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ABSTRACT

The rate of convergence of the Reset Davidon Variable Metric
Method for minimizing an unconstrained function of n variables is
considered. If the limit point of *he sequence of points generated by the
method is a stationary point with a positive definite Hessian, the rate
of convergence is guperlinear with respect to cycles of n points,

With an additional Lipschitz assumption the rate of convergence is shown

to bo at least guadratic for subsets of ¢cycles of n points.




THE RATL OF CONVERGENCE CF THE RESET
DAVIDON VARIABLE METRIC METHOD

Garth P. McCormick

Introduction

- The Variable Metric Method proposed by Davidon { U} for solving ‘-
= the unconstrained minimization problem J ,
z minimize  f(x) (1) i '
where X = (xl, saey xn)' and fe C)1 is summarized as follows, : _.
Davidon Varisble Metric Method ( DVMM) '
110
STEP 0: Let H0 2 gsome arbitrary symmetric positive definite matrix id ""
0 0 " 1 .
(2'H2>0 forall z#0), x besome arblivary initial 1 "
starting point. GSet s' = -H Ogo. Procesd as in the general step f :
13
k+1 at equation (8). .
-
STEP kel e |
k+1l; Atpoint x 7, (k=0,...,) let HEL 3
|
o K=Kt xk, (2) i %
13
‘—, i
{
k k+l k i3 A
y =g - g {3) |
<k kR, ok, Kok . .
Hk'“EHk—H}\yl;yk(y}}'d +0'}r($ (G'k)'; {(d4)

Sponsored by the Mathematics Research Center, United States Arny, Madison
Wisconsin, under Contract No.: DA~31-124-ARO--4H2.
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o k -1
&= 1y iR (5)
k K., k.=l
s (e )y ), (6)
where
k k., .
g~ & Vi{x )}, the vector of first partial derivatives

of f(x) at xk. Let thao direction vector at ka be given by

RS ﬂHkJ.-lng ‘ 7

Let tk+l be the smallest local minimizing point of the one dimensional

programming problem:

mintmize f(xk"‘l q sk+1t) . : (8)
t20
Let
<Y :
X +2 = }(k+l . Sk+ltk+l . (9)

F2 . k
Repeat the step for xy Y Ifat any iteration k, g =0,

the procedure ceases,

Fleticher and Powell [ 2] chowed that the above DVMM minimizes

f(x) where f(x! is a positive definite gquadratic form in n steps or fewer.

No one has been able to showl that for a general function f(x),
limit points of {xk} are statiopary points (points where the vector of

"
first derivatives vanishes). Also given that a limit point x is a

- >

lThe author has just received a copy of a paper by Powell [ 5] who proves that
the VMM converges to a stationary peint if f(x) is a twice differentiable
convex function whose Hessian matrix has eigenvalues bounded below away from
zero, Powell also shows that the rate of convergence is superlinear every step
for this case if an additional Lipschitz vondition is placed on the second
derivatives of f{x).
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stationary point, no one has been able to ascertain the rate at which the
sequence {xk} converges to x*. Below {38 given a simple revision of

the DVMM called the Reset Davidon Variable Mntric Method (RDVMM) .

For this rcvised algorithm a statement of convergence is given in Theorem |,
ancl proofs of the rate of convergence in Theorems 2 and 3. In the

discussion following Theorem 3 the differences between the convergenoe

and rate of convergence of the RDVMM and the original DVMM are given,

peset Davidon Variable Metric Method ( RDVMM)

Instep k+1, if (k+1) 20 mod(n +1), then set

Hk\‘-l = HO (a symmetric positive definite matrix). (10)

Then equations (4) - (6) are bypassed.

It is useful here to state without proof some properties which apply

to beth algorithms,

For all k, H'c is a positive definite matrix. (1)
. k k

The diraction vector s = 0 if andonly if g =0, (12)

Unless s =0, f(x*) < g5y . (13)

}
Because of (8), and the fact that fe C*,

$10)2 -3
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(g )'s =0, (14)

f.e. the gradient of each point In the sequence {s orthogonal to the previous

2 direction,

‘; If fe CZ. using Taylorts thecrem, for j =1, ..., n,
>
g ko2 k k

vE oY (ePrn™ ) ok ox ek (15)
; ,
N k,J ‘ . k k+1
where each n is a convex combination of x and x . [t is convenient
to define a matrix G(nk) whosa i,jth element 1s
i o%t(n' ") fox o, . (16)
Then the equations expressed by {15) ¢an be summarized as
. k - k k
’ ) y =G{n e . {17
1

. Furthermore, because of {(8), for j =1, ..., n
1

M) < 8n® ) < 1) (18)
bi-

- where either equality holds in (18) only if '
' N U I S .- ;
: | The formula for tk, using {2}, (7), (9), (14) and (17) 15 :
. tk - (gk) ‘Hkg}:/(g}:) ‘I—Iké(nk)Hkgk ‘ (19)

#1012
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for the RDVMM it 1s useful to divide the sequence {xk} into overlappg

groups of {n + 2) polints. The subsoript ¢ will be added to indicate the &
group (¢ =1, ,..), and the superscript kK will be used to indicats the ;’\ 2
i ;
order within the gqioup (k =0, 1, ..., ntl), § -
3
The last point of each group is the same as the first point of the i
R next group. The sequence then looks like g
- £ 5
- (P
0 ’
7 Xl y by xlll*L ;; . ».’
= 0 ntl i
xz’ LI N | ’ xZ :it ':
- o
3 ? xll+1 [
i - C L
- o eenil
= E 0 § il
= c+l’ e . ?. - :
£ i i
-z It is now possible to state a convergence theorem about the RDVMM. & i
= Theorem 1 [ Convergence of RDVMM]. i I
S o -
o = N .
3 = Assume f¢ Gl. If x 1sa limitpoint of {xg} generated by ? ‘
E: = the RDVMM, then S f
o
* ¢ .
' g = Vi(x) = 0. (21}
Proof: The proof follows from (10), (7)., (8). (9}, and the arguments used ;
' i
in [ 4, Theorem 1]. Q.L.D. P
E i V
3 41012 -5 S
; i :
; 4 y
-




[\
well-known necesgary conditions that % be & locel unconstrasned

mintmum of {{x) are that it be a stationary point, (i.e. that {21} hold)

S and that (if feC2).
»* e
s Vs

be a positive semi-definite matrix.
»n
Suffiglient conditions that x an on {golated local unconstrained

minimum are that (21) hold and that

0t
G be © positive definite matrix. {22)

It 1a for & limit point satisfving (21) and (22) that raie of

convergence can be determined.

T b R Uy

i Thooren 2 [ Superlinear Convergence].
2
‘ Ift (1) f«C",
:
i (2) tho RDVMM is applied to problem (1),
( ! FIRRY " ) 0, Lo -
— taen: {4} overy it point X ol \xc,r is o stationary point, e
¥
; If, in addition, '
% E] ?
3 (3) G is a positive definite matrix, .
4 : 4
.1 N d 3
thent (b} x 1is the unigue point of acoummulation of {xk}, and 4
(c) with respect to the grouping { 20),
|
: S
N 3
H “f #1012 |
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[Ny
llxg -x N

Mo — 5 =0 (23)

i X = ki
f.e., convergence 1ty 2uperlincar with respect to every n points within a

group.

'roof: Part {a) Is just Theorem 1, part (b) followa from (8) and (22).
The proof of part {(¢) will consist of o scries of asserltions.

There are two numbers @ and . such thet if )\.k is an

2

eigenvalue of Hk, and k 1is large,

0<a <A, (24)

also

iinslljaZ”su, for all s, 125)

This follows because the third term of {4) ~an ke written

.ov *
k)qkl l(qk)‘ and in a neighborhood of x , the ot novalues

k k., =
o [{o ) G(n
of é(qk) are strictly positive and bounded below away trom 2orve,
*
In & neighborhood about x there are twao finite positive numbers

o

6 %9 such that for y {n that neighborhood,
* *
g lly =2l < Haiy g o lly - x711, (26)

whara g(y) @ V{(y). This i{s provod using a Taylor's expansion on gly), the

*
stationarity of X and the positive definiteness of G .

#1012 .
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*
In a neighborhood about x , there is a positive value a8 such that

for y, z in that neighborhood, if f(y) < f(z), then
* %
ly = %"l < ewgllz - %Il . (27)

The proof follows like that in (26).
%
In a neighborhood about X there are values au and @5 such

that,

0<a,<t <a,. . (28)

_This follows directly from (19), (24), (25), and the positive definiteness = ':

of G*.

S
In a neighborhood about x , there are two values « such

9 10’
that,

k
o<a_<_J1—‘°‘—-“—ga . (29)

This follows directly from (7), (24), and {25).
*
In a neighborhood of x there is a value @3 such that if y,z

are in that neighborhood, and f(y) < f(z}, then

loty) ll < apsllatrll . (30)

%
In a neighborhood of x there are values a

14’ %15
k
l Yo, I |

Mg 2T S
o2 1

such that

0< (31)

x*
This is easily proved using (17) and the positive definiteness of G .

~§- #1012
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<™ - x|

y = lim sup

e -] (32)

(Because of (27), y< + «.) To prove part (¢) we need to show that y = 0.
Let Il be an ordered subset of integers where
n E
- x|
. C
y= lim 0 .
c—o |lx_ -x |
c
cel
Let
n-1
gl ,
6 = lim inf 5 (33)
c=on g |
c
cel
2 . -
Let I~ be an ordered subset (of I') such that
n-1l n-l
g™ [P
6 = lim inf = = }iim sup ———
gl - g0
Q- m gc C o0 | gC
cel cel
There are two cases to consider.
i Q I T lamns: o YA ST . , 0 .. n-l .
(i} Supposc §=0. Then becauseof {26), the factthat f(x ) < fix ), and (27),
n %
lIx, -~ x|
lim 0 - = 0. (34)
c—eo fx -x || '
2
cel
Hence y = 0 for case (i).
(ii) Suppose & > 0. Here a modified induction proof is required. In
2
the following it is assumed that only c¢'s in 1° are under consideration.
2
Tor those cel , there is an @) >0 such that
o'l 2 g, 1<t gn-1, (35)
c = 16" 7c? "=
#1012 -9-
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In the following thare are three propositions I, II, and Iil. In
the modified induction proof (modified in the sense that the propositions
are to be proved not for all the integers, just for a subset}, superscripts
(e.q. Ik) will be used to indicate the integer for which the truth of the
proposition is being considered.

The three propositions are as follows.
. k (A ki . i k,i
1 (ef) s = ok - skl - Bt

wh. 2

for 0<i<k; k=1, ..., n-1.

For k =n,

n,i_ 5.0 i, n,i
(s = Il Hsbl - &

wne

ot
]

for i =0, ..., n-l.
X

II: HkG s =s +6k’ ,
c c c

where

-10-

(36)

(37)

#1012
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for 0 <i<k; k=1, ..., n-1.

me (s%) ¥t = K] . el |l . 0o
c ¢ o) ¢ Yo

where

k,i___o

lim Yo ,

¢

for 0 <i<k; k=1, ..., n-l,

(The relations implied by Il are a generaljzation of those given by
conjugate directions which hold when f(x) is a positive definite quadratic
form).

We note in passing that in arguments using limits as those
stated above, if the conclusions are true for a finite collection of terms,

they are true for their sum. This fact will be used implicitly in the

following proof.

Proof for k =1

g,
=
Iy
=
f:%f
.

o (gi_)'sg:o (from (14)) .

! 0

1 A 1
' H G(n)s

= Héyg(tg)- (from (9), (17)).

o}

{from (4), (9)) .

NS T LS 1 R 1 RS
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3 Thus f
1. ¥0 14, 0 0. 1 % 4 0.0
3 B Gs, = HCG(QC).,C + I-IC[G G:(nc)]sc
L (42) . i
d _.0 Lo x4 0 0 , '.-
=5+ HC[G G(nc)]sC . E .
E 1 * 0 -
; Part II" follows from the fact that [G - G( nc)] -~0 as ¢ —~ E 4
H b g
. and (25). E ]
1 1, %0 1,4 0 0. 1 . % 2 0.0 i
I (so) Gs,_ = (sc) G(no)sc + (sC) (G G(nc)]sc
= 0 (using (41) then (40)) (43) 5
:". ' 7 'E
Lyrg® - &a%1s°
h + (Sc) (G tzl(‘flc)]sc . , 5
N ‘ The remainder of the proof follows from the arguments used for part II1 . 4
3 e k. 3
; hssume true for k, prove true for k 41 -
* % Ik+1: A. Case where 2<k+1<n-1.) : A J
Lo -
j For i =Kk, (g’c‘“r si =0 {from (14)). 4
: . il
} For 0 <i <Kk, E i
i K+l i kK, a, ki kki i
) = 1 ' n
:oy (gc )'sg [gc + G(nc)sctc] S (Taylor's Theorem) ]
i : §
Kyl k., ¥ ik Ky o, ky_ % ik ! o |
l i _(gc) sc+ (sc) G sctc + (sc) [G(nc) G ]scts . {44) _
% i The induction hypothesis Ik, with (30) and (35) takes care of the first
5 -
: term in (44). The induction hypothesis HI® with (28), (30) and (35) takes
V ,. ; care of the second term. Part Ik+l for the third term is trivial, R
» : ]
{ . .
- - -12- #1012
. -
3 - . - |
0] z - 4
b -
: — | |-
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B. Case where k +1 =n.
n=i
x
c
hypotheses yields (37).

Using the fact that f( ) < f(xg) along with (30) and the induction

IIk‘H: For 1 =k, the proof is identical to that of IIl. For i <k,

*
HkHG i l; %® i

. Cakoke ke ook k=l ke, kRS
- s,=H G s ~Hy (v )'Hy] (v )'HGSs,

* 1
o

.

Ko, k., k=1 k
to lle )y ] e NG

. ‘ k, ok *i i _k,i
The induction hypothesis II (HCG sc = sc + ac ) takes care of the
first term in (45). Using it in the second term gives two more quantities,

the second of which
ko k Ky, oK ki~ ko, K,d
Hoy [y ) H vy ) 8,

vields the desired conclusion because the magnitude of yz is an

indepu:ndent quantity, (24), (25), and the induction assumption IIk.

For the first quantity

k ke, ko, k k=l ko i
Hy [y )'By ) (v )'s .,
the ¢ 3sired conclusion will follow if
ke, i kL woig . ki .
tyg) sy =y, I lls llony™, (46)
where
lim }Lk’l =0, 147)
c=ro0 ©
41012 “l3-

s

i ¢ gl
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Now

(yki's1

o 80 " {Taylor's Theorem]

kK, Xy, &, K 1

tc(sc) Gingls,,
(48)

S S JE U P SN

-tc(sc) G sc.tc(sc) [G(nc) G ]sc .

BecAause of IIIk , ard the contiruity of Gi(x), both terms have the
requirements necessary to show (46) and (47) hold. The conclusions

for the third term in {45) follows similar arguments. This completes the

proof of IIk+1 .

m*: ror 1=k,

Kkl
s
o]

* ko kbl o ko ko kel ook 8 koK
(sg7) G sy = (s ) Glngdeg + (s ) [G = Glng) s

(49)
=04 (K6t - Gnbst

The usual arguments apply.

For i <k,
[0 PR JS G < ) S 3 3 LU
(sc )'G sc = (gc ) I-Ic G S. { by definition)
k1 k+l,1 k+1
= (st 4w sty
(o} o] c
which, using IkH, and the property on 6};”’ ! completes the proof of
m*H
~14w #l012

3
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We shall now show how the desired conclusions follow from i 3

3 E

(eg. (37)). ]

. i . 5
First, note that because of III the matrix 4 3

: ¢ g 00yl n-1 § n=ly-1 ‘ b g

. for all ¢ large has an inverse, and 3

- lim inf |det(s%)| > o. E k

- E ¢ £ i
.- This follows because it is easy to show from III that any limit set of -
E vestors in the matrix §_ above must be linearly independent. 3
z Then, using (37) and solving for gg, .

i ney _ 1.Opp .0, 0 n, n=l,, .0, ~1
B (g0 = Noglled™s vovs e IS (51) ;_ )
= Since the <115 all have property (37), for case (ii), part (¢) of 1 2 j
o
L the theorem follows from (26) by taking the norm of both sides of (51). Q.L.D. q B

i = ‘;

. An obvious coroliary of ihis theorem foliows from Ii. e :
= i
.= § Corollary 1 {Convergence to the Inverse Hessian] g 4 l
e Under the assumptions (1), {2}, and (3) of Theorem 2, for ce I'z , '_-%’-r ;
= n % =1 r‘% ;
I im |[[H. - (G") ']sll =0, forall s. (52) g i
- c—*+00 ¢ B ,
l T If a Lipschitz condition is placed on the second derivatives of f E -
4 = it is possible to show that the rate of convergence to the strict local : 1
= s - i

= b ¢
! = minimur is at least quadratic for certain subscts of integers. 3 ‘ :
.
| e E F
kI = #1012 ~-15- -3 ;
H
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Theorem 3. [ Quadratic Rate of Convergence ]

*
Ifs (1) in a neighborhcod 6f % thers i3 an «, such that for any y. 2

3

{n that neighborhood. forany §, (J =1, ..., n)

ll‘ 2
|2 (0%(y) /ox,ox

2
b 0 f(g)/exlaxj)a1|

(53)

o
_<=-[-13— *llsll - lly = 2ll, [Lipschitz Condition on second
darivatives of ]

(2) the RDVMM is applied to problem (1),

&
(3) G 1s a positive definite matrix,

then: (a) There is an «, such that tor ¢ large,

4

* 0 3
I® = XMl <o %0 =~ £*)1? (54)
o] 4" ¢

for ¢¢ 13, any ordered set of integers with the property that

n=l
g, "l
im inf - 5
o= ol

3
¢l

=6>0, (55)

{ The qualification on the set of integers for which "at least
quadratic'' convergence can be proved is needed becauss if the gradient
of £ 'drops an order of magnitude" during a group of iterations before
the n th point, the induction step IkH {see equation (44)) falls,
This drop in magnitude contributes to the superlinear convergence

{see Theorem 2), but it may not be as high as quadratic.)

o [ #1012
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Proofs The proof of this theorem uses many results of the proof of
Theorem 2. To avoid duplication, results [rom that theorem will be used.
First, wae note that cagse (11) obtains since I3 is a8 set of integers being
the same properties as IZ {compare(33) and (55)).,

As in Theorem 2, three propositions nead to be proved.

. koo d R o oLy kel i
I (CJC) SC=”00” ||sC||eO , where
k,1 k,iy 0 #
AP R (56)
Hm sup ak’i < b0, (57)
c
Q =+

for 04 <ky k=1, ..., n~l,

For k =n,

ny, 4 T Lg.n,i
(g5) '8, = Mo ll v N llel™, { 58)

|

i
BY

ki 0 _ %
28, ”xc x|

where
Ko
Hm sup et o,
c
c—

for 0<i<ky k=l ..., n=l,

¥1012 =17-
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k,, ¥ 1 k TR W |
UL (sg) Gao=llscll e, I Yg
where
k,1 k,1 0 W
< ! X o=
et s ot g - 5"l
wheara

k,1
Iim sup W

=

<4,

for 0g1<ki k=1, ..., n=L,
Analysis of these statements and & comparison with those of
Theorem 2 show that the difference is that the terms that vanish in
Theorem 2 are s&id to vanish (roughly) at the rate that | xg I
To write out the complete proof would duplicate most of the proof
of Theoram 2. It shall be sufficlent to analyze that vanishing quantity of

equations (44) whigh is not involved with the induction hypothesis.

Thus
!(s’;)'[cﬁh-.’c‘) - G*]s;tZI
P P I TR Tet P (59)
< sk - us;ni}%[;z‘;l EERRIINS (59)

(using (15), (16}, and (53)).
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For j =1, ..., n it follows from (18) and (27) that

(K R
<nhxc-x ||

Kyj
Ilnc x g 8

Using this in (59) the chain of inequalities continues as

N

S O T S TR
S UKl Hobll oy g e I - K

(60)
ix2 - "
Il«‘(c X

M

k t 2
I P R

1z

(using the fact that f(xz) < f(xg) with {27), and (28)),

Thue (60) i3 of the form required in {56) and {57), Q.E.D.

Corollary 2,

Undsr the assumptions of Theorem 3, there is an "g such that for

¢ large, and ceIg.

K - 0 ]
II[H';- (6" el e lec-x* e lell

18
for all z,

Prools The proof is similar to that of Corollary 1,

The important observation about all this {s that Theorems 2 and 3
on the rate of convergence would also apply if the resetting occurred at
the nth and not the {(nitlith point. That is, if (10) were replaced with

"(k+1)& 0 mod(n)" tnstead of "(k+l) = O mod(n+l)." This emphasizes the

tentatlve conclusion of McCormick and Pearson [ 3] that the rate of convergence

#1012 ~19=
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of Davidon's Variable Metric Method depends on its conjugate direction

properties not on the fact that if corollary 1 holds it is also a quasi-
Newton method.

for the original DVMM Powell [ 5] has shown that convergence to
a stationary point is guaranteed when the function to be minimized has a
Hessian Matrix whose eigenvalues are bounded below away from zero. In
Theorem 1 it was shown that the RVMM converges when just thce continuity
of the first derivatives is required. There is experimental evidence in
McCormick and Pearson [ 3], to indicate that without the resetting feature,
the DVMM can fail to converge for a nonconvex function.

In | 5] Powell showed that the rate of convergence of the DVMM is
every step superlinear if the second derivatives of { are Lipschitzian.
Under the same assumption in Theorem 3 it was shown that the RVMM could
be expected to exhibit a quadratic rate of convergence every un steps.
Furthermore, with just the assumption that the eigenvalues of Vf be
bounded below away from zero, the RVMM has a-step superlinear conver-
gence. In the first case it seems reasonable that an every step superlinear
rate of convergence would be better than n-step quadratic rate. There is
currently no theoretical analysis of this statement,
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