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ABSTRACT

An aerodynamic model is constructed for the application
of the properties of dynamic stall of airfoils to the calculation
of the airloads and blade motion of helicopter rotor blades.
Dynamic stall occurs on an airfoll undergoing pitchking motion at
high angle of attack, and is characterized by peak section 1lift
and moment much larger than the corresponding static stall loads.
A method 1is developed for the solution of the equations of motion
of a rotor blade by means of harmonic analysis. The effect of
dynamic stall on the blade torsional motion at high advance ratio
is examined, and comparison is made with the limited experimental
data available. An increase in the dynamic stall angle is shown
to significantly decrease the amplitude of the pitch motions.
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NOMENCLATURE

a, 1ift curve slope

b blade semichord

3 section drag coefficient

cy section 1ift coeffilcient

Cn sectiori moment coefficlent

D Drag

i angle between tip path plane and the forward velocity;

positive for rearward t¢ilt of the thrust

i imaginary number: <%

L Lift

M Moment

r blade spanwise variable

R Rotor radius

o section angle of attack

ALY nondimensional rate of change of angle of attack, at

the instant of stall

B blade flapping angle

0 blade pitch angle

u rotor advince ratio: forward speed divid.d by QR
p fiuid density

¥ rotor azimuthal variable

f rotor rotational speed
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SECTION 1

INTRODUCTION

The large transient control loads encountered at high
forward speeds or high blade loadings remailn a significant problem
in the operation and design of hellcopters. A primary source of
these loads 1s the aerodynamic moment due to blade stall. Results
of an ilnvestigation into the nature and effects of stall in the
aerodynamic environment characteristic of helicopter blades
(References 1 to 4) indicate that the stall phenomenon exhibiteqd
by an airfoil undergoing a rapidly changing angle of attack,
known as dynamic stall, differs substantially from the familiar
static stall at constant angle of attack. Such a situation of
reridly increasing angle of attack characterizes a helicopter
rotor blade as 1t traverses the rotor disc, particularly on the
retreating side of the disc at high advance ratios. This report
presents a method which was developed to calculate the aerodynamic
loading and resulting blade motion of a rotor blade, particularly
the aerodynamic moment and resulting blade torsional motion due
to dynamic stall. The aerodynamic model developed was specifically
designed for high forward speeds (u > 0.25), where a simple wake
geometry model is accurate. Moreover, due to the lack of symmetry
over the rotor disk at high forward speed, recurrent entry to and
exit from stall (stall flutter) is not likely to occur, and the
very complicated and detailed wake and aerodynamics due to such
a motion need not be considered.

In what follows all quantities are nondimensional, based
on the fluid density, the rotor radius, and the rotor rotational
speed {p, R, 2). The section 1lift, moment, and drag coefficients
are conventionally defined.
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SECTION 2

THE AIRLOADS AND BLADE MCTION CALCULATION

The calculation procedure used to determine the airloads
and blade motion of a helicopter rotor blade follows a reference
blade around the azimuth in discrete steps A¥ of the order of ten
degrees. The downwash at several blade stations, the section
loading at several blade stations, the blade motion, and the wake
geometry changes are calculated successively; then the blade is
moved to the next azimuth station. This procedure is i1liustrated
in Figure 1. The use of a variable inflow calculated on the basis
of a wake of trailed and shed vortlcity precludes any closed form
solution. The calculations are therefore performed iterativeiy
until they converge to the steady state solution. The solution
is determined by the physical properties of the blade (the semi-
chord to span ratio b, the Lock number L.N., and others), and
by the root collective pitch eg, the tip path plane inclination

angle i, the advance ration p, and ti.e tip Mach number Ml 0,90
*Vy

2.1 The Aerodynamic Loading

The section 1ift, moment, and drag ~- L, M, D -~ are
determined from the appropriate aerodynamic theory based on the
state c¢f the flow and the blade motion. The state of the flow
(attached or nonattached) at a certain blade station is determined
by the past history of the flow and by the angle of attack a:

ol = S ——'TiuGT' AP
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(with the convention that a positive angle of attack in the
reverse flow region corresponds to a downward acting 1ift). The
state of the flow is determined as follows:

(a) ¥#or |a| less than a defined stall angle, the flow is

(b)

(c)

consldered attached. The loads are determined using
lifting line and l1lifting surface theories,

When |a| becomes greater than some apgs the section
is considered to stall dynamically. The loads are
determined by the parameter ac/V at the instant of
stall. The dynamic stall state lasts until the
section angle of attack begins to decrease (but at
least for an intervaldﬁ%r), and then the flow 1is
considered separated. During the separated state the
loads decay from the dynamic stall values to static
stall values. When |a| next goes below some a., the

SS
flow becomes attached again.

When |o| becomes greater than some ap the flew is
called feathered (typically Gp = 60 degrees). When
[a] next goes below ay, the flow is considered
statically stalled, until |a| goes below a.o and the
flow reattaches.

SS

The only feature of the reverse flow region which 1is
considered is the direction of the conmponent of the velocity U
ncrmal to the span direction. This determines the doutle sign:

E S

= s‘&y\ (ur) = S‘\3\A ("‘+)ASiW\'P>

which will occur frequently below. Several additional points
must be considered:

(a)

For points too near the reverse flow boundary (uT = 0)
the loading 1is set to zero.




(b) For radial stations which at the last azimuth station
were on the other side of the reverse flow boundary,
so that the past history of the flow 1s not well
defined by the, above model, the flow 1s considered
to have been attached at the last azimuth station.
Whatever the state of the flow 1s near the reverse
flow boundary, the loading will be small because of
the low dynamic pressure of the velocity normal to
the span.

(c) If the angle of attack changes sign in the separated
region, so that a more detailed calculation along
the azimuth would show the section flow reattaching

and then restalling as the angle of attack goes
through zero, the section i1s considered to be stati-
cally stalled.

{ The logic described above 1s shown in Figure 2. This

é model is designed tc show the effects of a rather impulsive load-
ing (due to dynamlc stall) on the torsional motion of a blade
under high loading conditions and high advance ratio. It 1s not
appropriate for handling several successive excursions in and out

TR TS

of stall unless an impractically small azimuth step AY is used.

3 The convention for the positive directions of the loads is
g as follows:
iy
f lift, L upward -
fi moment, M nose up, about the quarter chord (the
feathering axis)
drag, D opposing the blade rotation
pressure, -Ap upward

eirculation, T directed outward along the blade
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2.1.1 Attached Flow

For the blade section in attached flow, the loading is
calculated using lifting line theory; that is, the flow is con-
sidered locally two-dimensional, with the influence of thé rest
of the blade and the rotor wake represented by just a downwash
veloclty at the blade section. The aerodynamic loading is due
to the blade motion and the wake induced downwash. The downwash
is calculated from the trajled and shed vorticity in the wake of
each blade of the rotor. In early calculations, only the downwash
due to the trailed verticity was calculated in this manner; the
effect of the shed vorticity behind the reference blade was
accounted for by the use of Theodorsen's 1ift deficiency function.
The two methods of handling the shed vorticity showed 1little
difference as far as stall loads and blade motion were concerned.

As a first order correction for compressibility effects,
the Prandtl-Glauert factor 1s used, based on the Mach number of
the flow normal to the span of the blade. Thus

- 4 L >
4 b - m <l incompressibleAlifting

line theory

o = i )
;;:;1;: J:E::;;E;‘ ‘2?;1: incompressible lifting

line theory

where

\FZFAAS§WLPI
= +3/A

M N = Mhoﬂo

M == Mach number of tip (r = rg)
10,90 at ¥ = 90 degrees
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2.1.2 Nonattached Flow

The aerodynamics of the flow when it is stalled, separated,
or feathered glve the section load coefficients --- Cq5 C

] -——
m? ~d
for 1ift positive upward, moment (about the feathering axis)

positive nose upward, and drag positive in the direction opposing

the relative velocity. The 1lift and drag, L* and D¥, are respec-

tively perpendicular to and in the direction of the actual section
relative velocity (see Figure 3).

to loads based on Q and R gives
Lfk = b\W' =S <2 ///Vr‘ ~ ﬁ“;o
2
M= w2 2b Cam AL M

b*:—-'- us b g

Converting these coefficients

Referring again to Figure 3, the loads can be converted to 1ift
and drag in the no feathering plane using

LK lusl Ue
L= = D e

N N 1]
JuF +ud JuErud

These expressions are necessary because of the large angles which
may be involved in nonattached flow.

' 2o Lo —%
7= 2w MTL—'

and the actual loads by ao/2n times L and M (for use in the
equations for the blade motion however, the lift curve slope
correction factor is already included in the Lock number).

The clirculation is given by
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2.1.3 Dynamic Stall

The loss of 1ift and circulation and the shift of center
of pressure an airfoll at an angle of attack above the static
stall angle agg (generally about 8 to 12 degrees) .are familiar
aerodynamic phenomena. The operation of a helicopter rotor blade
in an environment of high loading and changing angle of attack
makes 1t necessary to consider stall as a dynamic rather than a
static phenomenon. The unsteady aerodynamics involved in dynamic
stall are not yet completely understood (see References 1 to 4)
but fundamental to characterizing the problem is the time scale
of the airfoil motion, as represented by the parameter dc/V. The
primary characteristics of dynamic stall are its occurrence at an
angle of attack greater than the static stall angle, followed by
the shedding of vorticity from the leading ané trailing edges.
The unsteady aerodynamic forces due to the vortlicity passing over
the upper surface of the airfoil produce a 1ift and nose down
moment, with peak values much greater than the corresponding
static stall loads. Experimental and theoretical work (Reference 4)
has shown that the primary parameter of dynamic stall is the rate

of cnange of angle of attack at the instant of stall, in the non-
dimensional form

2% _ | (Z%)zb |
v e |

with little dependence on the actual angie of dynamic stall.
Figure 4 shows the results of both theory and experiment for the

%% /V of the peak 1ift and moment coefficients,

variation with o¢
cy and ch . Although still requiring experimental verifica-
max max

tion, the theory of Reference 4 implies that the peak coefficients
approach limits of the order of 3.0 for Ccq and ~0.8 for c

max mma X

for high stall rates.
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As a model for dynamic stall, it is assumed that above a

given angle of attack, a.., as long as the angle of attack is

increasing, the 1ift andD;oment coefficlients are maintained at
constant values. These cocfficlents are taken as equal to the
peak coefflecients as given by the experimental and theoretical
results cited aobve, and are therefore dependent on the stall
rate parameter &G%/V. The empirical representation used is also

shown in Figure U. Data (Reference 4) indicate that the dynamic

" stall angle is about 14 to 20 degrees; typically the value of

Upg = 15 degrees 1s used., Thus the value of &(”c/’\) at the instant
of stall gives

cp = Stgg () 2oy (6(“’c/y>

[~

Cw., = 5\3\/\(0() cwmm(&“’c/v) -+ (—--é—:k-{,—_\ <q.

The use of this model (Reference 5) has shown that typically
the large nose down moment generated by dynamiec stall quickly
causes the angle of attack to btegin to decrease (due to elastic
pitch motion of the blade) and thus the flow to enter the separa-
tion model. The dynamic stall region extends only for about
M = 15 degrees., The resultant elastic pitech excitation is
characteristically very impulsive. At high advance ratios the
model 1is only weakly dependent on the stall angle Gpnge The
possibility of self-excited elastic torsional motions (stall
flutter) 1is likely only at very low advance ratio, with a great
deal of symmetry around the rotor disk. At very high advance
ratios (4 > 0.5), the value of a'cmc/\/ is frequently larger than
the range shown in Figure 4, and so the dynamic stall loads are
very large.

The use of harmonic analysis to represent tne locad data,
which is calculated only at discrete azimuth points, as a smooth




distribution around the disk actually replaces the instantaneous
rise of the stall loads to the peak dynamie stall values by a
gradual increase, with the rise time determined by the azimuth
increment in the harmonic analysis (see Section 2.5.2), For a
very small azimuth increment in the calculation process, some limit
must be placed on the rate of incréase of the stall lcads. Using
a linear rise, the 1ift and moment coefficients are

ror AV <4aNpy
ol
LMt

Cwm = (Swo~Cpna) D 4 cung,
Ny

ce = (SRo— SR ) + S

and for aM > sk,
<= g,
C‘M:: C\N\O

where cq and ¢, are the coefficients for the attached flow at
a a
the dynamic stall angle and AW 1s the azimuth increment since the

dynamic stall angle was reached. The experimental and theoretical
data (Reference 4) suggest that the rise time A“&rshould be
approximately 10 degrees, which 1s also confirmed by a comparison
of the results of this calculation model and experimental data.

2.1.4 Separation

Experimental results (Reference 6) show that the flow over
an airfoil oscillating at high angle of attack separates at the
peak angle of attack for values of the reduced frequency, k = wb/V,
greater than 0.3, It is also shown there that the Theodorsen
theory of oscillating airfoils is equivalent to a first order
differential equation for the moment coefficient of the form

4 Ry
c"‘g""x (wa"'cwz,\ + T (CMvaL\, = 'l‘-"‘—;' oL
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where the subscript i refers to the initial conditions, and the
Theodorsen theory gives A and the time constant Tm as functions
of k and C{k) (the 1ift deficiency function). A similar expression
may be derived for the 1ift coefficient, with a time constant Tl‘
When this equation was assumed to hold in the stalled region also,
moment variation with angle of attack was calculated which was

in go>d agreement with the experimental results. Since a first

order zquation would be expected to give a reasonable approxima-
tion to the decay of the dynamic stall loads (see Reference 3 for
experimental data for this decay) thils agreement primarily indicates

that the time constants given by the Theodorsen theory may also
be used when the airfoil 1s stalled.

Therefore as a model for separated flow, it 1is assumed that
after the section angle of attack reaches 1ts maximum value, the
1ift and moment coefficients decay exponentlally to static stall
values. Thus the 1ift and moment coefficients are

-
— (V=N S
SR = (CQ.—<0¢) & oYL

— (V=N
Cwn = CCWO“C\N\5> Q/ b)vM + Cm_s

where c10 and cmo
(dynamic stall coefficients) and ¢, and ¢
]

are the coefficilents at the peak angle of attack

m_ are the static stall
s
coefficients (based on the same sign(a) and sign(up) as are ¢y

o
and Cn )3 4; 1s the azimuth angle at which the separation region
o

was entered. The time constants are given by the Theodcrsen theory

as approximately Ty, = 1.0 and Ty = 2.5. Calculations with these
values show that the time constants used for the transient stall
of the roter blade should be several times these values, which

were derived and experimentally confirmed for a highly periodic
stalling motion.

10
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Dynamic stall as described above is a phenomenon rather
-ndependent of the airfoil motion after its initiation at the
dynamic stall angle. Thus the dynamic stall state should exist
for a defilnite period, regardless of the subsequent blade motion.
Therefore the separation state is assumed not to start until at
leastléﬁgrafter the dynamic stall angle 1s reached; if the angle
of attack 1s still increasing after this point, the separation
state begins when the angle of attack starts to decrease.

It is assumed that the flow reattaches at the static stall
angle Aqg However, reattachment 1is also delayed if necessary
until.AﬁﬁTafter the initiation of dynamic stall.

2.1.5 Static Stall

The model used for static stall assumes that the 1ift and
moment coefficients are maintained at the constant static sftall

values, €y and ¢_ . Then the coefficients are
s Mg

Swa= Sig (o) s + (-5 =+ 3V <

Typical values used are c, = 1.0 and ¢
5 B
static stall angle dgg = 12 degrees.

= -0,15, and for the

2.1.6 Feathered Flow

The experimental results of Reference 7 show that the stall
model is reasonably accurate up to angles cf attack of around 60
degrees. These experiments were static measurements on a NACA
0012 airfoil section. A good approximation to the experimental
coefficients above the feathered angle is given by
g = ig‘\%/v(o() g o’ — loti
g Q0% — ol

Sy = sx%M(oc} C\M%

11
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for Ial > Co The experiments give the parameters: ¢y =

e, = -0.40; and ap = 60 degrees. £ S
f

2.1.7 The Drag

The experimental data of Reference 7 also give the drag

coefficient for the NACA 0012 alrfoll section. Unlike for attached

flow, for nonattached flow the drag may have a significant component

in the rotor thrust direction because of the large local angle of
attack.

For nonattached flow, the data 1s approximated quite well
by:

ca = 2:0 (Sma)

2.2 The Rotor Wake and Downwash

The wake of a helicopter rotor blade in forward flight
consists of trailed and shed vorticity in a distorted, skeweq,
helix. In order to calculate the downwash induced at the rotor
blade by this wake, it 1s represented by a net of finite strength,
finite length line vortices behind each blade. The distribution
of the blade bound circulation over the rotor disk, I'(r,®), is
sufficient to establish, by continuity of vortex lines, the
strength of each line element in the net. A semi-rigid wake
geometry model 1s used to glve the position of each line element;
that is, each point of the wake 1s assumed to travel downward
always at a velocity equal to the downwash at the point on the
disk from which it was trailed or shed. From its strength and
position, the downwash induced by each line element may be calcu-
lated; the downwash at the rotor blade 1s then the sum of the
contributions from all elements in the wake.

2.3 The Reverse Flow Region

It is shown in Reference 7 that an airfoil in reverse flow
has almost the same 1ift and moment variation with angle of attack

12
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as for conventional flow, as would be expected with .ain airfoils.,
Therefore the only change in the model is in the positive direc-
tions of the loads. As far as- the blade torsional motion is
concerned, the most important feature of the reverse flow region
is that the aerodynamic center is then at the three-quarter chord,
so the 1lift gilves a large moment about the blade feathering axis,
normally located at. the quarter chord.

2.4 Compressibility effects

The only consideration of compressibility effects on the
loads is the use of the Prandtl-Glauert correction factor based
on the Mach number of the local velocity perpendicular to the
span, Ump. The neglect ¢f the effect of compressibility on the
stall loads is a serious defect, as it 1s well established that
this 1s a significant factor for airfolls stalling in the environ-
ment characteristic of helicopter blades. However, once experi-
mental and theoretical data on the effects of compressibility on
dynamic stall become available, it should be easy to incorporate
them into the aerodynamic model which has been described here.

2.5 The Blade Motion

The vertical positlion of the blade 1is composed of the
feathering axis deflection, Zg» and a chordwise rigid pitch
motion, 0O:

2, = —Z(e,"¥) + x O, ¥

The deflection of the elastic axis is represented as ttr sum of
rigid flapping and first mode elastic bending; and cthe pitch
motion as tre sum of a rigid (spanwise) pitching mode and first
mode elastic pltching:

Zo= TR + ()
5 = &(VY) + §<ryem(%

13




where &(0) = 0. An approximate mode shape is used for elastic
bending, and the elastic mode 1s typically linear twist:

D)= 4r? -3
%(\*) = Y

The equation of motion 1is most conveniently solved in the no
feathering plane, where the only contrel input is collective
pitch (the tip path inclination angle i also enters indirectly
through the downwash). Cyeclic pitch can be varied arbitrarily
with the orientation of the shaft; the dynamics and azerodynamics

of the rotor determine the orientation of the no feathering plane

with respect to tha tip path plane,

2.5.1 The Equations of Motion

The equations of motion for a constant chord (uniform
spanwise structural properties), coincident elastic axis and
inertial axis, articulated (no lag hinge, zero flapping hinge
offset) blade may be derived following Reference 8:

ii-&—@ LNS ‘";;;-g
I&(av_ko;cpz—.tﬁm.g R
T (B+8+wi(e-N+S (em-rerw\

o A#T—E,

:I:Vg.<69;*‘*553n'*‘bu (Sg,— Eith:§§'*-§51;a<'53ﬁ'éi>
LTy Mg,
L.m.\qa?)%b

14
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where
: \'“1-
b -
b T, = ()GVZW\SDX
2 blade section moment of inertia about
| ~~& ™  the feathering axis
[ TS o
; —ra — v -
| I, = I_bgc \/Lm&r._o ©
| - [ I A
& — <)1- - e N T
! T == % "e = +°
3 L Tt g 7_8‘7' x
;| T~ :‘J‘:bgo% © o o%gbr-
|
¥ NS Qr = T ‘
Sp.= I\, Yo 3 I-e - S° 23%

EA
L..N. = Lock number = —3%55£E——-
T

J, =  elastic bending frequency = 2.7/REV

W, = nonrotating natural pitch frequencies
©° = collective pitch input

s &_ == structural twist

The 1ift and moment, L and M, are based on the ldeal 1lift curve
slope 2m; the Lock number includes the 1lift curve slope correc-
tion factor.

The pitching equations of motion are very sensitive to
impulsive moment excitation, and in order to obtain a convergent
solution by means of harmonic analysis, it 1s necessary to include
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part of the aerodynamic damping on the left hand side of the
equations. Thus the nonharmonic (no dependence on“P), incom-
pressible damping is extracted from the 1lifting line result for
the aerodynamic moment. To the total (compressible) moment,
M/4mb, is added the quantity:

A 3 =
a b =)
or
i 35 =
o S
4 ko 3 We

for the eguations of motion for & and Gtw respectively. Corres-
pondingly to the left hand side of the equations are added the
terms:

and

(The damping terms given here are for the feathering axis at the
aerodynamic center only.)

2.5.2 Solution for the Blade Motion

The equations of motion are most conveniently solved by
harmonic analysis of the loads and blade motion. Thus writing

Ko ‘\v\m
= =)
g= &, ©
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and similarly decompcsing q, 6, %b’ 90, qg, and the integrals of
3 the 1ift and moment, the equations of motion become:

- oL
3w (L—w?) = L.\, (Sr@r *;,;'g&’rw\,\

2 ¢ 7 L
qﬁr Iz(qz ——\41> = L.N. \Srkvk,“r‘h'\a &J‘—B“
=N T (wi+1—w +Jun3+ 8%“3%(* ~w2)
=—_@:Iw:' + L. (g(_ e X
‘ ethm(w;+i_—wz+bu&LM\> + ev\SR,<j:'\"z§

-5 et L ()Y i),

¢ Lan

(AP S T ST

T AT

R

5’ All but the steady components (n = 0) of the collective and twist
% inputs, 8° and aéﬁ are usually zero. These equations are easily
- solved for the harmonics of the blade motion.

;

L

The right hand sides of these equations are the harmonics
of the integrals over the span of the aerodynamic forecing loads.
§ In the calculation of rotary wing airloads these integrals will
be evaluated cnly at a finite number of azimuth staticns around
the disk. Calling any of these integrals F(¥), its value FJ is
calculated at J azimuth stations. Then the harmonics of F are:

é = 'L = —inNs 2w
: FA 'Z)— a.g»wud‘\« F; 7 J > wa = é%_
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For N = J/2 this gives exactly FWJ 35 for N < J/2 this is an
approximation in the least squares sense,

Because of the smoothing nature of the harmonic representa-
tion, the rate of change of a function between two calculated
points will be several times the rate of change of a straight
line representation between the two points. Thls can introduce
convergence problems when large changes in the loads are involved,
as when stall occurs, because the effective rise time of the loads
is increased. Therefore all the harmonics, Fn’ are multiplied by

the factor
w14

The harmonic representation is thereby converted to a function

connecting the calculated points, FJ at 43, by straight lines.
The exact representation requires an infinite series, so truncat-
ing the series has a smoothing effect. More importantly, it can
be seen that this factor decreases the magnitude of the harmonics
of the least squares representation. Effectively, the rise time
of the function 1s now restricted to at least the azimuth incre-
ment, 2n/J, in the harmonic representation.

The use of harmonlc analysis gives a smooth distribution
of the alrloads, which are actually calculated only at discrete
points around the azimuth. This smoothed loading distribution
then gives the blade motion through the equations of motion. The
use of harmonic analysis has an important consequence in the stall
model however. In the stall model described above, the 1ift and
moment coefficlients jump immediately to the stall values when che
section angle of attack exceeds the dynamic stall angle. The use
of harmonic analysis smooths thils jump over the azimuth increment,
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2n/J, which becomes a lower bound on the rise time of the stall
loads, With a small azimuth increment, it 1s necessary to include
in the stall model itself a restriction on the rise time of the
stall loads {ag in Section 2.1.3).

2.5.3 The Solution for First Harmonic Flapping

Since the natural frequency of an articulated blade with
zero flappling hinge offset is exactly 1/BREV, the equation of
rigid flapping moticn is singular for the sclution fer Bl. For
n = 1 the equation, with the integral replaced by a sum over the
blade span, reduces to:

EET Y %;_ .Z&;>> =
4.

SPQM

which is to be solved for Bl' The values of L over the disk are
known, calculated at each azimuth station using some BlJ and Boj'
The solution will be found for 81 assuming that the contributions
to L from all factors except those involving BlJ and Boj will be
the same for the new values of Bl and Bo. That is, factors such
as changes in the loads due to the changes in the downwash assoclated
with the new values of Bl and BO are considered as second order
effects., These and similar effects, such as changes in stall
region boundaries, and changes in the pitch motion, will show up
eventually of course, so that the solution for a new 81 and Bo
must be obtained at each azimuth station as the caleculation
procedure goes around the disk, until they converge to the correct
values.

These contributions to L that are assumed to be independent
of 81 and BO are contained in the quantity

.
-
( .Sc(’iw srle 2 LI presavt
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where the subscript "present" means based on the o0ld values of 8,
that is on BlJ and Boj' This is the quantity usually used on the
right hand sides of the equaticns of motion in the solution for
the harmonics of the blade motion. From this must be subtracted
the contributions due to BlJ and BoJ‘ The direct dependence of

L on B enters conly through the 1lifting line theory results, and
since this dependence is linear, may write

r-/m,bA\" = )*-%—&@, (3 +R@ @ +/(3 \

where % ’Qﬁx Qe‘ , R@' are functions of r and ¥ R ,Q@, /QB.

are given by the 1lifting line theory and ﬂf‘includes all other
loads.

YOIy
R S

Thus the equation to be solved becomes:

L ~
o= (F. a2,

D S LY A

: (‘gig;,'" 1&;>)J_ ypresewt

+ -j:. E s (@" @Oc\')&@o —b"'P\
I e ) 2R LB R 1(*

where as before the subscript "Jj" refers to the sum over the
azimuth (which enters in obtalning the first harmonic of
(SSE; r(L/U7b)Ar)). The solution of this equation is:

[}

By~ — 5 [(Re SLA T ST+ (ReS3+ TuSH)
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and

A= SH% S41. — S2%S3
Re = ReaQ (R

E: ( < rﬁé‘%‘j‘,)?mswt +@o (SQ"’USE\)

Spom

= 3 < %@059@9 + 2 Eﬂi& (@uag(g,X} é:uwé

_SL—:-%‘-%,M S SN Segiany (22,
S2= & S F. PS W) Svegivary (R)
53__:_5_1;%“% S)EM Siw Wd MCR@,B
St =5 . <os iy RaR(Rg)
5‘5231‘:,2%\% é%’“ Siw M’A Ra,
SETT = s Y A
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and the solution for B is given as usual by

!\3 <§\€“~. %\O'ABO‘ Y)fif)%'b

NowﬂB° and.ye,l are given by 1lifting line theory if the
flow 1s attached. Extracting the terms proportional to 613 B >
and B 0? including the component of the ‘downwash (-uB ) due to
the tilt of the tlp path plane with respect to the no feathering
plane, gives:

Q. = AT F % ur (meos ¥~ £ 1)
Bo VI-MEZ | + Zrle (U + psin¥D

- XAC B u-;—[_« (or+/wws*+’
0= o a1 0e]

- %QJ E/“"S”’""z,\’]

if the flow 1s attached, and
’Q@°:9@\:O

if the flow is nonattached.

With the straight line rather than the least squares
representation in the harmonic analysis, it 1s necessary to replace
the factor 1/J by the factor:

= 9 Siw IE;‘ j]ii

mr——

2o LT 2

where it appears in the above.
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SECTION 3
RESULTS .

3.1 Effect of Dynamic Stall on the Blade Torsional Motion

Reference 5 reporté the results of using the aerodynamic
model described in Section 2 to calculate the airloading and
blade torsional of a helicopter rotor at high advance ratio.
These results may be summarized as follows.

For 0.4 < u < 0.8, a stall region appears on the retreating
side of the disk, outside the reverse flow region. The blade
pitch motion is characterized by an initial nose-down impulse due
to dynamic stall, a decrease in pitch in tine fourth quadrant as
Increasing dynamic pressure increases the moment due to separated
flow, and dynamic overshoot and damped oscillations in the first
quadrant after flow reattachment occurs. The pitch oscillations
are well damped by potential flow aerodynamic moments. For forward
disc inclination, the stall area appears initially at outboard
blade stations, resulting in larger stall moments and piltch motions.

For u > 0.8, the blade stalls before entering and after
leaving the reverse flow region, which occupies a large part of
the retreating side of the disk. For an articulated blade, stall
is not an important feature of the loads at extremely high advance
ratio, because the large collective pitch necessary to get signifi-
cant stall regions results in unusably small or even negative
rotor thrust.

For p > 0.6, the blade pitch motion is chavacterized by a
large pitch increase and decrease centered about ¥ = 270 degrees,
caused by the downward 1ift force in the reverse flow region
acting at the three-quarter chord.

The importance of the concept of dynamic stall for a rotor
operating at high advance ratio lies in the fact that the rotor
blade stalls at high values of the parameter 5¢(ﬂcv/\/ s resulting
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in 1ift and moment initially several times larger than the
corresponding static stall values. It should be noted also that
the dynamic overshoot due to flow reattachment following stall
often 1s the greatest blade motion due to stall, and the severity
of these oséillatlions is likely to be lessened only by an increase
in pitch damping, possibly by mechanical means.

Cv & ML SRR 4 A I TR
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A presentation of the airloads and pitch motion for a rotor
in various operating conditions may be found in Reference 5.
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3.2 A Comparison with Experiment

Reference 9 presents limited experimental data on the
torsional motion cf a rotor blade in several operating conditions.
The thenretical torsional motion was calculated for these cases
using the model described in Section 2.

. :"az;;'_.._':.:..:,.._.:m,zzz,x;“': v~

Figure 5 shows the piteh motion for p = 0.68, i = 0, and
8° = 4,0 degrees with the blade center of gravity at the 30 percent
chord. This 1is a case of classical flutter due to center of
gravity-elastic axis offset. Figure 6 shows the pitch motion for
=147, 1 =0, and 6° = 2.0 degrees. This is a case with large
pitch motion due to the 1ift in the reverse {low reglon. For
both of these cases, no elastic pitch motion was allowed.

s
e

¢ Figure 7 shows the pitch motion for u = C.294, 1 = 0, and
8° = 11.0 degrees. This is a case involving dynamic stall of the
l blade on the retreating side of the disk. Two theoretical results
are shown: one for Opg = 14 degrees and no elastic pitch motion;
and one for apg = 16 degrees, delayed by AW = 20 degrees (the
abscissa for this line 1is actually ﬁP4-20°), with no rigid piteh

motion and an elastic pltch mode shape & = sin%§x~

1 A discussion of these results may be found in Reference 10.
j With so little experimertal data it is not actually possible to
make an adequate evaluation of the dynamic stall model used here.
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3.3 The Effect of the Dynamic Stall Angle

The dynamic stall concept suggests a means to lessen the
effects of stall. An increase in the dynamic stall angle will
result in a significant reduction in the severity of the pitch
motions due to dynamic stall; indeed, for a given collective
piltch, a large enough dynamic stall angle could prevent the
occurrence of stall at all. The dynamic stall angle is dependent
on the parameter 6¢“§q/v s on airfoil heaving motion, and on
airfoll shape (References 3 and 4), and thus airfoils may be
designed with the aim of minimizing stall effects,

In order to evaluate the effect of increasing the dynamic
stall angle, the blade pitch motion was calculated for tne same
rotor used in the calculations of Reference 5, with several values
of Gnge The natural pitch frequency, Wy, was 5.5/REV. Figures 8,
9, and 10 show the harmonics of the rigid pitch motion, en (for
simplicity, no elastic pitch motion was considered) for three
operating conditions: Figure 8 is for u = 0.5, 1 = 0, and 6° = 12
degrees; Figure 9 is for u = 0.5, 1 = 0, and 6° = 15 degrees; and
Figure 10 is for w = 0.3, 1 = 0, and 6° = 11 degrees. Figure 11
shows the actual pitch motion for the same case as in Figure 10,
The decrease in the amplitude of the pitch motion as the dynamic
stall angle is increased is quite substantial.
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SECTION 4
CCNCLUSION

An aerodynamic and dynamic model has been constructed which
has proved useful in calculating the torsional motion of a heli-
copter rotor blade under operating conditions involving biade
. stall., The concept of dynamic stall and the use of the experi-

mental and theoretical data on dynamic stall are important parts
2 of the aerodynamic model used here., It is clear that further work
should be done to determine the nature of dynamic stall, in order
that a refined, and therefore more widely applicable; model of
stall may be constructed; it should be relatively simple to
incorporate new data into the calculation procedure described

TSLISE L

here. There 1s also a great need for more experimental data on
the torsional motion of rotor blades, in order that the model
constructed may be rationally evaluated. Calculations of the

iy

AN ARy
L i et gt

harmonics of the pitch moticn for varying dynamic stall angle

TEET ST

have shown that the amplitude of the torsional motion 1s significantly
decreased by an increase of the stzll angle., This illustrates the
value of designing airfoils for good stall characteristices.
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