
00

o

c*. J

THE UNIVERSITY OF MICHIGAN

April 1970

Memorandum 27

CONCOMP

r
n f-

m
MOMS: MICHIGAN'S OWN i* ^ b0 m

ill MATHEMATICAL SYSTEM

Robert W. Tqylor, Editor

LbuaiaU U ihlii)

Reproduced by the
CLEARINGHOUSE

for Federal Scientific & Technical
Information Springfield Va. 22151

pitiaUc r»je',r»-* ma »ci«; tin

BEST
AVAILABLE COPY

"' -'

,_

UNIVERSITY OF MICHIGAN

Memorandum 27

MOMS: MICHIGAN'S OWN MATHEMATICAL SYSTEM

Robert W. Taylor, Editor

CONCOMP: Research in Conversational Use of Computers
F.H. Westervelt, Project Director

ORA Project 07449

supported by:

ADVANCED RESEARCH PROJECTS AGENCY
DEPARTMENT OF DEFENSE

WASHINGTON, D.C.

CONTRACT NO. DA-49-083 OSA-3050
ARPA ORDER NO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

April 1970

PREFACE

This report describes an interactive mathematical

system with graphical input and output capabilities.

The system was programmed during the winter of 1968

by the members of the advanced systems programming course,

Computer and Communication Sciences 673, under the direc-

tion of Professors B. Arden, B. Caller, and L. Flanigan.

It runs on an IBM 360/67 computer with 2250 display oper-

ating under MTS, the Michigan Terminal System.

Shortly after completion of the project, the 2250

display was removed from the Computing Center. This

accounts both for the lack of photographs and the delay

in publication.

The members of the class wish to thank the Depart-

ment of Computer and Communication Sciences and the

University of Michigan Computing Center for the support

necessary to carry out this project.

Persons wishing further details should contact

Professor Bernard Caller at the University of Michigan

Computing Center.

List of Class Members of

Communication Sciences 673: System Programming

Neil J. Barta

Bruce J. Bolas

Ronald F. Brender

Michael S. Feldberg

Daniel R. Frantz

Ross H, Hieber

Charles G. Moore

Robert E. Nicholls

Norman L. Schryer

Frances Stephenson

John S. Tripp

Robert L. Feldman

Jay A. Jonekait

Richard W. McHard

Ronald J. Srodawa

Robert W. Taylor

Pertr H. Wilcox

Vll

I ■ t t*

" -4.

■

.

.

I

BLANK PAGE

I

- riB

7
IW^'Hi '•• **! ''W«^'.-.- :.i!!*t'fl ;,■.-. ' ■■— "• '''"''"''i/i.,.Aii„wwi—.,

TABLE OF CONTENTS

PREFACE v

1. INTRODUCTION 1

2. HOW TO USE MOMS 2

2.1 Data Types in MOMS 4

2.2 The Predefined Buttons 6

2.2.1 The Declaration Buttons 6
2.2.2 Editing and Control Buttons 7
2.2.3 Definition of New Buttons

and Constants 8
2.2.4 The Display Operators: PL0T1,

PL0T2, SETPLPMD, SCALE, DISVALUE,
SCROLLUP, SCROLLDN 9

2.2.5 Screen Viewing Operators 11

3. THE MACRO PACKAGE 12

3.1 Defining a Macro 13

3.2 Deleting a Macro 14

3.3 Calling a Macro 14

3.4 Displaying a Macro 15

3.5 Examples 16

4. THE MATHEMATICAL OPERATORS 17

4.1 The Arithmetic Operators 17

4.2 The FORTRAN Library Subprogram Operators • . 18

4.3 The Integration and Differentiation
Operators 20

4.4 Additional Examples 20

5. A DETAILED EXAMPLE 20

6. DESIGN CONSIDERATIONS 23

7. THE HIERARCHY OF THE SYSTEM 25

8. THE INTERNAL ORGANIZATION OF MOMS 27

8.1 Initialization 30

8.2 The interpreter 32

IX

Table of Contents, continued

8.2.1 Operator Call and External
Specifications . 36

8.2.2 Internal Specifications and
Operator Calls 49

8.2.3 Button Queue Processor (INTRJN) ... 52
8.2.4 Brief Description of Stack

Manipulation Processor (INTJOHN). . . 54

8.3 Symbol Table Management Routines 64

8.3.1 Symbol Table Entries 64
8.3.2 Macro Descriptions 67
8.3.3 List of Macros 69
8.3.4 Symbol Table Management. 74

8.4 Light-Pen Management Routines 83

85 Keyboard and Numeric Display Routines. • • • 90

2.6 Function Display Routines 108

8.7 2250 Buffer Management Routines 126

8.8 The Macro Processor 141

8.9 Mathematical Operators 150

8.9.1 Program Logic 150
8.9.2 Nonfatal Handling of Arithmetic

Errors 151
8.9.3 Allowable Mode Combinations and

Automatic Mode Conversion 151
8.9.4 Meaning of Vector-Scalar

Combinations 152
8.9.5 Notes on Other Operators (Not

Calling FORTRAN Library) 153

8.10 Utilities 154

1. INTRODUCTION

During the past several years, online mathematical

analysis has received increasing interest [1,3], These

systems have been interpretive in nature, allowing a highly

conversational approach to problem solving, and their

usefulness in attacking complex mathematical problems has

been demonstrated [2]. As stated in [1], these systems

are generally characterized by a keyboard or pushbutton

form of input and a graphical form of output. The output

is sometimes also available in printed form. More signi-

ficant is the fact that all systems allow a variety of

data types, often including matrices, allowing a wide range

of problems to be attacked. Finally, the languages employed

by users of the systems are simple to learn but have a

definitional facility which enhances flexibility.

During the 1968 winter term, the Computer and Communica-

tion Sciences 673 course, in order to understand more

fully the internal workings of such a system, decided to

build one of these systems as a class term-project.

Michigan's Own Mathematical System—MOMS — is the result. It

runs under the Michigan Terminal System, MTS, on an IBM

360/67, using an IBM model 2250 display console for both

input and output. Because the project was to be completed

in approximately fifteen weeks, it was necessary to restrict

somewhat the allowable data types and certain other special

1-

-2-

features. Nevertheless, a large variety of problems may

still be attacked using MOMS.

2. HOW TO USt MOMS

A user at a 2250 console may use the MOMS system by

issuing the MTS command

$RUN *MOMS

The MTS temporary file -MESSFILE will be created, and

the user may examine this file to obtain a history of all

error messages provided during his run.

When execution begins, the 2250 screen will appear

as shown in Figure 1.1. Various words—the light buttons—

appear alony, the vertical edg'js of the screen. These light

buttons define the various commands that the user may issue

to the MOMS system, and are analogous to the "function

keyboard" of various other systems [3]. At the bottom of

the screen is the so-called Virtual Keyboard. This con-

tains the buttons A through Z, which may be used to store

data, as well as the predefined buttons 0 through 9,

and various other commonly used system buttons. Just

above the Virtual Keyboard is the Echo Line. A recent

history of various light buttons that the user has pushed

will appear here. The rest of the 2250 screen is used to

display the results of computations, both in graphical and

-3-

alphanumeric form. Messages to the user are displayed in

thelower portion of this area.
1.Ü

SCRKENA
SCREtNB
SCRtHNC
ABS
ARCCOS
ARCSIN
ARCTAN
ARCTAN2
COS
COSH
COTAN
ERF
ERFC
EXP
GAMMA
LOG10
LOGE
LOGGAMMA
SIN
SINH
SQRT
TAN
TANH
DIFF
DIFF2
INTEG
INTEG2

1.0

/

/

/
s

/

/

1.0 1.0

MESSAGE:
ECHO: ID ID PLOT2

ABCDEFGHIJKLMNOPQ

RSTUVWXYZ+-*/**

0123456789

DIMENSHN
SETID
DEFCONST
BAKSPACE
DEQUEUE
LITNEXT
DEFBUTON
DELBUTON
SKTPLTMD
ID
PLOT1
PLOT2
SCALE
DISVALUE
SCROLLUP
SCROLLDN
CLEAR

/
* *

DEFMACRO
ALPHA

PROG.
FUNC.
KBD.

2250 KEYBOARD

Figure 1.1

-4-

The user makes input statements to the MOMS system by

pointing at various light buttons with the light pen. A

result of a pointing sequence will appear on the Echo Line

The syntax of the input statements is operator postfix

notation. Nesting is allowed. Thus, for example,

A B +

A B C + +

BB*4AC**-D =

2
will add A to B ; add A,B, and C ; compute B -4AC

and store it under button D , respectively. The user

may edit his input statement using system operators and

eventually request interpretation of the statement and

display of results, either in graphical or alphanumeric

form. Various declarative and definitional capabilities

are provided to enchance the flexibility of the system.

These are discussed in detail in Section 2.2.

2.1 DATA TYPES IN MOMS

The current version of the MOMS system has four data

types: scalars (realM) , vectors (real*4, dimension=101) ,

vector-pairs (two vectors concatenated), and macros.

Provision was made in the design of the system for complex

scalars, complex vectors, and complex vector-pairs (as

well as real*8 and integer modes), but they are not yet

-5-

legal data types. The dimension of 101 for vectors is a

default case and may be changed by the user using the

D1MENSHN button as in Section 2.2.1.

There are currently several restrictions concerning

the mode combinations acceptable to the various mathematical

and arithmetic operators. In general, the user will not

have to be concerned with mode incompatibilities, since

almost all commonly used mode combinations are acceptable.

However, should the default data types prove unacceptable

for certain problems, care should be taken or unacceptable

mode combinations will produce error messages.

The following facts summarize the default mode type

conditions for operands.

1. All defined constants are scalar, real*4.

2. Vector pairs may only be created by using a

displayed graph as an operand.

3. Vector pairs are acceptable to any operator which

accepts vectors. Only the "range" part of the vec-

tor pair will be used. (This facility allows dis-

played results to be used in further calculations,

and has been found extremely useful.)

4. The arithmetic operators +,-,*,/, and

** take two arguments, of which either both are

vector, real*4 (or vector —pair) , or one only may

be scalar—real or scalar—integer. The result of

these operations will be vector real*4.

' :■ .- ■■ ■■■.'- ■ .■ ■ ■ -

5. All other operators, except ■ , accept only

vectors or vector-pair.

6. = will accept any mode combination. The following

conventions are observed:

a. vector substituted into vector: clear;

the dimensions of the two vectors must agree.

b. vector substituted into scalar: the first

element of the vector is copied to the scalar.

c. scalar copied into vector: produces a constant

vector as the result.

d. scalar substituted into scalar: clear.

2.2 THE PREDEFINED BUTTONS

A more systematic description of the system buttons

will now be given.

2.2.1 The Declaration Buttons

There are two major declarations which the

user should make immediately after execution begins, if

the default case is not acceptable. The first of these

concerns the dimension of the vector data type. The

default case for vectors is 101 entries. If the user

wishes to change this standard dimension, he should point

at the desired dimension (which may involve the definition

of the constant, see Section 2.2.3) and then point at the

DIMENSHN button. For example, the following sequence

sets the standard dimension to 201 entries:

DFCONST 2 0 1 DEFCONST DIMENSHN

The only predefined operand in the MOMS system is the

so-called ID vector. Stored under this button is the

useful vector which ranges from -1 to +1 in 100 steps

(i.e., 101 entries). If the user does not wish the

default case, he may change the ID vector by using the

StTID operator. This operation should be performed

before any other operation is undertaken, even before

changing of the standard dimension. The new definition

of the ID vector is made as follows:

MIN MAX NUMBER OF ENTRIES SETID .

Thus an ID vector from -1 to +1 with 200 steps (201

entries) would be established by the sequence

DEFCONST - 1 DFCONST DEFCONST 1 DEFCONST DEFCONST

2 0 1 DEFCONST SETID

2.2.2 Editing and Control Buttons

Editing of the input line is accomplished by

using the BAKSPACE button. This button will delete the

previous button pushed. Its effect is immediate. The user

may also erase all button pushes back to the last inter-

preted equal sign by pressing the DEQUEUE button. The user

is not allowed to use the BAKSPACE button or the DEQUEUE

button past the last interpreted = because interpretation

of that ■ will in general have (hanged data values.

7-

-8-

In order that operator buttons may be used as

data in special cases, the LITNEXT button is provided.

Pushing this button causes the system to interpret the

following button push as a data button unconditionally

(See Sections 3.3 and 3.4 for examples.)

The START button may be invoked whenever the

user wishes interpretation of its input sequence to start.

Usually, however, the implicit starting of interpretation

contained in the display operators (Section 2.2.4) will

keep the use of this button to a minimum.

The RETURN button should be pointed at when the

user wishes to terminate execution of MOMS and return to

MTS. If for any reason he wishes to produce an error

return to MTS, he may do so by depressing button Number 31

on the Programmed Function Keyboard of the 2250.

2.2.3 Definition of New Buttons and Constants

One uses the DEFCONST button to define a constant.

For example, to define the constant 10.4 one would push

DEFCONST 10.4 DEFCONST

The user may define a new button using the QEFbUTON

operation. For example, to define the button ALPHA, the

user would push

DEFBUTON ALPHA DEFBUTON

Such a series of button pushes would cause the ALPHA

button to appear in the vertical margin of the 2250.

-9-

Conversely, any user-defined button may be de-

leted using the DELBUTON button. Thus a user could press

ALPHA DELBUTON

to delete his button ALPHA. Gnly user-defined buttons may

be deleted. If a user tries to delete a system button,

for example A...Z , he will merely give it an undefined

data type.

2.2.4 The Display Operators: PL0T1, PL0T2, SETPLTMD,

SCALE. DISVALUE, SCROLLUP, SCROLDN.

A user may observe the results of a computation

sequence defined by button pushes by using the various dis-

play operators. Graphical output may be in two forms. The

first of these is a plot of the data on a coordinate grid.

The second is a display of the numeric values of the data.

Most often, a user will wish a plot of vector data types.

The buttons PL0T1 and PL0T2 provide two means of obtaining

such a display. PL0T1 plots the specified vector versus

the system ID vector. This is the most common type of plot-

ting. However, the button Pi.0T2 is available so that the

user may plot two arbitrary vectors against each other.

For example, suppose the user had pressed

ID ID * Y »

Y = X2,-l<Xi;+l

thus the function is stored under the Y button and the

button pushes

and

10-

Y PL0T1

Y ID PLOT2

will produce exactly the same result.

A user also has control over the scaling of the

grid, and the mode of the grid lines. To set the scale

of the grid, the user should press the four operands which

are the coordinates of the lower-left and upper-right

corners of the grid. He should then press the SCALE button.

If no scale is specified by the user, the system will use

the domain and range of the first plot to determine default

scale values. If a subsequent plot falls outside of this

scale, the user will be notified via the message line.

The SETPLTMD button controls the type of grids on

which graphs are plotted. The default case is Linear-Linear,

but the user may specify other types of plots using the

statement

TYPENUMBER SETPLTMD

The various options for TYPENUMBER are as follows:

Rectangular

Polar

0 Linear-Linear

1 Linear-Log

2 Log-Linear

3 Log-Log

4 Angular-Linear

5 Angular-Log

I

-11-

Thus for a Log-Log grid for his output, the user would

make the statement

3 SETPLTMD

Normally, plots on a given screen (see Section 2.2.5) are

cumulative. If a user wishes to have a replacement type

of plotting, he may define a macro which first CLEARS the

screen and then PLOTs the desired graph.

Numeric display of data may be obtained through

use of the DISVALUE button. Thus, in our example, one

might wish to determine how close to zero the approximation

2
to X is. Pointing at the buttons

Y DISVALUE

would display the first ten values of the vector Y . Since

the vectors are usually 101 REAL*4 entries long, it is clear

that we must examine more than the first ten locations to

determine our answer. The SCROLLUP and SCROLLDN buttons are

thus provided. By pointing at the numeric display and then

pointing at the SCROLLUP button we successively scroll

through the vector until we reach the desired entry. Up

to three vectors may be displayed numerically on a single

screen (see below).

2.2.5 Screen Viewing Operators

The MOMS system provides the user with three

"working areas." Only one of these can be viewed at any

one time by the user. He may switch views by pointing at

12-

the SCREENA, SCREENS, or SCREENC button. The three views

are independent of each other. Typically, therefore, a user

will display vectors, etc., as plots on one screen, then

change to another screen to examine numeric values, and

perhaps return to the first screen for further inspection.

Entities displayed on a screen may be selectively erased

by pointing at the displayed entity and then pointing at

the ERASE button. To erase all three screens the user

need point only at the CLEAR button.

3. THE MACRO PACKAGE

The ability to group together a collection of

"button pushes," and henceforth to treat that collection

as a single unit, is a facility which is vital in serious

computational problems. Other online mathematical analysis

systems have this facility in varying degrees [1], and it was

clear from the outset that the lack of such a facility in our

system would seriously limit its capabilities. Thus,

a definitional facility, called the Macro Processor,

was implemented. This package gives the user the ability

to define a string of button pushes and store this string

with an associated name. Certain button pushes in the

definition may be designated as formal parameters. When

the user points at the macro name, the definition will be

expanded with substitution of calling parameters in place

of the formal parameters. Thus, a true macro facility

exists in the MOMS system.

3.1 DEFINING A MACRO

A macro definition is a sequence of button pushes

delimited by the DEFMACRO button. The general form is:

DEFMACRO NAME (D. M. T. ... D M T) B, B0 ... Ill mmm^l2

B DEFMACRO r

where NAME is the macro name, i.e., the button "under" which

the macro is to be stored; D. is the i-th formal parameter

name; M. is the (optional) mode of formal parameter D.;

and T. is the (optional) type of the formal parameter D.

B. is the i-th button push for the macro body. The mode

of each formal parameter should be indicated by pointing at

one of the four light buttons SCALAR (default), VECTOR,

MACRO, OPERATOR; the type of each formal parameter should

be chosen from the light button set REAL (default), and

INTEGER. There may be at most 254 formal parameters within

a macro definition.

The following rules must be observed in defining

macros:

if m=0 , the form of the definition is DEFMACRO a.

NAME (DUM) B 1 B DEFMACRO where DUM is used as
r

place-holder but is never used in the macro body.

b. a macro definition must not appear within another

macro definition.

c. a macro may call upon another macro, but it may

not call upon itself (either directly of indirectly)

-13-

■:*;:■■. ■ -.■

3.2 DELETING A MACRO

To delete a macro, press

NAME DELBUTON

where NAME is the name of the macro to be deleted.

3.3 CALLING A MACRO

A macro call can be one of the following forms

(C, C 1 "2 • *
C) NAME

C, C, ... C NAME 12 n

where NAME is the name of the macro being called, C. is

the i-th calling parameter, n is the number of formal para-

meters for NAME, and vim. The second form may be used

only when the number of calling parameters equals the

number of formal parameters. The first form allows for

a variable number of calling parameters (v) . If a macro

has no formal parameters, then it may be called by pressing

the button NAME. This should be distinguished from

the case where no calling parameters are supplied, but

formal parameters do exist in the macro definition. The

following form should be used in the latter case:

() NAME

The following rules should be observed:

a. The number of calling parameters should not exceed

the number of formal parameters. If this happens,

14-

15-

the extras are ignored and a warning message is

displayed.

b. The number of calling parameters may be less than

the number of formal parameters only if the undefined

formal values were given actual values by a previous

call. If this is not the case and such a call

occurs, a fatal error will result.

c. Nesting of macro calls is allowed to a maximum

level of 500. If this limit is exceeded, a fatal

error occurs.

d. If a call upon a macro involved another macro or

operator name as a calling parameter, the LITNEXT

button must immediately precede that parameter. For

example, if MAC is a macro name, a call upon

another macro MAK with MAC as a calling parameter

might look like:

(TI LITNEXT MAC ALPHA) MAK

The corresponding dummy parameter for MAC would have been

given mode MACRO when MAK was defined.

3.4 DISPLAYING A MACRO

A macro definition may be displayed in the working

area of the screen by the button sequence

LITNEXT NAME DISVALUE

where NAME is the button under which the macro definition

-16-

is stored. The macro definition will appear on the screen

at a fixed position, and the formal parameters of the de-

finition will appear within parentheses. However, the

declared mode and type of the formal parameters are not

displayed. Once on the screen, the display of the macro

is treated as any other displayed entity and may be ERAShed

and CLEARed in the normal fashion. Up to three macros may

be displayed at one time, one on each of the three screens.

3.5 EXAMPLES

The following are permissible definitions of macros:

DEFMACRQ A (D VECTOR INTEGER E SCALAR REAL)

D E = DEFMACRO

DEFMACRO DEFBUTON ALPHA DEFBUTON ALPHA

(D E) D E = DEFMACRO

default modes and types for formal

parameters

DEFMACRO QED (DUMY) DEFCONST 3 . 1

4 DEFCONST ARDVARK = DEFMACRO

no formal parameters in the definition

DEFMACRO F (M N MACRO 0 OPERATOR)

M LITNEXT N 0 DEFMACRO

illustrates a call upon a macro definition

DEFMACRO SUM (M MACRO N MACRO)

LITNEXT M LITNEXT M N DEFMACRO

The following would be an illegal call,

since it generates an infinite nesting

-17-

of the macro SUM.

(LITNEXT SUM LITNEXT SUM) SUM

4. THE MATHEMATICAL OPERATORS

Various standard mathematical operations are

provided in the MOMS system. These include the standard

arithmetic operations of +, -, *, /, **, and ■ , where

** is the exponentiation operator. In addition, those parts

of the FORTRAN function library which accept REAL*4 argu-

ments have been included, as well as facilities for integra-

tion and differentation. It is believed that these predefined

operators will from a useful base from which more complicated

operations may be constructed using the macro facility in

MOMS.

4.] THE ARITHMETIC OPERATORS

The arithmetic operators include those standard

operations enumerated above. They will operate on all mode

combinations (scalars, vectors, vector-pairs) and all type

combinations (integer, real*4). User statements must, of

course, be in the operator postfix notation, described

in Section 2. The following table shows the equivalence

between a FORTRAN-like notation and operator postfix notation:

FORTRAN OPERATOR POSTFIX

A + B

A - B

A * B

A ** B

A B +

A B -

AB*

AB**

-18-

A / B AB/

B = A A B =

4.2 THE FORTRAN LIBRARY SUBPROGRAM OPERATORS

Table 4.1 lists those entries from the FORTRAN

function library which were adapted for the MOMS system.

Note, that when the argument type is listed as RealM, the

mode of the argument may be either scalar, vector, or

vector-pair. If the mode is vector, the appropriate

function will be applied to each entry in the vector.

If the mode is vector-pair, the so-called "range" part

of the vector-pair will be treated as if it were a vector,

and the rest of the vector-pair will be ignored.

In general, an illegal argument to one of these

functions will cause a value of zero to be returned.

Thus, for example, X/0»0.

NAME

ABS

ARCCOS

ARCSIN

ARCTAN

ARCTAN2

COS

COSH

COTAN

ERF

ERFC

EXP

GAMMA

LOG 10

LOGE

LOGGAMMA

SIN

SINH

SQRT

TAN

TANH

DEFINITION ASSIGNMENTS FUNCTION VALUE TYPE

Num

cos" (x)

siiT'Cx)

tan'1(x)

tan

cos(x)

ex+e-
x

cotan(x)

£ rX -U . -/oe äu

l-ERF(X)

eX

r
co x-1 -u,

/ u e du
o

log10 x

loge X

sin(x)

ex-ex

tan(x)

ex-e-x

ex+e-
x

er Type

real*4 real*4

real*4

real*4

real*4

real*4

real*4

real*4

real*4

real*4

real*4

real*4

real*4

real*4

real*4

Teal*4

real*4

real*4

real*4

real*4

real*4

real*4

real*4

real*4

real*4

real*4

real*4

real*4

real*4

real*4

real*4

real*4

real*4 real*4

real*4 real*4

real*4 real*4

real*4 real*4

Table 4.1 FORTRAN Function Library Entries Adapted for MOMS

-20-

4.3 THE INTEGRATION AND DIFFERENTIATION OPERATORS

Four operators are provided for various cases of inte-

gration and differentiation. The light buttons INTEG and

DIFF integrate and differentiate the one vector argument

versus the standard domain, that is versus the ID vector.

INTEG2 and DIFF2 use an explicitly provided domain, which

is the second argument to the function. Both differentiation

operators use the divided difference method to approximate

the derivative. No attempt at smoothing is made; the last

element of a vector is set equal to the second last element.

INTEG uses trapezoidal integration to approximate the integral.

4.4 ADDITIONAL EXAMPLES

X Y ARCTAN2

In this function, the X argument is taken to be the

abscissa, and the Y argument is taken to be the ordinate.

D V DIFF2

D V INTEG2

V is the vector (or vector-pair) being differentiated

(integrated) versus the domain D.

5. A DETAILED EXAMPLE

Consider the problem of approximating y(0) = sin(0),

—^ ^ © ^ •=•, with an n degree polynomial Pn(x) written in

-21-

terms of Chebyshev polynomials, i.e..

+ anVx) Pn(x) = a0 + ajTjCx) + .

In the interval (-1,1) the coefficients can be expressed by

1 rl y(x) . an » * /, i ' • dx
0 " -1 i.x2

a. -2 /} ^x)T.(x)dx

1-x

and the Chebyshev polynomials are recursively defined by

T0(x) = 1

T^x) = x

T. .(x) = 2xT.(x)
i + l v -^ iv ^

T^Cx)

The problem is to construct a sequence of error fucntions

g-(x) ■ y(x) - P.(x) until a g.(x) is found which satisfies

a predetermined maximum error criterion. A sample solution

with comments follows.

Button Pushes

DEFBUTON NEXTTERM DEFBUTON

DEFBUTON P I DEFBUTON

DEFMACRO NEXTTERM (X)

Comments

Define a button called

NEXTTERM

and a button called PI

Define a macro NEXTTERM

22-

Button Pushes

2IDU**V-T=

U V =

T U =

YD* INTEG PI *

T * P + P = DEFMACRO

DEFMACRO DEFBUTON D I F F

DEFBUTON DIFF (X)

NEXTTERM Y P -

DEFMACRO

DEFCONST 3.14159 DEFCONST

B = 2 B / PI =

1 PI / ID * SIN Y =

1 V =

ID U =

1 ID * - SQRT A =

Y A / D =

Comments

with 1 formal parameter

(not used) which computes

the next term in the

approximation and adds

it to the polynomial

which is stored under

button P.

T. from above is stored
i

under button U. T. .

is stored under button V.

The macro also updates

these values when T. ,
i-l

is computed.

Define a macro to com-

pute the next term and

take the difference

between Y and the poly-

nomial .

Store — under button PI
IT

Construct vector Y=sin0,

-j < 0 < j let up T0

in V s<?t up T2 in U.

(x) Compute

1-x'

where -1<X<1 and store

under D.

23-

Button Pushes Comments

D INTEG PI 2 / * P =

DU* INTEG PI * U *

P + P =

DIFF PLOT1

Compute a« and store

under P

Compute a]T1 and add

to P; store under P.

Compute successive

approximations and

display error function,

DIFF PL0T1

Note that this would display an

approximation to any function

stored under the button Y.

6. DESIGN CONSIDERATIONS

MOMS runs under the MTS system, which in turn is under

the control of the UMMPS (University of Michigan Multi-

programming System) supervisor. From the outset, it was

decided that this total dependence on system I/O support

was the only reasonable way to proceed, since bugs in the

MOMS system could not be all'owed to disrupt other users.

Moreover, the time and effort necessary to write the low-

level I/O code would have made the project difficult to

complete in one semester. However, idiosyncrasies of the

IBM 2250 display made some special adjustments necessary.

Specifically, it was necessary to process attention inter-

rupts from the 2250 in something approximating real-time.

24-

in order to keep the screen lit and capable of accepting

button pushes. (An attention interrupt is caused by a light

pen, or by pushing a function keyboard button; in the former

case, the display stops.)

Since the IBM Graphics package GRAPHLIB, described in

IBM Document No. C27-6909 was available in MTS, it was

decided to use the routines with slight modifications by

Computing Center staff programmers. The routine ANALS,

which previously polled for an attention interrupt, was

changed to call a user-specified subroutine in "real-time"

when an attention interrupt arrived. The display would be

restarted and the user task resumed when the subroutine

returned. It should be stated that

a. the user-specified subroutine and any subroutine

it called had to be written to handle recursive calls, or

had to be mutually exclusive from any code which could

possibly be executing at the time of the attention interrupt,

b. "Real-Time" does not mean at the time of the actual

attention interrupt, while all other tasks in the system

are stopped. Instead, the interrupt causes the status of

the task running MOMS to be saved, and that task is initial-

ized to run the attention interrupt "real-timt" routine.

When the attention routine returns, the original status of

the task is restored, and it continues. This can be thought

of as a push-pop situation where the status of the task is

saved on a push-down stack, and the interrupt is transparent

25-

to it, except for any desired effect of the interrupt routine,

such as building queues or setting status bits.

7. THE HIERARCHY OF THE SYSTEM

The 2250 display hardware is controlled by the 2840

display controller through standard I/O operations. Thus,

via channel control word commands it is possible to

a. write the display buffer,

b. read the display buffer,

c. read information such as function button pushed,

and coordinates of a light-pen detect,

d. control display starting location, etc.

The supervisor, UMMPS, is ultimately in charge of all

operations concerning I/O devices. For example, I/O devices

are allocated to tasks by the supervisor, I/O devices are

"started" by a supervisor call whose operands resemble the

start I/O operation, and asynchronous attention interrupts

from a device are fielded by the supervisor, which either

ignores them, or passes them to a "real-time" attention

routine designated by the user.

MTS provides system subroutines which interface with

the supervisor, and

a. acquire devices from the supervisor when requested

by a program or command, and to release devices

acquired by a user when he is finished with them,

or when he signs off.

-26-

b. provide a general interface to the appropriate

device support routine which can operate the

device as a standard terminal.

GRAPHL1B is an IBM package for controlling the 2250.

It has been modified to run under MTS.

a. It contains subroutines for generating 2250

order programs to display graphs, functions, etc.,

b. It contains subroutines to perform I/O operations

on the display. It does this via supervisor calls.

c. It contains a subroutine to handle attention exits.

This has been modified to call user-specified sub-

routines in "real time."

The MOMS code may therefore be considered as being

devided into two sections. Part of MOMS consists of code

for interfacing with GRAPHLIB; the other part of MOMS is

completely independent of the 2250. The code which inter-

faces with GRAPHLIB does the following: #

a. Allocates space within the 2250 buffer,

b. Uses GRAPHLIB to build order programs, which are

subsequently displayed.

c. Uses GRAPHLIB to write the order programs to the

allocated space in the 2250 buffer.

d. Uses GRAPHLIB to start the display.

e. Uses GRAPHLIB to call a subroutine which builds

the queue of button pushes in real time.

27-

8. THE INTERNAL ORGANIZATION OF MOMS

This section contains detailed documentation concerning

the various parts of the MOMS system. In general, it will

not be of interest to the MOMS user, but is included for

completeness and future reference.

The major subparts of the MOMS system are as follows:

initialization, interpretation, 2250 buffer management, light

pen management, function display, numeric and keyboard display,

the macro processor, symbol table management, the mathematical

operators, and numeric conversion. The major connections

between the various subparts are shown in Figure 8.1.

MTS enters the MOMS system at the initializer. This

in turn calls other parts of the system in order that they

might initialize themselves. The major portion of all

initialization consists of building the system entries in

the symbol table and the corresponding display representa-

tion of the system operations in the 2250 buffer. Clearly,

each section must access the symbol table during this time.

In fact, the symbol table, which may be considered the

ultimate store of knowledge in the system, is accessed con-

stantly by all sections, although this is not shown in

Figure 8.1. When initialization is complete and the initial

2250 image is displayed on the screen, control is transfer-

red to the interpreter, which retains ultimate control

throughout the remaining execution. When a user points at

-28-

4) j
I

"~" i
rt | u

X) C u u v) 0)
nt <u o ■H M | N
H E O tfl 4-> O 1 •H

t) >H (/) rt 4-> 1 F-4

-H M u <u E rt { rt
o rt ca o 0 u 1 •H

J3 C s o JS 0 \ ♦J
E ea h ♦J Qu 1 •H
>»s a. rt O c

en 1 1 SE 1 t—(

L_ ♦
S

<-« 0
rt -H 4->

. y 4J c c
_^ •H C 0 a>
M i— u o 0- E

♦J t E C *J 00 -•
0) 1

3 O £ rt
M z u oa c
&. A •H rt
Ui ♦ -j r?

c

'-

7 _ A
1 1

1
T3

'!_
1 O -H

J3 O.
 ^ 4-)

X w c
U -H M O -~>
« Q v e 0

M-t 0) irt
14H QO (N
3 rt ; <N

e
o X rt

• H Rt X
4-> «-H *"
c «
3 -H
a, a

en
?•
O
5:

l+H
O

♦-»
(-
rt
ft,

XI
3

c
<b
4>

3
*->
o

XI

C
o

(J

c
c
o
u
u
o
•ri

CO

Z

00

0)
IH

3
00

• H

-29-

a "light-button," the corresponding interrupt is fielded

by the light pen management routines. They determine which

light button was pointed at and communicate this fact both

to the keyboard display section, so that it may be displayed

on the echo line, and also to the interpreter. The inter-

preter handles all editing and definitional operations,

except macros. It records the various button pushes in a

queue, also called the stack. When a button push requiring

the start of interpretation is encountered, the interpreter

starts calling the various operators in this queue, collap-

sing the stack where appropriate. The system ultimately

returns to the idling state when all interpretation is

complete. The function of the various other parts may be

briefly summarized as follows:

a. function display is responsible for constructing

2250 graphic order programs from the various vectors and

vector-pairs supplied it. It is also responsible for hand-

ling the plotting mode and scaling operators for the grid.

b. keyboard display constructs 2250 graphic order

programs which contain alphanumeric and other character

information only. Thus it is responsible for the 2250

graphic order programs of all light buttons, the display

of all numeric values, the upkeep of the echo line, the

output of messages, and the display of macros.

c. the 2250 buffer management section is responsible

-30-

for actually writing the 2250 buffer and linking graphic

order programs into the display regeneration loop. It also

keeps track of the SCREENA, SCREENB, and SCREENC operations.

d. symbol table management controls all accesses and

all editing of the symbol table.

e. the macro processor is responsible for the storage

of all macro definitions and interacts closely with the inter

preter when a stored macro is called.

f. the mathematical operators section and the numer-

ical conversion section are self-explanatory.

8.1 INITIALIZATION

Name :

Purpose:

R.W. Taylor

ST I NIT

To initialize MOMS

Calling Sequence: 0S(I) R type

Entry: No parameters

Return: Calls ERROR indicating a system error

if the Interpreter ever returns control

to it .

Functional Description:

The initialization section serves as the principal sub-

routine with respect to MTS.

1. Call initialization sections of

Symbol Table Management SYMINIT1

Buffer Management BUFINIT1

Interpreter INTINIT

:

31

Light Pen Management

Function Display

Macro Processor

LPMINIT

FDINIT

MACROFIX

in the above order (STLOOP1)

2. Use the SYMODEFS macro to put the buttons SCALAR,

VECTOR, REAL, INTEGER onto the screen.

3. Enter A,..Z,.,(,) into the symbol table with de-

fault parameters (see Section 8.3, Symbol Table

Management Routines) and save their STEPJf in a

list to be passed to the display virtual keyboard

routine (STSYMLP)

4. Create the symbols +, -, *, /, * and save their

STEPS for display on the virtual keyboard. (The

actual operators +,- -, *, /, = are initialized into

the symbol table by UINIT using the SYMODEFS macro.)

(STSYMLP2)

5. Create the symbol table entries 0...9 and give them

the attributes OPERAND, SCALAR, REAL, SYSTEM, CON-

STANT (STSYMLP1)

6. Move the real values 0...9 into the appropriate

place in the symbol table (that place pointed to

by the VALUE pointer)

7. Call UINIT to define the mathematical operators

and put them on the screen.

(Note: UINIT is called near the end so that

STEPS = Symbol Table Entry Pointers

■

■■■:..

-32.

the mathematical operators will be at the

bottom of the function button list.)

Call BUFINIT2

Buffer Management has two entries so that light

pen interrupts will not be accepted until

initialization is complete.

Transfer control to the Interpreter.

8.2 THE INTERPRETER R. Srodawa, K. Moore, and J. Tripp

The Interpreter within the MOMS system is broken physi-

cally and logically into six sections, each of which is de-

scribed briefly below:

Initiali zation

The initialization section of the interpreter is broken

into two ports. The first port is called during the initial-

ization of MOMS at the entry point INTINIT. It presets the

global dimension to ipi, the global mode to VECTOR, RF.AL*4,

and creates and presets symbol table entries for the buttons

DIMENSHN, ID, LITNEXT, BAKSPACE, DEFCONST, DEFBUTON, DEFMACRO,

SETID. DELBUTON, DEQUEUE, and START. The second port of

initialization is called at the entry point INTERP when all

of MOMS has been initialized. This section initializes the

three stacks kept within the interpreter (STACK, MSTACK,

and BUTQ) and then transfers to the section of the inter-

preter which interprets button pushes (the Button Queue

Processor).

33-

Interpretable Operators

The interpretable operators section of the inter-

preter contains the operator definitions for several of

the buttons.

START The START operator is an immediate operator

which requires no operands and returns no

results. Its only effect is to cause inter-

pretation of the contents of the button queue

to begin. Normally interpretation begins only

when a button is pushed whose interpretation

causes new information to be displayed. START

is normally used to start interpretation because

macros have been invoked which contain buttons

that change the display.

SETID The SETID operator is used to specify the standard

domain. It computes new values for the scalar

button DIMENSHN and the vector button ID. The

SETID operator must be the first operator to

ever be interpreted.

RETURN The RETURN operator simply returns to MTS. It

is the standard exit from MOMS back into MTS.

DELBUTON The DELBUTON operator accepts one operand and

causes something to be deleted for it. If the

operand currently has something displayed (a

macro definition, graph, numeric value), that '

-34-

is erased. Otherwise, if the operand currently

has a macro definition, that is deleted. Other-

wise, the button name is deleted from the screen

and its STE removed, unless it is a system symbol,

in which case the STE is changed back to undefined

status. These deletions are performed by calling

the subroutine appropriate for deleting the type

of display represented by the operand (DSPDELNM

for a button name, DSPERSPR for a macro definition

display, DSPERSEV for a numeric vector display,

FDERASE for a graph, and MACDELET for a macro de-

finition). These routines are each called for

the operand until one of them succeeds in removing

it. The order of the calls is determined by the

mode and structure of the operand, and is such

that appropriate display deletes are attempted

before the macro definition or button name is

deleted.

DEQUEUE The DEQUEUE operator clears the three interpreter

queues (BUTQ, STACK, and MSTACK) so that all

past interpretive history, except items which

have been stored in symbol tables entries , is

forgotten.

35-

Operator Call Processor

The operator call processor is called at the entry

point INTKIP by the stack manipulation section of the

interpreter. The operator call processor then searches

for the appropriate definition of the operator, depending

upon the modes of the operands, builds a parameter list

for the operator, calls the operator definition, reduces

the operand stack by the number of operands used, releases

any temporaries that were used, and returns a result to

the stack. The operator call processor is the interface

between the operator definitions and the interpreter.

SYMOPDEF Subroutine

The SYMOPDEF subroutine is called by every occurrence

of the SYMODliFS and SYMODEFD macros. This subroutine

creates a new symbol table entry or instance for the new

operator definition.

Button Queue Processor

This processor is called at the end of initialization

by port two of the interpreter initialization. It processes

the buttons which have been pressed by the operator and

interprets the BAKSPACE, DEFCONST, DEFBUTON, and DEFMACRO

buttons. Usually the symbol table entry pointer for a

button is simply placed on the button queue (BUTQ).

Whenever a button which requires immediate interpretation

(DISPLAY, START, etc.) is encountered the stack manipu-

lation section of the interpreter is called to interpret

36-

all the button pushes since the last interpretation. The

BAKSPACE, DEFCONST, DEFBUTON, and DEFMACRO buttons require

more involved processing.

Stack Manipulation Processor

The stack manipulation processor is called at its

entry point, INTJOIIN, whenever the button queue processor

receives a button which forces interpretation. The stack

manipulation processor processes the STEPs from the button

queue (BUTQ) and maintains the two stacks STACK and MSTACK.

It calls the operator call processor every time it processes

a button which is an operator or macro. The stack manipu-

lation processor also obtains the buttons comprising a macro

definition from the macro interpretation when appropriate.

8.2.1 Operator Call and External Specifications

This part of the documentation describes the function

of the operator call part of the interpreter in just enough

detail to allow those writing operators to set up appro-

priately the operator symbol table entry and know what to

expect (and what is expected of them) when the operator is

actually called.

The document is in three parts: the first indicates

what information may be passed to operators if requested;

the second gives something about the structure of operator

symbol table entries; and the third describes two macros

useful for putting operators into the symbol table.

-37-

*What Can Be Passed To Operators

Operators are called with a standard OS type I(S)

calling sequence. If the operator wishes to return some-

thing to the stack, it canreturn only a single thing (which

may be an operand or an operator), and it is expected to

leave the STEP for that operand in GRO on return. The

parameter list for an operator may contain several differ-

ent things, depending on the operator symbol table entry,

including all or some of the following:

(1) A fixed, or variable, number of stack operands. These

are always passed as a pair of parameters, one being

the STEP, and the other being the VALUE (from the STE).

(2) Any fixed number of temporaries needed by this opera-

tor. These are passed as pairs of parameters, as in

(1), and may be of any specified mode and structure,

as needed by the operator. Temporaries are given the

global dimension if they are vectors.

(3) The number of stack operands passed. Obviously of

use only to operators which accept a variable number

of operands, it is passed as a 4-byte integer.

(4) The standard dimension. This too is passed, if re-

quested, as a 4-byte integer.

(5) The standard domain, or ID vector. This will always

be passed as a REAL*4 vector if requested, and is

passed as a pair of parameters as in (1) and (2).

-

'■■■■' ■.■.■■-^ü^^.vti

-38-

(6J The operator STEP. This is passed directly in the

parameter list (i.e., the STEP is in the list itself.)

As mentioned above, what subset of the above is passed

to the operator, and in what order, depends on the STE for

the operators whose description follows.

*What Operator Symbol Table Entries Look Like

An operator symbol table entry is really a rather

empty (or at least devoid of much information) STE, coupled

with a string of dope vectors, each of which describes an

instance of the operator. 'Instances' of operators are differ-

ent versions of the operator for operating on different kinds

of operands. For instance, one version of the COS operator

might operate on vectors, and another might operate on

vector pairs. Each version would be described by a dope

vector linked to the STE for the COS operator.

Some parts of the operator symbol table entry are

relevant to the operator; these are given below.

The symbol table entry itself (the relevant parts):

(1) Name - gives 8-character name of this operator, as

displayed on the screen.

(2) Dope Vector Pointer - points to first link in chain

of dope vectors which describe instances of this oper-

ator.

(3) Display Buffer ID - gives the buffer ID for the oper-

ator (i.e., where it is displayed on the screen)-

-39-

(4) Symbol Class - Will indicate macro or operator, de-

pending on which it is (macros are treated nearly like

operators by this section of the interpreter).

The rest of the STE for an operator is not used by

anyone for anything of interest, so far as we know.

The dope vector contains all sorts of good information

about this instance of the operator. Part of this informa-

tion is fixed (in location within the dope vector), and

that is given below. Figure 8.2.1 shows where and how this

information appears in the dope vector.

(1) A full-word link to the next dope vector (if there

is one, otherwise it is =0).

(2) Address of the routine which 'is' this instance of the

operator (i.e., subroutine address).

(3) Flags indicating (A) if the operator returns a re-

sult, and (B) if the operator will accept a variable

number of operands.

(4) The length of the dope vector, in words (as a half-

word) .

(5) A flag indicating if this operator is special, meaning

it must be either interpreted immediately or changes

a symbol table entry. (Which of these is the case is

also indicated if the operator is really special.)

The skeleton part of the dope vector, which follows

the fixed information described above, is used to specify

40-

Figure 8.2.1 Form of Parameter Vector for Macro: SYMODEiF

0

12

16

24

L hi N G T11 0 F P A R AM E T li R V E C T0 R ,
AS A FULL WORD

(GIVES NUMBER OF WORDS, NOT BYTES

8-CHARACTER EBCDIC NAME
OF OPERATOR, AS IT IS

DISPLAYED ON THE SCREEN

ADDRESS OF ROUTINE
THAT IS THIS OPERATOR

VARPAR
1=TRUE

RETURN
1=TRIJE

SPECIAL i SEE
1=TRIIE RON

MACRO
1=TRUE

NOT
USED

DISPLAY
1 = T R U E

NOT
USED

FIRST WORD OF SKELETON
(FORMER DOPE VECTOR)

SECOND WORD OF SKELETON

NN

LAST WORD OF' SKELETON

41

just what parameters should be passed to this instance of

this operator when it is invoked, and also specifies what

mode of operand is acceptable to it for each operand it

takes. The length of the dope vector is determined when

the instance of the operator is placed in the symbol table.

The skeleton itself consists of some number of full words,

each word specifying a parameter (or sometimes, a pair of

parameters}, to be passed to the operator. The first byte

of each word indicates the kind of parameter to be passedj

and the rest of the word is used to specify subsidiary

information. The possible values for byte 0 (the first

byte in the wordj and the meaning of each value follow:

U Means pass next stack operand, as a pair of parameters,

checking the mode of the operand (on the basis of

bytes 1 and 2J to see that it is suitable for this

operator. In this case, the actual parameters (words

in the parameter list) generated are STEP and VALUE

(from the STEP1, in that order, for the stack operand.

1 Means pass a temporary. In this case, a temporary of

the mode indicated by bytes 1 and 2 is created and

passed as a pair of parameters (STEP and VALUE as

in (IJJ to the operator. The temporary will be de-

stroyed when the operator returns unless (1) the

operator returns ttie particular temporary to the stack,

or (2J the operator increments the use count for

the temporary. In case (2) the operator is responsible

-42

for seeing that the temporary gets destroyed eventually.

2 Means pass the standard domain vector (always RL;AL*4J

as a pair of parameters. Bytes 1 and 2 are ignored.

3 The number of stack operands passed (totalj will be

generated as a 4-byte integer and passed.

4 The standard dimension is passed as a 4-byte integer.

Bytes 1 and 2 ignored.

5 The operator STBP is passed as a 4-byte integer.

Bytes 1 and 2 ignored.

6 Indicates end of dope vector (and end of parameter

list, in a sense). Bytes 1 and 2 are ignored.

Byte 1 is used to specify what mode(s) of operand

are suitable for this operator (if byte 0 = 0) or to

specify what mode ot temporary should be generated (if

byte 0 = 1). Otherwise, it is ignored. The meanings

of the bits are as follows^

Bit 0 - X'SO' - scalar (if bit is ON)

Bit 1 - XMO' - vector

Bit 2 - X^ü' - complex (when implemented)

Bit 3 - X'lO' - vector-pair

Bit 4 - X'OS' - operator

Bit 5 - Xl04' - macro (console program)

Bit 6 - X'02' - undefined (i.e., operand may be of class

undefined)

-43-

In the case where byte 0=0, byte 1 is used as a

mask to see what is acceptable as an operand, e.g., both

bits 0 and 1 could be ON indicating that the operator will

accept a scalar or a vector in this operand position.

Vector-pair here is taken to mean a pair of vectors,

stored one after the other in memory.

If an operator will accept operands of undefined

class, they are simply passed to it "as is." If an un-

defined operand appears elsewhere, it will be given the

global mode before being passed to the operator (if it

will accept that mode).

Note that the operand specifications in the skeleton

are listed in the order of things coming off the top of

the stack. ihat is, the first specification in the dope

vector applies to the operand on the top of the stack.

Operators may accept operands thai are of the class

OPERATOR or MACRO, and buttons of this class can be placed

on the stack for use as operands by the LITNEXT button.

The operator DELBUTON is an example of an operator using

this feature.

Byte 2 is used in the same way as byte 1, but speci-

fies the structure of operands allowed (or to be generated),

as fol lows:

Bit 0 - X'SO' - INTEGER*2 (not implemented within system)

Bit 1 - XMO' - INTEGERM

Bit 2 - X^C - REAL*4

Bit 3 - X'lO' - REAL*8 (not implemented within system).

■-

-44

* A Simple Example

Consider the SIN operator. It might, as mentioned

above, have several instances. Suppose we have a FORTRAN

subroutine called RSIN which computes the trignometric

sine of a scalar, and is smart enough to do it for argu-

ments which are INTEGER*4 or REAL*4. The dope vector

entry for this instance of the SIN operator would probably

look something like this:

Flags would be present to indicate that the operator would

accept only a fixed number of operands, and did return a

result to the stack. But the operator is not "special" as

it does not require immediate interpretation, or change

the symbol table.

The skeleton part of the dope vector would contain

Word 0 - XL4'04üOOOOO'

Word 1 - XL4'00803000'

Word 2 - XL4,01802000»

Word 3 - XL4,06000000'

Word 0 indicates that the standard dimension should be

passed as the first parameter to RSIN (it doesn't really

need it, but then this is just an example).

Word 1 requests that the operand on the top of the stack

be passed, and that it must be scalar, but may be REAL*4

or INTEGERM.

Word 2 requests that a temporary scalar, REAL*4, be created

-45-

and passed as the next pair of parameters. Presumably,

this is what will be returned to the stack.

Word 3 indicates end of dope vector, and puts nothing in

the parameter list.

The subroutine RSIN could now be written something like

this:

Subroutine RSIN (IVDIM,INSTEP,WRDIN,OUTSTE,WRDOUT)

...Where IVDIM will have the integer value equal to the

standard dimension. INSTEP could be used as an array name

to address the STE for the input operand (similarly for

OUTSTE, and the output operand). WRDIN is the name of the

variable whose sine is to be taken, and WRDOUT is where

the result should be stored.

There would have to be a special function written

to place the STEP for the temporary directly into GRO on

return, so that it could be placed on the stack.

*What Do the (Operator) STE Macros Look Like?

There are two macros, SYMODEFS and SYMODEFD, available

to make putting operators into the symbol table a little

easier. One, SYMODEFS, is a"statid' macro, in that it

assumes you know what you are doing when you write the

macro instruction. The other one, figuratively speaking,

assumes you don't know what you are doing, but have acquired

information about the operator you wish to enter in the

symbol table dynamically (such as from a table). Both

■ 46-

macros make all and exactly the assumptions made by the

other symbol table management macros.

*SYMÜL)HFS

lias several positional and keyword parameters with the

following descriptions:

Positional Parameters

(1) The name of the operator, as a L"L8 character constant.

(2) An ADCON giving the address of the subroutine which

is this instance of the operator. May be A or V

type ADCON.

(3) An operand sublist-type parameter, giving the dope

vector for the entry, as a series of constants suit-

able for use in a DC-type statement.

Keyword Parameters

(1) RETURN=0 Operator does not return anything to the stack

RETURN=1 Operator returns something to stack (default).

(2) VARPAR=0 Operator takes fixed number of operands

(default) .

VARPAR=1 Operator takes variable number of operands.

(3) DISPLAY=0 Don't try to display operator on screen.

ÜISPLAY=1 Display operator on screen (default). (If

operator is already on screen, it will not

be displayed again.)

Operator is really a hard code operator

(default) .

Operator is really a macro (in which case

the subroutine MACROINT is called, instead

(4) MACRO=0

MACR0=1

-47-

of the macro itself, when the macro is

invoked).

(5) SPECIAL=0 Operator need not be executed immediately.

(It does not change screen, nor does it

change the symbol table or anything in

it.J (Default.)

SPECIAL=1 Operator does do one of the above.

If operator is SPECIAL*! type, the keyword RONHEX

must be present, and be =04 if the operator should

be interpreted immediately and =02 if it modifies

the symbol table.

Example. A macro-instruct ion which would make the appro-

priate symbol table entry for the subroutine RSIN

described in the previous example follows:

SYMODEFS CL8'SIN',A(RSIN),(XL4104000000',XL4'00806000',

Xi^'0180200' , XL4'06000000'),RETURN=1

*SYM0DEFD

This macro assumes you have built a table in memory

providing the information to build a dope vector for an

instance of the operator. The information is essentially

the same as given in the SYMODEFS macro-instruction. The

exact format is given in Figure 8.2.2.

The macro instruction takes one optional positional

parameter which is the name of a general register con-

taining a pointer to a parameter vector of the form given

in Figure 8.2.2 (which must be on a full-word boundary).

GR1 is assumed if no parameter is given on the macro-

instruction.

. . ,

-48-

Figure 8.2.2 Form of Dope Vector for Instance

of an Operator [for Purposes of Documentation)

12

16

NN

LINK TO NEXT INSTANCE
(.IF = I, THERE IS NONE)

ADDRESS OF ROUTINE THAT IS
THIS OPERATOR (INSTANCE)

FLAGS FOR
RETURN, MACRO,

ETC.

USED BY
RON IF
SPECIAL

LENGTH OF THE
DOPE VECTOR
(WORDS)

UNUSED

FIRST WORD OF SKELETON

LAST WORD OF SKELETON

49-

8.2.2 Internal Specifications and Operator Calls

This section of the interpreter (CSECT name -

INTKIP) is executed whenever an operator in the button

queue is to be invoked. It performs the following

functions;

1 Searches for a suitable instance of the eperator.

(See external specifications for what this means.)

2 Builds a parameter list for the operator (or the

macro processor, if the operator is really a macro),

as specified by the operator's dope vector.

3 Calls the operator or macro with an OS type I(S)

calling sequence.

4 Reduces the operand stack by the number of operands

used by this operator, releases temporaries that

were on the stack and used, and returns a result to

the stack (if the operator produces one).

The above processing is performed in three logical

"passes" over the operator dope vectors and/or operand stack:

the search for the suitable instance of the invoked opera-

tor; the building of the parameter list for the selected

instance; the release of used temporaries and return of

result to stack.

*The Suitability Search

The linked list of dope vectors attached to the opera-

tor STE is searched, looking for the first suitable instance

. ,

■ so.

of the operator. The instances are linked in such

a way that the last instance placed in the symbol table

will be the first one checked for suitability. This

allows you to replace a macro definition by simply defininj

a new one -- the "latest" one will always be called.

Suitability is checked by matching each request for

an operand (type 00 entry in the skeleton) against succes-

sive operands from the top of the stack. An instance will

be found unsuitable in any of the following cases:

1 The operator (instance of it) will not accept some

operand on the stack, e.g., the operator requires

a real vector as its operand, and there is an in-

teger scalar on top of the stack.

2 Some operand is of undefined mode and the operator

will not accept the current default mode at this

operand position.

3 There are not enough operands on the stack to satisfy

this operator, e.g., it requires two operands and the

stack is empty.

4 This operator will not accept a variable number of

operands. The operator was preceded (on the button

queue) by a parenthesized list explicitly defining

the number of operands to be passed, and the numbers

do not match.

5 The operator will accept a variable number of para-

meters, but there are not enough operands to meet its

51

minimum demands, e.g., the mode-defining operator

will accept a parenthesized list of operands, but

must always have at least one operand.

*Building the Parameter List

When a suitable instance of an operator is by some

unlikely chance found, a parameter list for the operator

is built, according to the specifications given in the

skeleton of the dope vector for that instance. This

process is described in the external specifications,

except for one special case.

If the operator has said it would accept something

of the global mode in a particular operand position, but

that operand is at present of undefined class, the operand

is given the global mode by the interpreter before it is

passed to the operator. If the operator has said it will

accept something of undefined class at this operand posi-

tion, then the operand is untouched and is simply passed

as undefined.

When the parapeter list has been built, the operator

is simply called with a standard OS calling sequence. It

is expected to return (the only exception to this being,

surprisingly enough, the operator RETURN, which gets you

back to MTS).

*Reducing the Stack

When an operator has returned to the interpreter.
.

■

5 2-

the operands it used are removed from the stack. This

also involves checking to see if any of the operands are

temporaries. If they are, their use-count is reduced by

1 (and the temporary will oe destroyed if the count has

gone to zero) .

If the operator returned a result, the result is

placed on the top of the stack, and its use-count is in-

cremented by 1. A return is then made to the stack manage-

ment part (INTJOHN) of the interpreter.

If the thing returned to the stack was an operator,

it will be interpreted immediately at this point.

8.2.3 Button Queue Processor (INTRON)

The button queue processor requests buttons from

light pen management via the entry LPMDEQLP and takes

the appropriate action. This action can be

1) Stack the button on the button queue (BUTQ).

2) Edit the current contents of the button ;ueue.

3) Gather together the buttons comprising a macro

definition and call MACRODEF to define the macro,

4) Gather together the buttons comprising a new

button name and then create a symbol table entry

for this new button and have it displayed (by

calling DSPNEWNM).

5) Gather together the buttons comprising a con-

stant definition and then create a symbol table

•53-

entry for this constant and place it into the

button queue as an operand.

The button queue processor actually is written as a

finite state machine with four states and nine classes

of input symbols. The four states are:

0. Normal state, not in any definition.

1. Inside of a DEFMACRO...DEFMACRO construction.

2. Inside of a DEFBUTON...DEFBUTON construction.

3. Inside of a DEFCONST...DEFCONST construction.

The nine input symbol classes are:

0 Button of operand class

1 Button of macro name class

2 Button of undefined class

3 Button of operator class (does not force inter-

pretation}

4 DEFMACRO

5 DEFBUTON

6 DEFCONST

7 BAKSPACE

8 Button of operator class (does force interpretation)

Besides this information, the index into the button queue

at the start of a macro, button, or constant definition is

saved while inside a definition to aid in the processing of

these definitions.

The button queue processor, when it receives a new

button, references the appropriate entry in a state transition

54

matrix which tells what state to go to next and gives the

address of a routine to take any necessary action with the

current button. This state transition diagram is given in

Figure 8.2.3.

Besides the actions noted in Figure 8.2.3, any

BAKSPACE while in state zero causes a bit to be set

which causes the stack manipulation processor to up-

date the working stack from the master stack and begin

interpretation from the beginning of the button queue.

This is necessary because the backspaces could have

deleted operators which have already been interpreted

and have left results in the stack. Every unstacking

of items from the button queue, either because of a

macro, button, or constant definition or because of a

BAKSPACE, causes DSPECHOZ to be called to correct the

echo line. Use counts are also incremented on every

symbol placed on the button queue and decremented on

every symbol removed from the button queue.

8.2.4 Brief Description of Stack Manipulat ion Processor

(INTJOHN)

No parameters in calling sequence.

INTJOHN is called by INTRON whenever an operator

which forces interpretation is placed on the Button Queue-BUTQ

INTJOHN places each Button Push -BP- from BUTQ onto STACK,

determines whether the BP is a macro or operator, and if so

calls INTKIP for execution of that operator. Otherwise, BPs

55-

Figure 8.2.3 State Transition Diagram

Current State

Current
Button
Class

0
Operand

1
Macro Name

Undefined

Normal Operator!

0
Normal
State

0
Stack
the

button

0
Stack
the

button

0
Stack
the

button

DEFMACRO

DEFBUTON

DEFCONST

0
Stack
the

button

1
Stack 5
note

location

Stack Q
note

location

3
Stack §
note

location

Inside
DEFMACRO

Stack
the

button

1
Stack
the

button

1
Stack
the

button

Stack
the

button

0
Unstack
defn and
send to

MACRODEF

Inside
DEFBUTON

2
Stack
the

button

2
Stack
the

button

2
Stack
the

button

Inside
DEFCONST

3
Stack
the

button

3
Stack
the

button

3
Stack
the

button

2
Stack
the

button

Error,
ignore
button

3
Stack
the

^button

1
Error,
ignore
button

2
Error,
ignore
button

3
Error,
ignore
button

0
Unstack
defn,
create
symbol,
display

it

Error,
ignore
button

Error,
ignore
button

0
Unstack
defn,
create
symbol,
convert
constant
stack it

Figure 8.2.3, continued

56-

BAKSPACli
Ü

Remove
previous
button

1 or 0
Remove

previous
button,

If
DüFMACRO

go to
state 0
instead
of 1

2 or ü
Remove

previous
button,

If
ÜEFBUTON

go to
state Ü
instead
of 2

3 or Ü
Remove

previous
button,

If
UtFCONST

go to
state 0
instead
of 3

8
Operator

which
forces

interpretation

0
Stack the

button
Call
INTJOHN

1
Stack
the

button

2
Stack
the

button

3
Stack
the

button

-57-

continue to accumulate on STACK from BUTQ until an operator

or macro is finally encountered. When BUTQ is empty, INTJOHN

returns to INTRON.

INTJOHN maintains two stacks: a working stack, STACK,

and a master stack MSTACK. Normal interpretation is handled

via STACK. However, when any operator is called which modi-

fies symbol table entries, STACK is copied into MSTACK. In

turn, whenever editing takes place in BUTQ, MSTACK is copied

into STACK before interpretation begins! This feature per-

mits the user to edit a string of input BPs back to the last

symbol table changing operator (such as ■). After an opera-

tor of this type has been executed, the echo display and

BUTQ are collapsed. That is, the next element of BUTQ above

the operator becomes the bottom of a new BUTQ and echo line.

The displaced part of BUTQ is sent to the history queue.

INTJOHN increments the use-count of every STEP which

is placed on STACK, and decrements the use-count of every

step which is sent to the history queue. Whenever STACK

is copied into MSTACK, the use-count of each BP in STACK

is incremented, and the use-count of each BP in the old

version of MSTACK is decremented. Use-counts are modified

similarly when MSTACK is copied into STACK.

When the LITNEXT operator occurs, the BP following

it is placed on STACK as an operand without regard to its

class; the LITNEXT operator thus allows the user to use an

an operator as an operand.

•

. ■■. ..

5 8-

When macros are expanded, the BPs comprising the macro

definition are obtained from MACROGET routine and treated

in exactly the same fashion as BPs obtained from BUTQ.

The initial call on a macro expansion is accomplished by

INTKIP. Subsequent calls to obtain BPs are done within

INTJOHN; once a macro expansion has begun, all BPs are

obtained from MACROGET until it returns a ü in GR1, signal-

ing the end of the macro definition. Nesting of macros is

monitored by the macro processor, and INTJOHN does no

pushdown on macro calls.

INTJOHN does no checking for syntax except for the

use of parentheses. It is assumed that parentheses will

be used only to delimit the operand stream for an operator,

and hence every right parenthesis, ")" must he followed by

an operator. Furthermore, a count is maintained of the

number of left parentheses minus the number of right paren-

theses. This count may never go negative. If either con-

dition is violated, interpretation is halted, and an error

comment is presented to the user. Additional checking for

proper use of parentheses is done within INTKIP. Note that

parentheses may not be used to delimit compound operands,

unless followed immediately by an operator.

Examples of illegal syntax:

(A) B +

(AB-)C+

)AB*

59-

Examples of legal syntax;

A (B)*

C(AB-)+

(AB*

>

■ .

bü-

OCCURRED OR
IS THIS IN

INITIAL CALL?
e. ,RBTliniT=l?,

YliS

y<ico?mv>

\

NCREM
ÜUNTS
ECREM
OUNTS
OPY M
TACK
ES ET
OINTE

ENT US
IN MS

bNT US
IN ST

STACK

BUTQ
R (THBi

li
TACK I
E
ACK
INTO

ITQ)

<TF11 N t
RESET PARLN LATCH
RESET LITNEXT LATCH
RESET MACRO LATCH
COMPUTER POINTER TO

i.e. , TOPBQ *■ BIJTQ(O) •

TPRNSW ♦■ 0
TLTNSW *- 0
TMSW ♦■ 0

TOP OF BUTQ;
4+(=A(BJTQ))

C TFI J- i
SET SPECIAL OPERATOR LATCH TOPSW

YES

(TRET >

/RETURN TO
INTRON

TPBUTQ *■ TPBUTQ+4 I
GR1 +■ BUTQ(TPBUTQjJ

c TF5
~N

INCREMENT USE COUNT OF STOP IN GR1
TPSTACK ■«- TPSTACK + 4
STACK(O) <■ STACK(0) + 1

A
11 :

•

V 'i

61

ERROR COMMENT
STACK OVERFLOW .^MiRROR j

TLTNSW XJD-*(TF7 J

EST CLASS

<T£4>

OPERAND
UNDEFINED

OPERATOR

♦rrpyi j

TLTNSW *-l
TPSTACK ^TPSTACK-4
STACK(OJ^STACK(0]-l

TF7

SYMCHK ^^V^YF«; ISET SPECIAL OPERATOR
IS OPERATOR SPECIA^^^-JLATCH; i.e..TOPSW^ 1

?

RESET PAREN LATCH, TPRNSW *- 0
CALL INTKIP

6

62-

TPSTACK *- GRO
KIP RETURNS POINTER TO

TOP OF STACK IN GRÜ

«CjPRNSW = 0
? ^^ <TGERlO
fYES

COMMENT h^ToVo«
SYNTAX ERROR ^KKUK

RESET MACRO LATCH I
i.e. . TMSW *- 0 |

-63-

0
Portion of BUTQ below and including
current BP will be added to history stack

Portion of BUTQ having current BP will
become new BUTQ

DISPECH02 is notified about 1+2

<TF.C2>

Decrement use-counts in portion of
BUTQ sent to history stack

<TFC1>

±
Form updated BUTQ by copying BP's
above current BP into bottom of

BUTQ Stack
Reset BUTQ pointer (TPBUTQ)

<TCOPWTM!>
±

Increment use-counts in STACK
Decrement use-counts in MSTACK
Copy STACK into MSTACK

TF1

b4-

8.3 SYMBOL TABLE MANAGEMENT ROUTINES P.Wilcox J.Jonekait

8.3.1 Symbol Table Entries

Each symbol has one symbol table entry which con-

tains various pieces of information about the symbol.

The following is a aescription of the fields contained

in a symbol table entry and their uses.

NAME (SYMNAM - 8 bytes): contains the 8-character EBCDIC

name of the symbol.

VALUE (SYMVAL - 4 bytes): full-word pointer to the "value"

of the symbol. It may be used for various purposes.

DOPE VECTOR (SYMDV - 4 bytes): full-word pointer to sym-

bol's "dope vector" or "extended attributes." May

be used for various purposes.

BUFFER ID (SYMBFRID - 4 bytes): full-word pointer reserved

for the display buffer ID for the symbol.

USE COUNT (SYMUSC - 2 bytes): half-word "use count" for

the symbol. This will be used to determine when and

if a symbol should or may be removed from the symbol

table.

DISPLAY LINK (SYMDLNK - 2 bytes): contains a half-word

Symbol Table Index (STEI) which may be used to link

symbol table entries together in a chain. When this

field is referred to in a macro call, a full-word

STEP must be given since the macro will convert it

to or from the STEI. This field was originally re-

quested by display people but they have since dis-

owned it so it may be used for various purposes.

i

-65-

DIMENSION (SYMDIM - 2 bytes): half-word dimension of

operands. Number of elements in a vector; number

of elements in each of the two vectors of a vector-

pair. Not used by scalars.

MODE (SYMMOD - 1 byte): The bits in the mode byte are

used in conjunction with operands to indicate the

form of the data associated with the symbol. The

bits in this bytt may be divided into three groups.

The first group shows the mode of the symbol:

SYMREAL symbol is real

SYMINT symbol is integer

SYMCPX symbol is complex

The second group gives the structure of the data:

SYMSCALR scalar

SYMVEC vector

SYMVPAIR vector-pair

The third group is a single bit which gives the length

or form of the individual elements:

SYMLNG l=long, 0=short form

In each group, at most one bit may be set at any

time. It is possible for none of the bits to be

set; this is the undefined condition and is used

when the symbol is first created.

CLASS (SYMCLAS - 1 byte): The bits in the class byte are

switches which determine the basic nature of the sym-

bol table entry. The following bits are defined: ■

■ ■- ,■■ ..■ ■ ..

- (U) -

SYMOPNü symbol is an operand

SYMOPR symbol is an operator

SYMMAC symbol is a macro definition

SYMUDEF class of symbol is undefined

SYMUNU this symbol table entry is not in use

SYMSPC special attention

The first five bits listed are mutually exclusive, so

only one (exactly) may be set at any time. SYMUNU

is internal to the symbol table management routines

and is not available to others through macros. The

last bit is used by the interpreter.

TYPE (SYMTYP • 1 byte): The bits in the type byte indicate

if a symbol may be changed or destroyed. The bits are

SYMSYS system symbol

SYMUD user-defined symbol

SYMTMP temporary symbol

SYMRDO read-only symbol

ONE AND ONLY ONE of the first three bits should be

set for each symbol in the symbol table. System sym-

bols are never destroyed. If an attempt is made to

do so, nothing is done unless the symbol is an oper-

and, in which case it is reset to undefined class

and mode. User-defined symbols are destroyed only

when a request is made to do so. Temporary symbols

are destroyed automatically when they are no longer

being referred to anywhere. Read-only symbols should

not be changed, but the symbol table routines do not

do any checking for this.

67-

EXTKA ROOM; At present, there are 32 bytes in a symbol

table entry, of which all but three are being used.

Currently the symbol table is aligned so that each

symbol table entry pointer points to a 32-byte bound-

ary and therefore has zeros for its five low-order

bits .
8.3.2 Macro Descriptions

Parameters

Many of the symbol table management macros accept

parameters which correspond to items in a symbol table

entry (STE) . These parameters may be divided into two

classes:

Class I parameters refer to particular fields in a

symbol table entry. For example, DOPE refers to the full-

word pointer to the dope vector. When one of these para-

meters is used in a macro call, either the entire field

is replaced (from GRO) or else the entire field is returned

(in GR15), depending on the macro used. If the field is

less than a full word long, it is right-adjusted in the

register and high-order bits are either ignored or set

to zero. Only one Class I parameter may be given in a

macro cal1.

Class II parameters refer to particular bits in the

TYPE, MOPE, or CLASS bytes of the symbol table entry.

When one of these parameters is used, only the individual

bit associated with the parameter and possibly directly

conflicting bits are affected. For example, if the para-

68-

meter SYS is given with the SYMSET macro, then the sys-

tem symbol bit will be set while the user and temporary

symbol bits will be cleared, but no other bits in the

TYPE byte will be changed. Any number of non-conflicting

Class II parameters may be given in a macro call. Class

I and Class II parameters referring to the same byte

should not be used in the same call.

Class I Parameters

PARAMETER

VALUE

DOPE, EXTATR

DBUF#

TYPE

MODE

CLASS

DLINK

DIM

NAME

FIELD LENGTH

value pointer full word

dope vector pointer full word

display buffer ID full word

type bits

mode bits

class bits

STE link pointer

dimension

USCNT

EBCDIC name

use count

Class II Parameters

PARAMETER BYTE

OPER.OPERATOR CLASS

OPND,OPERAND CLASS

MACRO CLASS

UND CLASS

SPEC CLASS

-SPEC CLASS

SCALAR MODE

VECTOR MODE

VPAIR MODE

INTEGER MODE

REAL NODE

one byte

one byte

one byte

full word (STEP only)

half word

full-word pointer to

8-character name

half word

ATTRIBUTE*

operator

operand

macro definition

undefined class

special attention

not special

scalar operand

vector operand

vector-pair

integer

real

-69-

COMPLEX,CMPX MODE

SYS.SYSTEM TYPE

USER TYPE

TEMP TYPE

CONST TYPE

VRBL TYPE

jcomplex

system (permanent)

symbol

user-defined

temporary symbol

read-only

may be changed

*Vertical bars join mutually exclusive attributes.

8.3.3 List of Macros

SYMCRE

SYMCRE is used to create a symbol table entry and

assign to it initial attributes. GR1 is assumed to point

to an 8-byte region containing the name of the symbol to

be created. If the symbol is to be temporary, the name

may begin with the characters "#SYM". The last four

characters of the name will then be supplied by the sym-

bol table routines so that other programs will not have

to worry about creating unique names for temporary symbols

they use. If a name is given which is already in the sym-

bol table, a return code of 4 will be given in GR15.

Normally, the return code is zero. In either case, the

STEP of the new or old symbol is returned in GR1. If

there is no more room in the symbol table, a return code

of 8 is used and GR1 is zero.

Initial attributes may be set by giving parameters

acceptable to the SYMSET macro. Any fields not specified

in this manner will be set to the value of the correspond-

ing field in the global default entry, except for the mode

byte which is set to zero (undefined).

PROTOTYPE:

EXAMPLE:

SYMDES

-70-

label SYMCRE [pari.] [,par2,...]

LA l.NAMEREG

SYMCRE SYS,OPNI);REAL, VECTOR

SYMDES is used to destroy a symbol table entry. It

calls upon the symbol table management routine SYMDS.

If the S,uP in GR1 refers to a system symbol, the symbol

is reinitialized (in the same manner as when a symbol

is created). If the STEP refers to a user or temporary

symbol, the symbol is removed from the symbol table.

Note that the symbol is not removed from the screen by

the symbol table management routines; this must be done

by the routine which wishes to destroy the symbol before

SYMDES is called.

If the STEP in GR1 does not point to a valid STE,

a return code of 4 is given; otherwise a return code of

0 is provided.

PROTOTYPE: label SYMDES

EXAMPLE: CALL BUFBOD remove from screen

L 1,STEP

SYMDES

SYMFIND

SYMFIND is used to search the symbol table for an

STE with a known name. It calls upon the symbol table

management routine SYMFS. GR1 is assumed to point to

an 8-byte region containing the name of the symbol. If

71-

it is found a STEP is returned in GR1 and the return code

is 0. Otherwise a return code of 4 is given.

PROTOTYPE: label SYMFIND

EXAMPLi:: LA l.PLUS

SYMFIND

SYMDCD

SYMDCD decodes the CLASS, MODE, or TYPE byte of a

symbol table entry and returns it in GR15 in a form

suitable for use as a branch table index. The following

are legal parameters only one of which may be given in

one call: CLASS, MODE, TYPE, STRUCTURE (each may be

abbreviated to its first letter). If more than one para-

meter is given in the call to this macro, all after the

first are assumed to be statement labels to be used in

a branch table which the macro will construct. If some

of these labels are omitted, then the corresponding branch

table entry will point to the first location after the

macro expansion. If all the labels are missing, no

branch table is constructed.

The branch indices generated are as follows:

GR15 TYPE CLASS MODE STRUCTURE

0 system operand real scalar

4 user operator integer vector

8 temp macro cmplx vector-pair

12 undefined undefined undefined

-72-

PROTOTYPE: label SYMDCD pari [,loc...]

EXAMPLE: SYMDCÜ MODE,REALLOC,,ERLOC

produces the same code as

SYMDCD MODE

B *+4(15)

B REALLOC

B * + 8

B ERLOC

Use Count Management

All symbols of user-defined or temporary types have

associated with them a use count. This should be incre-

mented by one at the beginning of each usage of the sym-

bol and decremented at the termination of said usage.

SYMREF

SYMREF is used to increment the use count by one.

No action is taken if the symbol is a system symbol.

SYMDLE

SYMDLE is used to decrement the use count. If the

use count is found to be zero after decrementing the macro,

SYMDES is called to destroy the symbol. As before, no

action is taken for system symbols.

Attribute Manipulation

SYMSET

SYMSET is used to set an attribute(s) of a symbol

table entry. Any Class 1 parameter and any combination

of Class 2 parameters are legal. There is no error-

-73.

checking to see if contradictory parameters are specified.

Parameters are processed left to right. If a symbol is

an operand (or is changed to an operand in the same SYMSET

call) and the mode byte is to be changed, the symbol

table manipulation routine SYMSMU or SYMSMS is called

and appropriate manipulations are performed to allocate

space for the value of the symbol.

PROTOTYPE: label SYMSET par 1 [,par2] [,par3...]

EXAMPLE: SYMSET OPER.DLINK

SYMGET

SYMGET is used to get the value of any symbol table

entry item. Any Class 1 parameter may be specified.

The value of the item is returned in GR1S.

PROTOTYPE: label SYMGET par

EXAMPLE: SYMGET DIM

SYMCHK

SYMCHK is used to determine if a symbol table entry

has certain specified attributes. Any Class 2 parameters

may be specified. The last parameter must be the address

to which a branch will be taken if any one of the attri-

butes is not associated with the symbol table entry, i.e.,

if multiple attributes are specified success will be

achieved if all of the attributes specified are present.

PROTOTYPE: label SYMCHK par 1[,par2][,par3...],LABEL

EXAMPLE: SYMCHK OPND,VECTOR,READ,BADPAR

-74-

SYMGINDX

SYMGINDX converts a half-word symbol table entry

index (STE1) into a STEP. A parameter is accepted which

specifies the register in which the STEl exists. The

STEP is returned in the same register. GR1 is assumed

if no register is explicitly specified.

SYMGPTR

SYMGPTR converts a full-word STEP to a STEI. Regis-

ter conventions are as in SYMGINDX.

SYMERR These macros are NOPS as anticipated de-

SYMDIAG mand for them did not materialize.

SYMTRACE

SYMTRAC

SYMSETG

SYMGETG

SYMCHKG

These macros perform the functions of the

macros SYMSET, SYMGET, and SYMCHK on the

global symbol table entry which contains

current de faults.

8.3.4 Symbol Table Management Routines

The symbol table management routines which are nor-

mally used during execution are contained in two assem-

blies, each containing one control section. The first

CSECT is named "SYMSTM1" and has the following entries:

SYMCS create symbol

SYMDS destroy symbol

SYMFS find symbol

-75-

SYMINIT1 initialization

SYMTABLE PSECT and symbol table

The second CSECT is named "SYMSTM3" and has the

following entries:

SYMSMU set mode to user byte

SYMSMS set mode to macro-formed byte

Also, there is a CSECT which contains entries to print-

out symbol table entries or dump the whole symbol table.

This will be described below. There is also a program

to test the symbol table macros and programs, but it is

not described here.

SYMCS

The entry SYMCS in SYMSTM1 is used to create a sym-

bol table entry given the name of the symbol. GR1 must

contain a full-word pointer to the first byte of the 8-

character name. GRS 13,14, and 15 are used in the normal

manner. On return, GR1 will contain a STEP and GR15 will

have a return code of 0 or 4. RC=0 indicates that a new

symbol table entry (STE) has been created and the symbol

table entry pointer (STEP) is in GR1. If RC=4, then a

symbol with the same name already exists and the STEP in

GRi points to that old symbol.

The operation of the routine is as follows: If the

name of the symbol indicates that it is not to be a tem-

porary, that is,its first four characters are not the

same as the four characters in location "SYMTPFX" (which

is addressable relative to "SYMTABLE"), then a search

7b-

of the entire symbol table is made to see if the name

is already used on an existing symbol. This search is

made starting at the end of the symbol table and going

toward the beginning. (The end of the symbol table means

the last STE in use, not the end of the storage reserved

for the table.) During the search, a check of each STE

is made to see if it is used. If it is not, then its

STEP is saved so that the STE may be used for this sym-

bol if necessary. If a symbol with same name is found,

its STEP is put in GR1 and a return with RC=4 is made.

Otherwise an STE is formed for the symbol either at the

end of the table or else in a previously unused STE

found during the search (if one was found). This new

STE is initialized by filling all fields from the global

symbol table entry except the name, which gets the new

name, and the mode and dimension which are set to zero.

If a temporary symbol is to be created, no check

is made to see if it already exists, since this is im-

possible (hopefully) because this routine creates a

unique name. A search is made starting from the begin-

ning of the symbol table to find the first unused STE,

which may be at the end of the table. In order that

room for TEMPS may be found quickly, the first few sym-

bol table entries are reserved exclusively for TEMPS.

The exact number reserved is an assembly parameter and

is the value of the symbol "SYMSTERT" which currently

77-

is 5. When an unused STE is found, it is initialized

just as other STEs except that its type is set to TEMP

and the second four characters of its name are an index

which is incremented each time a TEMP symbol is created.

This index starts at 0001 and goes to 9999, at which

point it returns to 0001. The index 0000 is reserved

for the global entry which has the name "#SYM0000".

This routine is called from the macro "SYMCRE".

SYMDS

The entry SYMDS in SYMSTM1 is used to remove a sym-

bol table entry from the symbol table. GR1 must contain

the STEI for the symbol;and GRS 13, 14, and 15 are used

in the normal manner. First, a check is made to see if

the STE pointed to is in use and if it is not, a return

with RC=4 is given. If the symbol is a system (permanent)

symbol that is not an operand then nothing is done and

a normal return is made. If the symbol is a system sym-

bol that is an operand, then it is reinitialized (in the

same manner as when a symbol is created) with its type

set to system. Any other symbol has its class set to

unused so that it may be reused later. Reinitialized

symbols and destroyed symbols have their mode byte set

to zero, thereby releasing storage assigned to their

value pointer (see SYMSMU write-up).

If a symbol was removed from the table, a check is

made and the pointer to the end of the symbol table is

-78-

set to point to the last STE actually currently in use.

(If the number of TEMPS defined is small enough so that

they all fit in the room reserved for them, and if no

other symbols are defined, then the end pointer points

to the first block available to non-TEMP symbols.)

This routine is called by "SYMDES" macro expansions.

SYMFS

The entry "SYMFS" in SYMSTM1 is used to search the

symbol table for a symbol with a given name. GR1 must

contain a full-word pointer to the first byte of the 8-

character name of the symbol to be found. The search is

straightforward, starting at the beginning of the symbol

table and including the reserved TEMP region but not the

global entry. If the symbol is found, a return is made

with its STEP in GR1 and RC=0 in GR15. If the symbol

is not found, GR1 is set to zero and RC=4.

This routine is called by the "SYMFIND" macro.

SYMINIT1 and SYMTARI.F

The entry, "SYMINITl" in SYMSTM1 is the initializ-

ation entry for the symbol table management routines.

It must be called during initialization before any

attempt is made to create symbols. The entry "SYMTABLE"

is the PSECT name for all the symbol table routines.

It contains pointers to the beginning of the symbol

table, the end of the table, the global entry, and the

symbol table management error exit routine (which does

-79-

not exist and is not used). There is also the temporary

symbol prefix, some scratch storage,and two save areas.

Following all this is the symbol table itself. The

entries in the symbol table are forced to a 32-byte align-

ment. The calculation of the first such address avail-

able to ths symbol table is done during initialization

when the various pointers are also initialized. The

global STE is physically the first entry in the symbol

table although logically (to the various search routines)

it is not contained in it. The global entry is initial-

ized when it is created but it may be changed later,

during or after initialization by other routines. All

the STE's used exclusively for TEMPS as well as the first

non-TEMP STE have their class set to unused during initial

i zation.

SYMPTO

The CSECT "SYMPTO" contains two entry points:

"SYMTPO" (which is the same address as SYMPTO) and

"SYMSPO". The latter requires an STEP in GR1 and prints

out on SPRINT the state of that STE in a readable form.

The first entry dumps the whole symbol table by repeat-

edly calling on the second. Both entries establish their

own addressability and require only GR14 to be set to

the return address. A normal return preserves all regis-

ters except GR15.

80-

Assembly Parameters

The following constants appear in SYMSTM1 and are

used to establish various characteristics of the symbol

table entries and programs.

The location "TPFX" contains the four characters

which are initially used to denote that a TEMP symbol

is to be created. During initialization, these four

characters are moved into the location "SYMTPFX" in the

PSECT which may be changed at any time.

The location "INIB" contains the initial values

which are loaded into the global STE when it is created.

The symbol "SYMSTETL" has a value which is the total

length of a symbol table entry (in bytes) and is currently

32. Changing this value implies that the symbol table

DSECT and STE alignment calculation has been or should be

changed.

The symbol "SYMSTEIL" has a value which is the initial

ization length for STE's. This is the number of bytes

which are moved from the global entry to the other entries

when they are initialized. Currently this is 24 bytes,

since the name is not moved. If this symbol value is

changed, probably other codes in SYMSTM1 will have to

be changed to indicate which bytes are to be moved.

The symbol "SYMSTERT" has a value which is the num-

ber of STEs reserved exclusively for TEMP symbols at the

beginning of the symbol table. Since TEMP symbols are

81

created and destroyed quite often during processing, this

reserved room at the beginning makes it more likely that

the CREATE routine can find space for a TEMP easily with-

out looking through the whole symbol table for an unused

STE. If this reserved room is filled up, then TEMP sym-

bols will be placed in the first unused STE in the rest

of the symbol table just as any other symbol. Currently,

the value of SYMSTERT is 5, but experience may show a

larger figure to be appropriate.

Currently, 16 pages of core are assigned for the

symbol table and PSECT. This allows room for over 2000

symbols and is probably far more than will ever be needed,

Contrary to what other write-ups may say, the CREATE

routine (SYMCS) at this time does not check to see if

there is room to add another symbol to the end of the

symbol table.

SYMSMU and SYMSMS

The entries "SYMSMU" and "SYMSMS" in CSECT "SYMSTMS"

are called by the SYMSET macro to set the mode byte of

a symbol. GR1 must contain a STEP for the symbol to be

changed and GRS 13, 14, and 15 are used in the normal

manner. GR1 is not changed. The entry "SYMSMS" is used

if the mode byte to be entered was generated by the macro

as the result of the use of Class II parameters referring

to the mode byte. "SYMSMU" is called if the Class I para-

meter "MODE" is used. The only difference between the

-82-

two entries is that SYMSMU checks the class of the

symbol. If it is not an operand, then the given mode

byte is stored and nothing else is done. If the class

is operand or if "SYMSMS" is called, then the routine

releases old storage associated with the symbol (value)

and gets new storage in accordance with the new mode

byte .

The operation of the routine is as follows. If the

new mode byte is the same as the old, nothing is done.

If the old value pointer is zero or if it points to the

dope vector pointer field of the symbol, then no storage

is released. Otherwise the storage pointed to by the

value pointer is released using "FREESPAC". If the new

mode byte is zero, the dimension, the value pointer, and

the mode byte are set to zero and a normal return is

made (RC=0). In order to assign storage, both the true

mode (integer, real, or complex) and the structure

(scalar, vector, or vector-pair) must be known. If the

new mode byte indicates both of these, then that is used

If either field of the new mode byte is zero (undefined)

then the corresponding field from the old mode byte is

used. If this also is zero, then the field from the

global entry is used. When this has been settled, the

space needed for the symbol value is computed. The

dimension field from the global symbol is always used

if the symbol is vector of vector-pair and is stored in

1

-83-

the dimension field of the symbol. If the symbol is

a scalar, the dimension is set to 1. If four bytes or

less are needed, then the value pointer is set to point

to the dope vector pointer field of the symbol. If

more room is needed, GETSPACE is called to obtain it.

The return code for this routine is the same as the re-

turn code from GETSPACE or zero if GETSPACE was not called

Note that there is no checking for validity of the new

mode byte, and if too many bits are set, the room allo-

cated depends on the particular sequence in which the

program checks the bits, and may well not be the largest

amount indicated.

8.4 LIGHT-PEN MANAGEMENT ROUTINES F. Stephenson R. Brender

Relationship to Graphic Support Routines

These asynchronous attention routines are required

to be able to queue light-pen hits to be later processed

on a first-in first-out basis. This is not possible with

the graphic system as described in the MTS literature.

A new routine, SETANLZ, has been added to the

graphics support. This routine is very like that de-

scribed in IBM literature except that it is an initial-

ization call only. Return is to the calling routine

immediately after making interrupt connections with the

supervisor. When an attention occurs, control passes

to the device-handling routines (LPDETECT, KBFNCDET,

ENDORSEQ, and ASYNCER) on a true interrupt basis with

-84-

respect to the main program. These routines must return

to SETANLZ in normal fashion. By convention SETANLZ will

start buffer regeneration (redundantly perhaps) before

expiring.

This leaves only the problem of "task time — inter-

rupt time" coordination via the queue. When the queue

is empty on entry to routine LPMDEQLP a flag called FLAG

is set non-zero and WAYT state (via a SVC) is entered.

The last task of the interrupt routines when a STEP has

been added to the queue is to post that FLAG (set FLAG

to zero) and hence awaken the task-time routine.

Addressabi1ity

Common addressability is set up at all entry points

with

REG 10 = address of graphic DCB

REG 11 = address of fake PSECT (also known as LPMPSECT)

REG 12 = current CSECT (named LPMCSECT)

Note on Documentation

A name in parentheses after a STEP number in the

functional description of these routines gives the pro-

gram label roughly corresponding to the STEP description.

Name :

Purpose:

LPM INITIALIZATION

LPMINIT

To initialize internal tables and

data structure of the light-pen

management routines.

-85-

Calling Sequence: OS (I) R type

Entry: No parameters.

Return: No parameters. RC = 0.

Functional Description:

1. SETANLZ is called to initialize the graphic sup-

port software for handling asynchronous interrupts

2. Various error counts are zeroed.

3. The initial values of the queue of STEPs are

set to zero.

4. The light pattern in the function keys is set up.

5. The names • FUNC00 •,...,'FUNC29 ' for the func-

tion buttons are defined to the symbol table

and the corresponding STEPs entered in the

FUNCKEY table.

Name:

Purpose:

Calling Sequence:

Entry:

Return:

PROCESS LIGHT PEN DETECT

LPDETECT

To obtain STEI of an item identified

by light pen and place the corres-

ponding STEP into the light-pen queue

OS (I) R type

Parameters in S-byte region establish-

ed by previous call on SETANLZ

RC 0 All okay

RC = 4 Something wrong, e.g., could not

find an STEI.

Functional Description LPDETECT

1. (LPDETGRF) Read into core 2000 bytes from 2250

buffer starting at the next lower even buffer

address location as given in OUTPUT+2.

-8b-

Name :

Purpose :

Calling Sequence;

Entry:

(LPSCAN2) Scan looking for two-byte sequence =

X'ZACO' which is a "GN0P4"

If not found, return to SEI'ANLZ without further

action. SETANLZ will start regeneration of dis-

play and total effect to user will be null.

(GOTNAME) If found, then interpret the next two

bytes as the STEI of an entity. Convert to STEP

to store into queue.

(G0TNAME2) If queue is full, then exit. Other-

wise, place STEP in queue. Then POST the FLAG

for the LPMDEQLP entry, and exit to SETANLZ.

PROCESS END-ORDER-SEQUENCE

ENDORSEQ

To process end-order-sequence con-

dition from 2250 display.

OS (I) R type

Parameters in 8-byte region estab-

lished by previous call on SETANLZ

Return: RC = 0 All okay.

Functional Description: ENDORSEQ

1. Increment the counter EOSCOUNT by 1.

2. When EOSCOUNT exceeds = F'256' call ERROR, else

return to SETANLZ.

This action is intended for diagnostic purposes.

An end-or-sequence command should never occur. If it

does, regeneration will be forced 256 times allowing the

user at least 10 seconds to examine the partial image.

-87-

PROCESS ASYNCHRONOUS ERRORS

Name: ASYNCER

Purpose: To process asynchronous error condi

tions in 2250 display,

OS (I) R type Calling Sequence :

Entry: Parameters in 8-byte region establish'

ed by previous call on SETANLZ

Return: RC = 0 All okay

Functional Description: ASYNCER

1. Record the buffer location where the error occur-

ed in DATACHK. Return to SETANLZ.

Comments: An error message via SERCOM will also be

implemented.

PROCESS FUNCTION KEYBOARD DETECTS

Name: KBFNCDET

Purpose: To process keyboard detects from

either function or (real) manual key-

board ,

Calling Sequence:

Ent ry:

Return:

OS (1) R type

Parameters in 8-byte region establish-

ed by previous call on SETANLZ.

RC = 0 All okay.

RC = 4 Something wrong, i.e., END

or CANCEL from keyboard.

Functional Description:

1. The keyboard sense data is read to determine

cause of interrupt.

-88

2. If interrupt from manual (real) keyboard,

simply ignore and return to SETANLZ.

3. (FNCDET) Else from function keyboard so the

keynumb er is extracted and used to index into

both FUNCKEY and KEYCODE tables.

4. If KEYCODE entry is zero, then FUNCKEY contains

the STEP for the function depressed. Load this

and go step 5 of LPDETECT description.

5. (PRECALL) If KEYCODE entry is = X'80000000',

then FUNCKEY contains the address of an immedi ate

routine. This routine is called. It must re-

turn before the display regeneration is set up

since all 2250 interrupt-hand 1ing is suspended.

GET 'STEP' FROM LIGHT PLN ROUTINES

Name: LPMDEQLP

Purpose: To obtain STEP of item pointed to

by user from a queue of such in FIFO

order.

Calling Sequence:

Entry:

Return:

OS (I) R type

No parameters

GRO contains STEP

RC = 0 All okay.

RC = 4 Something wrong somewhere.

Routines Required: ANALYZ § SETANLZ from *GPAKLIB

DSPECH01 (Echo line entry) from display section

EXTERNAL SYMBOL - DCBADDR = DCB and STRTADDR from buffer

management.

-89-

Functional Descriptions:

(Note: ECH is pointer to next entry not in echo, BEGIN

is pointer to next entry not on interpreter stack.)

1. On ENTRY, compare ECH to END. If equal, the

echo line is up-to-date, so branch to (ALLECH).

2. To update echo, branch to (FILLTAIL) to get linear

vector of queue. Call DSPECHOl with address of

parameter list in GR1. (Parameter list is two

full-words: first is address of full-word length

of the vector; second the address of the first

word of the vector.)

3. (ALLECH) Compare BEGIN and END. If equal, the

queue is empty so the program goes into wait

state until anotner interrupt occurs which makes

a queue entry. The echo line is updated after

this entry.

4. (NTINT) The STEP of the next queue entry is

put in GRO, BEGIN is incremented, and the rou-

tine returns with RC = 0.

5. (FILLTAIL) Given the pointer of where to start

in the queue, entries are moved into a linear

vector. A full-word count is computed and stored,

as required for the parameter list. The value

of ECH is updated and control returned. Also

used by LPMNEWEC.

GET ECHO LINE NOT YET PASSED TO INTERP AFTER AN EDIT

Name: LPMNEWEC

Purpose: To obtain linear vector of that part

of the button queue not already passed

to the interpreter.

■

- 9 ü -

Calling Sequence: OS (I) R type

Entry: NoParameters

Return: GRl contains pointer to PARLIST

PAR LI ST = A (LENGTH OF VECTOR)

A (VECTOR)

CRC = () All okay.

CRC = 4 ERROR

Routines Required: None

Function Description:

1. Picks up BEGIN and branches to (LIST).

2. (LIST) If queue is empty, returns with zero

put in vector length. If queue is not empty,

branches to (FILLTAIL) as in LPMDEQLP to get

linear vector, and returns.

3. RETURN to calling program with address of para

meter list in GR1, CRC = 0.

8.S KEYBOARD AND NUMERIC DISPLAY ROUTINES

M,Feldberg R.iaylor R.Nicholls

The mandate for this group was to translate alphanumeric

information derived from various parts of the system into

order programs to be passed to the screen management routines

for display on the screen and to 'manage' the order programs

thereafter; that is to say, the particular order programs were

to be cataloged. These order programs were written in a

standard manner and were identifiable via an index subscripted

to each program.

DSPKBRD

This provides the keyboard display and the initial-

ization call to the echo line. It also provides the func

•91-

tion definition (via SYMODEFS) for the scrolling, numeric

display, and screen-clearing routines. At the time of

the call to this module, a temporary file,-MESSFILE, is

created and as used to keep all messages which are dis-

played on the screen and the entire button queue history.

DSPMESS

This contains both the message display routines and

the message erasing routines. Figure 8.5.1 is a flow

chart of the subroutine DSPMESS.

ÜSPNUMV

This module contains a large number of entries but

we will describe only two in detail as the rest manipu-

late data in a simple way after it has been set up by

the two routines to be described. The two to be described

are :

DSPNUMV

DSPORDER

Each numeric display comes under the control of

a control block (with the dummy structure VECTATT). This

has the structure:

STEP of variable displayed

Starting address of value vector

Address in value vector of start of present

di splay

Last address in vector

Buffer ID of display

■

9 2

Figure 8.5.1 Flow Chart of Subroutine DSPMESS

ENTER

U

\ WRITE A /
LINE TO /

\ FILE

NO / LI^
<> 7 0 CHAR,-

YES

WRITE 7 0
CHAR TO
FILE

'IS MiiSSNjES \ DISPL. /

 HMESS TQO—f ,. > 254 CHAR
\ LONG' /

BLANK
MESSAGE
BUFFER

Figure 8.5.1, continued

93-

MOVE 55
CHAR INTO
BUFFER

DEC
_

COUNT i
AND INC. i-
BUFFER BASE

0

SET STEI INI
ORDER PROG.

L

y EXIT)

C BUFFER
MANAGEMENT

-94-

Üimension of vector (1 if a scalar)

Pointer to head of list of a control block

Eight bytes of positioning orders for start

of order program.

This structure is used for both vector and scalar displays

Three blocks are provided each kind of display; they are

queued and used sequentially until all are in use. If

at any time the display corresponding to a given block

is erased, the block is placed on the back of the queue

for later use. The queue structure is:

Byte index of first available pointer

Pointer to control block

F' -1'

The -1 limits the length of the list.

In order to obtain an order program corresponding

to a given set of values (or more properly, to display

the values corresponding to a given STEP), a control

block is acquired, the relevant data are put into the

block, and the block is passed to DSPORDER. To scroll

a vector display, only the address of the head of the

display in the control block need be changed before pass

ing the address of the block to DSPORDER.

System Sub-button Description

Name: DSPLPROC (part of the DISVALUE button)

Purpose:

Calling Sequence:

Entry:

Return :

•95-

To display a macro definition in

the working area of the screen.

OS(I) S type

GR1 contains location of a list of

2 adcons

1. A(STE of the procedure)

2. A(Value of the procedure)

RC=0 Procedure is displayed

RC=4 Procedure is not displayed

Instructions for use:

To display the definition of

MACRONAME, the user should point at

LITNEXT MACRONAME DISVALUE

in that order with the light pen.

The macro definition will be dis-

played in the current working area

of the screen. The formal parameters

of the definition will appear in

parentheses.

Functional Description:

1. Pick up parameters using pointer in GR1.

2. Get the length (.number of STEPs) from the type

entry in the symbol tahl2.

3. Go through the double entry table which contains

the macro definition starting at A(Value+#dummy

args*4) to get the STEPs of the definition.

(See macro write-up for details.)

4. Place these STEPS in a local list. Record the

number of STEP in the list.

*.■ .A:.. !,

96-

5. Use a STEP to obtain an 8-byte EBCDIC name and

build up a 2250 order program using these char-

acters. (Trim all but one trailing blank and

insert NEWLINE and spacing characters where

appropriat e.)

6. Loop on 5 until all STEPs processed.

7. Compute the length of the 22 5 0 order program

in bytes and call BUFBINGO.

8. Increase the use count of the macro.

9. Enter the STEP and Buffer ID of the displayed

macro into the local table of macro definitions

displayed.

10. Exit with RC=0.

Name: DSPERSPR (part of the ERASE button)

Purpose: To delete the display of a procedure

from the working area.

Calling Sequence: 0S(I) S type

Entry: GR1 contains the location of a list

of 2 adcons

1. A(STE of the procedure)

2. A(Value of the procedure)

Return: RC=0 Procedure erased

RC=4 Parameter given was not a macro

Instructions for use:

The user should point at

MACRODEFINITION ERASE

in that order with the light pen.

The displayed macro definition will

disappear from the screen working

area.

-97-

Functional Description:

1. Pick up arguments using pointer in GR1.

2. Use SYMDCD to see if operand is a macro. If

not, exit with RC=4, If so, go to 3.

3. Find the entry pair for this macro in the table

being kept of macro definitions displayed. Re-

move this entry pair (i.e., Buffer ID and

STEP) and close up the rest of the table.

4. Call BUFBOD to remove the order program.

5. Decrease the use count of the macro.

6. Exit with RC=0.

Name: DSPCLRPR (part of the CLEAR button)

Purpose: To clear the "working area" of the

screen of all macro definitions dis-

played there.

Calling Sequence

Ent ry :

Return:

Instructions for Use

OS(I) R type

No parameters

RC=0 Done

DSPCLRPR calls BUFBOD with a Buffer

ID. If this ID is not legal, a sys-

tem error is indicated by BUFBOD.

When the user points at the clear

button, the various sections which

display information in the working

section —graphs, numeric display

of vectors, macro definitions-- are

called and each deletes the order

programs that it set up.

9 8

Functional Description:

1. Sequentially extract entries from the double

entry table of Buffer IDs and STEPS.

2, Call BUFBOD with each ID.

3, Decrease the use count of each i..acro display

deleted by one.

4. F.xit when all entries processed.

The following constitutes a list and definition of the

present set of entry points into the package provided

by keyboard and function display. Given are the external

symbols and the calling sequence required at each entry.

In some cases, a return or return code is provided and

in these cases it is noted.

Name :

Purpose :

Calling Sequence:

Entry:

Return :

Notes

DSPKBRD

To display the predefined virtual

keyboard symbols on the screen.

OS (I) S type

GR1 contains the location of a list

of full word entries. The first

entry is a full word count of the

number of following entries. The

rest are STEPs of the predefined

symbo1s.

RC=0 Screen displayed

RC=4 Screen not displayed

The format of the screen will be

entirely determined by the order of

the list of STEPs. The symbols will

■ ■ .

99-

be displayed in large characters

across the top of the screen, double-

spaced and staggered line-by-line.

Name: ÜSPNUMV

Purpose: To display a vector in numeric form.

Calling Sequence: OS (1) S type

Entry: Gin will contain the location of a

list of adcons which will be prepared

in the standard function call format.

The list of adcons will be:

1. A(STE of vector to be displayed)

2. A(Vector)

3. A(Temporary STE)

4. A (Temporary vector)

Exit: RC=0 Vector displayed

RC=4 Vector not displayed

Notes: The value of the vector at the time

of the call will be copied into the

temporary vector, and the original STE

will be linked to the temporary by

the DLINK of the temporary. This

will allow for the use of the EBCDIC

name. The use count of both STEs

will be increased and both will be

decreased when the temporary is

erased. A maximum of 4 vectors may

be displayed at any one time with

maximum display length of 20 values.

Name: DSPORDER

Purpose: To construct an order program corres-

ponding to a given control block.

,

. . .

1 Ü 0 •

Figure 8.5.2 Flow Chart of Subroutine DSPNUMV

ENTRY DSPNUMV

SCALAI //v:IiCTÜR \ VECTOR
vOR SCALAR

X
~v/

^ BLOCK
^AVAILABLE

NO
NXAVAILABLE,

r
OBTAIN A
CONTROL
BLOCK

^ x
_ I

OBTAIN A
CONTROL
BLOCK

♦

D I S P L .
A

MESS. ■

EXIT

SET FIRST, LAST,
AND PRESENT

VALUE ADDRESS

/

. CALL USPORDER

- 1
GET ADDRESS

OF ORDER PROG

CALL BUFBINGO

jSET BUFFER ID §
INC. USE COUNTS

f EXIT ;

101-

Figure 8.5.3 Flow Chart of Subroutine ÜSP0RDER

ENTRY

?

GE' 1 ADCON
OF

CONV ROUT INI:

GET ADCON
OF

CONV.ROUTINE

f 1
MOVE

POSITION ORDER
TO BUFFER

♦
MOVE
TITLE

MOVE
POSITION ORDER

§ INC. Y

YES

DEC.LOOP
COUNT

■,

10.
Tigure 8.5.3, continued

/■ LOOP \
< COUNT y
\ > 0 / Y

NO

YKS
f

SET UST
FOR NUMBER

§ FIELD

CALL
CONV.
ROUTINE

O i_
INC.BASES

FOR
ORDER PROG

r
1

SET STEI I
IN ORDER i

PROG f, :

SET LENGTH I

S-
EXIT

103-

Calling Sequence: OS(I) S type

üntry: GR1 contains the location of the

cont ro 1 block.

lixit: RC = 0

Notes: An order program is left in the PSECT

with the count at the address COUNT

It is not an External Symbol.

Name: DSPSCRLU

Purpose: To scroll a displayed vector upwards.

Calling Sequence: OS (I) S type

Entry: GR1 contains the location of a list

of 2 full word adcons:

1. A(STE of vector)

2. A(Value of vector)

Exit: Noreturn

Notes: The vector will be scrolled upwards

by 10 places for each call on the

routine until the last 10 are display-

ed. No more scrolling may then be

done .

Name: DSPSCRLU

Purpose: To scroll a vector downwards

Calling Sequence: OS (I) S type

Entry: GR1 contains the location of a 2 ad-

con list:

1. A(STE of vector)

2. A(Value of vector)

Exit: No return

Notes: The vector will be scrolled upwards

104

Name :

Purpose:

Calling Sequence

Entry:

Exit :

Notes :

Name :

Purpose:

Calling Sequence

Entry:

Exit :

Notes :

by 10 places on each call until the

first 20 values are displayed.

DSPERSEV

To erase a vector which has been

displayed on the screen.

OS (I) S type

GR1 contains the location of a list

of adcons:

1. A(STE of vector)

2. A(Value of vector)

No return

The display will be erased, the tem-

porary entry will be destroyed, and

the use count of the original STE will

be reduced.

DSPNEWNM

To display a name on the function

keyboard.

OS(I) R type

GR1 contains the STEP of the required

STE.

RC=0 Name displayed

RC=4 Name not displayed

The new name will be added to the

list of names. This list will first

cover the right-hand side of the

screen and then the left-hand side.

10 5-

Name: USPUELNM

Purpose: To delete the name of a function from

the function keyboard.

Calling Sequence: OS (I) R type

Entry: GR 1 contains the STEP of the function

to be deleted.

Exit: RC=0 Name has been deleted

RC=4 Name has not been deleted

Notes: The name will be deleted and the whole

keyboard moved up to remove the space

left by the deletion.

Name: DSPMESS

Purpose: To display a message on the screen.

Calling Sequence: OS (I) R type.

Entry: GR 1 contains the location of a half

word count of an immediately follow-

ing character string.

Exit: RC=0 Message displayed

RC=4 Message not displayed

Notes: The message is displayed on the screen

below the virtual keyboard. A limit

of 254 characters may be displayed.

The message will also be written in

the file-MESSFILE, which is created
■

during the initialization. Any pre-

vious message which is on the screen

at the time of a call on this routine

will be erased.

■■; ■■

106-

Name: DSPHRSMS

Purpose: To erase a message from the screen.

Calling Sequence: No parameters are required.

Notes: This is used internally but it may

be called by anyone who wants to.

Name: DSPECH01

Purpose: To get those parts of the button queue

which are kept by Light Pen manage-

ment .

Calling Sequence: OS (I) S type

Entry: GR 1 contains the location of a list

of 2 adcons :

1. A(Count of queue)

2. A(Queue)

Exit: No return

Name: DSPECH02

Purpose: To pass those parts of the button queue

which are kept by the Interpreter.

Calling Sequence: OS (I) S type

Entry: GR1 contains the location of a list

of 4 adcons:

1. A(Count of button queue)

2. A(Button queue)

3. AfCount of history queue)

4. A(History queue)

Exit: No return

Name: DSPLPROC

Purpose: To display a procedure on the screen.

■

-107.

Calling Sequence: OS (I) S type.

Entry: GR1 contains the location of a list

of 2 adcons:

1. A(STE of the precedure)

2. AC'Value' of the procedure)

Exit: RC=0 Procedure is displayed

RC=4 Procedure is not displayed.

Notes: The call is a standard function call.

Name: DSPERSPR

Purpose: To delete the display of a procedure.

Calling Sequence: OS (I) S type

Entry: GR1 contains the location of a list

of 2 adcons:

1. A(STE of the procedure)

2. AC'Value' of the procedure)

Exit: RC=0 Procedure erased

RC=4 Something not quite right.

Name: DSPINC

Purpose: To increase the time count on a mess-

age.

Calling Sequence: None

Notes: A display is kept on the screen un-

til one of the following has occurred:

a. A new message is displayed

b. Three additions are made to

the echo line.

This routine is used to update the

count from the echo line.

108-

Name :

Purpose:

Calling Sequence:

Exit :

Notes:

DSPFLDFN

To acquire a temporary MTS file called

MESSFILE.

None

RC=0 File acquired

RC=4 File not acquired

A temporary file called -MESSFILE

is acquired and is used in order to

store a record of the user's compu-

tations. The echo line is placed

into the file whenever it is placed

in the history stack. All messages

that are displayed on the screen are

also placed in the file. The FDUB

of the file is kept under the external

symbol of DSPFDUB and this may be

used by anyone who wishes to place

anything in the file.

8.6 FUNCTION DISPLAY ROUTINES

General Description

All calls to display graphs in the shared area of

the 2250 screen come to Function Display as operator calls

from the interpreter. Operators are currently available

to display and era^e graphs (PL0T1, PLOT2, ERASE, and

CLEAR) and to control the mode and scaling of displays

(SCALE and SETPLTMD) .

Buffer programs for the IBM 2250 are generated using

the subroutines in *GRAPHLIB which are described in the

109-

IBM Systems Reference Library manual, IBM System /360

Operat ing System' Graphic Programming Services for the

IBM 2250 Display Unit, Model I (Form C27-6921-0 file

S360-30). These subroutines were used extensively, and

the IBM manual must be used to understand the parameter

tables that are set up to display graphs.

Four function display subroutines form the primitive

basis for other function display programming. They are:

1. FDADDDS which adds a graph to the screen given

two vectors, and the Symbol Table Entry Pointer

(STEP) of a temporary vector-pair.

2. FDGRIDDS which puts a grid and labels on the

screen after the appropriate parameters are set

up .

3. FDMAXMIN which chooses corner points (scale

values) for a grid given the x and y vectors

to be di splayed.

4. FDSETVAR which chooses increments between grid

lines and sets up the vectors to be used as labels

The following few pages describe the operator entries

to handle PL0T1, PL0T2, and SCALE and the internal sub-

routines FDADDDS and FDGRIDDS,

Funct ion Display: Operator Description

Name:

PL0T1 and PL0T2

Function:

display graphs that are composed of a vector-pair or

a pair of vectors.

1 10-

Operands :

PL0T1 takes one operand from the stack. It may be

either a vector or a vector-pair. A vector-pair operand

is displayed using its own domain and range. A vector

operand is used as the y-vector of a graph and is dis-

played against the standard domain (the ID vector).

PLOT 2 takes two operands. If they are both vectors,

the vector first entered onto the stack is used as the

y-vector in the graph displayed versus the second vector

entered.

If the first entered operand is a vector-pair, its

y-vector is used as the y-vector in a display versus the

second operand entered.

Results:

Neither PL0T1 nor PL0T2 returns an operand to the

stack .

Notes:

1 In all cases the scaling used will be determined

by the first graph displayed. If this is unaccept

able, the SCALE operator may be used to set the

scale.

2. The displayed graph is a floating-point vector-

pair operand and may be placed on the operand

stack with a light-pen hit on it. It may be

used with any operator that accepts vector-pair

mode operands,

3. The grid is displayed with the first use of

PL0T1, PL0T2, or SCALE.

Ill

4. Transformations are performed on the x and/or

y vectors if the current plotmode specifies that

either one or both of the ordinates is to be

of log mode.

Possible Messages:

1. DIMENSIONS OF PAIR OF VECTORS FOR DISP DISAGREE

The two vectors which are to be displayed with

PL0T2 must have the same number of elements.

No action is taken if this error occurs, but

the operands are removed from the stack.

2. SOME PTS OF LAST GRAPH OFF THE SCREEN

One or more points of the last graph fell out-

side of the grid. All points within the grid

boundaries are displayed.

3. INTEGERS IN LAST FP VECTOR FOR DISPLAY

This means that there were some numbers that

looked like integers that were supposed to have

been floating point. Probably a programming

error.

4. DISPLAY BUFFER OVERFLOW ERASE SOMETHING

Too much is being displayed. Last display is

ignored; operands are removed from stack.

Example :

Button pushes starting from the left

ID ID PLOT2

displays a straight line from (-1,-1) to (1,1).

Name :

SCALE

Function:

Sets the scale values to be used for the lower-left

and upper-right corners of the grid and then displays

-112

an empty grid. PL0T1 and PL0T2 will use these scale

values for all subsequent displays.

Operands :

SCALE accepts four scalar floating point operands

that describe the lower-left and upper-right corners of

the grid to be displayed. The order which the operands

are to be placed on the stack is:

1. x value of the lower-left corner.

2. y value of the lower-left corner.

3. x value of the upper-right corner.

4. y value of the upper-right corner.

Results :

No results are returned to the stack.

Notes :

1. Use of SCALE overrides any automatic scaling

by PL0T1 or PL0T2.

2. If some graphs are already displayed they will

not be rescaled. The grid will be changed under

them. They may be rescaled by getting two light-

pen hits, i.e., placing the graph on the stack

twice, and chen erasing and plotting again.

3. SCALE does not alter the plotting mode. The

grid displayed will be of the current mode.

4. No messages are displayed by SCALE.

- 1 1 5 ■

^unction Display: Subrout ine Description

Name :

FDDSVCPR

Function:

The entry point for all PL0T2 operator instances

and the PL0T1 instance to display a vector against the

standard domain.

Calling Sequence:

05(1} S-type

There are six parameters, the STEP and VALUE of the

x vector to be displayed, of the y vector to be displayed,

and of the vector-pair temporary for the displayed graph.

Subroutines used:

1. FDMAXMIN: routine to set up the scale values

for the corner points of the grid.

2. FDSETVAR: routine to set up grid and label

increments and the label vectors.

3. FDGRIDDS: routine to display grid, labels, and

the scale messages.

4. FDADDDS: routine to construct the buffer pro-

gram for the graph to be displayed.

Description:

1. The dimensions of the x and y vector are checked

for agreements.

2. The y and then the x vectors are moved to the

vector-pair temporary.

3. If either or both of the vectors are integer

they are converted to floating point.

-114-

4. If no grid is currently being displayed, FDMAXM1N,

FDSETVAR, and FDGRIDDS are called to display the

grid.

5. Return to caller.

Name :

FDDSFN

Function:

Entry point of PL0T1 when it operates on a vector-

pair operand.

Cal 1 ing Sequence :

OS(I) S type.

There are four parameters, the STEP and VALUE of

the vector-pair to be displayed and of the vector-pair

temporary used for the displayed graph.

Subroutines Called:

None; however code in FDDSVCPR is entered after

initial setup.

Descript ion:

1. The vector pair is moved to the temporary.

2. Variables are set up and FDDSVCPR is entered

at REALY.

Name :

FDSCALE

Function:

Entry point for the SCALE operator.

Calling Sequence:

OS{I) S-type

115-

There are eight parameters: the STEP and VALUE of

the following four floating point scalars.

1. y value of the upper-right corner.

2. x value of the upper-right corner.

3. y value of the lower-left corner.

4. x value of the lower-left corner.

Subrout ines Used:

1. BUFBOD: to erase a grid if there is one already

up .

2. FDSETVAR: to set up the grid and labels para-

meters .

3. FDGRIDDS: to display a new grid.

Description:

1. If a grid is already up, it is erased.

2. The upper-right and lower-left corner scale

values are set into the parameter tables.

3. FDSETVAR is called to set the grid and label

increments and the label vectors.

4. The buffer program for the grid and labels is

constructed with FÜGR1DDS.

5. Return to caller.

Name :

FDADDDS

Function:

Adds one graph to the 2250 display buffer.

Calling Sequence:

ÜS(I) S-type

:■■■ ■

lib-

GR1 contains an address that points to a vector

of four other addresses:

1. The address of the first element of the x-vector

to be displ ayed.

2. The address of the first element of the y-vector

to be disp layed.

3. The address of a full word containing the number

of points to be plotted.

4. The address of a full word containing the Sym-

bol Table Entry Pointer for the temporary space

used for the displayed graph.

Exit:

GR15 is set to zero.

Subroutines Used:

1. GETSPACE: used to get space for graphs to be

displayed in one of the log modes.

2. ALOGlO: used to transform functions displayed

in one of the log modes.

3. DSPMESS: to display messages on the screen.

4. GSTOR: -GRAPHLIB routine used to add 2250 com-

mands to the buffer program.

5. GSVPLOT: *GRAPHL1B routine used to construct

the 2250 buffer programs for the graph itself.

6. BUFBINGO: used to write the buffer program in-

to the 2250 buffer.

Format of the 2250 buffer program for graphs:

1. A 2-byte NOP (may be changed to "Defer Light

Pen Detects" when used on 2250 model 3)

2, The buffer program for the graph. Absolute

-117-

vector mode plotting is used.

3. A 2-byte NOP (may be replaced by "Enable Deferred

Detects" on the model 3).

4. , 4-byte NOP containing the Symbol Table Entry

Index (STEI).

Subroutine Description:

1. The parameter tables for the *GRAPHLIB routines

are initialized and set up for the vectors to

be di splayed.

2. If either or both of the vectors is to be dis-

played in log mode, space is obtained from

GETSPACE and the log.- of the appropriate vectors

is moved into this space.

3. Three calls are made on *GRAPHLIB to build the

first three parts of the buffer program.

4. The STEI is obtained, entered into the 4-byte

NOP and the two are added to the buffer program.

5. The buffer program is written to the 2250 with

BUI'BINGO.

6. The buffer ID is entered into the symbol table.

7. The STEP is entered into the table of displayed

graphs.

8. The use count of the temporary is incremented.

9. Return to caller.

Name :

FDGRIDDS

Function:

Constructs the buffer program for the grid, labels,

and scale messages.

118-

Calling Sequence:

05(1) R-type

No parameters.

Subroutines used:

1. GSTOR: *GRAPHLIB routine to add 2250 commands

to the buffer program.

2. GCGRID: *GRAPHLIB routine to construct the

buffer program for the grid.

3. GLABEL: *GRAPHLIB routine to label the axes.

4. GCPRNT: *GRAPHLIB routine used to add the scale

messages to the buffer program.

5. BUFBINGO: routine to write the buffer program

to the 2250.

Description:

1. The 2250 command to disable light-pen detects

is placed in the buffer program.

2. Plot mode is checked and parameters for GCGRID

are set up to give the correct mode display.

3. Parameters set up previously by FDSETVAR are

used to set up two calls to GLABEL to label the

x and y axes.

4. The scale messages are added to the buffer pro-

gram .

5. The 2250 command to enable switch detects is

added to the buffer program.

6. The buffer program is sent to the 2250 using

BUFBINGO.

7. The buffer ID of the grid is saved locally.

8. Return to caller.

119-

Function Display: General Organi zation

The routines previously described are contained in

one assembly with two CSECTs (FDADDDS and FDGLOB). FDGLOB

is the CSECT to be used as a PSECT and contains the

function display global variables.

Entries to the Function Display Rout ines

The following pages describe the entries FDINIT,

FDINTFLT, FDSETVAR, FDFLTBCD, FDMAXMIN, FDERASE, FDCLEAR,

and FDSETMOD to the display section of the mathematical

analysis package. Thsse routines perform data conversion,

set plotting parameters, erase displays, and initialize

the function display section.

FDINIT

This routine is called during initialization to

enter four operators--PL0T1, PL0T2, SCALE, and SETPLTMD--

into the symbol table (and onto the screen). In addition

it calls the initialization point DSPECHO of the numeric

and keyboard display section

The characteristics of the four operators initial-

ized by FDINIT are as follows:

PL0T1: Has two possible mode combinations:

1. A vector (or the first half of a vector

pair) is plotted against the ID vector.

2. A function is plotted (i.e., the first

half of the vector pair is plotted against

the second half.

.

120-

PL0T2: Has two possible mode-combinations:

1. A vector is plotted against another

2. The first half of a vector-pair is

plotted against a vector.

SCALE: Requires four operands. These are the

REAL*4 coordinates of the lower left and upper right

corners of the graph (i.e., the values represented by

these corners, which are positioned at fixed points

relative to the screen).

SETPLTMD: Requires one REAL*4 or INTEGER*4 operand.

This operand is the desired plotting mode number. The

routine FDSETMOD, which interprets SETPLTMD, determines

from the operand itself without reference to the symbol

table whether it is of REAL*4 or 1NTEGER*4 mode.

The name of the PSECT for FDINIT is (predictably)

FDINITPS, This PSECT contains the save area and all ad-

cons for FDINIT.

FDSETVAR

This entry initializes or resets various parameters

used by the *GRAPHLIB routines for displaying graphs.

It examines Ul, U2, VI, and V2, which are the scale values

of the lower left (Ul, VI) and upper right (U2, V2) scale

values on the screen and sets the following variables:

ULABAX: the relative position in the V direction

of the labels on the U-axis (=V1)

VLABAX: the relative position in the U direction

of the labels on the V-axis (=U1)

121

UGRID: the scale increment between the grid

lines in the V direction (= (U2 - Ul)/8)

VGRID: the scale increment between the grid lines

in the U direction (= (V2 - Vl)/8)

ULABINC: the scale increment between successive

labels on the U-axis (= UGRID)

VLABINC: the scale increment between successive

labels on the V-axis (= VGRID)

USTR1NG: the EBCDIC characters comprising the U-

axis labels (c.f., FDFLTBCD)

VSTRING: the EBCDIC characters comprising the V-

axis labels (c.f., FDFLTBCD)

FDSETVAR is called without parameters, since all

necessary information is contained in the control section

FDGLOB, Note that the routine FDFLTBCD may reset ULABINC

and VLABINC to a multiple of their values upon entry.

The HSECT for FDSETVAR is FDSVPSCT. It contains

the save area and a four-fulIword area used as a para-

meter list for the two calls to FDFLTBCD.

FDINTFLT

This is a "utility" routine which can be called to

convert a vector of integers (INTEGER*4) to a vector of

floating-point numbers. The REAL*4 results replace the

integers. The calling sequence is

CALL FDINTFLT, (N,X), where

N is the INTEGER*4 number of elements in

X, the INTEGERM vector to be converted.

■■ ■ ■ ■- .

-122-

The PSKCT for FDINTFLT is FDINTFPS; it contains only

the save area.

FÜFLTBCD

This routine is called by FDSETVAR to set up the

strings of EBCDIC characters which comprise the labels

for the function display.

The calling sequence for FDFLTBCD is

CALL FDFLTBCD,(XI,X2,DX , STRING,DIG ITS) ,

where :

XI is a "starting value" (i.e., the most negative

or the least scale value in the U or V direction)

X2 is the "terminal value" (i.e., the most positive

or the greatest scale value in the U or V

direction)

DX is an increment (i.e., either ULABINC or VLABINC)

STRING is the location of the region into which con-

versation is to take place

DIGITS is the location of a three-byte region into

which the exponent part of a scale-factor is to

be placed (c.f., below).

The routine first checks to see whether the values

XI, X2, and DX are consistent. If either

1. XI < X2 and DX < 0

or 2. XI > X2 and DX > 0

immediate return is made with RC=4. Then DX is reset tr

n * DX, where n is the least integer such that

123.

56

XI - XTOP

ÜX

^ 6

+ 1

Where XTOP = XI + DX[|X1 - X2|/DX] and the brackets denote

"integer part."

The routine then converts the floating-point numbers

XI, XI + DX, ..., XTOP to EBCDIC character strings of

six characters each, with one of the following edit-

patterns:

b±.ddd

b±d.dd

bidd.d

b±ddd. ,

where "b" denotes a blank, and "d" denotes a digit. The

successive six-character groups are placed contiguously

in STRING. In the field DIGITS the routine places three

characters of the form ±dd. These will appear on the

screen in the form

VERT SCALE:*10**(±dd)

HORZ SCALE:*10**(±dd)

to indicate that internal range and domain values are

10**(+dd) times the values appearing externally in the

labels .

124

FDFLTBCD also returns with a return-code of 4 if

- 74
it encounters floating-point values below 10 or above

10' .

The PSECT for FDFLTBCD is FDFLBCPS. It contains

the save area and all constants generated by literals.

FDMAXMIN

This routine examines two REALM vectors and assigns

values to the plot variables Ul, U2, VI, V2 corresponding

to the values of the maxima and minima of the vectors X

and Y of the calling sequence, which is:

CALL FDMAXMIN,(N,X,Y),

where N is the INTEGER*4 number of elements in (each of)

X and Y, and X and Y are the REAL*4 vectors to be examined

FDMAXMIN then sets

Ul = min(X) - 1/4 |max(X) - min(X)|

U2 = maxCX) + 1/4 |max(X) - min(X)|

VI = min(Y) - 1/4 |max(Y) - min(Y)|

V2 = max(Y) + 1/4 |max(Y) - min(Y)|

FDMAXMIN then calls FDSETVAR to reset various global para-

meters in accordance with the new scale values for the

screen corners.

The PSECT for FDMAXMIN is FDMXMNPS. It contains

the save area as well as the four-word adcon area for

the call to FDSETVAR.

125.

FDCLEAR

This routine is called by the routine which inter-

prets the operator CLEAR, with no arguments. FDCLEAR

inspects the list DSPTAB containing the STEPs of all cur-

rent function-displays. For each non-zero entry, FDCLEAR

1. Obtains the buffer ID of the display via

SYMGET DBUF#

2. Deletes the display with a call to BUFBOD

3. Decrements the use-count of the temporary

symbol via SYMDLE

4. Sets to zero the DSPTAB entry for the deleted

display.

After all function displays have been deleted, FDCLEAR

deletes the grid display by a call to BUFBOD and zeroes

the contents of GR1DID in the control section FDGLOB.

The PSECT for this routine is FDCLPSCT. It contains

the save area and all adcons.

FDERASE

The routine FDERASE is called by the routine which

interprets the operator ERASE. General Register One must

contain the STEP for the display to be erased. FDERASE

then searches DSPTAB in the control section FDGLOB for

the same STEP. If it finds the STEP of the ERASE oper-

and, this entry in DSPTAB is zeroed, the macro SYMDLE

is executed to decrement the use count, the graph is

erased by a call to BUFBOD, and return is made with RC=0.

-12b-

If the STEP of the operand cannot be found in DSPTAB,

return is made with RC=4.

The PSECT for FDERASE is FDRSPSCT. It contains the

save area and all adcons.

FUSBTMOL)

The chief function of this routine is to store a

mode number for the current mode of plotting which is

passed by the interpreter as a consequence of the SETPLTMD

button-push. The call is

CALL FDSETMOD,(Z)

where Z is the REAL*4 or INTEGER*4 plot mode. FDSETMOD

checks to see whether Z is integer or flor ting-point,

and stores it as an integer in the location PLTMODE of

the control section FDGLOB.

After storing the plot mode, FDSETMOD calls BUFBOD

to erase the current grid, and FDGR1DDS to create a new

one .

The PSECT for FDSETMOD is FDSMPSCT. It contains the

save area and all adcons,

8.7 BUFFER MANAGEMENT ROUTINES B.J. Bolas R.W. Mcllard

General Layout of Buffer

The initial buffer has a start regeneration timer

(GSRT) followed by a transfer (GTRU) to the first order

program in the regeneration loop. This generally branches

around the "buffer full" message, which is next in the

127.

in the buffer; however, when a call on BUFBlNGO or BUFBORE

fails due to insufficient space, this message is linked

into the regeneration locp. Following this message are

three initial GTRUs, one for each type of order program.

Type 0 order programs are those buttons on the periphery

of the screen which are always displayed; Type la order

programs are thoi>e displays in the central region of the

first screen given to the user; Type lb order programs

are those displays in the central volatile region of the

screen given to the user when he hits the FLIP

button for the first time. The initial GTRUs point to

the first order program of the corresponding type.

The last Type 0 order program points to the initial la

or lb GTRU, depending upon which screen is the currently

active screen. The last Type la and lb order programs

both point to the GSRT. As indicated shortly, the buffer

is always "packed"; i.e., there are no unused buffer

locations between order programs in the buffer at any

time. To establish properly the linkage within types

of order programs, a GTRU to the next order progran of

the same type is tacked onto the end of the order program

when BUFBlNGO and BUFBORE are called. The address of

this GTRU is updated by buffer management whenever it

changes (due to a call on BUFBOD or BUFBORE).

, '

128-

Corresponding to each order program in the buffer

is a control block with five full-word entries. The

control blocks are linked with backward and forward

pointers within each type, the linkage corresponding to

the linkage of the corresponding order programs in the

buffer. The format of these control blocks is as follows

* 1 POINTER TO ITSELF FOR ERROR CHECKING, *

* 2 BACKWARD POINTER TO PREVIOUS CONTROL BLOCK, *

* 3 FORWARD POINTER TO NEXT CONTROL BLOCK, *

* 4 ABSOLUTE BUFFER ADDRESS OF ORDER PROGRAM, *

* 5 BYTE-LENGTH OF ORDER PROGRAM. *

Following is a general description of the internal

procedures used in the subroutines in the buffer manage-

ment package.

BUFINIT

Purpose:

To initialize the image of the buffer during

initialization of the system.

Description

The image of the buffer is a region of storage

of length 8K = 8192 bytes, the length of the 2250 buffer.

At initialization, certain necessities, such as a start

regeneration timer, a message indicating that the buffer

is full (which is displayed only when appropriate), and

-129-

transfers to order programs to eventually be inserted,

are put into the image.

Entry:

No parameters are passed.

Exit :

GR1 has the storage address of the buffer image.

GR15 has return code 0.

Note :

BUFINIT is called by BUFINIT1.

BUFBINGO

Since the buffer is always packed (see below), the

decision as to whether or not the buffer has sufficient

space for the order program reduces to a comparison of

its length against the difference between 8192 and the

next available buffer address. If there is sufficient

room in the buffer, the order program is moved into the

buffer at the next available buffer location, and is

linked into the regeneration loop for order programs of

its type. If there is not sufficient room in the buffer,

then a message to that effect is displayed to the user.

To guarantee that there is always room for this message,

it is resident in the buffer after initialization, but

is normally not linked into the buffer display-regener-

ation loop.

-130.

BUFBOD

When an order program is deleted, the buffer is

"packed" by moving all order programs (if any) following

the deleted order program in the buffer (with higher ab-

solute buffer addresses) into the region vacated by the

deletion of the order program. This was designed to

alleviate the problem of deciding whether an order pro-

gram passed by BUFBINGO or BUFBORE can be inserted into

the buffer. See the section on recommendations for the

future for an argument against using this scheme.

Note: One obvious implication of this buffer-packing

scheme is that linkage of order programs within their

respective types is monotonic with respect to absolute

buffer addresses. In other words, each order program

branches to an order program with a higher absolute buffer

address (except the ones at the end of the loops, which

branch to appropriate locations in the initial buffer).

BUFBORE

The new order program is inserted at the same abso-

lute buffer address as the old order program, if there

is room. If not, the message that the buffer is full

is linked into the regeneration loop. To insert the

new order program, first all order programs with higher

buffer addresses are moved to leave a hole just the right

size for the inserted order program. Thus the buffer

remains packed.

-131-

Note: BUFBORE inserts the new program into the

loop for the same type as the old program. Thus BUFBORE

implicitly assumes that the new order program will be

of the same type as the old order program. (It is specu-

lated that all such calls will involve only Type 0 order

programs, since BUFBORE is strictly a system-generated

call; however, BUFBORE will work for any type, as long

as both the inserted order program and the deleted order

program are the same type.)

BUFFLIP

The last Type 0 GTRU (transfer instruction) points

always to either the initial Type la GTRU or the initial

Type lb GTRU. A call on BUFFLIP (i.e., a light-pen hit

of the FLIP button by the user) merely switches this

last Type 0 GTRU to point to the Type lb loop instead

of the Type la loop, or vice versa.

It is now felt that the scheme of always packing

the buffer is inefficient and wasteful of CPU time, and

that instead the buffer should be packed only when there

is no space in the buffer big enough for insertion of

the order program. Then extra information is needed by

buffer management in order to keep track of the portions

of the buffer currently available. Given this informa-

tion, the most efficient method of buffer management is

to search the list (in whatever form kept) for the small

est space large enough for the order program, while

132-

accumulating the total available space in the same pass.

Then, if a space is found, the order program is moved

into that space. If no space is found, the accumulated

length is compared against the length of the order pro-

gram (allowing, of course, for the 4-byte GTRU which

buffer management tacks onto the end). If the order

program is no larger than this accumulated length, then

the buffer is packed (entirely) and the order program

is inserted. If the total space is not large enough for

the order program, then no packing takes place and the

user is notified that the buffer is full. This scheme

can obviously be extended to keep (again in a one-pass

search) a record of partial cumulative space-lengths

for spaces which are consecutive (no other space regions

in between) in the buffer. Then, for example, even if

no one free buffer region is sufficiently large for the

insertion of the order program, there may bft two regions

separated by order programs which together may be large

enough for the order program. Then only this block of

order programs needsto be packed, combining the two small

free regions into one larger free region. This eliminates

the need to pack the entire buffer, and can easily

be extended to three or more consecutive regions.

The new information needed could easily be incorpor-

ated into the current control-block structure. Restruct-

ure the control blocks as follows:

133-

* 2 *

* 2 *

* 3 *

* 4 *

* 5a * 5b *

Here 1 points to itself if the control block repre-

sents an order program, and is 0 if it represents a re-

gion of space; 2 is a backward pointer as before; 3 is

a forward pointer as before; 4 is a forward pointer to

the control block to the next region (allocated or not,

running through all types); 5a is the absolute buffer

address; and 5b is the length of the region.

Then there are four linked lists--one for each type

of order program, and one for blocks of available space.

The linkage is accomplished by the backward and forward

pointers in words 2 and 3 of the control block. For

control blocks representing order programs, the linkage

corresponds to the linkage of the corresponding order

programs in the buffer; for control blocks representing

unallocated regions in the buffer, any convenient scheme

(such as monotonicity with respect to absolute buffer

addresses) can be used. The main utility of the thread

linking all control blocks in word 4 is that the linkage

of order programs within their respective types is

-134-

not necessarily monotonic under this scheme, and up-

dating the linkage in the buffer after packing is greatly

facilitated by such information.

One last recommendation for future work on buffer

management is that the FLIP concept can be generalized

with very little difficulty. Allow any convenient number

of screens to the user, acquiring each by GETSPACG as

the user defines it (the first is by necessity defined

by the system during initialization). When defined, the

initial buffer is established. Only Type 0 programs are

in any image besides the volatile type peculiar to the

screen. This has the immediate advantage of not wasting

buffer space with order programs which often lie dormant

in the buffer, not being linked in the regeneration loop.

A table is maintained which indicates the storage address

of each defined image. To save the need for updating

the Type 0 order programs in every image as they change,

an "image" of Type 0 order programs only could be main-

tained. Then, when a user switches to a different screen,

see if the new Type 0 order programs will fit in with

the old Type 1 order programs. If not, link in the

message to the user that this particular screen is full;

otherwise, proceed as usual.

The user could specify a new screen by a hit of a

parameter followed by a hit of the FLIP button, for

example:

135-

3 FLIP

If 3 was specified for the first time, this defines a

new screen. If 3 was previously specified, switch to

it as usual. If the user wishes to create several

screens, it would be wise for him to be able to create

a catalog of screens and their uses, and pus that on a

separate screen. (It is not clear that he can do this

with the system as it now stands.)

Purpose:

Calling Sequence:

Ent ries :

Exits :

Buffer Management

Name: BUFINIT1

BUFINIT2

To initialize Buffer Management.

OS type I.

Neither entry takes parameters.

RC=0 only.

Subroutines called: BUFINIT, SYMOPDEF, GOPEN.

Other external symbols: BUFDCB, BUFPOLST. The locations

of the graphic DCB and poll list; for

use by Light Pen Management.

Usage :

BUFINIT1 must be called before calling any other

Buffer Management entry (which implies that it must come

early in the initialization sequence). It does not re-

quire that any other section be initialized. BUFINIT2

assumes that SYMOPDEF and the routines it calls are

136-

already initialized, and that Light Pen Management is

ready to receive interrupts.

Descript ion:

BUFINIT1 turns off Light Pen Management's interrupt

Switch (LPMISW), calls GOPEN to open the 2250 display

and initialize the data control block (DCB), and calls

BUFINIT to initialize the rest of Buffer Management.

BUFINIT returns the address of the main storage graphic

output area (an "image" of the device buffer); this is

saved for use by BUFWR.

BUFINIT2 calls SYMO^DEF to enter the FLIP operator,

turns LPMISW on, and returns.

Name:

Purpose:

Description:

BUFBINGO

To insert an order program into the

buffer to be displayed on the 2250.

The order program is linked into the

buffer display-regeneration loop if

there is sufficient room. If not,

an error message resident in the

buffer is linked into the regener-

ation loop. The linkage is in terms

of the type of the order program to

be inserted. System entities such

as the virtual keyboard, the echo

line, and system-defined buttons are

-137-

Entry

Exit:

Note :

always displayed, as are all

user-defined buttons. All other

user-defined displays are displayed

on the current screen, but disappear

when the FLIP button is hit (and re-

appear when the FLIP button is hit

again).

GRO = 0 if the order program is sys-

tem-defined or a user-defined button.

GRO is nonzero otherwise.

GR1 has the storage location of the

order program to be inserted, the

first halfword of which contains the

byte-length of the remainder ("body")

of the order program.

GR15 = 4 if there is insufficient

room in the buffer for the order pro-

gram. In this case, the user is noti-

fied that the buffer is full.

GR15 = 0 if the order program was

inserted into the buffer.

GRO contains the buffer ID for the

order program if it was successfully

inserted into the buffer.

BUFBINGO calls BUFWR to write the buffer

from the image.

138-

Name :

Purpose

Entry:

Exit

Note

BUFBOD

To remove an order program from the buffer

display-regeneration loop.

GKO contains the buffer ID returned from the

BUFBINGO call which inserted the order program

into the buffer.

GR15 = 0 normally.

GR15 = 4 if the buffer ID does not turn out

to be one. This indicates a snark in our

system. In this case, nothing is done.

BUFBOD calls BUFWR to write the buffer from

the image.

Name:

Purpose:

Description

Entry

BUFBORE

To replace an order program in the buffer

with another order program.

This is strictly a system-generated call.

Since the new order program is likely to

be longer than the old order program, it is

important to know that the new order program

will fit into the buffer before deleting the

old order program. This is not done if con-

secutive calls on BUFBOD and BUFBINGO are

used.

GRO has the buffer ID returned from the

BUFBINGO call which inserted the original

139-

Kxit

Note

order program into the buffer.

GR1 has the storage address of the order

program which is to replace the old order

program. This order program has the same

format as for the call on BUFBINGO.

GR15 = 4 if there is insufficient room in

the buffer for ths new order program. In

this case, the original order program is

not deleted, and the user is notified the

the buffer is ful1.

GR15 = 0 if there was sufficient room in

the buffer for the new order program.

GRO contains the same buffer ID passed to

it, which serves as the buffer ID of the

new order program, if the operation was

successful.

BUFBORE calls BUFWR to write the buffer

from the image.

Name:

Purpose:

Uescript ion:

BUFFLIP

To switch between the volatile graphic portion

of the three screens available to the user.

BUFFLIP supports the immediate operators

SCREENA, SCREENB, SCREENC which are system-

defined buttons on the screen. All system

entities and user-defined buttons are always

14 0-

Entry:

lixit:

Note:

displayed.

GR1 contains pointer to SCREENA, SCREENB, or

SCREENC identifier,

GR15 = 0 always.

BUFFLIP calls BUFWR to write the buffer

from the image.

Name: BUFWR

Purpose: To write a composite order program to the

2250 display and start regeneration.

Calling Sequence: OS (I) R type.

Entry: GRO contains the length of the order program

to be written from the output area.

Exit: RC = 0 only.

Subroutines called: GIOCR.

Description: BUFWR uses the length given in GRO unless

this is zero, in which case it uses the

last nonzero length given. BUFWR puts the

necessary information into a data event

control block (DECB), calls GIOCR to write

the specified length from the output area

to the display buffer, and returns.

Note: If the Mathematical Analysis Program is

re-entered after an interlude in MTS, the

"restart" sequence should call BUFWR with

Length^zero. This will re-establish the

correct order program in the display buffer,

and start it.

141-

Additional Notes

All Buffer Management initialization is completely

dynamic. Therefore, a "restart" package could re-initial

ize Buffer Management by calling BUFINIT1 and BUFIN1T2.

MTS support for the 2250 (*GRAPHLIB) uses modified

routines from IBM OS Graphic Access Method (GAM), These

routines have been further modified especially for this

Communication Sciences 673 project. In particular, the

SETANLZ routine has been added, primarily for Light Pen

Management. One feature has been added for Buffer Man-

agement: When SETANLZ restarts the display after an in-

terrupt, it takes the buffer restart address (BRSA) from

the DCB, for use in the Set Buffer Address Register and

Start channel command. This address is placed in the

DCB by GIOCR for each Read § Start or Write § Start

operation. This ensures that display regeneration will

always begin where Buffer Management last specified.

8.8 THE MACRO PROCESSOR

The Macro Processor handles the definition and

calling of macros. Its entry points are as follows

Entry Point

MACDSCT

Purpose

simulated PSECT

External symbols or
macros referenced

MACDINIT part of initialization, SYMCRE

called internally by

MACROFIX

142.

MACRODEF define a new macro GETSPACE, SYMREF,

DSPMESS.SYMODEFD

MACDELET delete a macro FREESPAC

MACROGET returns the nexi, STEP DSPMESS, SYMGET

in a macro expansion

MACROFIX initializes the Macro SYMCRE, DISPNEWNM,

Processor MACDINIT

MACROINT initializes a call DSPMESS, SYMGET

upon the MP

MAC2PSCT simulated PSECT

MDEF simulated PSECT

Internal specifications

1. The interpreter calls MACRODEF with GR1 pointing to

the beginning of the definition and GRO containing

its length (i.e., the number of button pushes, ex-

clusive of the DEFMACROs):

GR1—^ name

m.

m
m m

m

-143-

1 \

I STEPS

Figure 8.8.1 Storage of a Macro Definition by Interpreter

,GR0 contains the number of STEPs (.£)

All editing is done prior to this call by the inter-

preter.

The Macro Processor will create the DOPE vector for

"name" in the same format as that for operators (see

Section 8.2). The first parameter in the "skeleton"

will indicate the number of calling parameters,

then the macro STEP, then the operands:

-144-

r

'ske leton" (

V.

link f tg or ptr
point to macro (q)"

I m

Figure 8.8.2 DOPE vector

nr. of dummy parameters
indicates nr. of calling
parameters

indicates macro STEP

n words indicating
admissible modes $
types of dummy para-
meters for this
"instance"

"^indicates end of DOPE
vector

3. The Macro Processor will increase the use count for

each distinct dummy parameter STE and for the macro

STE.

4. Using GETSPACE, the MP stores a macro as follows:

145

q + 4m
—>

0

d.
i

m
f.
i

r FFFFFFFF

t
flags

^

-<

>

\

ÜOPE vector for

this "instance"

m words to be used later

(internally) for storing

c.lling STEPS

m STEPs for dummy parameters

double word entries

T
macro body

Figure 8.8.3 Final Storage of a Macro Definition,

where

b. is the STEP corresponding to the button push

b. .
i

f. is a flag for the ith STEP b. :
i * i

-146-

when b. is not a dummy STEP. f.=l
i ' ' i

when b. is a dummy STEP, for d, , then

f.=4(k-l)

the last entry is signaled by a flag of

hexadecimal FFFFFFFF, as shown, and has

no corresponding STEP.

5. Return Codes (in GR15)

If there is any error in the definition, an error

message is displayed, and control is returned to

the interpreter with a return code of 4. In this

case, it is just as if the macro had never been

defined. The user may then redefine the macro.

Displaying a_ Macro

Figure 8.3.3 indicates how a macro is stored. The m

dummy STEPs start at location q. Both m and q can be

obtained from the DOPE vector for the macro by noting

that the second word of the dope vector contains q and

the 12th and 13th bytes (i.e., one half-word) contain

the number of dummy parameters plus 7, i.e.,(m+7) (see

Section 8.2, Interpreter). Thus, if GR15 had the pointer

to the DOPE vector,

L GR,4(GR15)

LH GS,10(GR15)

would load GR and GS with q and M+7, respectively.

147-

The macro body then starts at location q+4m as double

word entries. The first word of each entry is a flag,

the second a STEP. The only flag the display need con-

sider is hexadecimal FFFFFFFF, which signals the end of

the macro body (and which has no STEP).

Deleting a Macro

A. External specifications

A macro is deleted as follows:

name DELBUTON

where name is the name of the macro to be deleted.

All "instances" of the macro will be deleted.

B. Internal specifications

1. The interpreter calls upon the MP via entry

MACDELET. The MP then FREEs all SPACs asso-

ciated with storage of the macro, including

DOPE vectors. It also decreases the use count

for the macro and for each distinct dummy para-

meter .

2. The interpreter will see to it that the macro

button is no longer displayed.

Initializing the MP

The MP is initialized via entry MACROFIX, which re-

quires no parameters (except a save area pointer in GR13).

In addition to internal initialization, the MP creates

the buttons MACRO and OPERATOR and indicates that they

are to be displayed.

148-

Cal 1 ing a^ Macro

Internal specifications

1. The calling mechanism for a macro is very similar

to that for an operator. After doing any necessary

editing, the interpreter calls upon the operator

processor indicating an operator or macro has been

encountered. If the operator processor determines

that it is a macro, it calls MACROINT to initialize

the call, giving it a pointer in GR1 to a parameter

list (specified in the DOPE vector skeleton), as

follows:

GR1 # of calling parameters

macro STEP

STEP for C 1
Value

STEP for C.

Value,

STEP for C

Value

Figure 8.8.4 Parameter List to MACROINT

After the MP returns to the operator processor, the

OP indicates to the interpreter that subsequent

"button pushes" are to come fron the MP, and returns

control to the interpreter.

-149-

The interpreter calls entry MACROGET for subsequent

STEPs, which are returned one per call in GRO. When

the MP has no more STEPs to return, it returns a 0

in GRO. If MACROINT is called before a 0 has been

returned by MACROGET, the MP will handle the appro-

priate nesting. A 0 is not returned until all nesting

has been "popped" and the last macro has been returned

Return codes (in GR15)

a. 0 - normal return from MACROINT or MACROGET

b. 4 - too few calling parameters, with undefined

values (in MACROINT); fatal error. The MP dis-

plays the error message

c. 8 - nesting level exceeds 500 in MACROINT; fatal

error. The MP displays the error message

d. 12 - debugging error for MACROINT or MACROGET:

in the former, a negative number of dummy or

calling parameters was encountered; in the

latter, MACROGET was called when it had not

STEPs to return; in either case, an appropriate

message is displayed.

-150-

8.9 MATHEMATICAL OPERATORS Ross H. Hieber

8.9.1 Program Logic

The assembly code CSECTs are:

UINIT - The math operator's initialization section, con-

taining the SYMODEFS. Completely reentrant-

compatible, and uses OS macros.

UINIT# - The "PSECT" for UINIT.

UINIT2 _ This is called by UINIT and is logically equivalent

to a subset of UINIT, but is a separate CSECT to

allow assembly of new SYMODEFS without reassembling

everything; currently contains the scalar-vector

mode combinations for the arithmetic operations.

It uses UINIT# PSECT.

USTEP - Used as a function by FORTRAN functions to return

in GRO a STEP from the parameter list, needed to

tell the operator call section of the interpreter

what operand to put on the stack. No PSECT is

needed.

The FORTRAN functions (subroutine for = since it needn't

return a STEP in GRO) are intermediaries between the inter-

preter and FORTRAN library functions in most cases. Most

of the intermediary FORTRAN functions are multiple entry,

and there are several separate functions to allow addition

of features without recompiling everything. These inter-

mediate functions are needed to loop over the dimension,

sometimes to check for arguments out of range with IF state-

ments, and to r-turn a STEP in GRO.

-151

8.9.2 Nonfatal Handling of Arithmetic Errors

FORTRAN IF statements are used where appropriate to

check for arguments illegal (too large, etc.) to FORTRAN

library functions. A true zero is returned for any element

of a vector which can't be calculated. Zero is used because

i) this is most obvious on the graph, ii) it can never

cause trouble in later operations. A few possible arithmetic

errors not checked are exponent overflow and underflow, and

[argument |>2 «71-10 to SIN 5 COS. The overhead for this

approach of checking with IF statements would be intoler-

able in a batch FORTRAN program doing massive calculations,

but it is quite practical where the arithmetic calculations

are a minor part of the total time and storage.

8.9.3 Allowable Mode Combinat ions and Automatic
Mode Conversion

Here we come to the weak point of the current imple-

mentation. Handling all possible mode combinations requires

massive numbers of SYMODEFS and entries (e.g., 16 combina-

tions each for +,-,*,/,** to handle vector-scalar and real*4-

integer*4; and it goes up exponentially if we add vector-

pair, complex, real*8, etc.). I have extended my original

set to accept what now seems to be the vast majority of

common needs, as described below.

1. Vector-pairs: Any vector input argument can also

be vector-pair, with only the range used. No addi-

tional SYMODEFS or instances are needed. This

allows using a graph as an operand.

152-

2. In the rare cases where the other operators can't

handle the modes, ■ can always be used first to

convert since it will handle all 16. This takes

16 SYMODEFS, i.e., 16 instances, but fewer entries

since (real real =) can be combined with (int int =),

and (vec vec =) with (vec scalar =).

3. +.-»*»/.**: These take two arguments, of which

either both are vector-real*4 (or vector-pair, of

course), or else one only may be scalar-real or

scalar-integer. I added the scalars by request

since such operations as (3 ID *) are very common.

4. All other operators: Will accept vector(-pair)

only.

5. **: FORTRAN'S ** library functions will not

accept (negative base) ** (^0 real power) even

though a real power of integer value is well-

defined. Since DEFCONST produces a real scalar

to use as exponent, and present vector exponents

are all real, I've glitched the two applicable

FORTRAN function entries. If the exponent is

integer value within 1 part in 10 I use (negative

real base) ** (integer exponent) .

8.9.4 Meaning of Vector-Scalar Combinations

For +,-,*,/,**: Modes are for the 2 input arguments.

1. Vector vector: The calculations are done and stored

in the temporary element by element (as scalars for

-153-

each element).

2. Vector scalar: The scalar is used as if it were

a constant vector, with vector temporary output.

3. Scalar scalar: This could produce a scalar tempor-

ary output, but a constant vector output was pre-

ferred to avoid later mode problems with vector-

only operators that use this temporary as an input

argument.

For

Equals is unique in not producing a temporary; it gets

its output operand from the stack with predefined mode.

1. Vector-vector: Obvious, just copied over.

2. Vector in, scalar out: The first element of the

vector is copied into the output.

3. Scalar in, vector out: Produces a constant vector

out, currently necessary as the only way to get

constants to some operators.

4. Scalar in, scalar out: Obvious to the meanest

intelligence.

In summary, the most commonly needed mode combinations

are provided. A policy of always producing vector-real

temporaries as output is followed to avoid mode problems

with subsequent operators.

8.9.5 Notes on Other Operators (Not Calling FORTRAN
Library)

1. INTEG, INTEG2, DIFF, DIFF2:

-154.

INTEG and DIFF integrate and differentiate the one

vector argument versus the standard domain; INTEG2 and

DIFF2 use the same routines but take the domain from the

stack. DIFF uses divided differences between adjacent

elements of the vectors, i.e., a 2-point formula, with

no attempt at smoothing. Since this produces one less

output element than the dimension, the last element is

set equal to the second last; the expected jiggle on the

last n points after d is no worse than the noise over
dx"

the whole domain due to this crude method. Attempted

division by ~0 gives 0 out for that elt. INGET uses

trapezoidal integration, i.e., a 2-point formula; for

the additive constant I set the first element = 0.

The trapezoidal integration, though crude, works nicely

within our resolution and has the advantage of being

compatible with the differentiation.

8.10 UTILITIES Daniel R. Frantz

General Description

The basic idea behind the numeric conversion sub-

group is to provide a limited subset of the IOH360 input/

output operations so that the large core requirements of

IOH360 can be reduced. To this end, three subroutines

were written: floating point input, floating point output,

and integer output. The input routine accepts a number in

standard FORTRAN format E-type notation and coverts to a

-155.

REAL*4 internal representation. The output routines pro-

duce either an 114 or EO.6.14 formatted character string

from an internal form of INTEGER*4 or REAL*4) respectively.

All routines use OS (I) S type calling sequences and

do their best to simulate CSECT/PSECT reentrancy require-

ments to facilitate future conversion to TSS.

The current design of the system states that the

input routine is called only by the interpreter and that

the output routines are called only by numeric display,

although this is not a limitation. These routines do

not call any lower level subroutines.

Limitations and Future Work

The mathematical analysis system as designed by the

Communication Sciences 673 class provides the option of

expanding the type of numbers used to include REAL*8 and

INTEGER*2. The current routines don't handle these for-

mats explicitly in themselves, but obvious simple manipu-

lations by the calling programs should be able to provide

at least usable results (i.e., converting short integers

to long before output, and zeroing the low-order word on

short input to simulate long input).

If the decision is made to go ahead on the alter-

nate number form, the calling sequences for output should

probably be expanded to include a parameter indicating long

or short forms. To make things neater, this parameter could

156-

also be extended to be a four-way switch (simulating the

interpretive abilities of 1011360) on the form of the out-

put so that there would be only one output routine name

rather than the two currently used. The output routines

would have to be changed very little to provide this extra

capability. The input routine currently converts numbers

to the long form and then truncates before returning so

that the changeover for this routine would be even simpler.

Mode and Structure Operators

The Numeric Conversion subgroup also programmed the

operators VECTOR, SCALAR, REAL, and INTEGER. These oper-

ators enable the user to declare the mode (REAL or INTEGER)

and structure (VECTOR or SCALAR) of a variable-length list

of symbols. Additional operators of this sort for future

expansion (e.g., COMPLEX or VCTRPAIR) can be added to the

routine very simply by inserting a call to an internally

defined macro. The label field or the call should contain

the subroutine entry name, and the single macro parameter

is the name of the symbol table mode bit to be set. The

symbol table macro calls to set up the light buttons,

operator definitions, and parameter list structures are

made in the initialization section.

157

CONVERT A FULL-WORD IKiEGER TO EBCDIC

Name:

Purpose:

Calling Sequence:

Entry:

Exit:

Note:

Algorithm:

NCINT

To convert a long-form integer (INTEGER*4)

to an EBCDIC string of characters in format

114.

OS (I) S type.

GR1 contains the address of a list of

adcons:

1. A(full-word integer to be con-

verted)

2. A(14-byte region for 114 EBCDIC

string output)

No return code.

No other subroutines are called.

The number is divided by successively

smaller powers of 10 (decimal). The

quotient is used as the next lower digit

and the remainder is used in the next

step. Leading zeros are converted to

blanks .

-158.

CONVERT SHORT FLOATING-POINT NUMBER TO EBCDIC

Name: NCFPT

Purpose: To convert a short-form floating-point

number (REAL*4) to a string of characters

in format EO.6.14.

Calling Sequence: OS (I) S type

Entry: GR1 contains the address of a list of

adcons:

1. A(short-form floating-point number
to be converted)

2. A(14-byte region for EO.6.14 EBCDIC
string output)

Exit: No return code.

Note: No other subroutines are called.

Algorithm: Reduce the number to one of form (hexa-

decimal exponent=0) (mantissa normalized)

by multiplying by 10 or 0.1 if the hexa-

decimal exponent is less than or greater

than zero, respectively, keeping track

of the number of multiplications and the

sign generated (negative and positive,

respectively). This number is the tenta-

tive decimal exponent. The mantissa, M,

is then of the form 1/16<M<1.0. This

number is converted to a decimal fraction

by successive multiplications by 10(decimalJ

and taking the overflow past the decimal

(rather, hexadecimal) point as the base ten

number to the right of the point, in

successively lower positions. If the

first digit so generated is zero, decrease

the decimal exponent by one.

158-

CONVERT SHORT FLOATING-POINT NUMBER TO EBCDIC

Name: NCFPT

Purpose: To convert a short-form floating-point

number (REAL*4) to a string of characters

in format EO.6.14.

Calling Sequence: OS (I) S type

Entry: GR1 contains the address of a list of

adcons:

1. A(short-form floating-point number
to be converted)

2. A(14-byt8 region for EO.6.14 EBCDIC
string output)

Exit: No return code.

Note: No other subroutines are called.

Algorithm: Reduce the number to one of form (hexa-

decimal exponent=0) (mantissa normalized)

by multiplying by 10 or 0.1 if the hexa-

decimal exponent is less than or greater

than zero, respectively, keeping track

of the number of multiplications and the

sign generated (negative and positive,

respectively). This number is the tenta-

tive decimal exponent. The mantissa, M,

is then of the form 1/16<M<1.0. This

number is converted to a decimal fraction

by successive multiplications by lO(decimal)

and taking the overflow past the decimal

(rather, hexadecimal) point as the base ten

number to the right of the point, in

successively lower positions. If the

first digit so generated is zero, decrease

the decimal exponent by one.

159.

DECLARE MODE OR STRUCTURE OF SYMBOLS

Name: NCREAL
NCINTGER
NCSCALAR
NCVECTOR

Purpose: To call symbol table management for the

purpose of setting mode bits in the de-

finition of a variable length list of

symbols,

Calling Sequence: OS (I) S type.

Entry: GR1 contains the address of a list of
adcons:

1. A(number of pairs of words in follow-
ing list=n)

2. STEP (Symbol Table Entry Pointer) of
the first symbol.

3. Value of the first symbol (from STE)
4. STEP of the second symbol
5. Value of second symbol

2n. STEP of last symbol in list
2n+l, Value of last symbol in list

Exit: No return code.

Notes: 1. The form of the user call on these oper-
ators during a run is to "push" the
following succession of buttons (e.g.,
for SCALAR):
(VAR1 VAR2 VAR3 ... VARn) SCALAR

2. The value words in the parameter list
are not used or needed, but are provided
as part of the generalized operator
calling sequence.

3. The symbol table macro calls to set up
the light buttons, operator definitions
and paramater list structure are made in
the initialization section.

4. Subroutine called: SYMSMS.

.

BIBLIOGRAPHY

Ruyle, A., Brackett, J.W., and Kaplow, R., "The
Status of Systems for On-line Mathematical Assistance,"
Proceedings ACM National Meeting, 1967, pp. 151-167.

Karplus, W.J., On-line Computing, McGraw-Hill, New York,
1967.

Culler, G.J., "User's Manual for an On-line System,"
in Karplus, W.J., On-1 ine Computing, McGraw-Hill,
New York, 1967, pp. 303-324.

MTS: Michigan Terminal System, 2nd ed.. Computing Center,
and Concomp Project, University of Michigan, Ann Arbor,
1967.

IBM Document No. C27-6909.

160-

UNCLASSIFIED
161

Securiiy ClBBSification

DOCUMENT CONTROL OATA - R &
^Sjj^i^y^tma£iJrfi^onj>^^»^>oJ^ yvK-ratl r«",orr -^ clan

i

1. ORIGINATING ACTIVITY ('»■'"■pnf"'" OUI'IT/

UNIVERSITY OF MICHIGAN
CONCOMP PROJECT

i *Cf>C>Hr SECtR.TY CLASSiFlCATION

Unclassified
Zu. OrtOUP

I. REPORT TITLE

MOMS: MICHIGAN'S OWN MATHEMATICAL SYSTEM

. DESCRIPTIVE NOTtS TVp'1 ol report nnJ irt.usjv? JUIVM)

Memorandum 27
5. AUTHORISi (Firol name, middle initial, laut name)

TAYLOR, ROBERT W., editor

'7-. T3TSI NO. OF PAGES ;?fc. so
160 5

€. REPORT DATE

April 1970
OF S£

hu. CONTRACT O« Gf-ANT NC.

I: PROJECT NO.

|D«. ORIGINATOR'S REPORT NOlMBERIS)

1 Memorandum 27

j 9b. OTHER REPORT NOIS) (Any other numbers that may he assigned
I this report;

i Qualified requesters may obtain copies of this report from DDC

DISTRIBUTION STATEMENT

trn II. SU*Pl.eMEMTARY SO'ES 2. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

13. ABSTRACT

MOMS--Michigan's Own Mathematical System--provides a facility for
interactive, computer-aided mathematical investigations. The system
runs on an IBM 360/67 under the Michigan Terminal System (MTS).
An IBM 2250 Graphic Display is used for input and output. This
report contains a user's manual as well as detailed documentation
of the system organization and resulting modules. Sections on the
relation between MOMS and the operating system are also included.

DD.TvM473 Unclassified
Security Classification

üu
Mouiity CMS

i£d 162-
• ••iftcatlon

14.

KEY WORDS
LINK A

ROLE WT
LINK ■

ROLE
LINK i

WT »OLe WT

computer-aided mathematics
computer graphics
IBM 360/67
IBM 2250

Security Classification

