e a and y e b, we first verify that (Xl--,,
+, -') is a strictly ordered commutative group. We then show that it is
Archimedean and use Theorem 5.1.
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1. +- is well defined. By PI, (xl, x.0), (yl, 2) (- a and (, x2), (4, y2) e b

imply that (x1, x2) - (ys, Ys).
2. Commutativity, G4. By PI, (x1, x02), (x", y2) e a and (x4t, x.), (y,, xd e

b =: (x@, x2) - (y, y2), and hence by (5.7), a + b - b + a.

3. Associativity, GI. By 64, (a + b) + c - a + (b + c) • c + (a + b)-

a + (c + b). Let (x,, xO) e a, (4, x2) 6 b, (Y1, x2) - e, (4, y.) e a + b, and

(x, z.) e c + b. Hence (0., Y2) - (XI, x2) and (y,, x2) - (xO, z.). Hence, by

P1, (Yl, Y2) - (x,, z,), which yields c + (a + b) = a + (c + b).

4. Identity, G2. Let e contain (z4, x). By G4, e + a == a + e. With

(xZ, x°) e a, (5.7) implies (xi, x) e a + e. Hence a = a + e.

5. Additive Inverse, G3. Define -a as that clement in X/,-. that contains

(4, x.) when (x,, 2) e a and (x1 , x2) -e. Then, by (5.7), -a + a = e.

6. -<' on X1,-..• is a strict order by Theorem 2. 1. Suppose a <' b. With

(xi. XV e a, (y,, xO) e b, and (4, x.) e , let z1, by P2, satisfy (Z, x0) - (y1 , 4).

With (xi, x°) K< (y1 , xO) also, Theorem 2.1 yields (x,, ,&) -< (z,, xc, which

along with (z,, x2) '-' (yl, x) under P1 yields not (yr, x2) < (x1 , x2) and in

fact (x1 , x2) -< (y,, x2) since (x1 , x2) '- (yl, x.) gives a violation of P1. Hence

a + c < b + c, so that (5.2) holds.

To prove that (X,--, +, <') is Archimedean, suppose (e < a, e < b).

With (4, x) e a, let the sequence in P3 be constructed as described in

connection with Figure 5.1. Since (x4, x1) E a and (X', X) E a, (5.7) says that

(X1, x) e 2a. Then, since (x2, X4) _ (X, xI), (x4, x4) e 2a. Using (5.7) to

continue this we see that (W, e) c ka, k = 1, 2,. With y E b, P3 says

that y < (x4, 4O) for some k, which gives b K' ka for some positive integer k.

Hence (Xf,-., +, <') is Archimedean.
Thus, by Theorem 5.1, there is a real-valued functionfon X1,.-, such that

f(a + b) = f(a) + f(b) and a <' b .:'.f(a) <f(b). Defining u1(Zx) -f(a)

when (xy, I°) c a, and u&@2) = f(bh) when (4, x,) E b, (5.6) follows easily.

Suppose v, on X, and v2 on Xp also satisfy (5.6). Defining g on X/,-. by

g(a) = ([v(x 1) - v(j1 )] 4- [v,(x,) - v,(x)] when (x1 , x.) F a, it follows that,

taking (x,, 4) -a and (x°, x,) e b so that (xj, x.) c a + b, g(a) + g(b) =

[vs(x 1) - v,(4)] + 0 + 0 + [v,(x,) - v,(0)] = g(a + b). Moreover, from

this and (5.6), g(a) < g(b) -,-- a <' b. Hence, by Theorem 5.1, g = cf for

some positive number c. It follows that, taking (x,, 4), vl(x 1) - v1(4) -

CUt(x,), or v,(x-) = cul(x1) + v,(4) for all x, E X1. Similarly, v2(x )=

cus(xx) + v,(xO) for all x2 e A'. E2
Three or More Factors

We now consider a version of Luce's theory (1966) for more than two

factors. As pointed out to me by David Krantz (correspondence), the

independence condition Ca can be replaced by C2 in this case. This necessi-

tates of course the explicit assumption that < is a weak order (or negatively
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transitive) since weak order does not follow from Cs, or P1* as we call it
below,

THEOREM 5.3. Suppose X 1fl Xj, n > 3, -< on X IAs a weak order,
and the following hold throughout X:
~P I P* . [(x, Z) E2 (Y, W), x .< y or x -. y] =:,. not z -<w.

P2*. [i C- {1, . .. , n}, z Cz X and y, Cz X, for alij i] = x /-.., (yI, . . . , -,0z, Yi+l, .... y,)for some Zi E Xi.

P3*. [(x ... '. <,•,
z%°,)for k =,2,..,- ; Y GXI=ý,y Y (zl, 02,.. - z,x~)for some k c{1, 2, .. }

Then there are real-valued functions u1 .... , u,7 on X 1,... , X,, respectively
such that

x < y 4;> ui(xi) < • u,(y,), for all x, y c- X, (5.8)

and ul, . , u, satisfying (5.8) are unique up to similar positive linear trans-
formations.

Proof Our major task will be to show that C3 or P1 for n > 3 follows
from the stated hypotheses, We delay this until later, assuming for the
moment that Cs or PI holds. Fix (;,... , xz.). By P2* any a c X/- contains
elements of the form (xi for i E I, x? for i 0 I) for any nonempty proper subset
I c {1, .... ,n}. Define + on Xl/,. as follows:

a + b is the element in X/,..- that contains (xi, ... , I,) when, for any
nonempty I c {1,..., n}, (xi for i czI, x? for i I) e a and (X? for
i e I, x, for i o l) e b.

To show that + is well defined suppose (xi for i E 1, xO for i 0 1) c a, (xO for
i l I, x, for i 0 1) e b, (y, for i c I*, xP for i 0 t*) E a, and (xO for i E !*, yj
for i P*) e b, when I and I* are any two nonempty proper subsets of

...1. , n}. We need to prove that (x .... , X,.) - (y1,..., y,), and this is
easily seen to follow from P1.

By analogy with the preceding proof (let X2 there represent X2 x .x 'XX,
here) it follows from P1 and the hypotheses of Theorem 5.3 that (X,-., +,
<') is an Archimedean simply ordered (commutative) group. With f as in
(5.3) and (5.4) and (x4,... , xz) e e, define u,(x,) = f(a) when (x,... , iý_
xi, Xi+z,... , xO) c a, and define u(x) = f(a) when z c a. Then u(x) < u(y)
f(a) < f(b) so that x < y - u(x) < u(y). Moreover, with (x)- the element
in Xl- that contains x, it follows from successive uses of our definition for +
that (xI, . ,,)- (x,, z.. . ,,)- + ( ,, X2)~ ... I (X,

xO)' + [((X X X3,. ,)- + (•,X0, ='" --- (X, ,.. .

Ao)- + (, x, 4,...,x,,~ +.. +(.... , _ x,, from which we

iO ,3, X"- X1
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obtain u(x) = uj(x1 ) + u&(x2) + .. + u,(x,). The proof of uniqueness
follows from Theorem 5.1 as in the preceding proof.

Proof of Pl. Let X - J"-1 -j, n > 3, and assume that P1* and P2*
hold and that < is a weak order. To verify PI we begin with the following
general form: show that (xj, x., . .. , x,) < (yi, Y:,, yf, y, xr, xe) when

(XI, Z2, Z3,;4 Z,, 2• 6) •< (Y1, Z2, Y31 Z4, ts, Zd) (5.9)

(41, z2, "CO, X4, 4 , t4) < (Z1, Y2, z3, Y4, -S, rd). (5,10)

This includes all possible placements of x, yi, etc. in the two given statements.
It should be understood that some dimensions may be collected into a single
i in (5.9) and (5.10) and that one or more of the i patterns in (5.9) or (5,10)
may be absent in a specific case.

Suppose first that the first dimension (i = 1) in (5.9) and (5.10) is actually
present. Using P2* let s• satisfy (omitting parentheses and .'-smn-as)
s 1z.zzitz - j x2 zFz4zFz6. Then, by PI*, xzx 2zlx 4zFz6 -sjzx 3x~tFz#. Also,
since sjzgzOz4tze < yyzs;ztsz, by (5.9), PI * implies sjytz&y4zrzG <• yO/y 4z•z6 .
Also, by (5.10) and Pl*, szzxxt•dz 6 :( s•yFzy 4zzj. Hence, by transitivity,
xl~x~x4zsz, : y&2y•y4 zz8 , so that by P1 * xiZxaX4 5x, - 14i/yy 4Zaxa..

The key to this proof was that the same element (z.) appeared in the first
position on each side of (5.10). A similar proof holds if either the fourth
dimension is present (zj on both sides of (5.9)) or the sixth dimension (z4 )
is present. Assume henceforth that none of these three dimensions is actually
present. Renumbering subscripts, (5.9) and (5.10) then reduce to

(xI, z7, z2) < (21, Y2, ta) (5.11)
0(1, X2, t3) < (Y1, Z2, Z3). (5.12)

We are to show that xlxxs --< yydx 1 . Assuming that the third dimension is
present let s3 satisfy xLzSz3 e, ztz;sa. Then, by (5.11) and PI*, Yxzts3 < YiYaa.
Also, xizlz3 , z1z2s, and (5.12) satisfy the condition in the preceding proof
and can conform to Es so that, by P1 for this case xax2t3 < y•zAs,. Then, by
transitivity, zixxt, -( yy•&ta so that xzlxa < yjy2jx3 by PI*.

Finally, suppose that the third dimension in the preceding paragraph (fifth
dimension originally) is not present. This leaves us with only two patterns.
But n : 3. Therefore, we have a case like

(z1 , zZ, z) < (z1, Y, ya) (5.13)

(zi, •2, X3) < (vI, za, zO) (5.14)

from which we are to show that xlzzx2 . < i•Ya. Let s, satisfy xjz~za ,- zizts8 .

By (5.13) and PI*, yxz 2ss -,< yyVY. Also, xlz~z3 -. zlztsg and (5.14) satisfy
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the previous pattern for which P1 holds (z, on both sides of the - statement),
so that by PI for this case, x~xx. • y1 zxs3. Then, by transitivity, xxX3--<

$½tYaYa' *

5.3 TOPOLOGICAL PRELIMINARIES

To obtain a sound understanding of Debreu's (1960) additivity theory a
review of some theory of topology is in order. Familiarity with Section 3.4 is
assumed.

A topological space (X, 16) is connected if and only if X cannot be parti-
tioned into two nonempty open sets (in "). The closure J' of A _ X is the
set of all y e X for which every open set that contains y has a nonempty
intersection with A:

A={y:yeX and (yeB,B-)==tA OB 0o}. (5.15)

(X, 'G) is separable if and only if X includes a countable subset whose closure
is X. (Re, Ul) is separable (as well as connected) since Re is the closure of the
set of all rational numbers.

The following is Debreu's Proposition 4 (1964, p. 291).

LEMMA 5.1. Suppose < on X is a weak order, (X, 1) is a connected and
separable topological space, and {x : x e X, x -< y} c 'G and {x: x G X, y < x) E
'Gfor every y e X. Then there is a real-valuedfunction u on X that is continuous
in the topology 'G and satisfies

x-<y <*-u(x) < u(y), forallx, yeX. (5.16)

Proof. By separability, X includes a countable subset A with A X. If
z < z then {y:y < z} and {y:x < y} are nonempty intersecting (by con-
nectedness) open sets with intersection {Y:x -< Y < z} E Z3. Then, by j' = X
and (5.15), {y:x -< y < z} r A 7 o. Hence A is <-order dense in X.
Theorems 3.1 and 3.5 complete the proof. *

Lemma 5.1 is used in the next section. Lemma 5.2, based on the following
definition, is used later in this section. Given a topological space (X, Z),
Y~ Xis connectedif and only if (Y n A # z, Y nB 0$ , Y Au B,
Y n A n B = o) is false for every A, B e ý.

LEMMA 5.2. If A 5i X is connected for each A e A and if A r, A* #0
when A, A* E A then UA A is connected.

Proof. Suppose Y = UA A is not connected. Then (Y n• B. # o,
YnC#O , YgBuC, YnB(B-C= o) for some B, CeG. Let
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A, A* E A satisfy (A r' B 0 0, 1* () C 5 0). Using B and C it follows-- that 4 u A* is not connected and that, since each of A and A* is connectedby hypothesis, it must be true that (A o C = 0, A* r) B = 0). But then(A9B,A* c C), since A,A*, Y9 BQ C and hence z =A fnCoA* n B = (A r) B) r (A* r. C) = A () A*, which contradicts our second
hypothesis. +

Product Topologies
If X = 1f"".__ X, and (X,, , is a topological space for each i let

-II = {A:A si Xand if (xj ... . ,X,) e A then there are A i e for

which x, e Aj (i = 1,..., n) and- A. A (5.17)
"G, is the product topology for X = 7 Xi. The product space I (Xi, 1)is the topological space (H X,, J1 Z)j.To verify that 1J ', is indeed a topology (Definition 3.2), we note firstthat o E•fI-t and Xe]J' . Let B be a union of sets in 1tZ", withB 6 0 and x c B. Then x G A for some A in the union and in IG , fromwhich it follows that B c 11J 6. Finally, suppose A',... , An e rj' j andn Al A5 0. WithxE s AJ, there is for each i and j an A' •EG such thatj e AX and 1 - Aj c- A . Since, x fl1 A, e , for each # and J-J, (nf A')fl (j-j Ai) _ fl1 A, it follows from (5.17) that nf A- 11 'i.Exercise 13 gives an equivalent definition of a product topology.

LEMMA 5.3. If (Xi, Zh) is a connected (separable) topological space foreach i e {,1 .. . , n} then (1-1 X, IT r,) is connected (separable).
Proof. Separability. Let (X,, ý,) be separable for each i, with Aj _• Xjcountable and J =- X,. Given x c X = IT Xi suppose z e B c 11 ,. Thenby (5.17) there are Bi E' 'G such that x, c B, and 171 Bi _• B. Since (X,, Q)is separable, B, r) Ai p z. Therefore (17 B,) r) (171 A,) # 0 so thatB n) (1- A,) 0 0. It follows that x is in the closure of I-T A,.Connectedness. Using the definition of a connected subset it is not hard toshow that {zx} x ... x {x,.,} x X, x {X-i+} x * x {Xz} is a connectedsubset of X = H X, when (X,, Vj) is connected. Let each (Xi, "Gi) beconnected so that X, X {X2} x .- X {X,,} u {Y.} x X 2 x {fX} X ... X {Xf}is connected by Lemma 5.2 since (yx, 2,... , x1 ) is in both parts of theunion. Since (x1 , x, . .. , Xz) is in every such union as y,. varies over X, itfollows by Lemma 5.2 that X', x X2 x {fx} x - x {x,,} is connected.Hence X, x A' x {} x. x x {x,,} u {y} x {y2} x X'. x {v,} x -.. )x {Z,,}is connected, so that X', x XA x Xa, x {x4} x x {x,} is connected. Byinduction, X, x X.' x x X, is connected. *
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Continuity

The appropriate generalization of continuity over that given in Section 3.4
is included in the following definition.

Definition 5.2. Let (X, 3t), ( Y, 8), and (Z, 2G) be topological spaces. If
f is a function on X into Y thenfis aR - 8 continuous if and only if S E 8
{x~x E Xf(x) e S} e :iR. lfg is a function on X x Y into Z then

1. g is continuous in X if and only if (y e Y, T e 2C) =- {x:x c X, g(x, y) e
T}j

2. g is continuous in Y if and only if (z _ X, T c Z) :- {#:y E Y, g(x, y) :
T) c-8.

The following lemma is used in the next section.

LEMMA 5.4. If (X, a), (Y, 8), and (Z, ") are topological spaces and f on
X x Y into Z is a x 8 - 'G continuous then f is continuous in X and in Y.

Proof Let f be it x 8 - Z continuous, and let b c Y, T e 1G. We shall
show that {x: Xj ,f(x, b) e T} e 1. For all x c X let g(x) = x, h(x) = b
and k(x) = (g(x), h(x)). As is easily verified, g on X into X is AR - A con-
tinuous and h on X into Y is Aq. - 8 .ontinuous. To show that k on X into
X x Y is A{ -- J1 x 8 continuous let A $ ., A e A x 8. By Exercise 13,
A has the form

A U B(w) x Cw)

with B(w) c 33, and C(w) c 8 for all w e W. Letting a super - I denote the
inverse [k-'(A) = {x:k(x) e A)], it follows that

k-1(A) = k-'(U [Biw) x C(w)])

= U k'-[B(vv) x C(v))
= U k-'([B(w) x YJ r) [Ax C(wi)])
= U (k-1 [(w) x Y] Cn k-1[X x Cw)])
= U (g-1 B(w)] r) h-1'[C(w)]) e 3•

since g-I[B(w)] c :Jl and h-1[C(w)] c Ji for every w.
Let r~x) =f(k(x)) =f(x, b). Let Te c. Since f :(T) c-: x 8, and

k'-(. [-'( T)) - :8 by the preceding demonstration, r-'(T) = k-'(.f-1 (T)) is in
ji. That is, {x:x e X, (x, b) c T}' e , as desired. *

Suppose (X,, '6,) is a topological space for each i and u is a real-valued
function on X = I X"U, x, that is rJ ', - 'U. continuous (continuous in the
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topology i- 16). Then, as a cotollary of Lemma 5.4A u is continuous in
16,m for every nonempty I s {i, 2,... n). That is, for each U e 'U.

and fixed xO for i1 1, {xr: x •elI X, x, xO for all i 0 I, u(x) e U} cI- ,z 16.

"5.4 TOPOLOGICAL THEORY FOR x FACTORS

Debreu's (1960) topologically oriented theory for additive utility with
two factors is essentially as follows.

THEOREM 5.4. Suppose X = X, x X, and the following three conditions
hold throughout X:

Q1. [(x1, x1, al) E3 (y,, yy), x1 < yj or xJ -. yjforj < 3] => not x < 9.
Q2. (Xi, '6) is a connected and separable topological spac~e for i = 1, 2.
Q3. {x: x e X, x < y} c- ' 1 x 'G, and {x: x e X, y < x) cz "61 x ×' 2.

Then there are real-valued functions ul on X, and u2 on X2 that satisfy (5.6)
and, if (x1 , x2) < (x1, Y2) and VI z2) < (z,, z2) for some quartet of elements
in X, then u, and u2 satisfying (5.6) are continuous in '61 and 7,G respectively
and are unique up to similar positive linear transformations.

The obvious difference between this and Theorem 5.2 is in the Q2 and
Q3 conditions (Q1 = P1). Debreu ties the space together with topological
conditions, whereas Luce and Tukey use solvability. The need for the quartet
condition in Theorem 5.4 stems from the fact that under QI, Q2, and Q3 it
is possible to have, say, u1 constant on X, and u2 nonconstant on X2 , in which
case additive utilities are not unique up to similar positive linear trans-
formations and u2 need not be continuous. With no loss in generality we
assume in it-hat follows that (x1, x2) _< (xj, y.) and (yi, z2) < (z1 , z2) for some
quartet of elements in X.

The most obvious application of Theorem 5.4 arises when X1 and K2. are
intervals in Re. In fact, Part I of the two-part proof of the theorem assumes
that X, x X. is a rectangular subset of Re2. Part II then shows how the
general case can be transformed into the plane. Because Part I, which involves
ideas of Thomsen (1927) and Blaschke (1928) for what Debreu calls the
Thomsen-Blaschke theorem, goes through many steps and is rather long, I
shall not detail every step.

Proof. Part L. Throughout we assume that the hypotheses of the theorem
hold, that XK and X2 are nondegenerate intervals of real numbers, that '51
and V., are the relative usual topologies on X, and X2, and that

x < y. x < y(5.18)

as in Theorem 3.3, condition 2.



66 Additive Utilities with Irme Ses

(a. d) " (b, d)

f(z)) 2

9 f

(a,C) Zl (b,c)

Figure 5.2

1. By Lemmas 5.3 and 5.1 there is a real-valued function v on X that is
continuous in "6• x Z;2 and satisfies x -< y €=> v(x) < v(y). Then, by
Exercises 3.22 and 3.10,

(x•< y, y -< z, x < z) => y •- x + (I - m)z for a unique C- (0, 1).

(5.19)
2. Let [a, b] x [c, d] be a rectangular subset of X1 x X2 for which

(b, c) - (a, d). (Figure 5.2.) From (5.18) and (5.19) it follows that there is a
real-valued functionf on [a, b] onto [c, d] that is one-to-one with

(x1 ,f(x 1 )) - (b, c) for every x, c [a, b].

Sincef strictly decreases as x, increases, it and its inversef-1 are continuous.
3. O'r immediate goal is to show that additive utilities satisfying

u(x 1 , X2) = u1(AX) + u2(X2), (5.20)

exist on [,- b] x [c, d] with u a monotonic transformation of v in step 1.
First, set ul(a) = u2(c) = 0 and ul(b) = u2(d) = 1. Then u(a, c) = 0,
u(xl, x.) = I for all (x,, x2) ef, and u(b, d) = 2. As shown in Figure 5.2
there is a z, E (a, b) such that (zl, c) -, (a,f(z,)). To prove this note first that
since v is continuous it is continuous in X1 afnd X, by Lemma 5.4. Then, by
Exercise 3.16, {v(x•1, c):x, e [a, b)} is an interval in Re. Likewise, {v(a,
f(xi)):x, c [a, bj} = {v(a, X2):x, X [c, d]) is an interval. Since v(x 1 , c)
increases in x, and v(a,f((xl)) decreases in x1 , there is a unique z, E (a, b) for
which v(zl, c) = v(a,f(z(1 )), so that (z,, c) - (a,f( z 1 )).

Let g be the continuous indifference curve through (zl, c). To satisfy (5.20)
we must have u(zl) = u2(f(z1 )) =1 and u(x1 , xj) = ½ for every (xI, X,) E g.
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Figure 5.3

Qi implies that e e'as shown in Figure 5.2, with u(xL, x) = j for every
(x, X0 e g'.

For reasons like those given above there is a point (xl,f(yvO) P" in g for
which (zx, c) - (a,f1 (yv)). As shown in Figure 5.3, the constructions from
P" define two new curves h and k. As is easily seen from QI, Q - Q', Q -., S',
and Q'- S so that Q, Q', S, and S' do indeed lie on the same indifference
curve (k). For (5.20) we must set ul(x-) - u(f(yO)- M and u(yL) =
u2(f(xj)) = I with u = I for h and u = I for k. Similar constructions (from
g' in Figure 5.2) hold abovef on Figure 5.3.

4. The process of generating indifference curves in [a, b] x [c, d] is
repeated ad infinitum and yields a continuous indifference curve for each
value of u in {mI21:lm -< 2", n= 1,2, . ..} u {1+ m/2":0< m
2"-- 1, n = 1,2,.. .}. If (x,, x2) and (yl, y,) are on these curves then
(2 xi) < uYYO-:**'x2, < u(Y ,' YO.

In addition, we have a set A of x, points in [a, b] whose set of u, values is
{m/2":0 ! m 2", n = 1,2, ... ) and a set B of xg points in [c, d] whose
set of u2 values is {m/2 n:0 m - 2", n = 1,2,...} with u(xz, xz)=
u,(xl) + u2(x,) whenever (x1, x.) E A x B.

5. A = [a, b] and A = [c, d]. (We leave this closure proof to the reader.)
It follows that

sup {uj(y1):yj • x1 , y • A} = inf (u1 (,'):xx :9 z1, z1 eA} (5.21)

for each zx C [a, b]. Extending u1 on A to ul on [a, b] by defining u1(x1 ) as the
common value in (5.21), it follows easily that ul(xl) < u1 (v1 ) -=- x, < yj and
that :u, on [a, b] is continuous. It is clear also that once u,(a) and ul(b) are

i-
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zf-a 1'= X1 W, X3 X4 X6~,.Z, Yi

Figure 5.4

specified, the rest of u, on (a, b] is uniquely determined and ul on (a, b] must
be continuous.

Similar remarks hold for u2 on [c, d], and, if ul and u2 satisfy (5.20), they
are unique up to similar positive linear transformations.

To verify additivity on [a, b] x [c, d] suppose first that (x1, x2) -'- (yi, ys),
both points being in [a, b] x (c, d]. Since additivity holds on A x B, we have
from (5.21) and its companion for B that u1(x1) + ua(Xa) = ul(yX) + u2(y.).
On the other hand suppose that (x1, xI) < (YI, I ). Then, as is easily seen
there must be a point (zl, z.) 'ý. (z1, x2) for which (zL, za) < (yi, yQ so that
u&(z1) + u&(z2) < ul(yl) + u%(y 2 ) and hence u1(x1) + u2(Xg) < u1(Yl) + u2(y 2).

6. We now show that u, and um can be extended in one and only one way
to all of X1 and X. to satisfy additivity. Beginning with [a, b] x [c, d] we
first extend the horizontal lines through (a, c) and (b, c) and through (a, d)
and (b, d), and likewise for the two vertical lines. The indifference curves
through (a, c), (b, c), and (b, d) are extended also. The procedure described
in connection with Figure 5.1 is then used to generate additional indifference
curves that must have u values of 2, 3, 4, ... , and - 1, -2, .. , this process
continuing indefinitely or until the border(s) of X (if any) are reached. This
provides us with a grid pattern on X1 x X. of rectangles similar to [a, b] x
[c, d], except that some of these will be truncated if X is bounded. Using QI
it is easy to verify that (except at the boundary) the lower right corner of any
rectangle is indifferent to its upper left corner.

7. We need to show that these rectangles (including truncated ones at the
boundaries, if any) actually cover X, x X1 . For this it will suffice to show that
every x, > b lies beneath an indifference curve generated in the manner of
Figure 5.1. To the contrary suppose, as in Figure 5.4, that y, c- XA does not
satisfy this condition. Let z, = sup {xJ: j = 0, 1, ... } as shown on the
figure. The continuity of v then implies that v(z,, c) = sup {v(xf, c):j =
0, 1,... Iand v(zl, d) = sup {v(xJ, d):j = 0, 1,... } so that v(zl, c) = v(zl, d)
and hence (zl, c) - (z1, d), which contradicts (5.18).
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8. For additivity it is clear that u,(xl) -j for each such point on the x,
axis of Figure 5.4. Suppose w, - XK: for definiteness we assume w. > b as
shown on Figure 5.4. By the construction shown for w1, additivity requires
ul(wi) + us(w.) = 3. But us(w.) is already known since ws e [c, d]. Hence
u±(w1) "s uniquely determined. Similar remarks hold if w, < a, and, by
symmetry, for points in X. not in [c, d]. Thus, given additive ul and us on
[a, b] and [c, d], u, and us are uniquely determined on all of "1 and X2 when
additivity is required, and they are continuous.

9. It remains to show that (5.6) holds throughout X3 x XK. For this it will
suffice to show that (x1, x,) -'• (ya, y) = ul(z1) + u2(z,) = u1 (yj,) + u2(y2)
because then all points on the same indifference curve will have a common
u, + uv value and, by construction, one such curve is to the left of another
if and only if the former has a smaller ul + us value.

We begin this with the rectangle in the grid of step 6 that is to the immediate
right of [a, b] x [c, d]. Suppose first that x y,, y and these points are beneath
the u = 2 curve as shown on Figure 5.5. By the constructions shown in the
figure, and using QI, (P• P', z -•x) =- Q ,-, Q' and (P -,, P, z -. y)=,.
R , R'. Then, from additivity on [a, b] x [c, d] and the definition of ul
extended, it is easily shown that uj(xj) + u2(x2) = ul(yl) + uj•2(). On the
other hand, if x and y lie above the u = 2 curve we have the situation shown
in Figure 5.6. Then, by construction and QI, (x • y, P -P') => Q - Q'.
By the Figure 5.5 analysis additivity holds for Q and Q', and it readily follows
that u&(xD) + u2(x 2 ) = uA(y1) + u2(y,). By analogy, additivity holds in each
of the four rectangles that have a boundary in common with [a, b] x [c, d].
By induction, additivity holds for every rectangle (complete or truncated)
to the right or left of [a, b] x [c, d] and above or below [a, b] x [c, d].

The next step is to show that additivity holds throughout (X1 x [c, d]) u
([a, b] x X2). There are no unusual difficulties in this and we omit the proof.
It can then be shown that additivity holds in each of the four rectangles that

2 P,

d

\Q -
2

a b
Figure 5.5
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have one corner in common with [a, b] x [c, d] and then that additivity
holds on all of (X, x [c, d]) u ([a, b] x X.) u (four corner rectangles).
The systematic introduction of new rectangles completes the proof.

Proof, Part Ii. We now see how the general situation for Theorem 5.4
can be transformed into the structure assumed in Part I of the proof, The
hypotheses of the theorem ai'e assumed to hold.

1. By Lemmas 5.3 and 5.1 there is a real-valued function w on X, x X2

that is continuous in '61 x Z2 and satisfies

x < y -4 w(z) < w(y), for all x, y e X. (5.22)

With (a, b) c X, x X2 fixed let wL(x,) = w(x,, b) and ws(xv) = w(a, x2) for
all x, e X1, xz e X2. By Lemma 5.4 and Exercise 3.16, w, is continuous in Z,
and W, = {w,(x,):x, E X,} is a nondegenerate interval in Re. Let Ri be the
relative usual topology on W,. Each (Wi, A,) is a connected and separable
topological space.

2. Let v on W1 x W2 be defined by v(wl(xl), w1(xO) = w(xl, xz). From
step I it follows that v is well defined and increases in both components.
Defining -* on W1 x W. by

(c, d) < * (e,f) -=- v(c, d) < v(e,f) (5.23)

it follows from (5.22) that

(wl(x 1), wx(x 3)) < * (w(y 1), w,(y,)) - (x,, x2) < (yl, y2). (5.24)

Hence -< * is a weak order and it satisfies (c, d) < (e,f) = (c, d) < * (e,f),
similar to (5.18). It remains to show that QI and Q3 hold for -* on
W x W,.
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3. For Q I suppose for W1 x W. that (c1, c, c0) E, (da, d2, da) and
(c <* ad, c2 < * da). We need to obtain dS * c. Let (x', x) forj = 1, 2, 3
satisfy (cl, cl) = (wj(x), w2(zi)). Define y4, y, y2, equal to xl, x,, xs according
to the permutations (for i = I then i - 2) that establish (c', c3, ca) E3
(da, d2, d3). Then (xl, x1, x3) E, (y', y2, y3) and by (5.24) and QI for -< on
X, x X., y/3 < x 3 . Hence, again by (5.24), d8  * c< .

4. To establish Q3 for < * we note first that v is continuous in W, and in
W.. For the W, proof let W1(x2) = {w(zl, xO):xl e X1} for each X4 e X,, so
that Wt(xz) is an interval for each xj. By Definition 5.2 we are to show that
{c: c c W1, v(c, d)e A}e A1 when d e W2 and A e •U. Let xj e X, satisfy
w,(zs) = d. Then {c:c E W1, v(c, d) e A} {w1(x1):x, e X1, w&(z1 , x2) e A}
{w(z 1, b):; x X,, w(x 1 , x.) E A C) W&(x2)}. Since w(x1 , x2) < w(x,, x.)
w(x1 , b) < w(x, b), it follows from the continuity of w that if A 3 W(xg)
is an open interval in WI(x,) then {wL(xl, b):x1 e X1, w(xl, xz) e A ( W,(x,)}
is an open interval in W, and hence that {c:c e W1, v(c, d) e A} e 11. Thus,
if A e U1, then in general {c: ee W1, v(c, d) E A}I e A. (See Exercise 19.)
Hence v is continuous in W1. The proof for W, is similar.

Now suppose (c, d) <* (e,f). Then v(c, d) < v(e,f) by (5.23). Since v
increases and is continuous in each component, it is easily seen that there are
intervals R1(c), R1(e) e A, and R2(d), RZ(f) C 5% such that (c, d) E R1(c) x
R,(d), (e,f) c R1(e) x R2(f), t <* (e,f) for all t e RI(c) x Ra(d) and
(c, d) <* t for all t e R1(e) x Rg(f). This is condition 2 of Theorem 3.5 in
the <* context. It then follows from that theorem that {r:r E W, x W.,
r<*t)EA5 x 5K2 and {r~re HW x W., t<*rliE3{ x R,2 for each
I e W, x W2, which is Q3 for <*.

Thus, all the hypotheses of Part I hold for < * on W, x W2, so that there
are real-valued continuous functions v, on W, and v2 on W2 that satisfy
(c, d) <* (e,f) - vl(c) + v,(d) < v1(e) + v,(f) and are unique up to
similar positive linear transformations when v1 + vt additivity holds.
Defining u1(x,) -v(w,(xi)) we then get (xi, x,) < (yi, y,) <=-4 uj(x1) +
u2(x2) < uA(yJ)+ u2(y,). Because w, on Xj is continuous and vi on W, is
continuous, u, on X, is continuous (Exercise 16). *
Three or More Factors

Provided that at least three factors actively influence preferences, or are
essential to use Debreu's term, Debreu's additivity theory with n ;> 3 requires
only the m = 2 part of condition C in Theorem 4.1. For ready comparison
with Theorems 5.4 and 5.3 we state his theorem as follows.

THEOREM 5.5. Suppose X = 11n, X,, n • 3, < on X is a weak order,
x < yfor some x, y e X that differ only in the ith components (i = 1,. . n),
and the following hold throughout X:
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SQI*. [(0,z)ES(y, "w), X < yor x--.y]=>not z< w.

Q2*. (Xi, V,) is a connected and separable topological space for i
_ t, ... , n.

Q3*. {X:x E X, x < -_ and {x:x e X, y < x) e

Then there are real-valued functions u1, ... , u, on X1,.. . , K• respectively
that satisfy (5.8), and ul ,. .. , sati.hying (5.8) are continuous in Z1..,
G,, respectively and are unique up to similar positive linear transformations.

Proof, Part L As for the preceding theorem we consider first the case
where each Xi is a nondegenerate real interval, ri is the relative usual
topology for X,, and (5.18) holds (x < y =:> x -< y) along with the other
hypotheses of Theorem 5.5.

1. For the same reasons given in Step 1, Part I of the preceding proof, and
by Lemma 5.4, there is a continuous (in Il G,) < - preserving real-valued
function v on X that is continuous also in any combination of factors.
Moreover, (5.19) holds.

2. Following Debreu (pp. 22-24) we consider first an additive representa-
tion for X, x X2. With aj e ., on the interior of Xi for i > 2, let

H-= X, x X. x {a3 ) x-.. x {aj

and let <0 on X, x X2 be the weak order induced by the restriction of < on
H. By QI*, <o is independent of the particular as,... , a. values used.
Moreover, the conditions in the first paragraph of the preceding Part I proof
apply to <0 on X1 x X2 : Q3 follows easily from Theorem 3.5, but QI (the
C3 condition) is more difficult to verify.

3. Because of continuity and x < y = x < y, the former Part I proof
used only the indifference part of Ql in the two forms shown in Figure 5.7.
Form I was used to establish additivity on [a, b] x fc, d]: Form II was used
in extending additivity to all of X, x X2. In either case the -. part of QI says

p R . . .P R

Q R'

Q R'

Q . PP.
Q,

Form I Form If
Figure 5.7
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.4

/X X

Figure 5.8

that (P •p', Q •Q') Z J •R' and (Q •Q', .••R') = )•Pp'. To
show that these hold on K we show first that they hold for sufficiently small
rectangles in H.

4. Let zx < z 1 and x2 < z, with the differences z1 -- ax and z2 -- x• suffi-
ciently small so that there will be a point W' = (x 1, x2, b 3, ... , b,~) E X" that
is indifferent to W = (z1, z2, a 3,..... a,,) € If. This is shown on Figure 5.8
and follows from continuity and the fact that the a, were chosen on the
interiors of the X1. Let y3, t, • X• for i -- 1,,2 be such that x8 < y• < t, < z•

S~~and such that Q -, Q' and P~-. p'. Because W:-• W' there is a Q*
S~(x,, x3 , c 3 ,..... c.) in the indifference set (hypersurface) containing Q andQ'. Let T", T', R, and R' be positioned as indicated. Then, by QI*,

I(Q*, R) E2 (Q', T), Q"*, Q']I= R -• T", ((Q*, R') £2 (Q, 7"), Q* Q] ==.
R' ,-.,T', and [(P, l") Ea(P', T). P •P'] _- Ta -,T', so that R',•R' by
transitivity. By a similar analysis (take R ~-s R', then position P, P'), we have

(Q"• ' •R)=•P,.T '
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5. Suppose P F' and Q Q' as in Form I, Figure 5.7. By repeating the
procedure used for positioning the new point PY in Figure 5.3 we obtain a
succession of such points and their associated indifference curves that proceed
toward the lower left corner of the rectangle that has P and P' (Figure 5.7)
as two corner points. Using the construction procedure of Figure 5.3 at each
step, the rectangle is divided into many small rectangles. After some suffi-
ciently large number of steps, the W- W' condition of step 5 above will
apply to each 2 x 2 block of four small rectangles, and hence Q1 holds in
these cases. Beginning in the lower left corner and using the QI condition on
the 2 x 2 blocks, one can show that, for each small rectangle, the lower right
corner is indifferent to the upper left corner. Using transitivity, this leads to
R -- R'. Similarly, if A - R' and Q ,- Q', we find (by working into the
middle from the lower left and upper right corners) that P '-, P'. It then
follows from the former Part I proof that additive utilities hold in the
rectangle with corners P and Y' in Form II of Figure 5.7 and from this it
follows that QI holds for Form II. Thus QI holds in general for H.

6. We know that additive utilities exist for H. Proceeding by induction
assume that for each i from I to k - I (Ž2) there is a continuous, increasing
real-valued function u, on X, such that the indifference hypersurfaces in
H _1 Xi (i.e., flk-I x x M k {a,}) are represented by j u,(xt)

constant. Following Debreu (p. 24) we extend additivity to rJk , X,.
It follows from QI* and step I that i_ I u,(x,) = u.(y.) • v(xD,..

xk_1 , xk, ak 4 .... , a.) = v(yl,..., k-, xk, ak+,. .. , anj. Hence, we can
define a real-valued function f on {'jk u,(x,): x e X, for i=I,
k-- 1} x Xk by

k-1

f(•X, x) = v(xI .... , Xk, ak+1 ..... aJ,) when , u,(x,) = a for some zi.
1

The f increases in each component and is continuous since v is continuous.
Let • - {v(xl .. xk,ak,±,.... a.):xjeXj for i= 1,.... k}, a real
interval. With (o e 0, the set of all (a, xk) pairs that satisfy

f(P , Xk) = (0 (5.25)

represents an indifference hypersurface in Hj=. X1. Clearly, given (xk, w)
X. x Qi, if (5.25) holds for some o = 1-1 ui(x,), this a is unique; we shall
call it g(xk, w). It follows that the (o indifference hypersurface represented by
(5.25) can be thought of also as the set of all (x,, . . , xk) for which

k--1

Xu,(x,) = g(x, o'- (5.26)

Let G, a subset of X. x Q, be the domain of definition of g. With Tn the
relative usual topology for D, the applicable topology for G is V .
{G 0 A :A C- lG x '6}). g is continuous in V%. (See Exercise 22.)
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7. Let (at, co0 ) be in the interior of G, and take (u,(aj,... ukJaO)
from the interior of {(u(xO), . . , ut(x•). 1t' u,(x,) = g(a., N)):

k-2

jE u,(a,) + u,_.(ak_1) g(ak, oA). (5.27)
1

Next, let (xe, co) e G be near enough to (aq, aO) so that the operations used
with (5.28) and (5.29) are possible. Select (c1, . , c,..) G I' Xj for which

k-2
Su,(af) + uk_.(cA._1 ) 4g(x0, w0) (5.28)

k--2
, u,(cj) + u,.-.(at-1 ) - g(a,, co). (5.29)

By (5.27) and (5.28), (a,,... , a. 2 , ak-1 , aj-- (a,..., a,-g, ck.-, x,,) since
both are on the cow indifference hypersurface. Then, by QI*, (c,, qc-2,
a~t-L, a,) ,--, (c1,..., ck2, ck..1 , ,k). Since the first of these is on the co
indifference hypersurface by (5.29), so is the latter:

•,Ui(ci) + Uk,_•(c,-_) = g(Xt, 00). (5.30)
1

Subtracting (5.27) from (5.28) and (5.29) from (5.30) we get
g(k,, &J) = g(ak,, 0j) + g(X,,l ( 0 ) - g(a,, coi). (5.31)

8. Let V be a rectangle in G whose sides are parallel to the axes (of X, and
.G) and which contains (a,,, o0 ) and permits the operations used on (5.28)
and (5.29) for each (xk, cu) e V. By (5.31) and Lemma 5.4, g on V can be
written as the sum of increasing continuous functions of co and x', say

g(x,, o) = h(o) - uII(Xk). (5.32)

This analysis applies to each (aý,, coo) in the interior of G: eazh such (ak, cap)
will have an associated V rectangle in G within which g can be decomposed
as in (5.32). Suppose V ri VW 0 s with

g(xk, wv) = h(cw) - uk(xk) for (xk, to) e V (5.33)

g(xk, (o) = h'((o) - u,'(xk) for (xk, co) e V'. (5.34)

Fix (b, Wo°) E V n V' and transform h' and u' by adding constants so that

h'(wo0 ) = h(co') and uz,(b) = u,(b). (5,35)

Suppose (Xk,, () C V r V'. Then, by the parallel sides condition, (b, Wv) and
(xk, o0 ) are in V n V'. Hence, using (5.33) and (5.34),

uJ(X,) = - (x,., cv0) + h(wo)
u (Xk) = -g(XK., 1( 0 ) + h'(coo)
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so that uk(xZk) = u'(xk) on using (5.35). Similarly, h(w) = hf(w). Thus, under
the alignment of (5.35), (h, uk) = (h', u') on V r) V'. It follows that h and ut,
can be defined so as to satisfy (5.32) throughout the interior of G. Continuity
then insures that (5.32) holds on all of G.

9. Substitution of (5.32) into (5.26) yields •l u,(x,) = h(wo) as a repre-
sentation of the co indifference hypersurface in f jl X•. By induction, each
indifference hypersurface :n IT1 Xj can be represented by "L• uj(xj)--
constant, with each u, continuous and increasing in x,.

Proof, Part 11. The proof that the general situation of Theorem 5.5 can
be transformed into the structure of Part I in this proof is similar to the
Part II proof of Theorem 5.4. *

5.5 SUMMARY

Although a very general theory of additivity has been developed by
Tversky (1967), it becomes somewhat complex and difficult to interpret in
an easy, way when infinite sets are involved. The reader interested in a very
general theory should consult this paper.

When rather strong structural conditions, such as weak order, X
I=,• Xj, solvability, and so forth are assumed to hold, less general but more
easily interpreted additivity theories result. One of these, developed by Luce
and Tukey (1964) and Luce (1966), is algebraic in nature and involves the
assumption that differences in the levels of some factors can be offset (in the
preference sense) by compensating differences in the levels of other factors.
As shown by Luce (1966) it is possible !o weaken this unrestricted solvability
condition and still obtain results similar to those in Section 5.2. The theory
that results from restricted solvability is very similar to the topological
additivity theory of Debreu (1960) as reviewed in Section 5.4. In all the
theories noted in this paragraph, the independence condition C3 of Theorem
4.1 is sufficient for additivity, but C2(m = 2) can be used when there are
more than two factors because C, then follows from C2 and the other con-
ditions. In these well-structured theories additive utilities are unique up to
similar positive linear transformations, and in Debreu's theory each u, on
Xj is continuous in the topology associated with (<, Xj).

INDEX TO EXERCISES

1-3. Lexicographic orders and additivity. 4. mx + nz = (m + n)x. 5-6. Strictly ordered
groups. 7. Commutative group. 8. Similar positive linear transformations. 9. Unbounded
utilities. 10. Countable sets applicability. 11-12. Closure. 13. Product topology. 14-15.
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Products, intersections, unions. 16-22. Continuity. 23-24. Insufficiency of C2(Pi*, QI*)
when n = 2. 25. Mean-variance criterion for normal probability distributions.

Exercises

"1. For each of the following cases X X, x X 2 and (xi, z2) -< (Yl, y2) <
_-(1 , x) <L (yl, y2) -. x, < y, or (@1 - yl, x2 < y2). Verify the assertions made.

a. X, = (0, 1), X2 = {r:r is a rational number}. Additive utilities exist.
b. X1 = {r: r is a rational number), X2  ( (0, 1). Additive utilities don't exist.

X. X' = X2 = {j:j is an integer}. Additive utilities exist.

2. (Continuation.) Even though additive utilities exist in Exercise 1c, (Y, +, <L)
as defined preceding Theorem 5.1 for this case is a non-Archimedean strictly ordered
group and therefore there is no f on Y that satisfies (5.3) and (5.4). Discuss this
situation further.

3. Let X --X, x X2 x Xs with X, ff {O, 1}, X2 mff {1, 2,... }.

a. If X38  {0, 1} prove that additive utilities do not exist when x < y x <Lý y.
b. If Xa3 = Re and x -< y =:. x <L y show that there is a countable subset of X

that is -<-order dense in X.

4. Let (Y, +) be a group. Show that if m > 0 and n < 0 are integers then
mx + nx = (m + n)x whenever x e Y.

5. Prove that a strictly ordered group is Archimedean when (5.3) and (5.4) hold.

6. With L, and U, as defined in the proof of Theorem 5.1, prove that there is a
unique real number g(x) such that m/n < g(x) < ris for all rnin E L. and rls e U,.

7. Let Y = {O, a), a # 0, and define ma - 0 when m is an even integer and
ma = a when m is an odd integer. Define + fully so that (Y, +) is a commutative
group.

8. Show that additive utilities are unique up to similar positive linear transfor-
mations when X = {x1, yl} x )x2, y2} and (xj, z2) -< (xj, y2) -' (yi, x) -< (yl, Y/).

(Assume that -< is a weak order.)

9. Verify that uiw.r the hypotheses of Theorem 5.2 u1 and u2 in (5.6) must be
unbounded when x -< y for some x, y e X.

10. When x -< y for some x, y E X, can XA and X2 be countable under the
hypotheses of Theorem 5.2? Is the same thing true for the hypotheses of Theorem
5.4?

11. Let X = Re with the usual topology 'U. Specify the closure of (a) {0, 1,
2, .. .1; (b) {r:O < r < I and r is rational); (c) {1/n:n = 1,2, 3,...); (d) {ml
21: m = 0,1, ..... , 2", n =1,2, .. ..}.

12. Let X be all rational points in Re, with the relative usual topology {X 0
A: A e %}. What is the closume of X

13. Let (Xi, 16j) be a topological space for i = 1, 2,.... n, and let f-* r be the



78 Additive Ltilities wth htfink e Sets

family of sets formable by arbitrary unions of the sets in {fl- A,:Aj 6 'G, for
'l i - 1 . ... , n). Prove that ITI* 'G•,= 1" IT 'i
l ~ ~~~14. Let X- ,= I•'•qX;, A1 a Xi for j -= 1, .... m and i - 1, .... n,.Prove that

His 1A I) - (iLI P,*
Ff,-.~~~~ (nn n" n4

15. (Continuation.) Let X = jl'j K, Aj(Q) S; Xj for all r E T, where T is an
arbitrary set. Verify

a. Li- (n,,,A (t))- n--- (ri,7-, A

c. Show by example that UT (fl A1(t)) can be a proper subset of 1- (U TA,()).
16. Let (X, Rt), (1Y, 8), and (Z, Z) be topological spaces and suppose f on X

into Y is I - 8 continuous and g on Y into Z is 8 - 1 contcz ous. Let h(x) -
(f(x)) for all x e X. Prove that h is it - Z continuous.

17. Using the first part of the proof of Lemma 5.4 as a guide, prove that if
(X, At), (Y, 8), and (Z, 16) are topological spaces, if f on X into Y is Xt - S
continuous and if , on X into Z is At - 76 continuous, then h on X into Y x Z,
defined by h(x) = (f (x),g(x)), is At - (8 x Z) continuous.

18. With IUL the usual topology for Re, verify that A c U if and only if A is the
union of open intervals in Re.

19. (Continuation.) Argue that a real functionf on X is continuous in the topology
Z for X if and only if A is an open interval in Re implies that f-1 (A) = {X:Xs e X,
f (X) E A} is in 16.

20. With (X, at) and (1Y, 8) topological spaces and f a function on X into Y,
let f(X) = {y: y c Y and y = f(x) for some x -X). Show that iff is at - 8 con-
tinuous, then/fis it - {f(X) r S: S c 8} continuous. Thus, a continuous function
is continuous also with respect to the relative topology for its range.

21. Let f be a real, strictly increasing (or strictly decreasing) function on a real
interval [a, b], and suppose that the range off, f(X), is a real interval. Prove that
f is continuous.

22. Suppose X, Y, and Z are real intervals, f on X x Y onto Z is strictly in-
creasing in each variable and is continuous. For each (yi, z) E Y x Z for which
there is an x c X that satisfies f(xr, y) = z, let g(y, z) equal x when f(x, y) - z.
Let G _ Y x Z be the domain of g. Prove that g is continuous.

23. Given X [1, oo) x [1, co) and
u(x1, x2) = xIX2 + X,' for each (xz, x2) E X,

suppose (XI, •2) -< (YI, Y2 ) if and only if u(xl, x.) < u(yl, y?), for all (xz, X2),

(yi, y.2) e X. Verify that all the hypotheses of Theorem 5.4 hold except for QI, and
that QI* holds for this case (i.e., Q). Do additive utilities exist in this case? Why
not ?

24. (Continuation: due to David Krantz.) Given X = (0, co) x (0, 00) and

XJX2 + XIIS if 1 :9X 1, I •!ýX2
u(x 1,x 2) =x 1 (x 2 +1) if 0 <xx I <x2

2xlx2 if 0 <x 1 , 0 <i 2-1
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suppose ((,YI) <(y 1 , Y#) if and only if u(xi, xd) < u(YI, ya), for all (x,, xs),
(Yi, Ys) X. Verify that all hypotheses of Theorems 5.2 and 5.4 hold with the ex-
ception of PI or QI, and that P1 fails but PI* or QI* holds.

25. Let X be the set of all normal probability distributions on the real line. Each
such distribution is completely known when its mean #' and standard deviation

S(kO) are specified, so that we can represent X by the set X' of all ordered pairs
(x, a') for which j is a real number and a _ 0. If the hypotheses of Theorem 5.4
hold for < on X' then there are continuous rea!-valued functions f on ( - , c0)
and g on [0, oo) such that, for every (F, a) and (/I*, cr*) in X',

,, a') -< (IA*, Cr*) -# f(,) + g,(,r) < f(A*) + g(,*).

H you are familiar with normal probability distributions, comment on the reason-
abloness of the hypotheses (in particular Ql) in the case where each normal dis-
tribution represents a course of action that is a gamble for amounts of money.



Chapter 6

COMPARISON OF PREFERENCE
DIFFERENCES

All preference axioms in preceding chapters and those in Parts 11 and III
involve only simple preference comparisons (<). In this chapter, however,
we shall consider a "strength-of-preference" notion that involves comparisons
of preference differences. We will use a binary relation -<* on pairs of ordered
pairs in X x X.

We interpret (x, y) < * (z, w) to mean that the degree of preference for x
over y is less than the degree of preference for z over w. The "degree of
preference" for x over y can of course be "negative" if y is preferred to x.

For conceptual clarity I shall use x - y to denote an ordered pair (x, y) e
X x X:x - y = (x, y). Thus, x - y < * z -- w will be used in place of, and
is identical to, (x, y) < * (z, w). This notation suggests some conditions that
may clarify the notion of directed preference difference comparisons, such as

X - y z -- i --!> y -- z <* -- x, (6.1)

6 - * z -- i,=> X - z -<* y - (6.2)

In our utility representations x- y < *z - w will be associated with
u(x) - u(y) < u(z) - u(w). In distinction to this approach Suppes and
Winet (1955) work with undirected or absolute difference comparisons and
associate the preference degree between x and y with Iu(x) - u(y)l. They use
also a simple preference relation (-<). With directed differences < c:.n be
defined directly from < *, such as

x -, y <C>x - X -<* y - x, (6.3)

but at least one author, Armstrong (1939), has taken issue with this. His
idea, which is not in vogue today, was to take < * as a precisely "measurable"
notion so that, for example, if x -K, y then, by gradual changes, one can
always find a z between x and y so that - - -. * y - z. and eventually

so
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obtain x - Y z - w -4 u(x) - u(y) < u(z) - u(w): but at the same
time he championed intransitive indifference for i- with x < y only if the

- difference u(y) - u(x) exceeds a minimal positive threshold value.

S6.1 "MEASURABLE" UTILITY

Before we look at some formal theory, other remarks should be made.
Defining

x -- y, z -w-t:>(notx- y-z - w, notz- w *x -- y) (6.4)

it seems clear, Armstrong (1939) and others to the contrary notwithstanding,
that there is no more (and probably less) reason to suppose that -,•* is
transitive than to suppose that -,- is transitive. For example, can you find
one and only one value of x for which $x - $0 -* $100000 - Sz? If you
can, I venture to say that your discriminatory judgment is rather more acute
than that of most mortals.

Since its introduction by Pareto (1927, p. 16) and Frisch (1926), the idea
of comparable preference differences has been severely criticized, and for
reasons that go deeper than the discriminatory vagueness that may lead to
intransitive --. *. One charge has been that the notion has no operational
meaning. Because of this, several "operational" modes for making compari-
sons have been suggested, including the following three, where we assume for
convenience that y < x -< w < z.

1. To compare x - y and z - w, compare a 50-50 gamble resulting in
either x or w with a 50-50 gamble resulting in either y or z. If the former is
preferred, take z - i < * x - y, and so forth.

2. To compare x - y and z - w imagine that you already have y and w
and can either exchange y for x or exchange w for z. If you prefer the former
exchange take z - w < * x - y, and so forth.

3. Assuming that x, y, z, and w are nonmonetary, estimate the minimum
bonus Sa for which x -• y + Sa, and estimate the minimum bonus Sb for
which z-,itw + Sb. If Sa < Sbtakex -y -<*I, --w.

Of these three we must reject the second since it violates the hypothesis
that X is a set of mutually exclusive alternatives, in which case it makes little
if any sense to suppose that you already have both y and w. The third
approach, which might appeal to some people, is suspect first for the reason
that it presupposes a form of independence between X and the monetary
bonuses (as in a two-factor situation in Chapters 4 and 5) and second that,
even if independence applies, there is some question about defining a strength-
of-preference notion on the basis of simple preference comparisons.
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This last clause applies also, as noted by Weldon (1950) and Ellsberg
(1954), among others, to the 50-50 gambles device. Simple comparisons
between even-chance gambles as a basis for defining degree of preference
seem to distort the notion introduced by Pareto and Frisch. Included in this
distortion is the addition of chance, which plays no part in the basic notion.
Along with Weldon and Ellsberg, I would have no quarrel with an individual
who judges that $30 - $0 -<* $100 - $40 but prefers an even-chance
gamble between $30 and $40 to one between $0 and $100. The latter judgment
involves the individual's attitude toward taking chances, an attitude we feel is
not part of the -<* notion.

If we do in fact reject such approaches we may be driven back to the idea
of the early writers on this subject, that <* comparisons are essentially a
matter of direct self-interrogation as to whether your degree of preference
for x over y exceeds, equals, or is less than your degree of preference for z
over w. As noted above, this is rejected by some because of its "nonopera-
tional" character.

Others dislike the idea of direct preference-difference comparisons for the
reason that, under sufficiently powerful conditions on < *, one must logically
accept the ability to "measure" preference differences introspectively much
as one would go about measuring lengths with a measuring rod. This
implication of the "measurability" of utility has caused much commotion in
the literature: some writers who accept the concept of simple preference
comparisons find it impossible to endorse the notion of "measurable"
utility. Pareto, in fact, denounced the very notion he introduced when he
found that it was not needed to derive certain results in the theory of
static, riskless, consumer demand. On the other hand, Frisch (1964) remains
an advocate of "measurable" utility: in the cited paper, on the subject of
dynamic (time-dependent) consumer demand theory, he points out that
several attractive results cannot be obtained without some notion of
"measurable" utility.

For some people, the direct, introspective "measurability" pill may be
easier to swallow when intransitive -. ,* is allowed to enter the theory.
Although our preference-difference comparisons may not be as precise as
length comparisons made with precision instruments, I do not feel that this
is sufficient reason to abandon the idea of such comparisons.

6.2 THEORY WITH FINITE SETS

Using the method of Adams (1965), we now state and prove two represen-
tation theorems for preference-difference comparisons when X is finite. Both
are incorporated in Theorem 6.1. The A -c:. A* theorem permits intransitive
,,s*, but the B ,€=> B* theorem takes ,-.,* as transitive. The A theorem is
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proved by Adams (1965). An equivalent of the B theorem is proved by Scott

(1964).

THEOREM 6.1. Suppose X isfinite. Then

A. [z,". .. ,,,w',.,. , w is a permutation of gY, . . . 20,,z,..,

Sand xJ -- • < z - w for alij < m] =:: not x'M -- <. z' - w- ;
B. [x',. . , wt, w, ... , wn is a permutation of y1, . . , y-, ,

and z - y' z' - wJ or x 1 - yJ .. * z'•-- w1 for each j < m= not

for all x', yS, zt , w c X and m = 2, 3,.... if and only if there is a real-valued
function u on X such that ,for all x, y, z, w C X,

A*. x - y- * z - w = u()-u(y) < u(z) - u(w);
B. x -y <* - w :>u(x) - u&) <u(z) - u(w).

It is easily seen that A* ==. A and B* ==> B. A does not require -< * to be
transitive although the transitive closure of -<* under A is a strict partial
order. A does not imply either (6.1) or (6.2). On the other hand, B implies
that -< * is a weak order along with (6.1) and (6.2). For asymmetry, B says
that x - y•<' * z - w =>- not z - w -< * x - y, since x, z, w, y is a permuta-
tion of y, w, z, x. Negative transitivity then follows from B: (not x - y < *
z-- w, not z - w <* r - s)=-. (z - w<* x - y, r -Y <*z - w)=-not
x - Y < * r - s. With < as defined in (6.3), B implies that -< on Xis a weak
order. Here and later, <* =- U< * .

Su ffciency Proofs. Let A hold. To apply the Theorem of The Alternative
(Theorem 4.2) let c = (u(t1), u(12) .... , u(t")) where X - {t', ... , tIN}. Let

A be the set of all x - y < * z - w statements. If A = o, A* is immediate.
If A ; 0, each corresponding u(x) - u(y) < u(z) - u(w) translates into a
c. ak > 0 statement, which gives a system like (4.4). If this system has no c
solution then, by Theorem 4.2 and the fact that the a. e {- 1, 0, 1) for allj
and k, there are non-negative integers rt at least one of which is positive such
that kra4,-=0 for j l ,... ,N. From the original x -y<*z--w
statements it then follows that there is a sequence x' - y' < * z' - wt. ... ,
xt Y-M- <** Zm- WM with x, .... , X, wt,... ,win a permutation of
Y" .. ,•', z ... ,z1'. If m> 1, this violates A. If m= 1, it yields
x - y -<* x - yt or else x - x <* y - y, each of which violates A. Hence
there is a c solution.

Let B hold. Axiom B implies as a special case that if (in the two-dimen-
sional sense) ((x1 , y•), . . . , (x"', yp)) E, ((zl, wt), . . . , (z"', w*)) and if x1 -

!<•*z$- w or x'--'-..A*zl-wl for each j<m, then not x"-
u"' <, zm - wn. It follows immediately from Theorem 4.1C that there
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are real-valued functions u1 and us on X such that x - y < z - w
uz(z) + u,(y) < u1 (z) + ug(w). Also, B implies that z - y <* z - w -
w - z <Y y - x. Hence z - y <* z - w .<* u1(w) + u,(z) < u1(y) + u&(z).
Defining u(x) -- u=() - u2(z) it then follows that x -- y <* z - w -4
u(--) - u(y) < u() - u(w). ,

6.3 REVIEW OF INF[NITE-SET THEORIES

In this section we review some theories that assume that < on X x X is a

weak order ane imply that there is a real-valued function u on X satisfying

x - y < * z - w 4€• u(x) - u(y) < u(z) -- u(w), forallz,y,z,wGX (6.5)

that is "unique up to a positive linear transformation." This means that if u
satisfies (6.5) then v satisfies (6.5) also if and only if there are real numbers
a > 0 and b such that

v(x) = au(x) + b, for all z c X. (6.6)

The two-factor additivity theories of ChaFter 5 can be adapted to the
present case. Suppose, for example, that there are real-valued functions ut
and us on X such that

x - y -<* z - w *::,- u1 (x) + us(y) < ul(z) + u2(w), for all x, y, z, w e X,

(6.7)

with u1 and us unique up to similar positive linear transformations. Suppose
also that (6.1) holds. Then, as in the proof of Theorem 6.1 B, u on X, defined
by u(x) = u1(x) - u2(x), satisfies (6.5). In addition, u is unique up to a
positive linear transformation. For suppose that u and v satisfy (6.5). Defining
u1(z) = u(x), u&(x) = -u(x), vl(x) = v(x) and vs(x) = -v(x), it follows
from (6.5) that (6.7) holds for (ul, uQ) and for (v1 , vs). Since v, is a positive
linear transformation of ul, v is a positive linear transformation of u.

From this reasoning and Theorem 5.4, the following axioms, after Debreu
(1960), imply a u for (6.5) that is continuous in 16:

Al. x - y <* z - w =-, w - z <* y - X,
A2. [((Xl, yl), (XI, yl), (X3, y3)) Ea ((zl, wI), (z', w2), (z., w*)), xj - Y *

z1 - wj or Xj - Y j .,* zj - wifor j = 1,21 =- not x3 - y3 < * Z3 - W3,

A3. (X, ') is a connected and separable topological space,
A4. {x - y:x -x- yX x X, x-- y-<*z - w) eZ x 1 and {x - y:x--

y e X x X, z - w<* x - y) 61 x , for every z - w E X X X.

Algebraic Axioms

Suppes and Winet (1955), Scott and Suppes (1958), and Suppes and Zinnes
(1963, pp. 34-38) present nontopological axioms that imply a u for (6.5) that
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is unique up to a positive linear transformation. The first four Suppes-Zinnes
axioms are equivalent to B1 and 02:

8 .L< * on X x X is a weak order,
B2. (6.1) and (6.2).

Their final three axioms, rather than using the complete A2, are based on
algebraic conditions. With < on X and ,-* on X x X as defined in (6.3) and
(6.4), z - yM1z -" w means that x - y,* z - w and y - z. (That is, the
preference interval from y to x "equals" the preference interval from w to z
and the two intervals are contiguous.) Proceeding recursively, z - yM"+'z -

w means that there are s, t e X such that x - yM'~s - tand s - IAtPz - w.
The final three axioms are: for every x, y, z, w G X,

B3. x - s * s - yfor some s G X,
B4. (Y-< zz - w<*x-y) =>("< s< x,z - w<*x-s)for some

s t= X,

B5. (y"<.a,x --y *z-w) =(z-sM"t-w,z-s *x-y) for
some s, I c X and some positive integer n.

B3 is the midpoint or bisection axiom, similar to Armstrong's notion
following (6.3). In nontrivial cases, B3 requires X to be infinite. B4 is like
a continuity condition, and B5 is a structural-Archimedean axiom. B5 says
that if the difference x - y is "positive" then, no matter how large z - w
happens to be, there is an n such that the z - w interval can be divided into
n + 1 equal parts no one of which is larger than x - y.

Pfanzagl's Theory
Pfanzagl (1959) presents axioms that, under one interpretation, imply (6.5)

with u unique up to a positive linear transformation. His general theory uses
a set X that is connected (topologically) and a function f on X x X into X.
Instead of -< * he uses < along withf. However, in the interpretation of this
chapter, <* is not completely absent sincef(x, y) is interpreted as a point in
X that is midway in preference between x and y, like s in B3.

In addition to a continuity axiom, Pfanzagl's theory uses the following
assumptions:

C 1. < on X is a weak order,
C2. x < y :=>f(x, z) < f (, z) and f(z, x) -< f(z, y) for every z e X;

x ^, y =>f(x, z) ,-. f(y, z) andf(z, x) ,- f(z, y)for every z c X,
C3. f(f(x, y),f(z, w)) -.,f(f(x, z),f (!, w)).

C3 is the bisymmetry axiom. These axioms (including continuity) imply that
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there is a real-valued function u on X that satisfies
X < yý u(Z) < u(Y) (6.8)

u(f(x, y)) = pu(x) + qu(y) + r (6.9)

for all z, y c X and is unique up to a positive linear transformation.
Under the interpretation off as a midpoint function, two more axioms

arise:
I C4. f(x, x) , x

CS. f (X, Y) -AfY, X).

When x < y for some x, y e X, C4 and C5 require p = q and r = 0 in
(6.9). It follows that f(x, y) < f(z, w) • u(x) + u(y) < u(z) +4 u(w). (6.5)
then follows when < * on X x X is defined as follows:

x - Y z - w -*f(x, w) <f(z,Y). (6.10)

6.4 SUMMARY

The notion of comparable preference differences is (with the exception of
Exercise 17) the only strength-of-preference or preference intensity concept
that appears in this book. The additive utility theories of Chapters 4 and 5,
although mathematically similar to the theories in this chapter, are based
solely on simple preference comparisons and involve no higher-order prefer-
ence concepts.

With x - y < * z - w interpreted as "your degree of preference for z over
w exceeds your degree of preference for x over y," the conditions that relate
x - y -< * z - w to u(x) - u(y) < u(z) - u(w) are similar to the conditions

used in two-factor additivity theories. Exceptions to this arise in (6.1) and
(6.2), which are addressed specifically to the preference-difference notion and
have no counterparts in preceding chapters.

INDEX TO EXERCISES

1-3. Even-chance gambles theory. 4-6. (6.1) and (6.2). 7-9. (6.3). 1). Condition B.
11. Semiordered preference differences. 12-13. Algebraic theory. 14-16. Pfanzagl's con-
ditions. 17-18. "Twice as happy."

Exercises
I. Interpret (x, y) -< (z, w) to mean that a 50-50 gamble between z, w e X is

preferred to a 50-50 gamble between x, y E X. Assuming that X is finite, give
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necessary and sufficient conditions for -< on X x X for each of the following two
utitity representations: (a) (x, y) -< (z, w) =. u(x) + u(y) < u(z) + u(w); (b)
(X, y) -< (Z, w) t: u(x) + u(y) <U(Z) + u(w).

2. (Continuation.) Using Theorem 5.4 argue that, when Al of Section 6.3 is
replaced by (x, y) (y, x) for all x, y e X, and (-<*, -*) in A2, A3, and A4 is
replaced by (-<, c-), then there is a real-valutd function u on X that satisfies
(x, y) -< (z, w) .-:> u(x) + u(y) < u(z) + u(w) and is continuous in 'S and unique
up to a positive linear transformation.

3. (Continuation.) Interpretf(x, y) in Pfanzagl's theory as an element in X that is
indifferent to a 50-50 gamble between x and y. Show that (x, y) .< (z, w) .€:> u(x) +
u(y) < u(z) + u(w) follows from (6.8) and (6.9) when C4 and C5 are used and
(X, Y) -< (Z, W) -4>B ) -< f(Z, w).

4. Prove that [-<* is irreflexive, (6.2)] =:: x - x -,* y - Y.

5. Prove that [(6.1), (6.2)]=:> (x - y '-.* z - w .ý=x - z -*y - w-Žw - z
y- x).

6. Prove that [-<* is asymmetric, (6.2), x - y * z - w ,.4 x - z y - w]
(6.1).

7. Suppose that .*on X' x X is a strict partial order, (6.2) holds, x -< y, y -< z,
and x -< z according to (6.3) and, with a * b -'ýz. (a -* c .*• b -* c, for all
CGX X X),r -rmt*8 -8 for all r,seX. Show that: (a) x -y -<*z -x;
(b)x -y -<*z -y;(c)x -z -<*y -z;(d)y -x. -<*z -- x;(e)z -y -<*z -x.

8. (Continuation.) Show that [-<* is a strict partial order, (6.1), (6.2), x -x *

Y - y for all x, y C X1] =- -< on X as defined by (6.3) is a strict partial order.

9. Show that [-<* is a weak order, (6.2), x - y * z - w . x - z--* y -
w] ;:- -< on X as defined by (6.3) is a weak order.

10. Show that B2 of Theorem 6.1 (B with m = 2) implies (6.2) and x - y -- * z -
W -<::> X -- * y - W.

11. Prove the following theorem. If X is finite, if -<* on X x X is irreflexive,
and if [x1' ... , X-•, w. . w2-n is a permutation of y', . .. , y2,,l, z1, ... , ,
X -Y-yJ-.* z!- wj for j ,. .. ,Im, Xj - yj-.<* Zj--w1 for i= m +,. . ,

2m - 1 I => not ,2m - y 2 , .<* z2m - w2,, for all positive integers m and xj, y3, zj,
w' E- X, then there is a real-valued function u on X such that
x -y -<* z - w ::z>u(x) -u(y) + I < u(z) -- u(w), for all x, y, z, w -Xý

12. Interpret M1, M2 , and M3 (Section 6.3) in terms of points on a line.

13. Show that BI and B2 in Section 6.3 imply that if x - y -<* y - y and y -
z <* w - Itthen x - z ý< * w - t. (Use Exercises 4 and 5. This exercise is due to
Michael Levine: see Suppes and Zinnes (1963, p. 35).)

14. Show that [(6.8), (6.9), C4, C5, x -< y for some x, yE cX] ::>p- = q =

r =-0.
15. With -<* defined from -< on X as in (6.10), prove the following.
a. (Cl, C2, (73) =:: -<* on X x X is a weak order. (Due to Luce and Tukey

(1964, p. 14).)
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b. (Cl, C5) =• (6.1) and (6.2).
c. (C, C4) x - s '--* s - y for some s X.
d. (CI, C2, C3) =>. A2 (in the Debreu axioms).

16. Let condition B. of Theorem 6.1 hold for m • 6. Assume also thatf(x, y)
z ==> x - z -* z - y and let (6.10) apply. Prove that C3, Pfanzagl's bisymmetry
axiom, follows.

17. Galanter (1962) asks the following type of question: What amount of money,
as a gift, would make you feel twice as happy as you'd feel if you were to receive a
gift of $10? If the response in $45 (the median for ane sample), it is suggevsed that
we set u($45) = 2u($10), witn u($0) - 0. This is the same as taking u($45) -
u($10) = u($10) - u($0) so that $10 is midway in preference between $0 and $45.
Do you feel that this midpoint interpretation is reasonable in view of the question
that gave rise to it and the strength-of-preference interpretation used in the chapter?

18. (Continuation.) A motorist is asked for his reaction to delays at toll booths
with the question: What waiting time r would make you twice as mad as you would
be if you had to wait for time t? Given the set of (t, r) pairs {(1, 3), (3, 8), (8, 18),
(18, 30), (30, 45), (45, 60), (60, 75), (75, 90)} and taking u(r) - u(O) = 2[u(t) -
u(0)] for each of the eight (t r) pairs, set u(0) 0 and u(I) = -1 and sketch u on
[0, 100].



Chapter 7

PREFERENCES ON HOMOGENEOUS
PRODUCT SETS

A homogeneous product set has the form X = A x A x If A is re-
peated n times, we write X = All. A common interpretation for A" is that
there are n time periods and (xi,... , z,,) e A" represents a series of similar
events that can be selected or occur during the n periods: Z, is the event for
period i. (xl ..... x,,) could be a series of annual incomes for the next n
years or, in a single-period context, xi could be the amount of money
allocated to the ith of n activities.

With X = A", this chapter examines concepts for the time context,
including persistence, impatience, and discounting. Our usage of these terms
is based on the work of Koopmans (1960), Koopmans, Diamond and
Williamson (1964), and Diamond (1965) in a denumerable-period formula-
tion.

Throughout, -< on X will be assumed to be a weak order. Since the inde-
pendence notions of Chapters 4 and 5 are relevant for X = A", we shall
consider, in conjunction with the foregoing concepts, special cases of

x < y .=- ui(x;) < • ui(y•), for all x, y e A'. (7.1)

One such case is the no time preference situatior where p is a real-valued
function on A and

fl 1

X < y - p(x) < Y p(yi), for all x, y e A". (7.2)
i=1 i=1

Given (7. 1), it is easily shown that there is a p that satisfies (7.2) if and only
if (-1, .... -, X) - (YI, .... , y,.) whenever x1, . . . , x•, is a permutation of
y .... , y.. In the time context this says that times of occurrence of various
events have no affect on preferences, which is often false. Somewhat more
realistic special cases of (7.1) will be considered later.

89
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7.1 PERSISTENCE AND IMPATIENCE

Two notions that postulate forms of regularity of preferences in the
homogeneous time context are persistence and impatience. Persistence applies
when similar preferences hold in the various periods. Impatience says that
you'd rather have more preferred things happen sooner than later. In the
following definitions a denotes the constant alternative that yields a e A in
every time period: a = (a,. . . , a).

Definition 7.1. -< on A' is persistent if and only if (x,. .. _,
a, X+1 t, .. , 9*T < (xi x.. , -z, b, s X ,j1ý..., I I )::: (311 .... , Y,-I, a,

Yj+1, .... Yn) < (y. . - y1, b, yj+,, . ., YJ) whenever i, j E (I, ... n}
and all four n-tuples are in All. < on All is impatient if and only if
a-< b=;-(X1, .. Xia,b, x+,,, .... ,) < (x, , x,-,ba,xi+2,.. . , .)

and d--,b=> (x 1,. .. , x,-,, a, b, x,+, .... , xn),-. (xi,... , xi-1, b, a,

1+,., , - -Ix,j) whenever i e (1, ... , n - 1} and the n-tuples are in An.
Persistence seems reasonable when the n-tuples in X represent income

streams over a period of n years. Impatience might also hold in this case.
The reverse of impatience could hold in some situations for people who
prefer to postpone favorable events, perhaps to increase their anticipatory
pleasure or for a variety of other reasons. The reverse of persistence might
arise from a desire for variety, as in the chicken-steak example preceding
Section 4.1. *

When < is a weak order, < is persistent implies that -< on A, defined byla -<j b .-: (x, ..I Xil, a) xi+l, - .-- IJ < (XII - - _- , i1 b, xi+lt .. xJ•

for some x1, . . . , x,-,, x,+,, . . . , x A, is a weak order (which also
follows from condition C2(m = 2), Theorem 4.1) and that < <.... K are
identical (which does not follow from CQ).

In our definition of impatience, a and b are in contiguous time periods. A
more general case of impatience arises when

~~~= (X1 -(",) -( .. . i-1, a, Xi++• .... , x,-,, b. x,+, ... . )

-• l-< ( "- )(xi, . . .. , xi _1 , b , x ,+,, . . .. IXJ _•, a , x +,, . . . x.) (7-3)

for any I < i <j!< n and xj,.. . , x. e A. This does not follow from
persistence and impatience. The following theorem amplifies this statement.

THEOREM 7.1. (< is a persistent and impatient weak order on A")
does not imply (7.3). (-< is an impatient weak order on A' that satisfies
condition C2 of Theorem 4.1) implies (7.3).

,?roof. For the latter assertion it suffices to show that the hypotheses
imply that (a, x., .. . , x,,-,, b) < (,--)(b, x2, ..... XL,,-, a) when d < (
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- Given d < (--)b, repeated applications of impatience give (a, b, b) <
(,-)(b, a, b, .. b) < (-)(b, b, a, b, ... , b) < (•.• < (,-)(b .... , b, a)
so that (a, b,. .. , b) < (,-)(b,. .. , b, a). Since ((a, b, ... , b), (b, xg, ... ,
X,,_l , a)) E, ((b, ,... , b, a), (a, x2, . ... , x,-,, b)), (a, X'2,...- I X,,_1, b)<

(-,)(b, x., ... , x,,. 1, a) follows from condition C with m - 2.
To verify the negative assertion, take A = {a, b, c}, n - 3, and let < on

A3 be defined by (7.1) when the uj on A take the values shown in the following
array. Clearly, < is persistent and as we shall note in the parentheses it is

U1 L2  U3

a 0 0 0
b 10 9 8
c 20 15 12

impatient (8<9<10,12<15<20,10+ 15<20+9,9+ 12<15+8)
and in fact satisfies (7.3). In the middle of -< we find •K - < (b, a, c) <
(a, c, b) -< (b, c, a) < (b, b, b) - (a, c, c) < - .. Let <' = < except that
we replace (a, c, b) < (b, c, a) by (a, c, b) ,-. (b, c, a). With this one change,
persistence and impatience hold also for <', but (7.3) fails since d -<' b. *

Additive Utilities

When (7.1) holds and < is persistent, each u, function has the same order
on A, as illustrated with A = [0, 1] on the left of Figure 7.1. When < is
impatient also we get a picture like that on the right of the figure in which

U34

0 101
Persistence Persistence and impatience

Figure 7.1 Additive utilities on [0, 1]).



92 Pwefewes on HReooms** Patdset S.,

-u,(b) - u(a) > u,(b) - u,(a) > u2(b) - us(a) whenever b > a (i.e., a < b),
which says that the vertical distance between u1 and us, and between u2 and
ua, increases as b increases.

Additive utilities can of course hold when impatience holds and persistence
fails. For, with A = (a, b} and n = 2, it is easily seen that (a, b) < (a, a) .<
(b, b) .< (b, a) has a ul and u2 that satisfy (7.1). Since 4 < b and (a, b) <
(b, a), .< is impatient. How,-.ver, -< is not persistent since (a, b) < (b, b) and
(b, b) < (b, a).

7.2 PERSISTENT PREFERENCE DIFFERENCES

We shall now look at a higher-order persistence notion based on the degree
of preference relation < * on X x X used in Chapter 6, along with the
weak-order difference representation

x -- y * z -- w # u(x) - u(y) < u(z) - u(w), for all z, y, z, w e Am.

(7.4)
As in Definition 7.1, 0 = (a,... , a) in the following.

Definition 7.2. < * on A' x All is persistent if and only if
X - y .<* Z - W -,- i• - py -<* j,• - )7v (7.5)

wheneverj e-{ 1,... , n},x, y:= y and z, = wi for all i 0 j, and x, y, z, w -A"
This says that the order of preference differences with constant alternatives

dictates the order of differences for each j, other things being equal. With
n = 2, < * is persistent implies that if (a, x 2) - (b, x2) < * (c, y2) - (d, ya)
for some x 2 , y2 c A then this holds for every X2, Y, e A and, in addition,
(x,, a) - (x,, b) .-<* (y,, c) - (YL, d) holds for every xi, yI e A.

Part of the power of persistent < * is shown by the next theorem.

THEOREM 7.2. If u on A" satisfies (7.4) and if < * is persistent then there
are real-valued functions ul, u. c, u,,n n A for which

n

u(z 1,. . . , X.) - u(zj), for all x e A", (7.6)

and, for every a, b, c, de A and i,j - {1,.. n}.

ui(a) - uj(b) < u,(c) - uj(d) <:: u,(a) - u,(b) < ul(c) - uj(d). (7.7)

When < is defined as in (6.3), (7.1) follows immediately from (7.6) and
(7.4). Hence, additive utilities exist for An when (7.4) holds and -<* is
persistent.
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Proof Let u satisfy (7.4) and assume that <* is persistent. Fix e e A,
assign u1(e) ... , u,(e) so that u(e-) = u,(e), and define ui on A, for

1, ,... ,n, by

u,(a) = u(e, . . . , e, a, e,. .. , e) - Y u,(e), for all a e A. (7.8)

To verify (7.6), let oa " ... , x•_, x,, e,.. , e), j' -- ( 1 ,... , zi_1, e,

e,.... e), and y, - (e,... , e, xe,... , e), for 2' <- i 4 n. If a' - *
7-- then i, - J -< * I - i by (7.5), and similarly if V1 - J < a• -
Hence a - fil ',* y' - 4 so that, by (7.4),

u(Xj,. .. , x,, e, ... e) - u(X1',...-, x,-,, e,. , e)
-u(e,... e,xj, e,... ,e) - U().

Summing from i = 2 to i = n and using u(i) = • u,(e) and (7.8) we get

u(x,,. . . x,) - u(x1, e,... , e) = •u(x,) - Zu(e),
i-2 i-2

which yields (7.6) after u(x1 , e, ... , e) is transposed and (7.8) is used again.
(7.7) follows easily from (7.4), (7.5) and (7.6). *
Weighted Additivity

In the rest of this section we shall consider a form of weighted, additive
utilities that is less general than (7.1) and more general than (7.2). This is
the form

n

x < y <Z- Ap(x,) < Ap(y,), for all x, y e A", (7.9)
i--1 i-=

where Aj > 0 for each i and p is a real-valued function on A. It is easily seen
that, when (7.1) holds, (7.9) can hold if and only if there are u, satisfying
(7.1) that are pairwise related by positive linear transformations, say with
u, = a•u + bi anda, > 0 forj = 2,... n.

In the time context ihe A, are weights for the different periods. If A. >
2 > •... > A,, we could call them discount factors: A, > ... > An follows

from (7.9) when < is impatient and x < y for some z, y e X. If A, <... < 2,,
the A, might be referred to as markup factors.

In general, (7.1) along with < persistent is insufficient for (7.9). As this
is written, I do not know of any set of axioms for < on A" that, even when A
is finite, is necessary and sufficient for (7.9). For this reason, and because
(7.9) implies (7.7) when u1 = Aip, we shall consider a pathway to (7.9) that
leads through (7.4) and makes the assumption that < * is persistent. Even
here we shall note a negative conclusion before giving sufficient conditions
for (7.9).
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THEOREM 7.3. Suppose (7.4) holds and <* is persistent. Then with <
defined by x y .4* x - x < * y - x, there may not exist Aj > 0 and a
real-valued function p on A that satisfy (7.9). This conclusion holds even when
u in (7.4) is unique up to a positive linear transformation.

Proof. Let A = {a, b, c) and n 3, and let (7.1) hold with the u, defined
as follows:

abc
u• 0 1 3
u2 0 2 5
u, 0 3 9

Define u by (7.6) and take x -- y < z - w','u(@) -u(y) < u(z) - u(w).
Because u(b) -- u(ci) < u(•) - u(b) and u•(b) -- u1(a) < u1 (c) -- u•(b) for

1 , 2, 3, -<* is persistent. In defining A1, A,, A3 and p for (7.9) we can,
with no loss in generality, set )x 1, p(a) - 0 and p(b) •-1. Then, since
(c, a, a) , (a, a, b) , (b, b, a), p(c) -- A,-- + 1. This along with
(a, a, c) ,-•(b, c, b) gives (A_ + 1)' - I + A(Gm + 1) + (A,l + 1) according
to (7.9), and this reduces to 1 = 2, which is false. Hence (7.9) cannot hold.
Moreover, u is unique up to a positive linear transformation when it satisfies
(7.4). This follows from the fact that each of the 25 other u(x1 , x,, x,) can be
written solely in terms of uta, a, a) and u(b, a, a) when (7.4) holds.*

Sufficient Conditions for Weighted Additivity

Despite Theorem 7.3 there are axioms implying (7.4) which imply (7.9)
also when <* is persistent. We consider one such case, based on Debreu's
theory. The following correspond to AI-A4 in Section 6.3, X = A".

Al'. x -- -<* z w-- = w -- z ~<* yt -- ,
A2'. tf xl, x', x' is a permutation of z1, z', z', and •i', 9/2 9 is a permutation

of w1, wa, w3, and if x' -- y• -<* z•- wJ or xJ- yt ,A* zi -- w'for j -- ,2,
then not x3 - 9 -<* z3 -w,

A3'. (A4, •) is a connected and separable topological space,
A4'. {x- ~ -y•XxXx- I<*z- }•72 n z- ~ -y

K x K, z -- w <Z x -- y}e• " for every z - we•X x X.

Pj" is the product topology for K x K = A" x A". By Lemma 5.3, A3'
says that (A", t") and (X x K, '•"') are connected and separable topologi-
cal spaces. It then follows from Theorem 5.4 and A ' that there is a continuous
(in •'") real-valued function u on K that satisfies (7.4) and is unique up to a
positive linear transformation.

Let u, on A be defined by (7.8) in the proof of Theorem 7.2. Since u is
continuous in n•", u1 is continuous in • for each i. Let -.<* on X x X be
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persistent and define -<* on A x A by

- - b c - d f a -- b -< * J - d, for all a, b, c, d e A.
It then follows from Theorem 7.2 and persistence that

a - b < * c -- d •- ui(a) - uj(b) < uj(c) - u,(d), for all i. (7.10)

This is (7.4) in miniature, for A instead of X. Since u, is continuous and (7.10)
holds for each i, the correspondents of A '-A4' hold for < * on A2 for each i.
It follows that u, and ul are related by a positive linear transformation. In
particular there are positive , ... OR,,C and fis, ... , &,/, such that u,(a) s
ajuja) + fl for all a e A, j = 2, . .. , n. Letting p _= ul, Az = 1, A., -- m, for

j > 1, (7.6) gives u(x) -- J., Ap(x,) + constant, which, on using (6.3) and
(7.4) gives x y< I .= j Ajp(xr) < T Ajp(yj), all A- > 0. This proves the first
part of the following theorem.

THEOREM 7.4. Suppose X = A', <* opt X x X is persistent, and A1',
A2', A3', and 44' hold. Then there are A, > 0 and a continuous (in V) real-
valued function p on A that satisfy (7.9) when < on A" is defined from - * on
A" x A" by z< y--.&-x-x<*y - x. If in addition n> I andx-< yfor
some x, y c X and if j > 0 and p' on A satisfy (7.9) along with A, > 0 and p
on A, then there are numbers c > 0, P > 0 and y such that

4• = %A, i = 1,. .. , n (.1

p'(a) = #ip(a) + V for all a e A. (7.12)

Proof. For the uniqueness assertions take p and the A, as defined for the
first part. Let u,(a) = A2p(a) and u(x) =.. u,(xi). Then, as in the first part
of the proof, u is continuous and hence, by Theorem 3.5, {x:x < y} e •',
and {x:y < z} e ", which establish condition Q3 of Theorem 5.4 (n = 2)
or condition Q3* of Theorem 5.5 (n > 2). With <* persistent and x < Y
for some x, y c X, each of the n factors has an active influence on <. Since
the other conditions of Theorem 5.4 or Theorem 5.5 are easily seen to hold
for < on A", by (7.9), it follows that the A3p in (7.9) are unique up to similar
positive linear transformations. Hence A,' > 0 and p' satisfy (7.9) if and only
if there is a k > 0 and fli such that ARp'(a) = kAp(a) + f#, for i = 1,.. . , n.
Since this gives p'(a) = (kA,/Aj')p(a) + fi,/A', p' is a positive linear trans-
formation of p as in (7.12). Also, since p is not constant on A (x -< y for
some x, y), kAI/A, = kAI/A for all i, j, or A' = (A1/A1)A, for j . 2, ... , n.
Set oc = ./A.. (7.11) then follows. *

7.3 CONSTANT DISCOUNT RATES

Although persistent preference differences were used to obtain (7.9) for
arbitrary positive A,, special cases of (7.9) can be derived using only the
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simple preference relation <. One of these is (7.2). Another occurs when2A+A/• = irfor i = 1, 2,... n -- I with ff > 0, in which case (7.9.1 reduce$

to

-< y " '-4 P(xd) < • ir'p(g)' for all z, y e All. (7.13)
If 7r = 1 we have (7.2), the case of no time preference. If 7 r 1, (7.13)represents the case where utilities are discounted at a constant rate, whicharises under (7.13) when -< is impatient. When ?r > 1, utilities are marked
up at a constant rate.

One way to obtain (7.13) is to begin with Debreu's additivity theory.Taking n 2 3, we shall use the hypotheses of Theorem 5.5 applied toX - A(X, = A for each i) along with one more condition. The new con-dition is referred to as temporal consistency by Williams and Nassar ('1966and as stationarity by Koopmans (1960).
Definition 7.3. < on A' is stationary if and only if there is an e e A suchthat, for all x,,..., , YI, • • •, 1 Y,-1 e A,(X,.., - ,•_•, e) -< (yi, ., y,,_ , e) .='- (e, X1,. , :,- - 0- < (e, yl,• •, ,- .

(7.14)In going from (xx,..., x,_l, e) to (e, x1.... , x,-,) each xj is updated byone period and e is shifted from the last period to the first. Stationarity saysthat preferences do not change under such shifts.
THEOREM 7.5. If the hypotheses of Theorem 5.5 hold for X = A' and if-K on A' is stationary then there is a positive number 7r and a continuous real-valued function p on A that satisfy (7.13). Moreover, ir is unique and p isunique up to a positive linear transformation.

Proof. Let the hypotheses hold, with continuous v. for (7.2) unique up tosimilar positive linear transformations. Define < on 41-1 by-(Xi,. • •, - X._) < (YI ... , Y.-) -=- (--, .. - -1Xn_•, e) < (YI, Y.-.. -, e).
It follows from (7.2) and (7.14) that, for all (x1 ,.. x,,-), (yi, -Y-) C
A'1'

(XI., Xn_,) -< (y,, ... y"_,) -::>Iu,(xi) < I U,(y,)
i-l i-1n-1 n-1

(XI, . . , n-) < (Yi, y.,-_) u,+j(x) < j u,+i(Y,).
It follows from these two expressions and Theorems 5.4 and 5.5 that there isa 7r > 0 and numbers #1, .... I ,,-, such that

uj+1(a) = 7ruj(a) + fli for all a c- A; i = 11 .... In - 1.
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Using thi! recursively to express each u, in terms of ua and letting p w a1,substitution into (7.2) yields (7.13).

Suppose (7.13) holds then along with z < y € . 'i-x,) < A' 1c(,)From Debreu's uniqueness up to similar positive linear transformations itfollows that there are numbers a > 0 and #1, .. • , such that
As-lc(a) = (x•r'-IP(a) + #j for all a e A; I 1,... , n - 1.

With i 1 this gives a(a) oap(a) + #t. Substituting for o with i > 1 wethen have A'-Vop(a) + ,0-fl 1  '-Icmp(a) + P, which, since p is not constant
on A, requires)• - •. 7

7.4 SUMMARY
When X = A" and i indexes time, new concepts come into play, includingrno time preference, impatience, persistent preferences, persistent preferencedifferences, and stationarity. These concepts can apply whether or not

utilities are additive over the n periods.
The most general special case of additivity considered in this chapter is theweighted form x <- y -- I Ap(x,) < I Ajp(y), with Ai > 0 for each i.Debreu's topological theory for weak ordered preference differences alongwith persistent preference differences implies this form. Additive utilities,but not necessarily the weighted form given here, arise from the representationx - y -< * z - w =.€ u(x) - u(y) < u(z) - u(w) along with persistent prefer-

ence differences.
Under appropriately strong axioms for additive• utilities based on simplepreference comparisons, the form x < y -*- I Tri-lp(x1 ) < I 7.,-'p(y) canresult when -< is assumed to be stationary. If < is impatient also then

0<7r< 1.

INDEX TO EXERCISES
1-3. No time preference. 4-5. Persistent preferences. 6. Impatience. 7. Persistentdifferences. 8. Nonhomogeneous preference difference additivity. 9-10. Weighted additivity.11-12. Constant discount rate. 13-14. Present monetary value.

Exercises
1. Given (7.1) prove that (7.2) follows when (x. .... , x,) - (YIi... , y,,)whenever x1, ... x ,, is a permutation of yl,... , y,,. Define p by p(a) - m u,(a).
2. With X 9 A", let (x ... x"M) E* (yl, ,ym)" Y [m > 1, x, 1,

Y1.... I y" e X; the number of times a E A appears as a component in (@ .... , x-)
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equals the number of times it appears as a component in (YI,..., y,,), for each
a - A]. Let condition C' be: ((xl, .... ,x") E.* (y, . .. ,y-), xJ <yJ or zi ,.,
for j = 1, ... , m - I I _ not 9 -< y"I. Show that C' =- C of Theorem 4.1 and
that C' =>. if x, y c X and x,, ... , x, is a permutation of y,,... y,, then
(XI I. . •,,X ) ""(YL, -...- y,).

3. With X • A x A suppose u(a, b) = u(b, a) for all a, b E A and that x -< y<:
"u(x) < u(y). With A - Re, specify a u that satisfies these conditions (define -<
from <) and for which there is no corresponding additive representation as in (7.1).

4. With X = An suppose -< on An is a persistent weak order. Define -<O on A
by a .<o b -t= -(x,,... xi-1, a .xi+,,.... , x n) - x ,. . xi-1, b, x•÷z .... , x .) for

some xi G A. Prove
a. <I on A is a weak order,S~~b. (xi .<o y or xi ,-•oyj for i Is-=,. , n) ==:- x ý< y,

c. (xi < 0 yj for all i and xi -<0 yj for some !) -4. x -< y.

5. Suppose -< on A" is a strict partial order, -< is persistent, and -<j or. A is
defined as in the paragraph preceding (7.3). Prove that each -<j is a strict partial
order and all -<4 are identical. Show also that when -<j is defined in this way and
-< is persistent then it is possible to have all -<i identical weak orders on A when
< on All is not even a strict partial order.

6. Show that u,(b) - u,(a) > u2(b) - u2(a) > ... > u,(b) - un(a) when d -< h,
(7.1) holds, and -< is impatient.

7. Show that if X = An, -<* on X x X is persistent, and x -< y <=. x - <x
y - x, then -< on X is persistent.

8. Show that ifX -' 1-i~j x, if (7.4) holds for all x, y, z, w E Xand if x - x' -<*1 I

y' -=> z - z' -<* w - w' whenever i {, .... n}, (x, a', y= - y, zX -z,,
w =w ) for all] # I and (,x, , y,) = (z•, z, wi , wi ) then there are real-valued
u, on X, that satisfy u(x) - u,(xj) for all x e AX.

9. Show that (7.9) holds with the A.l > 0 if and only if there are ua satisfying
(7.1) that are positive linear transformations of each other.

10. Verify the linear transformation assertion in the proof of Theorem 7.3.
11. Show that if (7.13) holds with 7r > 0 and if -< is impatient and x -<y for

some x, y C A", then 7r < 1.

12. Under the hypotheses of Theorem 7.5 does (7.14) hold for every e G A?
13. Williams and Nassar (1966). Let H be the following set of hypotheses:

X = Re", conditions 1, 2, and 3 of Theorem 3.3, and x -< y <*> 0 -< y - x, for
all x, y -X. The final assumption is referred to as "marginal consistency." Show that
the following hold, given H.

a. x, .- x. X - ,'- 0.
b. x . y .: -x ý- -y.

c. x - y <_ x + z -- y + z for every z G Re".
d. (x - y1, z -w) Mx +fz -ey + w.
e. x - y ::* Mx ,-,My for every integer M.
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X f. < •-y< -X.

g x -<y.- +z -<y + zforevery zeRe".
h. (X Z.< , , W) => X + z -< y + W.

1. x -< y=€ Mx -< My for every positive integer M, and x y< yz-> My <Mx
for every negative integer M.

j. If M is a nonzero integer then Mx -• My => x
k. x - y •x - ay for every rational number o.
m. x •-. y -x m-y for every a c- Re.

"* 14. (Continuation.) Show that H implies that there are positive numbers 11,
A,, such that

X -y x, < y, for all x, y F_ X. (7.15)
i- l =1

To do this show first that, for each x c Ret, there is one and only one a c Re for
which x - a. Then take u(x) = a when x - d, so that u satisfies x -< y <-: u(x) <
u(y). Finally, use results d and m of the preceding exercise to show that u can be
written as u(x) ff i z,•x where 1,• - (0, .. .0, 1, 0, .... ,.



PART
II

EXPECTED-UTILITY
THEORY

Until the raiid twentieth century, utility theory focused on preference struc-
tures that do not explicitly incorporate uncertainty or probability, the
yardstick for uncertainty. The expected-utility theory of John von Neumann
and Oskar Morgenstern, and an earlier theory by Frank P. Ramsey, stimu-
lated new 'nterest in the role of uncertainty in preference structures.

An expected-utility theory may incorporate probabilities in the alternatives
of the preference structure or it may formulate unctetainty in the alternatives
without i, rbrior encoding in terms of probability. In the latter case', proba-
bilities as well as utilities are derived from the axioms. In the former case only
utilities are derived from the axioms since the probabilities are already part
of the axiomatic structure. The former approach is used in this part of the
book- £he alternatives are probability measures defined on a set of conse-
quences. Basic theory is in Chapters 8, 9, and 10: additive, expected-utility
theory for muitiple-factor situations is in Chapter 11.
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Chapter 8

EXPECTED UTILITY WITH SIMPLE
PROBABILITY MEASURES

When each strategy or decision alternative corresponds to a simple proba-
bility measure on the consequences in a set X, we consider the expected-
utility model for computing utilities of the strategies, or their associated
measures. The idea for this model dates at least from Bernoulli (1738) but it
was not until the present century that apparently reasonable preference
axioms were given as a basis for the model. The axioms of this chapter are
similar to those initiated by von Neumann and Morgenstern (1947) and to
later modifications by Friedman and Savage (1948, 1952), Marschak (1950),
Herstein and Milnor (19'3), Cramer (1956), Luce and Raiffa (1957), and
Blackwell and Girshick (1954). The last of these applies to probability
measures that are more general than those considered in this chapter. They
will be e" :mined in Chapter 10.

After an introductory example and a brief discussion of simple probability
measures we shall consider the basic theorem and then offer some criticisms
of its preference conditions. A complete proof of the basic weak-order
theorem is given in Section 8.4. The case of intransitive indifference is
investigated in the next chapter.

8.1 EXAMPLE

Suppose that the owner of a small construction firm plans to submit a
sealed bid for a job that he estimates will cost his company $200000 to
complete. If he bids $x and gets the job, he will be paid Sx: his profit is
Sx- $200000.

Since the construction industry is in a slump, he believes that there will be
many bids. From his prior experience and knowledge of the current situation
he estimates the probability p(x) of getting the job if he bids Sx. [Winkler
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.3

.1.2

200000 25000 300000

Figure 8.1 Probability of getting job for a bid of Sx.

(1967a, 1967b) discusses some ways of doing this.] p(x) for 190000 :!
x • 300000 is shown in Figure 8.1.

Because of the scarcity of work the owner would be willing to take the job
at a loss of not more than $10000. In other words, (get job and make
- $10000) .,- (don't get job). Using an appropriate method of scaling utilities
for the expected-utility model [see, for example, Pratt, Raiffa, and Schlaifer
(1964), Swalm (1966), or Fishburn (1967)], the owner estimates his utility
function for net profit (assuming he gets the job) as shown in Figure 8.2. The

"fi'guje indicates that he is indifferent between making $10000 with certainty
and a"50.-0 gamble giving either - $10000 or $100000. He is indifferent also
between miking $50000 with certainty and an 80-20 gamble giving $100000
(with probability .8) or - $10000 (with probability .2). According to the

0

-~ -k

• 2

0 50000 100000
Net profit ($)

Figure 8.2 Utility of act profit.
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.8

.1

.4

.3

.2

190000 200000 210000 220000 230000 240000 250000

Figure 8.3 Expected utilities using Figures 8.1 and 8.2.

expected-utility model, the latter indifference comparison transforms into
u($50000) = .8u($100000) + .2u(-3$10000). Equations such as this can be
used as a guide in con!tructing and checking u.

If be bids $x his expected utility will be p(x) u(get the job and make
Sx - $200000 net profit) + [I -- p(x)]u(don't get job). By Figure 8.2 and
(get job and make - $10000) (don't get job), u(dnwt get job) = 0 so
that

u(bid $x) = p(x)u(get job and make $x - $200000 net profit).
Reading off approximate values for p(x) and u($x. - $200000) from Figures
8.1 and 8.2 we obtain the expected-utility curve in Figure 8.3, which shows
that expected utility is maximized at about x = 206000. A bid of about
$206000 is therefore recommended.

8.2 SIMPLE PROBABILITY MEASURES

Definition 8.1. A simple probability measure on X is a real-valued
function P defined on the set of all subsets of X such that

1. P(A) > 0 for every A g X,
2. P(X)= 1,
3. P(A uB) = P(A) + P(B) when A, B g X and A r) B = 0,
4. P(A) = I for some finite A 9 X.

Property (4) distinguishes P as a simple probability measure. Chapter 10
removes this restriction and considers expected utility for more general
measures.

Property (3) is the finite additivity property: the probability of the union
of two disjoint subsets of X equals the sum of the two separate probabilities.
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P({x}), which we shall write as P(x), is the probability assigned by P to the
unit subset {z} of X.

THEOREM 8.1. Suppose P is a simple probability measure on X. Then
P(x) = O for all but afinite number of x e X and, for all A 9 X,

P(A) = I (8.1)
xGA

Proof. Suppose Pis simple and A is a finite subset of Xfor which P(A)
1. Then P(x) = 0 for all x 0 A, for otherwise, if P(x) > 0, P(A u {x}) > I
by (3) of Definition 8.1, which by (1) and (3) then leads to P(X)> 1,
contradicting (2). By successive uses of (3), (8. 1) holds when A is finite. For
arbitrary A s X let B = {x:x e A, P(x) > 0} and C = (x:x c A, P(x) = 0}.
By (3), P(A) = P(B) + P(C). Moreover, B is finite so that (8.1) holds if
P(C) = 0. If P(C) > 0 then, by (3), P(C u {x: x e X, P(x) > 0}) > 1 since
if P{x:x e X, P(x) > 0} < I then, by (8.1) for finite sets, P(D) < 1 for every
finite D g X. Hence, if P(C) > 0 we find again that P(X) > 1.

Convex Combinations of Measures

In expectrd-utility theory we use a rule for combining two probability
measures t . form a third measure. This rule can of course be extended to
the combination of any finite number of measures.

Definition 8.2. If P and Q are simple probability measures on X and
a G [0, 1] then 0cP + (1- ax)Q is the function that assigns the number
otP(A) + (1 - ot)Q(A) to each A 9 X.

Under the definition's hypotheses it is readily seen that axP + (1 - ca)Q
is a simple probability measure on X.

If P($100) = .3, P($200) = .7, Q($100)= .5, and Q($300) = .5 then,
with R = .IP + .9Q, R($100) = .48, R(S200) = .07, and R($300) = .45.

Expected Value

If P is a simple probability measure on X andfis a real-valued function on
X then the so-called expected value of f with respect to P, written here as
E(f, P), is defined by

E(f, P) - f(x)P(x). (8.2)
xXC

With P, Q, and R as in the preceding paragraph and withf(x) = x, E(f, P)
$170, E(f, Q) = $200, and E(f, R) = $197 = .IE(f, P) + .9E(f, Q). In
general, Q(f, ccP + (1 - cx)Q) = ccE(f, P) + (1 -- cx)E(f, Q).
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8.3 EXPECTED UTILITY FOR SIMPLE MEASURES

If TI, is the set of all simple probability measures on X then the measures
that correspond to the strategies in the type of situation considered in this
chapter comprise a subset of T,. In our preference conditions for expected
utility we shall use all distributions in T,' for two related reasons. The first is
for mathematical expediency, for when T1, is used it is closed under convex
combinations as defined by Definition 8.3: if P, Q c T and a e [0, 11 then

.P + (I - a)Q e T, The second reason concerns the estimation of utilities,
for when the theory is used as a basis for estimating u on X it is often con-
venient to use measures in T, that have P(x) > 0 for only one to two x e X,
and such measures may correspond to no actual strategies.

The following theorem will be seen to be a corollary of a more general
theorem that is presented and proved in the next section.

THEOREM 8.2. Suppose that T. is the set of all simple probability measures
on X and < is a binary relation on 5.. Then there is a real-valued function u on
X that satisfies

P <4 Q -4: E(u, P) < E(u, Q), for all P, Q c- T, (8.3)

if and only if, for all P, Q, R e T,,

1. < on T. is a weak order,
2. (P<Q, 0Q<a< 1)=:>0tP +(l -- %)R- +Q (IP-- t)R,
3. (P <QO< R) =*>- aP + (I - oe)R -< Q and Q •< #P + (I - #)R for

some oc, f (0, 1).

Moreover, u in (6.3) is unique up to a positive linear transformation: that is,
if u *atisoies (8.3) then a real-valued function v on X satisfies P -, Q ->
E(v, P) < E(v, Q), for all P, Q e T, if and only if there are numbers a > 0
and b such that

v(x) = au(x) + b for al! x e X. (8.4)

Suppose we extend u to Tf, by defining u(P) = E(u, P). Then, if (8.3) holds,
P -< Q - u(P) < u(Q). Now if v on S, is any order-preserving (not neces-
sarily linear) transformation of u on S, then P < Q -4--> v(P) < v(Q). Given
such a v we can define v on X by v(x) = v(P) when P(x) = 1. However, if v
is not a linear transformation of u then v(P) = E(v, P) must be false for some
P e T,. In other words there are functions v on T, that satisfy P < Q <-'
vIP) < v(Q) but do not satisfy P - _z > --: E(v, P) < E(v, Q) when v on X is
defined from t, on Tf, in the imanner indicated (provided that P -< Q for
some P, Q T 30.



106 Expected Utility with Simple Measres

Condition 1: Weak Order
Condition 1, weak order, can easily be criticized for its implication of

transitive indifference. For example, let consequences be amounts of moneyviewed as potential increments to one's present wealth. Let P($35) = 1,
Q($36) = 1, and R($O) = R($100) = .5. Surely P < Q. But it seems quite
possible that P ,- R and Q C, R, in which case -, is not transitive.

For this reason the next chapter examines the case where -< on 93, is onlyassumed to be a strict partial order. We shall not consider interval orders and
semiorders per se, as in Chapter 2, for conditions pl0 and pl I of Section 2.4
are liable to criticisms of the sort given above. For example, if Q'($35.50) =
1, then P -< Q' -< Q but R might be indifferent to each of these, which would
violate pl 1. Moreover, if -< on TJ, is assumed to be irreflexive and to satisfy
pl 1, and if condition 2 of Theorem 8.2 holds then - on T, is transitive. For
suppose to the contrary that (P ,-' Q, Q -,' R, P -< R). Then, by condition

Son P < R ,P -- P + Pj < ½P + R and JP + JR R + ½R = A , so
that, by pl 1, P < Q or Q < R which contradicts (P -, Q, Q ,-• R).
Condition 2: Independence

Condition 2, a form of independence axiom, is regarded by many as thecore of expected-utility theory, for without it the "expectation" part of
expected utility vanishes. Moreover, this condition is often regarded as a
principal normative criterion of the theory, along with transitivity of <.acP + (1 - oc)R may be viewed in two ways: either as a gamble that yields
x c X with probability oiP(x) + (1 - m)R(x), or as a two-stage process
whereby P (or R) is selected in the first stage with probability a (or 1 - a)
and then x is selected at the second stage using the one of P and R already
selected. These two interpretations are probabilistically identical although
they are not psychologically identical. For example, you might find the
two-stage process more exciting.

As a normative criterion, (P < Q, 0 < a < 1) :- caP + (I - ot)R < %Q +(I - a)R is usually defended with the two-stage argument. If you prefer Q to
P then it seems reasonable in view of the two-stage interpretation that you
should prefer acQ + (1 - x)R to mP + (1 - m)R, or that, in the following"payoff" matrix, you should prefer A to B when you have a choice between

Option A Q R
Option B P a

A and B and, independent of your choice, a "coin" with probability m tbr
"heads" and probability I - m for "tails" is flipped to determine the
appropriate column.
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Condition 2 has several related functions as a guide in making consistent
preference judgments. First, it may help to uncover preferences between
more complex alternatives on the basis of preferences between simpler
alternatives. Suppose that, initially, a person has no clear preference between
R and S where

R($50) = .10, R($80) = .45, R($l0o) = .45
S($0) = .02, S($80) = .45, S($l00) = .53,

but definitely prefers Q to P when Q(S0) = .2, Q($100) = .8, and P($50) -
1. Let T($80) = T($100) = .5. In view of the fact that S = .IQ + .9Tand
A R=.AP + .9T, his preference for Q over P may convince him that he
should prefer S to R even though he might feel that S and R are "very close
together."

Condition 2 can also be useful in uncovering inconsistencies in preference
judgments. Consider an example used by Savage (1954, pp. 101-103) that is
due to Allais (1953). Which of Q and P do you prefer?

Q($500000) = 1; P($2500000) = .10,

P($S500000) = .89, P(s0) = .01.

Also, which of B and S do you prefer?

R($500000) =. 1, R($0) = .89; S($2500000) =-.10, S($0) = .90

According to Allais and Savage it is not unusual to find P -< Q and R -< S.
Now with T($2500000) -- , T($0) = x, and V($0) = 1,

Q .IIQ + .89Q

P= .11T+ .89Q
and

R = .IQ + .89V'

S = .liT + .89V.

Since condition 2 implies the converse of itself in the presence of the other
conditions, P < Q =:> T < Q and R < S =:: Q -< T, so that an "inconsis-
tency" has been uncovered. In Allais' viewpoint, this result speaks against the
reasonableness of coindition 2. On the other hand, Savage suggests that many
people would be alarmed at the apparent inconsistency and, accepting the
"reasonableness" of condition 2, wish to revise their initial judgments so
that the revisions are consistent with the condition.

Condition 3: An Archimedean Axiom

The third condition in Theorem 8.2 says that if P -< Q -< R then there is
some nontrivial mixture of P and R that is less preferred than Q, and also
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some nontrivial mixture of P and B that is preferred to Q. It specifically
prohibits the possibility that not c.P + (1 - %)R < Q for all at e (0, 1), or
that not Q -< oP + (I - L%)R for all a G (0, 1) when P -< Q < R.

Suppose that a newly minted penny will be flipped n times and that, for any
positive a, you feel that there is an n(e) such that a exceeds the probability
that every one of the n(a) flips will result in a head. Consider a choice between
A and B:

A. Receive $1 regardless of the results of the n flips,
B. Be executed if every flip results in a head, and receive $2 otherwise.

If execution < $1 < $2 and if you prefer A to B regardless of how
large n is taken to be, then you violate condition 3. If the coia is flipped
100 times, then under B there is only one sequence of the more than
1,000,000,000,000,000,000,000,000,000 possible sequencev under which
you would be executed. In view of such numbers, many people might find a
satisfactorily large value of n for which they would choe • B. It is often
claimed that the willingness that many people show toward small risks such
as crossing the street or driving a car is sufficiently convincing evidence in
favor of the condition.

Despite the fact that condition 3 is called an Archimedean axiom, it and
weak order do not imply the existence of a u on X, that satisfies P -< Q -
u(P) < u(Q). In other words, conditions I and 3 do not imply (see Theorem
3.1) that S,/I-.' includes a countable subset that is order dense in ij,-,'.
Exercise 6 goes into this further.

Hausner (1954) considers the case where condition 3 is not assumed to
hold. To conditions 1 and 2 he adds the indifference version of condition 2,
(P,,--Q, 0< < l):-P+(l -0)R,--,Q+(1 - m)R, which as we
shall see in the next section is implied by conditions 1, 2, and 3. His axioms
imply a lexicographic form of expected utility, but the dimensionality of this
form might not be finite. In the 2-dimensional case his representation would
beP < Q t (E(u1, P), E(u2 , P)) <L (E(u1, Q), E(u2, Q)) where ul and u2 are
real-valued functioiis on X and <L, is defined as in (4.10).

8.4 MIXTURE SETS

We shall now develop and prove a theorem that is more general than
Theorem 8.2. The reason for this is that the more general theorem will be
used in later developments, especially in Chapter 13. The generalization uses
Herstein and Milnor's (1953) definition of a mixture set.

Definiticn 8.3. A mixture set is a set 0T and a function that assigns an
element oP + (I - oL)Q in Tf to each cc e [0, 1] and each (P, Q) cfT x 'S such
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that, for all P, Q cf- and a,f #E [0, 1],

Mi. IP + OQ = P,
M2. MP + (1 -- x)Q = (I -x)Q + CP,
M3. c•c[jP + (1 -fl)Q] + (1 - x)Q= = cxP + (I -ccf)Q.

The T, with ccP + (I - o)Q as in Definition 8.2 is a mixture set. Along
with MI through M3 we shall use the following:

M4. cxP+(I -- )P=P,
Ml5. [/3Q + (1 - fl)R] + (1 - o)[yQ + (1 - y)R]

= + (1-- )y]Q + [cc(l -/5) + (1 - x)(1 - y)]R.

The first of these follows from M1-M3 as folows: cLP + (1 - P-.
1Ml[1P+OP] + (l -- )P =x[OP+ IP] + (1 - 4C)P= OP+ lP= IP+
OP = P. The second follows easily from M1-M3 if P or y' equals 0 or 1.
Henceforth, to verify M5 for a mixture set, we suppose that fi, y e (0, 1) and
that f# • y for definiteness. Following Luce and Suppes (1965, p. 288):

[aft + (I - %)y]Q + [fc(1 -fP) + (l - c)(l - ,)]R

=- {[ff//, + (1 ]- yx)l}Q + {f - [faf/y + (1 - O)]vR
= [/y+ (1 -)][yQ + (l y)RI + [I -cl/y - (l --c)]R

by M3

- [(l - fl/ly)]R + [1 - c(l -- fl/v)1[,Q + (1 - ,)R] by M2

= C{( - fl/•y)R + (fl/y)[yQ + (I -(1)R}+ -( o)[yQ + (I - y)R]
by M3

= at{(fl,)[yQ + (1 - y)R] + (1 - fl/•y)R} + (I -- c)[yQ + (1 - y)R]
by M2

a[flQ + (I - #)R] + (l -- L)[yQ + (l - y)RJ by M3.

As a preface to the main theorem we consider a succession of lemmas, as
incorporated in the following theorem. Conclusion 5 of the theorem is due to
Jensen (1967). -.' and < are defined as in (2.2) and (2.3).

THEOREM 8.3. Suppose that if is a mixture set and that the following hold
for all P, Q, R G T:

,AL. •, on if is a weak order,
A2. (P Q, 0 < oc < 1) =- c.P + (I - caR < cxQ + (1 - oc)R,
A3. (P Q, Q -R) ->• P + (I -- )R -< Q and Q < #P + (I - fl)R

for some at, fl# - (0, 1). Then, for all P, Q, R, S e S,
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• -- ~~~~C1. (P -- Q, : < #l -- I) ==> tip +0- (1 l6Q -< 0CP+--(, t

C2. (P < Q, Q < R, P <-R) =>. Q -•ap + (I -c)R for exactly one
a e [0, 1],

C3. (P < Q, R -< S, 0 1o ) = a P + (1 - t)R -< aQ + (I - %)S,
C4. (P - Q,0 <g ag) %P+(l --C5. (P,". Q,0< 1z--, 1) ý:- -, P + (I - a)R,-.otQ + (I -- m)R.

Proofs. C1. If f < 1, #P + (1 - P)Q < #Q + (I - #)Q by A2, andhence i#p + (1 - fP)Q < Q by M4. If # = 1, then i#P + (I - f#)Q -< Q byMI. If 0 < ac, then (ml//i)[/iP ± (1 - fl)Q] + (1 - //fl)flIP + (1 - fl)QJ <
(Y/fl)fLP + (1 - fl)Qj + (1 - cc/fl)Q by A2, and hence fiP + (I -)Q <aP + (1 - c)Q by M3 and M4. If a =0, iP + (I - fl)Q -< ccP + (1 - m)Q
by M! and M2.

C2. Suppose first that Q ,-P. Then Q -)P + OR by MI, and IP +OR -< /?P + (1 - fl)R for every # < 1 by CI and M2. Then, by transitivity
(see Theorem 2.ld), ot = I is the unique a e [0, 1] for which Q .-. cc)P +(1 - a)R. A symmetric proof holds if Q '-' R (in which case m = 0). Finally,if P < Q -< R, the proof of Lemma 3.1 applies with the obvious notational
changes and the use of CI, Al-A3, and M2 and M3.

C3. If 0<ac< 1, caP+ (1 - a)R<ocQ+(I -- c)R and (1 -- c)R-+
lcQ < (I - )S + ixQ by A2.

C4. Suppose P - Q and xP + (I - m)Q -< P. Then ccP + (1 - a)Q < Q(Theorem 2.1d). Then, by C3, oc[cxP + (1 -- c)Qj + (1 - c)[ocP +
( - oc)Q] < otP + (I - a)Qor, byM4, P + (I -cc)Q -< mP+ (1- x)Q,
which is false. Similarly, not (P -• Q, P < c) + (1 - a)Q). Hence P '. Q =
MP + (1 - Q)Q , p.

C5. MI and M2 yield the conclusion if { E {O, 1). Take (P -. Q,I0 <x< 1). If R--P then, by C4, cP+ (I -- x)R•-•P,-cQQ+
(1 - at)R, or xP + (1 - ot)R - ocQ + (1 - a.)R. Henceforth take R < P(the P < R proof is similar). Then R < ocP + (I -m)R by C! and M4.Suppose also that ixP + (I - m R - Q + (1 -)R. Then, by C2,

cP + (1 - m)R-. (I -- )R + /#[Q + (I - oc)R] for a unique fl (0, 1).Hence ocP + (I -o)R - c4Q + (I - ccj3)R by M2 and M3. Also, since
R -< Q, (1 - /i)R + #IQ < Q -•P by Cl and M4: hence,8Q + (1 - #)R <
P by AI and M2: then c [#3Q + (I - fl)R] + (I - cx)R < cP -J+ (1 - a)R byA2: finally, cflQ + (I - afl)R < ocP + (1 - m)R by M3, thus contradicting
acP+ (1 - Lx)R - -'cfQ + (1 - c[3)R. Hence aP + (I - cx)R < mQ +(I - oc)R is false. Similarly aQ + (I - o:)R < ccP + (I - oc)R is false. Hence/a •t+ (I -- o)R -(Q + (I - oc)R.

The Main Theorem

THEOREM 8.4. Suppose ' is a minxture set. Then A l, A2, and A3 of Theorem
8.3 hold for all P, Q, R - 'X if and onli, if there is a real-valued function u on
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fT such that

P < Q <: u(P) < u(Q), for all P,Qea ' (8.5)

u(m•P + (I -- a)Q) = (xu(P) + (I - m)u(Q), for all (oc - P, Q) c- [0, 1 ] x fT2.

(8.6)

Moreover, if u on T satisfies (8.5) and (8.6) then a real-valued function v on T
satisfies (8.5) and (8.6) with u replaced by v !f and only if there are numbers
a > 0 and b such that

v(P) = au(P) + b for all P c- i. (8.7)

Theorem 8.2 results from this when X' = T.' and u on X is defined from u on
T by u(x) = i(P) when P(x)= 1. If {x:P(x) > 0} = {xj, ... , xj then
repeated applications of (8.6) with P, e T, such that P,(,r) = I give u(P) =
u(1=1 P(xi)Pi) = 1, 1 P(x,)u(x,) = E(u, P), so that P < Q < E(u, P) <
E(u, Q) by (8.5). (8.4) follows from (8.7).

The necessity of AI, A2, and A3 for (8.5) and (8.6) is obvious. To prove
sufficiency, Part I of the following proof shows that (8.5) and (8.6) hold on
RS = {P:R < P < S} when R < S. We assume R -< S for some R, SE T
for otherwise the conclusion is obvious. Part 1I extejids (8.5) and (8.6) to all
of X. Part ilI verifies (8.7).

Proof, Part I. Assume that A l, A2, and A3 hold and that R -< S. Let
RS = {P:P e f$, R < P < S}. By C2 there is a unique numberf(P) c [0, 11
for each P e RS such that

P-- [1 -- f(P)]R +f((P)S, with f(R) = 0 and f(S) = 1. (8.8)

Suppose P, Q c RS andf(P) <f(Q). Then, by C1, [1 - f(P)]R + f(P)S <
[I -f(Q)IR +f(Q)S. Transitivity and (8.8) then give P < Q. On the other
hand, if f (P) = f(Q) then (8.8) and transitivity imply P - Q. Thus

P -I Q <:>f(P) < f(Q), for all P, Q E RS. (8.9)

If P, Q e RS and ccet [0, 1] then xP + (I - X)Q ERS. If o e {0, I} this
follows from MI and M2. If 0 < a < I then R = c:R + (I - mx)R - ocP +
(I - m)R = (I - &)R + LxP < (I - oc)( + aP= aP + (1 - oc)Q < %S +
(I - ot)Q = (1 - ot)Q + ocS - (I - x)S + cs= S by M4, A2 oi C5, M2,
A2 or C5, M2, A2 or C5, M2, A2 or C5, and M4, in that order.

Therefore, if P, Q c RS and o E [0, 1] then, by (8.8),

aP + (1 - ot)Q -- [I -f(oJP + (I -- o)Q)]R +f(oP + (I - o)Q)S.

(8.10)
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In addition, by two applications of C5,
aL + (I - oc)Q -- ot([I -- f(P)JR +f(P)Sj

+ (1 - x){[l -f(Q)]R +f(Q)S},
so that, by M5,

acP + (1 -- x)Q - [1 - oaf(P) - (I - cx)f(Q)]R
+ [(Xf(P) + (1 - ')f(Q)]S.

From this, (8.10), transitivity, and CI it follows that

f(od' + (1 - m)Q) = zf(P) + (1 - m)f(Q), for all (=x,P, Q)e [0, 11 x RS.
(8.11I)

(8.9) and (8.11) verify (8.5) and (8.6) on RS.

Proof, Part H. To extend this to all of ;T. RS with R < S, and let
RjSj = {P:P e J, R < P <S be such that 1,S _ R1S1 for i = 1, 2. Let
f* on RjSj satisfy (8.5) and (8.6) for (oc, P, Q) e [0, 1] x RjS2, as guaranteed
by Part I. LetfA be a positive linear transformation off* so thatf,(R) = 0
andf,(S) = 1 for i = 1, 2. Thefj must satisfy (8.5) and (8.6) for (a, P, Q) s[0, 11] x R,s,2.

Suppose P e RjS1 r) R2S2. If P - R or P - S then .f(P) = f 2 (P) ty the
definitions. Three possibilities remain as shown here with the unique element
in (0, 1) as guaranteed by C2 and strict preference:

P -< R -< S, R -(1 -- )P + S (8.12)

R < P < S, P-. (1 -- )R + flS (8.13)

R -< S < P, S- (I - y)R + yP. (8.14)

Using (8.5) and (8.6) on each of these we get, for i - 1, 2,

0 = (1 - C.)f,(P) + CX (( $ 1) (8.12*)

fi(P) = #3 (8.13*)

1 = Yf(P) (Y , 0) (8.14*)

respectively, so thatfl(P) =.f(P) in each case.
Finally, let u(P) be the common value off,(P), as assured by the foregoing,

for every interval of the form R1S1 containing P, R, and S. Since every pair
P, Q e T is in at least one such interval it follows that u is defined on all of T
and satisfies (8.5) and (8.6).

Proof, Part III. If u satisfies (8.5) and (8.6) and v satisfies (8.7) with a > 0
then v obviously satisfies (8.5) and (8.6). To go the other way, suppose v
satisfies (8.5) and (8.6) along with u. If u is constant on TI then so is v and they



are related by the positive linear transformation v(P) = u(P) + (c' - c)
where u z c, v - c'. On the other hand suppose that R < S for some
R, S - T. With such R and S fix.d let

() u(P) - u(R) _. t,(P) - v(R) for all P • f. (8.15)
u(S) - u(R)' v(S) - v(R)

Since f, and f2 are positive linear transformations of u and v, both satisfy
(8.5) and (8.6). Moreoverf.(R) =f 2 (R) = 0 andf1 (S) =.f(S) - 1. If P-- R
or P -. S thenfA(P) =-f2 (P). Or if (8.1k) holds thenfj(P) =f,(P) by (8.1k*)
for k - 2, 3, 4. Hence f l. . Then, by (8.15),

v(P) = v(S) - v(R) u(P) + v(R) - u(R) v(S) - 4(R)
u(S) - u(R) u(S) - u(R)

so that v is a positive linear transformation of u. *

8.5 SUMMARY

When a decision alternative has positive probability of resulting in any
consequence in a finite subset of consequences and the probabilities sum to
one, then a simple probability measure on X corresponds to the alternative.
Three preference conditions-weak order, independence, Archimedean-for
-< on the set of simple probability measures imply that the util'i of any
measure can be computed as the expected utility of the conse - -"ices with
respect to that measure, provided that the consequence utilities are defined in
a manner consistent with the expected-utility model.

For a general theory we defined the notion of a mixture set and applied the
three conditions to it. The expected-utility model for simple probability
measures illustrates one application of the general theory. Other uses of the
general theory occur later.

INDEX TO EXERCISES

1. Expected net profit. 2. Simple measures. 3. Unbounded utility. 4. Positive linear
transformations. 5. Independence condition. 6. Order denseness. 7. Indepenucnce. 8.
Necessary conditions. 9. Expected utility. 10-11. Sequential analysis. 12-13. Certainty
equivalents. 14. Pfanzagl's "consistency" axiom. I1. Linear additivity. 16. Buying and
selling prices.

Exercises
1. Using Figure 8.1, sketch a curve of the expected net profit of x, similar to

Figure 8.3. Approximately what x value maximizes expected net profit? Why does
this differ from the x that maximizes expected utility?
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2. Use (3) of Dctnihon Ui to show that (a) P(U 7 A,) ' 11'(A) if 4• r•
A = • whenever i #j; (b) P(A u B) - P(A) + P(B) - P(.A r• B).

3. Show that (8.3) does not imply that u is bounded.
4. Let u on X = {x, y, z, w} satisfy (8.3) with (u(x), u(y), u(z), u(w)) = (0, 1,2, 5).

Assuming tnat v satisfies (8.4) compute v on X when (a) v(x) = -I, v(y) - 1;
(b) v(x) = -10, v(z) =50; (c) t,(w) =2 and v(x) + v(y) + v(z) + v(w) = 1;
(d) v(x)v(w) = v(y)v(z) = 150.

5. Consider P and Q as defined on S by the probability matrix:

$10 $30 $50 $100 $150

P .2 .3 .2 .1 .2
Q .4 .1 .1 .3 .1

Consider also two gambles for a four-ticket lottery as described in the following
payoff matrix:

Number on drawn ticket is
I or2 3 4

Gamble A $30 $50 $150
Gamble B $10 $100 $100

If each ticket has the same chance of being drawn, show that condition 2 of Theorem
8.2 implies P -< Q if A -< B, and Q -< P if B -< A. (Compute a and R that satisfy
P = ,,A' + (1 - m)R and Q = cB' + (I - a)R, where A' and B' are the measures
for A and B.)

6. With -<' defined on /-• as in (2.4) let condition 4 be: there is a countable
subset of •T/ i- that is -<'-order dense in S'j -.

a. Show that condition 1 (of Theorem 8.2) and condition 4 do not imply con-
dition 3. (Define -< by P -< Q -< R -. S where P(x) = Q(y) = 1 for x, y e X
and R and S are any two measures in 6r, -- (P, Q}.)

b. Show that conditions 1 and 3 do not imply condition 4. (Let X = {x, y), let
Ti, be represented by [0, 1 ] where p G [0, 1 ] is the probability assigned to x,
and let A = {p:O0 , p < 1/2,p is rational}, B - [p:0 < p < 1,p is irrational},
C = {p: 1/2 < p ! 1, p is rational). Define -< by: p - q if p, q E A or p, q E C
orp = q;p -<qif(peA,qoA)or(pf C,q• C)or(p,qEBandIp - 1/21 <
Iq - 1/21) or (p, q c B, p < q, and Ip - 1/21 = Iq - 1/21).)

c. Show that conditions 1, 3, and 4 do not imply condition 2. (Define -< by
P -< Q --. Tfor all Tin TP, - {P, Q} as in part a.)

d. Prove that conditions 1, 2, and 4 imply condition 3.
e. Argue that conditions 1, 2, and 3 imply condition 4. (See Theorem 3.1.)
7. Show that condition 2 is not implied by conditions I and 3 of Theorem 8.2

and C5 of Theorem 8.3.

8. Show that A I, A2, and A3 of Theorem 8.3 are implied by (8.5) and (8.6).
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9. Give details foir the assertio., in the paragraph folloing Theremn 8A4.
10. Consider the following two alternatives:
Alternative A. One fair coin is flipped. 1f it lands "heads" you get steak for dinner

every night for the next three nights; if it lands "tails" you get chicken for dinner
every night for the next three nights.

Alternative B. On each of the next three days a fair coin is flipped to determine
whether you get steak (if "heads") or chicken (if "tails") for dinner that evening.

Let X be the set of eight triples (x1, X2 , x.) where xi E {chicken, steak.} for i =
1, 2, 3 and specify P and Q on X that correspond to alternatives / and B respectively.
Can you think of any reasonable argument why P -.- Q ought to be true? Identify
your own preference in this case and explain why you prefer the one alternative
to the other if you are not indifferent. If you are indifferent, would you remain
indifferent if the example were phrased in terms of 100 nights rather than three
nights.?

11. Consider the following two pairs of gambles in which the

{A. Get $10 with pr. .3 or S50 with pr. .7
B. Get $0 with pr. .2 or bT7 with pr. .8

I C. Get $20 with pr. .9 or $70 with pr. .1

D.Get $40 with pr. .6 or $60 with pr. .4

amounts of money are to be considered as possible increments to your wealth as
of this moment. In considering your preference between A and B the correct inter-
pretation of the expected-utility theory says that you should disregard C and D:
that is, suppose you have a choice between A and B and that these are the only two
alternatives you can select between and the only two that can change your n0mantl•al
position in the near future. Similarly, disregard A and B when you consider your
preference between C and D.

a. Now suppose you are allowed to choose either A or B and either C or D before
either of your choices is actually played cut. You then have four alternatives,
say (A, C), (A, D), (B, C), and (B, D). For each of these four alternatives
specify the corresponding measure on amounts you might win. Does the theory
in this chapter imply that if A < B and C -< D, as in the preceding paragraph,
then (B, D) will be preferred to the other three alternatives in the new situation ?
Why not?

b. Suppose you can select either A or B and then, after your selection has been
played out, you can choose either C or D and have this second choice played
out. Show that you have eight strategies in this case, one of which is: (Select
A; if $10 results then choose C and if $50 results then choose D). Make out
a table that identifies the eight strategies and shows the probability measure
on totals you might win with each strategy.

12. Let x = 0 represent your present wealth. If P is a probability measure on
amounts of money that represent potential incremental additions to your present
wealth and if P - Sx (where Sx is considered as a sure-thing addition to your
present wealth) then Sx is a certainty equivalent for P. P $x means that you would
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be indifferent between gambling with P and "receiving" $x as an outright gift.
Estimate your certainty equivalent for P when (a) P(SO) = .5, P($10000) = 5:
(b) P($O) .1, P($1,OO,000) -. 9, (c) P(-$500) -. 5, P(S500) = .5; (d)
P(-S100) - .2, P(-$10, -- .8; (e)P($0) = 1/3, P($1000) = 113,P($3000) = 1/3;
(f) P($90000) = .5, P($100000) = .5.

13. (Continuation.) Estimate your certainty equivalent for each of the following
probability measures.

a. P($O) - .01, P($5000) = .99. Sx P

b. Q($O) = .99, Q($5000) = .01. S y Q

c, R(SO) - .50, R($5000) = .50. 6z R.

Show that the expected-utility theory implies that R '- JP + JQ. Does this mean
that Sz = j(Sx + Sy)? Does it mean that $z is indifferent to a 50-50 gamble between
$xr and $y?

14. Let X = Re, let u satisfy (8.3) with x < y implying x -< y and with u on X
continuous. Pfanzagl (1959) considers an axiom which when translated into this
context reads as follows: if P(x + y) = Q(x) for all x C X and if Q - z with z C X

then P -- y+ z. [Thus, if P(x + y) - Q(x) for all x c X and if z is the certainty
equivalent for Q then y + z is the certainty equivalent for P.]

a. Under the stated conditions Pfanzagl shows that u on X must have one of the

following three forms (unique up to a positive linear transformation):
I. u(x) -= e with k > 1, or

2. u(x) = -k1 with 0 < t: < 1, -r
3. u(x) = x.
Show that each of these expressions satisfies the axiom stated above. Plot (1)
with k = 2, plot (2) with k = J, and plot 3.

b. Comment on whether you think this axiom is valid for you. (Consider, for

example, your answers to parts a andf of Exercise 12.)

15. (Continuation.) Let X = Re and let the other conditions in the first sentence

of Exercise 14 hold. Show that u on Xis linear [i.e., case (3) in Exercise 14] if either
(a) or (b) as follows holds with x # y:

a. For all x, yeX and all oce- [0, 1], Q '-P whenever Q(px + (1 - p)y) =

and P(x) = p, P(y) = I - p.
b. For all z, y c X, Q - P whenever Q((x + y1)/2) - 1 and P(x) - P(y) = J.
c. Give a critique of these conditions.
16. A man estimates his present wealth at $50000. Let x = 0 correspond to

his present wealth and consider possible changes of amounts $10000x in his present
wealth, as shown on Figure 8.4, where u(x) is plotted. For example, x = 2 represents
an addition of $20000 to his present wealth. We assume that u has been measured
in accord with the expected-utility model. Let A be a 50-50 gamble that pays either
$0 or $40000.

a. Use Figure 8.4 to estimate the certainty equivalent of A (see Exercise 12).

Write out the indifference statement that defines the certainty equivalent in

-J
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Figure 8.4 Utility function for possible changes in present wealth:
$10000 x is amount of change (see Exercise 8.16).

terms of changes in present wealth, denoting the certainty equivalent by y.
[Answer: y -- (S40000 with pr. j or $0 with pr. j).]

b. If the man is given A as a gift, what is the least amount he would sell it for?
Letting y' denote his minimum selling price, write the indifference statement
that defines Y', and compare to the answer in (a).

c. If, instead of being given A, the man considers buying it, what is the most
he would pay for it? Letting z be the most he would pay to take possession of
A, write the indifference statement that defines z.

d. Suppose the man actually buys A for the amount specified in the answer to
(c). Will he then be willing to sell it (before it is played out) for the amount
specified in the answer to (b)? Why not? What would he be willing to sell it
for after buying it?

e. Instead of buying A for the amount specified in (c) suppose he gets it at a
bargain price, say for $15000. Having bought A for $15000, what is the mini-
mum amount he would sell it for? Write the defining indifference statement
with w the minimum amount.

I I I I 'WIas-
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f SUppoie the map is V g."..4 as a gi, HO- now t', giwen fn opIpot-V•iry t•-•huy
a second gamble, also an even-chance gamble for SO or S4W(rN), befor 1 is
played out. What is the most he would be willing to pay for the secund gamble?
Letting' r be the most he would pay, write out the indifference statement that
defin•a r. (]Do not nmake the mistake of asserting that r - Y'.)

g. Suppose the man buys A for $15000 and is then given an opportunity to buy
a secind gamble just like A before A is played out. What is the most he would
pay for this second gamble? Let s be this amount and write out the indifference
statement that defines s.

MOO!



Chapter 9

EXPECTED UTILITY FOR
STRICT PARTIAL ORDERS

This chapter examines the important generalization of expected utility for
simple probability meajures when indifference on T,'a is not assumed to be
transitive. We shall consider the representation

P-< Q=-E(u,P)<E(u,Q), for all P, Q c T', (9.1)

in the context where X is finite. Aumann (1962) and Kannai (1963) discuss
the difficulties that arise when X is infinite and Kannai's paper contains
several important theorems for this case.

The utility theory in this chapter is largely due to Aumann (1962). Although
he assumes that : is a quasi order (reflexive, transitive), minor revisions
make his work applicable to the case where < is a strict partial order
(irreflexive, transitive).

Section 9.1 presents an expected-utility theorem and discusses its condi-
tions. The second section develops a support theorem for convex cones in
Re". The third section proves the utility theorem with the use of the support
theorem.

9.1 AN EXPECTED UTILITY THEOREM

In the following theorem T, is the set of simple probability measures on X,
as in Chapter 8. cP + (I - m)Q is the direct linear combination ofP, Q s ,.
E(u, P) = j u(x)P(x).

THEOREM 9.1. Suppose that X is a finite set and that the following hold
throughout f, for a binary relation < on T:

1. < is transitive,

3. If acP + (I -- )R < acQ + (I - ro)Sfor all ot - (0, 11 then not S< R.

Then there is a real-valued function u on X that satisfies (9.1).
121



122 Expected ( 'it7 ft itr;Ct Parial OtW ,

r-t e three conditions in thi' theorem compafe with the three conditions of
Theorem 8.2. The i;, part of condition 2 in Theorem 9.1 is condition 2 of
Iheorm 8.2. 1 he --<- part of condition 2, which is implied by the conditions
of Theorem 8.2, can be defended as follows. Suppose in fact that with
a .- (0, 1) )ou prefer xQ + (I - 7)R to 7P + (I - cc)R. Then it seems
reasonable that tnis preference would depend on your feelings between P and
Q. In fact, since the presence of (I - m)R tends to weaken the difference
between the two mixtures, the removal of (I - -)R should make the
distinction between P and Q even clearer than that between aP + (1 - a)R
and 2.Q + (1 - rA)R and hence it would seem reasonable that you would
prefer Q to P. In the presence of the part of condition 2 the -,: part can
be written as [ot e (0, 1), O + 0 - -Q + 'I - %)R not P - Q.

The Archimedean axiom, condition 3, is slightly different than Aumann's
axiom, which says that if R -< ocQ + (1 - a)S for all ac e (0, 1] then not
S < R. However, both axioms are necessary for (9.1). For example, if
azE(u, P) + (I - ot)E(u, R) < aE(u, Q) + (I - oc)E(!,, S) for all a c (0, 1],
then we cannot have E(u, S) < E(u, R). Therefore, condition 3 is the
"weakest"° sort of Archimedean condition that can be used to obtain (9.1).

We note also that condition 3 implies that -< is irreflexive, and for this
reason irreflexivity does not need to be included along with transitivity in
condition I.

Because indifference (P - Q - not P -< Q and not Q -< P) is not assumed
to be transitive for Theorem 9.1, it is not true in general that u satisfying
(9.1) is unique up to a positive linear transformation.

9.2 CONVEX SETS AND CONES

This section develops a theorem from which we shall be able to prove
Theorem 9.1. The new theorem states that if a convex cone C in Re" satisfies
specified conditions then there is a w e Re" slch that r. -r > 0 for all x e C.
We shall begin with some definitions and two well-known lemmas. In what
follows, X 0 0.

A set X _ Re" is convex if and only if ocx + (1 - x)y e X whenever
x, y e A' and 0 < a. < 1. The closure of a convex set X, denoted by X as in
Section 5.3, is easily shown to be convex also. The topology with respect to
which closure is defined is the usual product topology %LU (Sections 3.4, 5.3).
The 0 is the origin of Ren.

LEMMA 9.1. If X!2 Re" is convex and (y E Re", y then there is a
w # 0 in Re" such that

inf{w.X:xe X} > W'y.
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Let w - y Hence s#-0. With 0 < . and Ar . U -- ,-
ALx C .Hence ((I - ,A)z 4+ ; -- )2 : (,z "- 1)ý. This reduces to A(y - z)2 4-

2(,- Y) (x - z) >_ 0. Letting A approachi zero itfollows that Kw x w1z
Since (z - y)• (z - y) > 0, w. z > 4 "y. Hence inf {w. x:xc Y1 Ž> w- : >
w'y. *

y is on the boundary of X if every open set thel, contains y contains a point
in X and a point not in X.

LEM MA 9.2. I"X _ - ._" -i convex andy e k." is on the boundary ofXihen

there is a w # 0 in Re'n such that

inf {w. x:z e X} = w. -y. (9.2)

Proof Let y e Re,, be on the boundary of convex X Ez Re". Let Y be an
open n-dimensional rectangle that contains y ai,,d suppose that z e X for all
z e Y. Then, by selecting open rectangles included in Y near the corners of
Y, each of these must contain an element in X, and it follows from convexity
that there is an open set included in X that contains y. But then y is not on
the boundary of X. Hence, for every such Y, there is a point in Y that is not
in T. It then follows that there is a sequence Y1,Y2, •.-. of elements in Re"
that are not in X but approach y. Then, by Lemma 9. 1, there is a sequence
wD, w2 , ... of elements in Re" that differ from 0, have w, = I for all j (after
multiplication by an appropriate positive number), and satisfy inf {w, .x:x e
X}> w,-y, forj= 1,2 .... Because w2-- 1 for allj there must be a
w E Re" such that every open n-dimensional rectangle that contains w
contains some w,. It follows that, for each zx X, w x > w-y.
inf{w-x:xeX} > w-y is imFossible, for if this were so then w.-y>
W'V. *
Cones

A set X s; Re" is a cone if and only if ax e X whenever x e X and a > 0.
A convex cone is a cone that is convex. X is a convex cone if and only if
[x, y c X; a, P > 0] =*- at + #y ct. 0 is not necessarily an element in a
convex cone.

THEOREM 9.2. Suppose that C is a .tonempty convex cone in Re" and that
C r) (-C) = 0, where -C - {x: -x c C). Then there is a w e Re" such
that

w -x > 0 for all x c C. (9.3)
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If 0eC then 0cC and 0e -C so that C n (-C)# 0 . Hence the
Archimedean condition Cr n (-C) = 0 requires that 0 0 C. This condition
is necessary also for (9.3), for if (9.3) holds and z c C n (-C), then w - z < 0
by (9.3) and hence (since z E C) w y < 0 for some y e C.

Proof of Theorem 9.2. The theorem is obviously true when n = 1. Using
induction we shall assume with n > 2 that the conclusion follows from the
hypotheses for each m < n. Thus, let the hypotheses hold for n • 2. Then,
since 0 is on the boundary of C, it follows from Lemma 9.2 that there is a
w c Re" with w # 0 such that

wxŽ0 for all x - C. (9.4)

If (9.3) holds for this w, we are finished. Otherwise w. z = 0 for some z E C
and in this case we consider two possibilities.

i. {x:wzx>0}_ g . Then C=-{x:w.xŽ0} and with zeC and
w - z = 0, -z - C r (-C) in violation of the Archimedean condition.
Hence this case can't arise under the hypotheses.

2. There is an TeRe" such that w.x > 0andxoC. Let Y={ y:x .-y
0}. The dimensionality of Y is less than n since .$ # 0 and if x, $ 0 then each
y c Y is uniquely determined by its other n - 1 components. Also, each
z c Re, is expressible in one and only one way as fix + y with P e Re and
y e Y. Namely, z = (z. x/x 2)x + [z - (z. XI'x2)x], and if z = fix + y =
fi'x + y' with fo # fi' then x = (y - y')/(f' - f#), implying xz = x. (y - y')/
(fl' - fi) = 0, which is false.

Continuing with Case 2 lut

CO = {y:fix + y e C for some y e Y and f0 e Re}.

Co g- Y is ciearly a nonempty convex cone. To verify that C.0 r (-Co)
0 suppose to the contrary that y e C. n (--Co). Then there is a # e Re such
that fix - y c C and since y e C0 there is a sequence yi, y,,.. . in C that
approaches y [(y - y,)2 > (y - y,+1) 2 and inf {(y - y,)2:i = 1, 2,. . ..} 0]
and a sequence of numbers i., f#2 , ... such that flix + y, e C for all i,

Then (fP + g&•)x + y1 - y e Cfor all i so that (P + fljw . x + w . (y1 - y)
0 for all i by (9.4): hence the fl, must be bounded below. The 01 must be
bounded above also: otherwise there are x + (yjfi,) E C that are arbitrarily
close to x, and this contradicts x 0 C. It follows that there is a A c Re such
that inf{A- flij:i-= 1,2,...} =0, and since flix+y eC for all i it
follows that Ax + y c- C. But then (Ax + y) + (#x - y) = (A +fP)x e C,
which is false unless A + P 0. But if A + fP = 0 then Ax + y c- C and
-Ax - y e C, contradicting C C (-C) = 0.

Therefore Co n (-Co) = 0. It follows from the induction hypothesis for
m < n that there is a v E Y such that v. y > 0 for every y E Co. Since ve Y,
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v x- z 0 and therefore, for each z E C written as z =x + y in the Co
format, v .z = v . (jx + y) = v . y > 0.

9.3 PROOF OF THEOREM 9.1

Throughout this section the hypotheses of Theorem 9.1 are assumed to
hold along with P < Q for some P, Q c T,, for otherwise the conclusion is
obvious.

Let X have n + 1 elements, n > 1, identified as xL, X2,..., x,,+. For each
P e S8 let pi = P(x,). Let T? = {p = (pi.. . , p.):p, Ž> 0 for each i and
Sjp, ! 1}. Then there is a one-to-one correspondence between T, and
3 Ren. In terms of fT the conditions are:

1. (p -< q, q -< r) =>- p< r,
2. If 0 < a< I then p-< q -:=ap + (1--)r-< (xq + (1--0Er,
3. If -p + (1 - x)r < q+ (1 - m)s for all a c(0, 1] then not s-< r.

Define D E Re" by
D = {t:t=p--qfor somep,qc-T for which q-<}. (9.5)

Clearly, (9.1) holds if and only if there is a w e Re"' such that w. t > 0 for
every t e D. Some facts about D follow.

a. Suppose t e D is such that t = p - q = r - s with q < p. Then
jr + jq = Ip + Is, jr + jq < jr + Ip by condition 2, and therefore
1p + is < Pr + Ip, so that s < r by condition 2 (.=). Hence ifq < p
then s < r whenever r - s = p - q.

b. Suppose t-p--q andt* =r-s are in D. Then q<p and s<r.
Hence, by conditions 1 and 2, /q + (I - i)s < mp + (1 - m)r for any
( G (0, 1), and hence mt + (1 - m)t* c D. Thus D is convex.

c. If t = p - q for some p, q e T then t c D -4z ot e D for all a e(0, 1).
This follows from condition 2.

d. Ift =-q -pandt* = s - rforp, q,r,sc and if t + (I - a)t* CD
for all a e (0, 1] then -t* € D. To prove this observe that at +
(1--)t*ED implies that p + (l--a)r < q+ (I--)s by (a).
Then, by condition 3, not s -< r. Hence, again using (a) with -t* -
r - s, -t* AD.

Based on D we define a cone C as follows:
C = faux = at for some a > 0 and t c D}.

Since D 0 0 by assumption, C # 0. The convexity of C follows easily
from properties (b) and (c) for D. For the Archimedean condition we wish
to have:

Oct + (I -)t* c C for all a (0, 1]). -t* •C. (9.6)
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This is obviously true if t* = 0. Henceforth take t* $ 0. If t G C it is easilyseen (Exercise 11) that there is a fl > 0 such that j9t E D and (fit)' l/n'.Given at + (1 - a)t* e C for all a E (0, 1], it follows that for each D e (0, 1]there is a f#(a) > 0 such that a(fl(ac)t) + (1 - e)(fi(x)t*) e D and fl(O)((xt +(1 - z)t*)S Ž 1/n'. Since {(at + (1 - 0C)t*)S a e (0, l]} is bounded above,it follows that f(a) > 6 for some 6 > 0 and all a E (0, 1]. Therefore there is aft > 0 such that a(flt) + (1 - a)(fit*) e- D for all a E (0, 1]. With fl such that(f#t*) -, 1/n' it follows from (d) that -fit* D and henct that -t* C.
This verifies (9.6).

Suppose C 5; Re" is actually n dimensional so that some t E C is not on theboundary of C. Then there is an open n-dimensional cube in Re" thatcontains such a t and is included in C. It follows with little difficulty that ifz E C then at + (1 - a)z e C for all a e (0, 1], and hence -- z 0 C by (9.6).Hence C n (-QC) 0 and it follows from Theorem 9.2 that there is aw S Re" such that w. t> 0 for all : e C and hence w- t> 0 for all t e D.If every point in C is on the boundary of C (with respect to Re") then thedimensionality of C is less than n and a similar analysis applies with respect
to the actual dimensionality of C. *

9.4 SUMMARY

Cs Re" is a convex cone if [xyc-C;ac, fP>o0]J•.+flyeC. IfC is a nonempty convex cone in Re", and - C and the closure of C have nopoint in common, then there is a w e Re" such that w1xz • . + wnx,, > 0for every x in C. This result can be used to prove that if X is finite, and if< on Tr, is a strict partial order that satisfies an appropriate independence
condition and a necessary Archimedean condition, then there is a real-valuedfunction u on X that satisfies P < Q =.. E(u, P) < E(u, Q) for all P and Q in
Tr.-

INDEX TO EXERCISES
1. Independence conditions. 2-3. Conditions that imply transitive indifference. 4.Aumann's theorem. 5. P As Q c4- P = Q. 6-7. Convex sets and closure. 8. Limit point.9-10. More boundaries. 11-12. Distance from the origin. 13. Linear additivity.

Exercises
1. With -< on T, a strict partial order let P ,-Q ct(not P < Q, notQ <P) andP Q (P - R Q R. for all R e ;,), as usual. Let B1, B2, and B3 be the
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following independence conditions:

B1. [P -< Q, 0 < cc < I] eP + (I - m)R-<mQ + (I - %)R.
SB2. [P,'Q, 0< m <I] = P + (1 - a)R -xQ + (I - )R. :

B3. [P Q, 0 < <I] => %P + (1 - cc)R s' Q + (1 - ac)R.

Express your opinions on the reasonableness of B2 and B3, show that (Bl, B2)
imply the converse (.==) of each of Bl, B2, and B3 (with 0 < c < 1), and construct
a specific example to show that B1, B2, and B3 do not imply that - is transitive.
Assume throughout that -< on ', is a strict partial order.

2. (Continuation.) Let Cl and C2 be respectively the semiorder conditions
(P -< Q, Q -< R) =>- (P -< S or S -< R) and (P -< Q, R-< S') =,-(P -< S or R -< Q).

Assume that -< is irreflexive.

a. Construct situations that question the reasonableness of Cl and C2.
b. Show that (Bl, Cl) == - is transitive.
c. Show that (BI, B2, C2) =>- - is transitive.

3. (Continuation.) Let B4 be the condition: (P - R, Q - R, 0 < m < 1) =>
oaP + (1 - ot)Q - R. Show that B4 is implied by strict partial order and BE provided
that P -< Q or Q -< P. Then prove that (strict partial order, BI, B2, B4) =* ,-' is
transitive. Can you construct a situation that questions the reasonableness of B4?
If so, what is it?

4. Aumann (1962) proves that if < * on T, for finite Xis a quasi order (reflexive,
transitive), ifP < * Q .#> mP + (1 - m)R , * cxQ + (1 - z)Rwhenever0 < x < 1,
and if R -<* mP+(I - )Q for all c e (0,1] ==> not Q -<*R, • n there is a
real-valued function u on X such that, for all P, Q E T, P .<* Q ==- E(u, P) <
E(u,Q) and P -*Q==• E(u,P)=E(u,Q). Here P.<*Q<=4.(P <*Q, not
Q < * P) and P -* Q - (P '* Q, Q < * P). Now assume that -< on 1 . is a strict
partial order that satisfies BI, B2, and B3 of Exercise 1 along with R -< P +
(1 -oi)Q for all o c (0, 1 ] =- not Q -< R. Defining <* from -< by P <* Q#
(P -< Q or P ; Q), show that <* satisfies Aumann's conditions and hence that
there is a real-valued function u on X (finite) such that (9.1) hold& along with

P s Q => E(u, P) = E(u, Q), for all P, Q E ',.

5. Suppose X - {$1, $2,..., $100}, with $1 -< $2 -... -< $100. Argue that
with f defined as in Exercise 1, it would not be unusual to find that P O Q .4-P =

Qwhen -< on T. is a strict partial order. Can you think of a case (with elements in
X not monetary) where P ,w Q would seem reasonable for some P, Q with P y Q?

6. Prove that if X s; Re" is convex then so is X.

7. Show that if X!9 Re" is convex and (y E Re', y fX) then there is a ze lX
such that (z - y)2 - inf {(x - y):x -}.

8. Let w, - Re" be such that w,2 1 for j = 1, 2, .... Prove that there is a
w e Re' such that every open n-dimensional rectangle that contains w contains
soni w1.
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9. Describe the boundaries of the following convex sets in Re: (a) { :X ' + Z0
1), (b) {x:xz + x, < 1), (c) x:0 < x, < 1,0 : < 1}, and (d) {:x - (g, at) for
z (0, ID}.

10. With X a convex set in Ren suppose that t C X is not on the boundary of X.
Verify that if z c- X then at + (1 - a)z -X for all m E (0, 1 ].

11. With D as defined by (9.5) suppose t -D. Definep, q E T as follows: (pi, qj) =(t,, 0) or (0, t,) or (0, 0) according to whether tj > 0 or tf < 0 or tj = 0. Then
p- q - t. Now multi ly every tg by a > 0 with a as large as possible so that

E 2,t:t,>04 01t I and I.,:<) Žtt > -1. Then ap, •qE T and at = cxp - o.q is in
D. Verify that n.L1 (atJ)-t I 1/n2.

12. (Continuation.) Verify that L- (Gzt•2) l1/n.

13. Argue from the theory in this chapter tha. if X is the non-negative orthant
of Re" and if, for all x, y, z, w E X,

a. -< is transitive,
b. If a c- (0, 1) then x -< y.0 +-: ax + ac)z -< ay + (1- )z,
c. = + (1 - ae)y -< az + (1 - a)w for all e -(0, 1] => not w -<y, then there

are real numbers A1,... , A,. such that x -< y =: I A,,xi < j-, Ayj, for all
x, y cz X. What must be true of the A, if (1) (xi y• for all i, x # y) =x <y,
(2) (x, < yd for all i) => -< y?



Chapter 10

EXPECTED UTILITY FOR
PROBABILITY MEASURES

This chapter extends the weak order expected-utility theory of Chapter 8 to
more general sets of probability measures. Since the sets of measures con-
sidered are mixture sets, Theorem 8.4 will be used as a base for establishing
the representation P < Q .=€ E(u, P) < E(u, Q). Conditions that go beyond
those of Theorem 8.4 are required for the extensions. The primary new
condition says that if a measure P is preferred to every consequence in a sub-
set Y of consequences for which Q(Y) = 1, then Q shall not be preferred to
P.

After two preliminary examples, Sections 10.2 and 10.3 develop necessary
background material on probability measures and expectations. The actual
utility theory development begins in Section 10.4.

10.1 TWO EXAMPLES

In our first example, a decision maker must decide between two construc-
tion procedures, A and B, for building a bridge over a river. Procedure A
will cost $150 million and B will cost $100 million. For A engineers have
estimated the probability P(t) of completing the bridge by t years from now
at 0 for t ,g 2 and (t - 2)/3 for 2 • t • 5. For B, the probability Q(t) of
completion by t years from now is estimated at 0 for t : 3 and (t - 3)/4 for
3gt•7.

The decision maker's utilities for the applicable consequences are estimated
according to the expected-utility model as u($150, t) = -(t - 2)1 - 5 for
procedure A, and as u($100, t) = -- ( - 2)s for procedure B. The expected
utility of A is therefore

- 2)2 - 51(1/3) dt = -8

129 •
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and for B the expected utility is

j7

[ - (I - 2)'](1/4) dt 10.33.

Thus procedure A, more costly but faster than B, has the greater expected
utility.

The St. Petersburg Game

The often-discussed "St. Petersburg game" from Bernoulli (1738) gives an
example of a discrete probability measure. Consider a ,znquance of coin
tosses and let 0% be the probability that a "head" occurs for the first !-Me at
,he nti ts. Suppose you believe that 0, = 2-a for n = 1,2,... and are
given a choice between "Don't play" and "Pay the house $100 and get back
$2" if the first head occurs at the nth toss."

Let X be amounts of money representing changes in your present wealth.
Then, with u defined on X,

Expected utility of "Don't play" = u($O)
Expected utility of "Pay and play" --- 1 u($2" - $100)2-".

According to the theory given later, u on Xis bou ided. Suppose, for example,
that u(x) = x!(jxj + 10000), so that - 1 < u(x) < I for allx. Then u($0) = 0
and j u(S2" - $100)2-n < 0 so that "Don't play" has the greater expected
utility.

10.2 PROBABILITY MEASURES

Generally speaking, probability measures are defined on Boolean algebras
of sets. In the following definition Ac = {x:ax e X, x 0 A}, the complement of
A with respect to X, and

UoUA= {x:z eAi for some i e {1, 2,...}}
t-l

Definition 10.1. A Boolean algebra A for X is a set of subsets of X such
that

1. Xest,
2. Ac-A=:,- AO eA,
3. A,BeA =: A uR BeA.

A u-algebra A for X is a Boolean algebra that satisfies
4. Aj e A4 for i = 1, 2, . .. :=> U,•0l Aj c- A.

{ o, X} is the smallest Boolean and a-algebra for nonempty X. The largest

A
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Boolean and cr-algebra is the set of all subsets of X. For reasons that will
become clearer later we shall usually assume that {x) c A for each x e X.

If X is finite then every Boolean algebra is a o-algebra. The difference
between these two arises when Xis infinite and it has some affect on properties
cf probability measures. Some authors, such as Lo~ve (1960), deal exclusively
"with a-algebras (or "a-fields").

If C is an arbitrary set of subsets of X, the Boolean algebra generated by C
(minimal Boolean algebra over C) is the intersection of all Boolean algebras
that include C. The o-algebragenerated by C is the intersection of all or-algebras
that include C. It is easily verified that the intersection of a set of Boolean

7- (() algebras for X is a Boolean (a) algebra for X.
With X - {1, 2,. . .} ande C= {{1}, {2}, . .}, the set of all unit subsets of

X, the Boolean algebra .AM generated by C is the set of all subsets of X that
are either finite or contain all but a finite number of elements in X. But A,
is not a a-algebra since it doesn't contain the set of all even, positive integers.
The a-algebra generated by C is the set of all subsets of X.

Let X = Re, with C the set of all intervals in Re. The a-algebra generated
by C is called the Borel algebra for Re, and its elements are Borel sets. There
are subsets of Re that are not Borel sets: see, for example, Halmos (1950,
pp. 66-72).

Throughout the rest of this chapter, A denotes an algebra (Boolean or a)
for X.

Probability Measures and Countable Convex Combinations

Definition 10.2. A probability measure on A is a real-valued function P
on A such that

1. P(A) Ž0 for every A e A,
2. P(X)= 1,
3. [A, B e A, A r) B -=0 P(A u B) = P(A) + P(B).

For further definitions we shall use the standard notation

pi= sup {pP:n = 1,2,.. (10.1)
1f-1

when p, Ž 0 for all i Pnd j,, pi ! M for some M and all n = 1,2,.
Since 2-1-= 1 - 2-1, li,2-4 - 1.

Definition 10.3. If P, is a probability measure on A and aq e 0 for
i-1, 2,..., and if •---- 1, then • ,P is the function on A that

assigns the number TO aP,(A) to each A c- A.
The proof of the following lemma is left to the reader.

LEMMA 10.1. 2:zl aP, as defined in Definition 10.3 is a probability
measure on A.
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The next definition will be used in our utility theory.

Definition 10.4. A set Tf of probability measures on A is closed under
countable convex combinations if and only if J-1 acPc e T whenever P, e if
anda ý-O> 0for i - 1,2, .... and Ott0•,= 1.

If T is closed under countable convex combinations then T is a mixture set
(Definition 8.3). Hence if -< on T satisfies A l, A2, and A3 of Theorem 8.3
then (8.5) and (8.6) hold and u on Tf is unique up to a positive linear trans-
formation.

Countably-Addiltive Probability Measures
Definition 10.5. A probability measure P on A is countably additive if

and only if
P ' A,) =•P(A,) (10.2)

whenever AeA for i-= 1,2,.... Uc-1 AcA and At rA,- 0 when
i 0j.

This applies whether A is a a-algebra or a Boolean algebra that is not also
a a-algebra. (10.2) is an extension of Definition 10.2 (3).

Let X(, be the Boolean algebra generated by C = {{1}, {2),...}, and let P
on ,A, be defined on the basis of P(n) = 2-4 for each n e X = {1,2,.. .. P
is countably additive but ,AU is not a a-algebra.

Let .A be the set of all subsets of (1, 2,.. ) and let P on A be any proba-
bility measure that has P(n) = 0 for each n e {1, 2,.. .). Then A is a a-
algebra and P is not countably additive. Dubins and Savage (1965) call any
measure that assigns probability 1 to a denumerable subset of X and proba-
bility 0 to every unit subset diffuse. The uniform measure on the positive
integers, with P(n) = 0 for n = 1, 2,... and P({n, 2n, 3n, ... }) -- I/n for
n = 1, 2, .. ., is diffuse.

Let A be the set of all Borel sets in [0, 1], and let P be the uniform measure
on A defined on the basis of P([a, b]) = b - a when 0 - a - b ! 1. This
P is a "ountably-additive measure on a a-algebra.

An important property of countably-additive measures is noted in the next
lemma.

LEMMA 10.2. If P on A is countably additive, if % is a countable subset of
A whose elements are weakly ordered by a, and if U. A e A then

P(Us A) - sup {P(A):A E ,1}. (10.3)

Proof. The conclusion is obvious if ,% is finite. Assume then that
& is denuinerable, enumerated as A,, A,, As, .... Let C, = U•_- At.
Then C= Cs- Cs, -="', UzA -- U'.1 C and sup{P(A):Ac,}=5
sup (P(C.):n = 1, 2, ... }. This last equality follows from the facts that for
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any A E Z% there is an n such that F(C.) >- P(A) and that for any C, there is
an A e 1 such that P(A) 2 P(CQ).

Let D, = C1 and D = C, - C,--, (set theoretic subtraction) for i-=
2, 3,..., so that j D U C,, Dj ( D, = o whenever i 0 j, and C, =
U"., Di. Then

P(US A) P U D) since U% A = U D,
0-1

= • P(Dj) by countable additivity
i--1

=-sup (NP(DJ):n = 1,2,...} by definition

sup {P(C,):n = 1, 2,...) by finite additivity

=sup{P(A):AEa}

Discrete Probability Measures

Definition 10.6. A probability measure P on A is discrete if and only if
{x} - A for each x E X, A is a a-algebra, P is countably additive and P(A) = I
for some countable A e A.

All simple measures are discrete. Nonsimple discrete measures on the set
of all subsets of X = {0, 1, 2,...} include the geometric distributions
[P(n) - p(I - p)", 0 < P < 1] and Poisson distributions [P(n) = e-,'A/n!,
A. > 0]. The following lemma compares with Theorem 8.1.

LEMMA 10.3. If P on A is discrete then P(x) = O for all but a countable
number of x e X and

P(A) = P(x) for all A E A. (10.4)
jWA

Proof. Let A be countable with P(A)-- I Then P(x) =-0 for every
z e AC for otherwise P(A u {x}) > 1 for some x e Ae. (10.4) follows from
(10.2) when A is countable. (10.4) holds in general if P(C) - 0 when P(x) = 0
for all x c C and C c A. Let D = {x:x E X, P(x) > 0). IfP(D) < 1 it follows
from (10.4) for countable sets that P(A) < 1 for every countable A E A, a
contradiction. Hence P(D) = 1. Then P(C) - 0 when C n D = o.

Lemma 10.3 shows that a discrete measure is completely described by the

point probabilities P(x).

Conmdtional Probabiity Meures

Defintion 10.7. If P on A is a probability measure and if A e A and
P(A) > 0 then the conditional measure of P given A, written PA, is the
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function defined by

P4 (B) = P(B r) A)fP(A) for all B c- A. (10.5)

When P4 is well-defined, it is a probability measure on A: if P is countal'ly
additive then so is P4 . Pj(A) = 1, P 4 (B) = I if A S B c-A, P.(B)=
P(B)fP(A) if BE A and B c- A. If A, B iE A and P(A) > 0 and P(B)•> 0 then

P(A)PA(B) = P(B)PB(A) = P(A r) B).

P4 (B) can be interpreted as the probability that the consequence that
occurs will be in B, given that the consequence that occurs will be in A. If
B ( A 0 0 then P,(B) = 0.

If P(A) > 0 and P(A) > 0 then (note the convex combination)

P - P(A)PA + P(AC)Pj, (10.6)
since, for any B -A, P(B) = P(B n (A U Ac)) = P((B r A) u (B r A')) =-
P(B n A) + P(B r) A-) = P(A)P(B r) A)/P(A) + P(A9)P(B r) Ac)/
P(A•) = P(A)PA(B) + P(AC)PA4C(B). More generally, if P(A) = I (with
A c A), if {A 1 ,.., A.} is an A-partition of A, and ifI = {i:P(Aj) > 0), then

P = • P(AI)P.A (10.7)
I

since, for any B c A,

SP(A,)PA,(B) - P(B n A,) by (10.5)
I I

Y- P(B n A,)
d--1

-P(U" B A1) by finite additivity

- P(B n A)'= P(B C A) + P(B n A') = P(B).

(10.7) holds also when P is countably additive, A E A and P(A) = 1, and
{A1, A,,.. .} is a denumerable A-partition of A and I = {i:P(A,) > 0}.

The following definition will be used in our utility development.

Deiltion 10.8. A set 6f of probability measures on A is closed under the
formation of conditional probabilities if and only if [P c- T, A e A, P(A) > O0 1.
P.A E Tf.

10.3 EXPECTATIONS

This section defines precisely the expected value E(f, P) of a bounded,
real-valued function f on X with respect to a probability measure P on A.
In general we shall assume that f is A-measurable.
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Definition 10-9. f is A-measurable if and only if f is a reni-l 1alued
function on X and {xzf(x) e1} e A for every interval Ie Re.

A-mneasurable functions are sometimes called random variables, but it is
more coornon to use this term for functionsf on X for which ({ :f(x) e B) e A
for every Borel set B c- Re.

To define expectation we begin with simple A-measurable functions.

Definition 10.10. An A-measurable function f is simple if and onrv if
{f(z):x -X} is finite. Iff is simple and takes on n distinct values cl,... c,
with f(x)= c, for all x e Ai then each A, c A by Definition 10.9 and
{A,, .. , A) is a partition of X: with P a probability measure on A, we
then define

15

E(f, P) - • c1P(A,). (10.8)
i--1

Simple A-measurable functions are bounded. In general, an A-measurable
function f is bounded if and only if there are numbers a and b for which
a <f(x) 5 b for all x c X. In defining E(f, P) for any bounded, A-measur-
ablef we shall use

Definition 10.11. A sequencef 1,f 2,... of simple A-measurable functions
converges uniformly from below to an A-measurable function fif and only if,
for all x c X,

I. - W AWx <""..
2. f(x) =- sup •f,(x):n -. , 2,...

3. For any - > 0 there is a positive integer n (which may depend on E)
such thatf(x) _<•f,(x) + E.

For any bounded, A-measurable f there is a sequence of simple A-
measurable functions that converges uniformly from below to f With
X - {x:x e Xand a <f(x) • b} andfA-measurable let

A1,, = {x:a ! f (x) g a + (b - a)/n}

A,. ( x: a + (i - 1)(b -- a)/n < f(x) <g a + i(b -- a)ln} 1 - 2,... n,

(10.9)
and definef,, by

f,,(x) == a + (i - 1)(b -- a)ln for all x s A;.., i =. 1,., n.

(10.10)

Each A.,, c A by Definition 10.9 and therefore each f, is a simple A-
measurable function. Conditions I and 2 of Definition 10.11 are easily
verified and condition 3 holds with n > (b - a)JE.



136 Expected Utility for Prebuilty Measur#

Definition 10.12. 1ff is bounded and A-measurable and if P is a proba-
bility measure on A then

E(f, P) = sup {E(f, P):n = 1, 2,...} (10.11)

where fl,fa,.., is any sequence of simple A-measurable functions that
converges uniformly from below tof

The following lemma notes that E(f, P) is well defined.

LEMMA 10.4. If flfl .... and gt, g 2,.., are sequences of simple A-
measurable functions that converge uniformly from below to a bounded,
A-measurable function f then sup {E(f, P):n = 1, 2, .. . isfinite and

sup {E(f., P):n = 1, 2,...} --=sup {E(gn,,P):n = 1,2,...). (10.12)

Proof. Boundedness assures a finite sup. To verify (10.12) assume to the
contrary that sup {E(f., P):n = 1,2,.. .} < sup {E(g, ,P):n = 1,2,..
Then there is an e > 0 and a positive integer m such that

E(f, P) + E < E(gf., P) for n = 1,2,. (10.13)

By condition 3 of Definition 10.11 therf; is a k such thatf(x) •fk(x) + e for
all x G X, so that E(h, P) • E(fk + e, P) for every simple A-measurable h
for which h(x) 9 f (x) for all x e X. In particular, E(gf , P) • E(fk + e, P)
E(fk, P) + c, contradicting (10.13). *

E(f, PA) for a well-defined conditional probability measure PA is defined

as above since PA is a probability measure on A.

Finite versus Countable Additivity

The uniformity condition 3 of Definition 10.11 is superfluous for defining
E(f, P) when P is countably additive and A is a c-algebra (Exercise 15). But
uniform convergence is required when countable additivity is not assumed to
hold. The following illustrates what amounts to the failure of (10.3) for a
diffuse measure.

Let X = {0, 1, 2, ... }, let A be the set of all subsets of X (a a-algebra),
let P be any probability measure on A that has P(z) = 0 for all X E X, and
let f(x) = x/(l + x) for all x e X.

Since 0 <_f(x) < 1 on Xwe can let a = 0 and b = 1 in (10.9) and (10.10)
to obtain E(f., P) = I'll [(i - 1)/n1]P(A1,.) = (n - 1)/n for n = 1,2,...,
since A,,. is a finite set for all i < n and therefore, by finite additivity,
P(A,,) = 0 for all i < n. Sincef 1,fJ,.... converges uniformly from below to
f, E(f, P) = 1.

Now consider a sequence g1 , g2.... that converges from below to g, but
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not uniformly. In particular let B,, = [0, l/n] u ((n - 1)/n, 1) and Be,, =

((i -. )/n, i/n] r A,,, fori -- 2,... n - 1, and define g. by

g.(x) - inf Bi,. for all x c B,.., i = 1,..., n - 1.

Conditions I and 2 of Definition 10.11 hold for g1 , g 2, But

1. sup {E(g,,,P):n = 1, 2,...} # E(f, P) since E(g., P) = 0;
2. Uniform convergence fails since for each n there are values of X for

whichf(x) - g(x) is arbitrarily close to 1;
3. (10.3) of Lemma 10.2 fails since, with I = {:0 ! u(x) < c):

* 0 - c < 1}, P(U A•A) = P(X) = I and sup (P(A).A e •}) = 0.

10.4 PREFERENCE AXIOMS AND BOUNDED UTILITIES

Because a number of conditions will be used in the theorems that follow
we shall first summarize most of these conditions. In all cases, Az is a Boolean
algebra for X and Tf is a set of probability measures on A. No notational
distinction will be made between x e X and the one-point measure that
assigns probability I to x. With -< defined on T, x < y -: P < Q when
P(z) = Q(y) = 1. Similar meanings hold for x -< P, x < P, and so forth.
As usual P < Q (P -< Q or P,-.. Q), with P - Q .=• (not P -< Q, not
Q<P).

We list first some primarily "structural" conditions.

SI. {x}) E Afor every x e X.
S2. {x:x X, x < y}) E A and {x:x E X, y < x}) e Afor every y G X.
S3. T contains every one-point probability measure.
$4. T is closed under countable convex combinations (Definition 10.4).
S5. T is closed vnder the formation of conditional probabilities (Definition

10.8).

Conditions S1 and $3 enable us to define a utility function on X, and S2,
which looks very much like some topological axioms of former chapters (see
Theorems 3.5 and 5.5), guarantees that u on X is A-measurable. In the
present context A could be the set of all subsets of X (i.e., the discrete
topology for X) and no problems would result. At worst we might have to
deny countable additivity. On the other hand, the use of the discrete topology,
which in general implies that (X, 16) is not connected, would have disastrous
effects on former theory.

The following preference axioms (in addition to S2) include the three
conditions of Chapter 8 along with three versions of a kind of dominance
axiom. It is to be understood that these conditions apply to all P, Q, R c T',
A e A, and y, z e X.
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A 1. -<on T is a weak order.
A2. (P -< Q, 0 < a < 1) *- oLP + (1 - m)R < acQ + (1 - A)R.
A3. (P- Q, Q< R)==-i (I -+l )R-< Q and Q< #P+ (I -1 )R

for some a, P e (0, 1).
A4a. (P(A) = 1, Q < xfor allx e A)=> Q < P. (P(A) = l, x < Rfor all

xeA)=> P< R.
A4b. (P(A) = 1, y•< x for allx c A)= y P. (P(A) 1 1, z < z for all

xCA)=:-P < z.
A4c. (P(A) = 1 y < x.for all z e A) => y P. (P(A)= , x < z for all
c-A)=:>P < z.

The final three conditions are weak versions of the following translation
of Savage's P7 (1954, p. 77): (P(A) = 1, Q < x for all z A) => Q < P, and
(P(A) 1 1, x < R for all x E_ A) => P • R. Axiom A4a is weaker (assumes less)
than this since it replaces < by < in the hypotheses. A4c is weaker than
A4b for the same reason. A4b is weaker than the translation of P7 since
it deals only with one-point measures in part. Under S3, (P7 translation) =>
(A4a, A4b, A4c), A4a => A4c, and A4b => A4c. Axiom A4b does not generally
imply A4a, as can be seen from the proof of Theorem 10.2 in the next section.
However, under the other hypotheses given above (SI-A3), A4b => A4a when
every P e T' is countably additive: this follows easily from Theorem 10.3.
Under conditions SI-A3, A4a => A4b.

In general, the dominance or sure-thing conditions A4a, A4b, and A4c
seem reasonable, although A4b might be liable to criticism in the case where
indifference is not transitive.

Bounded Consequence Utilities

The first result based on the new dominance conditions uses the weakest
one of A4a, A4b, and A4c. We know from Theorem 8.4 that (10.14) and
(10.15) follow from AlI, A2, A3, and S4.

LEMMA 10.5. Suppose that there is a real-valued function u on for which

P < Q .:> u(P) < u(Q), for all P, Q e T, (10.14)

u(oP + (I - o)Q)-acu(P)-+-(l - a)u(Q), for all (x,P,Q)e[O,1] x T2,

(10.15)

and suppose that SI, S3, S4, and A4c hold. Then, with u(x)= u(P) when
P(z) = 1, u on X is bounded.

Proof. Under the hypotheses, suppose u on X is unbounded above.
Then there are x1, x2, ... such that u(xi) 2' for i - 1, 2,.... By S4,
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, 2-'x,,+ e T' for n 0, 1, 2,.... By the easy extension of (10.15)

u 2-xi 2-u(xr,) + 2-"u (Y_' 2~

so that, since u(xj) > 2',

u (2-x) > n + 2-"u ( -rx,+1).

Since y < xj for all i greater than some m and for 5ome e X, A4c yields
y < -t2-x.,+ for every n m i. Therefore, by (10.14),

u( 2-'ix) n + 2-'u(y) for n m + 1, m + 2,.

But this is false since u(,Vo1 2 ~ixi) is a real number. Boundedness below is
established by a symmetric contradiction. *

10.5 THEOREMS

By Theorem 8.4, the hypotheses of each theorem in this section imply the
existence of a real-valued function u on T? that satisfies (10.14) and (10.15) and
is unique up to a positive linear transformation. As shown by Lemma 10.5,
u on X is bounded. The question then is whether u(P) =-E(u, P) for all
P c T, which is true if and only if there is a real-valued function u on X such
that

P < Q -.zýE(u,P) < E(u, Q), for all P, Q z ET. (10.16)

In the following theorems u is presumed to satisfy (10.14) and (10.15). These
theorems show the weakest one of A4a, A4b, and A4c that will yield (10.16)
for various T sets. The 4>. means "do not imply for all possible cases."
H = {SI, S2, S3, S4, S5, At, A2, A3}.

THEOREM 10.1. (H, A4a)=. (10.16).

THEOREM 10.2. (H, A4b) p. (10.16).

THEOREM 10.3. (H, A4b, every P is countably additive) =. (10.16).

THEOREM 10.4. (H, A4c, every P is countably additive, x -< Y for some
X, Y X) *> (10.16).

THEOREM 10.5. (H, A4c, every P is discrete, z < vfor some x, y e X)=-
(10.16).

inmm. -

-'-
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THEOREM 10.6. (H. A4c, every P is discrete) #- (10.16).

The three "positive" theorems, Theorems 10.1, 10.3, and 10.5 are proved in
the next section. The proofs of the three "negative" theorems are given in
this section with specific cases where the hypotheses hold and (10.16) fails.
These proofs illustrate some of the differences between measures that are not
countably additive apd those that are, and between countably additive
measures that are not discrete and those that are.

Proof of Theorem 10.2. Let X { 10, 1, 2,.. .} with u(z) = z/(1 + x) for
all x e X. Let T" be the set of all probability measures on the set of all subsets
of X and define u on T by

u(P) = E(u, P) +- inf {P(u(x) ; 1 -- e):0 < e < 1}.

The expression P(u(x) • I - c) is a common shortening of P({x:u(x) Ž
1 - e)). Define < on TJ by P < Q --- u(P) < u(Q) so that (10.14) holds. By
Exercises 6, 7, 8, and 18, (10.15) holds since

u(xP + (1 - 0c)Q)
-- E(u, mP +I (I -- o)Q)

+ inf {aP(u(x) >! I - e) + (I - (x)Q(u(x) I> - e):0 < e 1)

= %E(u,P) + (1 -- )E(u,Q) + minf{P(u(x) 1 - F):0 < e I}

+ (1 -,z) inf {Q(u(x) Ž 1 - e):0 < e • 1)
= Mu(P) + (1 - 00U(.

H then follows from Theorem 8.4, and A4b holds: if P(A) = 1 and
y x for all x e A then u(ys) - u(P) since u(y) g E(u, P); if P(A) = I
and xz z for all x e A then u(P) - u(z) since u(z) <1 -- e for some f > 0
and therefore inf {P(u(z) : I - e):0 < E - 1) = 0.

Let P be diffuse with P(x) - 0 for all x e X. Then u(P) =1 + I = 2 since
inf{P(u(x) > I - e):0 < e < 1} 1. Hence u(P) # E(u, P). ,

Proof of Theorem 10.4. Let X [0, 1], let A be the set of all Borel sets in
[0, 1). Take T? as the set of countably-additive measures on A. Set u(z) = -1
if•x < I and u(x) = I if x , and let

u(P) = , u(x)P(x), for all P s T. (10.17)

X

u on T1 is well defined since P(x) > 0 for no more than a countable number of
* e X. Define P-< Q • u(P) < u(Q). Then (10.15) follows easily from
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(10.17). The conditions in /f hold and A4c holds since
i:1. (P(A) =f 1, y "< z for all z c- A) =ý-- A s [j, I y, e [0, ),and therefore

-1 = u(y) < 0 < u(P), and
2. (P(A) = 1, x < z for all x e A) => A s [0, J), z e [j, 1], and therefore

u(P) _e < u(z = 1.

But with Q the uniform measure on [j, 1], 0 u(Q) # E(u, Q) - 1. *

Proof of Theorem 10.6. LetX = (1, 2,...}, let A be the set of all subsets
of X and let T be the set of all discrete probability measures on A. Let g
be the set of subsets of T defined by

a f {8:8 g• l; if P1,..., P,, Q 1,..., Q.. are all different measures in 8
Sand if aj >_ 0, f, > 0 andj a =, 1-- PI, =* I then at 0iP ILr•Jt

8 contains all one-point measures}.
A simple measure is in 8 e g only if it is a one-point measure. The measures
in any 8 e 9 are independent with respect to finite convex combinations. A
maximal independent subset is an 8" e g such that 8* a S for no 8 e 9 and,
if P e T and P 0 8* then there are positive numbers a,,... OPI, ,P
with T • flx -- 1 and distinct measures P 2, , P, Q1,.. ., Q, Q.
such that

OtlP + T = 2#IQ (n e 1, m > 1). (10.18)
iJ-2 J-1

Using Zorn's Lemma (Section 2.3) it is easily shown that g has a maximal
element 8". It can be shown also, but is tedious algebraically to do so, that
each P € 8" has an essentially unique representation in the form of (10.18).

If u is defined on the measures in 8*, its linear extension to all of T? is
defined from (10.18) thus:

u(P) =ffiiu(Q.)1 - i•,u(r,) •,
[J-2 j-2

To establish Theorem 10.6 define u(z) = 0 for all x e X and let u(P) = I
for every P e 3* that is not simple. Let u on 8* be extended linearly by
(10.18) to all of T and define P < Q t u(P) < u(Q). Then H is seen to
hold and A4c holds for the simple reason that x < y for no x, y s X. Hence
the hypotheses of Theorem 10.6 hold. But (10.16) is clearly false.

A variation on this example shows that A4c cannot be deleted from the
hypotheses of Theorem 10.5. Take u(x) = z for each x e {1, 2,.. .} and
u(P) = 0 for each nonsimple P e 8* and extend u linearly by (10.18) to all of
fT. Define P -< Q - u(P) < u(Q). With yjR + Z_2- yR, = •- 6$S, along
with P as in (10.18) we get u(%.P + (1 - %)R) == u(P) + (I -- a)u(R) so
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that (10.15) holds. Moreover, x -< y for some z, y r X. But u on X is un-
bounded and therefore, by Lemma 10.5, A4c must be false. Clearly, (10.16)
fails, for otherwise we could construct a P with infinite expected utility.

10.6 PROOFS OF THEOREMS 10.1, 10.3, AND 10.5

For Theorem 10.1 let Hand A4a hold, let u on Tr satisfy (10.14) and (10. 15),
and define u on X as in Lemma 10.5. u on X is b•inded. We note first that

P(A) = 1 => inf {u(x):x e A} • u(P) - sup {u(x):x e A). (10.19)
Let c = inf and d --= sup in (10.19). To the contrary of (10.19), suppose that
d < u(P). Then, for any x e A, (10.15) implies that there is a convex com-
bination R = %P + (1 - w)x such that d < u(R) < u(P). Therefore, by
(10.14), z -< R for all z c A and hence P z R by A4a. But this contradicts
u(R) < u(P). Hence d < u(P) is false. u(P) < c is seen to be false on uing
the other half of A4a. Hence (10.19) holds.

Let a = inf {u(x): z e X) and b = sup {u(x):x c X), and let Aj,, be defined
by (10.9). ForP c T let n* = {i:i {1,... , n}, P(A,.) > 0). Then, by Hand
(10.7), P -- jr.A,. P(A,..), so that u(P) ,. u(PA,,.)P(AI,.) by (10.15).
Hence, by (10.9) and (10.19),

[a + (i - 1)(b - a)/n]P(A,.,) • u(P) • j, [a + i(b - a)/n]P(A,).

"18 (10.20)

Since u is bounded and A-measurable and fjf2,.., define by (10.10)
converges uniformly from below to u, Definition 10.12 gives

E(u,P) = sup (, [a + (i - l)(b - a)fn]P(A,,.):n - 1,2,..

Since the difference between the two sums in (10.20) equals (b - a)/n, which
goes to 0 as n gets large, u(P) = E(u, P). *

Proof of Theorem 10.3. Let H and A4b hold and assume that every P G T'

is countably additive. With u as in the preceding proof, we need to verify
(10.19). Then u(P) - E(u, P) follows from the second half of the proof of
Theorem 10.1.

Let P(A) = 1, c inf {u(z):z eA}, andd = sup {u(x):z cA). If{u(x):xe
A) = {c, d}, (10.19) follows from A4b and (10.14). Henceforth, assume that
c < u(w) < d for a fixed w e A, and let

A. -= {x:xc-A, x -< w), TO -- {Q:Q e , Q(AO) = 11
AIP = {x:x e A, w:< xj, TO =- (Q: Q c ,Q(A') =- 1). (02) +

A-A,ouA with A,O0 and A'A0. Let B={z:xeX,z<w}
so that B e A by S2. Then A. e A since A. -- A l B- [A6 u B61,.
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Similarly, Aw e A. Then, by (10.7) and S5, P equals a convex combination
of a measure in T. and a measure in TO. It follows from (10.15) that (10.19)
holds if it holds for every measure in T. u Tf".

To verify that Q e TO" : c < u(Q) ! d, we note first that

c u(Q) for every Q c- (10.22)

follows from c < u(w), A4b, (10.14), and (10.21). It follows from (1.0.22)
and an analysis like that used in the proof of Lemma 10.5 that u on T1,0 is
bounded above. Thus, let M be such that

c < u(Q) < M for all Q e TO. (10.23)

If u(x) - d for some x -Aw then u(Q) • d for all Q e 10'' by A4b and (10.14)
so that c • u(Q) ! d for this case. Alternatively, suppose that u(z) < d for
all x e A and with e > 0let

A(e) = {x:x e Aw, u(x) < d - e}
B( -'= (x:z x A"', d - . uz.

Then A(e) u B(E) - AO and (A(c):e > 0} is weak ordered by c so that

for any Q e TO' it follows from (10.3) of Lemma 10.2 that

sup {Q(A(e)):-E > 0} = 1. (10.24)

If Q(A(E)) = 1 for some E > 0 then u(Q) < d by (10.14) and A4b. On the
other hand, if Q(A(c)) < 1 for all e > 0 then, with e small and Q.A,), Qut,
respectively the conditional measure of Q given A(e), B(E), it follows from
(10.15) and (10.7) that

u(Q) = Q(A(.))u(Q4 (,)) + Q(B(e))u(QB(i,).

Hence, by (10.23) and QA.4(A(e)) - 1, u(Q) < Q(A(c)) d + [1 - Q(A(c))]M
for all small e > 0. u(Q) • d then follows from (10.24). Hence Q E ,,0
c < u(Q) • d. By a symmetric proof, Q e f =*-c • u(Q) e d. *

Proof of Theorem 10.5. Let the hypotheses of Theorem 10.5 hold. Since
every P is assumed to be discrete, A is a a-algebra. With a = inf {u(x):x e X}
and b = sup (u(x): x e X}, a < b since x < y for some x, y c X. We shall
prove first that u on T is bounded.

If a < u(w) < b for some w E X, boundedness of u on T follows from an
analysis like that using (10.22) in the preceding proof. Henceforth in this
paragraph assume that {u(x):x e X} = {a, b} and let

3'. = {P:P - T, P(u(X) = a) = I)

TI, = {P:P e T, P(u(x) = b) = 1),

.I
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so that every P e T' is a convex combination of one measure from each of
T. and T,,. (10.15) says that u on T is bounded if u is bounded on T. u T1,.
For Ti,, an analysis like that using (10.22) applies: a g u(P) for all PF 6 T
by A4c and (10.14). A symmetric analysis shows that u on T.' is bounded.

If P is simple, u(P) -= E(u, P) follow.@ from (10.15). If P is not simple and
A = {x:P(x) > 0}, Lemma 10.3 gives LP(W) -= 1. With the elements in A
enumerated as zl, x,,... , P 20 P(xj)z,. Hence, by the finite extension
of (10.15),

u(P) = ,P(x)u(x) + gP(X )u IP(xi)[iP(X) 1X1) (10.25)

for n =- , 2,. And by Exercise 20a,

E(u, P) - P(zx)E(u, x,) + I P(xi)E E P(u, D D(x) [ .oZ
1 t1+1 %J\,+1 L1+l _i I

(10.26)

for n = 1, 2,.... Since E(u, xi) = u(x), it follows from (10.25) and (10.26)
that

u(P)-- E(u, P) + [0P(x,)] [u . - E(i.t, x)]. (10.27)

Since u on Tf is bounded, since E(u, P) on Tf is bounded when u on X is
bounded, and since + P(zJ approaches 0 as n gets large, the second term
on the right of (10.27) approaches 0 as n gets large and therefore must equal
zero for all n. Hence u(P) = E(u, P). *

10.7 SUMMARY

The weak-order expected-utility result, P < Q • E(u, P) < E(u, Q),
holds for sets of probability measures that include nonsimple measures when
appropriate dominance axioms are used. The basic idea of such axioms is
that if a measure P is preferred to every consequence in a set to which a
measure Q assigns probability 1, then Q shall not be preferred to P; and if
every consequence in a set to which Q assigns probability 1 is preferred to P
then P shall not be preferred to Q. This is condition A4a of Section 10.4. If
all probability measures under consideration are countably additive then a
"4weaker" form of aominance axiom will yield the expected-utility result in
conjunction with the preference conditions of Chapter 8 and several structural
conditions on the set of measures and the Boolean algebra on which they are
defined.

• . . ..
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INDEX TO EXERLISES

1. Denumerable sums. 2-3. Boolean algebras. 4. Countable unions. 5. a-Algebrm.
6-11. Infs and sups. 12-15. Countable additivity. 16. Uniform convwrgence from above.
17. Expectations of surns. 18-19. Expectations with convex combinations of measures.
20. Conditional expectations. 21. Expectations are sums. 22-24. Dominance end expecta-
"tions. 25. S2. 26. Failure of A4a. 27-28. Proof of Theorem 10.6. 29. Blackwell-Girshick
Theorem.

Exercises
1. Prove that . 2-' = 1 - 2-1 by noting that 2(1- 27') - 1 2-1 1 - 2-*.

Also show that 0 < p < I impliesI 1p(I -pY 1 -I.1.
2. Show that A is a Boolean algebra if and only if A is a nonempty set of subsets

of X satisfying (2) and (3) of Definition 10.1.
3. Let A be the set of all subsets of (1, 2,.. . that are either finite or contain

all but a finite number of positive integers. Show that ,At, is the Boolean algebra
generated by {{1}, {2}.. }.

4. Specify U• 1 A = {X:XE Aj for somei} when (a) Aj - 0, (b) A, = {-i, ij,
(c) Aj - (1/(1 + 1), Ili) s- Re, (d) Ai - [11i, 2 - Ili] G Re.

5. Describe the a-algebra generated by {{}) :x G Re).

6. Let R be a bounded set of numbers. Prove:
a. sup R = -inf {r: -re R},
b. sup {(ar:r E R) = a sup R if - Ž 0,
c. sup {r:r E R) - a inf R if m !0,
d. inf{xr:rERR) - ainfRifcc 0,
e. inf{£r:r _ R) -- o sup R ifct a 0.

7. With R and S bounded sets of numbers prove that sup {r + s:r e R, s ES S)
sup R + sup S. Then prove Lemma 10.1.

8. (Continuation.) Prove that sup {(i + /J :i - 1, 2 .... sup {c:/= 1,
2,...) + sup {(fl:i = 1, 2,...) if a,,a, .... and #Ifi 2,.... are nondecreasing
sequences of real numbers that are bounded above. Generalize this result to n
nondecreasing, bounded sequences.

9. (Continuation.) Suppose a, 0 for all], jt a, < M for all positive integers
n and some number M, and for each j (Q = 1, 2,...) /fi, 02 .... is a bounded
nondecreasing sequence of nonnegative numbers. Using (10.1) prove that

sup I AtJ: i = 1,2. .... = o 1 [sup {it,: i = 1,2... 2 .

10. (Continuation.) With the aj as in the preceding exercise, suppose that, for 4

• I I I I I I I1
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each j, Y,,, z'•, ... is a nonincreasing sequence of nonnegative real numbers. Prove
that

inf Mjyo:1 - 1, 2,... -I,[infryv:i - 1,2,. .

11. Let P1, Ps,... be a sequence of probability measures on the set of all subsetsof X, let a, > 0 for all I with I-, otj - 1, and for any probability measure P and
real-valued function u on X define

lim P(u(x) e r - c) = inf (P({z:u(z) ! r - j}):j - 1, 2,

where -1 > es > -" - and inf {1,:j f= 1, 2,...} =0. Use the result of the precedingexercise to prove that, for any real number r,"W Go
Jam Y 'xjPj(u(x) Ž r - -) - i •Jlim P1(u(m) 2 r -
C-0*-i ,-1 L6-00

12. Let P be defined on .A(K of Exercise 3 on the basis of P(n) = 2-" for n = 1,2, .... Prove that P is countably additive.
13. Use the conclusion of Exercise 9 to prove (Pi is acountably-dditiveprobability

measureon Afori = 1,2,... a i 0 andj'. 1 ,, = 1) ::>j -Io P isacountably-
additive probability measure on A.

14. Prove that if P on A is countably additive, if I is a countable subset of Aweakly ordered by a, and if nf A - -4, then P(fl A) = inf{P(A):A e &}.Note: In Exercises 15 through 24, A is a Boolean algebra on X;fg,. . .are bounded
and A-measurable; P, Q, .. . are probability measures on A.

15. If P is couritably additive show that E(f, P) is unambiguously defined by(10.11) whenfl,f3 , . .. is a sequence of simple A-measurable functions that satisfies
conditions 1 and 2, of Definition 10.11.

16. A sequence gl, g2, .. . of simple A-measurable functions converges uniformly
from above tof ir and only if, for all x e X,I. gj(X) > g&~) >" ...

2. g(x) - inf g,(a):i = 1,2,..
3. c > 0 =:>g. (x) !g(a,) + e for some n (and all x).Prove that sup {E(f,, P):n = 1, 2,...} = inf{E(g., P):n - 1, 2,...} when fl,/S,.. ..(g 1,g 2, . . .) converges uniformly from below (above) tof
17. With c a real number let f + c be the function on X that takes the valuef(x) + c at x -X, let cfbe the function that takes the value cf(x) at X E X, and let

f + g have value f(x) + g(x) at x. Prove
a. E(f + c, P) = E(f, p) + c,
b. E(f +g,P) E(f, P) + E(gP),
c. E(cf, P) - cE(f, P).
18. Show that if a e [0, 1] then

E(f, ieP + (1 - m)Q) - etE(f, P) + (I - z)E(f, Q) (10.28)
and then generalize this to E(f, R,- *8P,) -, Yj E(f, Pi).
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19. (Continuation.) Supposing that aj > 0 for i = 1, 2,..., = is finite, and
b1, bp,... is a bounded sequence of numbers, define Z_,- cbi from (10.1) by

S1 .ceb, _.-j 1cj,(b, + c) - c!,-1 a, where c is such that b, + c Ž 0 for all t.
Show that I oia.bi is well defined. Then use this definition along with Exercise
17a and Exercise 9 to prove that if mi > 0 for all i and X,- ixi= 1 then

Ef, x,) - ,jE~f, P,). (10.29)

20. Use the results of the two preceding exercises along with (10.7) and the sen-
tence following its derivation to show that, given A E A,

a. EP(A) - 1, (A 1,..., A,1 is an A-partition of A, I --- {i:P(A1 ) > 011 =E(f, P) - Yz (A,)_I(fP
b. [P(A) - 1, {A, A 2 ... }is a denumerable partition of A with A1 E- Afor all i,

I = {i:P(A,) > 0), P is countably additive] => E(f, P) = • P(A )E(f, P.A).

21. Suppose all x1 are different in each of b and c. Show that
a. P(x) = 1 => E(f, P) = f(a').
b. -1 P(x 1) = 1 P) - P(f,).f(X).
c. JOD P(;i) = I. E(f, P) = 10,Pxjfx)

22. Assume that A E- A and P(A) - 1. Prove that
a. [f(x) < g(x) for all x e A] =; E(f, P) < E(g, P),
b. Vf(x)< g(x) for all x-A, P(f(x) + <g(x)) >0 for some f>0]

E(f, P) < E(g, P,%

c. tf(x) < g(x) for all x c A, P countably additive] ==> E(f, P) < E(g, P).

23. (Continuation.) Give an example where P(f(a) < g(x)) = 1 and not E(f,
P) < E(g, F). P(f (X) < g(x)) -P({x:fpx) < g(a')}).

24. With u satisfying (10.16) let Av = {x:x c X, x < y}. Prove that [P(4,,)
Q(A.) for all y E X1 => E(u, Q) • E(u, P). Prove also that [Q # Pi for I = 1,
2,... ,n, cc1 >0 for all i,~ , O =f 1,,I! -, jP,(A,) < Q(A,) for all y G X]1:
E(u, Q) • E(u, PF) for some i.

25. Show that Definition 10.1, S2, and < on X connected imply {x:x G K,
y <~ z' 4 z)C A and {xa -x c- , y, -< x' -< z} E A.

26. Gie specific examples of probability measures that demonstrate the failure
of A4a in the proofs of Theorems 10.2 and 10.4.

27. Use Zorn's Lemma to prove that l in the proof of Theorem 10.6 has a maxi-
mal element 8".

28. Verify that the representation (10.18) for (P - Tr, P 0 8*) in terriis of measures
in 8* is essentially unique.

29. Blackwell and Girshick (1954). Prove that if 9' is the set of all discrete prob-
ability measures on the set of all subsets of X and if Al and A3 of Section 10.4
hold along with [P 1, Q, c-T, Pi <Qjand mi k 0for i 1, 2,. ..;2 1  i !;

Pi -< Q, for some i for which mi > 0] => Z._c atP^ -< j-t= acQ,, then there is a
real-valued function u on X that satisfies (10.16).



Chapter 11

ADDITIVE EXPECTED UTILITY

This chapter combines the weak-order expected utility theory of Chapters 8
and 10 with the situation where the consequences in X are n-tuples as in
Chapters 4, 5, and 7. The main focus of the chapter is conditions that, when
X __ X, x X2 x ... x X,,, imply the existence of real-valued functions
u1, .... u, on X1, .... ,,, such that

P < Q.ý, E(u,Pi) <,IE(u,,Q,), for allP, Q c-, (11.1)

where T is a set of probability measures on X and, forP e• P, is the marginal
measure of P on XA.

We shall examine (11.1) first for the case where X = X1 x ... x X,, and
then for the more general case where AX = X, x ... x X,,. Section 11.3 then
examines the case where X -- X, x ... x X,, and (11.1) may fail but some
form of additive interdependence applies such as u(xi, x2 , x.) = uj(X1 , x.) +
u&(x2 , x3). Finally, Section 11.4 looks at the homogeneous product set
situation where X = A', as in Chapter 7.

11.1 ADDITIVE EXPECTED UTILITY WITH X = 1- Xi

To simplify our examination of independence among factors in a multi-
dimensional consequence set in the expected-utility context, this chapter
assumes that probability measures for X are defined on the set of all subsets
of X. A similar assumption applies for a measure defined for a factor set XK.

Definition 11.1. Suppose P is a probability measure on X _ Hii= XK.
Then Pj, the marginal measure of P on X,, is defined by

P1(A,) = P({x:x c X, xi E Ai}) for all A, 9 '1 . (11.2)

In (11.2) xi is the ith component of x. When X = n jL1 A', (11.2) becomes

148
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Pj(A,) = P(X1 x , x X,_- x Aj x X,+,. x x X,,). It is easily verified
that P, is a probability measure on X, when P is a probability measure on X.

It is possible to have (PI, . . . , Pt) = (Qt, ... , Qj) when P # Q. With
n = 2 let P and Q be the simple even-chance gambles

P($5000, $5000) = P($100000, $100000) - .5

Q($5o00, $100000) = Q($100000, $5000) = .5.

Then (PI, P2) = (Qj, Q2) although P # Q. P gives an even chance for a
two-year income stream of either ($5000, $5000) or ($100000, $100000).
Q gives an even chance for an income stream of either ($5000, $100000) or
($100000, $5000). 1 suspect that many people would prefer Q to P. The
condition for (11.1) requires that P - Q. This condition may seem more
reasonable when the different factors in X are heterogeneous.

THEOREM 11.1. Suppose that T is either the set of simple probability
measures on X = IJ•u1 Xi or a set of probability measures on X - flX X7
that satisfies SI through S5 of Section 10.4, and suppose further that there is a
real-valued function u on X such that, for all P, Q c T, P .< Q <=• E(u, P) <
E(u, Q). Then there are real-valued functions u1, ...- u, on X1, ... , X,
respectively that satisfy (11.1) and are unique up to similar positive linear
transformations, if and only if P - Q whenever P and Q are simple measures
in T such that (P, ... P,) = (Q 1 ... , Q,,) and P(x), Q(x) E {0, J, 1) for all
XEX.

The very last condition here shows that (11.1) can be established on the
basis of simple 50-50 gambles when X =" •f X3. The necessity of the
indifference condition for (11.1) is obvious. The sufficiency proof follows.

Proof. Fix x0 
- (x°,... , x") in X, assign uL(x), ... , u,,(x°) values that

sum to u(x°), and define u, on Xi by
uxi = 10 . 4. 1 xi ,o D ... % _n I y O (11.3)

The indifference condition between 50-50 gambles when (P,... , P)-
(Q1 , . Q,,) leads directly to u(x1 , ., x•, ? , ,,)+U(XO, i,

X, 1, X?2  .. 0.), -)= u(X1, 0., x+1, X 2 ,... xa)+u(xO) for i=
n - 1. Summing this from i = 1 to i = n - 1, cancelling identical terms, and
transposing (n - 1)u(x") we get J•_• u(x?, .. , X_1 x,, x0,... , x0) -

(n - I)u(xl,, x1) = u(x,,..., x,), which on comparison with (11.3)
shows that

u(X .. , x,) ui(xi), for all (x 1,..., x,,) X. (11.4)t-1l

3•
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If T satisfies the Section 10.4 conditions then u on X is bounded and hence
ui on X,, defined by (11.3), is bounded. In any event, although u, is defined
on Xi, it is equivalent to a function ua' defined on X by u*(x) -- u(). Then,
using (11.4) and Exercise 10.17b,

E(u, P) = E(u* + + uP)
= E(u*, P) + ... + E(u*, P)
= E(ul, Pi) + " ' ' + E(u., P.)

which yields (11.1) in conjunction with P < Q -:- E(u, P) < E(u, Q).
Finally, suppose that v1, .. , v,n on XI,..., X,, satisfy (11.1) along with

u . ... , u.. Define u and v on the simple measures in Tf by u(P) = 1, E(u,, P,)
and v(P) = -T E(vj, PJ). It is easily seen that u(atP + (1 - z)Q) = au(P) +
(1 - oa)u(Q) and similarly for v for simple measures P, Q e T. Hence, by
Theorem 8.4, v is a positive linear transformation of u, say v = au + b,
a > 0. We then have . v,(xz) = E(v,, xi) - v(xi,... , x.) = au(xi,.
X.) + b = a J u,(x,) + b, from which it follows that vi(x,) = au,(x,) +
[b + a Y,,,, u&(,•) - v,(x,)J -" au,(x,) + b,, for each i, where b, is
defined in context. *

11.2 ADDITIVE EXPECTATIONS WITH X • II X,

When X • -•J•, X,, (11.1) does not generally follow from the 50-50
gambles version of the indifference condition. In general, we require the more
general condition that (P,, .... , F.) = (Q 1,. . . , Q,) => P , Q. When X is
finite, (11.1) follows from this and P < Q • E(u, P) < E(u, Q) as is noted
in Exercise 4. For X infinite, only the n - 2 case has been satisfactorily
worked out and then only for simple probability measures. Therefore, this
section examines only the X g Y1 x X2 case.

To show one difficulty that may arise in this case for nonsimple probability
measures suppose X = {(0, 0), (1, 0), (1, 1), (2, 1), (2, 2), (3, 2), .. .} and let
u on X, satisfying P < Q -4> E(u, P) < E(u, Q) for all discrete measures P
and Q on X, be such that u(k, k) 0 for k = 0, 1, 2.... and u(k + 1, k) =---

1 for k = 0, 1, 2, .... Set u1(0) u.(0) = 0 for (11.1). Then for (11.1) to
hold for all one-point probability measures we must have u1(k) = k and
us(k) = -k for k = 0, 1, 2, [when u(xl, z,) = ul(xl) + u(x,)]. Define P
by

P(2', 2 k)- 2- fork= 1, 2,.o.
so that E(u, P) = 0. Then E(uq, P), if defined at all, is infinite: E(u1 , P) -
21"2-1+2.'22+-2-2- 1 + I + --- = +oo. LikewiseE(us,P)-= 21.
2-1 - 22. 2-2 -... - - oo, so that E(ul, PI) + E(u., P,) is not meaning-
fully defined. Despite this, E(u, Q) = E(u1 , Q1) + E(us, Qj) when Q is
simple.
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- The Structure of X s; X1 x X,

Several special definitions that apply to this section only will be used in
resolving the X !; X, x X2 case for simple probability measures.

Definition 11.2.. (X1 , x2)R(yl, y2) if and only if there is a finite sequence
(XI, x,)•,X . , XN, (yl, y,) of elements in X _S X, x X2 such that any two
adjacent elements have at least one component in common.

R is easily seen to be an equivalence on ". We shall let 0) be the set of
equivalence classes of X under R. In the preceding example Z - {AX}. If
D, D* c-D and (xx, z 2) e D, (yi, y.) c D*, and D 6 D* than it must be
true that x, ; xs and y, 9 y,. Hence, given u on X, there will be a ul, ua
solution to

u(xi, x.) = u1(x1) + ut(xx) for all (X,, X3) E X (11.5)

as required for (11.1) if and only if there is a u1 , ua solution for each D c)
considered separately. We therefore concentrate on an arbitrary D G O.
Proofs of our first three lemmas are left to the reader.

Definition 11.3. An alternating sequence in D is a finite sequence of two
or more distinct elements in D such that

1. any two adjacent elements have one component in common,
2. no three consecutive elements in the sequence have the same first

component or the same second component.

LEMMA 11.1. If x,y e D andx rd y then there is an alternating sequence in
D that begins with x and ends with y.

Definition 11.4. A cycle in D is a subset of an even number of elements in
D that can be positioned in an alternating sequence whose first and last
elements have the same first component if the first and second elements have
the same second component or whose first and last elements have the same
second component if the first and second elements have the same first
component.

LEMMA 11.2. If D has no cycles then there is exactly one alternating
sequence in D from x to y when x, y E D and x ' y.

LEMMA 11.3. Suppose x1,... , 0* is an alternating sequence in D whose
elements form a cycle. Suppose further that T is a mixture set of probability
measures that includes the simple measures, that there is a real-valued function
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u on J' that satisfies (8.5) and (8.6), and that [P, Q e 3, (PI, PI) - (Qj, Q2] =
P ..Q. Then

*1l ft

LEMMA 11.4. If D &I then there is a C 5_ D such that

1. C includes no rycle,
2. xRy for each z, y•e C with zRy established by a sequence all of whose

elements are in C,
3. (z 1, x2) e D => (x1 , y,) e C and (y,, zt) e Cfor some yj e [X1, ys e X2.

Proof. With D e D let

C = (C: C E D, C satisfies conditions 1 and 2 of Lemma 11.4}.
We shall prove that C has a maximal element that satisfies condition 3. Let
0* be a subset of C that is strictly ordered by c, and let C* = Uc' C.
C* c- e since C* =_ D and

1. C* includes no cycle, for if {(x,... , xn)} G C* is a cycle then with
X c- C,, C, e C*, the largest of these C, will include {x1, ... , x"} and this
contradicts Cj e e;

2. xRy if x, y e C*, for x, y E C for some C e C*. Thus, by Zorn's Lemma,
there is a B c C such that B c C for no C eC. Suppose (x 1, x•)•e D and
(xi, z,) 0 B. Then, since B is maximal, B u {(x,, xg)} must include a cycle
which, since B includes no cycles, contains (xa, x3). It follows from Defini-
tions 11.3 and 11.4 that (xj, y 2) e B and (y,, x,) e B for some ya c X2 and
YI GX1.

Additive Expected Utility with Simple Measures

The appropriate theorem for (11.1) with X S X1 x X2 and simple proba-
bility measures follows.

THEOREM 11.2. Suppose 0 is the set of simple probability measures on
X z X, x X2 and there is a real-valued function u on X such that P < Q -4=>
E(u, P) < E(u, Q), for all P, Q e 3. Then ihere are real-valued functions uat
on A'1 and ux on X, that satisfy (11.1) if and only Yf [P,Q E, (PI,P,)
(Q1, Qa)]= -P -. Q. If v, on X• and va on X2 satisfy (11.1) along with u1 and
u2 then there are numbers a > 0 and b and real-valued functions * andft on
Ssuch that

vl(xl) = aul(xl) +fj(D(x1 )) for all x, e XL
v3(x,) - au2(xt) +f 2 (D(x2)) for all x2 c X2

A(D) + f(D) = b for all D r
where D(x,) e 0 contains an element whose ith component is xi.
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"For completeness we should mention that each x, e X, is assumed to be the
ith component of some z e X, for i = 1, 2.

Proof. The sufficiency of the hypotheses for (11.1) is proved by showing
7 that (11.5) holds. Two cases are considered for any D c 1).

Case 1: D has no cycles. Fix x° D, define u,(aO) and u,(zO) so that
ul(x() + u,(x) = u(x), and proceed term by term along alternating se-
quences beginning at x0 , defining ug and u2 in the only way possible to satisfy
(11.5). By Lemma 11.1, every x, and xs in elements in D has a ul(xl) or
us(xj thus defined. Lemma 11.2 implies that the ul and u2 values are unique,
given u1(x,) and u,(zx).

Case 2: D has cycles. Let C E D satisfy the three conditions of Lemma
11.4. The Case I proof then applies to C and gives u(zx, zx) = u(zi) + ut(x)
for all x e C. Suppose z e D, x ý C. Then, by condition 3 of Lemma 11.4,
we have (x1, yj) c C and (YL, X) e C and, by Lemmas 11.1 and 11.2 there is a
unique alternating sequence in C from (xj, yt) to (yV, xt). Hence C u {x} has
a cycle that must include z. An alternating sequence whose elements form
such a cycle can be written as (x1., z2), (x2, x,),. .. , (x''", x."). By Lemma
11.3, (11.6) holds with (x', x,) - (x1, z). Applying u = ul- + u2 to the C
terms in the cycle it follows from (11.6) after cancellation that u(x,, x) =
u1(x1 ) + u1(xt). It follows that u = ul + u? holds on all of D.

For the last part of the theorem let u1, u2 and vq, v2 each satisfy (11.1).
Using the approach in the final paragraph of the proof of Theorem 1 !.1 we
get v&(Dx) + v2(Xt) = au1 (xl) + aus(x) + b for all x e X. For a given D let
zo c D. The Case 1 procedure for assigning ul and u2 then leads to

vl(xl) - au,(xl) + au,(x,) + b - v2(X°)

v( 2) = au2(x2) + aui(xo) + b - v1(x)

for all x e D. Letting A(D) = au2(4) + b - v2(z) and fg(D) = au1(x() +
b - vz'(xO), the desired equations follow. (A different a0 must be chosen for
each D since there are no x, or x2 interconnections between different elements
in 0.) *

11.3 ADDITIVE, INTERDEPENDENT EXPECTATIONS FOR 11 X,

Throughout this section we take X = -•fl'- Xi and let {h1... , 1} be an
arbitrary, but fixed, nonempty set of nonempty subsets of (1, 2,..., n}.
For Section 11.1. 1j = (j) for j = 1,..., n. Here we slall permit the I1 to
overlap.

We shall let TF be a set of probability measures on X and let • be a set of
probability measures on ri'L,• Xj. With P e TJ, the riarginal measure P, of
P on f 1 •, X, is such that Pj(A) -P({z: x- X, zex X, for i 0 1j, a zEAJ}) for

|4
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every A, g Hr, X,, where xJ is the projection of z onto j. For example, if
x = (x1, x., x., x4 ) and 1, = (1, 3} then xi = (z1, Xa).

THEOREM 11.3. Suppose that the hypotheses in the first sentence of
Theorem 11.1 hold. Then there are real-valued functions ul,... , u,, on
[I[ Xj,... . -Hl, Xi respectively such that

P < Q u, PI) <, •E(u,, Q,), for all P, Q e T, (11.7)

if and only Vf [P, Q c- , (P1, . ,P) = (Qi, . . . , Q,)] =- P -Q.

Admissible transformations for the u1 are discussed in Exercises 9c and 10.
The proof of Theorem 11.3 will be carried out in two steps. First, we shall
state and prove a lemma and then use this to prove the theorem. In the
statement of the lemma we shall let x - (,... ,x) in X be fixed and, for
any x e X and I g {1,2,... n}, let V1] be the n-tuple in X whose ith
component is x, if i E I and xO if i f L

LEMMA 11.5. Suppose T contains every simple probability measure on X,
and a real-valuedfunction u on X satisfies P < Q €• E(u, P) < E(u, Q)for all
simple measures. Suppose further that [P, Q G Tr, (PI,... , P,,,) = (Qi,.
Q,m)] =- P - Q. Then, for allx c X,

u() u 1.8)

For m = 3, (11.8) is u(x) = u(x[11J) + u(x[41J) + u(x[13]) - {u(x[l 0
21J) + u(X[I n 131) + u(x[i• n I31)) + u(x,1 1 n I. r ) 131).

Proof of Lemma 11.5. To simplify notation let x be an arbitrary element
in X and let [I]J be the projection of x[l] onto 1,. (If I = {1, 3) then [l] =
(X], x, x, x,,.. .). Then if I4 - (1, 4}, [I]J -= (x,, xo,).) Because the only
integers in I that are relevant in defining [I]Y are those in 1,, [1]' = [I r) 1,Y.

Let S and R on {1,..., m} x {1,..., m) be defined by

".k,,j• - {(i, .... , i):l i < ... < i m,j . f{il, .. , ik}}
R~k~j) ----- {(< ....i)! .. < ik Mi m 0 fil 01-••,i}

so that S(!,j) ( {j}, R(m,j) -0, and

S(k,j) u R(k,j) = {(i, ... , io): 1 i, < ... < < kt m}, j 1 --... ,m.

S(k,j) u R(k,j) has ()elements.
k-
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Let P and Q be simple probability measures defined by

,i

- K. 8(k,iILuR(ks) 
La-i

where K,, {i:2 •i m, i is even), AT., {i:1 •i m, i is odd}, and. - 2-'"-. For the marginal measures on Xz r• our preceding observations
and definitions yield

kI
iP,= c'.•x + Ia i,,+ O[ ]I)

iR: k, , La-i' j RIj --'"+ ( z •lni,,. +"
., ( , 1) [L Sim J M - ,

k- R (k,fl ) e= .1.I

kkŽ1
ax= 2 + + --

+ + -ITR(h1D R(,l} •. (k.0LI-I.

RQJ) t '

Hence, by hypothesis, P - Q and therefore E(u, P) E(u, Q), or

"U(X)+2 , u x ii,. = 2 u xFxi,1)
K. S(k,J)UR(kX, KoS( k.j)'J() \La-1 .J/

which is (11.8). #

Proof of Theorem 11.3 (Sufficiency). To verify (11.7) under the statedhypotheses, including (P1,..., P,) (Q1,..• Q,) - P,- Q, we notefirst from Lemma 11.5 that (11.8) holds for u on X. With zo c X fixed as in
the lemma we define u1 on ]J,,, X, as follows:

U X')I -k I 1,])+i(,1)k
k-I l!ii <a..
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u$ is well defined since u,(x) - u,(V1 ) if xJ - yV. Moreover, if u on X is
bounded (as in Chapter 10) then uj is bounded. Summing over]:

Iu,(x•') -Au(x[,I]) + 1 af(-W). ( x I,.

Iu(x-1 
])=I u(-TI]) +I (-1) 57 1 U ia, n

,-1 k-, J-k+± 1•i < ... << ( j

n`i rk+i
= uVJ)+ I (-1)k u fl J,.

1-1 k-I 1•<z . <- m'< L'- J /

i-I]
'(-tI) * W+ u ,Fk,.

k-1 -

k-I lh ..< it<-el< MU(8

---u(x) by (11.8),

from which (11.7) readily follows. #

11.4 PROBABILITY MEASURES ON HOMOGENEOUS PRODUCT SETS

Throughout this section X- A", T, is the set of simple probability
measures on X, and fR is the set of simple probability measures on A. For
P e T,, Pi e a is the marginal measure of P on the ith A: that is, P,(B) =
P(Af-' x B x Al') for B 5; A. The marginal measure of P on all but the
ith A will be denoted PO:Pc((x,... ,,, x,+,,..., x,)) - 1

E4 P((x1,..,
X,-,, a, x,+z, , xJ)).

Based on < on T.', we define < on ft as follows:

R < R* -- -< Q for every P, Q c TJ, such that P, = R and Q, - R* for
all i. Three special preference conditions will be applied to this case:

Cl. [P, Q e ,,P, =- Qifor i = 1, . .. , n] => P - Q.
C2z. [e, Q T,,P, = -R, Q, =f R*, Pf = Qc)]:> [P < Q -** R -< R*].
C3. For some R e 1, [P, Q, P*, Q* e T, P, = Q, - Pl = Q• = R,

P.0 =Qd, pt Q*701=> [P < Q -:-P* <Q*J.

C2 is a persistence condition, much like the definition of persistence in
Section 7.1. Under Cl, all P that have P, - R for i = 1,..., n are indiffer-
ent, and all Q that have Q, - R* for all i are indifferent. Hence if -< on T,
is a weak order then, if P < Q for one such P and Q, P < Q for all such P
and Q so that < on ,% is a "faithful" weak order. C2 says that this weak order
on 5t applies to each of the n factors. C3 is a form of stationary condition,
and compares with stationarity as defined in Definition 7.3 of Section 7.3.
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The reasonableness of these condition is, of course, doubtful in most
situations.

THEOREM 11.4. Suppose that there is a real-valued function u on X = A"
that satisfies P < Q •. E(u, P) < E(u, Q), for all P, Q es ,, that P .< Qfor
some P, Q e T',, and that CI and C2 hold. Then there is a real-valued function
p on A and positive numbers A1, .. , A. such that

n

P < Q -=* AE(p, PI) < J ;E(p, Q,), for all P. Q e "J,, (11.9)

andp' on A and positive A,. . , A, satisfy (11.9) along with p and A... A.
if and only tf there are real numbersp > O, q > 0 andr such that

A••PA, for i = 1,....n (11.10)

p'(a) " qp(a) + r for all a e 4. (11.11)

If, in addition, C3 holds and n > 2 then there is a unique number 7r > 0 such
that

P < Q <=:>1r-E(p, Pd) < r•-E(p, Q,), forallP, Q ,. (11.12)
i-1

Expression (11.9) compares with (7.9) and (11.12) compares with (7.13).

Proof. To obtain (11.9) we use Theorem 11.1 to obtain (11.1) for all
P, Q E T,, where each ui is defined on A. CI is used in this. It then follows
from C2 and the definition of-< on R that, for each i, R < R* ,. E(u,, R) <
E(uj, R*) for all R, R* e AJ. It follows from Theorem 8.4 that the uj are
related by positive linear transformations, say u, = ajul + bi with a, > 0 for

j = 2, ... ,n. Let p = ul and A, =- 1; A = aj forj = 2,... ,n. Then (11.9)
follows.

Suppose p' and A• > 0 satisfy (11.9) also. Then, since the Aip are unique
up to similar positive linear transformations by Theorem 11.1, there are
numbers k > 0 andf#t,. .. , , &such that Ap' pn= kAjp + P, for i = 1,... ,n.
(11.10) and (11.11) then follow as in the proof of Theorem 7.4. P< Q
for some P, Q e T, is used in obtaining (11.10).

The proof for (11.12) follows the general lines given in the proof of
Theorem 7.5 and will not be detailed here. *

11.5 SUMMARY

When X G fl"- X., the usual expected utility axioms along with a
condition that says that P '-, Q when the marginal measure of P for Xj
equals the marginal measure of Q for Xj (i 1, ... , n) leads to the additive
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form P -< Q - i E(uj, P,) < J, E(uj, Qj). This was proved in general for
X X Il , x, and for X z X, x X.. (It is true also for simple measures
when X s; T-, XK, but the proof of this was discovered too late for inclusion
here.)

Under the additive, expected utility representation in the homogeneous
context with X - A", a persistence condition leads to P -< Q .C Jj A.E(p,
P,) < J AjE(p, Qj), and persistence and stationarity lead to P < Q .7,,'-'E(p, P,) < J, 7T'-'E(p, Q,).

INDEX TO EXERCISES

1. 50-50 indifference condition. 2. Binary relations on the t-. 3. Marginal expectations.
4. Additivity with finite X s; II X,. 5-8. Alternating sequences and cycles. 9. Markovian
dependence in utility theory. 10. Admissible transformations. 11. Theorem 11.3 versus
Theorem 11.2. 12. No time preference. 13-14. Theorem 11.4.

Exercises
1. For the bridge-construction example of Section 10.1 let x1 be cost and let x2

be completion time in (xz, x2 E X, x X2. Assume that both factors are subject to
uncertainty. With X = Xi x X2 argue that only 50-50 gambles of the following
form need to be used in testing the indifference condition of Theorem 11.1: P gives
($100 million, 4 years) or (x1 million, x2 years) each with probability .5; Q gives
($100 million, x2 years) or (x1 million, 4 years) each with probability .5.

2. Let Tf be the set of simple probability measures on X R-1 Xj and let if1
be the set of simple probability measures on X,.With a, b - • define a <j b•P
Q for every P, Q e T such that Pi = a, Qi b, and Pf = Q., where PO(Q:) is the
marginal of P(Q) on IT,, i xd. Also let a -<b = (a -< b, not b < 'a), a b<
(a -< b, b < 1a). We identify the following conditions:

A. < on T" is transitive and connected;
B. (P-<Q,0 < a <1) =-aP+(I - m)R-<Q +(1 --a)R;
C. (P ,•Q, 0 < az < 1) ::> mP +- (I - a)R ,,atQ +4 (I - %)R;

where P -<Q•(P Q, not Q < P) and P ,-,Q ý* (P ,g< , Q P). Prove the

following theorems. The 4> means "does not imply."
a. (-ý on if is transitive) :> (- < on Tf is transitive).b. (P, "-•, Q, Pj - 0,1) => P Q .
c. Vi <, Q,. Pie = Q) 4> P q
d. (,g is transitive, Pi < i Qj for all i) :> P < Q.
e. (A, each l on ff is transitive and connected, Pi < Qi for all i Pi< Qd for

some 0 0. P < Q.
f D • ,' on T and "• on T, are reflexive.
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g. (n = 2, j is reflexive for i - 1, 2) = D1.
h. (n > 2, j is reflexive for each i) 4A D.
i. (n Ž> 2, '<i is reflexive for each i, i is transitive) ==> D.
I. (A, D) j.. • on T' is transitive and connected.k. ( • is transitive, B, C, D, Pj = a, Q, -- b, Pi -l a -<j b) =€- P-< .
1. (- is transitive, B, C, D, PF j Qj for all i, Pj -<j Qt for some i) 0 P -< Q.

m. When C in k and I is replaced by A, the conclusions of the two theorems can
be false.

n. (A, B, C, D) = :< on T" is transitive and connected.
0. (A, B, C, D,P, < QjO < a < 1) *- xP + (1- ,x)R, j aQ, + (1 -a)Rj.
p. (A, B, C, D, Pj -<i Qi, 0 < a < 1)• p, + (1 - %)R. -<• tQ, + (1-
3. With X c- H1•.. Xj let P, be the marginal measure on Xj of the probability

measure P on X and let f on X and Ai on X, be real-valued functions that satisfy
f(mi,.. - x,.) -=f(x,) for all x c X. Prove:a. (P is simple, X = I'TXj) => E(f, P) -f E(fi, Pj).

b. (P is simple, X c- 11 X,) =- E(f, P) = E(f, Pt).
c. (f is bounded, X & 1- Xj) =€: E(f, P) = E(fi, P,).
4. Suppose that T is the set of simple probability measures on a finite set X 5;

-[j'L Xj, that there is a real-valued function u onX that satisfies P -< Q .4. E(u, P) <E(u, Q)for every P, Q - T, and that (P, Q e T, Pj - Qifor i 1, 1,... , n) => P , Q.
Then there are real-valued functions ul,... , u, on X,... , ,, respectively that
satisfy (11.1).

Prove this theorem using the following steps.
a. To establish u( 1 .... , x) = I ui(xi) for each x 6 X note that this system of

equations is the same as
NI ajkv(Yk) = u(X•) =1 .... M(1.3

k=i
when we let X- {x,... , xM}, X -i- .=.. ,f,,} (?,. ,yid
(X... ... I x1 , .. , X21... , x,,,,), N = i, and define the a, e
{O, 1} in an appropriate manner with •_ n for each a.

b. It is a well-known fact of linear algebra that (1. 13) has a v-solution if and only
if for any non-zero vector (cl, ..... cm) G ReM(M\ MI cjajk -= 0 for k =-1,.. N) ==_' I oj~l . (11.14)

To verify this for a non-zero (c1,... , cM) let A {j:c, > 0}, B = {j:c, < 01,
P = JA (ct/IA c1)x

t and Q = .B (cl/XE cW)xt , and show that the left side of(11.14) implies that A 9&0 andB #0, that Pi - Qj for i -- 1,... ,n, and
that ,It c, - c,. Then use the indifference condition to establish (11.14).

5. In the X s; X, x X'2 context of Section 11.2 verify:
a. R in Definition 11.2 is an equivalence.
b. Lemma 11.1. (Consider a shortest sequence.)
c. A cycle has at least four elements.
6. Let X =- {(x1 , ,xl), (x,, z.X (•,' 4), ), (z(, yj), (zl, zo)), and let u on XA
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sa•isfy P -< Q .4. E(u, P) < E(u, Q) for P probability measures P, Q on X. Prove:
a X is a cycle.
b. X has no four-element cycle.
c. The 50-50 indifference condition of Theorem 11.1 holds.
d. (11.1) can be false.
7. Prove Lemma 11.2 by showing that if D has more than one alternating sequence

from (x@, x2) to (yl, y2) then D includes a cycle.
8. Prove Lemma 11.3.
9. In the context of Section 11.3 let I, = {i, i + 1} for i = 1,2,..., n - 1 with

m - - 1.
a. Ve.ify that the indifference condition at the end of Theorem 11.3 implies the

following: [{(xi, xj+i), (yi, Yi++)) = {(zi, zi+d) (wi, wi+1)} for 1 - 1, .. . , n -
II => jx + jg -- 1z + j w. (The latter are 50-50 gambles.)
Prove that Theorem 11.3 is true for the case at hand when the indifference
condition in Theorem 11.3 is replaced by the 50-50 indifference condition in
(a). Obtain u(x) = 17:-, ui(xi, x,+,).

c. With P -< Q •E(u, P) < E(u, Q) for all P, Q e T, suppose that u(x)
lij 1 ui(xi, x.+ '=1 vi(x., x,+1) for all x E X. Show that there are real-

valued functionsf2, ... ,f,,- on X2 .... , X,,I such that

vl(a, b) = ul(a, b) + f2 (b) for all (a, b) X x X2,
v'(a,b) =uj(a,b) -f(a) + fA+i(b) forall (a,b)e X x Xj+,

2 i • n -2,
vn. 1(a, b) = un.(a, b) -f,l(a) for all (a, b) - X_.1 x X,.

10. In the context of Section 11.3 suppose that u(x) - j=n u,(xi) for all x
H1ý7 Xj, as in the proof of Theorem 11.3. With u fixed, describe the set of trans-
formations on the u, that preserve equality. Note that, if {v,} is such a transformation
of {u,} then I u,(xJ) = , v,(x') and consequently D-1 VJ([l]) = ZrX uk([IJ]h) for
j=1 .. ,m so that

vY(x) = uj(-r') + I [Uk([lj 2)) - Vk([IJgk)].

If/ 1 Ik= 0 , argue that uk([I]j) - vk(I[IJ) is constant as x ranges over X,
and if 1, r) 1. # o then the stated difference varies as x ranges over X but the
variation is caused only by the x, for i G 14 n 1k.

11. Argue that if the generalization of Theorem 11.2 were true for X - p-'S , Xg
with n > 2, then Theorem 11.3 for simple measures would be an immmediate corollary
of the more general form of Theorem 11.2.

12. Show that the hypotheses in the first two lines ofTheorem 11.4 along with
(Pi, ..... P, is a permutation of Q1 ..... , Q, => P - Q, imply that there is a
real-valued function p on X such that, for all P, Q e T, P -< Q -- Yj E(p, P.) <
I, E(p, Qd).

13. Verify (11.12) in Theorem 11.4.
14. Can you imagine a situation in the context of Section 11.4 where any one of

Cl, C2, and C3 seems reasonable with n > 1 ?



PART

111

STATES OF THE WORLD

Preference structures that incorporate uncertainty in the formulation of
alternatives but do not presuppose probability have been expressed mostly
in states of the world models. In such a model the uncertainty concerns which
state in a set of mutually exclusive states (or environments) obtains, or is the
"true state." It is generally assumed that (1) the decision maker does not
know the "true state," (2) the act he selects has no effect on the state that
obtains, and (3) the state that obtains affects the outcome of the decision in
conjunction with the act selected.

Interest in expected-utility theories that are set in the states of the world
formulation is due in large part to Leonard J. Savage's theory (Chapter 14),
published in 1954. Before this, the now widely-referenced theory of Frank
P. Ramsey (1931) was virtually unknown. Savage's theory reflects elements
from Ramsey and from John von Neumann and Oskar Morgenstern: his
interpretation of probability owes much to the pioneering work of Bruno de
Finetti.

Some other theory for the states formulation is presented in Chapters 12
and 13.
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Chapter 12

STATES OF TIE WORLD

This chapter introduces the states of the world formulation for decision under
uncertainty. The first section describes the usual states formulation and
compares it with the approach of Part II. The second section examines the
weak-order expected-utility model for the states formulation, and discusses
several axiomatic approaches to the model. Several of these approaches are
explored in the next two chapters.

The second section also points out two problems that arise in the theories.
One of these, often referrer' to as the "constant acts" problem, suggests an
alternative approach to the expected-utility model. Axioms for the alternative
approach have yet to be discovered. The second problem concerns the
fineness of state descriptions and residual uncertainty. Some additive utility
models that are designed for this possibility and which do not explicitly
include state probabilities are discussed in the third section.

12.1 STATES AND STATES

In Part 11 of this book we thought of a decision under uncertainty in terms
of a set F of available acts or strategies and a set X of consequences, one of
which will follow from the selected act. We assumed that the decision maker's
uncertainty about which x e X would occur iftfe F were selected could be
expressed by a probability measure P, on X. The axioms were based on sets
of probability measures that supposedly included hPt :fo e a i.

To enlarge on this let S' be the set of functions on acts to consequences.
Each s c- S' assigns a consequence s(f) e X to each f e F. Suppose, for
example, that a young man will propose marriage to either Alice or Betsy,
but not both in case one refuses him. Suppose further that he is interested
only in the three consequences in (Marry Alice, Marry Betsy, Stay Single).
In this case S' contains nine functions, but only four of these need be con-
sidered. The four are ((Propose to Alice, Marry Alice), (Propose to Betsy,
Marry Betsy)), ((Propose to Alice, Marry Alice), (Propose to Betsy, Stay
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164 States of the World

Single)), ((Propose to Alice, Stay Single), (Propose to Betsy, Marry Betsy)),
and {(Propose to Alice, Stay Single), (Propose to Betsy, Stay Single)}. One
of the five functions that is excluded is {(Propose to Alice, Marry Betsy),
(Propose to Betsy, Marry Alice)}.

Suppose that if actf is implemented then consequence s(f) will occur and
this is true for eachf E F. Then we say that s obtains. By C' g S' obtains we
mean that some s e C' obtains. Suppose the decision maker has a probability
measure PI on (the set of subsets of) S'. P'(C') is interpreted as a measure of
his belief in the truth of the proposition "C' obtains." Given P' we could
define P, by

P,(A) = P'({s:s E S', s(f) c A}) for all A g A. (12.1)

In the marriage example we would expect that P'(C') = 0 when C' is the set
of the five "excluded" functions. Then we would have PY (either girl would
say "yes") + P' (only Alice would say "yes") + P' (only Betsy would say
"6'yes") + P' (neither girl would say "yes") - 1. Here we have translated the
four functions into conditions under which they will obtain. For example
{(Propose to Alice, Marry Alice), (Propose to Betsy, Stay Single)} obtains
if and only if only Alice would say "yes."

If s c S' obtains it will obtain regardless of which f is implemented. This
is a result of the way S' has been formulated. Hence the decision maker's
choice should not influence his beliefs about which s might obtain. But we
expect that his beliefs about which s might obtain will influence his choice.

In most cases P' on S' contains more information about the decision
maker's uncertainty than does {Pf :fE F} when the P, are probability measures
defined from P' as in (12.1). To determine an act in Fthat maximizes expected
utility it is usually unnecessary to estimate all of P', a task that may be an
order of magnitude more difficult than the estimation of the P,.

Although four potentially nonzero P'(s) were noted in the marriage
example, our young man would presumably be satisfied with estimating the
two probabilitues P = Ppropose to Alice (Marry Alice) = Pp,,-,, t, ui,,
(Alice would say "yes") and q = -- /propose t. ,.y (Marry Betsy) =
Pvropose to Betsy (Betsy would say "yes"). In fact, all he needs is an estimate
of the ratio p/q since E(u, Propose to Alice) < E(u, Propose to Betsy) -
p/q < [u(Marry Betsy) - u(Stay Single)]/ [u(Marry Alice) - u(Stay Single)].

States of the World

In Savage's words (1954, p. 9) the world is "the object about which the
person is concerned" and a state of the world is "a description of the world,
leaving no relevant aspect undescribed." The states are to incorporate all
decision-relevant factors about which the decision maker is uncertain and
should be formulated in such a way that the state that obtains does not
depend on the act selected.
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According to the last part of this description it would not seem out of
place to call the elements in S' "states." However, the approach made
popular by Savage and others does not usually proceed in this way. Instead
of defining states as functions on acts to consequences, Savage defines acts
as functions on states to consequences. With S the set of states of the world,
eachfc F is a function on S to X.f(s) is the consequence that occurs iff is
implemented and s c S obtains.

Simple examples of states as they are often thought of in the Savage
approach are: whether an unbrcken egg (the world) is good (state 1) or
rotten (state 2); whether the next flip of this coin will result in a head (s5) or
a tail (st); whether the accused is guilty (sL) or innocent (s2); whether these
mushrooms are harmless (sl) or poisonous (s2). Iff - "Eat the mushrooms"
and g = "Throw away the mushrooms" then f(sl) = "Enjoy a culinary
treat," f(s2) = "Enjoy a culinary treat then die," and g(sj-= g(s.) "
"Throw away the bunch of mushrooms."

If S is so formulated that at most one s e S can obtain, the decision maker
cannot conceive of none of them obtaining, and the state that obtains does
not depend on the act selected, then we might suppose that the decision
maker has a probability measure P* on S where P*(C) is his probability that
some s E C with C _ S obtains. We would then define P. by

Pr(A) - P*({s:s e S,f(s) • A}) for all A g; X. (12.2)

If in fact subsets of S are more or less probable depending on whichfe F is
chosen, then new states defined as functions on F into S will remove this
difficulty. In most discussions bast~d on Savage's theory it is presumed that
(12.2) holds.

Comparisons of Two Formulations

The rest of this book is primarily concerned with utility theory based on
Savage's conception of decision under uncertainty. Before we get into that
it seems advisable to note that the two formulations presented above are not
incompatible. In fact, they are virtually isomorphic when a certain consistent
way of viewing uncertainties is adopted. A demonstration of this follows.

Whather S' and S as conceived of above appear different, at least on the
surface, suppose in fact that their probability measures P' and P* agree with
each other. By this we mean that, for any A _r X andfc F,

P'({s':s' e S', s'(f) c A}) = P*({s:s e S,f(s) E A}). (12.3)

This says that the decision maker's probability of getting an x e A when f is
used is independent of the particular method used to describe his uncertainty.

Let u on X be the point utility function defined in such a way that for any
two measures P and Q on X, P < Q . E(u, P) < E(u, Q). We assume (see
Chapter 10 if Xis infinite) that u on Xis bounded. Let ul, u3,.. be a sequence

i a-
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of simple functions on X that converges uniformly from below fn ,,!_e'nition
10.11). Consider one of these, say u,. Let u. have m values with u.(A1 ) = ci
for i = 1,... , m where {A1,... , A,,,} is a partition of X and let

C, {s':s' e S', sAf)D Aj, C, = {s:s - S,f(s) e Aj.

Then {C, ... , Cý} and {C1, • ., C,,) are. partitions of S' and S respectively
and, by (12.3), J c =,(C) - cP*(C,). it follows from Definition 10.12
that

Efu(l'(f)), P'] - E[u(f(i)), P], (12.4)

where ^ denotes the varying factor under P' or P*. In terms of (12.1) the
left side of (12.4) is E(u, P,). In terms of (12.2) tkhe right side of (12.4) is
E(u, P,).

Hence, under the agreement of (12.3), the two formulations give the same
value for the expected utility of actfj

12.2 EXPECTED UTILITY PREVIEW

In viewing acts as functions on states to consequences, we shall be con-
cerned with the expected-utility model

f< g -=- E[u(f(s)), P*] < E[u(g(s)), P*], for allf, g EF, (12.5)

where P* is a probability measure on the set of all subsets of S and u is a
utility function on X.

A number of axiomatizations of (12.5) have been made. By far the best
known of these is Savage's theory (1954), all of whose axioms can be stated
in terms of < on F. His axioms require, among other things, that S be
infinite and that if B s; S and 0 :! p ! I then pP*(B) = P*(C) for some
C _ B. He assumes also that every element in X can occur under each state
and that all constant acts-those that assign the same consequence to every
state-are in F. His reason for doing this is to provide a way of defining
preferences among consequences on the basis of preferences among (constant)
acts. Moreover, this enables the derivation of a probability measure P* on
S. Savage's theory will be presented in detail in Chapter 14.

One of the most criticized aspects of Savage's theory is the structural
condition that all of X is relevant under each s c S. For the general situation
let X(s) denote the subset of consequences that might actually occur under
the acts in F if s obtains. Then, viewing the consequences as complete
descriptions of what might occur, it would not seem unusual to have
X(s) r) X(s') = 0 when s 0 s'. When this is so, there is no natural way of
defining preferences on consequences in terms of preferences on acts. This
suggests an alternative approach to (12.5) that is based on a pair of preference
relations, < on Fand <' on X. In this approach we would be interested in



Expected Utility Prevlw 167

conditions for - and •' that imply the existence of a real-valued function u
on X = U& X(s) and a probability measure P* on S that satisfy (12.5) along
with x .<'y -=- u(x) < u(y), for all x, y c X. I do not presently know of any
axiomatizatic i that does this, even when X and F are finite, and allows for
no overlap of the X(s).

Extraneous Probabilities

In addition to Savage's approach to (12.5), a number of authors have
developed theories that use a set of extraneous probabilities in the axioms.
These probabilities may have nothing to do with P* which, like u, is to be
derived from the axioms. Conceptually, the extraneous probabilities can be
associated with the outcomes of chance devices such as roulette wheels, dice,
or pointers spun on circular disks. The axioms in these cases apply -< to a
set of elements constructed from F and the extraneous probabilities. The
set to which < is applied includes F as a special subset.

Axioms for (12.5) that. use extraneous probabilities from 0 to 1 have been
presented by Chernoff (1954), Anscombe and Aumann (1963), Pratt, Raiffa,
and Schlaifer (1964), Arrow (1966), and Fishburn (1969). The next chapter
examines two versions of this theory. The first, which assumes that S is
finite, follows Pratt, Raiffa, and Schlaifer and assumes only a minimal
overlap among the X(s) for different s e S. This overlap is necessary in order
to have a base on which to define P*. The second theory makes no restrictions
on the sizes of S and X, but it does assume that X(s) = X for all s as in
Savage's theory. However, unlike Savage's theory, almost no restrictions are
placed on P*.

Axioms for (12.5) that use only the extraneous probability 1/2 (or the
notion of even-chance gambles) have been developed by Suppes (1956).
Suppes' theory can be viewed as a logical completion of Ramsey's (1931)
ideas. Suppes (1956) should be consulted for a more detaiitAd account. Some
of the 50-50 theory is presented in the exercises of Chapter 13.

Residual Uncertainty and Act-State Pairs

In practice it is seldom possible to ensure that the states will leave no
relevant aspect of the world undescribed. No matter how finely we describe
the potential realizations of the world, the descriptions will usually be
incomplete even when the states meet the logical criteria of being mutually
exclusive and collectively exhaustive. Thus the specification of actf and state
s will enable us to say something about what will occur although we may
never be precisely certain about exactly what will happen iff is implemented
and s obtains. Part of this residual uncertainty can be identified explicitly by
expanding S to obtain a finer set of states. This may necessitate an expansion
of F also.
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The practical question is thus seen as the question of how detailed to make
the states in light of the purpose of the decision and the import of the
potential consequences.

The possibility of residual uncertainty (given f and s we are still not
precisely certain about what will happen) leads us to consider a formulation
that does not attempt to detail exact consequences. In this formulation
consequencesf(s) are replaced by act-state pairs (f, s) e F x S. Uncertainties
not resolved by simply specifying act-state pairs might be mentally factored
into the situation by the decision maker during his preference deliberations.

In this case no act-state pair appears under more than one state. Thus we
have the kind of situation described above where X(s) r0 X(s') = 0. With
u a utility function on F x S in the present formulation, we might ask for
conditions for a binary relation -< on F and a binary relation -<' on F x S
that imply the existence of a real-valued function u on F x S and a proba-
bility measure P* on S such that

(f,s),<'(g,t).r-u(fs)<u(g,t), for all (f, s), (g, t) e F x S, (12.6)

f-< g -.4 E[u(f, s), P*] < E[u(g, s), P*], for allf,gEF. (12.7)

I do not presently know of any more-or-less satisfactory axiomatization for
this model.

12.3 MODELS WTITHOUT STATE PROBABILITIES

Despite the absence of axioms for the F x S model of (12.6) and (12.7)
we can formulate axioms for more general but perhaps somewhat less
interesting forms of that model. These forms posit additivity over the states
but make no attempt to define state probabilities. I shall comment briefly
on several of them. These comments apply also to the consequence formula-
tion when X(s) r) X(s') = 0 whenever s # s'. Throughout this section both
F and S are assumed to be finite.

An Order for Each State

In our first case we assume that the decision maker has a weak order <
on F along with a weak order <, on F for each s. Thus, <, orders F under
the hypothesis that s obtains. If the decision maker does in fact have a weak
order <' on F x S, then <, would be obtained as the restriction of <' to
F x {s). In this context we are interested in the existence of a real-valued
function v on F x S that satisfies

f< 8 g-*- v(f,s) < v(gs), forallfgEF and seS, (12.8)

f < g -4!* Is v(f, s) < J, v(g, s), for all f, g e F. (12.9)
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Under the weak order conditions, an independence axiom across states that
is necessary and sufficient for (12.8) and (12.9) can be derived from the
Theorem of The Alternative (Theorem 4.2). One version of such an axiom is:
iffi P g' (i.e., fJ < g' orf P- gJ) forj = 1, . .. ,m and if for each s there
is a permutation f P, ,f,, of fl,. . . ,f", such that g' ?<. fi for] =
1,..., m, then in factf 1 '-'gJ and gJ -, f" for allj and s.

Apart from the question of intransitive indifference, one can criticize the
model of (12.8) and (12.9) on the count that the decision maker might have
a nonindifferent weak order -< when he regards s as virtually impossible.
In (12.7) we can take care of this by setting P*(s) = 0, but the only way of
reflecting "s is impossible" in (12.9) in a general way is to have v(f, s) con-
stant on F for the given s, and if (12.8) is to hold we then require (f, s) -1..

(g, s) for all f, g e F. The model given by (12.8) and (12.9) can easily be
amended to handle this criticism by excluding all states that, in the judgment
of the decision maker, cannot possibly obtain. Such states will be referred
to as null states in the next two chapters.

The model and therefore the independence condition can easily be seen to
be unreasonable when the "state" that obtains depends on the selected act.
For example, suppose you want to sell something and can either advertise
(at some cost) or not advertise. Let the "states" be s = item is sold, I = item
is not sold. Then surely advertise <, don't advertise, and advertise <, don't
advertise. According to the model this requires that advertise <
don't advertise, which, if we took it seriously, would say that one should
never advertise.

Perfect Information Acts

An alternative to using the -<, directly is to work only with < on a set
that includes F. For example, let 5- be the set of functions on S to F: a
function f e 5, which assigns act f(s) to state s for each s e S, is a perfect
information act. We interpret f as follows. Suppose the decision maker
specifies an f e Y. He then gives this function to an imaginary second party
who has perfect information about which state obtains and who proceeds to
implement the f(s) E F for the s that obtains. In terms of the <, the decision
maker's most preferred f would presumably be one that for each s has
f -, f(s) for all fe. F. (This assumes that the state that obtains does not
depend on the selected act.) F is the subset of constant functions in Y.

Under this formulation we are interested in the existence of a real-valued
function v on F x S that satisfies

f< Iq-- v(f(s), s) < v(g(s), s), for all e g Y. (12.10)

Condition C of Theorem 4.1 applies directly to this case. That is, (12.10)
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holds if and only if Iff(s), . . , f -(s) is a permutation of gl(s),. g(s)
for each sc-S, fU : glforj- 1,..., m - l] =>not f- < gm.

A probabilistic argument (using extraneous probabilities) that supports
this independence condition proceeds as follows. Suppose f1(s),... , f•(s)
is a permutation of g1(s),.. . , gm (s) for each s. Let . (1/m)fl denote an
"alternative" whose "implementation" is carried out as follows. A well-
balanced die with m symmetric faces numbered I through m is rolled and if
face j occurs then fJ is used, with (fl(s), s) the resulting act-state pair if S
obtains. I (1/m)g' has a similar interpretation. Supposing 'or conveni,-ce
that all fl(s) are different forj = 1,... , m, ifs obtains then I (1/m)fl gives
each of (f1(s), s),..., (f-(s), s) an equal chance of resulting. The same: is
true with respect to T (I/m)g9, and since gl(s),..., ,g-(s) is a permutation of
fl(s),. .. , f(s) it seems natural to regard I (1/m)f1 and :E (l/m)gl as
essentially equivalent if s obtains. Since this is true for each s we would
expect that I (I/m)f• - I (l/m)gl.

Now if in fact the condition is violated by fJ < g' for allj < m and f"m -< Am
we would then expect that I (l/m)fl < I (l/m)g•, which violates our
"reasonable" conclusion that 1 (l/m)f1 - (l/m)0J.

Extraneous Probabilities

The model given by (12.10) can be embedded in a model that uses extrane-
ous probabilities. In particular, let T be the set of (simple) probability mea-
sures on Y. A pseudo-operational interpretation for P e Ti is that, using P,
an f e Y is determined: then, if s obtains, (f(s), s) is the resulting act-state
pair. In this formulation the axioms of Theorem 11.1, letting X -= F x {s)},
lead to

P <. Q-4.' E[v(f, s), P.] < I E[v(f, s), Q.], (12.11)

in which P, is the marginal of P on F x {s} and the v(-, s) for the s e S are
unique up to similar positive linear transformations. (12.10) follows from
(12.11) when we define f -< § P < Q when P(f) = Q(g) = 1.

12.4 SUMMARY

The usual states of the world formulation views the acts in F as functions
on states to consequences. The states represent a partition of the potential
realizations of the world, ideally leaving no relevant aspect undescribed. It
is usually assumed that the state of the world that obtains does not depend on
the act selected by the decision maker. If this is not true, new states that
satisfy the independence criterion can be defined as functions on acts to the
initial set of states. This reformulation is similar to the definition of states
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as functions on acts to consequences, as suggested in this chapter in connec-
tion with the acts-consequences model of Part It. Under a fundamental
agreement between the usual states model and the Part II model, the two
models are seen to be alternative but equivalent ways to characterize decision
under uncertainty with an expected-utility model.

In cases where acts and states are formulated but exact consequences may
not be detailed, independence axioms over the states lead to additive utility
models that do not explicitly include probabilities for the states.

INDEX TO EXERCISES

i. Conditional consequence probabilities. 2. Equivalence of two approaches. 3. Job-
changing example. 4. Psychology of timing. 5. Independence axiom. 6. Win-lose example
and state probabilities. 7-8. Penalty kick example. 9. Propose to the other girl. 10. Theorem
of The Alternative for (12.8)-(12.9).

Exercises
1. Use (12.1) and (10.5) to write the probability of 'f will result in an x E A,

given that g will result in an x E A'" in terms of P'. Then use (12.2) to write the
probability in terms of P*.

2. With all sets finite the utility of act f in the Part I1 approach can be written
as Jx u(x)Pj(z), and as S u(f(s))P*(s) in the states of the world model. Assuming
that Pf(x) = P*({s -f(s) x}), show that Is u(f(s))P*(s) =.•X U(x)Pt(z).

3. A man currently making $10000 per year has been offered $14000 per year
by another company. He decides to give his company notice that he will quit unless
he gets a new salary of $x. He decides to make x either 13000, 14000, or 15000.
The higher x is, the more likely his company will be to reject his ultimatum: if they
reject, he will take the new job at $14000. Formulate his decision under the Part II
approach. Then reformulate it in the states of the world manner so that the state
that obtains doesn't depend on the selected x.

4. Suppose that you have to make a choice between f and g when the pay-off
from your choice will depend on the outcome of one flip of a slightly bent coin that
you have been shown. Furthermore, you can either (1) select forg, after which the
coin is flipped by a referee or (2) have the referee make the flip before you choose
f or g, but be informed of the outcome of the flip only after you have made your
choice. Assuming that you believe the referee is thoroughly honest, do you feel that
the procedure (1) or (2) that you select will in any way affect your decision between
f and g? Explain the reason(s) for your answer.
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5. Adapted from Ellsberg (1961) and Raiffa (1961). An urn contains one white
ball (W) and two other balls. You know only that the two other balls are either
both red (R), or both green (G), or one is red and one is green. Consider the two
situations shown below where W, A, and G represent the three "states" (which
don't depend on the act selected) according to whether one ball drawn at random
is white, red, or green. The dollar figures are what you will be paid after you make
your choice and a ball is drawn.

W R G W R G

f $100 $0 $0 $100 $0 $100&" SO $100 SO g'[ $0 $100 $100

a. Which of f and g do you prefer? Which of f' and g' do you prefe;r?
b. Show that the pair (g -<ff' -<g') violates the following independence

axiom: if {f1(s),f 2(s)} = {gl(s),g2(s)1 for each s e S and if fi -< g& then not
fA <g2. Use an argument like that following (12.10) to argue the "incon-
sistency" of (g "<f,f' <g'j.

c. If your answers in (a) wereg -< fandf' -<g', does (b) convince you that there
is something "wrong" with your preferences? Discuss this.

6. Suppose a decision maker can choose one of two strategies, f and g, and his
"opponent" can independently choose one of two strategies, f' andg'. Our decision
maker is concerned only with the two consequences "win" and "lose." He believes
that either might occur for each of the four strategy pairs in {f,g} x {f',g'}. Eight
states, displayed along the top of Figure 12.1, can be used to partition his "world."
Each state specifies the strategy chosen by his opponent and, for each of / and g,
specifies whether he will win or lose.

a. Does the state that obtains depend on the one of f and g that is chosen by
our decision maker?

b. Suppose an additive expected-utility model without state probabilities, similar
to that described by (12.11), is used as a basis for estimating the v numbers in
the matrix of Figure 12.1. According to this, g is the better act since 3 + 1 <
2 + 3. In the usual states model, characterized by (12.5), we would have
1:8 u(f(s?))P*(sj) as the exeected utility for f and 11 u(g(sj))P*(sj) as the
expected utility for g with f(sv), g(si) E {win, lose) for each i. Assuming that
these two models agree with one another we should have P*(s2) = 3a,

S1  $a S3 S4 $5 36 S7 SS

[win fwin [.lose f. lose f. win P. fwin f. loseif: lose
g:win lose g: win g: lose g: win g: lose g: win g: lose

f 0 3 0 0 O0 1 0 0
0 0 2 0 0 0 3 0

Figure 12.1 A v matrix.

a'ft
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P*(sa = 2a, P*(s) = a, and P*(s7) = 3a, where a > 0. Explain why this is

so. What can you tell about P*({sl, s4, s5, ss}) from the data? Is there any need
to estimate P*(s1 ), P*(s4), P*(sf), and P*(s8 ) when the usual states model is
applied?

7. In soccer, a direct penalty kick inside the box can be viewed as a two-person
game between the kicker and the opposing goalkeeper. The goalkeeper can select
one of three acts:

f = stand firm until the kick is made;

g - move right an instant before the ball is kicked;
h = move left an instant before the ball is kicked.

Assume that the kicker will aim right or left (from goalkeeper'. orientation).
Assumingseveral symmetries, the goalkeeper's probabilities are presented in Figure
12.2: A is the probability a goal will not be scored if he moves right and the kick is
right. Surely f > cx > y.

kick kick kick kick kick kick
right left right left right left

Goal prevented a c fl Y 7 #
Goal scored I-a I - a I1--# I -Y- 1-y I-fI

Figure 12.2 Conditional probabilities of consequences.

a. If the goalkeeper considers a right kick and a left kick equally likely (which
may of course be false), show that f is best if 2ot > # + y and that either g
or h is best if fP + V > 2oc.

b. Reformulate this in the typicil states model with acts fg, and h and 16
appropriate states.

8. (Continuation.) Suppose in the preceding example we use only the gross
state- - = kick right and t = kick left and that an estimate ofv on {f, g, h) x {s, t}
in ac,,oid with (12.11) gives v(f, s) = 2, v(g, s) = 6, v(h, s) = 0, and v(f, t) = 3,
v(g, t) -- C, v(h, t) = 9. According to this, which ac, is most preferred? Describe
the best perfect information act. Do the v's suggest that the goalkeeper considers
s more 1--obable than t? Why?

9. Suppose an extraneous probability model like that described by (12.11) gives
the following v matrix on F x S for the marriage example of Section 12.1:

s1(both "yes") s2(only Alice "yes") s3(only Betsy "yes") s4(both "no")

Propose to 1 2 0 0
Alice

Propose to 0 0 4 0
BCsy
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a. Which girl would the y,. ag man rather marry?
"b. Which girl should he propose to? (Which act is preferred?)
c. Suppose that extraneoz. probabilities are used to scale the young man's

utilities on the three consequences, afte: the theory in Chapter 8, and that
"u(Stay Single) = 0, u(Marry Betsy) = 3, u(Marry Alice) = 4. (That is,
"Marry Betsy" is indifferent to a gamble with probability .75 for "Marry
Alice" and probability .25 for "Stay Single.") Argue that this data along with
the figures in the above matrix suggest that P*(Betsy would say "yes") -

(14/9) P* (Alice would say "yes").

10. Use the Theorem of The Alternative to verify tChat the independence condition
following (12.9) along with weak order is sufficient for (12.8)-(12.9).



Chapter 13

AXIOMS WITH EXTRANEOUS
PROBABILI IES

This chapter gives two derivations of the expected-utility model

f < g t:> E[u(fls)), P*1 < E[u(g(s)), P*1, for allfg EF, (13.1)

that are based on extraneous probabilities as described in Section 12.2. The
first derivation assumes that S is finite and presupposes a minimal overlap
of the relevant consequences under each state in S. The second makes no
restriction on the size of S but assumes that all consequences are relevant
under each state. Both P* and u are derived from the axioms. Section 13.4
shows how these axioms might apply to the decision model of Part 11.

All probability measures in this chapter are defined on the set of all subsets
t~f their basic set. "P* on S" is an abbreviation for "P* on the set of all
sub'sets of S."

13.1 HORSE LOTTERIES

The purpose of this section is to define many of the terms used later in this
chapter and to prove a theorem for horse lotteries, which are the elements on
which < is applied in our axioms.

Throughout the chapter S is the set of states of the world. Subsets of S,
called events, will be denoted by (s}, A, B, C.....A partition of S is a set of
nonempty events that are mutually exclusive and whose union equals S. AT is

the complement of A in S: Ac = {s:s 0A, s eS). {A, AO) is a two-part
partition of S provided that o i: A c: S.

F is the set of acts. Each f c F is a function on S into X, the :--t of conse-
quences. X(s) = of(g)-fc F), the set of consequences under state s. Xno
Us X(s). r it(s) is the set of simple probability measures (extraneous) on
X(s). T is the set of simple probability measures on f.

The phrase "horse lottery" was introduced by Anscombe and Aumann
(1963). A horse lottery is a function on S that assigns a P c T(s) to each s a S.

175
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XC is the set of all horse lotteries. Horse lotteries are denoted in bold faceas P, Q, R ..... We adopt the following pseudo-operational interpretationfor P c X. If P is "selected" and s c S obtains then P(s) C T(s) is used todetermine a resultant consequence in X(s).If P, Q E X and 0 < a g 1 then =P + (1 - c)Q is the horse lottery in Xthat assigns mP(s) + (1 - a)Q(s) c if(s) to s E S, for each s - S. Under thisinterpretation, JC is a mixture set (Definition 8.3).Taking < on JC as the basic binary relation, P - Q -,. (not P < Q, notQ < P), and P < Q -; (P < Q or P - Q). Event A S; S is null <-ý P - Qwhenever P(s) = Q(s) for every s C Ac. State s is null - {s} is null.The following theorem is similar to Theorem ! 1.1.

THEOREM 13.1. Suppose that S is finite and that the following hold for all
P,Q, Rc JC:

A l. < on JC is a weak order;A2. (P -< Q, 0 < a< 1) =oP + (I -- z)R < Q +(I_- aR;
A3. (P< Q,Q.<R)=>cxP+(I -- )R.< Q and Q<flP+ (1 - )Rfor some a, fl c (0, 1). Then, with S = {s., . . . , s.}, there are real-valuedfunctions ul .. , u, on X(s), ... , X(s,,) respectively such thatnn

P <K E(u,, P(s,)) < E(u,, Q(s1 )), for all P, Q -JC, (13.2)
and the u, that satisfy (13.2) are unique up to similar positive linear trans-fjrmations, with u2 constant on X(st) if and only if si is null.

Proof. By Theorem 8.4, there is a real-valued function u on JXthat satisfies P < Q .ý. u(P) < u(Q) and u(cxP + (1 - %)Q) = mu(P) +(I - oc)u(Q) and is unique up to a positive linear transformation when itsatisfies these properties. For convenience, we shall write Q = (Q(s,),.Q(s,,)) = (Qj,. . . , Q,), with Q, c T(s•) for each i.
Fix R = (R 1 , ... , Rj) in XC and let Pi = (R,.... Ri_,, P,, R+±,.... ,R.Then, with P = (P .... , P,,), (l/n)P + ((n - 1)/n)R = --- '= (I/n)P,. There-fore u(P) + (n - l)u(R) = _' u(Pi). Defining u, on J(s,) by

u,(P,) = u(P,) - ((n - 1)/n)u(R),
summation over i gives In, uj(P,)-=--U

1 u(P) - (n - l)u(R), so that
u(P) = u,(P,).

Let Q, = (R, ..... R,_', Qs, Rj+. , Rn). Then, by the precedingresult, u(azPi + (1 - ot)Q) = u,(mPi + (I - oc)Q.) + I;€ , uj(R1). In addi-
tion,

u(OtP, + (1 -- )Q,) = Ocu(P,) + (I - OC)u(Q,)
= au,(Pd) + (0 - O)u,(Q.) + I i ui(Rd,so that u(o(P, + (I - a)Qj) = au,(P,) + (I - %)u,(Qi). Since the elements
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in i(s,) are simple measures, u,(P,) = E(u,, P,) and (13.2) follows with
u,(x) = u,(P,) when P,(z) = 1.

Uniqueness up to similar positive linear transformations follows readily
from the uniqueness property for u. If vi satisfy (13.2) along with the u, then,
with v(P) =- In- E(v,, P,), v = au + b and a > 0. Holding P, fixed for all
j 6 i, it then follows that v, = au, + bi. This holds for each i.

Clearly, ui is constant on X(s1) if and only if si is null. *
"13.2 FINITE STATES THEORY

In order to derive u on X = Us X(s) and P* on S on the basis of Theorem
13.1 when S is finite, two more axioms will be used. The first of these (A4)
assumes that two consequences x, and x* appear in every X(s) and that they
are not indifferent. Hence {x., x*z} g K(s) r) X(t) for s, t e S. With a con-
venient abuse of rigor we shall say that a simple probability measure P that
assigns probability 1 to X(s) t0 X(t) is in both T(s) and T'(t), and write

The second new axiom (A5) is a monotonicity axiom. It says that if s and I
are not null then there is the same order under both states for all P e Tl(s) n
I(t). In other words, preferences on consequences or simple probability

measures on consequences that can occur under different states shall not be
state dependent.

THEOREM 13.2. Suppose that the hypotheses of Theorem 13.1 hold and
that, in addition,

A4. There are xl., x * e X(s)for every s c S such that P < Q when P(s) [Q(s)]
assigns probability 1 to x. [x*] for each s E S;

A5. If s, t e S, s and t are not null, P, Q c- T(s) r) T(t), and if P c- C, then
(P with P(s) replaced by P) -< (P with P(s) replaced by Q) -,- (P with P(t)
replaced by P) -< (P with P(t) replaced by Q).

Then there is a real-valued function u on K and a probability measure P*
on S such that

P -< Q -t: E[E(u, P(s)), P*] < E[E(u, Q(s)), P*I, for all P, Q e JC,
(13.3)

with P*(s) = 0 if and only if s is null. In addition, !f v on K and a probability
measure Q* on S satisfy (13.3) along with u and P* then P* = Q* and there
are numbers a > 0 and b such that v(x) = au(x) + b for all x z U, gnot nuE U
X(s).

If we define < on F from -< on JC by f-< g -•. P < Q when P(s)[Q(s)]
assigns probability 1 to f(s)[g(s)] for each s e S, (13.1) follows immediately
from (13.3).
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Proof. Let S == sl, .... , sj. Beginning with the results of Theorem 13.1,
A4 implies that I = (i:s, e S and s, is not null) is not empty. If (13.3) is to
hold then P*(s,)u must be a positive linear transformation of u, and hence
P*(s) = 0 .•- s is null.

IffI = {i}, (13.3) follows from (13.2) on setting P*(sj) = I and u(x) = u,(2 )
for all x e X(s,). u on the rest of X is arbitrary. Clearly, u on X(s) is unique
up to a positive linear transformation.

If I has more than one element let 6 denote the set of simple probability
measures on X,, = X(s,) 0 X(s1 ) when i,j Q I. With a convenient lapse in
rigor, take P c i?(s,) and P E ff(sj) when P c T By (13.2) and A5, E(u,, P) <
E(uj, Q) . E(u1, P) < E(uj, Q), for all P, Qe Tj. Then, by A4 and the
latter part of Theorem 8.2, there is a unique re, > 0 (invariant under similar
positive linear transformations of u, and uj) such that

u,(x) - ug(x.) = rj[u,(x) - uj(x*)] for all x e XK,. (13.4)

Fix t c I and define P* and u by

P*(s1) = rt/, rt for all i e I

P*(sj) = 0 for all i 0 I

u(x) = [u,(x) - u,(x*)]IP*(s,) when x e X(s,) and i e I

and u(x) = 0 when x d- U1 X(s,). To show that u is well defined we need to
prove that

u,(x) - ui(x,) = rL_-. [u,(x) - u,(x.)] when i, j E I and x E X,,.

(13.5)

By (13.4), rI/r 1, = ([u,(x*) - ui(x.)]/[ut(x*) - uj (x*)])/([u,(x*) - u(.)]l
[u,(x*) - u,(x.)]) = [ui(x*) - u,(x*)]I[u,(x*) - uj(x*)] - r,,, so that (13.5)
follows from (13.4) for ij. Substitution for ui into (13.2) then yields (13.3).

It follows easily from u(z*) < u(x*) and the uniqueness assertions of
Theorem 13.1 that P* is unique and u on U1 X(sj) is unique up to a positive
linear transformation.*

13.3 HOMVOGENEOUS HORSE LOTTERY THEORY

The definitions of Section 13.1 apply to this section.
When S is infinite, the horse-lottery approach meets serious mathematical

difficulties if we assume only a minimal overlap of the X(s). Therefore, we
shall assume throughout this section that X = X(s) for all s e S. Some addi-
tional definitions follow.
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P is constant on event A - P(s) = P(t) for all s, t e A. When P(s) = P
(in Ti') for all s c A, we shall say that P = P on A. P = Q on A -.ý P(s) - Q(s)
for each s c A. Thus A is null - P -,., Q whenever P Q on Ac.

With P, Q e f, we define < on 5' on the basis of < on X thus:P-< QP
P<Q when P=P and Q==Q on S. Also, P< Q-P<Q when
P = P on S. P p-' Q, P - Q, P < Q,... are defined in similar fashion.

After stating our main theorem we shall prove it by proving a series of
* lemmas.

THEOREM 13.3. Suppose that the following axioms hold for all P, Q, R E

1B. < on X is a weak order;
B2. (P < Q, 0 < a < l)=,- mP + (I - t)R ,Q + (I -t)R;

B3. (P -< Q, Q < R) =:> P + (I - oc)R -Q< flP + (1 -fl)Rforsome
(X, # C (0, 1);

B4. P < Q for some P, Q ec ;
B5. (Event A is not null, P = P and Q = Q on A, P - Q on A)=c)

(P < Q<>P< Q);
B6. P(s) < R for all s c S ==> P <, R. R < Q(s) for all s e S=..P Q.

Then there is a real-valued function u on X and a probability measure P*
on S that satisfy (13.3). Moreover, %,hen (13.3) holds for u and P*,

CI. Every P c X is bounded. That is, given P c XC, there are real numbers
a and b such that P*({s.a 5 E(u, P(s)) <• b}) = 1;

C2. For all A 9 S, P*(A) = 0 -=> A is null,
C3. u is bounded if there is a denumerable partition of S such that

P*(A) > 0 for every event in the partition;
C4, A real-valued function u' on X and a probability measure Q* on S

satisfy (13.3) in place of u and P* if and only if Q* = P* and u' is a positive
linear transformation of u.

B4 says that there is some pair of constant horse lotteries that are not
indifferent. B4 and X = X(s) for all s e S supplant A4 of Theorem 13.2.

B5 is an obvious monotonicity axiom for nonnull events. B6 is a form of
sure-thing or dominance axiom. It is similar to axiom A4a in Section 10.4
and to P7 in the next chapter. B6 is needed only if S is infinite.

In addition to the noted conclusions of Theorem 13.3 it should be remarked
that P* has no special properties apart from those of a probability measure.
If S is infinite, it may or may not be true that P*(A) = 1 for some finite
A g S. If P*(A) < I for every finite A _ S it may or may not be true that S
can be partitioned into an arbitrary finite number of events each with equal
probability. In addition, u has no special properties other than those noted

m m m m m m -
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in C3 and C4, except that it cannot be constant on X. u might be
unbounded when the condition of C3 does not hold.

Proof of Theorem 13.3

To prove the theorem we shall prove a series of statements that, taken
together, establish all conclusions of the theorem. For convenience we first
list these statements. u and P* for $2-$5 are defined as in SI.

SI. Bl-B5 =. (13.3) for all P, Q E 3C0 where 3Co = {P:P e Je and P is
constant on each event in some finite partition of S}. u and P* for (13.3) on X,
are unique up to a positive linear transformation and unique, respectively, and
P*(A) = 0 [f and only if A is null.

S2. Bl-B6 =. (13.3) ftr all bounded horse lotteries. (See Cl.)
S3. (BI-B6, there is a denumerable partition of S such that P*(A) > Ofor

every A in the partition) => u on X is bounded.
S4. Iffor each positive integer n there is an n-event partition of Sfor which

each event has positive probability under P*, then there is a denumerable
partition of S such that P*(A) > 0 for every A in the partition.

S5. If the hypotheses of S4 are false then BI-B6 imply that all horse
lotteries are bounded. (In this case it is not necessarily true that P* is a simple
probability measure. See Exercises 5 and 6.)

Note that S3, S4, and S5 imply that all horse lotteries are bounded. If the
hypotheses of S4 are true then, by S3, u on A" is bounded and hence all P e 3e
must be bounded. On the other hand, if the hypotheses of S4 are false then,
by S5, all P e XC are bounded even though u on X might be unbounded.

Proof of S1. Let 'B 1,... , B,,} be a firnite partition of S. Then, by essenti-
ally the same proof used for Theorem 13.2, there are nonnegative numbers
P (B), ... P*(B,) that sum to one and there is a real-valued function uB

on X such that, whenever P = P, on Q = Qj on B, (i = 1 .... , n)

P < Q.i4,j Pn(B,)E(u,1 , P,) < Pu(B,)E(uN, Qj, (13.6)

and when this holds P,(B,) = 0 if and only if B, is null, P* is unique, and UB

is unique up to a positive linear transformation.
Let 3e, be the set of all constant horse lotteries in X. Thus XC, _ X0. If

P, Q E T and if {B1, .... , Bj} and {C 1,... , C,,} are partitions of S then, by
(13.6), E(ul, P) < E(u1 1 , Q) -t> E(uc, P) < E(uc, Q). Hence, noting that
3ee is a mixture set for which BI, B2, and B3 hold, it follows from Theorem
8.4 that uc on X is a positive linear transformation of uB on X. Therefore,
we can drop the partition-specific subscript on u and have, in place of (13.6),

P < Q.¢. Pn(B,)E(u, P,) < • P•(B,)E(u, Q,), (13.7)

in which u is unique up to a positive linear transformation.
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For event A _ S let WA =- {P:P c JC and P is constant on A and on A61.
If {BI,... , B,} and {C1,. .. , C,,,} are partitions of S and if A is an element
in each partition then (13.7) implies that, for all P, Q e JCA, with P - PA
and Q - Q4 on A, and P = Pý and Q = Qe on A',

P*(A)E(u, PA) + P,&(A4')E(u, PA") < PB*(A)E(u, QA) + PR(4)Eu .1
l-P_4(A)E(u, PA) + P+(AO)E(u, Pc)

< P•(A)E(u, Q_4) + P(AA)E(u, Q').

It then follows from the version of (13.7) for the partition (A, AO) that
PB(A) = P•(A), so that we can drop the partition-specific subscript on P*
and write (13.7) as

ln nP -< Q--:ý-,> P*(B,)E(u, P,) < T P*(B,)E(u, Q,). (13.8)

Adding P*(O) = 0 to complete P*, it follows that P* is uniquely determined
and that P*(A) = 0 if and only if A is null. Finite additivity for P* is easily
demonstrated using partitions {A, B, (A u B)c} and (A u B, (A u B)O)
with A r) B = 0 in an analysis like that leading to (13.8).

Finally, to obtain (13.3) for all of XC0, let P = P, on Bi and Q = Q, on Cj
for partitions {B1,. .. B,,} and {C1, . . . , C,,,}. Applying (13.8) to the
partition {Bi rlC':i= 1,...,n;j= 1,... ,m;Bi nC,# 0), we get
P -< Q <=> j, T P*(B, n CQ)E(u, P,) <j , 1, P*(B, 0 Cj)E(u, Qj). By fi-
nite additivity, the last expression is ji P*(Bj)E(u, P,) < j P*(C,)E(u, Q,).

Proof oj S2. Since X is a mixture set, Theorem 8.4 implies that there is a
real-valued function v on JC that satisfies P -< Q 4 v(P)< v(Q) and
v(LxP + (1 - x)Q) = mv(P) +- (1 - ac)v(Q). Since these expressions hold on
•0 Si JC it follows from (13.3) for COo and Theorem 8.4 that w on Jeo
defined by w(P) = E[E(u, P(s)), P*], is a positive linear transformation of
the restriction of v on JCo. Without loss in generality we can therefore specify
that

v(P) = E[E(u, P(s)), P*'] (13.9)

for all P B- JCo, with

P < Q - v(P) < v(Q), for all P, Q c- (13.10)

v(CXP + (I - oM)Q) = aV(P) + (I - ct)v(Q),
for all (x, P, Q) c [0, 11 x JC2. (13.11)

According to (13.10), S2 is proved if (13.9) holds for all bounded P c e.
Our first step toward this end will be to show that

c = inf {E(u, P(s)):s e A) • v(P) ! sup {E(u, P(s)):s e A) = d (13.12)
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holds when P*(A) = 1 and c and das defined are finite. Let Q = P on A and
c : E(u, Q(s)) ! d on A'. Since AC is null, Q , P and v(P) = v(Q) by
(13.10). To verify c < v(Q) 9 d with c and d finite, suppose to the contrary
that d < v(Q). With c g E(u, Q') • d and Q' = Q' on S, let R = ocQ +
(1 - c)Q' with a < 1 near enough to one so that d < v(R) = mv(Q) +
(1 - m)v(Q') < v(Q). Then R < Q by (13.10). But since E(u, Q(s)) -
d < v(R), it follows from (13.10) that Q(s) < R for all s e S and hence by
A6 that Q < R, a contradiction. Hence v(Q) 5! d. By a symmetric proof,
c < v(Q).

With P bounded let A with P*(A) = 1 be an event on which E(u, P(s)) is
bounded and define c and d as in (13.12). If c = d then (13.9) is immediate.
Henceforth assume that c < d: for convenience we shall take c = 0, d = 1.
Let Q be defined as in the preceding paragraph so that v(P) = v(Q) and
E[E(u, P(s)), P*] = E[E(u, Q(s)), P*], the latter by Exercise 10.22. To show
that v(Q) = E[E(u, Q(s)), P*], let (A1, . .. , Aj} be the partition (ignoring
empty sets) of S defined by

,41 -s:o0 E(u, Q(s)) < 1/n)A i = {s: (i -- Il)n < E(u, Q(s)) :! iln} i = 2,... n,

and let Pi c 11 be such that

(i - 1)/n •: E(u, P,) • i/n for i = 1, ... , n. (13.13)

The existence of such Pi is guaranteed by (13.12). Let P, = Q on Ai and
Pi = Pi on Aý (i 1, .... , n); let P0 = j (l/n)Pi; and let R-
L,,, (1/(n - I))Pj on A, for i = 1,.. . , n. Then Po(s)- Y, (1/n)P 1(s) =
(l/n)Q(s) + ((n - 1)/n) 2j, (I/(n - 1))P, when s c A,, so that Po =
(I/n)Q ± ((n - 1)/n)R. Hence, by (13.11) and Po =- j (I/n)Pj,

v(Q) = • v(P,) - (n - I)v(R). (13.14)

Since R c CO0, (13.9) implies that v(R) = •,E(u, 1jj (1/(n - 1))P,)P*(A,) =
(1/(n - I)) i [j,, i E(u, P,)]P*(A,). Substituting this in (13.14) gives

v(Q) = v(P,) - I :E(u, P,)P*(A,). (13.15)
t-~1 i-1 g*,

Now by (13.13), (13.12), and the definition of P,

(i - l)/n ! v(P,) - i/n for != 1,.. .,n. (13.16)

Since 0 = inf {E(u, Q(s)):s E S} and 1 = sup {E(u, Q(s)):s c S), P, that
satisfy (13.13) can be selected so that either

E(u,PI)= I/n, and E(u,P$) = (i-- i)/n fori> 1 (13.17)

or
E(u, P,) i/n for i < n, and E(u, P.) = (n - 1)/n. (13.18)
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Applying (13.17) and the left side of (13.16) to (13.15), we get

"n - I n 2 - 'I PL-- 1
- it - I +[1 - P*(A+)]

2 2 j. 2 n n

_-P*(A) 1
i-i n n

Applying (13.18) and the right side of (13.16) to (13.15), we get

V(Q)::ý- I - 1'l_ -P*(Aj) - P*(A.)
i=.in ~iL-2 nt n J- 2

,T P*(A,) + - [1 - P*(A.)]
,-i n n

i-iln n

By the definition of E, ((i - 1)/n)P*(A,) •E[E(u, Q(s)), P'~j :
: (i/n)P*(Aj), so that Iv(Q) - E[E(u, Q(s)), P*]I • 2/n for n = 1, 2,.
Hence, v(Q) = E[E(u, Q(s)), P*]. *

Proof of S3. Let A be a denumerable partition of S with P*(A) > 0 for
all A c A. (P*(A): A E A} must have a largest element, say P*(A1 ). Then
{P*(A): A c A - {AI}} must have a largest element, say Ax. Continuing this,
we get a sequence A1, A2, ... with {A,, A2, .... A and P*(A,) L> P*(Ai+)
fori- 1,2, ....

Contrary to S3 suppose that u is unbounded above. By a linear trans-
formation of u we can assume that [0, oo) g {E(u, P):P c )}. Let P, e T be
such that

E(u, P:) = IP*(Ai) for i = 1, 2,... (13.19)

Let P = Pi on Aj (i = 1, 2,...) and let Q, be constant on each A, for i < n
and constant on U.l,,+, Aj with

E(u, Q.(s)) = P*(A$)-' - P*(A,)-1  for all s e A,; i = 1,n...,

E(u, Q,(s)) = 0 for all s - U A,. (13.20)
1 i~n+!

Let v on Je satisfy (13.10) and (13.11) and also (13.9) on Re. Then

v(Q.) = [P*(A,)-'- P*(A,)-1P*(A,)

_ P*(,4,) P*(A1) -- n for n = 1, 2 ...... (13.21)

/=
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By (13.19) and (13.20), E(u, IP(s) + kQn(s)) = iP*(A,)-1 + J[P*(A.)-l -
P*(A,)-?] = IP*(A,)-l for all s E Un Aj and, by P*(Ai) Ž P*(Ai+1 ) and
(13.20), E(u, JP(s) + JQ,(s)) 1 fP*(A,)-' for all s c U'+I A,. Therefore
inf {E(u, ½P(s) + JQ,,(s)):s e S} = ½P*(A,)-l. Hence, by (13.12), v(JP +
½QJ) Ž JP*(A,,)-, which on using (13.11) and (13.21) implies that

v(P) Ž P*(A,)-l - P*(A.)-l P*(A,) ± n > n for n = 1, 2,.

But this requires v(P) to be infinite. Hence u is bounded above. A symmetric
proof shows thai u is bounded below under S3's hypotheses. *

PI-oofofS4. For each integer n t 2 let Ak' be an n-part partition of S each
event in which has positive probability. Define a new set of partitions
532, Ia, ... recursively as follows:

I" (A r B: A c A", B c I", A n B } n=3,4,...
It is easily verified that In contains at least n events with positive probability
and that n"+1 is as fine as ,n" so that B e I+1 =:>. C c 33" for some C that
includes B. For each A C 132 let

N,•(A) = number of events in InY (n > 2) that are included in A and have
positive probability.

With 12 = {A, A-} it follows that NV,1(A) + N•(Ac) > n for n = 3, 4.
Thus, as n gets large, at least one of Nn(A) and N,'(Ac) approaches infinity.
Let A1 be an event in %32 for which N•(A 1 ) -- oo and let B -= Ac. Then
P*(B,) > 0 and B, will be the first element in our desired denumerable
partition.

Let n(l) be an integer for which 33"(1) contains more than one subset of
A, that has positive probability. For each A s AI and A e I3'Ml let

N,2(A) = number of events in I " (n > n(l)) that are included in A and have
positive probability.

Let A = {A : A g A,, A - I',(1)). Then JA N2(A) = N•(Al) so that, since
NI(A,) - co as n -- oo, at least one NX,(A) -• o as n - oo. Let A2 E A be
such an A and let B2 = A, n) Ac. Then P*(B2) > 0 and {B1, B2 , A,} is a
partition of S with N2(A 2 ) - oo as n - co.

Continuing this construction in the obvious way gives a denumerable
sequence B1, B2, B3, .. . of mutually disjoint events each of which has positive
probability. The conclusion of S4 follows. *

Proof of S5. If the hypotheses of S4 are false then there is a unique
positive integer m for which there is an m-event partition of S that has
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positive probability for eaca event and siuuh that no partition of S
has positive probability on more than m of its events.

For convenience azsumnc that u(y) = 10 for some y E' X. Suppose the n,
contrary to the conclusion of $5, thEt Q is unbounded above. Let P be
obtained from Q by replacing each x for which Q(s)(x) > 0 and u(x) < 0 6y
y with u(y) = 0, for all s E S. Then E(u, P(s)) > 0 for all s and P is unbounded
above. Then, for every n > 0,

P*{E(u, P(s)) > n} = P*({s:E(u, P(s)) Ž n}) > 0.

By the preceding paragraph, P*{E(u, P(s)) Ž, r} can change no more than m
times as n increases. Hence there is an N and an a > 0 such that

P*{E(u, P(s)) ; ?: = a for all n Ž N. (13.22)

Let E(u,P1 ) = i for i = 1,2, ..... let Q, = P ", {s:E(u, P(s)) > n},
Q,, = P,, on {s:E(u, P(s)) < n}, and let R,, = I-,, on {s:E(u, P(s)) > n},
R. = P on {s:E(u, P(s))< n}. Then, with P,, =-P,, on S, JP + JP,, =
JQ,, + JR., so that with v on JX as given by (13. 10) and (13.11) and satisfying
(13.9) for all bounded horse lotteries,

v(P) + n = v(Q,,) + v(R.) n 1, 2, (13.23)

Since R,, is bounded, (13.9) and (13.22) give v(R,,) - E[E(u, R,(s)), P*] _ noa
for all n > N. Since P•,_- -< Q,(s) for all s E S, B6 implies that P,,-, Q,,
so that v(Q,) > n - 1 for all n. Then, using (13.23),

v(P) > noc - 1 for all n > N,

which contradicts the finiteness of v(P). Hence Q is not unbounded above. A
symmetric proof shows that Q is bounded below. *

13.4 THE PART 11 DECISION MODEL

Beginning with the set F'ef acts and the st X of consequences as ill the
Part II approach, let S be the set of all functions on F to X (see S' in Section
12.1). Then the subset of X that is immediately relevant under "state" s E S
is X(s) = {s(f):fe F}. For many s - S, X(s) will be a proper subset of X,
and for each constant s, that assigns the same x to each f, X(s) = {x}. Hence
the horse-lottery theory of Sections 13.2 and 13.3 cannot be used in estab-
lishing the Part II model unless we assume that consequences other than those
in X(s) can be considered relevant under state s.

Suppose in fact that we assume the extreme, that all consequences are
relevant under every state. Then, under BI-B6 of Theorem 13.3, (13.3)
follows. Withfc F, Y s X, and P,(Y) = P*({s:s(f) c Y}) we then obtain
E(u, Pf) = E[E(u, P(s)), P*] when P(s)(s(f)) 1 for each s c S. Then under
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the natural definition of -K on F in terms of -• on ,

f~g-tt-E(u, P,) < E(u,P,), for allf, ge F, (13.24)

which is the Part If model. Although extraneous probabilities are used in
deriving this, note that Pf, Ps,,.. . are defined from P4, which may have
nothing to do with tihe extraneous probabilities and is itself derived from the
axioms.

It may of course be stretching things too far to assume that consequences
not in X(s) are relevant under s. However, it may be possible to say something
about state probabilities even when this assumption is not made.

Suppose, for example, that F = (fA rg and X = twin, lose). Then S has
four elements: sl(f) = sI(g) = win; s2(f) = win, s2(g) = lose; s3(f) = lose,
s3(g) = win; s4(f) = s4(g) = lose. Let JC = if(s1) x if(s2) x T(s3 ) x if(s 4).
The conditions of Theorem 13.1 then give P -< Q --> ji E(u, P(s,)) <
)J E(uj, Q(si)). Since X(si) = {win} and X(s,) = {lose), the first and fourth
terms drop out of this and we are left with

P •< Q -¢:> E(u2 , P(s2)) + E(u,, P(s3 )) < E(u2, Q(sJ)) + E(uS, Q(sS)).

(13.25)
According to our definition s, and s4 are null, but this is only because X(sj)
and X(s4) each contain a single consequence: the de;.i,-, maker might
consider s, to be the most probable state. In such a ca,:. e would regard
P*(s1 ) and P*(s4) as indeterminate within the structure of our axioms. This
indeterminacy actually causes no difficulty since the i = 1 and i = 4 terms
do not appear in (13.25).

With regard to s. and s3, T(s2) = 'I(sa) since X(s,) = X(s3) = {win, lose).
If condition A5 of Theorem 13.2 is used it follows from (13.25) that (assuming
some strict preference) there are 2Ž 0 and 2A Ž 0 with 2 + A3 > 0 and
there is a real-valued function u on X such that P -< Q - A2Z(u, P(s2 )) +
ASE(u, P(sO)) < A2E(u, Q(s$)) + AaE(u, Q(s3)). Here we would interpret As
and -q propoAtAIfi LU Pt -"sj) ant, i 3.s) respec vety .& tat, t At > 0,

d/A3 = P*(s)/P*(s3 ). If u(win) > u(lose) it is easily seen from this that
f< g 9 P*(s2 ) < P*(ss).

13.5 SUMMARY

The usual states expected-utility decision model can be derived from axioms
that involve extraneous probabilities when there is sufficient overlap among
consequences considered relevant under different states. When the number of
states is finite, the assumption that there are two nonindifferent consequences
that are relevant under every state is sufficient. For the more general case, in
whicih the size of S is arbitrary, it was assumed that all consequences are

" m im m mm m m i m m
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relevant under every state. Even when there may be no overlap among the
conscquences under different states, the expected-utility axioms of Chapter
8 when applied to horse lotterieg with S finite lead to an additive-utility
representation that is similar to additive forms of Section 11.1 and (12.11).

Although the horse-lottery approach presumes a continuum of extraneous
probabilities, this appears to be offset by its general applicability since it
places almost no restrictions on the sizes of S and K. Moreover, it places no
unusual restrictions on the utility function on X or on the probability
measure P* on S.

INDEX TO EXERCISES

1. Insufficiently connected X(s). 2. P* = 1 for a finite subset. 3. Intersections of parti-
tions. 4. S4. 5-6. Zero-one measures and S4. 7. Additivity when X = II X,. 8-15. P(s) <
Q(s) jr all s L 6 - P < Q. 16-19. Even-chance theory.

Exercises
1. Let S = (s,, s2, s3}, X(s,) -x, Y, z, w)}, X(s,) = {x, y, r, t), X(S3 ) = {z, w,

r, )} Let the hypotheses of Theorem 13.2 with the exception of A4 hold, and let the
following values of u, (i - 1,2, 3) satisfy (13.2):

x Y z w r t

U1  0 1 2 3
us 0 1 2 3
U4 2 3 4 6

a. Verify that, for each i, j there is a unique rij such that ui(p) = rijus(p) for all
p e x(so) n x(s,). Is ru = r211r1 ?

b. Show that it is impossible to define u on X U x(sj) and P* on S so as to
satisfy (13.3).

2. Prove that if P*(A) - 1 for some finite A 5 S then BI-BS imply (13.3) in
the structural context of Section 13.3.

3. Let 9) be a set of pArtitions of S. Show that {flDJ f(D):f(D) e D for each
D e ), n .2) f(D) #e 0) is a partition of S.

4. In connection with S4 and its proof, suppose that 12, %3,... is a sequence
of partitions of S such that (1) S" contains exactly n events, each with positive
probability, and (2) A e &"1+- =::- A s B for some Be W". Show that it may be
impossible to select one event from each W" so that the selected events are mutualiy
disjoint.



5. Let P" on S be d•hned in such a % ay that thzi" is a set A. of suosct of Sstsch
that P*(A) = I if 4 A: .4. andP*tA- t A. F:ove that if nA A 0 0 then
this intersection contaigis exactly one s and, for this s, P*(s) = I.

6. Let S be infinite and let 1 be the set of all sets A of sibae.s of S that have the
followinp four properties:

1. ••E A and {s}) A for all s c S;
2. AGA-e Ar A A;
3. A, BeA =>-A uBeA;
4. (A EA, B 9A) =>Be A.
a. Is the set of all finite subsets of S in g?
b. Use (4) to show that (A c- 9, A ul D E) =::. A, B E A.
c. Prove that (A E ,A A, B A) =*-A u B 0 A.
d. Use Zorn's Lemma to prove thai there is an A C f1 that is maximal with

respect to (1) through (4). Let A* be maximal (if A-* c A' then A' O 0) and
let £* be the set of all subsets of S that are not in A*.

e. Prove that A, Be c-* V:. A n' B 0 0. For this suppose that A, Be EM* and
A r B = 0. Then show that•AO = A* U {C U D:C _. A, D G A,-} ,s in 9,
contradicting the maximality of A*.

f Let P*(A) = 0 if A E A* and P*(A) = I if A c V*. Show that P* is a prob-
ability measure on S. Note that Ux* A = 0 and compare with the preceding
exercise.

X. Explain why the failure of the hypotheses of S4 does not imply that P* on S
is a simple probability measure.

7. Suppose the hypotheses of Theorem 13.3 hold and, in addition X = Ml.- 1 X,
and, with Pl the marginal of P e Tr on Xj, (P = P on S, Q = Q on S, P1 =Q,
for j = 1,... , n) ::- P ,- Q. Show that there are real-valued functions ul,..., u,,
on XA1.... , X., respectively such that

P-< Q -->&,E[E(u,, P(s)1), P*] <• L'[E(u,, Q(s)j), P*], for all P, Q E

where P(s), is the marginal of P(s) on Xj.

Note: Exercises 8-15 are set in the context of Section 13.3. Axiom B7 is: P(s) <
Q(s) for all s C S => P < Q.

8. Prove that (21, B7, Al is null, P(s) < Q(s) f'-- ll s9 S -? 41 Q.

9. Prove that (Zi, d7) . if P = Pand Q =Q on A, P = Q on Ac and P -< Q
then P -< Q. (This is one half of B5.)

10. By a straightforward partition proof show that if X has a least preferred and
a most preferred consequence then (Bl-B5, B7) =:- (13.3).

11. Show that (8i-B5, B7, there is a denumerable partition A of S for which
P*(A) > 0 for every A E A) ==>. u on X is bounded. (Use Si.)

I7. (Continuation.) Prove $2 when B6 in its hypotheses is replaced by B7. To do

this you need only verify (13.12) when P*(A) - 1 and c and dare finite. This is the
critical point for B6 and therefore for B7.

j
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13. ((,ontinuation. ise Exercse- I and I2 'o argue that the Cýonl•jshon • f

Theorem 13.3 . e valid w'hen B6 in its hypotheses is replaced by B7,

14. Let S = (1, 2, 3 ... }, X = [0, 1), u(x) = x, and let P* be a probability
measure on S that has P*(s) = 0 for s = 1, 2. Suppose P -Q<-v(P) <
v(Q) where

V(P) = E[E(u, P(.s)), P*] -4- inf JE[P(s)(x > 1 - 4ý, P*]:c > 01,

with P(s){x > 1 - } the probability assigned by the simple measure P(s) to the
subset {x:z -I , xE X} of X. Show that BI-B5 hold and that B6 and B7 do
not hold.

15. (Continuation.) Let S, X, u, and P* be as given in Exercise i4 with P*{I, 3,
5,.... -P*{2, 4, 6,. .. = l/2,and let P -< Q <=>v(P) < v(Q)where

v(P) - E[E(u, P(s)), P*] + inf {P*{E(u, P(s)) > 1 - t}:E > 01.

a. Prove that (0 < m < 1, P, R e Je) => inf {P*{E(u, acP(s) + (1 - a)R(s))
1 - c: c > 01 = inf {P*({E(u, P(s)) > 1 - { n {E(&:, R(s)) > 1 - 4): e > 0).
Note: {E(u, P(s)) > 1 - 4} = {s: E(u, P(s)) 1 -1 e.

b. Show that B1, B4, BS, and B7 hold.
c. By specific example, show that B2 does not hold.
d. By specific example, show that B3 does not hold.
e. By specific example, show tl," 86 does not hold.

Note: In the remaining exercises, F is the set of all functions on S to X, (f, g) e F2
is interpreted as an even-chance alteraatve, z* is the act in F that assigns x E X to
every s e S, and A ; S is null .:. (f, g) - (f', g') whenever (f(s), g(s)) = (f'(s),
g'(s))for all s E AO. Let DI through DI be the foiluwing axioms:

DI. -< on F x F - F" is a weak order.D2_ [( ,g ') < (f ',g*), (f',g) < (f * _ g')] =-- (f,f) < (8*,f*)
D3. (X, V) is a connected and separable topological space.
D4. {(fg): (f,g) E P, (f,g) _< (f',g')} E 2 and {(f, g): (f, g) E F2, (f',g').<

(,fr - 'V for each (f', g') C F2.
D5. (x*, x*) -< (y*, y*)for some x, y E X.
D6. (A is not null; f -x,g = y,f' = z,g' = wonA; {f(s),g(s)) =- f'(s), g'(s))

for each s e AC) = [(x*, y*) .< (z*, w*)<.0r(f, g) -< (fVg')].
D7. [(f(s)*, g(s)*) -< (f', g') for all s - S1 => (f, g) -ý (f, g'); [(f', g') -<

(f(s)*,g(s)*) for all s e S] => (f',g') ' (f,g).

16. Prove that if S is finite and D1-D6 hold then there is a real-valued function
u on X and a probability measure P* on S such that
(f,g) g')< ( =:,;.). E[u(f(s)), P*] + E[u(g(s)), P*]

- E[u(f'(s)), e*j + E[uQ"(s)), P*]

for all (fg), (f',g')- F2, with P* unique and u unique up to a positive linear
transfoirmation when this holds.

17. Let S be of any size and assume that there is a real-valued function v on F
that satisfies
(J~g) -< (f',g')<.cv(f) + v(g) < v(f') + v(g'), for all (fg),(f',g')eF',
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and is n,.ique up to a positive linear transformation when it satisfies this. Assume
also that the restriction of v to {x* :s X is unique up to a positive linear trazm!3-
formation when it satisfies

(X*, y*) -< (k*, w*) -*=> v(x*) + v(y*) < t(z*) + v(w*), for all x, y, z, we X,

and that D5 and Id.
Let Fo = {f:fc Fand {f(s):s c S) is finite}. Prove that, with u(x) - v(x*), there

is a unique probability measure P* cn S such that

v(f) = E[u(f(s)), P*] (13.26)

for allfe F0, with A null .-c>P*(A) = 0. (Compare with SI.)

18. (Continuation.) Along with the assumptions of the preceding exercise
assume that D7 holds and that for any x, y E X there is a z E X such that

(X*, y*) - (z*, z*). (13.27)

Call fE F bounded.**. P*{a 9 u(f(s)) < b) = I for some numbers a and b. Use the
following steps to prove that (13.26) holds whenf is bounded.

a. Show that P*(a !u(f(s)) 9b}) => a=l a v(f) !b. (Let A ={s:a4
u(f(s)) • b), let d = sup {u(f(s)) :s E A}, suppose d < v(f) and use D7 to
obtain a contradiction.]

b. Withfbounded on A and P*(A) 1, for convenience assume inf {u(f(s)):s E
A) = 0 and sup {u(f(s)):s G A} = 1, and assume (with no loss in generality
since AO is null) that 0 < u(f(s)) :g I on A6. Given a pnsitive int±gci n let
A, = {s:O •• u(f(s)) ,4; l/n}, A= {s:(i - I)ln < u(f(s)) _< i/n) for i -

2,.... , n. By (13.27) there are xi c- X for whicih (i - 1)In < u(xi) • i/n for
i = 1- ..... n. Definefi, ,• c- F by

fi =fion A,; fi = x, on A•t (i = ,,,n)
gi =-x +1 on U j . ; A, g, = xi on U•-j+ 1 A, (" -,.. 1).

Use the fact that {f'(s), g'(s)) = {f"(s), g'(s)} for all s -S implies (f', g') -•
(f,g,) along with the first ,-t expression in Exercise 17 to prove that

v(f) +.•vtg,) = • v(J). (13.28)
4-1 .

c. Under the conditions in (b), it follows from (13.27) that for any • > 0 and
any in{1)...,n} there are zxeX with Ju(x) - i/n} < e. Use this, (13.28),
(13.26) for FO, and the bounds on the v(fO) implied by step (a) to show that

j P*(AJ)(i - 1)n - I/n - v(f) < ji, P*(Aj)I/n + I/In. Then argue that
v(f) = Etu(f (s)), P*].

19. (Continuation.) Under the assumptions of the preceding exercise prove (a)
u on X is bounded if there is a denumerable partition of S that has P*(A) > 0 for
every A in the partition, (b) everyfe F is bounded.



Chapter 14

SAVAGE'S EXPECTED-
UTILITY THEORY

The most brilliant axiomatic theory of utility ever developed is, in my
opinion, the expected-utility theory of Savage (1954). It is an eminently
suitable theory with which to conclude this book.

As has been true of significant developments throughout the history of
mathematics, Savage's theory was not developed in a vacuum. He acknowl-
edges and draws on the prior ideas of Ramsey (1931), de Finetti (1937), and
von Neumann and Morgenstern (1947). His general approach is not unlike
that presented by Ramsey in outline form. Unlike Ramsey, who proposed to
first derive utility on the basis of an "ethically neutral proposition" or even-
ýiha.ce evetiit and then to derive prooabilities on the basis of utilities, Savage
reverses this piocedure. In his axiomatization of

f < g -#,- E[u(f(s)), P*] < E[u(g(s)), P*], for all f, g e. F,

which is based solely on the binary relation < on F, Savage first obtains the
probability measure P* on the set of subsets of S. This development owes
much to de Finetti's work in probability theory. Using P* Savage then
obtains a structure much like that used by von Neumann and Morgenstern
in ,ieir- utility theory (flthoreyn 9.2), aza: proceeds to specify u on X. One
final axiom then leads to the above representation on all of F. Savage's
theorem is given in the next section which contains also an outline of later
sections.

14.1 SAVAGE'S EXPECTED-UTIIJTY THEOREM

The main purpose of this chapter is to explore Theorem 14.1, which may
appropriately be referred to as Savage's expected-utility theorem. This
section presents the theorem and discusses its conditions and conclusions.
Some preliminary definitions are required.

191
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S is the set cf stat•cs, i' is the set of consequences, and F is the set of all
functions on S into X. A. B c S: x,.y YfgoF. y- 1T F is the basic
binary reiation with -- and - defined iii the usual way: f'- -> (not f < g,
not g <-f), andf -ýg <= (f- g orf,--g).

Sf=g on A -f(s)=g(s) for all sEA. f x on A <:.f(s)=x fer
all s e A. Partitions of S and complements are defined as in Section 13.1.
A is n.,d! -. 'f-. g wheneverf = g on Al.

x-<y-,t~f<g when f=x and g-=y on S. x-<f-,:g<f when
g -- • on S. Similar definitions hold for x .-- y, f y, r • f, and so forth.

Conditional preference is defined as follows: f < g given A ,-.=f' -< g'
wheneverf =f' andg g' on A, andf' = gon AC. - given A and < given
A are defined in the usual way. x < g given A means that f < g given A
wheneverf = x on A.

THEOREM 14.1. Suppose that the following seven conditions hold for all
f,g,f ',g' .F', 4, B S, andx, y, x', y' cX:

PI. -< on F is a weak order;
P2. (f = f' and g = g' on A, f = g and f g' on AO ) = (f < g

f' -< g');
P3. (A is not null, f = x and g = y on A) => (f-< g given A -- x < y);
P4. [(z<y,f=y on A,f=x on Ac, g=y on B, g-xon Be) and

(x' < y', f' =•y' on A, f' =' on A , g'= y' on B, g' = x' on Be)]=>
(f < g -4::f' ,< g');

P5. x -< yifor some x, y e X;
P6. (f .< g, x e X) => there is a finite partition of S such that, if A is any

event in the partition, then (f' = x on A, f' =f on Ac) =-f' < g, and
(g' -= x on A, g' = g on AO)=:*f < g';

P7. (f -< g(s) given A, for all s e A) =:-.f < g given A. (g(s) -< f given A,
for all s E A) z_ g < f given A.

Then, with <* defintd on the set of all subvets of S by

A <* B >f-< g whenever (x -< y, f = y on A,

f=xonAe,g =yon B,g=xonB), (14.1)

there is a unique probability measure P* on the set of all subsets of S that
satisfies

A < * B <, P*(A) < P*(B), for all A, B 5: S, (14.2)

and P* has the property that
(B c S, 0 <- p l 1) -P*(C) = pP*(B) for someC 2: (14.3)

and, with P* as given, there is a real-valued function u on Xfor which
f-g <*- E[u(fts)), P* < E[u(g(s)), F*], for all f, g c F, (14.4)
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and when u :.atisf.is this it is bounded and unique up to a positive linear
transformation.

The final condition, P7, is similar to A4a of Section 10.4 and B6 of Section
13.3. It is an ob'ious dominance (or sure-thing, or independence) condition
and it is not required in the derivation of P* that satisfies (14.2), just as B6
was not required in the derivation of P* for Theorem 13.3. The form of P7
given in the theorem is slightly weaker than (does not assume as much as)
Savage's original form which has < where < appears in P7, but the two are
equivalent in the presence of the other conditions, PI-P6.

P2 and P3 explicate Savage's "sure-thing principle." P2 says that prefer-
ences between acts should not depend on those states that have identical
consequences for the two acts. It is closely related to the independence
condition of Chapter 8 and is found reasonable by many persons provided
that the state that obtains does not depend on the act that is actually imple-
mented. Together, PI and P2 imply that < given A is a weak order on F for
every A 9 S.

P3, as a companion to P2, says that if f x and g - y on A and if A is
not null, then f< g given A ->f' <g' whenf' - x and g' - y on S. This
sets up a reasonable correspondence between preferences on consequences
(constant acts) and conditional preferences on events that the decision maker
regards as possible.

<* as defined in (14.1) is a qualitative probability relation on the set of
events. We read A -< * B as "A is less probable than B." As noted in (14.1),
"is less probable than" is defined in terms of "is less preferred than." The
principle objective of P4 in this connection is to ensure that <* on the events
is a weak order. Suppose you prefer y to x and can either take your chances
on getting y if A obtains or on getting y if B obtains. In either case if the event
you tak- your chances on does not obtain you will receive the less preferred x.
If you select B then it seems reasonable to suppose that you regard B as more
probable than A. P4 says that if you prefer to take your chances on getting
y if B obtains then, with two other consequences y' and x' with y' preferred
to x', you would (or ought to) rather take your chances on getting y' if B
obtains than on getting y' if A obtains. As in the case of P2, this seems
reasonable as long as the state that obtains does not depend on the conse-
quences assigned to the states by any particular act.

P5 says that indifference does not hold between every pair of constant acts.
It is needed to ensure the uniqueness of P*. If P5 were false then < * would be
reflexive. For further remarks see Section 14.3.

The effect of P6, which is a rather strong assumption, can best be seen
from (14.3) which in the presence of (14.2) follows from P1-P6. Among other
things, (14.3) says that S must be uncountable, that P*(s) = 0 for every
s e S, and that for any positive integer n there is an n-event partition of S
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A-chimedean quality. In effect it says that no conse uencc •s "intinitely
desirable" (which would negate f' < g if x were so d&sirable) and that no
consequence is "infinitely undesirable" (which would negatef <' g' If x were
so undesirable). If S is allowed to be infinite, so1ething like P6 is required
to ensure the existence of real-valued order (• *) preserving probabiditirs.
As Savage points out, weaker versions of P6 are sufficient for (14.2), but may
not yield (14.3) as well. The usefulness of (14.3) will become apparent %vwhen
we see how it is used as a point of departure in defining gambles on X that
lead to the definition of the ut;1;ty functio, u on A.

Pi through P0 are sufliuli-nt to cb!Ein (14.4) for all acts in F that assign no
more than a finite number of consequences to all the states in some event A
for which P*(A) = 1. P7 is then used (as was B6 in the preceding chapter) to
verify that (14.4) holds for all acts, and it ensures that u on X is bounded.
When he wrote The Foundations of Statistics, Savage had the impression that
PI-P7 do not imply that u is bounded. Some years later, when we were
working on the theory that appears in Chapter 10 of Part II, we discovered
that this impression was false. Because of the falsc impression, Savage did
not state (14.4) for all acts but, in light of the boundedness of u, he did in
fact prove (14.4) as it is presented here. In other words, he proved (14.4) for
a9i bounded acts. Since u is bounded, all acts are bounded. The proof of
boundedness given later is essentially his.

In preving Theorem 14.1 1 shall follow the pattern used by Savage. Here is
a sectional outline.

Section 14.2 shows that (14.2) and (14.3) follow from five conditions
(FI-F5) for < * on the set of events.

Section 14.3 under definition (14.1) shows that PI-P6 =:,- Fl-F5.
Section 14.4 establishes, from PI-P6, the three preference axioms of

Theorem 8.2, which shows that (14.4) holds for acts confined with probability
one to a finite subset of consequences.

Section 14.5 proves that u on X is bounded. This uses P7.
Section 14.6 uses P7 to verify (14.4) for all acts.
The proofs that follow are essentially Savage's. I have added some details

to them in places where I felt that this would aid some readers.

14.2 AXIOMS FOR PROBABILITY

In this E ction we shall prove the following theorem.

THEOREM 14.2. Suppose that-<*' on the set of all subsets of S satisfies the
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following conditions for all A, B, C c- S:

Fl. not A <* 0,

F2. 0 S,
F3. - is a weak order,
F4. A CC= B rC = => (A <*B =:.A u C<,Bu Q,
F5. A < * B => there is a fini. - partition {C1,.. ), C,} of S for which

A u C1 < * Bfor f = 1, ... ,m.

Then there is one and only one probability measure P* on the set of all
subsets of S that satisfies (14.2), and (14.3) holds for this measure.

F1-F4, which define < * as a qualitative probability, are necessary for (14.2),
but collectively they are not sufficient. FI-F5 as noted are sufficient but F5 is
not necessary for (14.2) although it does follow from (14.2) and (14.3).

As usual we define A - * B -4z> (not A -< * B, not B < * A), and A < * B'-.
(A < * B or A -* B). Throughout this section and the rest of this chapter,
1 shall use A/B ("A but not B") to denote the complement of B relative to A:

AIB = A n Be. (14.5)

In approaching Theorem 14.2 we begin with a series of consequences of
FI-FS. CI through C4 presuppose only FI-Fi4. The rest presuppose all of F1
through F5.

Cl. B s: C =>o <B C < S.
C2(-,*). (A -* B, B nCC 0)=> A u C Bu C.
C2(<*). (A < B,B () C = => A u C < Bu C.
%'C3(-*). (A B, C -.,* D, B r D = A u C B D.
C3(-<*). (A * B, C -<* D,B r) D = o)=> A u C<* Bu D.
C4. (A,-* B, C,.-* D,A n C - B 0 D = 0)=> A u C,-* BBu D.
C5. 0 < * A => A can be partitioned into two events B and C for which

(0 <* B, 0 <C).
C6. (A, B, and C are pairwise disjoint, A < * B, B -< * A u C) --> there is

a D. q Cfor which 0•<* DandBU D -<*A u (C/D).
C7. (0 < * A, 0 < B, A 0 B = 0) => B can be partitioned into C and

D for which C *D A C.
C8. 0•< * A => A can be partitioned into B and C with B ,.,* C.
C9. o < * A =:>for any positive integer n there is a 2' part partition of A

such that -,* holds between each two events in the partition.

Proofs of C! through C9
Cl. The proof is easy and is left to the reader.

ao
i:
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C2(-*). Assume (A -•' B, B r) C = 0). Since A = (A/C) u (A n C)
and A • (C/A) = o, F4 (A/C) u (A n C) u (C/A) ,-* B u (C/A), or
Au C,-,*B (C/A). By Cl, B u(C/A)<*BuC. Hence, by F3,
Au C *Bu C.

C2(< *). Replace ,-,* by < * in preceding proof.
C3•-*). Assume (A .- * B, C -* D, B rn D = 0). Since (C/B) r) B

0, C2(,-*) = A u (CIB) < * B u (C/B) - B u C. Also. since (BIC) r)
D= 0, C2(-.,*) and C,* D imply B u C = C u (B/C) D u (B/C).
By F3,A u (C/B) < Du (BIC). This, C2, and(B n C) n (D u (BIC))
0 then imply that A u (C/B) u (B C) < * D u (B/C) u (B n C), or
Au C D*DuB.

C3(-< ). Replace C '-* D by C < * D in preceding proof. Use C2(< ).
C4. Assume (A -.-* B, C -* D, A r C = B r D ). By C3(-*),

A v C *Bu Dand Bu D <A u C. Hence A u C, B* u D.
CS. Assume o < * A. F-'=;: there is a partition {D,..., D,,,} of S for

which DA- <*A for each i. CI= D,i n A <*(D, r) A) u(D/A) = Dj.
Hence Dr. "A <* A for all i. If DA r A -* 0 for each i then, by C4,
U, (Ji n A) -.-* 0, or A -* 0, a contradiction. If o < * Dr n A for
only mne i, say i = 1, then A•* D, n A which contradicts D, f0 A < * A.
Hence 0 <D * A A for at least two i.

C6. Assume (A r B = A r) C = B fr C = 0, A <'B, B -< * C).
(F2, F4)=;> 0 < * C. Since B -< * A u C and 0 < * C, it follows from F5
that there is a D, !ý C for which o <*DI and B u D- <*A u C. By
C5 and F3, D, can be partitioned into D and D' with o < * D <* D', so
that B U Du• D'< * A U (CID) u D. F4 =>- B u D' < * A u (C/D). (F4,
D <*D')=-Bu D <-BuD'.HenceBu D-<* A u (CID).

C7. Assume (0 <* <A, 0 <* B, A fr B o). IfB < * A the conclusion
follows easily from C5. Assume that A-< < B. F5 --: there is a partition
{Gj,..... Gj of B such that G, < * A for each i. For definiteness assume
that G • G,,. Let m be such that U" G, < * U,0+i Gi U*'•+ Gd.
Let C- U G, .nd D U,+ G-. Then C< D < C u G,+ which,
since G.+, < * A, implies by F4 and F3 that D < * C u A.

C8. Assume 0 < * A. It follows from C5 that A can be partitioned into
B1, C1, D, such that B, < C1 u D, and C1 < B. u D1. If one of these two
< is ,..,*, the conclusion of C8 holds. Henceforth assume that Bj < * C U
D, and C, -' B* u D1. Then 0•< * D1. For definiteness take B < *C,.
Then C6 =:- there is a C"* q D, such that 0•< * C2 and C, u C'• <-
(DIL/IC). Hence o < * D1/C2 and, by C7, D 1/C' can be partitioned into BI
and Dg such that 82 < Dt -N< * CO u B. Since B, < C1 , B, W B2 N<

C, u D2•< *Cu Ds u C2, all by F4. Let

BR B, U Bu and Cj=Ctu C2.

.;
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We then obtain a partition {B2, C2, D2} of A for which

S1.B2 < * C u D2 and C -< * BD u D 2,
2. B, -; B2, C1 s-= C2, D2 S A

S3. Ds < * D11D2.

By repeating this prc ess it follows that there is a sequence... 9 {B,, C,,,
o D,,},... of three part paititions of A such that, for each n > 1,

1. B,, <• * C,, L) D,, and C. *B. u D., 4:
_ ~ ~2. Bn 9: Bn,1~, Cnt 9 C"+I' Dn+1 -D",,

- 3. D.+1 <* D,,/D,,+I,

so that 0 - * D,, for all n, and D,, contains two disjoint events (D,,+, and
DnD,,+1 ) each or which is as probable as D.+,. Hence, using (3) and C3(< ),
(El D.* ,+, E, < * D.+,) - El L E2 ,< * D..

Now for any G with -<* G, D.-<* G for sufficiently large n. For
example, if G < * D, then, with {E1,. •, E,.) for • < G as in F5 with
E, < * G for all i, E, < *D, for all i so that E, u 2 < *D,,,Esu E4 <*
D,,.-,... and then UJ Ei < * D,_2, US E-<* D,,_,... and so forth, so
that witlu n sufficiently large U!" E, <* D1 , or S < * D,, which is false. In
additicn, o -* n:lI D., for if o <* fln D2, then D,<*f n1D,, for
sufficiently large m, and this is false since f D,, D,,.

Let

B=UB. ,, and C= ffC,l) ( D,,).

{B, C} is a partition of A since (U B.) r) (U CQ) = (U B,,) C (n D.)
(U c.) n (• D,) = 0. To verify B,-.* C note first that C,--* U C. since
fD,,.- . Suppose that B <C. Then B<* U C,, and, by C6, there is a
G _ UC. forwhich 0 < *Gand

B L G < *(U CJ,)G.

Since B r) G 0 0 and B,, " B (since B, s; B), F4 implies

B,, u G<*B uG.

For large n D. -<* G so that, again by F4,
l. B. u D.- B. uG.

Since D. r(U C,,) < * G for large n and UC,,=(UC QG) uG
(U C./D.) u ((U C,,) n Dj), it follows by C3(< *) that for large n

U C.lG < (U C.)1Dn.

S ..... . ..... .. .. i ' .......i " .. .. ......, .. . .. .. ... .. .. .... ... .. .. .. .. .. .. .. .. ... .. .. .. . ... .. . . . . .. .
" i I
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Finally, since (U C.)/D7. C C., Cl =:- (U CQJD. < * C.. This and the four
preceding dispiayed expressions yield B, u D, < *C. by transitivity (for
large n) which contradicts C, < B, v D,, in (1). Thercfore, not B < * C.
By a similar proof, not U C, < (U B,) v (fl D1 ,) so that not C < B.

C9. This follows from C3(< *) and C8. *

We now complete the proof of Theorem 14.2.

Proof of (14.2)

Let FI-F5 hold. We shall call a partition {A,, ., A)} of A a u.p. (uniform
partition) when 0 < A and A, ,.•* Al t - A., and let

C(r, 2") = {A :A is the union of r events in some 2" part u.p. of S}.

We slall establish (14.2) through a series of steps, each of which proves a key
assertion.

1. [A, B -C(r, 2")]• A s-* AB. First, if A, B e C(, 2"), and if A <*B,
it follows easily from C3(< *) that S < * S. Hence, if A, Be C(1, 2"), then
A ,-* B. Therefore, if A, Be C(r, 2"), A -,* B follows from C4.

2. [A e C(r, 2"), Be C(r2m , 2"+')] =>- A '-* B. First, if A e C((, 2") and
B e C(2-, 2n+m), then A •--* B, for otherwise, by step I and C3(< *) we get
S < S. The desired conclusion follows from C4.

3. [A e C(r, 2"), B e C(t, 2")] =,- (A B ,<- r/2" --9 t/2-). If r/2" = t/2m
then r2"'= t2" and, with D e C(r2"', 2"+') it follows from step 2 that
A ,-* D and B-.* D, so that A -* B. If r2"' < t2" then, with D, e
C(r2", 2"+m') and D2 C(t2", 2"+') we get A ,-.* D, and B -* D2. But
surely D. < * D2 when r2" < t2". Therefore A < * B.

4. For A E- S let k(A, 2") be the largest integer r (possibly zero) such that
B < * A when B e C(r, 2"), and define

P*(A) = sup {k(A, 2")/2n:n 0, 1, 2, ... }. (14.6)

Clearly, P*(O) = 0, P*(S) = 1, and P*(A) Ž 0 for all A G S. Moreover,

A e C(r, 2") =-. P*(A) r/2". (14.7)

If A e C(r, 2") then, by (14.6), P*(A) k r/2". If, in fact P*(A) > r12" then
for some B e C(t, 2"') with r/2" < t/2"1, B < * A. But this is impossible by
step 3.

5. A < * B •- P*(A) < P*(B). This is obvious from (14.6).
6. P* isfinitely additive. Let A r) B = 0. It follows that, for each n, there

is a 2" part u.p. of S for which A, and B,, are unions of elements in this
partition, with A. n B, = o, A, e C(k(A, 2"), 2"), B, e C(k(B, 2"), 2"),
A,* A, B.<*B. Hence A, uB,<*AuB by C3, and k(A,2")+ +
k(B, 2"):• k(A u B, 2"). Since, for any A s S, it is easily seen that

I|
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k(A, 2")/2" does not decrease as n increases, it follows from Exercise 10.7
that

P*(A) + P*(B) < P*(A u B).
If we now define k*(A, 2") as the smallest integer r such that A • B when

cB C(r, 2"), it readily follows from the fact that {r/2":r =0, ... , 2";
n = 0,l1..} is dense in [0, 1] that inf {k*(4, 2")/2":n 0, 1,..}
sup {k(A, 2")/2": n = 0, 1,...}. A proof symmetric to that just completed
then implies that

P*(A u B) • P*(A) + P*(B) when A B= o

so that P*(A u B) = P*(A) + P*(B)
7. o * A =>- 0 < P*(A). Let 0 -<* A. By F5 there is a partition

(A,,. . A,) of S for which At -* A for each i. Then, by step 5, P*(A,) <1P"(A). Finite additivity then requires that P*(A) > 0.
8. A < B =: P*(A) < P*(B). Suppose A -< * B. Then, using F5, there is

a C5S for which o <*C, COA=- , and CuA-<*B. By finite
additivity and step 5, P*(C) + P*(A) g P*(B). Since P*(C) > C by step 7,
P*(A) < P*(B).

Steps 5 and 8 imply (14.2) and it is obvious that P* as defined here is the
only probability measure on S that satisfies (14.2). *
Proof that (B _• S, 0 p p - 1) =, P*(C) = pP*(B) for some C B

If P*(B) = 0 the result is obvious. Assume then that P*(B) > 0, and
consider a sequence {AI, Al}, [A2... , A4},.... , {AIR,..., All,}... of 2"
part u.p.'s of B for which {A"-"', A"+-'} is a 2 part u.p. of A'. For a given n
let m = sup {j:P*(U.I A-) < pP*(B)} so that

P*(U An) + 2-nP*(B) ýt pP*(B),

and let k = inf{j:P*(UZ, An) < (I - p)P*(B)} so that

P* UA) + 2-P*(B) (I - p)P*(B).

Let C,,--U- 1 A" and D U k A* so that C, E- C2 s --- , D _
D2 C, C. (t D,, = 0 for all n, and P*(C,,) ! pP*(B) - 2-"P*(B) and
P*(D.) > (I - p)P*(B) - 2•"P*(B) for all n. Since C,, S U. C, and
D. G U. D,, pP*(B) < P*(U C,,) and (I -- p)P*(B) • P*(U,. D,,). More-
over, (U CQ) r (U D.) = 0. Hence, by finite additivity, Cl, and (14.2),

F*(U CQ) + P*(U D.) = P*((U CQ) U (U D.)) _ P*(B)

which requires P*(U C,) - pP*(B) and P*(U D,) (I - p)P*(B). *

I
I-
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14.3 PROBABILITIES FROM PREFERENCES

This section shows how FI-F5 of Theorem 14.2 follow from PI-P6 and
(14.1), which is

A <-*B ,--> [(x < y,f= yon A,f = xon A, g =y onB,

g-xonB`)=>f• g]. (14.1)

If x - y for all x, y e X then A < * B for every A, B _ S. P5 clears up this
potential snag. [Savage, who uses a different definition than (14.1), gets
A -*.* B for all A, B G S when P5 is false. His definition is A B*.4 ->
[(x < y .... ) =-f < g]. The main difference here is stylistic.)

Since P5 says that x < y for some x, y e X, it then follows from (14.1)
and PI that <* is asymmetric: A < B* D' not B<* A. Suppose not
A -< * B and not B < * C. With x < y it follows from P4 and (14.1) that
(f= y on A,ff x on Ac, g= y on B, g = x on B1, notf-<g) and that
(g = y on B, g = x on Be, h = y on C, h = x on Cc, not g -< h), so that,
usirg PI, (f= y on A,f-= x on Ac, h = y on C, h = x on CO, notf-< h),
so that not A < * C. Hence (P1, P4, P5) =* F3. < * on the set of all subsets
of S is a weak order.

Letting A = 0 and B = S in (14.1), o <* S follows immediately from
the definition of -< on X. 0 < S is F2.

Suppose A is null and (x< y, f = y on A, f x on Ac, g = x on S).
Then, since f-=g on Al, f,-''g. Hence not A < 0. If A is not null and
(x<y,f=xonS, g--yonA, g=xonA0)thenf< ggivenA byP3,
and since f = g on Ac, f < g by the definition of conditional preference. It
then follows that 0 < * A. This verifies Fl in the presence of F3.

F4 is implied by P2 and P4. Assume A r C = B n C = .If P5 is false
then A < * B and A u C < * B u C follow. Assume then that x < y. Let

f=y on A, f = x on AC

g=y on B, g=x on B0

f'=-y on A uC, f'=x on (A U C)'

g' =iy on BUC, g'=-x on (BUC)y.

Since f f' and g = g' on C0 , and f = g andf' f g' on C, P2 says that
f.< g -->f' < g'. If A < * B then f< g by (14.1), then f'-< g', then
A u C <* B u C by (14.1) and P4. By the reverse procedure A u C <*
B u C =* A <*B.

To verify F5 suppose A < * B. Take x < y by PS. With f, g as in (14.1),
f< g. By P6 there is a partition {(C,... , C,.} of S such thatfi -< g when
fi=y on C, andAf=f on Ci. Sincef•=y on A u Ci andfi=z-on
(A u Cj) and f, <g, (14.1) and P4 imply A u C, < B.

o.

I
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Thus, Fl-F5 follow from PI-P6 under (14.1). Therefore, by Theorem 14.2, i

PI-P6 imply the existence of P* as specified in (14.2) and (14.3).

14.4 UTLATY FOR SIMPLE ACTS

P* as specified in (14.2) and (14.3) induces a probability measure P.
on (the set of subsets of) X for each f e F as follows:

Pf(Y) - P*{f(s) e Y} for each Y g X, (14.8)

where, as usual, P*{f(s) E Y} means P*({s:f (s) E Y}). Let ,', be the set of all
simple probability measures on X and let TJ = {Pt, f e F). With F the set of
all functions on S to X it follows from (14.3) that ', c s?.

Later in this section we shall prove that the three conditions of Theorem
8.2 follow from PI-P6. Before doing that we note that for any P e T there
may be many different acts in F that have this P as their measure on X
induced by P*. Clearly then, if (14.4) is to hold it is absolutely essential to
have f - g when P. = P,.

THEOREM 14.3. (PI-P6; P, Pg;PPg G e,) =•f,-g.

Preparatory to pro, ing this we shall prove two lemmas, the first of which
will be used extensively in later developments.

LEMMA 14.1. (P1, P2, {Aj,... , A} is a partition of A, f < g given Aj
for each i)=* .f- g given A. (P1, P2, {A,, . .. , Anj is a partition of A, f < g
given Ai for each i, f < g given A, for some i) =>f < g given A.

LEMMA 14.2. (P1-P4, A r B= 0, A -- *B, f=x and g=y on A,
f = y andg = z on B) =>f - g given A u B.

Proof of Lemma 14.1. Let the hypotheses of the first part hold. Letf' =-f
andg' = g on A, andf' = g'on A. By (PI, P2),f• g given A -. f' - g'.
Fori=l,...,n-llet

fj=g'=g on UAI
I-I

f,=f'=f on U A,

f•=f'=g' on A'.

Since f < g given Ai for each i, (PI, P2) •f' < f ., .,f,- < g'
and hencef' < g'. Iff -< g given Aj for some i also then one < in the sequence
is < and hencef' < g', orf-< g given A.

-mow]
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Proof of Lemma 14.2. Let the hypotheses of the lemma hold. Let

Y on B, f'=z on B,

g'-y on A, g'=z on Ae.

If x < y then f' -g' by A -* B, (14.1), and P4. Sincef' - g' x a on
(A u B)r, P1 =f' ,-f g' given (A u B)c. Thenf' f'- g' given A U B for other-
wise, by Lemma 14.1, either f' -g' or g' -< f'. Since f -- f' and g - g' on
A u B, (P1, P2) = f- .- g given A v B. If y -< x the conclusion is the same.
Finally, suppose x .- ,. If A(B) is null then f -g given A(B) follows from
the definitions of conditional preference and null events. If A(B) is not null
then f -.. g given A(B) follows directly from P3. Hence, by Lemma 14.1,
fr-.g given A u B. *

Proof of Theorem 14.3. Let P1-P6 hold. We are to prove that if the x, are

all different and if

f=x, on A,,g =x, on B, fori-=1,...,n

0< P*(A) = P*(Bd) for i = 1,...,n, and IP*(Ai)- 1,

then f -, g. Under these hypotheses S/U Ai and S/U Bj are null events
(Exercise 17). Hence, with f' f on U A,, f' =x on S/,J A,, g' - g on
U B,, and g' = ax, on S/U B,, f',f and g', " g so that f,- g -:*f' .g'.
Thus it will suffice to prove thatf-. .g when {A,,..., A,,) and {B,, . .. , B,)
are partitions of S.

f,-..g if n = 1. Using induction on n > I we shall "eliminate" x.. Thus,
assume the theorem is true for n - 1, and with n > I let

A.=A,,rB' and B=BCnAe

so that A r0 B-- 0 and P*(A) = P*(B), the latter by P*(A,, ( Be) +
P*(A. B.,) - P*(A,) i P*(B,) - P*(B, rN A.) + P*(B, r) A.). Let

Di = B rl A for i 1,..., n so that {D,. , D,_ is a partition of B.
Then, by (14.3), there is a partition (CL, • , C,_.} of A for which

P*(C,) = P*(D,) i 1,... , n - 1. (14.9)

Letfa -f and define f.... ,fm-i recursively thus:f t .-- i-l on (C, V D,)u ,
A= -X, on Di, f, = x, on C,. Figure 14.1 illustrates this along with g. By
(14.9) and Lemma 14.2, fj fi-I given C, j D, for i-= 1,..., n - 1.
Since fi "-- on (C, u Di), fj ",f- given (Cj u D,)6. Therefore, by
Lemma 14.1, f ,--fj_• for i = 1,... , n - 1 so thatf -f,,. t
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B.,

SA A. r) Bc, B A'" B,,
C1 Cg C3 C,,... I4. ni B. A",. 0~, B,
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f X 02 ýV x x3  ... x_ x ,, , r,, x,- 'O, n
g g g . g Zn Z, Z,, Xn

Flgure 14.1

It remains to show thatf,_-1 '-g. With B, - B u (A,, r) B,,) let

f'finf_, on B, g'=g on Be

X,_1 on B,, = x.- 1 on B,.

Then, as shown by Figure 14.1, the only consequences that can occur with
f' and g' are X,..., - ,,,,1* x,, has been eliminated. By (14.9) and Figure
14.1, P*{f,,_(s) = xj} = P*(f(s) =- x. Hence

P*{f' -} = P*{g' - xj -=P*(Bj) for i = 1,..., n - 2,

P*{f x.-,)=} -P*g' = •-,_} = P*(B._I) + P*(B,,)

which fits our initial format with n replaced by n - 1. Thusf' f-. g' by the
induction hypothesis. Then, since f' -g' given B., Lemma 14.1 requires
f' --..g' given Be. Then, since f.- 1 - f' and g = g' on Bef,.-I '- g given
Be,. Also, sincef,,-- = g on B,,,f,_, g given B,,. Hencef, ..- , g by Lemma
14.1. *

The Axioms of Chapter 8

Defining < on T, by

P <Q -:-f< g whenever P,= P and P, Q, (14.10)

PI and Theorem 14.3 imply that < on i, is a weak order. The second and
third conditions of Theorem 8.2 follow from the next two lemmas.

LEMMA 14.3. (P, Q, Re0,, 0< <1, PI-P6):=>(P<Q-t(P+(I -- a)R -< ocQ + (I -- cxR).

LEMMA 14.4. (P, Q e T,, f e F, P -< Q, P < f < Q, P1-P6): there is
one and only one m C- [0, 1] such that f-. P + (1 -- i)Q.

.1
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Of coursef < P -<:-f-< g when P, =" P, with similar definitions forf < P,
f,..- P,.... Theorem 14.3 guarantees no ambiguity here as long as P e T,-
The fact that Lemma 14.4 holds for anyfE F will be used in the next section.

Proof of Lemma 14.3. Throughout this proof and the proof of Lemma 14.4
we shall take {xj,... , z,) = {x:P(z) > 0) with P(x) = oti, {yl, .•Y.} =
{x:Q(x) > 0} with Q(yj) = p, so that I ot 01 = 1, and let w be a
most preferred consequence in {x1,... , x., y, .... , yj. A(cc) will denote an
event in Sfor which P* = m. Equation (14.3) will be used freely to construct
events with various probabilities.

For Lemma 14.3 we shall considerf< g given D(cc) with D(cz > 0) 5;; S,
Pf--- = G = (i 1 -,..., n) and PL(g = y3)=f (j 1.... , m). In
view of Theorem 14.3 and the first paragraph of its proof, f < g given
D(I) - P < Q, andf< g given D(a) 4 aP + (I - a)R < ciQ + (I - c)R.
(When a < I letf = g on D(iz)c with probabilities on D(a)c equal to (I - a)
times the positive R(x).) To prove the lemma we shall show that if f< g
given D(a) for one ac e (0, 11 then f-< g given D(a,) for every a c (0, 1].

Thus suppose thatf < g given D(y). Then, by considering n part uniform
partitions of D(y), it follows from Lemma 14.1 that f-< g given D(y/n) for
every positive integer n. Moreover, f < g given D(ry) for every rational
number r e (0, 1/'].

Let 0 < # < 1 be such thatf < g given D(p). Let

f*=f and g*= g on D(p), f* = g* so w on D(8l)0

so thatf* < g*. Then, using P6 m times (once for each y,) and Lemma 14.1
if necessary (so as not to exhaust all of I f- before the m uses of P6 are
completed), we obtain g' withf* -< g" and

g- = *g g on D(fi)

= yj on C,(A); A > 0, Cj(A) - D(fl), C, r Ck 0,

(jU1,... m)

Taking C,(hpj) G: Cj(A) for j = I,... m with 6 > 0, let ge _ g, except
that go = w on C,(A 1)1Cj(6,fl). Since v, - w, Lemma 14.1 implies that
g" g, with

= g on D(jP + 6) =D(Pi) U (5CAM61)
=w on D(P + 6).

j.
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Also takerf f* except thatf 0 = x, on Ej(6ac,) here the E4 form a partition
of U"I I C,(6fl1). Since xz < w,fO <f* by Lemma 14.1 with

Pfo=f on D(8+6)
-w on D(P + 6)0.

Then fo - go since f 0 z f, g" -g< , and hence f -< g given D(fl + 6).
Since this holds for all 6 in some interval (0. t], it follows from this and the
preceding paragraph that f < g given D(a) for all cc e (0, 1). Also, since
f < g given D(1/2), Lemma 14.1 gives f-< g given D(1). *

Proof of Lemma 14.4. As in the proof of CI of Theorem 8.3, (P, Q eT,
P-<Q,0 < , 1))=.#PP+(I - fl)Q-< P + ( - x)Q follows read-
ily from Lemma 14.3. Thus, under the hypotheses of Lemma 14.4 there is
one and only one a c [0, 11 such that

PP + (I -fl)Q <f if fl > (14.11)
f-< flP + (1 -fl)Q if fl <. (14.12)

Clearly, only a can satisfyf , mP + (1 - x)Q.
Suppose then that aP + (I - ac)Q < f. This requires a > 0. Let

g-= xi on D(oaa) i= ,... ,n

=yj on D((I--a)fl) j--- 1,...., m

where (D(aax),... , D((1 - a)p,,)} is a partition of S. Then P, Z- MP +
(I - ,)Q. Hence g < f by Theorem 14.3 and P1. Then by repeated uses of
P6 obtain g' < f where g' = g except that g' = w on C,(y, > 0) _ D(aaj)
for 1 = 1,..., n. With Pl < a and a -- P small, take C,(y,' > 0) CQ(j)
with V'• = (a --/)a and let ge rn g' except that gO = zj on CQ(y')/CQ(y). By
Lemma 14.1, g < g' with

ge_ X, on D(flx,) -- D(zoc,) i-= 1,...,n
-- y, on D((I -- a)#j) j- 1 m

•w on D(a-- P).

Now change g to h by partitioning D(z - ft) into {D(Pl(m -
D(P,(a - q))) and replacing w on D(fl,(a - #)) by yj. By Lemma 14.1,
h <•eg, so that by transitivity h < f. But P. = PP + (I - P)Q by construc-
tion and since P < a. we have obtained a contradiction to (14.12). Hence
acP + (1 - z)Q < f is false. Similarly, f-< aP + (1 - a)Q is false for this
leads to a contradiction of (14.11). Hence f-. a)P + (1 - a)Q. *

In view of the results of this section and those of Chapter 8 we can state the
following theorem, ir which P* is as given by (14.2) and (14.3) through (14.1).

2_Now
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THEOREM 14.4. PI-P6 imply that there is a real-valued function u on X
such that

f< g -:* E[u(f(s)), P*] < E[u(g(s)), P*], for all P,, e T,, (14.13)

-and when u satisfies this representation it is unique up to a positive linear
transformation.

In the rest of this chapter, u is assumed to satisfy (14.13).

14.5 UTILITIES ARE BOUNDED

In proving that u on X is bounded, we shall use the folhowing lemma,
"whose proof follows easily from P7.

LEMMA 14.5. (P1, P2, P7, x <f given A and x < g given A for every
z e X)=*f- g given A. (P1, P2, P7, f< x given A and g < x given A for
"every x c X) =- f .sg given A.

In the proof of the following theorem sup T = oo means that T is a set of
real numbers and, if c c Re, t > c for some t c T. sup T = o means that
Tis unbounded above. In addition, whenf is such that P*{u(f (s)) > d} = 1
for some number d, E(u, P.) - o means that sup {E[inf {u(f(s)), c), P*]:c c
Re) = .

THEOREM 14.5. (PI-P7) = u on X is bounded.

Proof. Let PI-P7 hold and suppose that u on X is unbounded above.
Using (14.3) construct a sequence B1 , B,,... of disjoint events in S with
P*(BU) = 2-" for n = 1,2, .... If U. -. B. does not exhaust S, add S/U B.,
to B,. Take u(x,,) > 2" for each n and let

f = X. on B,, n=-1,2,...,

so that E[u(f(s)), P*J = o since
E[inf {u(f (s)), 2'4}, P*] P*(B,)u(x,) 2:.,2-121 n

for n 1, 2,.... Let x be any consequence. Then, for some y E (xI, Xt,.. ;

u(x) < E[inf {u(f(s)), u(y)}, P*]. (14.14)
Letf' =f on {s:f(s) < y} andf' = yt on {s:y <f(s)). Then Pf, E T, and
E(u(f'(s)), P*J = Efinf {u(f(s)), u(y)}, P*] so that, by Theorem 14.4 and
(14.14), x -<f'. But f' <f by Lemma 14.1 since, by P7, f' < f given
ls: y -< f(s)). Hence x -< f Therefore x <f for every x.

l
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Next, let z be such that u(x,) < u(z). Let g on B, and.g -f on BO.
A% in the preceding paragraph, x - g for every x, so thatf -.,g by Lemma
14.5. But f< g given B, since x, < z and P*(B) > 0, and f,-,g given B,6
sincef = g on Bf. Hencef < g by Lemma 14.1, a contradiction. Hence u is
bounded above. A symmetric proof shows that u is bounded below. *

14.6 UTILITY FOR ALL ACTS

To establish f < g = E(u, P,) < E(u, P,) for all acts we shall first prove
two lemmas.

With P e g,, g -- P on, A means that P*{s e A and g(s) - x} = P*(A)P(z)
for allz cX. Wedefinef< Pgiven A •<-f< ggiven A for everyg Pon
A. P -< f given A is similarly defined, and f - P given A and f < P given A
are defined in the usual way. Note that, by Theorem 14.3, if f < g given A
for one g :'-- P cz e, on A, then f < h given A for every h -- P on A. If A is
null, g P on A for every g.

LEMMA 14.6. (Pl-P7, A i' 0 -,f xgiven A, U(f(s)) < cfor alsl A) =-A
there is a P e T, for which f -< P given A and E(u, P) - c. (PI-P7, A # 0,

x < f given A, c < u(f (s))for alls e A) => there is a P e Tfor which P < f
given i and c - ;5(u, P).

LEMMA 14.7. (P1-P7, (BI,... , Bj is a partition of S, u(f(s)) < cj for
all s e Bi (i = 1,,..., n), P - T., P < f) =>. E(v, P) .• _, P*(B,)ci. (PI-P7,
{B1 , .. , B,. is a partition of S, c, < u(f (s)) for all j e Bj (i 1,...n),
P c-TJ' ) P*(B,)c, < E(u, P).

It will suffice to prove the first part of each lemma. !n each proof the
hypotheses of the first part are assumed to hold.

Proof of Lemma 14.6. If u(x) • c let P(x) = 1. Then f < P given A by
hypothesis and E(u, P) = u(zx) g c. Henceforth suppose that c < u(x). Let
y be any consequence for which u(y) < c, as assured by A # 0 and
u(f(s)) < c for all s c A. Let P be the unique combination of x and y for
which E(u, P) = c. If A is null thenf < P given A and the proof is complete.
Henceforth assume that P*(A) > 0.

Fix. t e A. Let g -- P on A and g = f(t) on Al. Since u(f(t)) < e,

(f (t)) =P*(A)u(f(t)) + P*(Ao)u(f (t))

< P*(A;F (u, P) + P*(A")u(f(t)) =Eu(g(s)),P*]

so that, by Theorem 14.4,f(t) -< g. Hencef(t) < g given A. S'nce this holds

S.....
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for each I e A, P7 implies thatf g given A. Since g P on A,f < P given
A.

Proof of Lemma 14.7. Suppose the conclusion is false for somefand P so
that I P*(B,)c.. < E(u, P). Since this can't hold if P is confined with proba-
bility 1 to worst consequences, it follows that there is a Q e Tf, for which
SP*(B,)c < E(u, Q) and Q < P < f. Hence, if the lemma is true when its
P f hypothesis is replaced by P <f then the original lemma must be true.
Thus, it will suffice to show that if PI-P7 hold, if {BR, ... , B.) is a partition
of S and if

1. u(f(s)) < c, for all s eB, ,... , n, and
2. PE T. and P <f,

then E(u, P) < J P*(Bf)c,.
To prove this we show first thatf can be modified, if necessary, so that (1)

and (2) hold for the modifiedf and, for each i, there is a y, such that modified
f< y, given B•. If there is a y, such thatf <, yi given B,, we cease to worry
about this i. On the other hand, suppose x < f given B, for every x e X.
Then Bi can't be null so that P*(B() > 0. For this B, take y -< z and u(y) < c,.
With P <f by (2), it follows from P6 that there is a non-null A _ B, for
which P < f' whenf' =fexcept on A wheref' - y. Letf* =fexcept on A
where f* z. Since y < z, f' <f* given A. Hence f' < f* given B, by
Lemma 14.1. It cannot be true that x <f' given B, for every xeX for
otherwise, by Lemma 14.5, f ' ,-f* given B,, a contradiction. Hence there
is a y, c X such that f" y, given B,. Since (1) and (2) hold forf' we see
that, by considering each i, we obtain an act g that satisfies

1. u(g(s)) < c, for all s e B,, i = 1, ... n,
2. P e T, and P < g,
3. There is a y, e X for which g < •y given B,, i = 1,..., n.

Given such a g, Lemma 14.6 implies that, for each i, there is a Q, e Tl', such
that g < Qj given B, and E(u, Q%) • c,. Let h - Qj on Bi for i l,...,n.
Then, by Lemma 14.1, g -< h so that P < h. Since PX = (AM,
Theorem 14.4 implies that E(u, P) < E[u(h(s)), P*]. Since E[u(h(s)), P*1 =

SV*BiEuQi:,) *y. cE(u, P) < P*(B,)c,.•

Expected Utility for All Acts j
THEOREM 14.6. PI-P7 =:- (14.4).

Proof. By an appropriate positive linear transformation of u, we use P5
and Theorem 14.5 to specify

inf {u(x): x e X} 0, sup {u(x):eX}= e.

I!
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Each act in F falls into exactly one of the following classes:

1. f is big- -> x < f for every z E X,
2. f is little -c*-f< z for every x c X,
3. f is normal # x < f < y for some x, ye X.

Suppose first that f is normal. Lemma 14.4 guarantees that there is a P C T,
such thatP,-f Divide S into A, = {s:0 < u(f(s)) - l/n}, Ai = {s:(i-- 1)/
n < u(f(s)) < i/n} for i = 2,.. n. Some of the A, may be empty. By the
definition of expectation (Definition 10.12, Exercise 10.16), j P*(Ai)(i -- )/
ixn ! E[u(f(s)), P*] i, P*(Aj)iln. Also, by Lemma 14.7, j, P*(A,)(i -
1 - *)In • E(u, P) • jj P*(Ad)(i + c)/n for any e > 0. Letting n get large
it follows that

E[u(f(s)), P*] ] E(u, P) when f,--- P, P c T. (14.15)

Suppose next thatf is big. By Lemma 14.5, all big acts are indifferent. We
shall prove that
fis big =. u(z) < I for all x, P*{u(f (s)) > 1 - --- 1

for e > 0, E[u(f (s)), P*] = 1.
With f big suppose first that u(w) = 1 for w c X. Take x < w, using P5.

Let A = {s:u(f(s)) < 1), Al = {s:u(f(s)) = 1}. Then, using P7 if A is not
null, as in the final part of the proof of Lemma 14.6, it follows that f < w
given A. [Suppose that w < fgiven .4e (requiring Ae to be non-null). Then, by
P6, there is a non-null B c- Ac with w <f' given Ac andf' =fexcept on B
where f' = x. Let f' = f except on B where f' = w. Then f <f" given AO
by Lemma 14.1. But then, using Lemma 14.5, f' -. f" given Ac, a contra-
diction.) Hence f < w given A, so thatf< w by Lemma 14.1. Butf< w
contradicts f's bigness. Hence f is big => u(x) < 1 for all x c X.

Suppose next that for big f there is an e > 0 for which P*{u(f(s)) Ž
1 - e) < 1. Then, with A = [s:u(f(s)) < I - 4}, P*(A) > 0. It follows
from the preceding paragraph that we can select y, z e Y so that

S--< u(y) < u(z) < i.
Letf" = = f except on A wheref' y andf" = z. Then, since u(f(s)) <
u(y) for all s r_ A,f<< y given A. This leads tof f" <f-'. But sincef is big
f' is then big also and hencef-.,f" by Lemma 14.5, a contradiction. There-
fore P*{u(f(s)) > 1 - I = 1 for every e > 0. Therefore E[u(f(s)), P*] >
I - e for every e > 0 and, since E can't exceed 1 (Exercise 10.22a),
E[u(f(s)), P*] = 1.

By a symmetric proof for little acts it follows that
f is little=. 0 < u(z) for alix, P*{u(f (s)) •g = 1

for e > 0, E[u(f(s)), P] 0,
and, by Lemma 14.5, all little acts are indifferent to each other.
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(14.4) follows readily from Theorem 14.4, Lemma 14.5, the fact that
every normal act is indifferent to some P e .',, and from (14.15) and the
implications for big and little acts. *

14.7 SUMMARY

Savage's axioms for expected utility apply -< to the set F of all functions
on S to X (states to consequences). When <* (is less probable than) is
defined on the basis of < is an appropriate way, his first six axioms imply
that there is a probability measure P* on S that satisfies A <* B -. P*(A) <
P*(B), for all A, B C_ S, and, when this holds, (B s S, 0 • p : 1)=,
P*(C) = pP*(B) for some C g B, and P* is unique. This latter property
implies that the set {P-:fe F) of probab~jty measures on X induced by P*
on S includes the set T, of all simple measures on ,1. By showing that axioms
similar to those of Chapter 8 follow for < on T',, we obtain an expected-
utility representation for T',, or for the set of simple acts. Savage's seventh
axiom then implies that the utility function u on X is bounded and that the
expected-utility representation f -< g •. E[u(f(s)), P*] < E[u(g(s)), P*], or
equivalentlyf < g -:: E(u, P,) < E(u, P,), holds for all acts.

Savage's book (1954) contains an excellent section on "Historical and
critical comments on utility" (pp. 91-104) that should be studied by everyone
interested in utility.

INDEX TO EXERCISES

1-2. Probability axioms for finite sets. 3. A/B. 4. Cl. 5. Qualitative probability impli-
cations. 6. FS. 7-9. Uniform partitions, almost agreeing measures. 10-14. Fine and tight
qualitative probabilities. 15. < given A. 16. Failure of P2. 17. A is null #> A -* 0*.
18. Discrete measures in 0". 19. Conditional probability. 20. PI-P6 hold, P7 fails. 21. A
variant of P7. 22. PI-P7 do not imply: P*{f(s) <g(s)} = f 1 =f<g.

Exercises
1. Kraft, Pratt, and Seidenberg (1959), Scott (1964). Use the Theorem of The

Alternative (Theorem 4.2) to prove the following theorem. Suppose that S is finite.
Then there is a binary relation -<* on ti - set of all subsets of S that satisfies (14.2)
Yf and only if, for all sE S, ali A,, ... ,B. r S and al m > 2:

1. not {s) -<* 0,
2. 0 <S,
3. (A, 1 - 8B,,Aj <*B• or A• ~* B, for each j < m) not A.< B,,.

i
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In (3), A B -,c->(not A <* B, not B <* A), and , A,--. Bi.*:foreach s, the number of Ai that contain s equals the number of BI that cmntain S.

2. (Continuation.) Kraft, Pratt, and Seidenberg (19S9). Let S - p, q, r, t,:)
and denote a subset of S such as {p, q, t) bypqt. Let -< on the set of all events be
given by

0 "<*p -<* q -<* r -<*pq -<* pr -<* s -<* PS
<*qr *t *Pqr -<* 9s -<* rs -<* pt -<* pqs -,* qt

<*prs <r <* qrs -<* pqt -<* prt -<* at .<* pqs ".*pst
<*qrt <*pqrt -<* qst -<* rst .<*pqst -.<*prst <* qrst <* pqrst,

in which the order of the last two rows is the order of the complements the first
two rows in reverse. Clearly, Fl, F2, znd F3 of Theormm 14.2 hold.

a. Show that F4 holds.
b. Show that condition (3) in Exercise I fails.

. For any A, B s S verify that
a. (A/B)r r (A•B) - 0 and (A/IB) v (A r B) I ,
b. A U (BIA) - B u (AIB) A U B,
c. (A•B)r (BIA) - 0,
d. (A/B) u (B/A) - (A4 U B)/(A n B),
e. (AIBI u (BIA) u (A • B) - A V B,
f (AIB) U (BIC) (A/iC) u ((A n C)/B) u (B/(A r' C)), with A/C, (A r) QIB,

and B/(A n C) mutually disjoint.
4. Prove CI of Section 14.2.
5. Let -<* satisfy FI-F4. Verify
a. A <* B--A/B -<* B/A,
b. A "<* B B.e-* AO,
c. (A -<* AG, B -<* Be) => A - 0,
d. S .* B=- B -.* S and A B,,-* A,e. (A -0 AB C,-* A, A V B,-* C Ua D,AA t B -- C r D 0 )=> A C..*.

6. Without using CS-Og, prove that (Fl-F5, 0 <* A, -<* B) =>• <* C -<*
A for some C s B.

7. (Continuation.) Let F6 be: If o -< A then A can be partitioned into B and C
with B ,-* C, as in C8. On examiing the proof of (14.2) through step 6, argue that"F1-F4 and F6 imply that there is a unique probability measure P* on the set ofeventh
that satisfies

A <*B=>P*(A)•P*(B), for all A,B r=S. (14.16)
L, (Continuation.) Show that the proof of (14.3) holds for the situation of thepreceding exercise, so that FI-F4 and F6 imply (14.3) when P* satitfies (14.16).
9. Let F7 be: For every positton Weteer n there is an npart u.p. ofrS. On exaning

the proof of 914.2) through step 6, argue that FI-F4 and F7 imply that there ir a
unique probability measure P* on the set of events that satisfies (14.16). Also prove
that (FI-F4, F7) =. (14.3).

i
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10. Following Savage (pp. 36-37) we define the following tem for a quah'tative
probability -<* on the events in S (that satisfies FI-F4):

<* isfine-*(O -<*A =:- there is afinitepartitionof Seachelementof which is 4

not more probable than A).
"is tight -e A -* B whenever A B U C and B ,<* A U D for all Cand D

that satisfy (B (N C - A rN D - 0, 0 -<* C, 0 -<* D).

Given FI-F4, prove that <*is both fine and tight c:. F5 holds.

11. (Continuation.) Following Savage (p. 41), let S, - [0, 1], S, [2, 31 and
let Pi be a finitely additive probability measure on the set of all subsets of S (i - 1, 2)
that agrees with Lebesgue measure [e.g., Pl([a, b) - b - a when 0 :9 a < b 9 11
on the Lbesgue measurable subsets of Si. Let S -- $ u S2 and, for any A r S
let A, - A r $S and As - A r St. Define <* on the set of all subsets of S as

follows: A -<* B.:P,(A1 ) < PI(B4) or (P1 (Al) - P1(Bj).P,(A-) < P(BA).
a. Verify that <*is a qualitative probability. (FI-F4 hold.)
b. Prove that <is not fine. [Let A - Sg and ai-gue that any finite partition of

S must contain a B for which A <* B.]
c. Prove that -<* is tight.
d. With P*(A) - P1 (Al) for all A 9 S, does P* satisfy (14.16)?

12. (Continuation.) Let S1, S2, P1, Ps, and S be defined as in the preceding
exercise, let A] - A n iS and As - A r, St for any A s S, and define A -<* B.*€
P11(A,4 + P,(A,) < P1 (B1 ) + Ps(Bj) or (P1 (A1) + Ps(As) = P1 (B1) + Ps(Bj,
P1 (A2) <P 1 (B1 )).

a. Show that <*is a qualitative probability.
b. Prove that <*is fine.
c. Prove that -< is not tight. [Let A - SI, B -S2 and show that if< is

tight then A - B. But, by definition, B -<* A.]
d. With P*(A) - *[P1 (Al) + P*(As)], does P* satisfy (14.16)?

13. (Continuation.) Let S1 , S2, P?, and a, be as given in Exercise 11. Let S -

[4, 5] and let Ps be a finitely additive extension of Lebesgue measure on Ss. Take
S - S, US2 US8, let Aj - A ri SAfor 1, 2,3 andanyA •._, anddefine -< by
A -<* B-.c:P 1 (A1 ) < P1 (B1 ) or (P1 (A1) = P,(B1), P2(A2) + Ps(Ag) < P2(B) +
Pa(Bg)) or (P1 (AI) - P1 (B1), Pt(A,) + Pa(Az) - Pg(Bs) + P$(B,), P,(A,) < P,(B)).

a. Verify that -<* is a qualitative probability.
b. Show that <'is not fine.
c. Show that -<* is not tight. A
d. With P*(A) - P1 (A1), does P* satisfy (14.16)?

14. (Continuation.) In each of the three preceding exercises argue that, for each
positive integer n, there is an n part uniform partition of S. It then follows from
Exercise 9 that P* as defined for each of the three preceding exercises is the only
probability measure on S that satisfies (14.16). Then show that, in each of the three
cases, there are A, B s S for which A -<* B and P'(A) - P*(B), so that (14.2)
cannot hold.

Note: In the remaining exercises F is the set of all functions on S to X.

-'
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15. Prove that (Pl, P2)=:. <given A is r weak order.
16. Savage (correspondence). Let S - [0, 1] with P* on S an extension of -

Lebasgue •easure on [0, I] so that, for example, P*(Ia, b]) = b - a when 0 <-
a -<b . 1. Let X - [0, co) and takeu(x) -x, so that F is the set of all nonnegative
real functions on [0, 1]. Admitting the case of Ein(f (s)), P* - E(f, P*) - 0
(see Section 14.5), with oo - co, take f -< g if and only if E(f, P*) < E(g,P*).

a. Show that P2 fails in this situation, by considering four acts withf -f' - 1,
g-g' on A - [0, J), andf -gandf' -g' on Awith Eqf, P*) -
and E(f', P*) finite.

b. Verify that PI and P3-P7 hold.
17. Prove that if P1-P5 hold then A is null g*A ' 0.

18. Verify that (14.3) implies that all discrete probability measures on X are in
S{P-:fe F) under (14.8).

19. Let P* be the conditional probability measure of P* given A when P*(A) > 0,
with PU(B) -P*(A r' B)IP*(A) for all B _ S. Verify that PI-P7 imply, for all
f, gc F and A G S, that f-<g given A. 4.P*(A) -0, or E[u(f(s)),PA :
flui(g(s)), PF1 when P*(A) > 0.

20. Savage (p. 78). Let S - {1, 2,,. .} let X- [0, 1), and let P* be a difftuse
measure on Swith P*(s) - O for all s c SandP*(n +j, 2n +J, 3n +j,.. .} 1 1/n
for all n > 0,j > 0. Define -<onFbyf-<g.-* w(f) <w(g)where

w(f) = E(f, P*) + inf {P*{f(s) > I - g}:c > 0}.

a. Prove that if {A 1 .... , A.} is a partition of S and if/I {i:P*(Aj) > 0) then,
Swith PA, as defined in Exercise 19,

w(f) - P*(Aj)[E(f, P*,) + inf {P*{f(s) > I - ): L > 0}].

b. Verify that PI-P6 hold.
c. Show that P7 is violated byfandg wheref - 0 andg - on the odd integers

andf(n) =-g(n) = n/(n + 1) for each even integer n.
21. (Continuation.) In Chapter 10 we saw that Axiom A4b (Section 10.4) is not

sufficient for the general expected-utility result when the measures in T are not all
countably additive. In the context of the present chapter the correspondent of A4b
is P7b: If x < g(s) given A for all s c A then x < g given A; if g(s) < x given A for
all s E A then g < xgiven A. Verify that P7b holds for the example of the preceding
exercise.

22. Modify the example of Exercise 20 to give a case where PI-P7 hold and where
the following assertion is false: Iff(s) <g(s) for all s e A and A is not null, then
f-<g given A.

• .•i
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ANSWERS TO SELECTED EXERCISES

V2.1b. For each i{ . -- 1, 0. 1, 2,. , let-'(0) 1, f() --2iwheni>Oand

i f(l) = -- 2i+ I when I < 0.

S• 214a. -. is rdefleve since ,4 is reflexive. - is symmetric from its definition. If x •,y
S~and y ~- x then (z < y, y < z) and (y 2< z, z < y), which by the transitivity of <
Syield (x :< x, x -ý x),

2.5Z. If z -<t x then not x -<'xz by asymmetry, a contradiction. Henc .<1 is irreflexive.
Suppose x -<t y,y -<* z. Then x -< Zl, ¢ x ... l -,<y, y -<y •/y, -<y3,,.•..,

'. ., -< z, so that x --<t z.

S2.7. X -* {x, y, z) with x -< y, y -< z, and x ,-- x.

S2.9. Define x and y as equivalent if and only if they are in the same element of the
partition.

2.11. Suppose -< is transitive and x -. y .44 I(x) r' 1(y) 0 0. Clearly, is irreflexive
since 1(x) r- l(x) 0 0. Suppose (x -< y/, x - w) so that l(x) r) 1y) 0- and
Axs) r) l(w) -, 0. Then either 1(m) n l(w) 0. in which case either x -< w or w -<x
(and hence z -< y by transitivity); or l(x) r• l(z) - 0 in which case either x• -<z
(and hence x -< w by transitivity) or x -< x (and hence z -< y); or
NO r) 1(z) -, 0 ""* ; or 1(y) rl 1(w) . 0 "...

"2.14. TE -:: Transitivity. Let TE hold. Suppose Transitivity fails with y E F((x, •€I),
x C F(fy, z}). and (x} --- F((x. z}). Then z f F({fx, y, z)) by TE. If y C- F({•, y/, z))
then z f P({y, z}) by TE, a contradiction. Hence y $ P({x, y., z}). Therefore
{x) := F({x, y, z)). Then. by TE, y 0 F({x, y)}), another contradiction. Therefore

' F({x, y, z)) = 0, which is false. Hence Transitivity msmt hold when TE holds.

LIS. fPxi, xs) -- x + .5(xl + x2 -- 71(x. + --2 -- 1) gives a one-to-one correspondence.

7.17. u(xl, x2) =-- awl + x2 with a > I will do.

2.21b. (x, y) E (A U B)" *•ý (y, x) c- A or (y/, x) C- B. (x, y) C- A' U B' .4-- (y, x) e A or
(y, x) cr B. (x, y) Lz (A n• B)' ýý (y, x) e A and (.y, x) C- B.

3.1. If the subset is countable let it be enumerated as 0.xltxsjxal - • •,0-~ ~ s•••
S0.xs~.• • , " ".Let xj 0 xjj for all i, x, C- {1, 2}. Is 0.xzjx3z • - • in the

enumeration ?

3.3. Let U(x) = (jxI, x). Then x -< y if and only if U(m) < -, U(V) where (a, b) <•L (c, d)
if and only if a < c or [a = c and b < dA.

3.6c. 0!, -- 2, 4, -3).

3.7b. 130.
3A8 Let X be the unit square with (0, 1) -< (1, 0). The set of all oc(0, 1) +

(1 -- 00(, 0) - (! -- CE, ,) is the straight line segment from (0, 1) to (1, 0). k
you draw a valid indifferenc curve that interawes this segment at several place?

i(

. . . .. . . . .
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M32. Yes. If the x E Xare numbers, X is finite, and 16 - (A 0 X:A }, thenu on X
is continuous in V.

3.16. Given cc (*(x), u(y)) suppoe r V u(s) for evuy x EX. Let Y -- {s:EX, U(s) < C),
Z -m {x:: x X, c < u(s)). Yand Z an nonwupty, disjoint, Y U Z - X, andaincm
{b:b < c} and (a:c < a}) are in '1 and a is ontinuous. Y,ZEC ,costndictingthe
connetednls Of (XI.

3.23. If X is not connected then it can be partitioned into nonempty, disjoint subsets
Y and Z that are both in (A n X:A 6 W). If X is convez and y C- Y, xCZ, thus
L(y, ) - {ow + (1 -a,)s: ac [0, 11)is in Xand (Ly, z), (A n L(y, s):A A )C
is connaftd. But by X not being connected we must conclude that L(y, z) n Y
and LAy, ) Z are nonempty, disjoint open setu in (A % L.(i, s):A C G%,} that
partition L(v, z), so that L(My, s) is not connected, a contradiction.

4.&. 41 - 24. Eight am additive.

4.3. ae, c,g.

4,4. 2x9s( + (xlxs)s - *3(1 +" xz). With a, b >, 1, a b a(l + a) ! b(1 + b).
See Exercise 3a.

4.5. Hint: Include in ( ) E4 ( ) the six elements whose utilities are duplicated
(8, 9,15 ).

4.12. Yes.

4.15. For Theorem 4.2 let C -- ( U( x,), u1 (*, 1) .... , , a(x'), ,(t)... , A (,)).
4.17. Let c -- (m,(x~s,.,•z,,), 1).

Mla. ut(0) - 0, um(l) - 2, us(r) -2 - e-' when r >- 0 and us(r) - e" when r < 0
will do.

5.lb. Assume additive utilities exist, let a - us(l) - ii(O) > 0, M - st(l) -- u(O) > 0,
Pi -m ut(I/l) -- v,(l/(l + i)) for i -- 1, 2, ... anid show that M :> ma for every

positive integer m.

5.4. Suppose m - 3, n - -2. Then 3U- 2z - x + v + (x - x) - x-
0 + X + e - x + (W --) =2-+ V M.

5.12. X.

5.13. II*"G 1 ITGi since I'A•- I17; when AE d for each L Suppose A PAO.
AeCfli. ForzEA let A,(x)e'C be such that vx A((z), 11 Aj , A, 1- AfI*Up
Also, U,, 4 (11 A,(x)) - A so that AefI- 1;r. Thus, II !Gi s rI* 15,.

5.19. Suppose Ui 'E1U. Then =- Ut,,T A(t), where A(t) is an open interval in Re for
each t E T, by Exercise I8. Thcreioref-'(U) -- U tef-(AQs)) is in 'G whenf-4(AQ())
is in V for every t c T.

5.23. (x1 y. y, z, xy 5.yz, zg) = (2, 1, 3. 1.5, 5, 8) gives u(x*, xg) < .st. Ys), m(Y, st) <
u(s1 , ma), and u(x,, ys) < a(xr, z.), which contradict QI.

CO.lb .. x,•.. ym is a permutation of ... ,', sm ,... w, ,

(W, V) < (:3, wJ) or (X4, VI) ' (0, W) for au j < m1 =* not (zn, y"9) < (z', w1).
Alte• r natively, y(1 sl) .. ... , ( xlx y -m ) E,m (81. WI L), ... ( ' -in, (sm , st]) W . - ( s).

or (0, 0j) ~ (XI, w1) for allJ < mJ => not (WO, S') -< (Z". w*'), and (, Yt) •- (Y', 2)
for anl X, V X.

6-5. x - y z -w otx y -<*s -- w =>not x - z -<*£ -- w(by t6.2)) =
[z -- s w or - w<x - zi the lette of which gisx - z w - si

.. m
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77. ~by (6.1). Also, x - y ,,.* x -- w ='"ot 8 -- w <* - =::*not X -- X -"w -- V

by (6.2). The sore x- y,*s w=>z -st -*y - w. (And Goforth.)
C49. For neptive trangitivity, not x .< V = y - xz - z and not y .<=> -y.•

y -- y. Heum x -- x, thenat - x <*V--x, thens-- w *z--x.
&.1%.. Asymmetry of -<* is immediate from asymmetry of -<. For negative transitivity,

not x - i <x - w =o not f(m, w) -<f(s, y) =::f(s, y) -< f(x. w), and not
z - w -<"., - t =:. not f(x, t) <f(, w)='f(s, w) < f(zt). ULing C3, C2, C3, C2,
and C3 again, f(f(s, y),f(w, )) -f(fls, w)fOy, )) < f(ftx, s),fty, a))

4, f(f(., y),f(t, )) < ff(f(, w),fQ, x)) ,-f(f(=, t),f(w. z)): by transitivity,
f(f(s, v).f(w, a)) < tf(,),f(w, z)), whence fQ, y) < f(z, t) by C2, which says
thats - t x - Y, or notx - V <*s -- .

6.16. To show thatf(f(x, y),f(s, w)) -. f(f(x, x),f(y, w)) let a -f(x, u; b -f(a, w),
c - f(x, z), d - f(y, w). We are to show that a - d -* c - b. The pOZmutation
condition of Be holds for x - a -* a - y, w - b -* b - X, c - s -- * x - c,
d-- *w - d, b - d? c - a, a - d?* c - b. fN - <then nota- d< c - b
by BG, and hence c - b .<a - d by Bs, and hence c - a -* b - dby (6.2), which
contradicts b - d -* 0 -- a. Similarly c - a -<* b - d can't hold. Hence b - d
c - a, which by Ba yields a - d - c-b.

7.1. Since (x, ... x,) ,- (x,,. . , ,x) . . (x,, x 1 ,... , -) u-(x ) -
Sp(,)/n,

7. 4 b. x < ( l, . . .. , x - 1. y .,) ,• ( X I . . .- ,,- , Y,,- 1, Y,, < ...< Y.

7.5. For the last part: A, ={a, b}, n = 2, (a, a) -< (b, a), (a, a) -< (a, b), (a, b) -< (b, b),
(b, a) -< (b, b) and (a, a)•- (b, b).

7.13k. Suppose a 0 0, m - MIN where M, N are nonzero integers. Then
x , y.*. Mx -- My by e and]i. Since aN M, x - y.c: Nax - Noy, and by e
and j, N= - Nay.: =x =- ay.

8.1. Expected net profit maximized at about x = 235000.

m4a. v(0 - 3, v(w) 9. (d) v = 5u + 5.

U.5. c- .4.
U.1. Show that (conditions 1, 2, not 3) ==> not 4. In violation of 3 assume that

P -< Q -< R and Q < %P + (I - a)R for all a C(0, 1). Show first that, for every" ~ ~ a P, C- (0, 1), (1 -- P)Q + PR < (I -- a)(1 -- )P + L8 + (I -- p)']R -<
(I - ex)(1 - P)Q + [P + (1 - Pj)]R. (Note that Q -< aP + (I - a")R for all
a e (0, 1). Why?) Suppose that S --, T-4:: u(S) < u(T) for all S, TI Tl. Letf(fl) -
u((l - P)Q + PR),gX(8) = u((1 - P)P + .8R) for all PtC (0, 1) and note that if

< <y thenf(P) <g5(y) <f(v), with Y = P + (1 - P)a. Show that
sup (f(#):P < v) <fly) so thatf is discontinuous at every point in (0, 1). This is
impossible (why?) and therefore such a u does not exist. Then use Theorem 3.1 to
show that condition 4 is false.

8.7. See Exercise 6c.
8.lt. For (A, C), P(330) - .27, P($70) = .63, P(SMO) = .03, P(8120) - .07. The

theory of this chapter does not say that (B, D) will be preferred.
U.13. No. Yes.

R816.. Y --* $15000.

&16b. y' - y. Given A, he would sell it for an amount with the same utility.
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&l1c. SO - ($40000 - z with pr. 1/2 or $0 - s with pr. 112). 18000. If he paid
118000 for A he would be taking a 50-50 gamble between net increments of $22000
and -518000, which has a utility of about zero, which is what he started with.

8.16d. Of course not. In the two situations he is considering different amounts of total
wealth. He would sell it for 118000 or more.

8.16e. (525000 with pr. 1/2 or - $15000 with pr. 1/2) - w - $15000. w -- $20000.

R16f. With y as in pan a, V - (30 - r with pr. 1/4 or $40000 - r with pr. 1/2 or
S80000- r with pr. 1/4).

8L16g. (32MOO with pr. 1/2 v, -SlMO0 with pr. 1/2)- (50 - $15000 - s with pr. 1/4
or $40000 - O15000 - s with pr. 1/2 or 580000 - 515000 - s with pr. 1/4).
s 512500.

9.1. For the converse of P3 suppose aP + (1 - a)R s mQ + (1 - c)R with oE (0, 1)
and not P t Q. Then, for example, P ,- Tand T -Q.By B2, cP + (1 -- )R,
aT + ( -- n)R. By BI,. T + (1 - a)R -< ,Q +(1 - a)R. These contradict
CEP + (I - M)R Ow cQ + (1 - M)R.

9.3. Suppos P , R. Then JP + JR -IQ + JR and 0 -- O + JR by B2.
Therefore J(JP + JR) + JQ ~-JR + jQ by B4. Therefore JP + JR - R by (BI, B2).
Hence P -, R by (BI, B2).

9.5. If P - Q but P 9 Q then by a $1 change in a consequence of P or else a small
change in two probabilities in P it would seem possible to get a P* that is
indifferent to Q but either preferred to P or less preferred than P.

9.7. Suppose (z - y) > inf {(x - y)2:x e X) for all z C AX Then there is a sequence
X1, 2 . ... in X such that (z, - 0) > (zx - 02 > . -and
inf {(z,, - 0).:n - 1, 2, ... } = inf{(X - y)): ,_ X}. Then there is a z such that every
open set in ReC that contains z must contain some zR. Since the closure of X is X it
follows that z C X and that (z - y)2 inf {(z, - y)3:n = 1,2,...), which
contradict the original supposition.

9.9d. {(at, c):0 < a < 1).
9.13(2). A• : 0 for all I and T A, > 0.

10.4c. (0, 1) except for 1/2, 1/3, 1/4.

10.5. All subsets of Re that contain either a countable number of elements or all but a
countable number of elements in Re.

10.7. If sup{r +s:re-AR,sES} <supR +supSthensup{r+s:" ") < r + s for
some rcA R and s CS, so that r + s < r + s.

10.90. If sup{fj'104oiA:i=- 1. 2....} <,11'0 tsup fuj$:!.. 1, 2,...)] then

I•a Pil + C < •1 ,-, *i[sup(P{•:i = 1,2,...}] for somem, somee> O, and
t - 1,2, LetPilbesuchthatsup(Pj,:i- 2,...) •P< + I/M for
J 1, 2... ,m. Let s be the largest such l. Then sup Pi:I = 1, 2,...}
P,j + e/M forj == 1.2 . .. m,. and •.I ..• %I sup {Pj.:l ==- 1, 2,...)

11-, Ctr5 , + c1/M < 11.ra i,P,, + e. Hence j a;t, j < Tft 1t.t P for all I and

hence for I = s, which is impossible.
Suppose 09.1,•sup {Pj,:1.= 1, 2,...< sup {y1 o. P,:i= 1,2.. 2 . Then

XAX Msup #u•:-i = 1, 2,. .. }+< •, tj•Piforsomek, sonit>0andalln.
Hene . sup ({Pi:im - 1, 2.... < z-., =ti,, forsomem and all n. But

;;.-t ec•, o$ - sup (j8jin I-1, 2,. . } and a contradiction is obtained.
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10.13. Let A1, As,.... be mutually disjoint elements in A with UI A, Gt. Then

sup JL ,~ PiA): an 1,2....1 [by Exercise 91 = supM -{X'- .I c~'P

(Al):,. 1, 2,...)PJI)

10.15. LetfA,fg,... andg 1 9g2.... be sequences of simple A-measurable functions
satisfying (1) and (2) of Definition 10.11, and suppo that sup (E(f., P)) <
sup {E(g,, P)). Then E(fn, P) + e < E(gm, P) for some m, some F > 0, and an n.
Let An = {x:gm(z) •f%(x) + c/2} so that A1 G A2 5 ... and P(A1) S P(AS) ..
Also, X =,"U,-An so that I = P(U.O.1 AO ) = sup{P(A,):n = 1,2,. .. ) by
Lemma 10.2. Let M = supg,,,(x) -f.(x):x E X). Then for n t m,
E(g,. P) - E(fn, P) - E(gm, - f,,, P) - M[I - P(As)] + P(A,1e/2, the equality
coming from Exercise 17. As n gets large, the right side of this approaches e/2 and
hence E(Ov, P) - E(fi, P) < e for some n, a contradiction.

10.18. E(f,a P + (1 - z)Q) = sup {E(f,, iP + (I - )Q):n =•, 2,. ..
sup {mE(f/., P) + (1 - )'E(fa, 0)} - a sup {E(f., P)) + (0 - ot) sup {E(f,. Q)}
[Exercises 6, 8. 22a] = zE(f, P) + (1 - c,)E(f, Q).

10.21c. Use the results of Exercises 21a and 19.

10.22a. Let a <f(x) <c b, a < g(z) ! b for all z. Let As,, andf, be defined by (10.9)
and (10.10), and let B,, = {x:a + (i - l)(b - a)/n <g(@') • a 4+ i(b - a)/n) and
gx(z) - a + (i - 1)(b - a)/n for all xE BiM. Let e,, = a + (1 - 1)(b - a)/n.
E(fi, P) - ' P(A ,,)C/, and E(g., P) = 1. P(B,,,)cj,. E(f., P) ! E(g,, p) follows

from I P(Bi,,.) 5 I. P(Ai,.) for k =1... ,n, which in turn follows from
P(AM) < g(z)) = I.

10.25. {z:xEzX, y -<x <z) =({x:y -.< my UJ{x:x -< z)016.
10.26. For Theorem 10.2 let P(z) - 0 for all x, R -- P + 11.

10.27. Show that if g* G1 has elements weakly ordered by C then P = U90' 8 is in g.

11.2c. It can be true for some pair P, QC T"that P - Q when Pi -<j Q, and P, - Qi.
For some other P, Q pair, P -< Q.

11.2d. LetR&,k -1,2,....,m-_,besuchthatRl=Qi RIO=PO;R =Qe,
kt -- RL.-I for k -= 2, 3,. m - 1. Then P -< A1, RI R2,... , R"--1 Q

11.2e. Let n = 2, (z, z2) -- (yz, z2) - (x, y2) -< (y 1, y2) - P for all P on
(z1 . yl} x (xz, y2) that are not one-point measures. Show that ", I and . • are
transitive and connected, that ax <-<t vi X2 ~, yp but (XI, X,) - (yr, WS).

11.21. An example where A and D hold but s is not connected: X -= (MI. yJ x (a,,ye}),

(#1, X2 ) "< (VI, 2) "< (X. Y2) -< (Y, Y2) "< P -• Q for any P, Q that are not one-point

11.2k. With a -<j b there are R, S- 9T such that R-< S, Ri = a, Sj - b, and .R =- Si.
Let T=JR +JQ, T'=JS +JP. T- T'by D. With R -<S, if Q,-,P, then
JR +JQ -<IS +Q,'O-JS + JP, or T-< T',a contradiction. P < Q by
definition of -< . Hence P -< Q since P -- Q is false.

11.2m. Let X = ({ 1, yJ} X {x2, y}. take P < Q &.- (P,(z1), P,(x2)) < (Q,(z1), Qs(x,))
and on (0, 1] x [0, 11 take (oc•, P) -< (v, 6) if and only if a < V or [a - V and
Sc < y6], with ,< on [0, 1]2 transitive and connected. D holds since (a, f) ~-- (, P).
Moreover, (0, 0) -,(0, 1) and (1.h0) -< (. 1): that isb (a. &I ,) ~ (. , -,)) and(x,, y.) "< (•x, z2), from which it follows that v, -<,:n,, but ( y, g) "• Q, --s). B says

i • I I I I I I I I I I I I I IAIN
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that if (a,. P) - ) (7,&and (j, k) C [0, 1 P and t C (0, 1), then (tax + (I - tj

t0 + (0 - t)k) -< (ty + (0 - t)j, 16 + (1 - 0)k), which is easily seen to be true.

11.2o. Let Pi Q •- , Pj <Q, ae(0, 1). ThenP y Q.By and C,
SP + (1 - ,OR <ctQ + (I - ,,)R. Since aP,, + (I - a)R•, - x + (1 - a)4,

if OeQ1 + (I - oc)Rj -<j acPP + (I - a)AR then, by Exercises 2fand 21,
aQ + (I - ir)R -< aP + (I - r)R, a contrad&tion. Since -< is connected
(Exercise 2n), aPj + (I - cz)Rj <j oQj + (I - &A)R. For the latter port of the
theorem take P1 -4< Qj.

11.3.. E(f. P) = Xx f,(x,)P(zi... , z,) - , f.(X 1 x x X, 1 x
{z-j) x X 1+, x ... x X.) - " 'fi(z1 (-- ,) = E(f x,P ).

11.9b. The condition of part a leads directly to u(x, ... 2. x1, z I .... , x!-)

S . ... .... ..... -It.... ,..-V WV 1+
+ UJ(•_•. +,),e....t 1(_,.,x+_). u(,x ... :.

12.1. P'({s :s(f) EF A) ni (s:s(J) C- A')/P(,(A').

12.6b. [v(f~ss) - v(g, :,))a s- P*(sj)u(win) - u(lose)], [v(g, ss) - v(f, .ssda-
P*(j3)[u(win) - u(lose)), and so forth.

12.9. He would rather marry Alice but should propose to Betsy. Use a = P*(Sj)[4 - 3],
2a = P*(s$)[4 - 0], and 4a - P*(sa)[3 - 0].

13.4. The simplest example is 2 -{A, B), ' = (Al, A2 1, B), and .' = (A1 , A,, B1 , BS).
If A is selected from S2' then B must be selected from 5,, but A U B = S.
If B is selected from Sf' and A, (or A,) is selected from .zs then A2 (or A1)
must be selected from £5. But B U A1 U A -= S.

13.5. Let B= -lAA with B 0 0. If P*(B) 0 0, then P*(BO) = 1 so that Br i A,
which contradicts B - flA A. Hence P*(B) = 1. If B has more than one element
then B can be partitioned into C and D with P(C) = 0 and P(D) - 1, D a B,
which contradicts B = fnA A.

13.10. Let u be such that u(z.) = inf{u(z):x E X} - 0 and u(x*) = sup (u(m):zeXC - 1.
Given PC XE let A, , = {s:. 0 E(u, P(s)) ! l/n) and A., =- {s:(I - 1)/n <
E(u, P(s)) g i/n}f6r i = 2,..., n. Define P, and Q. in j by
P,,(s) = [(i - 1)/njw* + [(n - i + 1)/nfx, for all sCAi,,, and Q,(s) - (i/n)x +
[(n - I)Injx, for all sA 1j,,; i - 1,... n. It follows from B7 that
P, < P < Q. and hence that v(P,) • v(P) • v(Q.) for all n, where v is as
defined in the proof of S2. Hence, by (13.9) for all horse lotteries in
,J, E[E(u, P,,(s)), P*1 < v(P) • E[E(m, Q,(s)), P*] for all n.

13.12. Let Q be as defined following (13.12). Assume c - 0, d = 1 kr convenience.
[If c - d the result is immediate.) Let Rj - Ri on S with E(u, R) - #/4 for
i - 1, 2, 3. Since 0 • E(u, Q(s)) • I for all s, 1/4 • E(u, JQ(s) + JR) 5 3/4
for all s e S. Therefore R, <j Q(s) + iR,2< Rs for all s -S. Hence, by B7,
JR ,< JQ + JR2 < Rs. By (13.10) and (13.11), v(RI) r jv(R.) + jv(Q) < V(RS),
Then by (13.9) for Jeo, 1/4 : jv(Q) + 1/4 r 3/4, or 0 _< v(Q) < 1.

13.15.. Given a > 0 let B(e) - {j: aE(u, P(s)) + (1 - ,)E(u, R(s)) 1 - ) and
C(c) - {s:sG B(t,) and E(u, P(s)) < 1 - e or E(u, R(s)) < I - t). Let
6 = a(1 - O)c. Then, if &eC(c), s cannot be in ) sinceac(l - .) + (I -- )
<1 -- c and at + (1 - a)(1 - q) < 1 - c. Hence the only eements in B(r)
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for any e > 0 that can contribute to inf {P*{ccE(u, P(s)) + (1 - ac)E(u, R(s))
S1- F}: c > 0. are those for which both E(u, P(a)) l -- e and
E(u, R(s)) > I - c. As a consequence, inf {P*{.E(u, P(s)) + (I - a)E(u, R(j))
1 I -- : > 0) -inf{P*({E(u, P(s)) ý I - 4i} ri (E(u, R(s)) ! I - a)):c > 0).

13.15c. Let P, Q, R C Je be as follows. On the even integers, E(u, P(s)) - s/(l + s),
E(u, Q(s)) - E(u, L'(s)) - 0. On the odd integers, P(s)(J) - 1, and E(u, Q(s))

E(u, R(s)) - s/(I + s). Then v(P) = [I + (j)(1)] + jI 14, v(Q) - j + _ 1
v(JP + ilk) - J(3/4) + J(t) + 0 - 5/8, and v(JQ + JR) J(J) + J(J) + 1.
Hence Q -< P and JP +-JR -<JQ +-JR.

14.2b. Considerpr -<*s,ps -<*qr, rs -<*pt, and qt -<prs.

14.4. B c C = B U (C/B). By (F1, F3), 0 CIB so that, by (F3, F4),
0 %j B < (CIB)U B, or B -<* C. If S -<0 C then C VJ Cc.-< C, which by
F4 implies Cc -<* 0, contradicting Fl.

14.5e. A -< C=> B - D =:A u B -C U D by C3(-<*), a contradiction.

14.10. Let F5 hold. Then, by F5 directly, <* is fine. If A <B, it follows easily
from F5 and the other properties of -<* that A V D B<* for some D for which
A t)D = 0 and D< . A similar result is obtained if•B< A. Hence, if the
"A,< * B U C and B < * A U D for all - "conditiuns of tightness hold, then
neither A -<* B nor B-<* A, which requires A -0 B by F3.

On the other hand, suppose FI-F4 hold and -<* is fine and tight. Take
A -<* B. Suppose, for all B, G B for which B, B. B, B * A. Then consider
0-<*D and A 0 D = 0. D y fineness, it follows that there is a B, _ B such
that0 -< * B2 < * D . Then since B -< * B2, B/B- B so that BIBS < * A,
which along with B2 < * D gives B A U D by C3. Tightness then requires
that A -* B, which is false. Hence, with A -<0 B, there is a B, E- B for which
A -< B1 -<' B. Since 0 -<* BIB, and -. is fine, there is a partition {C 1 .... , C,,
of S with Ci <' BIB, for each i. Along with A - I*B, this gives A U C -<* B
by C3(-).

14.l1c. Given A, B let the "whenever" conditions of tightness hold. If no C satisfies
B t) C =•0 and0 C - then 8 -,* so that A B. If some C satisfies
0 -<* C and B n C 0 then, Oor any such C, either P1 (A,) < P1 (B1 ) + P1 (C1 )
or P,(A1 ) = P1 (B1 ) + P1 (C1 ) and Ps(A2) • P2(B2) + P2(C&j. If P2(Cj ) M 0 for
all such C2 then Ps(Bs) - I which insures P2 (A2) < Ps(B,), and since P1(C1) > 0
can be made arbitrarily small, we get also P1 (A1 ) • P'(Bj). Hence, if P1 (CR) 0,
A ,' B. If PS(C,) > 0 for some such Cs, then we can take a C, with PI(C 1) =0
and get PI(AI) • P1 (B1 ), where, if equality holds, it must then be true that
Ps(As) 9 P2(B&). Again, A , * B. By a similar proof we get B "A for all cases.
Hence A -0 B.

14.13c. Let A - [0,J) U S, B =I(, V S. If - is tight, then A -* B. But
B -A by the definition of -.

14.17. If A is not null then, with x -< V andf - x on A,f - y on Av ands - yon S,

f-< g given A by P3 so that f-< gby Lemma 14.1. But if A -* 0 thenf•.g.
Therefore 0 --A implies that A is null.

14.20b. For P6, supposef-<Igor w(f) < w(g). Let w(g) - w(f) - d. Take a
partition ({{.n, 2n....}, (2,n + 1, 2n + 1 .... ... {-1,2a -... }}
with n large enough so that 2 tdn, and use the answer to part (a).

*1_
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Discount factor, 93 homogeneous, 178

constant, 96
Discrete probability measure, 133 Ideal point, 20
Dominance conditions, 32, 108, 137, 179, Impatience, 90
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M, 15 intransitive, 12, 15f, 81, 138, 169
Em, 4 4  

Indifference curve, 31
Equivalence classes, I I Indifference hypersurface, 74

notation for, 12 Indifference interval, 20f
Essential factor, 71 Indifference loci, 31
Ethically neutral proposition, 191 Indifference map, 31
Euclidean space, 26, 31 Induced probability measure, 201
Even-chance gamble, 86, 149, 189, 191 lnflmum (in), 28
Event, null, 176, 192 Intersection of sets, 35
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maximum, 105 of group element, 55
for probability measures, 129ff Irreflexivity, 10
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