-AP707788

April 1970

<

Memorandum 27

CONCOMP

MOMS: MICHIGAN'S OWN
MATHEMATICAL SYSTEM

Robert W. Taylor, Editor

Reproduced by the
CLEARINGHOUSE
for Federal Scientific & Tec chnical
Information Spri ingfield Va. 22151

docament a3 neer FODTOV
puhlic :miecxs 1n9 gaie: s

AWrtbaitor s annmites

I

M@

JUN w0 970

uuuw.s

BEST
AVAILABLE COPY

UNIVERSTITY 0O F MICHTIGAN

Memorandum 27

MOMS: MICHIGAN'S OWN MATHEMATICAL SYSTEM

Robert W, Taylor, Editor

CONCOMP: Research in Conversational Use of Computers
F.H. Westervelt, Project Director
ORA Project 07449

supported by:
ADVANCED RESEARCH PROJECTS AGENCY

DEPARTMENT OF DEFENSE
WASHINGTON, D.C.

CONTRACT NO. DA-49-083 O0SA-3050
ARPA ORDER NO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

April 1970

, te

PREFACE

This report describes an interactive mathematical

system with graphical input and output capabilities.

The system was programmed during the winter of 1968

by the members of the advanced systems programming course,
Computer and Communication Sciences 673, under the direc-
tion of Professors B. Arden, B. Galler, and L. Flanigan.
It runs on an IBM 360/67 computer with 2250 display oper-
ating under MTS, the Michigan Terminal System,

Shortly after completion of the project, the 2250
display was removed from the Computing Center. This
accounts both for the lack of photographs and the delay
in publication.

The members of the class wish to thank the Depart-
ment of Computer and Communication Sciences and the
University of Michigan Computing Center for the support
necessary to carry out this project,

Persons wishing further details should contact
Professor Bernard Galler at the University of Michigan

Computing Center.

List of Class Members of

Communication Sciences 673:

. e

Neil J. Barta
Bruce J. Bolas
Ronald F. Brender
Michael S, Feldber
Daniel R. Frantz
Ross H. Hieber
Charles G. Moore
Robert E. Nicholls
Norman L. Schryer

Frances Stephenson
John S. Tripp

Robert L.
Jay A.
Richard W. McHard
Ronald J.
Robert W. Taylor

Feldman

Jonekait

Srodawa

Pertr H. Wilcox

vii

System Programming

g

BLANK PAGE

TABLE OF CONTENTS

PREFACE « « v« v v v v v e e
1. INTRODUCTION ., . . . « « v « v o« v v v v o &
2, HOW TO USE MOMS .,« . .

2.1 Data Types in MOMS .,
2.2 The Predefined Buttons

The Declaration Buttons

Editing and Control Buttons . .

Definition of New Buttons

and Constants

2.2.4 The Display Operators: PLOTI1,
PLOT2, SETPLPMD, SCALE, DISVALUE,
SCROLLUP, SCROLLDN. . . 0 o 8

2.2.5 Screen Viewing Operators.

2.2.
2.2.
2.2

NN =

THE MACRO PACKAGE . . . « « « + « « « «
Defining a Macro« « « + « .« o .
Deleting a Macro . . « + + « ¢« o « « o+
Calling a Macro.« + « « . .

Displaying a Macro . . . « « .« . .

W N W W W
[T N 7 I C

Examples .« « « « o « « o o 0 0 0 0 0 e

THE MATHEMATICAL OPERATORS. . . .
4.1 The Arithmetic Operators . .
4.2 The FORTRAN Library Subprogram Operators

4.3 The Integration and Differentiation
Operators. . . .

4.4 Additional Examples. . . « . .« .« « . . .
A DETAILED EXAMPLE. . . . + « « + « . .
DESIGN CONSIDERATIONS . . . « « « « « « .
THE HIERARCHY OF THE SYSTEM

THE INTERNAL ORGANIZATION OF MOMS
8.1 Initialization

8.2 The interpreter.

ix

LT

N O AN

[e]

12
13
14
14
15
16

17
17
18

20

20

20

23

25

27
30
32

Table of Contents, continued

(0 O O

oo 00 oo

o

O 0w g O U

8.2.1 Operator Call and External
Specifications, .

8.2.2 Internal Spec1f1cat10ns and

Operator Calls . . c

Button Queue Processor (INTR\N)

Brief Description of Stack

Manipulation Processor (INTJOHN).

Symbol Table Management Routines . . .

8.3.1 Symbol Table Entries
Macro Descriptions.

List of Macros.

Symbol Table Managemen. .

oo 0o 0o
(L N 7]
H NN

Light-Pen Management Routines.
Keyboard and Numeric Display Routines-
Function Display Routines.

2250 Buffer Management Routines. . . .
The Macro Processor. . . .« « « « + « &

Mathematical Operators

8.9.1 Program Logic

8.9.2 Nonfatal Handling of Arlthmetlc
Errors. 5 0 o o

8.9.3 Allowable Mode Comb1nat10ns and
Automatic Mode Conversion

8.9.4 Meaning of Vector-Scalar
Combinations

8.9.5 Notes on Other Operators (Not
Calling FORTRAN Library).

8.10 Utilities.

36

49
52

64
64

69
74

83

90
.108
.126
. 141
.150

. 150

151

.151

152

.153

. 154

1. INTRODUCTION

During the past several years, online mathematical
analysis has received increasing interest [1,3]. These
systems have been interpretive in nature, allowing a highly
conversational approach to problem solving, and their
usefulness in attacking complex mathematical problems has
been demonstrated [2]. As stated in [1], these systems
are generally characterized by a keyboard or pushbutton
form of input and a graphical form of output. The output
is sometimes also available in printed form. More signi-
ficant is the fact that all systems allow a variety of
data types, often including matrices, allowing a wide range
of problems to be attacked. Finally, the languages employed
by users of the systems are simple to learn but have a
definitional facility which enhances flexibility.

During the 1968 winter term, the Computer and Communica-
tion Sciences 673 course, in order to understand more
fully the internal workings of such a system, decided to
build one of these systems as a class term-project.
Michigan's Own Mathematical System—MOMS—is the result., It
runs under the Michigan Terminal System, MTS, on an IBM
360/67, using an IBM model 2250 display console for both
input and output. Because the project was to be completed
in approximately fifteen weeks, it was necessary to restrict

somewhat the allowable data types and certain other special

, e

-2-

features. Nevertheless, a large variety of problems may

still be attacked using MOMS.

2. HOW TO USE MOMS
A user at a 2250 console may use the MOMS system by

issuing the MTS command
$RUN *MOMS

The MTS temporary file -MESSFILE will be created, and
the user may examine this file to obtain a history of all
error messages provided during his run.

When execution begins, the 2250 screen will appear
as shown in Figure 1.1. Various words—the light buttons—
appear along the vertical edges of the screen. These light
buttons define the various commands that the user may issue
to the MOMS system, and are analogous to the '"function
keyboard" of various other systems [3]. At the bottom of
the screen is the so-called Virtual Keyboard. This con-
tains the buttons A through Z, which may be used to store
data, as well as the predefined buttons 0 through 9,
and various other commonly used system buttons. Just
above the Virtual Keyboard is the Echo Line. A recent
history of various light buttons that the user has pushed
will appear here. The rest of the 2250 screen is used to

display the results of computations, both in graphical and

alphanumeric form.

the lower portion of this area.

-3-

SCREENA
SCREENB
SCREENC
ABS
ARCCOS
ARCSIN
ARCTAN
ARCTAN2
cos
COSH
COTAN
ERF
ERFC
EXP
GAMMA
LOG10
LOGE
LOGGAMMA
SIN
SINH
SQRT
TAN
TANH
DIFF
DIFF2
INTEG
INTEG2

Messages to the user are displayed in

1.0

e—

-1.0

-1.0

MESSAGE:

ECHO: ID ID PLOT2

ABCDEFGHIJKLMNOTPZQ
RSTUVWXYZ+ -

* / **®

012345673889

DIMENSHN
SETID
DEFCONST
BAKSPACE
DEQUEUE
LITNEXT
DEFBUTON
DELBUTON
SKTPLTMD
ID
PLOT1
PLOT2
SCALE
DISVALUE
SCROLLUP
SCROLLDN
CLEAR

+

*

/

**®

DEFMACRO
ALPHA

PROG.
FUNC.
KBD.

2250 KEYBOARD

Figure 1.1

(2]

-4-

The user makes input statements to the MOMS system by
pointing at various light buttons with the light pen. A
result of a pointing sequence will appear on the Echo Linc.
The syntax of the input statements is operator postfix

notation. Nesting is allowed. Thus, for example,

A B +
A BC+ +

BB*4AC™*™* - D=

will add A to B ; add A,B, and C ; compute Bz-4AC
and store it under button D , respectively. The user
may edit his input statement using system operators and
eventually request interpretation of the statement and
display of results, either in graphical or alphanumeric
form. Various declarative and definitional capabilities
are provided to enchance the flexibility of the system.

These are discussed in detail in Section 2.2.

2.1 DATA TYPES IN MOMS

The current version of the MOMS system has four data
types: scalars (real*4), vectors (real*4, dimension=101),
vector-pairs (two vectors concatenated), and macros.
Provision was made in the design of the system for complex
scalars, complex vectors, and complex vector-pairs (as

well as real*8 and integer modes), but they are not yet

-5-

legal data types. The dimension of 101 for vectors is a
default case and may be changed by the user using the
DIMENSHN button as in Section 2.2.1.

There are currently several restrictions concerning
the mode combinations acceptable to the various mathematical
and arithmetic operators. In general, the user will not
have to be concerned with mode incompatibilities, since
almost all commonly used mode combinations are acceptable.
However, should the default data types prove unacceptable
for certain problems, care should be taken or unacceptable
mode combinations will produce error messages.

The following facts summarize the default mode type
conditions for operands.

1. All defined constants are scalar, real*4,.

2. Vector pairs may only be created by using a

displayed graph as an operand.

3. Vector pairs are acceptable to any operator which
accepts vectors. Only the "range'" part of the vec-
tor pair will be used. (This facility allows dis-
played results to be used in further calculations,
and has been found extremely useful.)

4, The arithmetic operators + , - , * , / , and
** take two arguments, of which g¢jther both are
vector, real*4 (or vector—pair), or one only may
be scalar—real or scalar—integer. The result of

these operations will be vector real*4.

-6-
5. All other operators, except = , accept only
vectors or vector-pair.
6. = will accept any mode combination. The following
conventions are observed:
a. vector substituted into vector: <clear;
the dimensions of the two vectors must agree.
b. vector substituted into scalar: the first
element of the vector is copied to the scalar.
c. scalar copied into vector: produces a constant
vector as the result.

d. scalar substituted into scalar: clear.

2.2 THE PREDEFINED BUTTONS
A more systematic description of the system buttons

will now be given.

2.2.1 The Declaration Buttons

There are two major declarations which the
user should make immediately after execution begins, if
the default case is not acceptable. The first of these
concerns the dimension of the vector data type. The
default case for vectors is 101 entries. If the user
wishes to change this standard dimension, he should point
at the desired dimension (which may involve the definition
of the constant, see Section 2.2.3) and then point at the
DIMENSHN button. For example, the following sequence

sets the standard dimension to 201 entries:

DFCONST 2 0 1 DEFCONST DIMENSHN

The only predefined operand in the MOMS system is the
so-called ID vector. Stored under this button is the
useful vector which ranges from -1 to +1 in 100 steps
(i.e., 101 entries). If the user does not wish the
default case, he may change the ID vector by using the
SETID operator. This operation should be performed
before any other operation is undertaken, even before
changing of the standard dimension. The new definition

of the ID vector is made as follows:

MIN MAX NUMBER OF ENTRIES SETID

Thus an ID vector from -1 to +1 with 200 steps (201

entries) would be established by the sequence

DEFCONST - 1 DFCONST DEFCONST 1 DEFCONST DEFCONST
2 0 1 DEFCONST SETID

2.2.2 Editing and Control Buttons

Editing of the input line is accomplished by
using the BAKSPACE button. This button will delete the
previous button pushed. Its effect is immediate. The user
may also erase all button pushes back to the last inter-
preted equal sign by pressing the DEQUEUE button. The user
is not allowed to use the BAKSPACE button or the DEQUEUE
button past the last interpreted = because interpretation

of that = will in general have changed data values.

-7-

e

-8-

In order that operator buttons may be used as
data in special cases, the LITNEXT button is provided.
Pushing this button causes the system to interpret the
following button push as a data button unconditionally
(See Sections 3.3 and 3.4 for examples.)

The START button may be invoked whenever the
user wishes interpretation of its input sequence to start.
Usually, however, the implicit starting of interpretation
contained in the display operators (Section 2.2.4) will
keep the use of this button to a minimum.

The RETURN button should be pointed at when the
user wishes to terminate execution of MOMS and return to
MTS. 1If for any reason he wishes to produce an error
return to MTS, he may do so by depressing button Number 31
on the Programmed Function Keyboard of the 2250.

2.2.3 Definition of New Buttons and Constants

One uses the DEFCONST button to define a constant.

For example, to define the constant 10.4 one would push

DEFCONST 1 0 . 4 DEFCONST

The user may define a new button using the DEFBUTON
operation. For example, to define the button ALPHA, the

user would push

DEFBUTON A L P H A DEFBUTON

Such a series of button pushes would cause the ALPHA

button to appear in the vertical margin of the 2250.

-9-
Conversely, any user-defined button may be de-
leted using the DELBUTON button. Thus a user could press

ALPHA DELBUTON

to delete his button ALPHA. €nly user-defined buttons may
be deleted. If a user tries to delete a system button,
for example A...Z , he will merely give it an undefined

data type.

2.2.4 The Display Operators: PLOT1, PLOT2, SETPLTMD,

SCALE, DISVALUE, SCROLLUP, SCROLDN.

A user may observe the results of a computation
sequence defined by button pushes by using the various dis-
play operators. Graphical output may be in two forms. The
first of these is a plot of the data on a coordinate grid.
The second is a display of the numeric values of the data.
Most often, a user will wish a plot of vector data types.
The buttons PLOT1 and PLOT2 provide two means of obtaining
such a display. PLOT1 plots the specified vector versus
the system ID vector. This is the most common type of plot-
ting. However, the button Pi.OT2 is available so that the
user may plot two arbitrary vectors against each other.

For example, suppose the user had pressed

ID ID * Y =

Y =X, -1 ¢Xs+1

thus the function is stored under the Y button and the

button pushes

e

-10-

Y PLOT1
and

Y ID PLOT2

will produce exactly the same result.

A user also has control over the scaling of the
grid, and the mode of the grid lines. To set the scale
of the grid, the user should press the four operands which
are the coordinates of the lower-left and upper-right
corners of the grid. He should then press the SCALE button.
If no scale is specified by the user, the system will use
the domain and range of the first plot to determine default
scale values. If a subsequent plot falls outside of this
scale, the user will be notified via the message line.

The SETPLTMD button controls the type of grids on
which graphs are plotted. The default case is Linear-Linear,
tut the user may specify other types of plots using the

statement

TYPENUMBER SETPLTMD

The various options for TYPENUMBER are as follows:

Rectangular 0 Linear-Linear
1 Linear-Log
2 Log-Linear
3 Log-Log

Polar 4 Angular-Linear

) Angular-Log

-11-

Thus for a Log-Log grid for his output, the user would

make the statement
3 SETPLTMD

Normally, plots on a given screen (see Section 2.2.5) are
cumulative. If a user wishes to have a replacement type
of plotting, he may define a macro which first CLEARS the
screen and then PLOTs the desired graph.

Numeric display of data may be obtained through
use of the DISVALUE button. Thus, in our example, one
might wish to determine how close to zero the approximation

to x2 is. Pointing at the buttons

Y DISVALUE

would display the first ten values of the vector Y . Since
the vectors are usually 101 REAL*4 entries long, it is clear
that we must examine more than the first ten locations to
determine our answer. The SCROLLUP and SCROLLDN buttons are
thus provided. By pointing at the numeric display and then
pointing at the SCROLLUP button we successively scroll
through the vector until we reach the desired entry. Up

to three vectors may be displayed numerically on a single

screen (see below).

2.2.5 Screen Viewing Operators

The MOMS system provides the user with three
"working areas." Only one of these can be viewed at any

one time by the user. He may switch views by pointing at

e

-12-

the SCREENA, SCREENB, or SCREENC button. The three views
are independent of each other. Typically, therefore, a user
will display vectors, etc., as plots on one screen, then
change to another screen to examine numeric values, and
perhaps return to the first screen for further inspection.
Entities displayed on a screen may be selectively erased

by pointing at the displayed entity and then pointing at

the ERASE button. To erase all three screens the user

need point only at the CLEAR button.

3. THE MACRO PACKAGE

The ability to group together a collection of
"button pushes," and henceforth to treat that collection
as a single unit, is a facility which is vital in serious
computational problems. Other online mathematical analysis
systems have this facility in varying degrees [1], and it was
clear from the outset that the lack of such a facility in our
system would seriously limit its capabilities. Thus,
a definitional facility, called the Macro Processor,
was implemented. This package gives the user the ability
to define a string of button pushes and store this string
with an associated name. Certain button pushes in the
definition may be designated as formal parameters. When
the user points at the macro name, the definition will be
expanded with substitution of calling parameters in place
of the formal parameters. Thus, a true macro facility

exists in the MOMS systen.

3.1 DEFINING A MACRO
A macro definition is a sequence of button pushes

delimited by the DEFMACRO button. The general form is:

DEFMACRO NAME (D1 M1 T1 5oc Dm Mm Tm) B1 B2 5o

Br DEFMACRO

where NAME is the macro name, i.e., the button "under" which
the macro is to be stored; D.1 is the i-th formal parameter
name; Mi is the (optional) mode of formal parameter Di;
and Ti is the (optional) type of the formal parameter Di
B, is the i-th button push for the macro body. The mode
of each formal parameter should be indicated by pointing at
one of the four light buttons SCALAR (default), VECTOR,
MACRO, OPERATOR; the type of each formal parameter should
be chosen from the light button set REAL (default), and
INTEGER. There may be at most 254 formal parameters within
a macro definition.

The following rules must be observed in defining
macros:

a. if m=0 , the form of the definition is DEFMACRO

1
place-holder but is never used in the macro body.

NAME (DUM) B, ... B_ DEFMACRO where DUM is used as

b. a macro definition must not appear within another

macro definition.
¢. a macro may call upon another macro, but it may

not call upon itself (either directly of indirectly).

-13-

e

3.2 DELETING A MACRO

To delete a macro, press

NAME DELBUTON
where NAME is the name of the macro to be deleted.

3.3 CALLING A MACRO

A macro call can be one of the following forms:

(¢, C, ... Cv) NAME

c, C, ... Cn NAME

where NAME is the name of the macro being called, Ci is

the i-th calling parameter, n is the number of formal para-
meters for NAME, and v < m . The second form may be used
only when the number of calling parameters equals the

number of formal parameters. The first form allows for

a variable number of calling parameters (v) . If a macro
has no formal parameters, then it may be called by pressing
the button NAME, This should be distinguished from

the case where no calling paramecters are supplied, but
formal parameters do exist in the macro definition. The

following form should be used in the latter case:

() NAME

The following rules should be observed:
a. The number of calling parameters should not exceed

the number of formal parameters. If this happens,

-14-

-15-

the extras are ignored and a warning message is
displayed.

b. The number of calling parameters may be less than
the number of formal parameters only if the undefined
formal values were given actual values by a previous
call., If this is not the case and such a call
occurs, a fatal error will result.

¢c. Nesting of macro calls is allowed to a maximum
level of 500. 1If this limit is exceeded, a fatal
error occurs.

d. If a call upon a macro involved another macro or
operator name as a calling parameter, the LITNEXT
button must immediately precede that parameter. For
example, if MAC is a macro name, a call upon
another macro MAK with MAC as a calling parameter

might look like:

(TI LITNEXT MAC ALPHA) MAK
The corresponding dummy parameter for MAC would have been

given mode MACRO when MAK was defined.

3.4 DISPLAYING A MACRO

A macro definition may be displayed in the working

area of the screen by the button sequence
LITNEXT NAME DISVALUE

where NAME is the button under which the macro definition

e

-16-

is stored. The macro definition will appear on the screen

at a fixed position, and the formal parameters of the de-

finition will appear within parentheses. However, the

declared mode and

type of the formal parameters are not

displayed. Once on the screen, the display of the macro

is treated as any

other displayed entity and may be ERASEed

and CLEARed in the normal fashion. Up to three macros may

be displayed at one time, one on each of the thrce screens.

3.5 EXAMPLES

The following are permissible definitions of macros:

DEFMACRQ

DEFMACRO

DEFMACRO

DEFMACRO

DEFMACRO

A (D VECTOR INTEGER E SCALAR REAL)
D E = DEFMACRO
DEFBUTON A L P H A DEFBUTON ALPHA
(DE) DE = DEFMACRO
default modes and types for formal
parameters
QED (DUMY) DEFCONST 3 . 1
4 DEFCONST ARDVARK = DEFMACRO
no formal parameters in the definition
F (M N MACRO O OPERATOR)
M LITNEXT N O DEFMACRO
illustrates a call upon a macro definition
SUM (M MACRO N MACRO)
LITNEXT M LITNEXT M N DEFMACRO
The following would be an illegal call,

since it generates an infinite nesting

-17-

of the macro SUM.

(LITNEXT SUM LITNEXT SUM) SUM

4. THE MATHEMATICAL OPERATORS

Various standard mathematical operations are
provided in the MOMS system. These include the standard
arithmetic operations of +, -, *, /, **, and = , where
** is the exponentiation operator. In addition, those parts
of the FORTRAN function library which accept REAL*4 argu-
ments have been included, as well as facilities for integra-
tion and differentation. It is believed that these predefined
operators will from a useful base from which more complicated
operations may be constructed using fhe m;cro facility in

MOMS .

4.1 THE ARITHMETIC OPERATORS

The arithmetic operators include those standard
operations enumerated above. They will operate on all mode
combinations (scalars, vectors, vector-pairs) and all type
combinations (integer, real*4). User statements must, of
course, be in the operator postfix notation, described
in Section 2. The following table shows the equivalence

between a FORTRAN-like notation and operator postfix notation:

FORTRAN OPERATOR POSTFIX

A+ B A B +
A - B A B -
A-* B A B *
A ** B

AB**

e

-18-

A/ B AB/

B = A A B =

4.2 THE FORTRAN LIBRARY SUBPROGRAM OPERATORS

Table 4.1 lists those entries from the FORTRAN
function library which were adapted for the MOMS system.
Note, that when the argument type is listed as Real*4, the
mode of the argument may be either scalar, vector, or
vector-pair. If the mode is vector, the appropriate
function will be applied to each entry in the vector.
If the mode is vector-pair, the so-called "range'" part
of the vector-pair will be treated as if it were a vector,
and the rest of the vector-pair will be ignored.

In general, an illegal argument to one of these
functions will cause a value of zero to be returned.

Thus, for example, X/0=0.

NAME DEFINITION ASSIGNMENTS FUNCTION VALUE TYPE

Number Type

ABS |x| 1 real*4 real*4
ARCCOS cos_l(x) 1 real*4 real*4
ARCSIN sin” ! (x) 1 real*4 real*4
-1
ARCTAN tan (x) 1 real*4 real*4
-1 (%
ARCTAN2 tan =N 2 Teal*4 real*4
2
Cos cos (x) 1 real*4 real*4
X, o™X
COSH E__f__ 1 real*4 real*4
COTAN cotan(x) 1 real*4 real*4
2
2 .x -u
ERF 7%,!0 € du 1 real*4 real*4
ERFC 1-ERF(X) 1 real*4 real*4
. X
EXP e 1 real*4 real*4
GAMMA f: ux'le'udu 1 real*4 real*4
LOG 10 log10 b4 1 real*4 real*4
LOGE loge X 1 real*4 real*4
LOGGAMMA logef: ux'le-udu 1 real*4 real*4
SIN sin(x) 1 real*4 real*4
SINH ex-ex 1 real*4 real*4
2
SQRT +/x 1 real*4 real*4
TAN tan(x) 1 real*4 real*4
X -x
TANH =S - 1 real*4 real*4
X, =X
e +e

Table 4.1 FORTRAN Function Library Entries Adapted for MOMS

e

-20-

4.3 THE INTEGRATION AND DIFFERENTIATION OPERATORS

Four operators are provided for various cases of inte-
gration and differentiation. The light buttons INTEG and
DIFF integrate and differentiate the one vector argument
versus the standard domain, that is versus the ID vector.
INTEG2 and DIFF2 use an explicitly provided domain, which
is the second argument to the function. Both differentiation
operators use the divided difference method to approximate
the derivative. No attempt at smoothing is made; the last
element of a vector is set equal to the second last element.

INTEG uses trapezoidal integration to approximate the integral.

4.4 ADDITIONAL LXAMPLES
X Y ARCTAN2

In this function, the X argument is taken to be the

abscissa, and the Y argument is taken to be the ordinate.

D V DIFF2

D V INTEG2

V is the vector (or vector-pair) being differentiated

(integrated) versus the domain D.

5. A DETAILED EXAMPLE

Consider the problem of approximating y(©) = sin(0),

-% s ©¢ %, with an nth degree polynomial P (x) written in

-21-

terms of Chebyshev polynomials, i.e.,
Pn(x) = a; + 1Tl(x) + ...+ anTn(x).

In the interval (-1,1) the coefficients can be expressed by

a =i_r1—lv-£iL—dx
=4 1-x2

0 m

a, =2 fi y (x)T, (x)dx
1]

1-x2

and the Chebyshev polynomials are recursively defined by

To(x) = 1
Tl(x) = X
Ti+1(x) = 2xTi(x) - Ti-l(x)

The problem is to construct a sequence of error fucntions
gi(x) = y(x) - Pi(x) until a gi(x) is found which satisfies
a predetermined maximum error criterion. A sample solution

with comments follows.

Button Pushes Comments
DEFBUTON N E X T T E R M DEFBUTON Define a button called
NEXTTERM
DEFBUTON P I DEFBUTON and a button called PI

DEFMACRO NEXTTERM (X) Define a macro NEXTTERM

e

Button Pushes

2 IDU * *V - T =

Y D * INTEG PI *

T * P +« P = DEFMACRO

DEFMACRO DEFBUTON D I F
DEFBUTON DIFF (X)

NEXTTERM Y P -

-22a

B

DEFMACRO

DEFCONST 3
B=ZB/PI=

1 PI / ID * SIN Y

1V =
ID U =
1 ID * - SQRT A =

YA /D=

1 415 9 DEFCONST

Comments

with 1 formal parameter
(not used) which computes
the next term in the
approximation and adds

it to the polynomial
which is stored under

button P.

Ti from above is stored
under button U.Ti_l
is stored under button V.
The macro also updates
these values when Ti-l
is computed.

Define a macro to com-
pute the next term and
take the difference
between Y and the poly-

nomial,

Store % under button PI

Construct vector Y=sin O,
i i
"7 898y
in V set up T

let up TO

2 in U.

Compute y(x)

l-x2

where -1<x<1 and store

under D.

-23-

Button Pushes Comments

D INTEG PI 2 / * P = Compute a and store
under P

D U * INTEG PI * U * Compute alT1 and add

P+ P = to P; store under P.

DIFF PLOTI1 Compute successive
approximations and
display error function.

DIFF PLOT1

Note that this would display an
approximation to any function

stored under the button Y.

6. DESIGN CONSIDERATIONS
MOMS runs under the MTS system, which in turn is under

the control of the UMMPS (University of Michigan Multi-
programming System) supervisor. From the outset, it was
decided that this total dependence on system I/0 support
was the only reasonable way to proceed, since bugs in the
MOMS system could not be :allowed to disrupt other users.
Moreover, the time and effort necessary to write the low-
level I/0 code would have made the project difficult to
complete in one semester. However, idiosyncrasies of the
IBM 2250 display made some special adjustments necessary.
Specifically, it was necessary to process attention inter-

rupts from the 2250 in something approximating real-time,

L.

-24-

in order to keep the screen lit and capable of accepting
button pushes. (An attention interrupt is caused by a light
pen, or by pushing a function keyboard button; in the former
case, the display stops.)

Since the IBM Graphics package GRAPHLIB, described in
IBM Document No. €C27-6909 was available in MTS, it was
decided to use the routines with slight modifications by
Computing Center staff programmers. The routine ANALS,
which previously polled for an attention interrupt, was
changed to call a user-specified subroutine in "real-time"
when an attention interrupt arrived. The display would be
restarted and the user task resumed when the subroutine
returned. It should be stated that

a. the user-specified subroutine and any subroutine
it called had to be written to handle recursive calls, or
had to be mutually exclusive from any code which could
possibly be executing at the time of the attention interrupt.

b. '"Real-Time" does not mean at the time of the actual
attention interrupt, while all other tasks in the system
are stopped. Instead, the interrupt causes the status of
the task running MOMS to be saved, and that task is initial-
ized to run the attention interrupt "real-time" routine.
When the attention routine returns, the original status of
the task is restored, and it continues. This can be thought
of as a push-pop situation where the status of the task 1is

saved on a push-down stack, and the interrupt is transparent

-25-

to it, except for any desired effect of the interrupt routine,

such as building queues or setting status bits.

7. THE HIERARCHY OF THE SYSTEM

The 2250 display hardware is controlled by the 2840
display controller through standard I/0 operations. Thus,
via channel control word commands it is possible to

a. write the display buffer,

b. read the display buffer,

c. read information such as function button pushed,

and coordinates of a light-pen detect,

d. control display starting location, etc.

The supervisor, UMMPS, is ultimately in charge of all
operations concerning I/O0 devices. For example, I/0 devices
are allocated to tasks. by the supervisor, I/0 devices are
"started" by a supervisor call whose operands resemble the
start I/0 operation, and asynchronous attention interrupts
from a device are fielded by the supervisor, which either
ignores them, or passes them to a '"real-time'" attention
routine designated by the user.

MTS provides system subroutines which interface with
the supervisor, and

a. acquire devices from the supervisor when requested

by a program or command, and to release devices
acquired by a user when he is finished with then,

or when he signs off.

L)

-26-

b. provide a general interface to the appropriate
device support routine which can operate the
device as a standard terminal.

GRAPHL1B is an 1BM package for controlling the 2250,

1t has been modified to run under MTS,

a. 1t contains subroutines for generating 2250
order programs to display graphs, functions, etc.,

b. 1t contains subroutines to perform 1/0 operations
on the display. 1t does this via supervisor calls.

c. It contains a subroutine to handle attention exits.
This has been modified to call user-specified sub-
routines in "real time."

The MOMS code may therefore be considered as being
devided into two sections. Part of MOMS consists of code
for interfacing with GRAPHLIB; the other part of MOMS is
completely independent of the 2250, The code which inter-
faces with GRAPHLIB does the following:

a. Allocates space within the 2250 buffer,

b. Uses GRAPHLIB to build order programs, which are

subsequently displayed.

c. Uses GRAPHLIB to write the order programs to the
allocated space in the 2250 buffer.

d. Uses GRAPHLIB to start the display.

€. Uses GRAPHL1B to call a subroutine which builds

the queue of button pushes in real time.

-27-

8. THE INTERNAL ORGANIZATION OF MOMS

This section contains detailed documentation concerning
the various parts of the MOMS system. In general, it will
not be of interest to the MOMS user, but is included for
completeness and future reference.

The major subparts of the MOMS system are as follows:
initialization, interpretation, 2250 buffer management, light
pen management, function display, numeric and keyboard display,
the macro processor, symbol table management, the mathematical
operators, and numeric conversion. The major connections
between the various subparts are shown in Figure 8.1.

MTS enters the MOMS system at the initializer. This
in turn calls other parts of the system in order that they
might initialize themselves. The major portion of all
initialization consists of building the system entries in
the symbol table and the corresponding display representa-
tion of the system operations in the 2250 buffer. Clearly,
each section must access the symbol table during this time.
In fact, the symbol table, which may be considered the
ultimate store of knowledge in the system, is accessed con-
stantly by all sections, although this is not shown in
Figure 8.1. When initialization is complete and the initial
2250 image is displayed on the screen, control is transfer-
red to the interpreter, which retains ultimate control

throughout the remaining execution. When a user points at

(%)

-28-

*SWOW Jo siaedqns usaamiaq suoridauuon Jofepy

a1qel 1oquAg

1°8 2andty

0sze
PR
J2ZTTeIITU]
juswadeuep juswadeuely
uad 1y8t7 |* ™ i1o33ng
sio0jeaadp ﬂ ﬁ
(estiewayien| | .
—_— UOTIUIAUOD) Aeydstq| | Aeydsiqg
~uuﬂuosszi pieoqLoy _:oﬂuuczm
I0Ssadoayg
oxdel nd
B |
. -_uouwumuoucm
jusuwadeuey

d1qel toqufs

-29-

a "light-button,” the corresponding interrupt is fielded
by the light pen management routines. They determine which
light button was pointed at and communicate this fact both
to the keyboard display section, so that it may be displayed
on the echo line, and also to the interpreter. The inter-
preter handles all editing and definitional operations,
except macros. It records the various button pushes in a
queue, also called the stack. When a button push requiring
the start of interpretation is encountered, the interpreter
starts calling the various operators in this queue, collap-
sing the stack where appropriate. The system ultimately
returns to the idling state when all interpretation is
complete. The function of the various other parts may be
briefly summarized as follows:

a. function display is responsible for constructing
2250 graphic order programs from the various vectors and
vector-pairs supplied it. It is also responsible for hand-
ling the plotting mode and scaling operators for the grid.

b. keyboard display constructs 2250 graphic order
programs which contain alphanumeric and other character
information only. Thus it is responsible for the 2250
graphic order programs of all light buttons, the display
of all numeric values, the upkeep of the echo line, the
output of messages, and the display of macros.

c¢. the 2250 buffer management section is responsible

ce

-30-~

for actually writing the 2250 buffer and linking graphic
order programs into the display regeneration loop. It also
keeps track of the SCREENA, SCREENB, and SCREENC operations.
d. symbol table management controls all accesses and
all editing of the symbol table.
e. the macro processor is responsible for the storage
of all macro definitions and interacts closely with the inter-
preter when a stored macro is called.
f. the mathematical operators section and the numer-

ical conversion section are self-explanatory.

8.1 INITIALIZATION R.W. Taylor

Name: STINIT

Purpose: To initialize MOMS

Calling Sequence: 0S(I) R type

Entry: No parameters

Return: Calls ERROR indicating a system error

if the Interpreter ever returns control
to it.
Functional Description:
The initialization section serves as the principal sub-
routine with respect to MTS.

1. <Call initialization sections of

Symbol Table Management SYMINITI1
Buffer Management BUFINITI
Interpreter INTINIT

-31-

Light Pen Management LPMINIT
Function Display FDINIT
Macro Processor MACROFIX

in the above order (STLOOP1)

2. Use the SYMODEFS macro to put the buttons SCALAR,
VECTOR, REAL, INTEGER onto the screen.

3. Enter A...Z,.,(,) into the symbol table with de-
fault parameters (see Section 8.3, Symbol Table
Management Routines) and save their STEPS in a
list to be passed to the display virtual keyboard
routine (STSYMLP)

4, Create the symbols +, -, *, /, = and save their
STEPS for display on the virtual keyboard. (The
actual operators +,; -, *, /, = are initialized into
the symbol table by UINIT using the SYMODEFS macro.)
(STSYMLP2)

5. Create the symbol table entries 0...9 and give them
the attributes OPERAND, SCALAR, REAL, SYSTEM, CON-
STANT (STSYMLP1)

6. Move the real values 0...9 into the appropriate
place in the symbol table (that place pointed to
by the VALUE pointer)

7. Call UINIT to define the mathematical operators
and put them on the screen.

(Note: UINIT is called near the end so that

*STEPS = Symbol Table Entry Pointers

-32-

the mathematical operators will be at the
bottom of the function button list.)

8. Call BUFINIT2
Buffer Management has two entries so that light
pen interrupts will not be accepted until
initialization is complete.

9. Transfer control to the Interpreter.

8.2 THE INTERPRETER R. Srodawa, K. Moore, and J. Tripp

The Interpreter within the MOMS system is broken physi-
cally and logically into six sections, each of which is de-
scribed briefly below:

Initialization

The initialization section of the interpreter is broken
into two ports. The first port is called during the initial-
ization of MOMS at the entry point INTINIT. It presets the
global dimension to 101, the global mode to VECTOR, REAL*4,
and creates and presets symbol table entries for the buttons
DIMENSHN, ID, LITNEXT, BAKSPACE, DEFCONST, DEFBUTON, DEFMACRO,
SETID, DELBUTON, DEQUEUE, and START. The second port of
initialization is called at the entry point INTERP when all
of MOMS has been initialized. This section initializes the
three stacks kept within the interpreter (STACK, MSTACK,
and BUTQ) and then transfers to the section of the inter-
preter which interprets button pushes (the Button Queue

Processor).

-33-

Interpretable Operators

The interpretable operators section of the inter-

preter contains the operator definitions for several of

the buttons.

START

SETID

RETURN

DELBUTON

The START operator is an immediate operator
which requires no operands and returns no
results. Its only effect is to cause inter-
pretation of the contents of the button queue

to begin. Normally interpretation begins only
when a button is pushed whose interpretation
causes new information to be displayed. START
is normally used to start interpretation because
macros have been invoked which contain buttons
that change the display.

The SETID operator is used to specify the standard
domain. It computes new values for the scalar
button DIMENSHN and the vector button ID. The
SETID operator must be the first operator to
ever be interpreted.

The RETURN operator simply returns to MTS. It
is the standard exit from MOMS back into MTS.
The DELBUTON operator accepts one operand and
causes something to be deleted for it., 1If the
operand currently has something displayed (a

macro definition, graph, numeric value), that

DEQUEUE

-34-

is erased. Otherwise, if the operand currently
has a macro definition, that is deleted. Other-
wise, the button name is deleted from the screen
and its STE removed, unless it is a system symbol,
in which case the STE is changed back to undefined
status. These deletions are performed by calling
the subroutine appropriate for deleting the type
of display represented by the operand (DSPDELNM
for a button name, DSPERSPR for a macro definition
display, DSPERSEV for a numeric vector display,
FDERASE for a graph, and MACDELET for a macro de-
finition). These routines are each called for

the operand until one of them succeeds in removing
it. The order of the calls is determined by the
mode and structure of the operand, and is such
that appropriate display deletes are attempted
before the macro definition or button name is

deleted.

The DEQUEUE operator clears the three interpreter
queues (BUTQ, STACK, and MSTACK) so that all
past interpretive history, except items which
have been stored in symbol tables entries , is

forgotten,

-35-

Operator Call Processor

The operator call processor is called at the entry
point INTKIP by the stack manipulation section of the
interpreter. The operator call processor then searches
for the appropriate definition of the operator, depending
upon the modes of the operands, builds a parameter list
for the operator, calls the operator definition, reduces
the operand stack by the number of operands used, releases
any temporaries that were used, and returns a result to
the stack. The operator call processor is the interface
between the operator definitions and the interpreter.

SYMOPDEF Subroutine

The SYMOPDEF subroutine is called by every occurrence
of the SYMODEFS and SYMODEFD macros. This subroutine
creates a new symbol table entry or instance for the new
operator definition.

Button Queue Processor

This processor is called at the end of initialization
by port two of the interpreter initialization. It processes
the buttons which have been pressed by the operator and
interprets the BAKSPACE, DEFCONST, DEFBUTON, and DEFMACRO
buttons. Usually the symbol table entry pointer for a
button is simply placed on the button queue (BUTQ).

Whenever a button which requires immediate interpretation
(DISPLAY, START, etc.) is encountered the stack manipu-

lation section of the interpreter is called to interpret

-36-

all the button pushes since the last interpretation. The
BAKSPACE, DEFCONST, DEFBUTON, and DEFMACRO buttons require
more involved processing.

Stack Manipulation Processor

The stack manipulation processor is called at its

entry point, INTJOIIN, whenever the button queue processor
receives a button which forces interpretation. The stack
manipulation processor processes the STEPs from the button
queue (BUTQ) and maintains the two stacks STACK and MSTACK.
It calls the operator call processor every time it processes
a button which is an operator or macro. The stack manipu-
lation processor also obtains the buttons comprising a macro

definition from the macro interpretation when appropriate.

8.2.1 Operator Call and External Specifications

This part of the documentation describes the function
of the operator call part of the interpreter in just enough
detail to allow those writing operators to set up appro-
priately the operator symbol table entry and know what to
expect (and what is expected of them) when the operator is
actually called.

The document is in three parts: the first indicates
what information may be passed to operators if requested;
the second gives something about the structure of operator
symbol table entries; and the third describes two macros

useful for putting operators into the symbol table.

-37-

*What Can Be Passed To Operators

Operators are called with a standard 0S type I(S)
calling sequence. If the operator wishes to return some-
thing to the stack, it canreturn only a single thing (which

may be an operand or an operator), and it is expected to

leave the STEP for that operand in GRO on return. The

parameter list for an operator may contain several differ-

ent things, depending on the operator symbol table entry,
including all or some of the following:

(1) A fixed, or variable, number of stack operands. These
are always passed as a pair of parameters, one being
the STEP, and the other being the VALUE (from the STE).

(2) Any fixed number of temporaries needed by this opera-
tor. These are passed as pairs of parameters, as in
(1), and may be of any specified mode and structure,
as needed by the operator. Temporaries are given the
global dimension if they are vectors.

(3) The number of stack operands passed. Obviously of
use only to operators which accept a variable number
of operands, it is passed as a 4-byte integer.

(4) The standard dimension. This too is passed, if re-
quested, as a 4-byte integer.

(5) The standard domain, or ID vector. This will always
be passed as a REAL*4 vector if requested, and is

passed as a pair of parameters as in (1) and (2).

-38-

(6) The operator STEP. This is vassed directly in the
parameter list (i.e., the STEP is in the list itself.)
As mentioned above, what subset of the above is passed

to the operator, and in what order, depends on the STE for

the operators whose description follows.

*What Operator Symbol Table Entries Look Like

An operator symbol table entry is really a rether
empty (or at least devoid of much information) STE, coupled
with a string of dope vectors, each of which describes an
instance of the operator. 'Instances' of operators are differ-
ent versions of the operator for operating on different kinds
of operands. For instance, one version of the COS operator
might operate on vectors, and another might operate on
vector pairs. Each version would be described by a dope
vector linked to the STE for the COS operator.
Some parts of the operator symbol table entry are
relevant to the operator; these are given below.
The symbol table entry itself (the relevant parts):
(1) Name - gives 8-character name of this operator, as
displayed on the screen.
(2) Dope Vector Pointer - points to first link in chain
of dope vectors which describe instances of this oper-
ator.
(3) Display Buffer ID - gives the buffer ID for the oper-

ator (i.e., where it is displayed on the screen)-

-39.

(4) Symbol Class - Will indicate macro or operator, de-
pending on which it is (macros are treated nearly like

operators by this section of the interpreter).

The rest of the STE for an operator is not used by
anyone for anything of interest, so far as we know,.

The dope vector contains all sorts of good information
about this instance of the operator. Part of this informa-
tion is fixed (in location within the dope vector), and
that is given below. Figure 8.2.1 shows where and how this

information appears in the dope vector.

(1) A full-word link to the next dope vector (if there
is one, otherwise it is =0).

(2) Address of the routine which 'is'this instance of the
operator (i.e., subroutine address).

(3) Flags indicating (A) if the operator returns a re-
sult, and (B) if the operator will accept a variable
number of operands.

(4) The length of the dope vector, in words (as a half-
word) .

(5) A flag indicating if this operator is special, meaning
it must be either interpreted immediately or changes
a symbol table entry. (Which of these is the case is
also indicated if the operator is really special.)
The skeleton part of the dope vector, which follows

the fixed information described above, is used to specify

-40-

Figure 8.2.1 Form of Parameter Vector for Macro:

0

12

16

24

NN

LENGTH OF PARAMETER VECTOR,
AS A FULL WORD
(GIVES NUMBER OF WORDS, NOT BYTLES)

8-CHARACTER EBCDIC NAME
OF OPERATOR, AS IT 1S
DISPLAYED ON TIHE SCREEN

ADDRESS OF ROUTINE
THAT IS THIS OPERATOR

l

VARPAR RETURN MACRO DISPLAY
1=TRUL 1=TRUE 1=TRUE 1=TRUE

' SPECIAL SEE NOT NOT

I 1=TRUE RON USED USED
i FIRST WORD OF SKELETON

i {(FORMER DOPE VECTOR)

}

|

i SECOND WORD OF SKELETON

I

1

| —

F e e e |

LAST WORD OF SKELETON

SYMODEERD

-41-

just what parameters should be passed to this instance of
this operator when it is invoked, and also specifies what
mode of operand is acceptable to it for each operand it
takes. The length of the dope vector is determined when
the instance of the operator is placed in the symbol table.
The skeleton itself consists of some number of full words,
each word specifying a parameter (or sometimes, a pair of

parameters), to be passed to the operator. The first byte

of each word indicates the kind of parameter to be passed,

and the rest of the word is used to specify subsidiary

information. The possible values for byte 0 (the first
byte in the word) and the meaning of each value follow:

0 Means pass next stack operand, as a pair of paramecters,
checking the mode of the operand (on the basis of
bytes 1 and 2) to see that it is suitable for this
operator. In this case, the actual parameters (words
in the parameter list) generated are STEP and VALUL
(from the STEP), in that order, for the stack operand.

1 Means pass a temporary. In this case, a temporary of
the mode indicated by bytes 1 and 2 is created and
passed as a pair of parameters (STEP and VALUE as
in (1)) to the operator. The temporary will be de-
stroyed when the operator returns unless (1) the
operator returns the particular temporary to the stack,
or (2) the operator increments thc¢ use count for

the temporary. In case (2) the operator is responsible

42~

for seeing that the temporary gets destroyed eventually.

2 Means pass the standard domain vector (always REAL*4)

as a pair of parameters.

Bytes 1 and 2 are ignored.

3 The number of stack operands passed (total) will be

generated as 4 4-byte integer and passed.

4 The standard dimension is passed as a 4-byte integer,.

Bytes 1 and 2 ignored.

) The operator STLEP is passed as a 4-byte integer.

Bytes 1 and 2 ignored.

6 Indicates end of dope vector (and end of parameter

list,

Byte 1 is used to specify
are suitable for this operator

specify what mode of temporary

byte 0 =

in a sense).

1).

Bytes 1 and 2 are ignored.
what mode(s) of operand
(if byte 0 = 0) or to

should be generated (if

Otherwise, it is ignored. The meanings

of the bits are as

Bit 0

Bit

Bit

Bit

Bit

Bit

Bit

1

x'80'

X'40'

X'z2o

X'10°

X'o8'

X'04"

Xtoz2'

follows:

- scalar (if bit is ON)

- vector

- complex (when implemented)

- vector-pair

- operator

- macro (console program)

- undefined (i.e.,

undefined)

operand may be of class

-43-

In the case where byte 0 = 0, byte 1 is used as a
mask to see what is acceptable as an operand, e.g., both
bits 0 and 1 could be ON indicating that the operator will
accept a scalar or a vector in this operand position.

Vector-pair here is taken to mean a pair of vectors,
stored one after the other in memory.

If an operator will accept operands of undefined
class, they are simply passed to it '"as is." If an un-
defined operand appears elsewhere, it will be given the
global mode before being passed to the operator (if it
will accept that mode).

Note that the operand specifications in the skeleton
are listed in the order of things coming off the top of
the stack. ‘that is, the first specification in the dope
vector applies to the operand on the top of the stack.

Operators may accept operands that are of the class
OPERATOR or MACRO, and buttons of this class can be placed
on the stack for use as operands by the LITNEXT button.
The operator DELBUTON is an example of an operator using
this feature.

Byte 2 is used in the same way as byte 1, but speci-
fies the structure of operands allowed (or to be generated),

as follows:

Bit 0 - X'80' - INTEGER*2 (not implemented within system)
Bit 1 - X'40' - INTEGER*4

Bit 2 - X'20' - REAL*4

Bit 3 - X'10' - REAL*8 (not implemented within system).

-44-

*A Simple Example

Consider the SIN operator. It might, as mentioned
above, have secveral instances. Suppose wec have a FORTRAN
subroutine called RSIN which computes the trignometric
sine of a scalar, and is smart enough to do it for argu-
ments which are INTEGER*4 or REAL*4, The dope vector
entry for this instance of the SIN operator would probably

look something like this:

Flags would be present to indicate that the operator would
accept only a fixed number of operands, and did return a
result to the stack. But the operator is not '"special' as
it does not require immediate interpretation, or change
the symbol table.

The skeleton part of the dope vector would contain

Word 0 - XL4'04000000'

Word 1 - XL4'00803000'
Word 2 - XL4'01802000'
Word 3 - XL4'06000000'

Word 0 indicates that the standard dimension should be
passed as the first parameter to RSIN (it doesn't really

need it, but then this is just an example).

Word 1 requests that the operand on the top of the stack
be passed, and that it must be scalar, but may be REAL*4

or INTEGER*4.

Word 2 requests that a temporary scalar, REAL*4, be created

-45-

and passed as the next pair of parameters. Presumably,

this is what will be returned to the stack.

Word 3 indicates end of dope vector, and puts nothing in
the parameter list.

The subroutine RSIN could now be written something like
this:

Subroutine RSIN (IVDIM,INSTEP,WRDIN,OUTSTE,WRDOUT)
...Where IVDIM will have the integer value equal to the
standard dimension. INSTEP could be used as an array name

to address the STE for the input operand (similarly for
OUTSTE, and the output operand). WRDIN is the name of the
variable whose sine is to be taken, and WRDOUT is where
the result should be stored.

There would have to be a special function written
to place the STEP for the temporary directly into GRO on

return, so that it could be placed on the stack.

*What Do the (Operator) STE Macros Look Like?

There are two macrds, SYMODEFS and SYMODEFD, available
to make putting operators into the symbol table a little
easier. One, SYMODEFS, is a'static' jmacro, in that it
assumes you know what you are doing when you write the
macro instruction. The other one, figuratively speaking,
assumes you don't know what you are doing, but have acquired
information abcut the operator you wish to enter in the

symbol table dynamically (such as from a table). Both

-J6-

macros make all and exactly the assumptions made by the

other symbol table management macros.

*SYMODEFS

ltas several positional and Kkeyword parameters with the

following descriptions:

Positional Parameters

(1)

(2)

(3)

The name of the operator, as a CL8 character constant.
An ADCON giving the address of the subroutine which

is this instance of the operator. May be A or V

type ADCON,.

An operand sublist-type parameter, giving the dope
vector for the entry, as a series of constants suit-

able for use in a DC-type statement.

Keyword Parameters

(1)

(2)

(3)

(4)

RETURN=0 Operutor does not return anything to the stack.
RETURN=1 Operator returns something to stack (default).

VARPAR=0 Operator takes fixed number of operands
(default).

VARPAR=1 Operator takes variable number of operands.
DISPLAY=0 Don't try to display operator on screen.

DISPLAY=1 DbDisplay operator on screen (default). (If
operator is already on screen, it will not

be displayed again.)

MACRO=0 Operator is really a hard code operator
(default).
MACRO=1 Operator is really a macro (in which case

the subroutine MACROINT is called, instead

-47-

of the macro itself, when the macro is

invoked).

(5) SPECIAL=0 Operator need not be executed immediately,
(It does not change screen, nor does it
chauge the symbol table or anything in
it.) (Default.)

SPECIAL=1 Operator does do one of the above.
If operator is SPECIAL=1 type, the keyword RONHEX
must be present, and be =04 if the operator should
be interpreted immediately and =02 if it modifies
the symbol table.

Example. A macro-instruction which would make the appro-
priate symbol table entry for the subroutine RSIN
described in the previous example follows:

SYMODEFS CL8'SIN',A(RSIN),(XL4'04000000',XL4'00806000"',

XL4'01802CG9"' ,XL4'06000000"),RETURN=1

*SYMODEFD

This macro assumes you have built a table in memory
providing the information to build a dope vector for an
instance of the operator. The information is essentially
the same as given in the SYMODEFS macro-instruction, The
exact format is given in Figure 8.2.2,

The macro instruction takes one optional positional
parameter which is the name of a general register con-
taining a pointer to a parameter vector of the form given
in Figure 8.2.2 (which must be on a full-word boundary).
GR1l is assumed if no parameter iz given on the macro-

instruction.

-48-

Figure 8.2.2 Form of Dope Vector for Instance

of an Operator (for Purposes of Documentation)

0
LINK TO NEXT INSTANCE
(IF = 1, THERE IS NONEL)
4
ADDRESS OF ROUTINL THAT IS
THIS OPLRATOR (INSTANCE)
8
FLAGS FOR LENGTHI OF THE
RETURN, MACRO, DOPE VECTOR
ETC. (WORDS)
12 .
USED BY
RON IF UNUSED
SPECIAL
16 _
FIRST WORD OF SKELETON
NN A
LAST WORD OF SKELLTON

-49-

8.2.2 Internal Specifications and Operator Calls

This section of the interpreter (CSECT name -

INTKIP) is executed whenever an operator in the button

queue is to be invoked. It performs the following

functions:

1 Searches for a suitable instance of the eperator.
(See external specifications for what this means.)

2 Builds a parameter list for the operator (or the
macro processor, if the operator is really a macro),
as specified by the operator's dope vector.

3 Calls the operator or macro with an 0S type I(S)
calling sequence.

4 Reduces the operand stack by the number of operands
used by this operator, releases temporaries that
were on the stack and used, and returns a result to
the stack (if the operator produces one).

The above processing is performed in three logical
"passes' over the operator dope vectors and/or operand stack:
the search for the suitable instance of the invoked opera-
tor; the building of the parameter list for the selected
instance; the release of used temporaries and return of

result to stack.

*The Suitability Search

The linked list of dope vectors attached to the opera-

tor STE is searched, looking for the first suitable instance

of the operator. The instances are linked in such

a way that the last instance placed in the symbol table

will be the first one checked for suitability. This

allows you to replace a macro definition by simply defining

a new one -- the "latest" one will always be called.
Suitability is checked by matching each request for

an operand (type 00 entry in the skeleton) against succes-

sive operands from the top of the stack. An instance will
be found unsuitable in any of the following cases:

1 The operator (instance of it) will not accept some
operand on the stack, e.g., the operator requires
a real vector as its operand, and there is an in-
teger scalar on top of the stack.

2 Some operand is of undefined mode and the operator
will not accept the current default mode at this
operand position,.

3 There are not enough operands on the stack to satisfy
this operator, e.g., it requires two operands and the
stack is empty.

4 This operator will not accept a variable number of
operands. The operator was preceded (on the button
queue) by a parenthesized list explicitly defining
the number of operands to be passed, and the numbers
do not match.

5 The operator will accept a variable number of para-

meters, but there are not enough operands to meet its

-51-

minimum demands, e.g., the mode-defining operator
will accept a parenthesized list of operands, but

must always have at least one operand.

*Building the Parameter List

When a suitable instance of an operator is by some
unlikely chance found, a parameter list for the operator
is built, according to the specifications given in the
skeleton of the dope vector for that instance. This
process is described in the external specifications,
except for one special case.

If the operator has said it would accept something
of the global mode in a particular operand position, but
that operand is at present of undefined class, the operand
is given the global mode by the interpreter before it is
passed to the operator. If the operator has said it will
accept something of undefined class at this operand posi-
tion, then the operand is untouched and is simply passed
as undefined.

When the parapeter list has been built, the operator
is simply called with a standard O0S calling sequence. It
is expected to return (the only exception to this being,
surprisingly enough, the operator RETURN, which gets you

back to MTS).

*Reducing the Stack

When an operator has returned to the interpreter,

the operands it used are removed from the stack. This
also involves checking to see if any of the operands are
temporaries. If they are, their use-count is reduced by
1 (and the temporary will ve destroyed if the count has
gone to zero).

If the operator returned a result, the result is
placed on the top of the stack, and its use-count is in-
cremented by 1. A return is then made to the stack manage-
ment part (INTJOHN) of the interpreter.

If the thing returned to the stack was an operator,

it will be interpreted immediat=ely at this point,

8.2.3 Button Queue Processor (lINTRON)

The button queue processor requests buttons from
light pen management via the entry LPMDEQLP and takes
the appropriate action. This action can be
1) Stack the button on the button queue (BUTQ).
2) Edit the current contents of the button ;ueue.
3) Gather together the buttons comprising a macro
definition and call MACRODEF to define the macro.
4) Gather together the buttons comprising a new
button name and then create a symbol table entry
for this new button and bhave it displayed (by
calling DSPNEWNM).
5) Gather together the buttons comprising a con-

stant definition and then create a symbol table

-53-

entry for this constant and place it into the
button queue as an operand,
The button queue processor actually is written as a
finite state machine with four states and nine classes
of input symbols. The four states are:
0. Normal state, not in any definition,
1. Inside of a DEFMACRO...DEFMACRO construction,
2. Inside of a DEFBUTON...DEFBUTON construction.
3. Inside of a DEFCONST...DEFCONST construction.
The nine input symbol classes are:
0 Button of operand class
1 Button of maero name class
2 Button of undefined class
3 Button of operator class (does not force inter-
pretation)
4 DEFMACRO
5 DEFBUTON
6 DEFCONST
7 BAKSPACE
8 Button of operator class (does force interpretation)
Besides this information, the index into the button queue
at the start of a macro, button, or constant definition is
saved while inside a definition to aid in the processing of
these definitions.
The button queue processor, when it receives a new

button, references the appropriate entry in a state transition

-54-

matrix which tells what state to go to next and gives the
address of a routine to take any necessary action with the
current button. This state transition diagram is given in
Figure 8.2.3,

Besides the actions noted in Figure 8.2.3, any
BAKSPACE while in state zero causes a bit to be set
which causes the stack manipulation processor to up-
date the working stack from the master stack and begin
interpretation from the beginning of the button queue.
This is necessary because the backspaces could have
deleted operators which have already been interpreted
and have left results in the stack. Every unstacking
of items from the button queue, either because of a
macro, button, or constant definition or because of a
BAKSPACE, causes DSI’ECHOZ to be called to correct the
echo line. \Use counts are also incremented on every
symbol placed on the button queue and decremented on
every symbol removed from the button queue.

8.2.4 Brief Description of Stack Manipulation Processor
(INTJOHN)

No parameters in calling sequence.

INTJOHN is called by INTRON whenever an operator
which forces interpretation is placed on the Button Queue-BUTQ.
INTJOHN places each Button Push —BP- from BUTQ onto STACK,
determines whether the BP is a macro or operator, and if so

calls INTKIP for ex:cution of that operator. Otherwise, BPs

Figure 8.2.3

-55-

Current State

State Transition Diagram

stack it

Current 0 1 2 3
Button Normal Inside Inside Inside
Class State DEFMACRO | DEFBUTON | DEFCONST
0 0 1 2 3
Operand Stack Stack Stack Stack
the the the the
button button button button
1 0 1 2 3
Macro Name Stack Stack Stack Stack
the the the the
button button button button
2 0 1 2 3
Undefined Stack Stack Stack Stack
the the the the
button button button button
' 3 0 1 2 3
- Normal Operatori| Stack Stack Stack Stack
i the the the the »
button button button button :
4 1 0 1 1 |
DEFMACRO Stack § | Unstack | Error, Error, i
note defn and ignore ignore i
location send to button button {
MACRODEF !
5 2 2 0 2 '
DEFBUTON Stack & Error, Unstack Error,
note ignore defn, ignore
location button create button
| symbol, |
display i
it
6 3 3 g , 0
DEFCONST Stack § Error, Error, Unstack
note ignore ignore . defn,
location button button create
symbol,
convert
constant,

e

Figure 8.2.3,

continued

-56-

7 0 1 or O 2 or O 3 or O
BAKSPACE Remove Remove Remove Remove
previous | previous | previous | previous
button button, button, button,
If If If
DEFMACRO | DEFBUTON | DEFCONST
go to go to go to
state 0 state 0 state 0
instead instead instead
of 1 of 2 of 3
8 0 1 2 3
Operator Stack the Stack Stack Stack
which | button the the the
forces Call button button button
interpretationl INTJOHN

-57-

continue to accumulate on STACK from BUTQ until an operator

ovr macro is finally encountered. When BUTQ is empty, INTJOHN

returns to INTRON.

INTJOHN maintains two stacks: a working stack, STACK,
and a master stack MSTACK. Normal interpretation is handled
via STACK. However, when any operator is called which modi-
fies symbol table entries, STACK is copied into MSTACK. In
turn, whenever editing takes place in BUTQ, MSTACK is copied
into STACK before interpretation begins! This feature per-

mits the user to edit a string of input BPs back to the last

symbol table changing operator (such as =). After an opera-
tor of this type has been executed, the echo display and
BUTQ are collapsed. That is, the next element of BUTQ above
the operator becomes the bottom of a new BUTQ and echo line.
The displaced part of BUTQ is sent to the history queue.
INTJOHN increments the use-count of every STEP which
is placed on STACK, and decrements the use-count of ecvery
step which is sent to the history queue. Whenever STACK
is copied into MSTACK, the use-count of each BP in STACK
is incremented, and the use-count of each B? in the old
version of MSTACK is decremented. Use-counts are modified
similarly when MSTACK is copied into STACK.
When the LITNEXT operator occurs, the BP following
it is placed on STACK as an operand without regard to its
class; the LITNEXT operator thus allows the user to use an

an operator as an operand.

-58-

When macros are expanded, the BPs comprising the macro
definition are obtained from MACROGET routine and treated
in exactly the same fashion as BPs obtained from BUTQ.

The initial call on a macro expansion is accomplished by
INTKIP. Subsequent calls to obtain BPs are done within
INTJOHN; once a macro expansion has begun, all BPs are
obtained from MACROGET until it returns a 0 in GR1l, signal-
ing the end of the macro definition. Nesting of macros is
monitored by the macro processor, and INTJOHN does no
pushdown on macro calls.

INTJOHN does no checking for syntax except for the
use of parentheses. It is assumed that parentheses will
be used only to delimit the operand stream for an operator,
and heuce every right parenthesis, '")" must be followed by
an operator. Furthermore, a count is maintained of the
number of left parentheses minus the number of right paren-
theses. This count may never go negative. If either con-
dition is violated, interpretation is halted, and an error
comment is presented to the user. Additional checking for
proper use of parentheses is done within INTKIP. Note that
parentheses may not be used to delimit compound operands,
unless followed immediately by an operator.

Examples of illegal syntax:
(A) B+
(AB-)C+

JAB*

-59-

Examples of legal syntax:
A (B)+
C(AB-)+

(AB*

-0(0-

‘ INTJOHN

HAS EDIT

INCREMENT USE
: |COUNTS IN MSTACK
OCCURRED OR DECREMLENT USE
IS THIS IN COUNTS IN STACK
INITIAL CALL? o>] COPY METACK INTO
'.e.,RBTEDITiL}//23LQ£M1E> STACK |
RESET BUTQ i

e POINTER (TPBUTQ)
. |

G P]

RESET PAREN LATCH TPRNSW « 0
RESET LITNEXT LATCH TLINSW « 0
RESET MACRO LATCH TMSW « 0
COMPUTER POINTER TO TOP OF BUTQ; !
i.e., TOPBQ « BUTQ(0)*4+(=A(BUTQ)) |

TN

RESET SPECIAL OPLRATOR LATCIH TOPSW « 0]

|
tE3 >

2 YES T
STPBUTQ > TPBQ ™ o/ RETURN TO
' _ INTRON

S ? 2 TRET

NG - ————

.

NO

TPBUTQ « TPBUTQ+4 |
GR1_« BUTC (TPBUTQ) |

)

e e e e

- T
INCREMENT USE COUNT OF STOP IN GRI

TPSTACK « TPSTACK+4 |
STACK(0) <« STACK(0)+1 B

9

c_l"

-61-

ERROR COMMENT | (&
{ STACK OVERFLOW“’<EERO€>

TACK(0) > 6000
?

NO

(STACK(TPSTACK « GR1]

TQ2

TF9

I 'SYMDCD CLASS |

SET MACRO LATCH

OPERATOR
i.e., TMSW + 1

OPERATOR = [TLTNSW «1]

TPSTACK «TPSTACK-4
STACK(0)«STACK(0)-1

SYMCHK

YES SET SPECIAL OPERATOR
IS OPERATOR SPECIA

| LATCH; i.e., ,TOPSW+ |

RESET PAREN LATCH, TPRNSW <« 0]
CALL INTKIP

-62-

TPSTACK « GRO
KIP RETURNS POINTER TO
__TOP OF STACK IN GRO

- 18 STACK

EMPTY?

<::?;’; V=0 MO | + “ T l
RNSW = { COMMENT f’(‘ s

\?/ N SYNTAX ERROR| \ DRROR
YES ‘ - »J -

~

: YES
& CURRBAT ——> ———{TPRNCNT « TPRNCNT-]|
' <IGL>
£
‘ ~ o . / ~
sp SUNRNY <iERNCNT < P
‘ ? 7 vEs
o _

\1N0

[TPRNSNT « TPRNCNT+1] S

{SET PARENT LATCH

li.e., TPRNSW « 1
N

ﬁiz/?EFEL
o

A

RESET MACRO LATCH
i.e., TMSW « 0

TF5

-63-

1. Portion of BUTQ below and including
current BP will be added to history stack

2. Portion of BUTQ having current BP will
become new BUTQ

3. DISPECHO2 is notified about 1 + 2

<EFCD> T

Decrement use-counts in portion of ’
[BUTQ sent to history stack]

Caecr>

above current BP into bqgttom of
BUTQ Stack
| Reset BUTQ pointer (TPBUTQ) |

Form updated BUTQ by copyving BP's]

< TCOPWTM >

T' Increment use-counts in STACK
Decrement use-counts in MSTACK
| Copy STACK into MSTACK i

l

S N

\\
TF1)

-064-

SYMBOL TABLE MANAGEMENT ROUTINES P.Wilcox J.Jonekait

8.3.1 Symbol Table Entries

Each symbol has one symbol table entry which con-
tains various pieces of information about the symbol.

The following is a description of the fields contained

in a symbol table entry and their uses.

NAME (SYMNAM - 8 bytes): contains the 8-character EBCDIC
name of the symbol.

VALUE (SYMVAL - 4 bytes): full-word pointer to the '"valuce"
of the symbol. It may be used for various purposes.

DOPE VECTOR (SYMDV - 4 bytes): full-word pointer to sym-
bol's "dope vector'" or "extended attributes.' May
be used for various purposes.

BUFFER ID (SYMBFRID - 4 bytes): full-word pointer reserved
for the display buffer ID for the symbol.

USE COUNT (SYMUSC - 2 bytes): half-word "use count" for
the symbol. This will be used to determine when and
if a symbol should or may be removed from the symbol
table.

DISPLAY LINK (SYMDLNK - 2 bytes): contains a half-word
Symbol Table Index (STEI) which may be used to link
symbol table entries together in a chain. When this
field is referred to in a macro call, a full-word
STEP must be given since the macro will convert it
to or from the STEI. This field was originally re-
quested by display people but they have since dis-

owned it so it may be used for various purposes.

e it i 23

-65-

NDIMENSION (SYMﬁIM - 2 bytes): half-word dimension of
operands. Number of elements in a vector; number
of elements in each of the two vectors of a vector-
pair. Not used by scalars.

MODE (SYMMOD - 1 byte): The bits in the mode byte are
used in conjunction with operands to indicate the

form of the data associated with the symbol. The

e

bits in this byi: may be divided into three groups.

The first group shows the mode of the symbol:

SYMREAL symbol is real
SYMINT symbol is irteger
SYMCPX symbol is complex

The second group gives the structure of the data:

SYMSCALR scalar
SYMVEC vector
SYMVPAIR vector-pair

The third group is a single bit which gives the length
or form of the individual elements:

SYMLNG l1=1long, O=short form

In each group, at most one bit may be set at any
time. It is possible for none of the bits to be
set; this is the undefined condition and is used

when the symbol is first created.

CLASS (SYMCLAS - 1 byte): The bits in the class byte are
switches which determine the basic nature of the sym- :

bol tablc entry. The following bits are defined:

-00-

SYMOPND symbol is an operand

SYMOPR symbol is an operator

SYMMAC symhol is a macro definition

SYMUDEF class of symbol is undefined

SYMUNU this symbol table entry is not in use
SYMSPC special attention

The first five bits listed are mutually exclusive, so
only one (exactly) may be set at any time. SYMUNU

is internal to the symbol table management routines
and is not available to others through macros. ‘'he
last bit is used by the interpreter.

TYPE (SYMTYP - 1 byte): The bits in the type bytec indicate

if a symbol may be changed or destroyed. The bits are:

SYMSYS system symbol

SYMUD user-defined symbol

SYMTMP temporary symbol

SYMRDO read-only symbol

ONE AND ONLY ONE of the first three bits should be '

set for each symbol in the symbol table. System sym-
bols are never destroyed. If an attempt is made to
do so, nothing is done unless the symbol is an oper-
and, in which case it is reset to undefined class

and mode. User-defined symbols are destroyed only
when a request is made to do so. Temporary symbols

ave destroyed automatically when they are no longer #

being referred to anywhere. Read-only symbols should
not be changed, but the symbol table routines do not

do any checking for this.

-67-

EXTRA ROOM: At present, there are 32 bytes in a symbol

table entry, of which all but three are being used.

Currently the symbol table is aligned so that each
symbol table entry pointer points to a 32-byte bound-
ary and therefore has zeros for its five low-order

bits.
8.3.2 Macro Descriptions

Parameters

Many of the symbol table management macros accept
paramecters which correspond to items in a symbol table
entry (STE). These parameters may be divided into two
classes:

Class I parameters refer to particular fields in a
symbol table entry. For example, DOPE refers to the full-
word pointer to the dope vector. When one of these para-
meters is used in a macro call, either the entire field
is replaced (from GRO) or else the entire field is returned
(in GR15), depending on the macro used. If the field is
less than a full word long, it is right-adjusted in the
register and high-order bits are either ignored or set
to zero. Only one Class I parameter may be given in a

macro call.
Class II parameters refer to particular bits in the

TYPE, MODPE, or CLASS bytes of the symbol table entry.
When one of these parameters is used, only the individual
bit associated with the parameter and possibly directly

conflicting bits are affected. For example, if the para-

- g B

-68-

meter SYS is given with the SYMSET macro, then the sys-
tem symbol bit will be set while the user and temporary
symbol bits will be cleared, but no other bits in the
TYPE byte will be changed. Any number of non-conflicting
Class II parameters may be given in a macro call. Class
I and Class II parameters referring to the same byte
should not be used in the same call.

Class I Parameters

PARAMETER FIELD LENGTH

VALUE value pointer full word

DOPE, EXTATR dope vector pointer full word

DBUF# display buffer ID full word

TYPE type bits one byte

MODE mode bits one byte

CLASS class bits one byte

DLINK STE 1link pointer full word (STEP only)
DIM dimension half word

NAME EBCDIC name full-word pointer to

8-character name

USCNT use count half word

Class II Parameters

PARAMETER BYTE ATTRIBUTE*
OPER,OPERATOR CLASS operator
OPND,OPERAND CLASS operand

MACRO CLASS macro definition
UND CLASS undefined class
SPEC CLASS special attention
-SPEC CLASS not special
SCALAR MODE scalar operand
VECTOR MODE vector operand
VPAIR MODE vector- pair
INTEGER MODE integer

REAL NODE real

-69-

COMPLEX, CMPX MODE |complex

SYS,SYSTEM TYPE system (permanent)
symbol

USER TYPE user-defined

TEMP TYPE temporary symbol

CONST TYPE read-only

VRBL TYPE may be changed

*Vertical bars join mutually exclusive attributes.

8.3.3 List g£ Macros

SYMCRE

SYMCRE is used to create a symbol table entry and
assign to it initial attributes. GRl1 is assumed to point
to an 8-byte region containing the name of the symbol to
be created. If the symbol is to be temporary, the name
may begin with the characters "#SYM". The last four
characters of the name will then be supplied by the sym-
bol table routines so that other programs will not have
to worry about creating unique names for temporary symbols
they use. If a name is given which is already in the sym-
bol table, a return code of 4 will be given in GR1S5.
Normally, the return code is zero. In either case, the
STEP of the new or old symbol is returned in GR1. If
there is no more room in the symbol table, a return code
of 8 is used and GR1 is zero.

Initial attributes may be set by giving parameters
acceptable to the SYMSET macro. Any fields not specified
in this manner will be set to the value of the correspond-
ing field in the global default entry, except for the mode

byte which is set to zero (undefined).

-70-
PROTOTYPE: label SYMCRE [parl.] [,par2,...]
EXAMPLE: LA 1, NAMEREG

SYMCRE SYS,OPND;REAL, VECTOR

SYMDES

SYMDES is used to destroy a symbol table entry. It
calls upon the symbol table management routine SYMDS.
If the S.LP in GR1 refers to a system symbol, the symbol
is reinitialized (in the same manner as when a symbol
is created). If the STEP refers to a user or temporary
symbol, the symbol is removed from the symbol table.
Note that the symbol is not removed from the screen by
the symbol table management routines; this must be done
by the routine which wishes to destroy the symbol before
SYMDES is called.

If the STEP in GR1 does not point *to a valid STE,
a return code of 4 is given; otherwise a return code of

0 is provided.

PROTOTYFPE: label SYMDES

EXAMPLE: CALL BUFBOD remove from screen
L 1,STEP
SYMDES

SYMFIND

SYMFIND is used to search the symbol table for an
STE with a known name. It calls upon the symbol table
management routine SYMFS. GR1 is assumed to point to

an 8-byte region containing the name of the symbol. If

-71-

it is found a STEP is returned in GR1 and the return code

is 0. Otherwise a return code of 4 is given.
PROTOTYPE: label SYMFIND
EXAMPLE: LA 1,PLUS
SYMFIND
SYMDCD

SYMDCD decodes the CLASS, MODE, or TYPE byte of a
symbol table entry and returns it in GR15 in a form
suitable for use as a branch table index. The following
are legal parameters only one of which may be given in
one call: CLASS, MODE, TYPE, STRUCTURE (each may be
abbreviated to its first letter). If more than one para-
meter is given in the call to this macro, all after the
first are assumed to be statement labels to be used in
a branch table which the macro will construct. If some
of these labels are omitted, then the corresponding branch
table entry will point to the first location after the
macro expansion. If all the labels are missing, no
branch table is constructed.

The branch indices generated are as follows:

GR15 TYPE CLASS MODE STRUCTURE

0 system operand real scalar

4 user operator integer vector

8 temp macro cmplx vector-pair

12 undefined undefined undefined

ol P

PROTOTYPE: label SYMDCD parl [,loc...]
EXAMPLE: SYMDCD MODE,REALLOC,,ERLOC
produces the same code as

SYMDCD MODE

B *+4(15)

B REALLOC

B *+8

B ERLOC

Use Count Management

All symbols of user-defined or temporary types have
associated with them a use count. This should be incre-
mented by one at the beginning of each usage of the sym-
bol and decremented at the termination of said usage.
SYMREF

SYMREF is used to increment the use count by one.
No action is taken if the symbol is a system symbol.
SYMDLE

SYMDLE is used to decrement the use count. If the

use count is found to be zero after decrementing the macro,

SYMDES is called to destroy the symbol. As before, no
action is taken for system symbols.

Attribute Manipulation

SYMSET
SYMSET is used to set an attribute(s) of a symbol
table entry. Any Class 1 parameter and any combination

of Class 2 parameters are legal. There is no error-

il

-73.

checking to see if contradictory parameters are specified.
Parameters are processed left to right. If a symbol is

an operand (or is changed to an operand in the same SYMSET
call) and the mode byte is to be changed, the symbol
table manipulation routine SYMSMU or SYMSMS is called

and appropriate manipulations are performed to allocate

space for the value of the symbol.

PROTOTYPE: label SYMSET parl [,par2][,par3...]
EXAMPLE: SYMSET OPER,DLINK
SYMGET

SYMGET is used to get the value of any symbol table
entry item. Any Class 1 parameter may be specified.

The value of the item is returned in GR1S5.

PROTOTYPE: label SYMGET par
EXAMPLE: SYMGET DIM
SYMCHK

SYMCHK is used to determine if a symbol table entry
has certain specified attributes. Any Class 2 parameters
may be specified. The last parameter must be the address
to which a branch will be taken if any one of the attri-
butes is not associated with the symbol table entry, i.e.,
if multiple attributes are specified success will be
achieved if all of the attributes specified are present.
PROTOTYPE: label SYMCHK parl[,par2](,par3...]),LABEL

EXAMPLE: SYMCHK OPND,VECTOR,READ,BADPAR

-74-

SYMGINDX

SYMGINDX converts a half-word symbol table entry
index (STEI) into a STEP. A parameter is accepted which
specifies the register in which the STEI exists. The
STEP is returned in the same register. GR1 is assumed
if no register is explicitly specified.
SYMGPTR

SYMGPTR converts a full-word STEP to a STEI. Regis-

ter conventions are as in SYMGINDX.

SYMERR These macros are NOPS as anticipated de-
SYMD1AG mand for them did not materialize.
SYMTRACE

SYMTRAC

SYMSETG These macros perform the functions of the
SYMGETG macros SYMSET, SYMGET, and SYMCHK on the
SYMCHKG global symbol table entry which contains

current defaults.

8.3.4 Symbol Table Management Routines

The symbol table management routines which are nor-
mally used during execution are contained in two assem-
blies, each containing one control section, The first
CSECT is named '"SYMSTM1" and has the following entries:
SYMCS create symbol
SYMDS destroy symbol

SYMFS find symbol

-75-

SYMINITI1 initialization
SYMTABLE PSECT and symbol table

The second CSECT is named '"SYMSTM3" and has the

following entries:

SYMSMU set mode to user byte

SYMSMS set mode to macro-formed byte

Also, there is a CSECT which contains entries to print-
out symhol table entries or dump the whole symbol table.
This will be described below. There is also a program
to test the symbol table macros and programs, but it is
not described here.

SYMCS

The entry SYMCS in SYMSTM1 is used to create a sym-
bol table entry given the name of the symbol. GRl must
contain a full-word pointer to the first byte of the 8-
character name. GRS 13,14, and 15 are used in the normal
manner. On return, GR1 will contain a STEP.and GR15 will
have a return code of 0 or 4. RC=0 indicates that a new
symbol table entry (STE) has been created and the symbol
table entry pointer (STEP) is in GR1. If RC=4, then a
symbol with the same name already exists and the STEP in
GR1 points to that old symbol.

The operation of the routine is as follows: If the
name of the symbol indicates that it is not to be a tem-
porary, that is its first four characters are not the
same as the four characters in location "SYMTPFX" (which

is addressable relative to "SYMTABLE"), then a search

-76-

of the entire symbol table is made to see if the name
is already used on an existing symbol. This search is
made starting at the end of the symbol table and going
toward the beginning. (The end of the symbol table means
the last STE in use, not the end of the storage reserved
for the tablel) During the search, a check of each STE
is made to see if it is used. If it is not, then its
STEP is saved so that the STE may be used for this sym-
bol if necessary. If a symbol with same name is found,
its STEP is put in GR1l and a return with RC=4 is made.
Otherwise an STE is formed for the symbol either at the
end of the table or else in a previously unused STE
found during the search (if one was found). This new
STE is initialized by filling all fields from the global
symbol table entry except the name, which gets the new
name, and the mode and dimension which are set to zero.
If a temporary symbol is to be created, no check
is made to see if it already exists, since this is im-
possible (hopefully) because this routine creates a
unique name. A search is made starting from the begin-
ning of the symbol table to find the first unused STE,
which may be at the end of the table. In order that
room for TEMPS may be found quickly, the first few sym-
bol table entries are reserved exclusively for TEMPS.
The exact number reserved is an assembly parameter and

is the value of the symbol "SYMSTERT'" which currently

-77a

is 5. When an unused STE is found, it is initialized
just as other STEs except that its type is set to TEMP
and the second four characters of its name are an index
which is incremented each time a TEMP symbol is created.
This index starts at 0001 and goes to 9999, at which
point it returns to 0001. The index 0000 is reserved
for the global entry which has the name "#SYM000O'".
This routine is called from the macro "SYMCRE".
SYMDS

The entry SYMDS in SYMSTM1 is used to remove a sym-
bol table entry from the symbol table. GR1 must contain
the STEI for the symbol,and GRS 13, 14, and 15 are used
in the normal manner. First, a check is made to see if
the STE pointed to is in use and if it is not, a return
with RC=4 is given. If the symbol is a system (permanent)
symbol that is not an operand then nothing is done and
a normal return is made. If the symbol is a system sym-
bol that is an operand, then it is reinitialized (in the
same manner as when a symbol is created) with its type
set to system. Any other symbol has its class set to
unused so that it may be reused later. Reinitialized
symbols and destroyed symbols have their mode byte set
to zero, thereby releasing storage assigned to their
value pointer (see SYMSMU write-up).

If a symbol was removed from the table, a check is

made and the pointer to the ¢nd of the symbol table is

-78-

set to point to the last STE actually currently in use.
(If the number of TEMPS defined is small enough so that
they all fit in the room reserved for them, and if no
other symbols are defined, then the end pointer points
to the first block available to non-TEMP symbols.)

This routine is called by '"SYMDES" macro expansions.

SYMFS

The entry "SYMFS" in SYMSTM1 is used to search the
symbol table for a symbol with a given name. GR1 must
contain a full-word pointer to the first byte of the 8-
character name of the symbol to be found. The search is
straightforward, starting at the beginning of the symbol
table and including the reserved TEMP region but not the
global entry. If the symbol is found, a return is made
with its STEP in GR1 and RC=0 in GR15. 1If the symbol
is not found, GRl is set to zero and RC=4,.

This routine is called by the "SYMFIND" macro.
SYMINIT1 and SYMTABLE

The entry, '"SYMINITL'" in SYMSTM1 is the initializ-
ation entry for the symbol table management routines.

It must be called during initialization before any
attempt is made to create symbols, The entry '"SYMTABLE"
is the PSECT name for all the symbol table routines.

It contains pointers to the beginning of the symbol
table, the end of the table, the global entry, and the

symbol table management error exit routine (which does

-79-

not exist and is not used). There is also the temporary
symbol prefix, some scratch storage,and two save areas.
Following all this is the symbol table itself. The
entries in the symbol table are forced to a 32-byte align-
ment. The calculation of the first such address avail-
able to thz symbol table is done during initialization
when the various pointers are also initialized. The
global STE is physically the first entry in the symbol
table although logically (to the various search routines)
it is not contained in it. The global entry is initial-
ized when it is created but it may be changed later,
during or after initialization by other routines. All
the STE's used exclusively for TEMPS as well as the first
non- TEMP STE have their class set to unused during initial-
ization.
SYMPTO

The CSECT '"SYMPTO" contains two entry points:
"SYMTPO" (which is the same address as SYMPTO) and
"SYMSPO"'. The latter requires an STEP in GR1 and prints
out on SPRINT the state of that STE in a readable form.
The first entry dumps the whole symbol table by repeat-
edly calling on the second. Both entries establish their
own addressability and require only GR14 to be set to
the return address. A normal return preserves all regis-

ters except GR15.

o = B

-80-

Assembly Parameters

The following constants appear in SYMSTMI and are
used to establish various characteristics of the symbol
table entries and programs.

The location "TPFX" contains the four characters
which are initially used to denote that a TEMP symbol
is to be created. During initialization, these four
characters are moved into the location "SYMTPFX" in the
PSECT which may be changed at any time.

The location "INIB" contains the initial values
which are loaded into the global STE when it is created.

The symbol "SYMSTETL" has a value which is the total
length of a symbol table entry (in bytes) and is currently
32. Changing this value implies that the symbol table
DSECT and STE alignment caiculation has been or should be
changed.

The symbol "SYMSTEIL" has a value which is the initial-
ization length for STE's., This is the number of bytes
which are moved from the global entry to the other entries
when they are initialized. Currently this is 24 bytes,
since the name is not moved. If this symbol value is
changed, probably other codes in SYMSTM1 will have to
be changed to indicate which bytes are to be moved.

The symbol "SYMSTERT" has a value which is the num-
ber of STEs reserved exclusively for TEMP symbols at the

beginning of the symbol table. Since TEMP symbols are

-81-

created and destroyed quite often during processing, this
reserved room at the beginning makes it more likely that
the CREATE routine can find space for a TEMP easily with-
out looking through the whole symbol table for an unused
STE. 1If this reserved room is filled up, then TEMP sym-
bols will be placed in the first unused STE in the rest
of the symbol table just as any other symbol. Currently,
the value of SYMSTERT is 5, but experience may show a
larger figure to be appropriate.

Currently, 16 pages of core are assigned for the

symbol table and PSECT. This allows room for over 2000

symbols and is probably far more than will ever be needed.

Contrary to what other write-ups may say, the CREATE

routine (SYMCS) at this time does not check to see if
there is room to add another symbol to the end of the
symbol table.

SYMSMU and SYMSMS

The entries '"SYMSMU' and "SYMSMS" in CSECT "SYMSTM3"
are called by the SYMSET macro to set the mode byte of
a symbol. GR1 must contain a STEP for the symbol to be
changed and GRS 13, 14, and 15 are used in the normal
manner., GR1 is not changed. The entry '"SYMSMS" is used
if the mode byte to be entered was generated by the macro
as the result of the use of Class II parameters referring
to the mode byte. "SYMSMU" is called if the Class I para-

meter "MODE" is used. The only difference between the

-82-

two entries is that SYMSMU checks the class of the
symbol. If it is not an operand, then the given mode
byte is stored and nothing else is done. If the class
is operand or if "SYMSMS" is called, then the routine
releases old storage associated with the symbol (value)
and gets new storage in accordance with the new mode
byte.

The operation of the routine is as follows. If the
new mode byte is the same as the old, nothing is done.
If the old value pointer is zero or if it points to the
dope vector pointer field of the symbol, then no storage
is released. Otherwise the storage pointed to by the
value pointer is released using "FREESPAC". If the new
mode byte is zero, the dimension, the value pointer, and
the mode byte are set to zero and a normal return is
made (RC=0). In order to assign storage, both the true
mode (integer, real, or complex) and the structure

(scalar, vector, or vector-pair) must be known. If the

new mode byte indicates both of these, then that is used.

If either field of the new mode byte is zero (undefined)
then the corresponding field from the old mode byte is
used., If this also is zero, then the field from the
global entry is used. When this has been settled, the
space needed for the symbol value is computed. The
dimension field from the global symbol is always used

if the symbol is vector of vector-pair and is stored in

-83-

the dimension field of the symbol. If the symbol is

a scalar, the dimension is set to 1. If four bytes or
less are needed, then the value pointer is set to point
to the dope vector pointer field of the symbol. If

more room is needed, GETSPACE is called to obtain it.
The return code for this routine is the same as the re-
turn code from GETSPACE or zero if GETSPACE was not called.
Note that there is no checking for validity of the new
mode byte, and if too many bits are set, the room allo-
cated depends on the particular sequence in which the
program checks the bits, and may well not be the largest
amount indicated.

LIGHT-PEN MANAGEMENT ROUTINES F. Stephenson R. Brender

Relationship to Graphic Support Routines

These asynchronous attention routines are required
to be able to queue light-pen hits to be later processed
on a first-in first-out basis. This is not possible with
the graphic system as described in the MTS literature.

A new routine, SETANLZ, has been added to the
graphics support. This routine is very like that de-
scribed in IBM literature except that it is an initial-
ization call only. Return is to the calling routine
immediately after making interrupt connections with the
supervisor. When an attention occurs, control passes
to the device-handling routines (LPDETECT, KBFNCDET,

ENDORSEQ, and ASYNCER) on a true interrupt basis with

-84-

respect to the main program. These routines must return
to SETANLZ in normal fashion. By convention SETANLZ will
start buffer regeneration (redundantly perhaps) before
expiring.

This leaves only the problem of '"task time—inter-
rupt time'" coordination via the queue. When the queue
is empty on entry to routine LPMDEQLP a flag called FLAG
is set non-zero and WAYT state (via a SVC) is entered.
The last task of the interrupt routines when a STEP has
been added to the queue is to post that FLAG (set FLAG
to zero) and heuce awaken the task-time routine. |

Addressability

Common addressability is set up at all entry points

with

REG 10 address of graphic DCB
REG 11 = uaddress of fake PSECT (also known as LPMPSECT)
REG 12 = current CSECT (named LPMCSECT)

Note on Documentation

A name in parentheses after a STEP number in the !
functional description of these routines gives the pro-

gram label roughly corresponding to the STEP description.

LPM INITIALIZATION
Name : LPMINIT

Purpose: To initialize internal tables and
data structure of the light-pen

management routines,

-85-

Calling Sequence: 0S (I) R type

Entry: No parameters.

"
o

Return: No parameters. RC
Functional Description:

1. SETANLZ is called to initialize the graphic sup- i

port software for handling asynchronous interrupts.
2, Various error counts are zeroed. Y

3. The initial values of the queue of STEPs are

set to zero.
4. The light pattern in the function keys is set up.

S. The names 'FUNCOO ',...,'FUNC29 ' for the func-
tion buttons are defined to the symbol table
and the corresponding STEPs entered in the
FUNCKEY table.
PROCESS LIGHT PEN DETECT
Name: LPDETECT

Purpose: To obtain STEI of an item identified
by light pen and place the corres-
ponding STEP into the light-pen queue,

Calling Sequence: 0S (I) R type

Entry: Parameters in &-byte region establish-

ed by previous call on SETANLZ

Return: RC

0 All okay.

RC = 4 Something wrong, e.g., could not
find an STEI.

Functional Description: LPDETECT

1. (LPDETGRF) Read into core 2000 bytes from 2250
buffer starting at the next lower even buffer

address location as given in OUTPUT+2,

o

-86-

(LPSCAN2) Scan looking for two-byte sequence =

X'2ACO' which is a '"'GNOP4"

3, If not found, return to SETFANLZ without further
action. SETANLZ will start regeneration of dis-
play and total effect to user will be null.

4. (GOTNAME) If found, then interpret the next two
bytes as the STEI of an entity. Convert to STEP
to store into queue.

5. (GOTNAME2) If queue is full, then exit. Other-
wise, place STEP in queue. Then POST the FLAG
for the LPMDEQLP entry, and exit to SETANLZ.

PROCESS END-ORDER-SEQUENCE

Name: ENDORSEQ

Purpose: To process end-order-sequence con-
dition from 2250 display.

Calling Sequence: 0S (I) R type

Entry: Parameters in 8-byte region estab-
lished by previous call on SETANLZ

Return: RC =0 A1l okay.

Functional Description: ENDORSEQ

1. Increment the counter EOSCOUNT by 1.

2. When EOSCOUNT exceeds = F'256' call ERROR, else
return to SETANLZ.

This action is intended for diagnostic purposes.

An end-or-sequence command should never occur. If it

does, regeneration will be forced 256 times allowing the

user at least 10 seconds to examine the partial image.

-87-

PROCESS ASYNCHRONOUS ERRORS

Name:

Purpose:

Calling Sequence:

ASYNCER

To process asynchronous error condi-

tions in 2250 display.

0S (I) R type

Entry: Parameters in 8-byte region establish-
ed by previous call on SETANLZ
Return: RC = 0 All okay.
Functional Description: ASYNCER
1. Record the buffer location where the error occur-
ed in DATACHK. Return to SETANLZ.
Comments: An error message via SERCOM will also be
implemented.
PROCESS FUNCTION KEYBOARD DETECTS
Name: KBFNCDET
Purpose: To process keyboard detects from

Calling Sequence:

either function or (real) manual key-

board.

0S (I) R type

Entry: Parameters in 8-byte region establish-
ed by previous call on SETANLZ.
Return: RC = 0 All okay.
RC = 4 Something wrong, i.e., END
or CANCEL from keyboard.
Functional Description:
1. The keyboard sense data is read to determine

cause of interrupt.

sttt it i

T

-88-

2. 1f interrupt from manual (real) keyboard,

simply ignore and rcturn to SETANLZ.

3. (FNCDET) Else from function keyboard so the
keynumber is extractcd and used to index into

both FUNCKEY and KEYCODE tables.

4, 1f KEYCODE entry is zero, then FUNCKLEY contains
the STEP for the function deprcssed. Load this
and go step 5 of LPDETECT description,

S (PRECALL) If KEYCODE entry is = X'80000000',

then FUNCKEY contains the address of an immediate

routine. This routine is called. It must re-
turn before the display regeneration is set up

since all 2250 intcrrupt-handling is suspended.

GET 'STEP' FROM LIGHT PEN ROUTINES
Name: LPMDEQLP

Purpose: To obtain STEP of item pointed to

by user from a queue of such in FIFO

order.
Calling Sequence: 0S (I) R type
Entry: No parameters
Return: GRO contains STEP

RC = 0 All okay.

RC = 4 Something wrong somewherc.
Routines Required: ANALYZ § SETANLZ from *GPAKL1B
DSPECHO1 (Echo line entry) from display scction
EXTERNAL SYMBOL - DCBADDR = DCB and STRTADDR from buffer

management.

s bttt o

-89-
Functional Descriptions:
(Note: ECH is pointer to next entry not in echo, BEGIN
is pointer to next entry not on interpreter stack.)

1. On ENTRY, compare ECH to END. If equal, the
echo line is up-to-date, so branch to (ALLECH).

2. To update echo, branch to (FILLTAIL) to get linear
vector of queue. Call DSPECHOl1l with address of

parameter list in GR1l. (Parameter list is two

full-words: first is address of full-word length
of the vector; second the address of the first

word of the vector.)

3. (ALLECH) Compare BEGIN and END. If equal, the
queue is empty so the program goes into wait
state until another interrupt occurs which makes
a queue entry. The echo line is updated after

this entry.

4, (NTINT) The STEP of the next queue entry is
put in GRO, BEGIN is incremented, and the rou-

tine returns with RC = 0.

5. (FILLTAIL) Given the pointer of where to start
in the queue, c¢ntries are moved into a linear
vector. A full-word count is computed and stored,
as required for the parameter list. The value
of ECH is updated and control returned. Also
used by LPMNEWEC.

GET ECHO LINE NOT YET PASSED TO INTERP AFTER AN EDIT
Name: LPMNEWEC

Purpose: To obtain linear vector of that part
of the button queue not already passed

to the interpreter. ,

-90-

Calling Sequence: 0S (I) R type
Entry: No Paramcters
Return: GRI contains pointer to PARLIST I
PARLIST = A (LENGTII OF VECTOR)
A (VECTOR)
GRC = 0 All okay.
GRC = 4 [LERROR
Routines Required: None

Function Description:
1. Picks up BEGIN and branches to (LIST).

2. (LIST) 1If queue is empty, returns with zecro
put in vector length. If qucue is not cmpty,
branches to (FILLTAIL) as in LPMDEQLP to get

linear vector, and rcturns.

3. RETURN to calling program with address of para-
meter lIist in GR1, GRC = 0,

8.5 KEYBOARD AND NUMERIC DISPLAY ROUTINES
M.Feldberg R.7Taylor R.Nicholls

The mandate for this group was to translate alphanumeric
information derived from various parts of the system into
order programs to be passed to the screen management routines
for display on the screen and to 'manage' the order programs
thercafter; that is to say, the particular order programs werc
to be cataloged. These order programs were written in a
standard manner and were identifiable via an index subscripted
to each program.

DSPKBRD

This provides the keyboard display and the initial-

ization call to the echo line. It also provides the func-

-91-

tion definition (via SYMODEFS) for the scrolling, numeric
display, and screen-clearing routines. At the time of
the call to this module, a temporary file,-MESSFILE, is
created and is used to keep all messages which are dis-
played on the screen and the entire button queue history.
DSPMESS

This contains both the message display routines and
the message erasing routines. Figure 8.5.1 is a flow
chart of the subroutine DSPMESS.
DSPNUMV

This module contains a large number of entries but
we will describe only two in detail as the rest manipu-

late data in a simple way after it has been set up by

the two routines to be described. The two to be described
are:

DSPNUMV

DSPORDER

Each numeric display comes under the control of
a control block (with the dummy structure VECTATT). This
has the structure:
STEP of variable displayed
Starting address of value vector

Address in value vector of start of present

display
Last address in vector

Buffer ID of display

Figure

8.5.1

NO

\ WRITE A /

. LINE

\

\

TO
FILE

NO / MESSAGE
; BEING

-92-

Flow Chart of Subroutine

_ LINZ\\\

> 70 LHA&/

WRITE 70
CHAR TO
FILE

Y

REDUCE |

LINE LENGTH
BY 70 [

IS A

\QISPLAYEB/
///

1 YES

REMOVE MESS

N

///fg MEEE\\IES

> 254 CHAR

No.

BLANK
MESSAGE
BUFFER

/

DSPMESS

.

\

MESS T0O

\

DISPL.

. LONG',

/

{ ExiT

-93.-

Figure 8.5.1, continued

!
MOVE 1 MOVE 55 ‘
REMAIN. CHAR. CHAR INTO |

BUFFER '
| | | |
!)
DEC. COUNT |

AND INC.
BUFFER BASE

J

o |
SET STEI IN|
ORDER PROG.|

e

——

BUFFER
MANAGEMENT

-94-

Dimension of vector (1 if a scalar)

Pointer to head of list of a control block |

Eight bytes of positioning orders for start

of order program.
This structure is used for both vector and scalar displays.
Three blocks are provided each kind of display; they are
queued and used sequentially until all are in use. If
at any time the display corresponding to a given block
is erased, the block is placed on the back of the queue
for later use. The queue structure is:

Byte index of first available pointer

Pointer to control block

F'-1'
The -1 limits the length of the list.

In order to obtain an order program corresponding
to a given set of values (or more properly, to display
the values corresponding to a given STEP), a control
block is acquired, the relevant data are put into the
block, and the block is passed to DSPORDER. To scroll
a vector display, only the address of the head of the 4
display in the control block need be changed before pass-

ing the address of the block to DSPORDER.

System Sub-button Description

Name: DSPLPROC (part of the DISVALUE button)

-95-

Purpose: To display a macro definition in

the working area of the screen,

Calling Sequence: OS(I) S type
Entry: GR1 contains location of a list of
2 adcons

1. A(STE of the procedure)
2. A(Value of the procedure)

Return: RC=0 Procedure is displayed

RC=4 Procedure is not displayed

Instructions for use:
To display the definition of
MACRONAME, the user should point at
LITNEXT MACRONAME DISVALUE
in that order with the 1light pen.
The macro definition will be dis-
played in the current working area

of the screen. The formal parameters

of the definition will appear in
parentheses.
Functional Description:
1. Pick up parameters using pointer in GR1.

2. Get the length (number of STEPs) from the type

entry in the symbol table.

3. Go through the double entry table which contains
the macro definition starting at A(Value+#dummy
args*4) to get the STEPs of the definition.

(See macro write-up for details.)

4., Place these STEPS in a local list. Record the
number of STEP in the list.

-96-

5. Use a STEP to obtain an 8-byte EBCDIC name and
build up a 2250 order program using these char-
acters. (Trim all but one trailing blank and
insert NEWLINE and spacing characters where

appropriate.)
6. Loop on 5 until all STEPs processed.

7. Compute the length of the 2250 order program
in bytes and call BUFBINGO.

8. Increase the use count of the macro.

9. Enter the STEP and Buffer ID of the displayed
macro into the local table of macro definitions

displayed.
10, Exit with RC=0,
Name: DSPERSPR (part of the ERASE button)

Purpose: To delete the display of a procedure

from the working area.
Calling Sequence: 0S(I) S type

Entry: GR1 contains the location of a list

of 2 adcons
1. A(STE of the procedure)
2. A(Value of the procedure)
Return: RC=0 Procedure erased
RC=4 Parameter given was not a macro
Instructions for use:

The user should point at
MACRODEFINITION ERASE
in that order with the light pen.

The displayed macro definition will

disappear from the screen working

area.

-97-

Functional Description:

1. Pick up arguments using pointer in GRI1.

2. Use SYMDCD to see if operand is a macro. If

not, exit with RC=4. 1If so, go to 3.

3. Find the entry pair for this macro in the table
being kept of macro definitions displayed. Re-
move this entry pair (i.e., Buffer ID and
STEP) and close up the rest of the table.

4. Call BUFBOD to remove the order program.
5. Decrease the use count of the macro.
6. Exit with RC=0,
Name: DSPCLRPR (part of the CLEARbutton)

Purpose: To clear the "working area'" of the
screen of all macro definitions dis-

played there.

Calling Sequence: 0S(I) R type
Entry: No parameters
Return: RC=0 Done

DSPCLRPR calls BUFBOD with a Buffer
ID. If this ID is not legal, a sys-
tem error is indicated by BUFBOD.

Instructions for Use:

When the user points at the clear
button, the various sections which
display information in the working
section -~graphs, numeric display
of vectors, macro definitions-- are
called and each deletes the order

programs that it set up.

-98-

Functional Description:

1. Secquentially extract cntries from the double

entry table of Buffer IDs and STEPs.

(9]

Call BUFBOD with each 1D,

3. Decreasc the use count of cach wnacro display

deleted by onc.

4, Exit when all entries processed.

The following constitutes a list and definition of the

present set of entry points into the package provided

by keyboard and function display. Given are the external

symbols and the calling sequence required at each cntry.

In some cascs, a return or return code is provided and

in these cases it 1s noted.

Name:

Purpose:

Calling Sequence:

Entry:

Return:

Notes:

DSPKBRD

To display the predefined virtual

keyboard symbols on the screen,
0S (I) S type

GR1 contains the location of a list
of full word entries. The first
entry is a full word count of the
number of following entries. The
rest are STEPs of the predefined

symbols.,

RC=0 Screen displayed

RC=4 Screen not displayed

The format of the screcen will be

entirely determined by the order of
the list of STEPs. The symbols will

Name :
Purpose:
Calling Sequence:

Entry:

Exit:

Notes :

Name:

Purpose:

-99.

be displayed in large characters
across the top of the screen, double-

spaced and staggered line-by-line.
DSPNUMV

To display a vector in numeric form.
0S (I) S type

GR1 will contain the location of a
list of adcons which will be prepared
in the standard function call format,.
The list of adcons will be:

1. A(STE of vector to be displayed)

to

A(Vector)
3. A(Temporary STE)

4. A(Temporary vector)
RC=0 Vector displayed

RC=4 Vector not displayed

The value of the vector at the time
of the call will be <copied into the
temporary vector, and the original STE
will be linked to the temporary by
the DLINK of the temporary. This
will allow for the use of the EBCDIC
name. The use count of both STEs
will be increased and both will be
decreased when the temporary is
erased. A maximum of 4 vectors may
be displayed at any one time with

maximum display length of 20 values.
DSPORDER
To construct an order program corres-

ponding to a given control block.

-100-

Figure 8.5.2 Flow Chart of Subroutine DSPNUMV

——— e e

ENTRY DSPNUMV

|

!
1
|

SCALATD ECTOR VECTOR
1 OR SLALAR :

N Y

A
LONTROL LON%ZBI\\
~~ BLOCK

BLOCK />>§9ﬂ
\\AVAILABLL “NAVATLABLE ‘

(’ | e \,Y\/,_ _____ !

OBTAIN A | ’ OBTAIN Aj DISPL.//

CONTROL | CONTROL A
BLOCK | BLOCK MESS.

' - U — . - | SURURLES S —

']

Y f EXIT

SET FIRST, LAST,
AND PRESENT
; VALUE ADDRESS

—= ["I " __, . CALL DSPORDER

P

GET ADDRESS
1 OF ORDLR PROG.

L

— . CALL BUFBINGO

|SET BUFFER ID §
‘INC. USE COUNTS |
|

TR

e e e o e

Fig

ure 8.5.3 JFlow Chart of Subroutine DSPORDER

Y

o “INT.
r____lﬁl;<<ii OR
: \ffAL

-101-

(, ENTRY N

|

CONV.ROUTINE

GET ADCON
OF

OF
CONV.ROUTINE

| S
GET ADCON

]
|
t

|

Y

MOVE
‘POSITION ORDER
TO BUFFER

—

| MOVE !
| POSITION ORDER |

| § INC. Y _J
S

DEC.LOO
COUNT

NO
P

- T R——

Figure 8.5.3,

| CALL
CONV.
ROUTINE —

-102-
continued

“LOOP

COUNT
> 0 -
e

Wi

’ SET UST
t FOR NUMBER
l & FIELD

i
|
reg— -

I

INC.BASES
FOR
ORDER PROG.

- |

SET STEI
IN ORDER
PROG §
SET LENGTH |

Calling Sequence:

Entry:

Lxit:

Notes:

Name :
Purpose:
Calling Sequence:

Entry:

Exit:

Notes:

Name:
Purpose:
Calling Sequence:

Entry:

Exit:

Notes:

-103-

0S(I) S type

GR1 contains the location of the
control block.

RC=0

An order program is left in the PSECT

with the count at the address COUNT

It is not an External Symbol.

DSPSCRLU
To scroll a displayed vector upwards.
0S (I) S type

GR1 contains the location of a list
of 2 full word adcons:

1. A(STE of vector)

2. A(Value of vector)

No return

The vector will be scrolled upwards

by 10 places for each call on the
routine until the last 10 are display-
ed. No more scrolling may then be

done.

DSPSCRLD

To scroll a vector downwards
0S (I) S type

GR1 contains the location of a 2 ad-
con list:

1. A(STE of vector)

2. A(Value of vector)

No return

The vector will be scrolled upwards

e

Name:

Purpose:

Calling Sequence:

Entry:

Exit:

Notes:

Name:

Purpose:

Calling Sequence:

Entry:

Exit:

Notes:

-104-

by 10 places on each call until the

first 20 values are displayed.
DSPERSEV

To erase a vector which has been

displayed on the screen.
0S (I) S type

GR1 contains the location of a list
of adcons:

1. A(STE of vector)

2. A(value of vector)

No return

The display will be erased, the tem-
porary entry will be destroyed, and
the use count of the original STE will

be reduced.
DSPNEWNM

To display a name on the function

keyboard.
0S(I) R type

GR1 contains the STEP of the required
STE.

RC=0 Name displayed
RC=4 Name not displayed

The new name will be added to the
list of names. This list will first
cover the right-hand side of the

screen and then the left-hand side.

Name :

Purpose:

Calling Sequence:

Entry:

Exit:

Notes:

Name :
Purpose:
Calling Sequence:

Entry:

Exit:

Notes:

-105-

DSPDELNM

To delete the name of a function from

the function keyboard.
0S (I) R type

GR1 contains the STEP of the function
to be deleted.

RC=0 Name has been deleted

RC=4 Name has not been deleted

The name will be deleted and the whole
keyboard moved up to remove the space
left by the deletion.

DSPMESS

To display a message on the screen.

0S (I) R type.

GR1 contains the location of a half
word count of an immediately follow-

ing character string.

RC=0 Message displayed
RC=4 Message not displayed

The message is displayed on the screen
below the virtual keyboard. A limit
of 254 characters may be displayed.
The message will also be written in
the file -MESSFILE, which is created
during the initialization. Any pre-
vious message which is on the screen
at the time of a call on this routine

will be erased.

Name :

Purpose:

Calling Sequence:

Notes:

Name:

Purpose:

Calling Sequence:

Entry:

Exit:

Name:

Purpose:

Calling Sequence:

Entry:

Exit:
Name:

Purpose:

-106-

DSPERSMS

To erase a message from the screen.
No parameters are required.

This is used internally but it may
be called by anyone who wants to.
DSPECHO1

To get those parts of the button queue
which are kept by Light Pen manage-

ment.,
0S (I) S type

GR1 contains the location of a list
of 2 adcons:

1. A(Count of queue)

2., A(Queue)

No return

DSPECHO2

To pass those parts of the button queue

which are kept by the Interpreter.
0S (I) S type

GR1 contains the location of a list
of 4 adcons:

1. A(Count of button queue)

2 A(Button queue)

3. A(Count of history queue)

4 A(History queue)

No return
DSPLPROC

To display a procedure on the screen.

Calling Sequence:

Entry:

Exit:

Notes:

Name :
Purpose:
Calling Sequence:

Entry:

Exit:

Name:

Purpose:

Calling Sequence:

Notes:

-107-

0S (I) S type.

GR1 contains the location of a list
of 2 adcons:

1. A(STE of the precedure)

2. A('Value' of the procedure)

RC=0 Procedure is displayed

RC=4 Procedure is not displayed.

The call is a standard function call.

DSPERSPR
To delete the display of a procedure.
0S (I) S type

GR1 contains the location of a list
of 2 adcons:

1. A(STE of the procedure)

2. A('Value' of the procedure)

RC=0 Procedure erased

RC=4 Something not quite right.
DSPINC

To increase the time count on a mess-

age.
None

A display is kept on the screen un-
til one of the following has occurred:
a. A new message is displayed
b. Three additions are made to

the echo line.
This routine is used to update the

count from the echo line.

-108-

Name: DSPFLDEN

Purpose: To acquire a temporary MTS file called
MESSFILE.

Calling Sequence: None

Exit: RC=0 File acquired

RC=4 File not acquired

Notes: A temporary file called -MESSFILE
is acquired and is used in order to
store a record of the user's compu-
tations. The echo line is placed
into the file whenever it is placed
in the history stack. All messages
that are displayed on the screen are
also placed in the file. The FDUB
of the file is kept under the external
symbol of DSPFDUB and this may be
used by anyone who wishes to place

anything in the file.
FUNCTION DISPLAY ROUTINES

General Description

All calls to display graphs in the shared area of
the 2250 screen come to Function Display as operator calls
from the interpreter. Operators are currently available
to display and erase graphs (PLOT1, PLOTZ2, ERASE, and
CLEAR) and to control the mode and scaling of displays
(SCALE and SETPLTMD).

Buffer programs for the IBM 2250 are generated using

the subroutines in *GRAPHLIB which are described in the

-109-

IBM Systems Reference Library manual, IBM System /360

Operating System Graphic Programming Services for the

IBM 2250 Display Unit, Model I (Form (27-6921-0 file

$360-30). These subroutines were used extensively, and
the IBM manual must be used to understand the parameter
tables that are set up to display graphs.

Four function display subroutines form the primitive
basis for other function display programming. They are:

1. FDADDDS which adds a graph to the screen given
two vectors, and the Symbol Table Entry Pointer

(STEP) of a temporary vector-pair.

2. FDGRIDDS which puts a grid and labels on the

screen after the appropriate parameters are set
up.

3. FDMAXMIN which chooses corner points (scale
values) for a grid given the x and y vectors
to be displayed.

4. FDSETVAR which chooses increments between grid

lines and sets up the vectors to be used as labels.
The following few pages describe the operator entries
to handle PLOT1, PLOT2, and SCALE and the internal sub-
routines FDADDDS and FDGRIDDS,

Function Display: Operator Description

Name:
PLOT1 and PLOT2
Function:
display graphs that are composed of a vector-pair or

a pair of vectors.

-110-

Operands:

PLOT1 takes one operand from the stack. It may be
either a vector or a vector-pair. A vector-pair operand
is displayed using its own domain and range. A vector

operand is used as the y-vector of a graph and is dis-
played against the standard domain (the ID vector).

PLOT 2 takes two operands. If they are both vectors,
the vector first entered onto the stack is used as the
y-vector in the graph displayed versus the second vector
entered.

If the first entered operand is a vector-pair, its
y-vector is used as the y-vector in a display versus the
second operand entered.

Results:

Neither PLOT1 nor PLOT2 returns an operand to the

stack.
Notes:
1. In all cases the scaling used will be determined
by the first graph displayed. 1If this is unaccept-
able, the SCALE operator may be used to set the
scale.
2. The displayed graph is a floating-point vector-

pair operand and may be placed on the operand
stack with a light-pen hit on it. It may be
used with any operator that accepts vector-pair

mode operands.

3. The grid is displayed with the first use of
PLOT1, PLOT2, or SCALE.

-111-

4. Transformations are performed on the x and/or
y vectors if the current plotmode specifies that
either one or both of the ordinates is to be

of log mode.
Possible Messages:

1. DIMENSIONS OF PAIR OF VECTORS FOR DISP DISAGREE
The two vectors which are to be displayed with
PLOT2 must have the same number of elements.

No action is taken if this error occurs, but

the operands are removed from the stack.

2. SOME PTS OF LAST GRAPH OFF THE SCREEN
One or more points of the last graph fell out-
side of the grid. All points within the grid

boundaries are displayed.

3., INTEGERS IN LAST FP VECTOR FOR DISPLAY
This means that there were some numbers that
looked like integers that were supposed to have
been floating point. Probably a programming

error.

4. DISPLAY BUFFER OVERFLOW ERASE SOMETHING
Too much is being displayed. Last display is

ignored; operands are removed from stack.

Example:
Button pushes starting from the left
ID IDb PLOT2
displays a straight line from (-1,-1) to (1,1).

Name:
SCALE
Function:
Sets the scale values to be used for the lower-left

and upper-right corners of the grid and then displays

-112-

an empty grid. PLOT1 and PLOT2 will use these scale
values for all subsequent displays.
Operands:

SCALE accepts four scalar floating point operands
that describe the lower-left and upper-right corners of
the grid to be displayed. The order which the operands
are to be placed on the stack is:

1. x value of the lower-left corner.

2. y value of the lower-left corner.

3. x value of the upper-right corner.

4, y value of the upper-right corner.

Results:

No results are returned to the stack.

Notes:

1. Use of SCALE overrides any automatic scaling
by PLOT1 or PLOT2.

2. If some graphs are already displayed they will
not be rescaled. The grid will be changed under
them. They may be rescaled by getting two light-
pen hits, i.e., placing the graph on the stack

twice, and then erasing and plotting again.

3. SCALE does not alter the plotting mode. The

grid displayed will be of the current mode.

4. No messages are Jisplayed by SCALE.

-113-

Function Display: Subroutine Description

Name:

FDDSVCPR
Function:

The entry point for all PLOT2 operator instances
and the PLOT]1 instance to display a vector against the
standard domain.
Calling Sequence:

0S(I) S-type

There are six parameters, the STEP and VALUE of the
X vector to be displayed, of the y vector to be displayed,
and of the vector-pair temporary for the displayed graph.
Subroutines used:

1. FDMAXMIN: routine to set up the scale values

for the corner points of the grid.

2. FDSETVAR: routine to set up grid and label

increments and the label vectors.

5. FDGRIDDS: routine to display grid, labels, and

the scale messages.

4. FDADDDS: routine to construct the buffer pro-

gram for the graph to be displayed.

Description:
1. The dimensions of the x and y vector are checked

for agreements,

2. The y and then the x vectors are moved to the

vector-pair temporary.

3. If either or both of the vectors are integer

they are converted to floating point.

-114-

4., If no grid is currently being displayed, FDMAXMIN,
FDSETVAR, and FDGRIDDS are called to display the
grid.

5. Return to caller.

Name :

FDDSFN
Function:

Entry point of PLOT1 when it operates on a vector-
pair operand.

Calling Sequence:

0S(I) S type.

There are four parameters, the STEP and VALUE of
the vector-pair to be displayed and of the vector-pair
temporary used for the displayed graph.

Subroutines Called:

None; however code in FDDSVCPR is entered after
initial setup.
Description:

1. The vector pair is moved to the temporary.

2. Variables are set up and FDDSV(CPR is entered

at REALY.
Name:

FDSCALE
Function:

Entry point for the SCALE operator.

Calling Sequence:

0S(I) S-type

-115-

There are eight parameters: the STEP

the following four floating point scalars.

1. y value of the upper-right corner.
2. x value of the upper-right corner.
3. y value of the lower-left corner.
4., x value of the lower-left corner.

Subroutines Used:

1. BUFBOD: to erase a grid if there
up.

2. FDSETVAR: to set up the grid and

meters.
3. FDGRIDDS: to display a new grid.

Description:

and VALUE of

is one already

labels para-

1. 1f a grid is already up, it is erased.

2. The upper-right and lower-left corner scale

values are set into the parameter

tables.

3. FDSETVAR is called to set the grid and label

increments and the label vectors.

4. The buffer program for the grid and labels is

constructed with FDGRIDDS.

(92}

Return to caller.

Name ;

FDADDDS

Function:

Adds one graph to the 2250 display buffer.

Calling Sequence:

0S(1I) S-type

-116-

GR1 contains an address that points to a vector

of four other addresses:

1. The address of the first element of the x-vector

to be displayed.

2. The address of the first element of the y-vector

to be displayed.

3. The address of a full word containing the number

of points to be plotted.

4, The address of a full word containing the Sym-
bol Table Entry Pointer for the temporary space

used for the displayed graph.

Exit:

GR15 is set to zero.
Subroutines Used:

1. GETSPACE: wused to get space for graphs to be

displayed in one of the log modes.

2. ALOG10O: wused to transform functions displayed

in one of the log modes.
3. DSPMESS: to display messages on the screen.

4, GSTOR: -GRAPHLIB routine used to add 2250 com-

mands to the buffer program.

5. GSVPLOT: *GRAPHLIB routine used to construct
the 2250 buffer programs for the graph itself.

6. BUFBINGO: wused to write the buffer program in-
to the 2250 buffer.
Format of the 2250 buffer program for graphs:

1. A 2-byte NOP (may be changed to '"Defer Light

Pen Detects'" when used on 2250 model 3)

2. The buffer program for the graph. Absolute

-117-

vector mode plotting is used.

3. A 2-byte NOP (may be replaced by "Enable Deferred
Detects'" on the model 3).

4, " 4-byte NOP containing the Symbol Table Entry
Index (STEI).

Subroutine Description:
1. The parameter tables for the *GRAPHLIB routines
are initialized and set up for the vectors to

be displayed.

2, If either or both of the vectors is to be dis-
played in log mode, space is obtained from
GETSPACE and the log10 of the appropriate vectors

is moved into this space.

3. Three calls are made on *GRAPHLIR to build the

first three parts of the buffer progranm.

4, The STEIl is obtained, entered into the 4-byte
NOP and the two are added to the buffer progranm.

5. The buffer program is written to the 2250 with
BUFBINGO.

6. The buffer ID is entered into the symbol table.

7. The STEP is entered into the table of displayed

T e

graphs.
8. The use count of the temporary is incremented.
9. Return to caller.
Name: N
FDGRIDDS ‘
Function:

Constructs the buffer program for the grid, labels,

and scale messages,

-118-

Calling Sequence:

0S(I) R-type

No parameters.

Subroutines used:

1.

GSTOR: *GRAPHLIB routine to add 2250 commands
to the buffer program.

GCGRID: *GRAPHLIB routine to construct the
buffer program for the grid.

GLABEL: *GRAPHLIB routine to label the axes.

GCPRNT: *GRAPHLIB routine used to add the scale

messages to the buffer program.

BUFBINGO: routine to write the buffer program
to the 2250,

Description:

1.

The 2250 command to disable light-pen detects

is placed in the buffer program.

Plot mode is checked and parameters for GCGRID

are set up to give the correct mode display.

Parameters set up previously by FDSETVAR are
used to set up two calls to GLABEL to label the

x and y axes,

The scale messages arc added to the buffer pro-

gram.

The 2250 command to enable switch detects is

added to the buffer program.

The buffer program is sent to the 2250 using
BUFBINGO.

The buffer ID of the grid is saved locally.

Return to caller.

-119-

Function Display: General Organization

The routines previously described are contained in
one assembly with two CSECTs (FDADDDS and FDGLOB). FDGLOB
is the CSECT to be used as a PSECT and contains the

function display global variables.

Entries to the Function Display Routines

The following pages describe the entries FDINIT,
FDINTFLT, FDSETVAR, FDFLTBCD, FDMAXMIN, FDERASE, FDCLEAR,
and FDSETMOD to the display section of the mathematical
analysis package. Thsse routines perform data conversion,
set plotting parameters, erase displays, and initialize
the function display section.

FDINIT

This routine is called during initialization to
enter four operators--PLOT1, PLOT2, SCALE, and SETPLTMD--
into the symbol table (and onto the screen). In addition
it calls the initialization point DSPECHO of the numeric
and keyboard display section

The characteristics of the four operators initial-
ized by FDINIT are as follows:

PLOT]l: Has two possible mode combinations:

1. A vector (or the first half of a vector

pair) is plotted against the ID vector.

2. A function is plotted (i.e., the first
half of the vector pair is plotted against
the second halfh

S—

-120-

PLOTZ2: Has two possible mode-combinations:
1. A vector is plotted against another
2., The first half of a vector-pair is

plotted against a vector.

SCALE: Requires four operands. These are the
REAL*4 coordinates of the lower left and upper right
corners of the graph (i.e., the values represented by
these corners, which are positioned at fixed points
relative to the screen).

SETPLTMD: Requires one REAL*4 or INTEGER*4 operand. l
This operand is the desired plotting mode number. The
routine FDSETMOD, which interprets SETPLTMD, determines
from the operand itself without reference to the symbol
table whether it is of REAL*4 or INTEGER*4 mode.

The name of the PSECT for FDINIT is (predictably)
FDINITPS. This PSECT contains the save area and all ad-
cons for FDINIT.

FDSETVAR .

This entry initializes or resets various parameters
used by the *GRAPHLIB routines for displaying graphs.

It examines Ul, U2, V1, and V2, which are the scale values
of the lower left (Ul, V1) and upper right (U2, V2) scale
values on the screen and sets the following variables:

ULABAX: the relative position in the V direction
of the labels on the U-axis (=V1)

VLABAX: the relative position in the U direction]

of the labels on the V-axis (=U1l)]

-121-

UGRID: the scale increment between the grid
lines in the V direction (= (U2 - U1l)/8)

VGRID: the scale increment between the grid lines
in the U direction (= (V2 - V1)/8)

ULABINC: the scale increment between successive
labels on the U-axis (= UGRID)

VLABINC: the scale increment between successive
labels on the V-axis (= VGRID)

USTRING: the EBCDIC characters comprising the U-
axis labels (c.f., FDFLTBCD)

VSTRING: the EBCDIC characters comprising the V-
axis labels (c.f., FDFLTBCD)

FDSETVAR is called without parameters, since all
necessary information is contained in the control section
FDGLOB. Note that the routine FDFLTBCD may reset ULABINC

and VLABINC to a multiple of their values upon entry.

The PSECT for FDSETVAR is FDSVPSCT. It contains
the save area and a four-fullword area used as a para-
meter list for the two calls to FDFLTBCD.

FDINTFLT

This is a "utility" routine which can be called to
convert a vector of integers (INTEGER*4) to a vector of
floating-point numbers. The REAL*4 results replace the
integers. The calling sequence is

CALL FDINTFLT, (N,X), where

N is the INTEGER*4 number of elements in

X, the INTEGER*4 vector to be converted.

-122-

The PSECT for FDINTFLT is FDINTFPS; it contains only
the save area.
FDFLTBCD

This routine is called by FDSETVAR to set up the
strings of EBCDIC characters which comprise the labels
for the function display.

The calling sequence for