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RESEARCH PROGRESS REPORT 

TITLE: "Isotonic grammars, parallel grammars and picture 
grammars", A. Rosenfeld, University of Maryland Computer 
Science Center Technical Report 70-111, April 1970; 

Contract Nonr-5144(00). 

BACKGROUND: The Computer Science Center of the University 
of Maryland is investigating the theory of image proces¬ 

sing by computer. One area under study is the theory 
of "grammars" whose "languages" are arrays rather than 

strings. 

CONDENSED REPORT CONTENTS: When one attempts to generalize 
phrase-structure grammars from strings to arrays, dif¬ 
ficulties arise which can be avoided if the grammars 

are required to be isotonic; in any array rewriting 
rule, the left and right members are congruent subar¬ 
rays. For strings, such grammars are exactly as power¬ 

ful as monotonie grammars, provided that derivations 

can begin with any initial string of the form #3½ 

rather than always with #S#. 

Isotonic context-sensitive array rewriting rules 
are essentially the same as local digital picture proces¬ 
sing operations. Since the latter are often applied to 

pictures in parallel, it is of interest to study (string) 
grammars which operate in parallel: that is, when a rule 

is applied to a string, every instance of the left 
member is replaced by the right member. (Here again, 
there are difficulties which can be avoided if all rules 
are isotonic and context-sensitive.) The sets of sentences 

which such a parallel grammar generates is not the same 
as the set of sentences which it parses, nor is either of 
these the same as the set of sentences generated (or 
parsed) when rules need not be applied in parallel. How¬ 
ever, any parallel language is a sequential language and 

vice versa . 

FOR FURTHER INFORMATION: The complete report is available in 
the major Navy technical libraries and can be obtained 
from the Defense Documentation Center. A few copies are 

available for distribution by the author. 



1. Introduction 

1.1 String grammars and array grammars 

In recent years there has been considerable interest 

in applying the methods of mathematical linguistics to 

picture generation and description [1]. In this approach, 

pictures are regarded as "concatenations" of subpictures, 

which are in turn built up out of still smaller parts, 

in analogy with the way that sentences can be broken down 

into phrases and words. 

In mathematical linguistics, the most widely used 

device for generating and analyzing "sentences" is the 

phrase structure grammar. Formally, such a grammar is 

a 5-tuple G = (V, V ,P, S, #), where 
T 

1) V is a finite set, called the vocabulary of G; 

the elements of V are called symbols. 

?) V is a subset of V, called the terminal 
T —. 

vocabulary of G. 

3) P is a finite set of pairs (<*, (3), where a and 

ß are strings of elements of V, a nonnull; P 

is called the set of productions or rewriting 

rules of G. Elements of P are usually written 

in the form cr -* 0 (read: "a can be rewritten 

as ß"). Symbols in are never destroyed by 

these rules; in other words, if a - ß is a rule 

and a = Çq^I-I**'^n^n' w^ere 5's are strin9s 

of elements of and the ri's are strings on 

V-V , then ß = ...C Ç * where the r's 
t :>Ov,lï,l '’n^n 

are strings on V. 
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4) S is a special nonterminal symbol (i.e., symbol 

in V-V ), called the initial symbol of G. 
T 

5) # is a special terminal symbol, called the end- 

marker, which is neither created nor destroyed 

by any rule of G. 

Let y» 6 be strings on V. We say that 6 is directly 

derivable from v in G (notation: v => 6) if Y = and 

j = -y ¡3Y , where a 3 a rule of G. More generally, 

^ • * > 
we say that 6 is derivable from y in G (notation: y =* 6) 

if there exist strings 0,,..., 9n such that y * 01 =>... 

=» 0 ^6. A string on V is called a sentence of G if 
n T 

it is derivable from #S#. The set of sentences of G 

is called the language of G (notation: L(G)). [In apply¬ 

ing this formalism to natural language, one can think of 

the terminal symbols as words, the nonterminal symbols 

as phrases, S as "sentence", and the endmarkers as 

punctuation marks which indicate the beginning and end 

of the sentence.] Readily, the sentences of G are just 

the strings of terminal symbols from which #S# can be de¬ 

rived by applying the rules in reverse (i.e., replacing 

right members by left members); this reverse procedure 

is called parsing. 

Since a picture does not ordinarily have a natural 

description as a string of subpictures, phrase-structure 

grammars as such are not a natural tool for picture gene¬ 

ration or analysis. In general, a (discrete, e.g., digital) 

picture is an array of elements having given colors or gray 

levels? these elements can be regarded as the symbols of a 

terminal vocabulary. A grammar for a language whose "sen¬ 

tences" are such pictures would have to have rules a - 3 



which rewrite arrays as arrays; to use such a rule to 

directly derive the array 6 from the array v* one would 
have to find the subarray a in y and replace it by ß. 

A grammar of this type, whose language consists of digital 

pictures of triangles, has been devised by Kirsch [2] and 

generalized by Dacey [3]; these seem to be the only ex¬ 

amples of array-rewriting grammars in the literature. 



1.2 Isotonie grammars 

A potentially serious defect of array grammars is 

that when one subarray is replaced by another, the ef¬ 

fects of the replacement may extend far beyond the im¬ 

mediate vicinity of the subarray. In the string case, 

when the substring a is replaced by ß in the string y, 

if a and ß have different lengths, we simply regard y 

as pushed apart or pulled together until ß exactly fits 

the space left by removing For arrays, on the other 

hand, if we wish to replace one subarray by another of 

a different size or shape, the rows and columns of the 

host array may have to stretch or shrink by varying a- 

mounts, so that "shearing" effects occur which extend 

all the way out to the edges of the host array, arbi¬ 

trarily far from the replaced subarray. 

Most of the literature on picture grammars deals 

with line drawings rather than arrays. Here the lines 

and curves are regarded as joined only at explicitly 

specified "attaching points", irrespective of whether 

they actually touch or intersect in the picture. Thus 

replacement of one subdrawing by another affects the struc¬ 

ture of the host drawing only locally, and the shearing 

problem never arises. Kirsch's right triangle grammar 

avoided the problem by adding to arrays only at their 

edges. However, it is not clear that this method could 

be used for arbitrary array languages. 

A simple way of preventing shearing would be to re¬ 

quire the left and right members of any array rewriting 

rule to be congruent. In the string case, the analogous 



requirement would be that the left and right members of 

any rule must have the same length. (A grammar whose 

rules have this property will be called isotonic.) How¬ 

ever, this evidently implies that the strings in any 

derivation must all be of the same length, since no ap¬ 

plication of a rule can change the length of a string. 

Since sentences must all be derivable from a single ini¬ 

tial S (surrounded by endmarkers, which are never created 

or destroyed), it follows that sentences can consist only 

of single symbols, which makes the language rather un¬ 

interesting . 

This objection to isotonic grammars can be overcome 

if one is allowed to start not with a single initial S, 

but with any one of a set of initial strings — for ex¬ 

ample, with an arbitrary string of S's (bordered by end- 

markers) . In fact, it can be shown that if this is per¬ 

mitted, isotonic grammars become exactly as powerful as 

monotonie grammars (i.e., grammars in which the right 

member of any rule is at least as long as the left mem¬ 

ber) , which are the most general class of grammars ordi¬ 

narily studied. It can also be shown that monotonie 

grammars which change the length of a string only at its 

ends are as powerful as arbitrary monotonie grammars; 

this generalizes the method used by Kirsch. These re¬ 

sults are presented in Section 2 of this paper. 



1.3 Parallel grammars 

In digital picture processing, a local operation 

is one which replaces a given picture element by a new 

one whose value (if, as is usual, we regard the symbols 

in a picture array as numbers) depends on the value of 

the original element and on the values of a set of neigh¬ 

boring elements. This type of operation is analogous to 

an isotonic, context sensitive string rewriting rule —i.e., 

a rule of the form ÇAri -4 ÇBti, where A and B are single 

symbols (A must be nonterminal, since terminals cannot 

be rewritten). It is well known that context sensitive 

grammars (i.e., grammars in which every rule is context 

sensitive) are exactly as powerful as monotonie string 

grammars; similarly, it is easily shown that isotonic con¬ 

text sensitive grammars are as powerful as arbitrary iso¬ 

tonic grammars (see the end of Section 2). 

Local picture processing operations are often applied 

to every element of a picture "in parallel", i.e., using 

the original values of the element and its neighbors 

throughout, rather than using new values for neighbors 

which have already been processed. It has been shown 

elsewhere [4] that parallel local operations on pictures 

are exactly as powerful as "sequential" operations, in 

which the elements are processed in a fixed order, and in 

processing each element, new values are used for its al¬ 

ready processed neighbors. In view of the analogy between 

local operations and rewriting rules, the analogous ques¬ 

tion for grammars is thus of interest: How is the power 

of an (isotonic, context sensitive) grammar affected if 



its rules are applied in parallel rather than sequentially - 

i.e., when the rule ÇAr) - ÇBri is applied to a string y, 

we simultaneously replace every A which occurs in the con¬ 

text (§, #ri) by B, rather than just replacing one such A 

by B? 

One could attempt to formulate the notion of paral¬ 

lelness for grammars having arbitrary rewriting rules or - 0 : 

when applying such a rule to a string y, replace every 

instance of & in v by 0. However, if a can overlap it¬ 

self, i.e., a = ^...An where \+1-..An = ^-‘^n-k for 

some k < n, undesirable effects arise. For example, let 

& = ABA and suppose that y = ABABA. Since a occurs twice 

in y, applying <* - ß to y "in parallel" should require us 

to rewrite y as 00; but this means that, in effect, one 

of the ß's replaces an ABA and the other replaces only an 

AB or a BA. As another example, let a = xxx, 0 = xx, 

Y = xm. Applying a - 0 to y sequentially shortens y by 

1 at each application; but applying it in parallel yields 

gm-2 = x2(m-2) (where it will be noted that one 0 replaces 

an xxx while all the others replace single x'si), so that 

parallel application of this length-decreasing rule to y 

can actually increase its length. 

These difficulties do not arise if we restrict our¬ 

selves to context-sensitive rules, a = §Ari, and replace 

only the A by the appropriate part of 0; here there can 

be no self-overlap of the substrings which are being re¬ 

placed, since they have length 1. On the ether hand, if 

we allowed arbitrary context-sensitive rules |Ari - çeri, 

where 0 need not be just a single symbol, the same 

tt 



undesirable effects could arise when the rules are used 

to parse, since Q's might overlap. Thus parallelness is 

most easily handled if all rules are required to be 

isotonic context-sensitive, as suggested by the parallel 

picture processing analogy. 

It will be shown in Section 3 that when a grammar 

is used "in parallel", the set of sentences which can 

be derived from #S# is not in general the same as the 

set obtained when the rules are used in the ordinary 

"sequential" manner. Moreover, the set of sentences 

which can be derived "in parallel" need not be the same 

as the set which can be parsed in parallel. However, 

we shall show that various classes of "parallel languages" 

are the same as the corresponding classes of "sequential 

languages". 



2. Isotonic string grammars 

In this section we show that isotonic grammars are 

as powerful as monotonie grammars. More precisely, we 

prove that if the language L has a monotonie grammar, 

it also has an isotonic grammar, provided that deriva¬ 

tions are allowed to start with initial scrings con¬ 

sisting of arbitrary numbers of repetitions of the ini¬ 

tial symbol. To this end, we first prove 

Proposition 1. Any (monotonie, isotonic) language has 

a (monotonie, isotonic) grammar in which no rule 

involves the endmarkers. 

Proof: Let the given language have a grammar on the vo 

A = S (where A-,...,A are terminal 
n I c cabulary A^ I ••• I n 

and the rest nonterminal), and with rules of the 

A ,...,A , with initial symbol A°, and new rules 
X t» 

constructed as follows: 

Original rule Replaced bv rule(s) 

- #€^ 

#B]_# - #CV..CS* (s > U 

- ttCj# (r > 1) 

#B1...Br# - tr,s 

#B1 - #cx 

tBj^ - #Cr..Cs (s > 1) 

#Bl***Br - #C1 (r > 1) 
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Original rule 

#B. .. .B -> #C. .. .C (r, s > J 
1 r Is 

Bl# ■* Cl# 

B # - C .. .C # (s > 1) 
1 Is 

Bl**,Br# ci# (r > 

B ...B # - C-...C #(r,s > ]) 
X 3T X S 

bi -ci 

B. - C....Co (s > 1) 
11s 

Bl***Br " C1 > 1) 

Replaced by rule(s) 

L M 

B1B2- 
„L_M 

B1B2 * 

..B 

. .B 

L M M 

C1C2 * * *Cs 

lBR 
r-1 r 

_L_M 

C1C2- 
R 

.C -C 
s—1 s 

Bi -c: 

0 rC 
1 C] 

R 
1 

S 
1 
M 

B 

B 

B, - 

_M _M _R 
1 s—1 s 
L M M R 

ClC2**,Cs-lCs 

B 
X 
L M 

B1B2 

B 
M 

M R _R 
.B .B - C. 
r-1 r 1 
M R O 

•••Br-lBr - C1 

.bm iBr-c“...cm ,c 
r-1 r 1 s—1 s 

L M 
B1B2' 

Bï- 

dr 
B, - 

R 
. .B . B 

r-1 r C1C2' 
.C .C 

s—1 s 

B, - 

B 

B 

B 

M 
1 
L 

1 
R 
1 
0 
1 

B, - 

B 

M M 
Cl-*,Cs 

_L M M 

C1C2 * * *Cs 
M M R 

Cl* **CS-lCs 
R L M M 

ClC2*,,Cs lCs 

B 
M 

1’ * 
.B 
M M 

L M 
B1B2 

. . .B 
M 

B 
M 

I“ 

_L_M 

B1B2 

_M R 
.B -B 
r-1 r 
.M 

.R 

R O 
••*Br-lBr ■* C1 



Original rule 

Bl* * ,Br ■* Cl**,Cs 

Replaced by rule(s) 

i qM nM cM cM r,s > 1 Ci* * *Cs 

- ClC2 * * *Cs 

Bl* * *Br-lBr - C1-**CM 
.C 

s—1 s 

L M „M _R 
B1B2* * *Br-lBr 

In addition, the new grammar has the rules 

.0 

rLrM c*4 
C1 2*’ * 

,R 
s-l“s 

h. 

AL - A. 
i i 

A« - Ai 

for 1 £ i * t. (Note that the new grammar may block if 

these rules are applied too early.) Readily, the new 

grammar and the original one have the same language; 

and if one is monotonie or isotonic, so is the other. // 

We can now prove 

Theorem 2. Let L be any language having a monotonie grammar; 

then there exists an isotonic grammar on the set of 

initial strings (Tk | * = 1.2,...} whose language is 

exactly L. 

Proof: Let G be a monotonie grammar for L having vocabulary 

V = {S, Ax.Am, bx.bn} and rewriting rules 

-.ß. (1 á i s k), where 0<|ai|^|Pi|»lá;Lik- 

We define an isotonic grammar G' for L using the 

vocabulary V = {T, U, V, A1,...,Am> 

For any string y on V, let y’ be the string on V de¬ 

fined by replacing S by U and the b's by B's in y. 

Then we can take the rules of G’ to be 

•« 



#T - #U 

T - V 

UV - VU 

A . V - VA. 
1 1 

(1 á i s m) 

(1 £ i £ n) 

a.V^i^^iJ - ß! ( 1 £ i £ k*) 

B . V 
i 

VB . 
i 

'i' - i 
B. -b. (l£i£n) 
i i 

We first show that every sentence a of L is a 

sentence of L(G'). Let 

S = a0 * G1 
ar = a 

be a derivation of a in G, where the rule used to 

rewrite ^ as is otn B ; we shall abbreviate 
n. 
i 

Ib I - I« I by ki, 1 £ i £ r. Note that 

i i 

lGil “ lai l' = 1 ^ ^ r' 30 that ^a' = *ar' = 

Iar_iI + kr = = ,CTo' + kr +--*+ kl' wherG by 
monotonicity the k’s are all nonnegative. To de¬ 

rive o in o' » we begin with the initial string T 

and use the rules #T - #U, T - V to obtain the string 

Uv'0!"1. Since this string has at least k^ Vs, and 

since a’ = U or #U, we can apply the rule 
k nl 

a’ V 1 - ß' to obtain a new string, call it 

nl nl 
Evidently, is just followed by at least k2 Vs; 

in particular, ^ contains a copy of a¿ . If we use 

the rules which shift Vs to the left, we can move 

k2 of them until they just follow this copy, and then 

apply the rule «ñ V 2 " ßn to obtain a new strin9 T2* 
2 2 

This assumes that no rule of G involves the right endmarker, 

which is a legitimate assumption by Proposition 1. 



This arcrument can be repeated, so that eventually 

we obtain a string Tr which evidently is just = a'« 

Applying the rules Bi - bi to a' then gives us the 

desired string o. 

Conversely, let T^ = Pg Ä P]. * ••• a ps " ^ 

be a non-blocking derivation in G'. Without loss of 

generality, we may assume that is first re¬ 

written into Uvlpt Let p i =' pu (1 ^ i á P) 
i" i 

be the steps at which rules of the form <*’ V - 
i i 

are used. We shall show how to construct a deriva¬ 

tion for p in G. Specifically, we shall construct a 

G-derivation S = Vg =* =» ... =* vp ~ p 

^=0 with U‘s replaced by S’s and B's by b's, 

1 Ui 
and ignoring Vs, 1 s i á p (and similarly Vg - Pu 

with the same changes). Note first that Pu^_i can 

contain no A's, B's or b's, so that the rule used to 

W1 
rewrite it as p must be of the form UV - (or 

w. U1 
#UV 1 - #ß ' ); let us take v. = ß i-n our G-deriva- 

V1 1 V1 
tion. Thus \f1 and pu satisfy our requirements. Sup¬ 

pose that ^ end p^ do so. Now p^ must con¬ 

tain a copy of (¾' , and since the other rules of o 
\ 

cannot change the order of U's, A's, B's or b's, it 

follows that (ignoring Vs) pu must also contain 
i — 1 

such a copy. Thus by induction hypothesis, vi_1 

contains a copy of « ; apply the rule av 
i i 

.4 

to 
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this copy, and call the resulting string vi. Evi¬ 

dently, V. and p satisfy our requirements; thus in 
i u. 

particular, v and p do. But since p^ is the 

p Up P 
last step of the given G'-derivation at which U's, Vs 

or A's can be eliminated, and since this derivation 

is non-blocking, we see that pu must consist entirely 

P 
of B's and b's, and that p = Pu with B's (if any) 

P 
replaced by b's; thus v must be just p. // 

Conversely, let G', as in the proof of Theorem 2, be 

an isotonic grammar which, given the set of initial 

strings {Tk | k = 1, 2,...}, yields the language L. Let 

G be the grammar defined by adding a new initial symbol S 

to the vocabulary of G', and the new rules S - ST, S - T 

to the rules of G'. Evidently G is nonotonic and L(G) = L. 

Note also that G is isotonic except at the left end of a 

string, which is the only place that the rule S -• ST can 

ever apply. We have thus proved 

Theorem 3. The following three classes of grammars have 

the same set of languages; 

a) The monotonie grammars, with initial string #S# 

b) The monotonie grammars which are isotonic except 

at the ends of strings, with initial string #S# 

c) The isotonic grammars, with set of initial strings 

t#Sk# I k = 1, 2,...). 

It is not difficult to verify that the isotonic gram¬ 

mars are also equivalent to the isotonic context sensitive 

grammars, i.e., grammars in which every rule is of the 

form ?An - ÇBti. Indeed, if is the kth 



rule in an isotonic grammar (which we can assume not to 

involve endmarkers) we can replace it by the rules 

Ai • • "* Ai 1 m i 
(k)A A - A(k)A = A(k)A(k) 1 ^ i ^ m- A2*#* m' i i+1 i i+1' 1 * 1 * m' 

Afk)Afk| - B(k)A!k> 1 s i < m; and B A^k) 
i i+l i i+l m-1 m 

B -B . 
m-1 m 

(k) (k) 
Since the special nonterminals A| ,...,A^ are only 

created or rewritten by these rules, the only way that 

they can be eliminated once the A....A has been re- 

written is to finish rewriting it as B.. .. .B . 1 m 



3. Parallel string granunars 

Even for isotonic context-sensitive grammars, the 

sets of sentences generated and parsed when the grammar 

is used "in parallel" is not the same as the set gene¬ 

rated or parsed when the grammar is used "sequentially". 

In fact, these sets can even be disjoint, as shown by 

the following example. Let the initial string be #XXXX#, 

and let the rules be 

XXX - XYX 

XXY - XaY 

XYY - XbY 

#XX - #cX 

XX# - Xc# 

cXc ccc 

aX -• aa bX -* bb 

Xa - aa Xb - bb 

aY - aa bY - bb 

It is not hard to verify that the "sequential language" 

of this grammar consists of the single sentence #aaaa#, 

while its "parallel languages" consist of the single 

sentences #bbbb# (generated) and #cccc# (parsed), re¬ 

spectively. [If we were not restricted to context-sen¬ 

sitive grammars, a simpler example would be provided by 

the grammar whose sole rule is XX -• aa; readily, from 

the initial string #XXXX# this yields the sequential language 

{#aaaa#}, but its "parallel languages" are (#aaaaaa#} 

(generated) and {#aaa#} (parsed), respectively.] 

In spite of the fact that the sequential and parallel 

languages of a given grammar need not be the same, we can 

show that various classes of such languages are the same. 

Here we shall not restrict ourselves to isotonic context- 



sensitive grammars. We begin by showing that for any 

grammar G, there exists a grammar G1 such that L(G') = L(G), 

and such that in any step of any derivation of a sentence 

using G', no rule can apply in more than one place. It 

follows that the parallel languages of G' — by any defi¬ 

nition — must be the same as its sequential language 

L(G). Moreover, if G is monotonie or isotonic, so is G'. 

Thus any (monotonie, isotonic) sequential language is a 

(monotonie, isotonic) parallel language. 

Theorem 4. For any grammar G, there exists a grammar G' 

such that L(G') = L(G), and where at any step of 

any G'-derivation, no rule applies at more than one 

place. Moreover, if G is monotonie or isotonic, so 

is G'. 

Proof: We may assume that no rule of G involves the end- 

markers. In every rule of G, replace each terminal 

X by a new nonterminal x, and then replace the left¬ 

most symbols A,B in the left and right members of 

the rule by new nonterminals (This assures 

that the right menber of any rule of G is nonnull, 

which is certainly true if G is monotonie or iso¬ 

tonic; the contrary case will be treated later.) 

Also add the new rules 

(1) #S# - #S*# 

(2) A*B -» AB* for all pairs of nonterminals A,B, 
,. one starred and the other not 

AB* - A*B 

(3) x y - xy fQr terminals x,y 

X*# - X# 

Readily, any derivation in G corresponds to a deri¬ 

vation in this new grammar G': initially, the S is 

A 



changed to S*, and the modified rules of G in con¬ 

junction with rules (2) can then be used to yield 

any string in L(G), but with bars on its symbols 

and a star on its first symbol. Rules (3) can then 

be used to erase the bars and star. Note that G' 

may block if this is done too soon. Conversely, a 

derivation in G' can yield a terminal string only 

by eliminating all nonterminals except the barred 

ones, which can only be done using the modified 

rules of G, so that the resulting terminal string 

must be in L(G). Thus L(G') = L(G). 

Clearly, at any step in any nonblocking der¬ 

ivation in G' except the first and last, there is 

exactly one starred symbol. Thus no rule of G' can 

ever apply to a string in such a derivation at more 

than one place. Moreover, since rules (1-3) are all 

isotonic, if G was monotonie or isotonic, so is G'. 

The treatment is analogous if G is isotonic and 

uses the set of initial strings {#T # | k= 1,2,...}, 

except that (1) is replaced by #T - #U*. Note also 

that if G is context-sensitive, (2-3) can be modified 

to insure that G' is context-sensitive (e.g., replace 

A*B - AB* by A*B - A*B' - A'B' - A'B* - AB*). 

If G can have rules with null right members, we 

can use a slightly different trick to insure that no 

rule applies in more than one place. Let Z be a new 

nonterminal, and replace each rule « - ß of G by the 

rule Za -* Zß (where the bars indicate that terminals 

have been replaced by barred nonterminals). Also add 



the new rules 

1) #S# - #ZS# 

2) AZ - ZA for all nonterminals A 

ZA - AZ 

3) Zx - xZ 

Z# - #. // 

Note that if L is finite state (or more generally, 

linear), it has a linear grammar G, which implies that 

at any step of any derivation of a sentence in L, only 

one nonterminal is present. In particular, no rule can 

apply except to that nonterminal. Thus the analog of 

Theorem 4 holds with "monotonie" replaced by "finite state" 

or "linear". (On the analogous questions for the context 

free case, see the end of this section.) 

Our final goal is to show that for any grammar G 

there exists a grammar G* which, in effect, applies the 

rules of G in parallel, so that L(G*) is the same as the 

parallel language generated by G; thus any parallel lan¬ 

guage is a sequential language. Here again, we need not 

restrict ourselves to any particular definition of parallel 

language". The proof given below assumes that <* -• ß is 

applied to y by replacing every instance of of in v by ß; 

an analogous proof can be given for the context sinsitive 

version of "parallel" in which çAri - ?9ii is applied to y 

by replacing every A in v by 0. 

Let the vocabulary of G be {S = A^,...,An, #}, and its 

rules be -* ß^ ßi \ 1 i i * m), where * Aii*“Air. 

-- ' "ine G* to have vocabulary 

# • • • # m 

.* 



or d = 0,M,N,M*,N* or P} and initial symbol 

(5,0,0,0), and to have the following rules: 

1) #(a.,0,0,0)...(a ,0,0,0) - #(a A ,i*,0) 
1 ri L ±l 

(a ,A. ,i,0)...(ar ,Air ,i,0)# 1 ^ i s m 

X2 ri iri 

These rules copy the left member of a rule of 

G into the second terms of the left end of a 

string, and the rule number into the third 

terms; the first element of the rule has its 

rule number starred. In all of the following 

rules, a, b, c are A's: 

2) (a,b,i*,0) - (a,b,i*,M) if a = b 

(a,b,i*,0) - (a,b,i*,N) if a ^ b 

(a,b,i or i*, M) (c,d,i,0) - (a,b,i or i*,M) (c,d,i,M) 

if c - d, or with the last M replaced 
by N if c ^ d 

(a,b,i or i*,N) (c,d,i,0) - (a,b,i or i*,N) (c,d,i,N) 

These rules test to see whether the left member of 

the rule matches the corresponding string of first 

terms, starting from the left end. M's are created 

as long as the match continues, N's otherwise. 

3) (a,b,i*,M) (c,0,0,0) - (a,0,i,P) (c,b,i*,0) 

(a,b,i,M) (c,0,0,0) - (a,0,i,M) (c,b,i,0) 

(a,b,i,M) (c,o,i,M) - (a,0,i,M) (c,b,i,0) 

(a,b,i*,M) (c,0,i,M) - (a,0,i,P) (c,b,i*,0) 

If a match reaches the right end of the string of 

second terms, the string is shifted one step to the 

right, and a P is created at its former left end, 

while the M's and N's are erased. 



4) (a#b,i*,N) (¢,0,0,0) - (a,0,0,0) (c,b,i*,0) 

(a,b,i,N) (C,0,0,0) - (a,0,i,N) (c,b,i,0) 

(a,b,i,N) (c,0,i,N) - (a,0,i,N) (c,b,i,0) 

(a,b,i,M) (c,0,i,N) - (a,0,i,N) (c,b,i,0) 

(a,b,i*,N) (c,0,i,N) - (a,0,0,0) (c,b,i*,0) 

(a,b,i*,M) (c,0,i,N) - (a,0,0,0) (c,b,i*,0) 

Otherwise, the string is shifted and the M's and 

N's erased, but no P is created. In either case, 

once the i* is shifted, (2-4) can now be repeated. 

Note that when it has shifted sufficiently, and 

there are no P's left behind, (1) can be re-initiated 

too. 

5) (a,b, i* ,M)# - (a,0,i,P)# 

(a,b,i,M)# - ( a , 0,0, M* ) # 

(a,b,i,M) (c,0,0,M*) - (a,0,0,M*) (c,0,0,0) 

(a,b,i*,M) (c,0,0,M*) - (a,0,i,P) (c,C,0,0) 

6) (a,b,i*,N)# - (a,0,0,0)# 

(a,b,i,N)# - (a,0,0,N*)# 

(a,b,i,N) (c,0,0,N*) -* (a,0,0,N*) (c,0,0,0) 

(a,b,i,M) (c,0,0,N*) - (a,0,0,N*) (c,0,0,0) 

(a,b,i*,N) (c,0,0,N*) - (a,0,0,0) (c,0,0,0) 

(a,b,i*,M) (c,0,i,N*) - (a,0,0,0) (c,0,0,0) 

When the right endmarker is reached, the string of 

second terms is erased, M's and N's are erased, 

and a P created if what reached the right endmarker 

was an M. Note also that (3-4) turned all the i s 

to the left of the i* into 0's, and left i's only 

where there are P's; now (5-6) have turned all the 

i's to the right of the i* into 0's, and have turned 

.-he i* into i if it has a P, into 0 otherwise. 

•« 



,0,0,0)... 

t 

7) (a 0,i,p) <a2,0,0,0)...(3 ,0,0,0) - (air +1 
L * 1 

(A. ,0,0,0), (1 á i £ m); 
is. 

i 

(a^O,!,?) (a2,0,i,0) ...(ak,0,i,0) (b,0,i,P) - 

(A. ,0,i,0)...(A. ,0,i,0) (b,0,i,P), (1 £ i á m, 
ir.+l' lsi 1 £ k < r.) 

These rules replace each run of up to r^ 4-tuples 

which starts with P, contains no other P, and (if 

shorter than r^) is immediately followed by a P, 

by 4-tuples containing the right member of the ith 

rule. Even if a new rule left member has been 

copied in, its processing cannot cross P’s; i.e., 

one rule's P's must be processed before a second 

rule can move into the same part of the string. 

In summary: Rules (1-7¾of G* cause the ith rule of G 

to be applied to the given string "in parallel". 

8) #(a,0,0,0) - #a 

a (b, 0, 0,0) -• ab 

These rules turn the string of 4-tuples into a 

string of symbols of G's vocabulary; unless these 

are all terminals, the derivation blocks. 

Note that if G is monotonie or isotonic, so is G*. To 

modify the proof to handle the context sensitive type of 

parallelness, we would need to mark the symbol to be re¬ 

written (A, in §Ati) rather than the leftmost symbol. 

The analog of these results in the context free case 

is false — a context free parallel language is not neces¬ 

sarily a context free sequential language. For example, 

the context free grammar with rules S - TT, T - aT, T - bT, 

T - a, T - b, if applied in parallel, generates the set 

of sentences uotw, where uj is any string of a's and b's; as 



is well known, this is not a context free sequential lan 

guage. It is an open question whether conversely, any 

context free sequential language is a context free paral 

lei language. 
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