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ABSTRACT

The rate of convergence of the Reset Davidon Variable Metric

Method for minimizing an unconstrained function of n variables is

considered. If the limit point of *he sequence of points generated by the

method is a stationary point with a positive definite Hessian, the rate

of convergence is superlinear with respect to cycles of n points.

With an additional Lipschitz assumption the rate of convergence is shown

to b,; at least auadratic for subsets of cycles of n points.
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THE RNATE OF CONVERGENCE OF THE RESET

DAVIDCN VARIABLE METRIC METHOD

Garth P. McCormick

Introduotion

The Variable Metric Method proposed by Davidon 11 f,)r solving f
the unconstrained minimization problem

[S

minimize f(x) (1)

where x = (x,, .. , x) and f c C is summartzed as follows,

Davidon Variable Metric Method- DVM M)._

STEP 0: Let H some arbitrary symmetric • •iix; matvix

;(z' Hz > 0 for all z 0 0), x be some arbitrary initial

-0 0 0Ing point. Set s -H ro.eed as in the general step

k+i at equation (8).

STEP kql

k + I: At point x , (k= 0, .. ) let

Skk k•l k
E- x -x, 2

k k+l k 3
y -- g -g 3)

H Hk H y ka (y ki + o. kf"(1 ( ) (4)

Sponsored by the Mathematics Research Center, United -tates Army, Madison,
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k yk Hkyk)-l

k k k -(
• 5((0- )'y

where

g kaf(xk) the vector of first partial derivatives

k. i k+l egvnb
of f(x) at x Let tho direction vector at x be given by

s ýS-H (7k kl--H~lkl 7

Let tk+l be the smallest local minimizing_ poInt of the one dimensional

-_ programming prob,'em:

minimize f(xkl k+t) (8)S~t>O

Let

k+Z k+l k+l k+l
x .+ . (9)

k
Repeat the step for x if at any iteration k, g 0,

the procedure ceases.

"Fletcher and Powell [3Z] rhowed that the above DVI'AM minimizes

f(x) whore f(xý is a i sit e form in n s .teps or fewer.

No one has been able to showI that for a general function f(x),

limit points of {xk) are jtpai onts (points where the vector of

first derivatives vanishes). Aiso given that a limit point x is a

;The author has just received a copy oi a paper by Powell [ 51 who proves that
the DVMM converges to a stationary ooint if f(x) is a twice differentiable
convex function whose Hessian mat.ix has eigenvalues bounded below away from
zero. Powell also showvs that the rate of convergence is superlinear every step
for this case if an additional LUpschitz condition is placed on the second
derivatives of f(x).
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stationary point, no one has been able to ascertain the rate at which the

sequence {xk) converges to x*, Below is given a simple revision of

the DVMM called the Reset Davidon Variable M-'tric Method (RDVMM).

For this rcvised algorithm a statement of convergence Is given in Theorem 1,

and proofs of the rate of convergence in Theorems 2 and 3. In the

discussion following Theorem 3 the differences between the convergence

and rate of convergence of the RDVMM and the original DVMM are given.

JReset Davidon Variable Metric Method (RDVMM)

In step k+ 1, if (k+1) m 0 mod(n + I, then set

k+1 0
H H (a symmetric positive definite matrix). (10)

Then equations (4) - (6) are bypassed.

It is useful here to state without proof some properties which apply

to both algorithms. 4

For all k, Hl" is a positive definite matrix. (11)

The direction vector s 0 if and only if k 0.

k k+l k
Unless s 0, f(x < f(xk) . (13)

Because of (8), and the fact that f C',

0012 -3-



(gk+l) k (14)

i.e. the gradient of each point In the sequence is orthogonal to the previous

direction,

If f(C , using Taylor's theorem, for 1, ... n,

k n

where each qk, J is a convex combination of xkk nd xk+l It is convenient

(•k) jth
to define a matrix G(ij ) whose I, element is

a 2f(T k, i )/ Axax (16)

Then the equations expressed by (15) can be summarized as

k 'k K
Y =-G61k)ak . (17)

Furthermore, beoause of (8), for J= 1, ... , n

k+1 k) k
f(xk) _<flik') <f(x ) (18)

where either equality holds in (18) only If

k+l k,J k kJ
X = or x r

k
The formula for t ,using Za) (7), (9,(14) and (17) is

k k k~ k ' 1:~ k' k k k
t (g )H g /(q G(Tj )Hkg . (19)
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k
For the RDVMM it is useful to divide the sequence {xk) into overlepping

qroups of (n + 2) points. The subscript c will be added to indicate the

group (c a 1, . ,,, and the superscript k will be used to indicate the

order wJthin the gioup (k = 0, 1,., n+l).

The last point of each group is the seine as the first Point of the

next group. The sequence then looks like

0 II".9
Xl . ... I

0 n.+.l
X2 1 ,., X 2

• "• - "(Zl0)

C

0

It is now possible to state a convergence theorem about the RDVMM.

Theorem I [Convergence of RDVMM].

0
Assume f 0 If x is a limit point of {X generated by

C

the RDVMM, then

* x*
!g Vf(, ) 0. (21)

Proof: The proof follows from (10) (7) (8) (9, and the arguments used

ShIn 4, 'Theorem 11. E. L:).
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Well-kniown icv sorVy conditionsi thnt x hbe a local unconstrained

minimum of [(x) are that It be a stntionnry point, (i.e. that (4Z) hold)

and that (if f( Ca)

* V2f *
G V f(x)

be a positive semi-definite matrix.

- concditions that x an on iilt-ed local unconstrained

minimum tre that (21) hold and that

C be i positive definite matrix. (22)

It is for a limit point satisfying (21) and (2U) thVt rate of

oonvergence can be determined.

Th|ooreta 2 [Superlinear Convergence).

If: (1) f•CC

(2) the RDVMM is applied to problem (1),

t4. . a, cven" limit.L point X Of A x U it, a 1 tationfry point,

If, in addition,
( *

"3) G is a positive definite matrix,

then: (b) x is the unique point of ocummulation of {x and

(c) with respect to the grouping (20),
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IIj

C- 0 (13)
C

1.e. co.ivercoeict, is ,3"-perlin"ar with respect to evory n points within a

group.

Proof; Part (a) is Just Theorem 1, part (b) follows from (8) and (22).

The proof of part (u) will consist of a series of assertions,

There are two numbers a nd & such thtt if k is en

kaigenvalue of H , and k is large,

0 <alklX (24)

also

a k11 ~Is11, for all s. 125)

This follows because the third term of (4) 'an be written

k k k, k-I k
a [ (0 ),G(^ q)r U (a- )' and in a neighborhood of x*, th( .i ,values

of G(1I) are strictly positive and bounded below awwv trom ZIrO.

In a neighborhood about x there are two finite positive numbers

ab) a7 such that for y in that neighborhood,

a Ily - x×*1 < !lg(y) 11 < o Ily - x l , (26)

where g(y) V 7f(y). This is proved using a Taylor's expansion on g(y), the

stationarity of x and the positive dofinitenioss of G

' •= •~~101 - -- -a ..



In a neighborhood about x , there is a positive value a such that
8

for y, z in that neighborhood, if f(y) <f(z), then

Iy -x II <a 8 IIz - x * ( 27)

The proof follows like that in ( 26).

In a neighborhood about x there are values a1 1 and a 12 such

that,

I.- k

1 -t k<- 12 (28)

This follows directly from (19), (24), (25), and the positive definiteness

of G.

In a neighborhood about x , there are two values a 9 , a 1 0 , such

that,

O<ae9< -l I (29)

This follows directly from (7), (24), and (2S).

In a neighborhood of x there is a value a1 3 such that if y, z

are in that neighborhood, and f(y) < f(z), then

II9(y) II :S 13 11g(z) Ii . (30)

In a neighborhood of x there are values a14 ' a 15 such that

II y k I

14 -k < 15

This is easily proved using (17) and the positive definiteness of G

-8- #1012



Let

If -x x*IIy/ =lim sup 0 * (Z
-o-• iix0 -x II!32

c

(Because of (Z7), y,< + co) To prove part (c) we need to show that y =0.

Let I1 be an ordered subset of integers where

_ ' = limy cC

ceI1  c

"Let
Igo II

6 lim inf (33)
"-•C• II 9 If!L

cd 1

Let I be an ordered subset (of I1) such that
,-1 I~n- 

i

8 lir inf -g c 1 iim sup c

-:•2c- • 00I II g II I C--. No I o° 1 1
2CEI

There are two cases to consider.

(1) OSupoC 60. 1Th1en becaus of 26) the fact that f (x n < f~x n-Ian(2)
c

"- (ii) Suppose 6 : 0. " Here a... moife in ucio pr o isrq ie. In-I

th.folowng.t.s..sm . thatu only c ( sp ine fc hare u der <onsideratin. 2 )

I nx Ix 1
•i ~lim C-0.( 34 )

%~~ cc 
•

Hence y=0 for case (i).. ;-

S(i0i) Suppose 6 0 . Here a modified induction proof is required. In

the following it is assuImed that only c' s in Iz are under consideration.

For those c E!I, there is an a16 > 0 such that

""g 035
C - .1]6 ' "-
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In the following there are three propositions I, II, and I11. In

the modified induction proof (modified in the sense that the propo;1iti'ons

are to be proved not for all the integers, just for a subset), superscripts

(e.g. I k) will be used to indicate the integer for which the truth of the

proposition is being considered.

The three propositions are as follows.
kk si k~i

: (g )'si = 11 11 " I 1 -

li 0, (36)

clirc c

wChý.0

for 0<i<k; k l, 1 .. , n-i (

For k n

n i'
(g si nol is 11 -0 0 0'c c

where

im n, i
=rn 0 (37)

for i 0, ... , n-l.

H kG*si i +k, if c c c c

where

-10- #1012



k ' -

r * - l 0, (38)c- o IIs -I

for O<i<k; k =, ... ,n-l.

whCre- a Yc =0, (39) i

n for 0.<i<k; k-=1, n-l.

° t-i
(The relations implied by III are a generalization of those given by j
conjugate directions which hold when f(x) is a positive definite quadratic

form).

We note in passing that in arguments using limits as those i

stated above, if the conclusions are true for a finite collection of terms,

they are true for their sum. This fact will be used implicitly in the

followino proof.

* Proof for k I

I: (g s 0 (from (14)) . (40)

10 0 ! 0  -1III: H G(-c )s =H y (t ) (from (9), (17)).
c c c cc c

0Ss (from (4), (9)) (41)C

-- = IOIZ-1I-



Thub

1*0~ l<o 0o 0 o1 * Ao 0 0i..
=G s G %+H[ -Gi( )]sc.._

(42) s())+H[G -lG* -6)]s ]s

J •o•Da II follows fr om the fact that (G*- G(.•)] -o as o-•=-

-and ( 25 )

s 0 o 1 1* A 0 0
C C cPart fil S Ill~ followsGfrom)hefct that ) - G( ]s asco0

n0 (using (41 then (40)) (43)
, 0 1 0 0

s PG s+ (s )'[G*-Gq n +ls-.

The remainder of the proof follows from the arguments used for part II

SAssume true for k, prove true for k + I •

k+l H-
: A. Case where 2<k+ + I<n-

For i =k, (k+1)1s k =0 (from (14)).
Cc

For. 0 <i<k,

k+l I k A k k i(g iso(% G k )sctc],s 0  (Taylor's Theorem)

k) i k *ik k) A (,k * ik
=(go )Sc + (Sc)'G sctc + (s )'[Gi) oG s t. (44)

The induction hypothesis I k, with (30) and (35) takes care of the first

kterm in (44). The induction hypothesis III with (Z8), (30) and (35) takes

"care of the second term. Part I k+ for the third term is trivial,

S-12- #101Z
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B. Case where k+l n.

Using the fact that f( x < f(x ) along with (30) and the induction
Usa

hypotheses yields (37).

I1k +l For i r k, the proof is identical to that of IIH. For i < k,

k+1*i k*i k k k k k -i k k i
H G s ~HG s -H y[Hy PHyI (y )INHGs
o c = c Sc e0e (c) c oo (Yo a 0 0

C C (45)
k k. i k

The induction hypothesis Il (H0G s s + 8 ') takes care of the

first term in (45). Using it in the second term gives two more quantities,

the second of which

k, kk k k k -1 k) k, i

-H y (y Hy yc] )yH)I yk
cc 0 C C c c 0 C#

k Iyields the desired conclusion because the magnitude of y is an

indep-ndent quantity, (24), (25), and the induction assumption IIk. j
For tble first quantity I,

kk k k k-1 k i
-Hy[yH PH)' y I (y )' 1'

the c ýsired conclusion will follow if a
k i k k ki

(y i)'si I 1y ii ils I11 'c (46)

where
ki

lira ki =0. (47)
Cý0

#•1012 -13-



Now

yk Pi t (S tk)ai (Taylor' sTheorem]
(48)

k k k I=t Q. So) S 0 t ( s0) [G(,nc -G 0s

Because of HI k, and the contiruity of G(x), both terms have the

requirements necessary to show (46) ard (47) hold. The conclusions

for the third term in (45) follows similar arguments. This completes the

proof of 11k+1

III k+: For 1 k.

k+l *k k+I - k k k+1 k k
(s )'G S = (S )'G01 )s + (s )'[Go - 60i )]s

(49)
k+1 G* k k,--0(so)'[ -G (•~~

The usual arguments apply.

For i < k,

sk+ A = (g H+ 'H k+ls* (by definition)
( c C o

-0= (gL+l l(Si + 6k+l, i (by II k+)

C c 0S, 6kl, ooplees he roo o

which, using I k+ and the property on ok+1 , i completes the proof of
c

k+l

-14- #lOl



We shall now show how the desired conclusions follow from Ik

(eg. (37)).

First, note that because of III the matrix

ý(so l .s, 1 S1 1) n5o)-I

for all o large has an inverse, and I
lir inf Idet( So) I > 0.

C-00

This follows because it is easy to show from III that any limit set of

vectors in the matrix S above must be linearly independent. i
cI

Then, using (37) and solving for g C

o (g l) _ g011[ [n,O, 0 * on, n-li(c-I)

n i
Since the nci s all have property (37), for case (ii), part (a) of

the theorem follows from (26) by taking the norm of both sides of (51). Q, I. D. I
tA,, obvious corollary ol this theoream follows from ii,

Col Convergence to the Inverse Hessian]

Under the assumptions (1) (2), and (3) of Theorem 2, for c I

lrn II[Hn- nl(G -- 0, for all s. (52)
C--+'0

If a Lipschitz condition is placed on the second derivatives of f

it is possible to show that the rate of convergence to the strict local

minimum is at least quadratic for certain subsets of integers.

-i 0-5



a [Quadratic Rate of Convergence]

if: (1) in a neighborhood of x there is an a 3 suoh that for any y, z

in that neighborhood, for any J, (j 1- l .. , n)

Ib ( f( y ) / Dx iO x - b f ( z ) / Dx iD Ix L5 3
1=1i(3)

_<- i II& - zi , [Lipschitz Condition on second
n it 'rivativ's of f]

(2) the RDVMM is applied to problem (1),

(3) G is a positive definite matrix,

then: (a) There is an a4 such that *or c large,

c 4 0

for c I any ordered set of integers with the property that

lim inf - > U (55)

(The qualification on the set of integers for which "at least

quadratic" convergence can be proved is needed because if the gradient

of f "drops an order of magnitude" during a group of iterations before

the n th point, the Induction step I k+ (see equation (44)) falls.

This drop in magnitude contributes to the superlinear convergence

(see Theorem 2), but it may not be as high as quadratic.)

-16- #1012
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Proof# The proof of this theorem uses many results of the proof of

Theorem 2. To avoid duplication, results from that theorem will be used,

First, we note that case (it) obtains sinoe 13 is a set of Integers being

the same properties as I (compare(.33) and (55))0

As in Theorem 2, three propositions need to be proved.

(g )IS, s ig i 111 ki , where

!ki k,i l 0 -x II (56) mC_-- 0 C

C c C~

lirn sup a < + 0 . (57)

for 0<1 < k; k- ...1 , n-I.

For k -n,

(,n, gI 1 0  11s11Efl l , (58)
" ' : I• , I~ II~n' , , I

where c have the properties implied by (56) and (57).

k *A, i
11. 11 G s' T'

0 0

where

- C < X1×0 - * 11

Si c
C

wh ere

lir sup PC < + 00

for 0<i <k; k 1, .k . , r-I.

4F 41012 -17-



III1 (s )' k Gm S I I II ' I• II .

where

I k,1i k, 1 0 11

wh ere

lim sup k, i 0

O .- O0 0

for O<i<kl, k =1, ,., n-l.

Analysis of these statements and a comparison with those of

Theorem Z show that the difference is that the terms that vanish in

Theorem 2 are said to vanish (roughly) at the rate that l1 x0 - x* 0.0

To write out the complete proof would duplicate most of the proof

of Theorem Z. It shall be sufficient to analyze that vanishing quantity of

equations (44) which is not involved with the induction hypothesis,

Thus k kII
< 1k I(G~~)-G*Isi t, (59

C ~ (59)

1,T a U

0 o n k,0 . * k

.j1

(using (15), (16), and (53)).

-18- l #012-



For J 1, ... , n it follows from (18) and (Z7) that

LInk . x* ae a8 11t xk• _ ×• i
cC

Using this In (59) the chain of inequalities continues as

: ' ' " li x' " x II' ,II . 1 81 11 tct c,, it ., ), cn* 1 tk(
c C

(60)

c 3a 8 ?.lix - x~l

(using the fact tha~t f(x < <f(x0 ) with (V) , and (28),
C C

Thus (60) is of the form required in (56) and 5~7), Q.E. D.

Corollnry 2,

Under the assumptions of Theorem 3, there Is an a such that for

c large, end cl,

i 0-cIN (G*) ]zl 018 lIx~xI C lXzi

for all Z.

Proof: The proof is similar to that of Corollary 1.

The Important observation about all this is that Theorems 2 and 3

on the rate of convergence would also apply if the resetting occurred at

the nth end not the (n-i1)th point. That is, If 1(0) were replaced with

"(k ME)i 0 modtn)" Instead of "(k+1) I 0 rnod(nq 1) This empbns1zes the

tentative conclusion of McCormick and Pearson [ 11 that the rate of convergcnce

,-19



of Davidon's Variable Metric Method depends on its coniugate direction

properties not on the fact that if corollary 1 holds it is also a quasi-

Newton method.

For the original DVMM Powell [ 5] has shown that convergence to

a stationary point is guaranteed when the function to be minimized has a

Hessian Matrix whose eigenvalues are bounded below away from zero. In

Theorem I it was shown that the RVMM converges when just the continuity

of the first derivatives is required. There is experimental evidence in

McCormick and Pearson [ 31, to indicate that without the resetting feature,

'- - the DVMM can fail to converge for a nonconvex function.

In [5] Powell showed that the rate of convergence of the DVMM is

every step superlinear if the second derivatives of f are Lipschitzian.

Under the same assumption in Theorem 3 it was shown that the RVMM could

be expected to exhibit a quadratic rate of convergence every n steps.

Furthermore, with just the assumption that the eigenvalues of Vf be

bounded below away from zero, the RVMM has n-step superlinear conver-

gence. In the first case it seems reasonable that an every step superlinear

rate of convergence would be better than n-step quadratic rate. There is

currently no theoretical analysis of this statement.
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