
o
00
o
0

■p

Technical Report 70-111
Nonr-5144(00)

April, 1^70

ISOTONIC GRAMMARS, PARALLEL

grammars, and picture grammars

Azriel Rosenfeld

UNIVERSITY OF MARYLAND

COMPUTER SCIENCE CENTER
COLLEGE PARK, MARYLAND

* j •

\Ul „,L 1> «™

Technical Report 70-111

Nonr-5144(00)

April, 1970

ISOTONIC GRAMMARS, PARALLEL

GRAMMARS, AND PICTURE GRAMMARS

Azriel Rosenfeld

The support of the Information

Naval Research, under Contract

achnowledged.

Systems Branch,

Nonr-5144(00),

#4

Office of

is gratefully

RESEARCH PROGRESS REPORT

TITLE: "Isotonic grammars, parallel grammars and picture
grammars", A. Rosenfeld, University of Maryland Computer
Science Center Technical Report 70-111, April 1970;

Contract Nonr-5144(00).

BACKGROUND: The Computer Science Center of the University
of Maryland is investigating the theory of image proces¬

sing by computer. One area under study is the theory
of "grammars" whose "languages" are arrays rather than

strings.

CONDENSED REPORT CONTENTS: When one attempts to generalize
phrase-structure grammars from strings to arrays, dif¬
ficulties arise which can be avoided if the grammars

are required to be isotonic; in any array rewriting
rule, the left and right members are congruent subar¬
rays. For strings, such grammars are exactly as power¬

ful as monotonie grammars, provided that derivations

can begin with any initial string of the form #3½

rather than always with #S#.

Isotonic context-sensitive array rewriting rules
are essentially the same as local digital picture proces¬
sing operations. Since the latter are often applied to

pictures in parallel, it is of interest to study (string)
grammars which operate in parallel: that is, when a rule

is applied to a string, every instance of the left
member is replaced by the right member. (Here again,
there are difficulties which can be avoided if all rules
are isotonic and context-sensitive.) The sets of sentences

which such a parallel grammar generates is not the same
as the set of sentences which it parses, nor is either of
these the same as the set of sentences generated (or
parsed) when rules need not be applied in parallel. How¬
ever, any parallel language is a sequential language and

vice versa .

FOR FURTHER INFORMATION: The complete report is available in
the major Navy technical libraries and can be obtained
from the Defense Documentation Center. A few copies are

available for distribution by the author.

1. Introduction

1.1 String grammars and array grammars

In recent years there has been considerable interest

in applying the methods of mathematical linguistics to

picture generation and description [1]. In this approach,

pictures are regarded as "concatenations" of subpictures,

which are in turn built up out of still smaller parts,

in analogy with the way that sentences can be broken down

into phrases and words.

In mathematical linguistics, the most widely used

device for generating and analyzing "sentences" is the

phrase structure grammar. Formally, such a grammar is

a 5-tuple G = (V, V ,P, S, #), where
T

1) V is a finite set, called the vocabulary of G;

the elements of V are called symbols.

?) V is a subset of V, called the terminal
T —.

vocabulary of G.

3) P is a finite set of pairs (<*, (3), where a and

ß are strings of elements of V, a nonnull; P

is called the set of productions or rewriting

rules of G. Elements of P are usually written

in the form cr -* 0 (read: "a can be rewritten

as ß"). Symbols in are never destroyed by

these rules; in other words, if a - ß is a rule

and a = Çq^I-I**'^n^n' w^ere 5's are strin9s

of elements of and the ri's are strings on

V-V , then ß = ...C Ç * where the r's
t :>Ov,lï,l '’n^n

are strings on V.

«

4) S is a special nonterminal symbol (i.e., symbol

in V-V), called the initial symbol of G.
T

5) # is a special terminal symbol, called the end-

marker, which is neither created nor destroyed

by any rule of G.

Let y» 6 be strings on V. We say that 6 is directly

derivable from v in G (notation: v => 6) if Y = and

j = -y ¡3Y , where a 3 a rule of G. More generally,

^ • * >
we say that 6 is derivable from y in G (notation: y =* 6)

if there exist strings 0,,..., 9n such that y * 01 =>...

=» 0 ^6. A string on V is called a sentence of G if
n T

it is derivable from #S#. The set of sentences of G

is called the language of G (notation: L(G)). [In apply¬

ing this formalism to natural language, one can think of

the terminal symbols as words, the nonterminal symbols

as phrases, S as "sentence", and the endmarkers as

punctuation marks which indicate the beginning and end

of the sentence.] Readily, the sentences of G are just

the strings of terminal symbols from which #S# can be de¬

rived by applying the rules in reverse (i.e., replacing

right members by left members); this reverse procedure

is called parsing.

Since a picture does not ordinarily have a natural

description as a string of subpictures, phrase-structure

grammars as such are not a natural tool for picture gene¬

ration or analysis. In general, a (discrete, e.g., digital)

picture is an array of elements having given colors or gray

levels? these elements can be regarded as the symbols of a

terminal vocabulary. A grammar for a language whose "sen¬

tences" are such pictures would have to have rules a - 3

which rewrite arrays as arrays; to use such a rule to

directly derive the array 6 from the array v* one would
have to find the subarray a in y and replace it by ß.

A grammar of this type, whose language consists of digital

pictures of triangles, has been devised by Kirsch [2] and

generalized by Dacey [3]; these seem to be the only ex¬

amples of array-rewriting grammars in the literature.

1.2 Isotonie grammars

A potentially serious defect of array grammars is

that when one subarray is replaced by another, the ef¬

fects of the replacement may extend far beyond the im¬

mediate vicinity of the subarray. In the string case,

when the substring a is replaced by ß in the string y,

if a and ß have different lengths, we simply regard y

as pushed apart or pulled together until ß exactly fits

the space left by removing For arrays, on the other

hand, if we wish to replace one subarray by another of

a different size or shape, the rows and columns of the

host array may have to stretch or shrink by varying a-

mounts, so that "shearing" effects occur which extend

all the way out to the edges of the host array, arbi¬

trarily far from the replaced subarray.

Most of the literature on picture grammars deals

with line drawings rather than arrays. Here the lines

and curves are regarded as joined only at explicitly

specified "attaching points", irrespective of whether

they actually touch or intersect in the picture. Thus

replacement of one subdrawing by another affects the struc¬

ture of the host drawing only locally, and the shearing

problem never arises. Kirsch's right triangle grammar

avoided the problem by adding to arrays only at their

edges. However, it is not clear that this method could

be used for arbitrary array languages.

A simple way of preventing shearing would be to re¬

quire the left and right members of any array rewriting

rule to be congruent. In the string case, the analogous

requirement would be that the left and right members of

any rule must have the same length. (A grammar whose

rules have this property will be called isotonic.) How¬

ever, this evidently implies that the strings in any

derivation must all be of the same length, since no ap¬

plication of a rule can change the length of a string.

Since sentences must all be derivable from a single ini¬

tial S (surrounded by endmarkers, which are never created

or destroyed), it follows that sentences can consist only

of single symbols, which makes the language rather un¬

interesting .

This objection to isotonic grammars can be overcome

if one is allowed to start not with a single initial S,

but with any one of a set of initial strings — for ex¬

ample, with an arbitrary string of S's (bordered by end-

markers) . In fact, it can be shown that if this is per¬

mitted, isotonic grammars become exactly as powerful as

monotonie grammars (i.e., grammars in which the right

member of any rule is at least as long as the left mem¬

ber) , which are the most general class of grammars ordi¬

narily studied. It can also be shown that monotonie

grammars which change the length of a string only at its

ends are as powerful as arbitrary monotonie grammars;

this generalizes the method used by Kirsch. These re¬

sults are presented in Section 2 of this paper.

1.3 Parallel grammars

In digital picture processing, a local operation

is one which replaces a given picture element by a new

one whose value (if, as is usual, we regard the symbols

in a picture array as numbers) depends on the value of

the original element and on the values of a set of neigh¬

boring elements. This type of operation is analogous to

an isotonic, context sensitive string rewriting rule —i.e.,

a rule of the form ÇAri -4 ÇBti, where A and B are single

symbols (A must be nonterminal, since terminals cannot

be rewritten). It is well known that context sensitive

grammars (i.e., grammars in which every rule is context

sensitive) are exactly as powerful as monotonie string

grammars; similarly, it is easily shown that isotonic con¬

text sensitive grammars are as powerful as arbitrary iso¬

tonic grammars (see the end of Section 2).

Local picture processing operations are often applied

to every element of a picture "in parallel", i.e., using

the original values of the element and its neighbors

throughout, rather than using new values for neighbors

which have already been processed. It has been shown

elsewhere [4] that parallel local operations on pictures

are exactly as powerful as "sequential" operations, in

which the elements are processed in a fixed order, and in

processing each element, new values are used for its al¬

ready processed neighbors. In view of the analogy between

local operations and rewriting rules, the analogous ques¬

tion for grammars is thus of interest: How is the power

of an (isotonic, context sensitive) grammar affected if

its rules are applied in parallel rather than sequentially -

i.e., when the rule ÇAr) - ÇBri is applied to a string y,

we simultaneously replace every A which occurs in the con¬

text (§, #ri) by B, rather than just replacing one such A

by B?

One could attempt to formulate the notion of paral¬

lelness for grammars having arbitrary rewriting rules or - 0 :

when applying such a rule to a string y, replace every

instance of & in v by 0. However, if a can overlap it¬

self, i.e., a = ^...An where \+1-..An = ^-‘^n-k for

some k < n, undesirable effects arise. For example, let

& = ABA and suppose that y = ABABA. Since a occurs twice

in y, applying <* - ß to y "in parallel" should require us

to rewrite y as 00; but this means that, in effect, one

of the ß's replaces an ABA and the other replaces only an

AB or a BA. As another example, let a = xxx, 0 = xx,

Y = xm. Applying a - 0 to y sequentially shortens y by

1 at each application; but applying it in parallel yields

gm-2 = x2(m-2) (where it will be noted that one 0 replaces

an xxx while all the others replace single x'si), so that

parallel application of this length-decreasing rule to y

can actually increase its length.

These difficulties do not arise if we restrict our¬

selves to context-sensitive rules, a = §Ari, and replace

only the A by the appropriate part of 0; here there can

be no self-overlap of the substrings which are being re¬

placed, since they have length 1. On the ether hand, if

we allowed arbitrary context-sensitive rules |Ari - çeri,

where 0 need not be just a single symbol, the same

tt

undesirable effects could arise when the rules are used

to parse, since Q's might overlap. Thus parallelness is

most easily handled if all rules are required to be

isotonic context-sensitive, as suggested by the parallel

picture processing analogy.

It will be shown in Section 3 that when a grammar

is used "in parallel", the set of sentences which can

be derived from #S# is not in general the same as the

set obtained when the rules are used in the ordinary

"sequential" manner. Moreover, the set of sentences

which can be derived "in parallel" need not be the same

as the set which can be parsed in parallel. However,

we shall show that various classes of "parallel languages"

are the same as the corresponding classes of "sequential

languages".

2. Isotonic string grammars

In this section we show that isotonic grammars are

as powerful as monotonie grammars. More precisely, we

prove that if the language L has a monotonie grammar,

it also has an isotonic grammar, provided that deriva¬

tions are allowed to start with initial scrings con¬

sisting of arbitrary numbers of repetitions of the ini¬

tial symbol. To this end, we first prove

Proposition 1. Any (monotonie, isotonic) language has

a (monotonie, isotonic) grammar in which no rule

involves the endmarkers.

Proof: Let the given language have a grammar on the vo

A = S (where A-,...,A are terminal
n I c cabulary A^ I ••• I n

and the rest nonterminal), and with rules of the

A ,...,A , with initial symbol A°, and new rules
X t»

constructed as follows:

Original rule Replaced bv rule(s)

- #€^

#B]_# - #CV..CS* (s > U

- ttCj# (r > 1)

#B1...Br# - tr,s

#B1 - #cx

tBj^ - #Cr..Cs (s > 1)

#Bl***Br - #C1 (r > 1)

»

Original rule

#B. .. .B -> #C. .. .C (r, s > J
1 r Is

Bl# ■* Cl#

B # - C .. .C # (s > 1)
1 Is

Bl**,Br# ci# (r >

B ...B # - C-...C #(r,s >])
X 3T X S

bi -ci

B. - C....Co (s > 1)
11s

Bl***Br " C1 > 1)

Replaced by rule(s)

L M

B1B2-
„L_M

B1B2 *

..B

. .B

L M M

C1C2 * * *Cs

lBR
r-1 r

_L_M

C1C2-
R

.C -C
s—1 s

Bi -c:

0 rC
1 C]

R
1

S
1
M

B

B

B, -

_M _M _R
1 s—1 s
L M M R

ClC2**,Cs-lCs

B
X
L M

B1B2

B
M

M R _R
.B .B - C.
r-1 r 1
M R O

•••Br-lBr - C1

.bm iBr-c“...cm ,c
r-1 r 1 s—1 s

L M
B1B2'

Bï-

dr
B, -

R
. .B . B

r-1 r C1C2'
.C .C

s—1 s

B, -

B

B

B

M
1
L

1
R
1
0
1

B, -

B

M M
Cl-*,Cs

_L M M

C1C2 * * *Cs
M M R

Cl* **CS-lCs
R L M M

ClC2*,,Cs lCs

B
M

1’ *
.B
M M

L M
B1B2

. . .B
M

B
M

I“

_L_M

B1B2

_M R
.B -B
r-1 r
.M

.R

R O
••*Br-lBr ■* C1

Original rule

Bl* * ,Br ■* Cl**,Cs

Replaced by rule(s)

i qM nM cM cM r,s > 1 Ci* * *Cs

- ClC2 * * *Cs

Bl* * *Br-lBr - C1-**CM
.C

s—1 s

L M „M _R
B1B2* * *Br-lBr

In addition, the new grammar has the rules

.0

rLrM c*4
C1 2*’ *

,R
s-l“s

h.

AL - A.
i i

A« - Ai

for 1 £ i * t. (Note that the new grammar may block if

these rules are applied too early.) Readily, the new

grammar and the original one have the same language;

and if one is monotonie or isotonic, so is the other. //

We can now prove

Theorem 2. Let L be any language having a monotonie grammar;

then there exists an isotonic grammar on the set of

initial strings (Tk | * = 1.2,...} whose language is

exactly L.

Proof: Let G be a monotonie grammar for L having vocabulary

V = {S, Ax.Am, bx.bn} and rewriting rules

-.ß. (1 á i s k), where 0<|ai|^|Pi|»lá;Lik-

We define an isotonic grammar G' for L using the

vocabulary V = {T, U, V, A1,...,Am>

For any string y on V, let y’ be the string on V de¬

fined by replacing S by U and the b's by B's in y.

Then we can take the rules of G’ to be

•«

#T - #U

T - V

UV - VU

A . V - VA.
1 1

(1 á i s m)

(1 £ i £ n)

a.V^i^^iJ - ß! (1 £ i £ k*)

B . V
i

VB .
i

'i' - i
B. -b. (l£i£n)
i i

We first show that every sentence a of L is a

sentence of L(G'). Let

S = a0 * G1
ar = a

be a derivation of a in G, where the rule used to

rewrite ^ as is otn B ; we shall abbreviate
n.
i

Ib I - I« I by ki, 1 £ i £ r. Note that

i i

lGil “ lai l' = 1 ^ ^ r' 30 that ^a' = *ar' =

Iar_iI + kr = = ,CTo' + kr +--*+ kl' wherG by
monotonicity the k’s are all nonnegative. To de¬

rive o in o' » we begin with the initial string T

and use the rules #T - #U, T - V to obtain the string

Uv'0!"1. Since this string has at least k^ Vs, and

since a’ = U or #U, we can apply the rule
k nl

a’ V 1 - ß' to obtain a new string, call it

nl nl
Evidently, is just followed by at least k2 Vs;

in particular, ^ contains a copy of a¿ . If we use

the rules which shift Vs to the left, we can move

k2 of them until they just follow this copy, and then

apply the rule «ñ V 2 " ßn to obtain a new strin9 T2*
2 2

This assumes that no rule of G involves the right endmarker,

which is a legitimate assumption by Proposition 1.

This arcrument can be repeated, so that eventually

we obtain a string Tr which evidently is just = a'«

Applying the rules Bi - bi to a' then gives us the

desired string o.

Conversely, let T^ = Pg Ä P]. * ••• a ps " ^

be a non-blocking derivation in G'. Without loss of

generality, we may assume that is first re¬

written into Uvlpt Let p i =' pu (1 ^ i á P)
i" i

be the steps at which rules of the form <*’ V -
i i

are used. We shall show how to construct a deriva¬

tion for p in G. Specifically, we shall construct a

G-derivation S = Vg =* =» ... =* vp ~ p

^=0 with U‘s replaced by S’s and B's by b's,

1 Ui
and ignoring Vs, 1 s i á p (and similarly Vg - Pu

with the same changes). Note first that Pu^_i can

contain no A's, B's or b's, so that the rule used to

W1
rewrite it as p must be of the form UV - (or

w. U1
#UV 1 - #ß '); let us take v. = ß i-n our G-deriva-

V1 1 V1
tion. Thus \f1 and pu satisfy our requirements. Sup¬

pose that ^ end p^ do so. Now p^ must con¬

tain a copy of (¾' , and since the other rules of o
\

cannot change the order of U's, A's, B's or b's, it

follows that (ignoring Vs) pu must also contain
i — 1

such a copy. Thus by induction hypothesis, vi_1

contains a copy of « ; apply the rule av
i i

.4

to

*

this copy, and call the resulting string vi. Evi¬

dently, V. and p satisfy our requirements; thus in
i u.

particular, v and p do. But since p^ is the

p Up P
last step of the given G'-derivation at which U's, Vs

or A's can be eliminated, and since this derivation

is non-blocking, we see that pu must consist entirely

P
of B's and b's, and that p = Pu with B's (if any)

P
replaced by b's; thus v must be just p. //

Conversely, let G', as in the proof of Theorem 2, be

an isotonic grammar which, given the set of initial

strings {Tk | k = 1, 2,...}, yields the language L. Let

G be the grammar defined by adding a new initial symbol S

to the vocabulary of G', and the new rules S - ST, S - T

to the rules of G'. Evidently G is nonotonic and L(G) = L.

Note also that G is isotonic except at the left end of a

string, which is the only place that the rule S -• ST can

ever apply. We have thus proved

Theorem 3. The following three classes of grammars have

the same set of languages;

a) The monotonie grammars, with initial string #S#

b) The monotonie grammars which are isotonic except

at the ends of strings, with initial string #S#

c) The isotonic grammars, with set of initial strings

t#Sk# I k = 1, 2,...).

It is not difficult to verify that the isotonic gram¬

mars are also equivalent to the isotonic context sensitive

grammars, i.e., grammars in which every rule is of the

form ?An - ÇBti. Indeed, if is the kth

rule in an isotonic grammar (which we can assume not to

involve endmarkers) we can replace it by the rules

Ai • • "* Ai 1 m i
(k)A A - A(k)A = A(k)A(k) 1 ^ i ^ m- A2*#* m' i i+1 i i+1' 1 * 1 * m'

Afk)Afk| - B(k)A!k> 1 s i < m; and B A^k)
i i+l i i+l m-1 m

B -B .
m-1 m

(k) (k)
Since the special nonterminals A| ,...,A^ are only

created or rewritten by these rules, the only way that

they can be eliminated once the A....A has been re-

written is to finish rewriting it as B.. .. .B . 1 m

3. Parallel string granunars

Even for isotonic context-sensitive grammars, the

sets of sentences generated and parsed when the grammar

is used "in parallel" is not the same as the set gene¬

rated or parsed when the grammar is used "sequentially".

In fact, these sets can even be disjoint, as shown by

the following example. Let the initial string be #XXXX#,

and let the rules be

XXX - XYX

XXY - XaY

XYY - XbY

#XX - #cX

XX# - Xc#

cXc ccc

aX -• aa bX -* bb

Xa - aa Xb - bb

aY - aa bY - bb

It is not hard to verify that the "sequential language"

of this grammar consists of the single sentence #aaaa#,

while its "parallel languages" consist of the single

sentences #bbbb# (generated) and #cccc# (parsed), re¬

spectively. [If we were not restricted to context-sen¬

sitive grammars, a simpler example would be provided by

the grammar whose sole rule is XX -• aa; readily, from

the initial string #XXXX# this yields the sequential language

{#aaaa#}, but its "parallel languages" are (#aaaaaa#}

(generated) and {#aaa#} (parsed), respectively.]

In spite of the fact that the sequential and parallel

languages of a given grammar need not be the same, we can

show that various classes of such languages are the same.

Here we shall not restrict ourselves to isotonic context-

sensitive grammars. We begin by showing that for any

grammar G, there exists a grammar G1 such that L(G') = L(G),

and such that in any step of any derivation of a sentence

using G', no rule can apply in more than one place. It

follows that the parallel languages of G' — by any defi¬

nition — must be the same as its sequential language

L(G). Moreover, if G is monotonie or isotonic, so is G'.

Thus any (monotonie, isotonic) sequential language is a

(monotonie, isotonic) parallel language.

Theorem 4. For any grammar G, there exists a grammar G'

such that L(G') = L(G), and where at any step of

any G'-derivation, no rule applies at more than one

place. Moreover, if G is monotonie or isotonic, so

is G'.

Proof: We may assume that no rule of G involves the end-

markers. In every rule of G, replace each terminal

X by a new nonterminal x, and then replace the left¬

most symbols A,B in the left and right members of

the rule by new nonterminals (This assures

that the right menber of any rule of G is nonnull,

which is certainly true if G is monotonie or iso¬

tonic; the contrary case will be treated later.)

Also add the new rules

(1) #S# - #S*#

(2) A*B -» AB* for all pairs of nonterminals A,B,
,. one starred and the other not

AB* - A*B

(3) x y - xy fQr terminals x,y

X*# - X#

Readily, any derivation in G corresponds to a deri¬

vation in this new grammar G': initially, the S is

A

changed to S*, and the modified rules of G in con¬

junction with rules (2) can then be used to yield

any string in L(G), but with bars on its symbols

and a star on its first symbol. Rules (3) can then

be used to erase the bars and star. Note that G'

may block if this is done too soon. Conversely, a

derivation in G' can yield a terminal string only

by eliminating all nonterminals except the barred

ones, which can only be done using the modified

rules of G, so that the resulting terminal string

must be in L(G). Thus L(G') = L(G).

Clearly, at any step in any nonblocking der¬

ivation in G' except the first and last, there is

exactly one starred symbol. Thus no rule of G' can

ever apply to a string in such a derivation at more

than one place. Moreover, since rules (1-3) are all

isotonic, if G was monotonie or isotonic, so is G'.

The treatment is analogous if G is isotonic and

uses the set of initial strings {#T # | k= 1,2,...},

except that (1) is replaced by #T - #U*. Note also

that if G is context-sensitive, (2-3) can be modified

to insure that G' is context-sensitive (e.g., replace

A*B - AB* by A*B - A*B' - A'B' - A'B* - AB*).

If G can have rules with null right members, we

can use a slightly different trick to insure that no

rule applies in more than one place. Let Z be a new

nonterminal, and replace each rule « - ß of G by the

rule Za -* Zß (where the bars indicate that terminals

have been replaced by barred nonterminals). Also add

the new rules

1) #S# - #ZS#

2) AZ - ZA for all nonterminals A

ZA - AZ

3) Zx - xZ

Z# - #. //

Note that if L is finite state (or more generally,

linear), it has a linear grammar G, which implies that

at any step of any derivation of a sentence in L, only

one nonterminal is present. In particular, no rule can

apply except to that nonterminal. Thus the analog of

Theorem 4 holds with "monotonie" replaced by "finite state"

or "linear". (On the analogous questions for the context

free case, see the end of this section.)

Our final goal is to show that for any grammar G

there exists a grammar G* which, in effect, applies the

rules of G in parallel, so that L(G*) is the same as the

parallel language generated by G; thus any parallel lan¬

guage is a sequential language. Here again, we need not

restrict ourselves to any particular definition of parallel

language". The proof given below assumes that <* -• ß is

applied to y by replacing every instance of of in v by ß;

an analogous proof can be given for the context sinsitive

version of "parallel" in which çAri - ?9ii is applied to y

by replacing every A in v by 0.

Let the vocabulary of G be {S = A^,...,An, #}, and its

rules be -* ß^ ßi \ 1 i i * m), where * Aii*“Air.

-- ' "ine G* to have vocabulary

• • • # m

.*

or d = 0,M,N,M*,N* or P} and initial symbol

(5,0,0,0), and to have the following rules:

1) #(a.,0,0,0)...(a ,0,0,0) - #(a A ,i*,0)
1 ri L ±l

(a ,A. ,i,0)...(ar ,Air ,i,0)# 1 ^ i s m

X2 ri iri

These rules copy the left member of a rule of

G into the second terms of the left end of a

string, and the rule number into the third

terms; the first element of the rule has its

rule number starred. In all of the following

rules, a, b, c are A's:

2) (a,b,i*,0) - (a,b,i*,M) if a = b

(a,b,i*,0) - (a,b,i*,N) if a ^ b

(a,b,i or i*, M) (c,d,i,0) - (a,b,i or i*,M) (c,d,i,M)

if c - d, or with the last M replaced
by N if c ^ d

(a,b,i or i*,N) (c,d,i,0) - (a,b,i or i*,N) (c,d,i,N)

These rules test to see whether the left member of

the rule matches the corresponding string of first

terms, starting from the left end. M's are created

as long as the match continues, N's otherwise.

3) (a,b,i*,M) (c,0,0,0) - (a,0,i,P) (c,b,i*,0)

(a,b,i,M) (c,0,0,0) - (a,0,i,M) (c,b,i,0)

(a,b,i,M) (c,o,i,M) - (a,0,i,M) (c,b,i,0)

(a,b,i*,M) (c,0,i,M) - (a,0,i,P) (c,b,i*,0)

If a match reaches the right end of the string of

second terms, the string is shifted one step to the

right, and a P is created at its former left end,

while the M's and N's are erased.

4) (a#b,i*,N) (¢,0,0,0) - (a,0,0,0) (c,b,i*,0)

(a,b,i,N) (C,0,0,0) - (a,0,i,N) (c,b,i,0)

(a,b,i,N) (c,0,i,N) - (a,0,i,N) (c,b,i,0)

(a,b,i,M) (c,0,i,N) - (a,0,i,N) (c,b,i,0)

(a,b,i*,N) (c,0,i,N) - (a,0,0,0) (c,b,i*,0)

(a,b,i*,M) (c,0,i,N) - (a,0,0,0) (c,b,i*,0)

Otherwise, the string is shifted and the M's and

N's erased, but no P is created. In either case,

once the i* is shifted, (2-4) can now be repeated.

Note that when it has shifted sufficiently, and

there are no P's left behind, (1) can be re-initiated

too.

5) (a,b, i* ,M)# - (a,0,i,P)#

(a,b,i,M)# - (a , 0,0, M*) #

(a,b,i,M) (c,0,0,M*) - (a,0,0,M*) (c,0,0,0)

(a,b,i*,M) (c,0,0,M*) - (a,0,i,P) (c,C,0,0)

6) (a,b,i*,N)# - (a,0,0,0)#

(a,b,i,N)# - (a,0,0,N*)#

(a,b,i,N) (c,0,0,N*) -* (a,0,0,N*) (c,0,0,0)

(a,b,i,M) (c,0,0,N*) - (a,0,0,N*) (c,0,0,0)

(a,b,i*,N) (c,0,0,N*) - (a,0,0,0) (c,0,0,0)

(a,b,i*,M) (c,0,i,N*) - (a,0,0,0) (c,0,0,0)

When the right endmarker is reached, the string of

second terms is erased, M's and N's are erased,

and a P created if what reached the right endmarker

was an M. Note also that (3-4) turned all the i s

to the left of the i* into 0's, and left i's only

where there are P's; now (5-6) have turned all the

i's to the right of the i* into 0's, and have turned

.-he i* into i if it has a P, into 0 otherwise.

•«

,0,0,0)...

t

7) (a 0,i,p) <a2,0,0,0)...(3 ,0,0,0) - (air +1
L * 1

(A. ,0,0,0), (1 á i £ m);
is.

i

(a^O,!,?) (a2,0,i,0) ...(ak,0,i,0) (b,0,i,P) -

(A. ,0,i,0)...(A. ,0,i,0) (b,0,i,P), (1 £ i á m,
ir.+l' lsi 1 £ k < r.)

These rules replace each run of up to r^ 4-tuples

which starts with P, contains no other P, and (if

shorter than r^) is immediately followed by a P,

by 4-tuples containing the right member of the ith

rule. Even if a new rule left member has been

copied in, its processing cannot cross P’s; i.e.,

one rule's P's must be processed before a second

rule can move into the same part of the string.

In summary: Rules (1-7¾of G* cause the ith rule of G

to be applied to the given string "in parallel".

8) #(a,0,0,0) - #a

a (b, 0, 0,0) -• ab

These rules turn the string of 4-tuples into a

string of symbols of G's vocabulary; unless these

are all terminals, the derivation blocks.

Note that if G is monotonie or isotonic, so is G*. To

modify the proof to handle the context sensitive type of

parallelness, we would need to mark the symbol to be re¬

written (A, in §Ati) rather than the leftmost symbol.

The analog of these results in the context free case

is false — a context free parallel language is not neces¬

sarily a context free sequential language. For example,

the context free grammar with rules S - TT, T - aT, T - bT,

T - a, T - b, if applied in parallel, generates the set

of sentences uotw, where uj is any string of a's and b's; as

is well known, this is not a context free sequential lan

guage. It is an open question whether conversely, any

context free sequential language is a context free paral

lei language.

REFERENCES

1. W. F. Miller and A. C. Shaw, Linguistic methods in
picture processing - a survey, Proc. 1968 Fall Joint

Comp. Conf., 279-290.

2. R. A. Kirsch, Computer interpretation of English text
and picture patterns, IEEE Trans. EC-13, August 1964,

363-376.

3. M. F. Dacey, The syntax of a triangle and some other

figures, Pat. Recog. 2, January 1970, 11-31.

4. A. Rosenfeld and J. L. Pfaltz, Sequential °P®rat^®
in digital picture processing, JACM 13, October 1966,

471-494.

