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ABSTRACT

The emission spectra of 40 amp-2.5 atm xenon and krypton arc
discharges are calculated. The spectral overlap of these spectra and
the measured emission spectra of tungsten and potassium-mercuryv arc
discharges with the measured absorption spectra of Nd:YAG are used to
determine relative system efficiencies which agree well with measured
values. It is found that the K-Hg lamp is four times more efficient
in pumping Nd:YAG than the studied W, Kr, and Xe lamps. The spectral
overlap calculation for a typical ruby oscillator-amplifier at the peak
of the flash lamp pulse gives a pump efficiency which is much higher than
measured system efficiencies. This discrepancy may be caused by the time
dependent behavior of the flash lamp pulse and the oscillator pulse.
A new technique is developed to obtain electronic radial wave functions from
known radial integrals. In a test case, the Cu 4s wave function is determined
within + 8%4. Group theory is applied to the calculation of radial integrals

involving hydrogen wave functions and some selection rules are explained.
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OPTICAL PUMPING OF LASERS

L. H. Taylor, I. Liberman,
R. Liebermann, A. Federowicz, L. Armstrong*

1. INTRODUCTION

The optically-pumped solid-state laser provides the highest
peak power from coherent sources. However, one of the main energy losses
in optically pumped lasers is in the energy transfer between the optical
pump and the laser medium. This report summarizes the progress toward

measuring and optimizing this energy transfer.

The energy transfer can best be optimized by maximizing the
spectral overlap between the emission spectrum of the optical pump and
the absorption spectrum of the lasing medium. Since the lasing medium
is optimized for its lasing properties, it is unlikely that its absorp-
tion spectra can be significantly altered without reducing its desirable
lasing properties. On the other hand, the single job of the optical
pump is to convert electrical energy to optical energy in such a manner
that the lasing medium absorption of the optical energy is maximized.
It then follows that the best approach is to change the optical pump
until the spectral overlap is maximized for a particular lising medium,
The most common optical pump is a wall-stabilized arc discltarge, and

therefore this type of discharge is the subject of this report.

The work in this contract is divided into two Phases. In the
first Phase the emission spectra of xenon and krypton arc discharges
are calculated and measured. This permits an evaluation of the theo-
retical results. The measured absorption spectra of Nd:YAG and ruby

laser slabs are then converted to digital form and the pump efficiencies

*
Consultant, permanent address: The John Hopkins University, Baltimore,
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of different lamps for these laser materials are calculated. In the
second Phase an atomic radial wave function is expanded in a power
series with fitting parameters, and the fitting parameters are then
adjusted to reproduce the Slater integrals determined from spectroscopic
measurements. Thus the radial wave function is "uxperimentally" deter-
mined and is independent of the atomic shell structure complexities.
Moreover, the group theoretical properties of hydrogenic radial wave
functions are investigated to establish group theoretical methods for the

evaluation of radial integrals.

These two Phases complement each other. The pump efficiency
calculation will be possible for both experimental and theoretical
spectra. However, at present the emission spectra of arc discharges can
only be calculated for the noble gases and the alkali metal gases. When
the second Phase is successfully developed, the emission spectra will be
calculable for any monatuomic gas provided only that the energy levels of
the emitting atoms are known (this condition already exists for the
first Phase).

The Phase One work in this report is divided into two parts.
The first part investigates the narrow absorption line Nd:YAG laser
whereas the second part investigates the broad absorption bandruby laser.
In each part the lamp emission spectra, the slab laser absorption spectra,
and the useful overlap of these spectra are measured or calculated. 1In
the first part the emission spectra of a xenon arc discharge and of a
krypton arc discharge are calculated and compared to experimental measure-
ments. The spectral overlaps of these calculated spectra and of the
tungsten and potassium-mercury measured emission spectra with the measured
0.7% Nd:YAG absorption spectra are then computed. The calculations thus
evaluate the lamp emission efficiencies, the Nd:YAG slab fluorescence
efficiencies when pumped by the various lamps, and the total system
efficiencies. The latter two efficiencies are evaluated as a function
of the slab thickness. Since most laser materials are in the form of a
cylindrical rod, a relationship between slab thickness and rod diameter is

given.
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In the second part the spectral overlap for a typical ruby
laser is calculated from the measured spectrum at the peak radiance of
a xenon flash lamp and the measured absorption spectra (there are two
spectra because ruby is anisotropic). The efficiencies are calculated
from these spectral overlaps. The diffcrence between a four-level laser
such as Nd:YAG and a three-level laser such as ruby are explicitly

considered.

Phase Two of this report is concerned with the evaluation of
radial wave functions. The energy levels of any free atom or ion are
experimentally determined by its emission spectrum and theoretically
determined by radial integrals such as the spin-orbit coupling constant
and the Slater integrals. The normal procedure is to parameterize these
radial integrals and fit them to the experimentally determined energy
levels. The parameter fitting (PF) technique developed and tested in
Phase Two adjusts the parameters in a power series expansion of the radial
wave function until :he experimentally determined radial integrals are
reproduced. The resulting power series representation of the radial wave
function can then be used to calculate the transition probabilities which

are required for the prediction of emission spectra in lanps.

A more powerful alternative to the PF technique may be group
theoretical techniques for the evaluation of radial integrals. The group
properties of hydroger. radial wave functions are examined since they are
presumably the simplest wave functions. Although this investigation has
been short and is not completed, it has already produced significant

results which explain some apparent 'selection rules'" of radial integrals.

To accomodate the reader who may not be interested in all of
this report, the material has been divided into three large parts:
Nd:YAG LASERS, RUBY LASERS, and RADIAL WAVE FUNCTIONS. Although the
three parts are interrelated, they are written in a self-contained manner

so that the reader may read them individually or in any order.
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2. LAMP EMISSION SPECTRA

The necessary input information to obtain the laser pumping
efficiency of a lamp is its spectral emittance and the excitation
spectrum of the lasing medium. The lasing media of Nd:Y3A15012(Nd:YAG)
and Cr:A1203(ruby) will be considered in later chapters, whereas the

spectral emittance of several lamps is considered in this chapter.

The lamp spectra are difficult to obtain experimentally.
Most continuous gas discharges and low to medium energy pulsed discharges
have considerable line spectra which are difficult and tedious to measure
experimentally and then convert to computer data cards. It would
simplify the work considerably if the spectra could be calculated rather
than measured experimentally. To do this for an arbitrary gas discharge
under arbitrary operating conditions is not possible at the present
state of the art, In fact, the major objective of this contract is to
make some headway in calculating the properties of one class of atoms,

1,2,3 we believe we can calculate

However, because of many years effort
to a reasonable degree of precision the atomic and ionic spectra of the
noble gases and the alkalli metals. Fortunately, these atoms create
discharges which have proved to be of interest for pumping lasers.
Therefore we believe we can measure and optimize spectral overlap
between pump and rod quicker and better by using calculated rather than

experimental spectra.

The work done in 1969 was to verify that the calculated
spectra compare favorably with the experimental. Therefore careful
controlled measurements of the spectral radiance of a xenon and a
krypton continuous arc were made. Computer calculations of these arcs
were performed, given only the experimental values of lamp dimensions,
current and pressure. To save time and money only the measured spectral

radiances were used for a tungsten lamp and a potassium-mercury lamp.
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2,1 Theoretical Results for Xenon and Krypton

The gas discharge consists of a cylindrical arc confined by a
cylindrical tube. In this wall-stabilized arc, electrical current
carries power into the positive column of the arc. Radiation and thermal
conduction to the wall take power out of the positive column. Convective
power transport is negligible in wall-stabilized arcs and will not be
considered, An arc discharge has a centrél plasma core at the tempera-
ture of the fully ionized plasma and a cold sheath adjacent to the wall
at a temperature determined by the rate at which power flows from the
wall to the outside world. (A fully ionized plasma is a misnomer which
means that the electron-electron and electron-ion interactions are the
dominant particle-particle interactions. It does not mean that the gas

is completely ionized.)

The emission from a cylindrical wall-stabilized gaseous arc
discharge is calculated with a minimal amount of input information.
The requisite macroscopic parameters are: (1) the length and diameter
of the discharge tube, (2) the electrical current into the tube, (3) the
tube wall temperature, and (4) the ambient pressure in the discharge.
These parameters are easily obtained for dc discharges. The requisite
microscopic parameters are: (1) the amounts of each substance (e.g.,
water vapor, water, xenon, etc.) present before the discharge is struck,
(2) the heat capacities Cp as a function of the temperature T, (3) the
heats of formation AH(T) for each species present in the tube before
and during the discharge, (4) the lower lying energy levels and their
SLJ classification for each species in the discharge, and (5) the
momentum-transfer cross sections for the species in the discharge.
These parameters are difficult to obtain and are approximated whenever

our knowledge is insufficient.

Civen the necessary input data, the arc discharge properties
are calculated as a function of temperature in the following order:
(1) the arc composition, (2) the electrical and thermal conductivities
of the arc gases, (3) the line radiation, (4) the continum radiation, and

e e v e s———————



(5) the line shifts and broadening. The temperature profile and the
resultant arc discharge emission can then be calculated. The calcula-
tion of the line radiation by the present computer programs restricts
these calculations to arc discharges with only rare and alkali metal
gases., The development of Phase Two of this contract should extend the
applicability of these calculations to any atomic gases in arc

discharges.

It is easily seen that a little input information generates a
lot of output information. The computer programs needed in the calcula-
tions were developed by Westinghouse on internal funds and on previous
government contracts. They were updated and corrected whenever necessary
during the arc discharge calculations which are summarized in the

remainder of Section 2.1.

2.1.1 Arc Composition

The equilibrium composition of an arc at a given temperature
and pressure is usually calculated by assuming local thermodynamic
equilibrium (LTE) and then using the Saha Equations.4 These equations
need partition functions and ionization potentials for the various
species in the discharge. However, in a plasma, charges of one sign
are, on an average, surrounded by an excess charge of the opposite sign.
This lowers the ionization potential and Decbye has derived the equation
which gives the magnitude of this lowering.4 In practice this Debye
lowering is introduced into the Saha Equations and, after an initial
guess of this lowering, the Saha Equations are iterated until a self-
consistent Debye lowering is obtained. This method is adequate for
simple gases such as xenon or krypton but totally inadequate for

complicated discharges.

R. Liebermann has developed a more complete approach which is
applicable to any system (it has been applied to the SF6 discharge in

which each SF6
Gibbs free energy is calculated from given heat capacities and heats of

molecule is decomposed into 22 different species). The

formation. The Gibbs free energy is then minimized,5 under mass balance



and charge conservation constraints, via the geometric programming
techniques of Duffin et al.6 The Debye lowering is again introduced as
an iteration parameter and the simultaneous equations iterated until a

self-consistent Debye lowering is obtained.

For the simple pure xencn or krypton discharge, either
approach can be used but because the Liebermann program is more general,
it was used. Since the heat capacity should vary slowly with the Debye
lowering, it was held constant during the iterations on the Debye
lowering. The heats of formation were used as a function of temperature.
To simplify the calculation it was assumed that the discharge was
optically thick below 2000 3 and optically thin above 2000 X. Thus the
ultraviolet radiation effects were completely ignored. The results of
the calculations for a pressure of 2.5 atm are given in Figs. 1 and 2.
The temperature range was between 1000°K (the assumed wall temperature)
and 18,000°K. We expected the highest temperature in the discharges to
lie between 6,000°K and 10,000°K, but another calculation on a Na-Br
discharge led us to believe that a temperature as high as 15,000°K might
be possible, A comparison of Figs. 1 and 2 shows that the higher first
and second ionization potentials of Kr require higher temperatures for
ionization. 1In fact the concentration of ions is not significant below
about 10,000°K for Xe and below about 11,000°K for Kr.

2.1.2 Transport Properties

The electrical and thermal conductivities are calculated by
the first Chapman-Enskog approximations as formulated by Yos7 and by
Brokaw.8 The electron-neutral momentum-transfer cross sections for
xenon have been measured by Frost and Phelps9 as a function of tempera-
ture. To simplify the xenon calculations a value of 13.17 &2 was taken
for all temperatures. This was the value measured by Frost and Phelps
at 10,000°K. In the highly ionized regime Sptizer's formula10 was used.
The neutral-neutral cross sections were estimated by Brokaw's method.11
The neutral-ion cross sections are unknown but based on our previous
experience with other discharges, a value of 2.5 times the neutral-

neutral cross sections seemed reasonable and was taken. Since the ions



should constitute a small part of the discharge, this approximation is

not critical and may even be insignificant. It also seemed reasonable

to identically equate the unknown Q(2,2)

Q(l.l)

averaged cross sections to the
averaged cross sections.13 The xenon conductivity results are

shown in Figs. 3 and 4.

Included in Figs. 3 and 4 are the results of Devoto which
were published in 196712 and 1969.13 When the present calculations
were done only the 1967 Devoto results were known, and they were thought
to be in error. The 1969 Devoto results confirm this and are quite
close to the present results; the differences are easily explained. At
low temperatures Devoto used a temperature-dependent electron-neutral
cross section whereas our value was temperature-independent. At high
temperatures Devoto used an ion-neutral cross section which was about
10 times the neutral-neutral value whereas we used a multiplicative
factor of 2.5,

The electrical and thermal conductivities were more accurately
calculated for the krypton discharge. The temperature dependent
electron-neutral momentum-transfer cross section was used and, as given
by Devoto,13 is shown in Fig. 5. As a check on our cross sections and
calculations, the electrical conductivity was calculated at 1.0 atmo-
spheres and compared with Devoto's results13 (Devoto did the calculation
at 1.0 atmospheres,but not at 2,5 atmospheres). Our results, labeled
Liebermann, are compared to Devoto's results in Fig., 6. At high tempera-
tures the electron-ion momentum-transfer cross sections are significant.
The curves differ in these regions because Devoto used different values
for these cross sections., At low temperatures the fourth-order calcula-
tion by Devotola deviates from our first-order results whereas between
7,000 and 8,000°K the first- and fourth-order theories agree. Devoto

14
found a similar relationship for an argon arc discharge.

The conductivity calculations for krypton were completed by

equating Q(2,2) to Q(l’l) for the neutral-neutral and the electron-

neutral interactions. The neutral-neutral cross sections were again

N

-
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11 (1,1)

The Q neutral-ion cross sections

were, estimated as twice the neutral-neutral cross sections, whereas the

Q(Z.Z)

neutral cross sections. The conductivity results are given in Figs. 3

calculated by Brokaw's method.

neutral-icn cross sections were estimated as ten times the neutral-

and 4. These curves show a surprisingly small difference between the
xenon and krypton results, particularly for the electrical conductivity.
In fact, although small, the different cross section approximations used
by Devoto give larger differences than changing the gas from xenon to

krypton.

2.1.3 Line Radiation

Much of the discharge radiation originates from bound-bound
transitions, i.e., line radiation. Although much of the science is
known for these transitions, the problem is most assuredly nontrivial.
Two simplifying assumptions which are usually made is that there is no
configuration interaction and that magnetic dipole radiation is insig-
nificant compared tc¢ the electric dipcle transitions. The first
approximation should be very good for simple gases such as xenon but is
very bad for certain gases, e.g., mercury. The second approximation

n

should be excellent except for the 2™ - o™ transitions in the rare

earths. Both approx:mations are made or Xenon and krypton.

The wave finction, which determines the electric dipole
transition probability rate, is determined from a SLJ listing of the
energy levels, For xenon I only the lowest five configurations are
completely known;l5 these known levels are listed in Table I, For
krypton 1 the lowest nine configurations are completely known, By
setting the unknown 3I’O energy level equal to the 1P1 energy level
within each ns configuration for n between eight and twelve, five high
energy ns configurations can also be included. The energy levels for

these fourteen configurations are il{sted in Table lI.

With this energy level information the theoretical expressions
for the energy levels can be adjusted to give a least squares fit to the
experimental levels by using the radial integrals as fitting parameters,
The resultant intermediate coupling angular wave functions for xenon are

given in Table Il1I. For example, in the Sp5 5d configurations:

11



I'e, > = 0.717]%p)) - 0.298| %)) + 0.630|'p)) )
where | > 1is the intermediate coupling and the |) is the SL coupling
wave function. The intermediate coupling angular wave functions for
krypton are given in Table IV (Tables III and IV do not list the trivial
one-component eigenvectors). These last two tables dramatically show the

well known collapse of SL coupling in the rare gases.

The Westinghouse intermediate coupling program is only valid
for the rare gases, and moreover, was found to give incorrect answers.
Previous to this contract the very versatile electric dipole transition
computer program written by Cowan17 had been obtained and converted from
the IBM STRETCH Computer to the CDC 6600 Computer. A comparison of the
two computer results for xenon located the Westinghouse program error
which was then circurvented. (If the (Cowan computer program were to be
incorporated into the Westinghouse intermediate coupling program, any
atom with two open shells or less could be handled.) The resultant
radial integral values for xenon and krypton are listed in Table V. The
n'd spin-orbit coupling parameters must be positive. The two small
negative values are therefore unrealistic and are a result of cumulative
errors or configuras}on interaction. In any event these values are too

small to significantly affect the results.

The radial part of the wave functions must also he known to
calculate the value of |<wn|r|wm>|2 which is needed to calculate the
transition probability rate. These radial wave functions are very
difficult to calculate. For simple atoms (less than two equivalent
electrons) the radial wave functions are calculated from the Bates and
Damgaard Coulomb approximationl8 or the Thomas-Fermi approximation,
whichever is most appropriate. Both of these methods require one electron
energies and consequently break down whenever more than one equivalent
electron is present. The development of Phase 2 of this contract will
remove this restriction and also make this part of the calculation con-

sistent with the intermediate coupling determined radial integrals.

12
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The Thomas-Fermi method was exclusively used for xenon and
for the five lowest configurations of krypton. The more important values
vf the resultant tcansition probabillty rates and transition wavelengths
are listed in Table VI. As a check of our results, the thirty 5s-5p
transition probabilities for krypton were compared to the results of
Murphy.l9 The agreement is within 8% which is very satisfactory. The
results of Table VI show that both atoms emit considerable energy in
the ultraviolet although xenon radiates about twice as much eaergy in
this wavelength region as does krypton. Consequently, the ultraviolet
optical thickness assumption made in the arc discharge calculations
will be a worse approximation for xenon than for krypton. In the
infrared region xenon essentially has no radiation whereas krypton does
have a small amount of radiation. The total line radiation as a
function of temperature has been calculated and is given in the next

subsection where it :'s compared to the continuum radiation.

2.1.4 Continuunm Radiation

The free-bound and free-free electronic transitions yield
continuum radiation, >ut the theory for these transitions is rather

crude. The spectral absorptivity for these transitions is given by
KQA,T) = isi o, (A\) exp (-E,/KT)/Z (2)

where Zo is the internal partition function, 8y is the statistical weight

of the initial state, E, is the energy, and oy is the photoelectric cross

i
section for the ith species. The exponential factor is simply the

Boltzmann factor. Unsald20 showed for hydrogen how the summation could

be changed to an integration. Sch].Uter21 has generalized Unsbld's work

to give
32n2e6k T .3
K 73 7 ) exp (=x/KT)[exp(hc/AKT)-1]yE  (3)
33 h'e o

where x is the ionization energy, y is the statistical weight of the core
state, and £ is a temperature dependent factor with 0(1). The latter

13




factor is very difficult to determine. The values given in Schliiter's
paper for xenon are reproduced in Fig. 7. The Schliiter curves should be
the most accurate. Biberman et al.22 used the hydrogenic approximation
whereas Yankov23 used a modified hydrogenic approximation. For short
wavelengths £ increases exponentially with increasing wavelength. In
the intermediate range between 5000 and 6500 R, the £ factor is extremely
difficult to determine. 1In this region the absorption edges appear, but
they are shifted to longer wavelengths by plasma interactions and there
is no satisfactory theory for these shifts. Hence, the £ factor is
extremely crude between 5000 and 6500 R. The absorption edges should be
sharper than those shown by Schliiter, and might appear as Liebermann's

curve shows in Fig. 7. The £ factor for krypton is given in Fig. 8.

The evaluation of Eq. (3) in the literature has led to some
confusion. The value of y for xenon should technically be four, since
3/2 and 2P1/2 states and the J = 3/2
state is the ground state. However, a few people such as Schliiter use

the core state is split into the 2P

a value of six. Schliiter has shown that the value of y is not important
if one is consistent because the £ factor contains a y-l factor. However,
we used the partition function for y (which is approximately four) but
used Schliiter's £ which contained the value of y = 6. This confusion

lead to a few incorrect early results but was eventually corrected.

The continuum radiation is calculated from the effective

spectral absorptivity
K' = K[1 - exp(-hc/AkT)] (4)

which is the difference between the true absorption and induced emission.
Equation (4) is also valid for the line absorptivities. The radiation is
then calculated as the radiated power per unit volume, as is given by the

spectral emission coefficient

e(A,T) = BAK' (5)

14



where BA is the Planck black bod; intensity which is given by

By = 2hc/A3[exp(hc/AkT)-1] (6)

The line and continuvm radiation results are given in Figs. 9
#nd 10.* The former figure shows that the line radiation is more important
in xenon than in krypton and is always significant for both arc discharges
within the specified temperature range. The latter figure shows that
below 12,000°K the xenon arc discharge emits more radiation than the
krypton arc discharge. The radiation peaks in Fig. 10 are a result of
two competing factors; as the temperature is increased each atom increases
its radiation but, at constant pressure, the atomic density decreases.
This situation is in contrast to the normal experimental situation where

the atomic density is held constant and the pressure is allowed to change.

2.1.5 Tempereture Profile

Lowke,24 at Westinghouse, hias developed a very powerful computer
program for the determination of temperature profiles. Given the tube
radius, the wall tenperature and the central temperature of the arc, the
program uses a relaxation method to determine a profile, the current and
the electric field scrength. Of cours:, the electrical and thermal con-
ductivities and the 1radiation must alsc be given. The electric field
strength is guessed and then iterated uvntil a self-consistent solution

is obtained. The discharge is assumed to be optically thin.

The electrical characteristics of the xenon and krypton arc
discharges are shown in Fig. 11. Two characteristics are shown for
xenon; one was determined from Devoto's12 conductivities and one was
determined from our calculated conductivities (see Figs. 3 and 4). The
measured values are also given. At the measured current of forty amperes,

the electric field strength calculated from our conductivities is 4% too

The xXenon continuum results in this report differ from those given in
Technical Report No. 1. Subsequent to the printing of the latter report
a keypunching error in the continuun computer program was discovered

and corrected.
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low for xenon and 8% too high for krypton. This agreement between the
measured and calculated values of the electric field strengths is very
good, particularly since, as Mottschmann25 explains, the ultraviolet

radiation which was ignored should lower the calculated value.

A qualitative dependence of the electrical characteristic upon
the thermal and electrical conductivities, and thus on the cross sections,
is obtained by comparing the two xenon characteristics. Figures 3 and 4
show that Devoto's conductivities are higher than ours and Fig. 11 shows
that as a result of Ohm's law these higher conductivities yield a lower
electric field strength (40% too low at 40 amp) which in turn leads to

a lower central core temperature of the arc discharge.

The calculated temperature profiles for a central core
temperature of 9200°K (xenon) and 9775°K (krypton) are given in Fig. 12.
They are quite flat over most of the tube volume. Every other point is
calculated and the intervening points are interpolated. Linear inter-
polation explains the small dip at about 2 mm. The wall temperature was
fixed at 1000°K for the calculation, although the lamp was water cooled.
The steep slope near the wall shows that a crude approximation of wall

temperature is sufficiently accurate.

2.1.6 Arc Emission

The wavelength shifts and broadening of the line radiation is
first calculated. Gr:l.em's4 electron impact mechanism is evaluated as
well as the van der Waals interaction between different species.
Resonance broadening is calculated for all transitions in which either
the lower or upper state has an allowed electric dipole transition to
the ground state. Whenever ions are present the charges cause a
polarization effect which also shifts the lines and which is also
calculated. The broadening varied from zero to two or three angstroms,

and a typical wavelength shift was one angstrom.

These broadenings and shifts are calculated for each line at
six different temperatures (see Fig. 12). The absorptivities of these

lines are calculated and extended by interpolation. The line radiation
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is then integratec along a diameter to give an "effective' line which
is the actual cmission observed by the experimentalist. The integration
is also performed for the continuum radiation. The xenon and krypton

results are shown with the experimental results in the next section.

2.2 Comparison of Theoretical and Experimental Results

The lamps used for spectral measurements were built at the
Research Laboratories. They have been already tested as laser pumps,
and spectroscopic measurements were previously made under slightly
Jifferent operating conditions.26 An important parameter in all calcu-
lations 1s atom density or pressure. In sealed lamps, the fill pressure
is known, but the operating pressure changes with power and can only be
calculated if the inactive or dead volume of the lamp is known. To
eliminate this possible source of error, the lamps were not sealed but
were connected to a large reservoir of fill gas kept at 2.5 atm. Other
measured parameters were arc diameter = 0,56 cm, arc length = 7.3 cm,
current = 40 A, and voltage = 82 V for xenon and 69 V for krypton.
Another lamp of 14.1 cm arc length was operated under ideatical conditions
in order to determine the electrode loss which then was cilculated to be
12 V. Therefore, the electric field in the positive column is 9.6 V/cm
for xenon and 7.8 V/cm for krypton, and the electrical input power
densities (power per unit surface area) are 226 and 192 watts/cm2

respectively.

Spectral measurements were performed using a Jarrell-Ash 1/2 m
Ebert monochromator. ~for measurement of the line spectra the curved
slits were 40 u wide corresponding to a dispersion of 0.64 A. In
measuring the continuum the slits were opened to 100 u in order to
increase the detected signal of the relatively weak continuum radiance.
The detector used was a silicon p-i-n phctodiode. The system was cali-
brated using a calibrated tungsten spectral radiance standard and auto-
matically corrected for nonlinearity between 5000 - 10,000 A by using a

variable attenuator.
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2.2.1 Xenon

The experimental results are shown and compared with the
computer calculations in Fig. 13. Figure 13a shown the experimentally
obtained radiance spectrum of xenon between 7500 - 10,000 R. The
computerized equivalent spectrum is shown in Fig. 13b. The two spectra
compare well in the location of the lines. Three lines around 9500 &
which appear in the experimental spectrum do not appear in the calculated
spectrum. The reason for this discrepancy is not certain, but it appears
that these lines originate from high lying configurations of xenon which

were noi included in the calculation.

Other differences in data include the relative amplitudes of
the lines. By examining the experimental data, it appears that all the
lines have about the same width. The narrower lines have greater intensity
relative to the measured spectrum. The wider the line the closer is the
agreement. This discrepancy could be a result of inadequate spectral

resolution of the monochromator.

When taking the experimental spectrum we also measured in
detail the line shape of the most intense line occurring at about 8232 A.
This measurement is compared with the calculated results at two different
core temperatures in Fig. 1l4. The ordinate and absissa are the same for
both curves. A comparison of the experimental line and the 8450°K
computed line shows that the experimental half width of 3.66 R is 1.0 A
greater than the calculated half width. The dispersion limited resolu-
tion of the monochromator is 0.64 A but the aberration in the instrument
could decrease the true resolution to about 1 A although the manufacturer
places the aberration resolution at 0.1 A. Regardless of the resolution,
the energy in the line, which is proportional to the area under the line,
i.e., the product of radiance and angstroms, remains constant. Comparing
the energies of the calculated and experimental results, we find that the
calculated energy is 15% smaller. This difference is surprisingly small

since neither spectral curve was expected to be accurate to within 20%.
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A ccuparison of the experimental line and the 9200°K computed
line shows that ihe experimental half width is 1.48 R smaller than the
computed half wicdth, and that the calculated energy is 125% larger.
These resulte indicate that a central core temperature of 845 °K is
slightly too low whereas 9200°K is considerably too high. These line

shape measurements indicate a central core temperature of 8530 + 150°K.

The calculated curves also show some fine structure not
present in the experimental spectrum because of limited resolution. The
notch in the short wavelength side of the peak is real and due to self
absorption of the hot core by the cool gas near the wall which has its
peak absorptivity at shorter wavelengths than the core. There is also
a difference in the location of the peak radiance of about 1.3 R.
However, neither value is sufficiently accurate to determine which curve

is in error.

In addition to calculating the spectral radiance, the computer
also calculates the peak absorptivity, and the emittance. These calcu-
lations for the 8232 A line are shown in Figs. 15 and 16. The emittance
is the information needed to calculate the spectral overlap. From the
spectral absorptivity we can determine the degree of optical thickness
of the line. In this: way we have determined that the 8232 K line does
not have the strongest core radiance, tut it is less absorbed by the
cooler gas so that its emitted radiance is greatest. However, its
radiation is also appreciably absorbed; so that the line radiation from
a relatively small diameter low-current discharge is already becoming
optically thick. In fact at 9200°K the discharge is 80% optically thick
and below 6000°K the discharge is 100% optically thin (based on a
maximum spectral absorptivity within the specified wavelength region of
10 em~! as being 100% optically thick).

The experimentally measured continuum spectrum is shown in
Fig. 17 and a calculated continuum spectrum in Fig. 18. Because of a
programming error the ordinate was corrected as shown in the curve.

Beyond 7000 R, comparison becomes difficult because of the contribution
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of the wings of the lines to the continuum. A quick glance at the two
curves shows that the agreement is poor since the shapes of the curves
below 6000 A are different. (A keypunching error rendered impossible

any absolute comparison of continuum radiation amplitudes for this figure
although the line radiation results are correct.) We also tried the less
sophisticated approach of Yankov.23 The result appeared to be just
slightly better but the shape of the curve still disagreed with the

measured curve.

As explained in the section describing the method of calculating
the continuum, the bound-free absorption edges occur in the 5000 - 6500 A
region. Therefore, the shape of the continuum depends strongly on
correctly chosing Schllter's £ function.21 Schliter could not himself
get good agreement with experiment for xenon. We considered the possi-
bility of ionic species causing the difficulty, but our calculated results
show that this is not a significant factor. We also modified Schliiter's
£ function as shown by the dotted line in Fig. 7 to account for temperature
shifts and obtained the spectrum shown in Fig. 19. The change in spectrum
is conisiderable, and the shape above 5100 % is in much better agreement
with experiment. A comparison of the measured and calculated continuum
amplitudes shows fair agreement below 6000 A but the calculated amplitude
is more than a factor of two too low above 6000 A. Our purpose is not
to find a better Schliiter factor by fitting it to the measured spectrum
but rather to show that a much better knowledge of the Schlliter factor
is necessary if better continua are to be calculated. In the remaining

calculations the calculated continuum of Fig. 19 is used.

2.2.2 Krypton

The experimental results are shown and compared with the
computer calculations in Fig. 20. Figure 20a shows the experimentally
obtained spectral radiance of krypton between 7500 - 10,000 A. The
computerized equivalent spectrum is shown in Fig. 20b. A comparison
of the line positions shows excellent agreement between the two spectra.
As explained in the previous subsection the amplitudes of the two spectra
do not compare as well because the computer resolution is finer than the

experimental resolution.
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The experimentally measured 7,606 R line and the same line
computed with a core temperature of 9,775°K are compared in Fig. 21.
The computed line exhibits a -5 Z shift relative to the measured line.
Since the unshi“ted line15 should occur at 7,604 Z, the experimental
apparatus is in error by at least 2 Z. The remaining discrepancy is
small but may indicate a slightly too high core temperature. A com-
parison of the energy under each line shows that the computed line has
21% more energy. This very good agreement is well within the experi-
mental and computed accuracies but again indicates that the computed

core temperature may be just slightly too high.

As for the xenon discharge the emittance and spectral
absorptivities were also calculated. The krypton discharge is 23%
optically thick at 9775°K and 100% optically thin below 7,000°K.

The experimentally measured continuum spectrum is shown in
Fig. 22 while the calculated continuum spectrum is shovn in Fig. 23.
As explained in the previous subsection the continuum calculation is
crude. The Schliiter factor shown in Fig. 8 was used although it again
lead to the wrong curve shape below 6,000 ;. The amplitudes agree
fairly well below 6.000 R, but the calculated amplitude is about a
factor of two, too low above 6,000 R. These figures again show that a
better knowledge of the Schliter factor is necessary if better con-

tinuums are to be calculated.

2.3 Measured Spectra for W and K-Hg Lamps

The spectral radiance of the commonly used tungsten lamp was
obtained by multiplying the black body radiance at 3,200°K by the

2 The spectral emittance was obtained

measured emissivity at 3,200°K.
by multiplying by n steradians, This multiplication factor is correct
for an optically thick infinite plane emitter radiating onto an infinite
plane absorber of finite thickness, or for an infinitely long cylinder
of finite radius radiating onto an infinitely long concentric annulus

where the annulus thickness is much smaller than the annulus radius.
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The input power to the tungsten lamp was calculated as eoT4 where €
is the average emissivity at T = 3,200°K and o is the Stefan-Boltzmarn

constant.

The potassium-mercury spectral emittance could be theoretically
calculated as in the last section but to save time and money the
experimental spectral radiance, shown in Fig. 24, was used since it
was already available. The spectral emittance was obtained by
multiplying the spectral radiance by three. The factor of three was
obtained by averaging the factors calculated for the xenon arc dis-
charge which should be about as optically thick as the potassium-mercury
discharge. The input power density is given by the 100 volt voltage
drop multiplied by the 5 amp current divided by the 2.36 cm circum-
ference times the 3.5 cm arc length . This answer is then reduced by

15% to exclude the end losses.
2.4 Discussion

Because of the narrowness of the lines, it takes about 80
minutes to make one monochromator scan from 5,000 - 10,000 ;,but the
major time consumption is spent in building the lamp,set-up time,
erroneous starts, etc. The entire procedure would have to be repeated
for every parameter change such as current density, pressure, and wall
diameter. In addition, after obtaining the data it still has to be
converted to computer data cards. This spectrum provides the spectral
radiance through the center of the arc. To get the spectral emittance,
i.e., the radiation emitted at the wall from all portions of the arc,
one would have to obtain the radiance from various rays through the
arc and calculate the emittance. The above discussion points out the
difficulty of doing the spectral overlap calculation from experimental
data. Furthermore, if a pulsed arc were studied the experimental degree

of difficulty would be further increased.

The object of comparing the Xe and Kr calculated spectra with
the experimental spectra was to determine how close the calculations

match the experiments. The results indicate that the line spectra
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calculations are appreciably better than the experimental data. There
is no absolute wav of knowing which spectrum is correct, but it is
certain that the 2xperimental data is limited in resolution to at least
0,75 ;. Since the measured lines are only a few angstroms wide, a
resolution of 0.75 R will cause noticeable error. However, the measured
energy within a line is independent of the resolution. The agreement
for krypton to within 21% between calculation and experiment is better
than the accuracy of each method and therefore impossible to determine
which method is nearer reality. The xenon line profile at different
core temperatures shows how accurate line profiles can be compared to
determine the actual core temperature. We therefore conclude that it
is very desirable to calculate the line spectrum. It is stressed that
the measurements and calculations were carried out completely

independently. The calculated line spectra were never altered to fit

the experimental spectra. If the experimental measuremants were never

made, the identical calculated spectra would have been presented.

The calcuiated continua spentra were only about a factor of
two in agreement with experiment. The difference was nct only in
magnitude, but in wevelength dependence. Since the experimental radiance
is estimated to have an absolute certeinty of *20% and a relative
accuracy with wavelength of better than 5%, it is believed that the
calculated continua are in error. We believe that the problem is
associated with the £ factor of Schliiter although attempts at modifying
it, after making spectral comparisons, were not entirely successful
even though it was anparent that this factor can exert a strong influence.
As shown in Figs. 7 and 8, the Schliite: factor appears to be too small
above 6,000 Z.

The true value for the continuum radiation from the xenon
discharge can be crudely approximated by forming an energy balance of

the arc:

r
2 YAl o o dar 2 2
27E Jo or'dr 2nrK Ir + n°r (RL + RC) QD)
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where r is the discharge tube radius. The left hand side is the
electrical input power per cm and the right hand side is the output
power per cm as determined by the thermal conduction and the line and
continuum radiation, given by RL and Rc’ respectively (see Fig. 10).

By assuming a nearly isothermal, optically thin discharge, the left hand
side becomes

nEzor2 (8)

The temperature gradient dT/dr can now be evaluated by using the cal-
culated value of 9.2 volts/cm for E and using Figs. 3, 4, and 10 to
obtain the other unknown values at 9,200°K. This value of the tempera-
ture gradient is now assumed constant and the conductivities are used
for 8,530°K (the core temperature determined by a comparison of the
calrulated line profiles to the measured profile). The value of RL at
8,530°K is determined from Figs. 9 and 10, and the value of RC is
determined from Eqs. 7 and 8. In other words, the electrical input
power is held constant but the temperature of the discharge is lowered
from 9,200°K to 8,530°K. This temperature decrease lowers the con-
duction and line radiation losses and consequently the true continuum
radiation loss must increase to exactly cancel these decreased losses.
The result is that the continuum radiation at 8,530°K is approximately
99.4 watts cm"3 ster"1 which is nine times as much continuum radiation
as given by Figs. 9 and 10, although the total radiation has only been
reduced from 165 to 155 watts cm—3ster-1. Thus the continuum radiation
at 8,530°K is 64% of the total radiation. This compares favorably with
the 55% calculated for the krypton discharge and leads us to believe
that the continuum radiation calculated for the krypton discharge is
about rignt.

In the determination of the temperature profiles and electrical
characteristics, the discharge is assumed to be optically thin. The
effect of this assumption is to increase the voltage gradient value at
a given current. This increase can be seen in the xenon discharge by

assuming an isothermal temperature profile. Then
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where £ and I are given in Fig. 11 and o is the electrical conductivity
given in Fig. 3. The constant K is determined to be 6.44 by setting

I equal to 40 amp and using the E and o values appropriate for 9,200°K.
If the electrical conductivity is now changed to the value for 8,530°K
(the core temperature determined by a comparison of the calculated line
profiles to the measured profile), the voltage gradient is determined
from Fq. (7) to be 12.27 volts/cm.

On the other hand, the krypton discharge is 237% optically
thick and the calculated voltage gradient is 8% too high. Since the
xenon discharge is 807% optically thick its voltage gradient should be
(80/23) 8% too high. 1In other words the calculated voltage gradient
should be 12.27 volts/cm.

The above two calculations give the same result and show
that the difference between the calculated and measured voltage gradients
increases in direct proportion to the optical thickness of the discharge.
However, the calculated core temperature is independent of the optical
thickness. These results also show that the -4% agreement between the
calculated and measured voltage gradients for xenon is fortuitous and

should be 27.8%.

The purpose of the previous discussion is to understand the
present limitations of the calculations. Thus the errors have been
discussed and estimated. It is consequently very easy to be too
concerned about the limitations and overlook the successes. We believe
that the theoretical results are so good for the purpose of evaluating
relative pump efficiencies that the original calculations of Section 2.1

are used without modification. In fact, despite the errors, we believe

that the best spectral overlap calculations will be done with calculated
rather than experimental spectra because the calculated spectra are
better resolved. This increased resolution is particularly important
for line emitting arc discharges pumping a line absorbing laser rod

such as the rare earth activated lasers.
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3. LASER ABSORPTION SPECTRA

The necessary input information to obtain the pumping
efficiency of a lamp is its spectral emittance and the excitation
spectrum of the lasing medium. The lasing media we wish to consider
are Nd:Y3A15012 (Nd;YAG) and Cr:A1203 (Ruby). The absorption spectra
of these crystals which closely follow the excitation spectra in the
region of interest can be obtained by experimental measurement. This
data must then be converted from a chart recorder to computer data
cards. This operation is easily done for ruby since the absorption
spectrum varies slowly with wavelength and will be included in a

later chapter.

The Nd:YAG absorption spectrum consists of a large number of
narrow lines and requires considerably more data points to describe it
compared to ruby. However, prior to this contract, we have developed a
program which requires knowing only a few data points per line to
calculate and describe the spectrum. The general interpolation
technique used is called GOOP, and for determining the YAG spectrum
it is called YAGOOP. The YAGOOP program is complete and available for
use.l The general technique of YAGOOP is to fit a series of Lorenzian
profiles to the measured spectrum. Each Lorenzian profile is completely
specified by its center frequency, peak value and width at half the
peak value. Prior to this contract the Nd:YAG absorption spectrum
shown in Fig. 24 was fitted by YAGOOP. Fifty-one Lorenzian profiles
are needed to reproduce the measured spectrum. In other words, 153
specified variables give a complete mathematical description of the
absorption spectrum. The details of this fit are given in Ref. 1 and
will not be described here.
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4. SYSTEM EVALUATION

How well does a particular lamp pump a given laser rod? This
is a question of considerable interest which we will attempt to
answer in this chapter. In particular the efficiencies of the potassium-
mercury, tungsten, krypton, and xenon lamps specified in Chapter 2 will
be evaluated for pumping slab lasers of different thicknesses.

The system which is considered is a simplication of actual
laser systems. The lamp is considered to be an infinitely long cylinder
whose light is focused by an idealized optical system onto an infinite
laser slab of thickness t. The lamp light is transmitted to the slab
through a perfectly transparent medium and perpendicularly strikes the
slab with the same emittance at which it left the lamp. The light which
enters the slab is then absorbed or transmitted. The absorbed light pumps
the laser ion whereas the transmitted light is lost to the system. Although
this simple system is obviously different than real laser system it will

be shown that it produces excellent quantitative results.

4,1 Lamp Efficiency

The lamp efficiency 1s defined here as the percentage of
electrical power into the lamp which is emitted in the 5,000 to 10,000 R
wavelength region which includes all the useful absorption bands of
Nd:YAG. The input power per unit surface area for the four lamps under
consideration was given in Chapter 2. The output power per cm2 is
obtained by numerically integrating the spectral emittance over the
5,000 to 10,000 ; region. This integration has an accuracy of better
than 57 and shows that the lamp efficiencies are 67%, 36%, 35%, and
14% for the potassium-mercury, tungsten, xenon, and krypton lamps,
respectively. Note that the xenon lamp is 2.5 times more efficient

than the krypton lamp. These lamp efficilencies do not include electrode

27



losses which are normally about 15% of the input power to a 3" lamp
and can be included in the above efficiencies by a multiplication
factor of 0.87.

The efficiency of the simple system described in the beginning
of this chapter is particularly interesting if the slab is 0.77% Nd:YAG.
This laser material is a line absorber and is widely used in laser
systems. The former property makes it a difficult test of the lamp

emission calculations.

4,2 Slab Efficiency

The slab efficiency is defined here as the percentage of the
power density (watts/cmz) incident on the slab which is emitted at the
fluorescing wavelength of 1.064 u. 1In other words, the slab efficiency
measures the effectiveness of the slab in absorbing incident energy
and transforming this absorbed energy to useful emission. The power
density incident on the slab was calculated in the last subsection.

The power density emitted at 1.064 p is determined by the spectral

overlap:

S = Jvz Iz(v)ll - exp(-a(v)t)](volv)Q(v)dv (10)
Y1

where Iz is the spectral emittance of the lamp, o is the spectral
absorptivity of the slab and Q is the quantum efficiency of the laser
material. The Vo is the fluorescent frequency corresponding to 1.064 yu;
vy and v, are the frequencies corresponding to wavelength of 1.0 and
0.5 u, the wavelength region of the lamp emission. The quantum
efficiency is assumed to be unity. The spectral emittance was calculated
in Chapter 2, and the slab absorptivity was obtained as described in
Chapter 3. Thus everything in Eq. (10) is specified and the integrand
can be numerically integrated. Before doing the integration, however,
it is interesting to study the integrand, I, for various values of slab

thickness.
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The spectral overlap integrand for the tungsten lamp is shown
in Fip. 25. As the thickness is increased the broad emission bands
from the tungster arc increasing al sorbed by the unsaturated absorption
lines., A= the absorption lines become saturated ,the spectral distribution

of the tungsten iamp becomes prominent and is very evident in Fig. 25f.

Tt would be too bulky to include all the spectral overlap
inteprand plots. Therefore, only the results for a 1.2 cm slab thickness
are shown in Figs. 26, 27 and 28 for the remaining three lamps. These
plots clearly show that most of the spectral overlap contribution is
from above 7,000 ;. The line emisslion of these three lamps gives a
more jagged appearance to the plots than present in the tungsten plots.

Xenon obviously has the worst spectral overlap.

The spectral overlap integrand is numercially integrated to
an accuracy of at least 5%, and the 3lab efficiency is obtained by
dividing by the incident power density. The results are shown in
Fig. 29. The krypton lamp clearly has the best spectral match with a
Nd:YAG slab.

4.3 Pump Efficiency

The pump 2fficiency is defined here as the percentages of the
electrical power density into the lamn (neglecting elec:rode losses)
which is emitted by the slab at the fluorescing wavelength of 1.064 u.
Thus the pump efficiency measures the effectiveness of the slab laser
system. Since the slab properties remain constant as tle optical pump
is changed, it is really a measure of the optical pump effectiveness

and explains the ten. "pump" efficiency.

The pump efficiency is the product of the lamp efficienczy
and the slab efficiency and is the final goal of these calculations
since it is the best method of evaluating slab laser systems. All the
required numbers have been calculated in the previous subsections and
the pump efficiencies are plotted in Fig. 30. The most efficient pump
by far is the potassium-mercury lamp. This is a result of being the

most nfficient lamp of the four and having a very good snectral overlap,
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although the spectral overlap of the tungsten lamp is considerably better
than that of the xenon lamp. The krypton lamp is quite inefficient but
the spectral overlap is so large that the pump efficiency is very close

to that of the tungsten lamp.

A comparison of the krypton and tungsten pump effic’encies
is rather interesting. The tungsten pump is more efficient for slabs
thinner than 1.2 cm or thicker than 2.4 cm. The krypton pump is very
slightly more efficient in the intermediate range of thicknesses.

This behavior demonstrates how the absorption saturation of individual
lines can change the relative efficiencies of two pumps with pump

efficiencies which are very close to each other.

These results can be compared with experimental laser measure-
ments. Appendix 1 shows our published results on comparing tungsten,
krypton, and xenon lamps for pumping a 5 mm dlameter, 50 mm long Nd:YAG
laser rod. Figure 31 includes these results and also shows some more
recent work on potassium—mercury lamps. These lamps appear to be very
promising as Nd:YAG pumps. Currently they must operate in a vacuum
to prevent atmospheric attack of the Nb end caps which operate at
temperatures in excess of 700°C. The quartz vacuum jacket presently
used degrades the coupling efficiency to the laser rod and the vacuum
operation considerably decreases the input power to the lamp since the
sapphire walls of the lamp are cooled only by radiation. By eliminating
the vacuum jacket and protecting the end caps ihrough coatings or other
means we have predicted previous teo tihis contract the experimental

results designated as air-cooled K-Hg lamp.

Although the slope efficiencies are easily found from Fig. 31,
the relationship between the rod diameter and the slab thickness must
still be determined in order to compare the measured and calculated
efficiencies. An approximation can be made by equating the slab
thickness to the effective chord length in the rod, c:

t = cD (11a)
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where D is the ratio of the activator doping in the rod to the doping
in the slab. The effoctive chord length in a cylindrical rod of diameter
d is shown in Appendix 2 to be given by

- 4.
¢ o= (:rd = + 0.27)d (11b)

[eAR RN

.44

This calculation does not include the cavity coupling efficiency and
assumes a Lambertian distribution of the light intensity in the rod. For
the 1.3% doped, 0.5 x 5 cm rod used for the experimental measurements

of Fip. 31, Egs. (lla) and (11b) give an equivalent slab thickness of
0.84 cm (see Appendix 1). The experimental slope efficiencies are
included in Fig. 30 at this slab thickness. The agreement between the
calculated and measured relative pump efficiencies is excellent. This

agreement is rather surprising when all the approximations are considered.

The comparison for the tungsten pump only tests the spectral
overlap calculation and the rod to slab thickness transformation since
a measured lamp spectrum was used. The agreement at the sharply rising
curve for the potassium-mercury pump is good considering the crude
"measured" value. This ccmparison is another test for the spectral

overlap and rod to slab transformation calculations.

The calculated xenon pump efficiency is too low and must be
attributed to the low value calculated for the contiuum radiation. The
calculated value can be adjusted by reducing the total lamp radiation
from 165 to 155 watts cm_3 st:er:_1 and by assuming that 647 of the radiation
is continuum (see Section 2.3). The lamp efficiency is thus reduced from
35.27% to 33.1%. Since the radiation contributing most to the spectral
overlap is the continuum radiation, the slab efficiency should be close
to that for tungsten. The adjusted xenon pump efficiency is 2.5% which

is in good agreement with the measured laser efficiency of 3.1%.
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The real test for the theoretical calculations is given by
a comparison of the calculated and measured results for the krypton
pump. The continuum calculation is good and no adjustments need to
made. The measured value of 3.7% is 30% higher than the calculated
value of 2,6%. This agreement is excellent in view of the lengthy
ab initio calculation. This is the first time such a calculation of
this type has succeeded!

4. 4 Activator Efficiency

Although the electrical input energy and the pump efficiency
is all that is normally needed, another efficiency is interesting to
know. This additional efficiency will be called here the activator
efficiency and is the percentage of time spent fluorescing by an
average activator ion. If the slab emits R watts cm-z, each activator
emits R/tn watts where n is the number of activator ions per cm3. Each
emitted photon has an energy of hc/ko where Ao is 1.064 x 10-4 cm for
Nd:YAG. Thus the number of photons emitted per second by the activator
ion is given by

N = (R/tn)(xo/hc) (12)

The fraction of time spent by the activator ion in the fluorescing
process is simply N times the lifetime of the excited activator ion,
T. The activator efficiency is thus

E = Nt (13)
a
28
The lifetime has been measured at 230 usec. Equation (13) can then
be evaluated and the results are plotted in Fig. 32 (Note that the
input power densities have been normalized). The low values show that
the use of the Nd ion is surprisingly inefficient because an activator

never spends more than about 0.06% of its time in fluorescence.
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4.5 Discussion

The important results in this chapter are summarized in Table
VII. The agreement between the relative experimental laser efficiencies
and the relative calculated pump efficiencies is excellent! Ranked in
order of decreasing lamp efficiency, the four lamps are potassium-mercury,
tungsten, xenon and krypton. The ranking for the greatest slab efficiency
is krypton, potassium-mercury, tungsten, and xenon whereas the ranking
for the largest pump efficiency is potassium-mercury, tungsten, krypton,
and xenon. These rankings clearly indicate the interplay of the lamp

and slab efficiencies to give the pump efficiency.

The pump efficiencies as a function of thickness are important
but it would be more convenient if pumps could be ranked by a single
number. One possible system would be to use the activator efficiency
at zero thickness. This efficiency is finite and is independent of the
slab thickness. It is given in Table VII in the Eo column. This ranking
system which is independent of slab thickness would rank the pumps in
descending order as t“he potassium-mercury, tungsten, krypton, and xenon

pumps.
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5. SUMMARY

The emission spectra of a xenon and a krypton arc discharge
have been measured on this contract, and the absorption spectra of
Nd:YAG and ruby were measured previous to this contract. The xenon and
krypton arc discharge spectra have been calculated from theory. The
line spectra (which comprise about 50%Z of the total emission) agree so
well with the measured spectra that one cannot determine which is the
more accurate, although the calculated line profiles appear to be more
accurate than the measured line profiles (due to the low resolving power
of the spectrometer). The calculated continua only agree with the
measured continua to within a factor of two. In order to save time and
money, available measured emission spectra of a tungsten and a potassium-

mercury lamp have been used.

The overlap between the emission spectra of these four lamps
and the Nd:YAG absorption spectrum has been calculated as a function of
the slab laser thickness. Combined with the calculated lamp efficiencies,
the spectral overlap yields the system efficiency for an optically pumped
slab laser. A cylindrical rod laser in a cavity was approximately trans-
formed to an equivalent slab thickness of a fixed thickness and thus

actual laser system efficiencies were calculated.

The agreement between the theoretical and measured relative
laser efficiencies for the four lemps is excellent. This agreement is
remarkable because the calculations for the krypton and xenon pumps
only used: (1) lamp dimensions, (2) lamp gas, (3) lamp pressure and
current, (4) laser rod absorption spectra, and (5) 1laser rod
dimensions and activator doping as the necessary laser system variables

which have to be experimentally measured. Therefore, for the
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first time it has been shown that relative laser system efficiencies can be
calculated from very basic laser system parameters. The results show

that the potassium-mercury lamp is four times more efficient in pumping
Nd:YAG for all rod diameters of interest than the tungsten and krypton
lamps which are slightly better than the xenon lamp. The calculations
clearly demonstrate how the theory can be applied to evaluate simple
optical pumps for a given laser rod, thereby bypassing costly and

lengthy experimental measurements.
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RUBY LASERS
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6. INTRODUCTION

The ruby laser was the first successful laser:zg’30 and is still
not completely understood. Since it is a three-level laser, more than
50% of the ground state chromium ions must be excited before lasing can
occur. This requirement necessitates a very powerful flash lamp which
can invert the population before the excited ions can return to the
ground state via spontaneous emission (fluorescence).

The required 50% inversion automatically decreases the laser
system efficiency. However, theoretical calculations of this and other
losses in ruby amplifiers predict laser efficiencies which are usually
an order of magnitude higher than the measured values. This discrepancy
is still unexplained aithough many possible explanations have been pro-
posed.

One proposed explanation is that the flash lamp is not efficiently
pumping the ruby. This special report investigates this problem by cal-
culating the pumping efficiency for fluorescence. It is found that the
pumping efficiency for fluorescence is quite high at the peak of the
flash lamp pulse. In fact, it is found that a 1.27 cm diameter ruby
amplifier should have an overall efficiency of 6% based on pumping con-
siderations alone. Depopulation of the 2E energy level by excited state
absorption would decrease the efficiency by a small amount but excessive
bleaching of the ruby rod or premature arrival of the ruby oscillator
pulse appear to be the best explanations for the measured low amplifier

efficiencies.
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7. LAMP EMISSION SPECTRUM

The necessary input information to obtain the pumping
efficiency of a lamp for a given laser material is the spectral emittance
of the lamp and the excitation spectrum of the lasing medium. The
excitation spectrum of ruby will be considered in the next chapter, where-
as the spectral emittance of a xenon flash lamp is considered in this
chapter.

The spectral radiance of a typical xenon flash lamp has been
measured by Church et a131and is shown in Figure 33, The 12300 °K black
body radiance is also shown for comparison. The xenon radiation is
clearly continuum radiation. A comparison of the calculated radiance
and the measured radiance again i1llustrates the inadequacy of the
continuum radiation theory. For the following calculations the measured
radiance is always used.

Although Figure 33 shows the peak radiance from the flash lamp,
the light pulse is actually very time dependent. This is clearly seen
in Figure 34. The calculation in this report neglects this time dependence
and simply uses the peak radiance values. This is a good assumption
since by employing pulse forming techniques nearly rectangular pulses
may be obtained.

Efficiency calculations require the electrical power into the
lamp. This xenon lamp, at its peak radiance, operated at a current
density of 4480 amps/cm2 with an electrical conductivity of 63 mho/cm.
The electrical input power is thus 1.0 x 104 watts per cm2 of surface
area. This calculation assumes that the voltage drop at the electrodes
is negligible.

Although the radiance is measured, the emittance is required
for the efficiency calculations. The emittance is obtained to a good
approximation by multiplying the radiance by m steradians, the value for

a perfect Lambertian radiator.

39



8. RUBY ABSORPTION SPECTRA

The absorption spectra of ruby closely follow the excitation
spectra in the region of interest and are easily measured with a Cary
spectrophotometer. The results of Mahmn?zare shown in Figure 35. Since
ruby is anisotropic, two absorption spectra are shown, one for light
propagating parallel and one for light propagating perpendicular to the
c-axis of the ruby crystal. The chromium concentration was determinecf32
tA1,0, which

20374150,
ions/cm3. The

by chemical analysis to be 0.0515 weight percent of Cr
corresponds to a chromium ion density of 1.62 x 1019
absorption data for the R lines are shown in Figure 35 but were not used

in the present calculations. Excited state absorption33'34was also not
considered; however, this is expected to cause no major error.

A comparison of the two spectra in Figure 3 indicates that
light propagating parallel to the c-axis should pump the ruby crystal
more effectively than light propagating perpendicular to the c-axis.

We will show later that this is indeed the case, although the difference
is not as large as one might expect from the absorption spectra.

The absorption coefficient given in Figure 35is for small
amplitude pumping when virtually all the absorbing ions are in the ground
state. However, under hard pumping at least half of the ions are in the
excited state and unavailable for excitation. In this case, the absorption
coefficients are half the values shown. During long-pulse laser operation,
stimulated emission automatically keeps the ground state about one-half
filled and therefore the efficiencies are calculated from absorption

coefficients which are one-half the values given in Figure 35.
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9. SYSTEM EVALUATION

How well does the xenon lamp pump the ruby? This is the basic
question which will be examined in this chapter. However, only the
fluorescence pumping efficiency is calculated; the details of the lasing
process which could modify this efficiency are not considered.

The model used is a simplification of the actual laser system.
It is thought to be a good approximation to the "first pass' in a
focusing elliptical or spherical pumping cavity. The lamp is considered
to be an infinitely long cylinder whose radiation impinges onto an
infinitely long ruby slab of thickness t. The lamp radiation is trans-
mitted to the slab through a perfectly transparent medium and perpendicularly
strikes the ruby slab with the same emittance at which it left the lamp.
The light which enters the slab is then absorbed or transmitted. The
absorbed light pumps the chromium ions whereas the transmitted light is
lost to the system. Although this simple model is obviously different
than the real laser system, it produced excellent results for the
pumping of Nd:YAG and should be equally applicable to the pumping of
ruby.

9.1 Lamp Efficiency

The lamp efficiency is defined here as the percentage of
electrical power into the lamp which is emitted in the 3000 to 7000 ;
wavelength region which includes all the useful absorption bands of ruby.
The input power per unit surface area for the xenon lamp was calculated
in Chapter 7, The output power per unit surface area is obtained by
numerically integrating the spectral emittance over the 3000 to 7000 ;
region. This integration has an accuracy of better than 5% and shows
that the xenon lamp efficiency is 36%. This calculation assumes that

the electrode losses are negligible.
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9.2 Slab Efficiency

The slab efficiency is defined here as the percentage of the
power density (watts/cmz) incident on the slab which is emitted as ruby
fluorescence. In other words, the slab efficiency measures the effective-
ness of the slab in absorbing incident energy and transforming this
absorbed energy into useful emission. The power density incident on
the slab was calculated in the last section. The power density emitted
at 6943 ; (assuming that all the ruby fluorescence takes place at this

wavelength) is determined by the spectral overlap:

\Y
$= 1 21,0 [L-exp (-aMBIy/V) QW) dv  (10)

Y1

where 12 is the spectral emittance of the lamp, a is the spectral
absorptivity of the ruby slab and Q is the quantum efficiency of the
ruby. As explained in Chapter 8, the absorptivity used in Equation (10)
is one-half of the values shown in Figure 35. The v, is the fluorescent
frequency corresponding to 6943 A; 2 and vy aEe the frequencies
corresponding to wavelengths of 7000 and 3000 A, the effective wavelength
region of lamp emission. The quantum efficiency has been measured by

Maiman32and is shown in Figure 36 (although the results of Maiman?l'32

are
rather old, they are in a more convenient form to use and do not
significantly differ from more recent results33'3LL The power efficiency
curve shown in this figure is the vO/v ratio times the quantum efficiency.
Thus everything in the integrand is specified.

The spectral overlap integrand is numerically integrated to
an accuracy of at least 57, and the slab efficiency is obtained by dividing
by the incident power density. The results are shown in Figure 37. As
expected from the absorption data, light propagating parallel to the ruby

c-axis gives better slab efficiencies.
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9.3 Pump Efficiency

The pump efficiency is defined here as the percentage of the
electrical power density into the lamp (neglecting electrode losses)
which is emitted by the slab at the fluorescing wavelength of 6943 Z
(i.e., the product of lamp and slab efficiency). Thus the pump efficiency
measures the fluorescence effectiveness of the slab laser system. Since
the slab properties remain constant as the optical pump is changed, it
is really a measure of the optical pump effectiveness and explains
the term "pump" efficiency.

All the required numbers have been calculated in the previous
seccions and the pump efficiencies are plotted in Figure 38. It was
shown in Section 4.3 that, to a good approximation, the diameter of a
laser rod may be equated to about the same value of slab thickness.
Consequently, the abscissas of Figures 5 and 5 may be considered as
laser rod diameters. For a rod with the same diameter as the xenon lamp
(1.27 cm) the pumping efficiency is about 6%. It is then apparent that
the pumping efficiency of ruby is quite high and does not explain the

measured low ruby laser efficienciesBS.

9.4 Activator Efficiency

Although the electrical input energy and the pump efficiency
are all that are normally needed, another efficiency is needed for lasers
which are pumped hard. This additional efficiency will be called here
the activator efficiency and is the percentage of time spent in the
excited state by an average chromium ion. If the ruby slab emits R watts per
unit surface area, each chromium ion emits R/tn watts where n is the
number of activator ions per cm3 and t is the slab thickness. Each
emitted photon has an energy of hc/A° where Ao is taken as 6943 Z. Thus
the number of photons emitted per second by each chromium ion is

approximately given by

N = (R/tn) (A /hc) (12)
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Equation (12) is slightly different for a laser rod. If we
take the rod diameter d to be the same as the slab thickness (this is
probably accurate to within 10%), each chromium ion emits 4(nd£)R/(nd2£)n
watts, where 2 is the length of the rod. In other words, each chromium

ion emits 4R/dn watts and Equation (12) becomnes
N = (4R/dn) (Ao/hc) (12a)

for a ruby rod. This expression assumes that no pump light is absorbed
by the ends of the rod.

The fraction of time spent by the activator ion in the excited
state is simply N times the lifetime of the excited chromium ion, T.

The activator efficiency is thus

E = Nt (13)
a

2
The measured lifetime at low pumping levels is 3.0 msec at 300°K.3 At

this lifetime the calculated activator efficiency varies with slab thick-
ness from 150% to 1300%! Since the activator efficiency can never exceed
100%, it is clear that the activator efficiency cannot be calculated as
described. The problem is the excitedestate lifetime. At low pumping
levels the measured values are appropriate, but at high pumping levels
many excited ions will go to the ground state via stimulated emission.

If stimulated emission is prevented, the power absorbed and reemitted

by the ruby decreases due to bleaching. By assuming that stimulated
emission takes place,the number of stimulated emission transitions is
sufficient to lower the average excited-state lifetime. This lowered
lifetime due to stimulated emission can be calculated from Equation (13)
by setting the activator efficiency at the desired value of 50%. The
results are plotted in Figure 39, which shows that the lifetime of a 1.27
cm diameter ruby rod is lowered from 30 msec at low pumping levels to
about 120u sec at the high pumping levels of the xenon flash lamp used

for these calculations.
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10. SUMMARY

The calculated pump efficiency of about 6% fora 1.27 cm diameter
ruby rod is considerably higher than measured laser efficiencies, particularly
in oscillator-amplifier combinations.35 One possible cause for this difference
is depopulation of the 2E state (see Figure 40) viaotransitions to the charge

36,37 This transition occurs at 3600 A and decreases the pump

transfer band.
efficiency. However, the xenon flash lamp radiance shown in Figure 33
decreases in this wavelength region, and can be filtered out without changing
the pump efficiency appreciably. Depopulation should consequently have a
measurable but small effect on the pump efficiency.

Another possible source of the discrepancy between calculated
pump efficiencies and laser efficiencies is the time dependence of the
pump pulse. Figure ¥ shows the time history of one xenon line and Figure
0 shows the energy level diagram of ruby with measured lifetimes. As the
pulse radiance increases, the pump spectrum changes and becomes a more
efficient pump. Thus, the initial part of the pump pulse decreases the
total pump efficiency. This effect is also present during the final
stages of the pulse when the pump radiance is decreasing. This loss can
be minimized by pulse forming networks.

The above arguments hold for oscillators as well as amplifiers.
Amplifiers have an additional mechanism for loss of efficiency which we
believe could be very large. Above it was assumed that stimulated emission
kept the ground state population at 50%Z. In oscillators this occurs
automatically, but in amplifiers this condition depends on the proper
timing of the input laser energy. If the input laser power arrives too
soon,it will be absorbed by the amplifier rod rather than amplified. If
it arrives too late,the pump pulse will have bleached the rod to the
point where the pump radiation is no longer being absorbed by the rod.

This problem can only be accurately analyzed by a time-dependent study.
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A time-dependent analysis of lamp emission, excited populations, absorption
coefficients, quantum efficiencies, and pump efficlencies would give a

better understanding of ruby amplifiers and perhaps lead to increased
efficiencies.
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RADIAL WAVE FUNCTIONS
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11. PARAMETER FITTING FRJM SLATER INTEGRALS

The objective of this work phase is to determine atomic radial
wave functions by fitting a power series expansion with parametric co-
efficients of the radial wave function to experimentally determined Slater
integrals of the radial wave functions. These wave functions can then
be used to calculate the transition probabilities required in the arc
discharge emission calculations. The parameter fitting (PF) technique
has the advantage of being independent of the complex electronic shell
structure. This independence is in contrast to the conventional methods
such as the Thomas-Fermia and Bates and Damgaard coulomb18 approximations
which only work for simple shells of one or two electrons. We con-

sequently expect PF to succeed where all other methods fail.

To initiate PF the constraints must be enumerated which a radial
wave function must satisfy, and reasonable forms for the PF power series
expansion with fitting parameters must be formulated. The constraints
and expansions are given in the next two sections. The selection of the
numerical procedure to adjust the fitting parameters to satisfy the
constraints and reproduce the _xperimentally determined Slater integrals
is a critical selection which forms the heart of the PF technique. Two
iterative numerical procedures are examined in Section 11.3. The initiation
of both procedures requires an aprioximation of the fitting parameters.
This approximation is best achieved with the aid of screening constants
which are discussed in Section 11.4. Finally, the PF technique must be
proven in a case where the radial wave function is known. The Hartree-
Fock calculations38 of the Cu 4s Slater Integrals and radial wave function

provide an excellent test case.
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11.1 PF CONSTRAINTS

An atomic wave function 1s usually given by

|n2m) = '-lpnz(') Y, (8,0) (14)

where Pnz(r) is the normalized radial wave function to which PF will be
applied and 1s given below in atomic units. The radial wave function

must satisfy the following general requirements.

As r approaches zero Mann38 has shown that

L +1 Z
—_ o =2
Pnl(r) r—>o r a L+ 1 r) (15)

where Z is the nuclear charge. On the other hand, as r approaches
infinity Handy et al.39 have shown that the asymptotic form of the radial

wave function is

P05 £() exp ((E )P/?

n'e!

r) (16)

where f (?) 18 a function of ¥ which does not have as critical dependence
on r as the exponential. The E_, , (whose value is negative) 1is the
Hartree-Fock binding energy38 02 zhe least bound electron of the atom,
i.e., not necessarily of the electron under consideration. The
constraints in Eq. (15) and (16) result from the Hartree-Fock Equation
and may not be physically correct. However, because the Hartree-Fock
formulation is so extensively used and generally gives good results,

these constraints will be accepted as valid for PF.

Three other common constraints are the number of nodes and
orthonormality. The number of nodes, excluding end values, is given by

n-2=1. This condition will be used although certain wave functions
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are more accurately obtained when this condition is dropped. The

orthonormality condition:

@©

[o P () B, (r) dr =5, (17)

is one of mathematical convenience.

Of the above constraints, only the asymptotic form given in
Eq. (16) poses any problem in principle. The f(;) is unknown as is the
binding energy (except for the ground states of atoms).38 Consequently,

the implementation of this constraint requires an approximate approach.

The f(;) will be guessed based on our experience. The choice
of f(;) should not be critical because (a) it is only pertinent in the
extreme outer portion of the wave function, (b) its r dependence is
less than that of the exponential, and (c) any error in f(?) will be
largely ameliorated by the fitting of the adjustable parameters to

reproduce the measured Slater integrals.

The determination of the binding energy is more important
since it appears in the exponential. Fortunately, the binding energy
is valuable for other purposes and approximations for its value have

already been devised. The finding energy is given by

E = -(z - cnz)/n (18)

where n is the principal quantum number and ¢ is a screening constant.
Thus Z - 900 is the effective nuclear charge as seen by an electron in
the (n)th orbit. Methods for estimating the screening constant have

40,41

been developed and tables of their values have appeared.42
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11.2 PF BASIS SETS

The choice of a basis set of functions into which the radial
wave function can be expanded is a rather arbitrary choice. Except for
trivial problems the true analytic form (if one exists) of the radial
wave function is unknown. Approximate analytic forms are usually
obtained by assuming an analytic form with variational parameters and
then varying these parameters until the energy is minimized. These
variational techniques are very dependent upon a good choice for the
analytic form. On the other hand, the least-squares fit of an analytic
function with fitting parameters to a numerical function is not very
dependent upon the choice of the analytic form (this fact has often
allowed experimentalists to fit their data to wrong theories, and
vice versa). This advantage of PF will tend to be offset by the large
smoothing of the integrarnd e.g., the radial wave functions, by the
double integrals in the Slater integrals. In other words, integrals
tend to be independent of the detailed integrand structure and this
independence allows poor radial wave functions to give good Slater
integrals. That is why constraints on the analytic radial wave function

are imperative.

Since the choice of the PF basis set is somewhat arbitrary,
it would be best to investigate several sets so as to obtain the best

43

one. The five best known sets are hydrogenic orbitals, Slater
orbitals,44 Boys orbitals,45 Bessel orbitals46 and Gaussian orbitals.46
Economic realities dictate that only one basis set be investigated (at
least until PF becomes a proven and useful tool). The Slater orbitals
are chosen because they satisfy constraints (15) and (16), are very
flexible, and are the most commonly used basis set., The PF expansion is

they written as

51



n-1

(0) )
(r) = AP (ax) + (o) (19)
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where, for Slater orbitals

Pg:)(ar) = [2a/(22 + 2)!) (Zar)g v lexp (-ar) (20)

This PF expansion has A, Bj’ C a, bj’ and c for the fitting parameters.
As stated the fitting parameters always occur in pairs, even though
there frequently are an odd number of Slater integrals which can be
used for fitting. Whenever this situation exists the value of c will
be approximated by Eq. (18). Since only Slater orbitals are considered

here, these fitting parameters will be called the Slater parameters.
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11.3 NUMERICAL PROCEDURES

The numerical evaluation of integrals such as the Slater in-
tegrals and those in Eq. (17) is a mundane, but important numerical
problem since these integrals are evaluated thousands of times in a long
PF iteration. The most commonly used technique is to use a variable
step size Simpson's rule. Herman and Skillman47 and Mann48 tabulate
their wave functions in a step size which starts from 0.01 for x between
0.00 and 0.10 and is doubled for succeeding ranges until 1.28 is the
largest step size used for large values of x. It is important to note
that the variable which is usually tabulated, and used as the variable
of integration is not r, but x, which is a Thomas-Fermi normalized
radius. The relationship between the two variables is given by

/3
b

r = (91/128 )} = Kx (21)

where Z is the nuclear charge.

Although Simpson's rule is the most convenient integration
method to use, it is neither the fastest nor the most accurate. The
trapezoidal rule is faster and only slightly less accurate. However,
the best integration procedure for integrals which contain radial wave

functions is probably Laguerre integration of the Gaussian type:49

- n
6 f(x) dx ;kgl v f (xk) (22)

The abscissa x, are fixed at the zeros of the nth order Laguerre

polynomial and the weights w, are determined from the values of the

k
(n+1)thorder Laguerre polynomial at the xkvalues. The weights and
abscissa are tabulated in the literature for many values of n.50 It is
53
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easily shown that when f(x) contailns radial wave functions, the Laguerre
integration rapidly converges to the correct value as n increases without
limit.

A comparison of these numerical integration methods is given
in Tables VIIIl and 1X where the integrals are between the Cu 4s electron
and inner shell electrons. The true values of the integrals have been
evaluated by Mann.38 Simpson's rule with 100 points is the most accurate
method, but extremely slow. The trapezoidal rule is slightly faster and
slightly less accurate. The 15-point Laguerre integration is about fiftv
times faster, but a little too inaccurate for most work., The 48-voint
Laguerre integration is five times faster and as accurate as Simpson's

rule integration.

It 1s clear that Laguerre integration is the best method for
PF, but the application of Laguerre integration requires more facts. The
Hartree-Fock radial wave functions which appear in the f(x) of Eq. (22)
are evaluated at the X values by six-point Lagrange interpolation. The
upper 1limit of the integral cannot practically be infinite, but must he
some value of x beyond which the integrand must be negligible. For the

15-point integration the upper limit is simply taken to be x i.e.,

15°
48.03. For the 4B-point integration the upper limit is the last tabulated
value of the radial wave function which is larger than 0.0001. For the

Cu 4s radial wave function this upper limit is 66.46.

The selection of the numerical integration technique now

allows the iterative PF methcd to be selected. A conventional problem

in physics is to fit via least squares parameterized functions to a given
curve. The PF problem is different in that the parameterized functions
are first integrated and the integrals are fitted to known values. This
difference poses a problem as to which iterative procedure should be used.
A Newton's method for systems of simultaneous non-linear equations and

a Direct Search method have been tried in which the sum of the squares

of the differences between the known and calculated radial integrals is

minimized.
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The Newton's method for solving a set of simultaneous non-
linear equations has been slightly modified for PF. This method should
quickly converge and has the advantage over other methods in that if it
does not work, the method specifies the reason for the impasse and, honefullv,
corrective action may be taken. The details of the procedure are given
in Appendix 3 where fn is the difference between the*nth calculated and
experimentally determined Slater integral, and the x are the n fitting

parameters of the basis set.

A constant danger in all non-linear iterations is that the
procedure will settle into a rather high local minimum and be unable to
adequately search parameter space for lower minima (in non-linear problems
many minima u~rually exist and the lowest minimum is usually not found).
Unfortunately, this danger was actually reality for the Newton's method.
It was all too clear from the beginning that the Newton's method was
inadequate for PF., The cause of the problem was traced to the almost
linear dependency of some of the Slater parameters. A detalled analysis

of the problem is given in Appendix 4.

The Direct Search method should work in all cases because it
is essentially an organized trial and error technique, and, indeed, it
does work very well, if a bit slow. The Direct Search program has been
internally developed by Westinghouse and basically works in the following
manner. From the initial set of Slater parameters, the sum of the square
of the differences between the known and calculated radial integrals is
calculated. The base set of Slater parameters is equated to the initial
set and a set of exploratory moves is made, adjusting individual Slater
parameters one at a time. The sum of the squares is computed after each
move. A particular move is retained if it produces a lower sum of
squares, but is otherwise rejected. If a set of exploratory moves lowers
the sum of squares, the adjusted Slater parameters replace the base
Slater parameters and the procedure is repeated. If a set of exploratory
moves does not lower the sum of squares, the base set of Slater parameters
is retained and a new set of exploratory moves tried. Direct Search con-

tains a set of rules for determining the step size of the exploratory moves
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for individual Slater parameters. These step sizes depend on the success

or failure of previous exploratory moves.
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11.4 SCREENING CONSTANTS

Tihe usage of PF requires the approximation of the Slater
parameters. The PF expansion is given by E¢. (19), but is written in
a more compact form as
" (o)
PnE(X) =7 Aum (amx) (23)
m=1

where the P;o) are the Slater orbitals, This expansion is more sensitive
to the a values than to the Am values since the a parameters appear in
exponentials. This expansion is also implicitelv dependent on the choice
of the M Slater orbitals, 1.e., on the choice of the nt for each orhital
as given in Eq. (20) (Although the Slater orbitals are independent of n,
the n? notation is retained to indicate which atomic crbital the Slater
orbitel is approximating). Since each Slater orbital is nodeless, the
selection of the M orbitals will be made such that the sum of orbitals

reproduces the nodes of the Pnz(x) as closely as possible.

The selection of the M orbitals is mainly based on experience
and 1s explored in the next section. The approximation of the Am is not
critical and crude methods (such as guesses) suffice. However, the
approximation of the a is an important function and is based on the con-
cept of screening constants. From Eqs. (16), (18), and (21) we see that

1/2

a =K [ (- an)/n] (24)

glves a method for approximating these parameters.

Slaterl‘o has given some rules for the estimation of screening
constants which are convenient to use, but very inaccurate. A more

accurate set of rules is given by Burns41 who fit a single Slater orbital
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to more than 90 Hartree-Fock wavefunctions. The results are given in
Table X. If n' is less than n-2, o gt is 1 and if n' is larger than

n+2, cn,z, is 0. The screening constant in Eq. (24) is obtained by

summing the screening c~nstants for each n'L' electron (excluding the

n? th electron) in the atom. Thus,

g, =17 (25)

o
nf n's! n'e!

For example, the screening constant for the Cu 4s electron is given by

%%s = 10+2(0.90)+6(0.75)+10(0.50) = 21.3 (26)

4
In other words, the 4s electron sees an effective nuclear charge of 7.7

since Z for copper is 29,

An alternate method of obtaining screening constants 1s to
use Eq. (18) by putting Mann's valuea38 of the binding energv on the left
hand side and solving for the screening constant. This can Le done for
the first 103 atoms and the resulting screening constants averaged. The
result is given in Table XI. In this case the screening constant for the

Cu 48 electron is given by

9s ™ 10+2(0.875)+6(0.776)+10(0.918) = 25.586 (27)

4
or an effective nuclear charge of 3.414. This value is considerably lower
than the value calculated from Burns' rules. This is consistent with the
different rule derivations since Burns fit the entire wavefunction whereas
the Mann's rules are obtained from Eq. (16) which 1is only valid for the

outer portion of the wavefunction.
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11.5 APPLICATION TO THE Cu 4s ELECTRON

The final proof of any new aumerical technique is in the ap-
plication of the technique to a good test case., A good test case for
PF is the Cu 4s electronic radial wave function. This wave function is
sufficiently compressed that 15-point Laguerre integration can be used,
thereby reducing computer expenses. On the other hand it is sufficiently
complicated, e.g., it has three nodes, to tax any radial wave function
generating technique, It may at first appear that a s wave function is
too simple and that a p or d wave function should be selected. However,
these latter wave functions are too extended for 15-point Laguerre in-
tegration or have too few nodes., Furthermore, although there is a con-
siderable difference between different % value angular wave functions,
there is no explicit difference between different £ value radial wave

functions.

Values of some <r'> integrals and Slater integrals between
the 4s electron and some inner gshell electrons are given in Table XII.
The F° Slater integral, the normalization integral, and the three ortho-
gonality integrals with the 3s, 2s, and ls electrons gives values of
five integrals which the PF 4s wave function must reproduce. Thus, the
PF expansion will have five fitting parameters. The 3s, 2s, and ls wave
functions needed for the orthogonality integrals will be those of Mann,48
as will be the 4s wave function which will be considered as the "true"

wave function with which the PF wave function will be compared.

There are many different ways of selecting the initial PF
expansion. Seven different methods were tried; the first four expansions
have three Slater orbitals with the last exponent being fixed, and the
last three expansions have five Slater orbitals with all the exponents
being fixed. Thus, the first four expansions can have at most two nodes

while trying to reproduce a three node wave function. This may lead
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to some inaccuracy near the origin, However, these same expansions have
two fitting parameters in the exponents which would appear to give them

a greater flexibility than the five-term expansions. These seven ex-
pansions were tested by comparing, after 100 seconds of computing time

on a Burroughs B5500 Computer, the standard deviation between the five

PF integrals and the five Yirtree-Fock integrals. The results are
summarized in Tablee XIII and XIV. These expansions will now be described
in detail.

Set 1: Switched Input. This set was actually set 3, but an

accidental shuffling of data cards exchanged the a, and A3 parameters.

The result was that the first and second Slater orbitals almost cancelled.
In other words, this set represents an extremely bad initial expansion

and should consequently yleld relatively bad results. However, as

Table XIII1 shows, the PF procedure was able to recover from this extremely
bad set (note the initial standard deviation of 8.983!) and produce a
respectable final standard deviation of 0.069! Although this final
standard deviation was the highest found, it is not bad and prroves the
great stability of PF.

Set 2: Optimized Set. Since the 48 wave function has one

very prominent hump, a good starting expansion might be obtained by first
optimizing the fit between a three-term expansion and the single hump.
The result of this optimization is given in Table XITI., Although there

are no nodes in this set, the PF procedure inserted one.

Set 3: Burns Set. This set has its exponents determined from

thesurn541 screening constants. The Am parameters are arbitrarily fixed.

Set 4: Mann's Set. This set has its exponents determined from

Mann's binding energies.38 The Am parameters are arbitrarily fixed.

Three of these three-term expansions resulted in two node PF
wave functions. This seems to indicate that the PF wave function is
using one Slater orbital to reproduce the main hump of the 48 wave function
(and thereby the F° and normalization integrals) and two Slater orbitals

to accomodate the orthogonality constraints.
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Set 5: Mann's Set. This five-term expansion is determined

from Mann's binding energies as was the case for Set 4. It is interesting
that although the initial standard deviation is worse than that of Set 4,
the final standard deviations are almost identical. The five Slater
orbitals for this and later sets are chosen so that there is a ls, 2s,

and 3s Slater orbital for the orthogonality conditions, a 4s orbital

for the normalization, and a 3d orbital to help form the main hump of

the wave function.

Set 6: a Peaked. The location of the maximum value of a

Slater orbital is given by

*max Pm/am (28)
where P 1s the power of x (or r) in the Slater orbital (see Eq. (20)).
The X ax of the Hartree-Fock orbitals which these Slater orbitals are
approximating are given in Table XV. The a are determined by setting
P, to the conventional value of £ + 1. The Am in all the five-term
expansions are arbitrarily set to the X ax value of the nth orbital
divided by the square root of the sum of the squares of all the X ax
values. The signs are selected to give three nodes. This procedure

ylelds the same accuracy as the last two sets.

Set 7: P Peaked. Instead of letting Py be £ + 1, the a

could be set to those values of Set 5 and P could be found from Eq. (28).
The result is given in Table XV. These "exact" p, can then be rounded

to the nearest integer value, and the a solved for. Thus s Slater
orbitals approximate the ls and 3d Hartree-Fock orbitals whereas p

Slater orbitals approximate the 28, 3s, and 4s Hartree-Fock orbitals.
This set gives a standard deviation at least three times lower than the
previous sets, This illustrates the importance of having each Slater

orbital accurately represent the main hump of the orbital it is approximating.
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Set 8: Final Set. This set is simply a continuation of Set 7

and illustrates the capability of PF to obtain accurate wave functions.
In several minutes of computing time the standard deviation is reduced

from 0.0100 to 0.0002, In detail the errors in the five integrals are

given by
<4s | 18> = - 8x107
<bs | 28> = - 3x10”7
<bs | 38> = 2x107°
<bg | 48> = 3x107%
F° - - 3x107 (29)

The orthogonality constraints are the best satisfied.

The final result of Set 5 has two nodes whereas the results
of the last three sets have three nodes. The most accurate sets possessed

three nodes although this is clearly no guarantee of a good set.

Thus far the various expansion sets have been compared as to
how well they reproduce the five radial integrals of (29). However, the
real question is how well they reproduce the 4s Hartree-Fock wave function.
The answer is given in Table XVI where, in particular, the percent standard
deviation between the PF and Hartree-Fock wave functions is given in the
third column. It is quite evident that a good fit of the integrals in
(29) does not guarantee a good fit of the wave function. Actually, of
the first six sets, the Burns Set and Optimized Set give the best re-
sults. Of course, Set 7 (and therefore Set 8) yields the best wave
function. The <}‘> integrals describe where the PF expansion gives a
poor fit. The fits are usually poorest at very small x, very good in
the main portion of the wave function, and gradually become poorer in the
tail. The wave function derived by PF Set 8 is compared to the Hartree-
Fock wave function in Fig. (41). This figure gives.ample proof that the

PF method works and works well.
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12. GROUP PROPERTIES

Group theory has successfully elucidated and simplified the
angular portion of atomic wave functions. It is hardly an exaggeration to
state that much, if not most, of our knowledge of the actinide and rare
earth atoms has come from their group properties. However, the present
status of the radial portion of atomic wave functions is quite primitive with
respect to the angular portion of the wave function. The best radial wave
functions presently obtainable result from some tvpe of Hartree-Fock calcula-
tion. This type of calculation is very difficult and time consuming, even
with the use of modern computers. In addition, there are many unsolved
theoretical problems in the Hartree-Fock procedure.

The greatest weakness of Hartree-Fock procedures is that the re-
sulting wave function has no known transformation properties with respect
to any symmetry groups of the atom. Because the angular wave functions do
transform in known ways with respect to certain groups, many selection rules
are known, and even more important, many matrix elements are known which
are proportional to each other. This latter result, a consequence of the
Wigner-Eckart theorem, enables one to calculate the values of one set of
matrix elements and, after finding a single constant of proportionality, to
write down directly the values for another set having the same transforma-
tion properties. Unfortunately, since the transformation properties of the
radial wave functions are unknown, such a labor-saving simplification cannot
be used to relate radial matrix elements.

The mathematical techniques to be used in this work are not well
defined. Although a great deal of effort has gone into the general prob-

57, it is not certain that the techniques exploited by mathematicians are

lem
the best techniques to apply to physical problems. Because of the uncer-
tainty in the techniques and the associated inherent difficulties, the

present investigation is confined to the hydrogen atom, since the radial

wave functions are well known and well studied in this csse.
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Although the hydrogen atom has been extensively studied, most of
the group theoretical work which involves radial wave functions has consisted
of studies of hydrogen using the orthogonal groups 0(4), 0(4,1), etc. How-
ever in this case, the radial wave function has not been studied directly
since the basic functions for these groups are composed of product of
radial and angular parts. This report studies the group properties of the
hydrogen radial wave function themselves.

Two approaches for this study immediately come to mind. The
first approach is to search for a selection rule based on a symmetry group
of the hydrogen atom: R(4), the proper rotation group in four dimensions.
The second approach is to study the groups for which Laguerre polynomials
form bases of representation. These groups may be pertinent because the
hydrogen radial wave function is proportional to a Laguerre polynomial.

These approaches are studied in detail in Appendix 5. The R(4)
group does explain some selection rules and has promise for explaining
some vanishing matrix elements. The second approach leads to the complex
3-dimensional rotation group. In order to search for the desired selection
rules, the representation to which the operators r® belong must be known.
The latter problem is not trivial and the solution is not known.

Another approach is examined in Appendix 6. Here hycrogenic
radial wave functions are shown to form bases for representations of the
algebra of a three dimensional iion-compact group. Powers of r are found
to transform as tensors with respect to this algebra. Through the proper-
ties of the group, matrix elements of r-N(N positive) can be expressed in
terms of the familiar Clebsch-Gordan coefficients for R(3). For the first
time these coefficients explain the known selection rules of the radial

wave functions of hydrogen.
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13. SUMMARY

The calculation of atomic spectra requires the knowledge of
radial wave functions which determine the transition probabilities
between the atomic energy levels. Transition probabilities are very
difficult to measure and they are therefore calculated whenever possible.
For example, in arc discharge emission calculations the angular wave
functions are calculated in intermediate coupling from experimentally
determined Slater integrals and the radial wave functions are calculated
from the Thomas-Fermi4 or the Bates and Damgaard coulomb18 approximation,
but these latter methods are limited to light atoms with one or two
valence electrons. However, it should be possible to determine the radial
wave function for any atom by fitting a power series expansion with
parametric coefficients of the radial wave function to the experimentally
determined Slater integrals (used for the angular wave function) of the
radial wave functions, keeping the radial wave function normalized and
orthogonal to closed shell electrons. This parameter fitting (PF)
technique has the advantage of being independent of the complex electronic
shell structure. Thus, PF should succeed where all other methods fail.

An alternative to the PF method is to apply group theory directly
to the calculation of the transition probability matrix elements, thus
bypassing the need for an exact knowledge of the radial wave function.
This technique has worked extremely well for angular wave functions but
thus far has falled for radial wave functions.

This study of radial wave functions has progressed with some
significant progress. The PF technique has been developed and tested
on a Hartree-Fock Cu 4s radial wave function which was reproduced by PF
to within +8%. This technique is relatively slow but for the first
time a method is available for the determination of radial wave functions
for any atom. Moreover, this technique is more consistent than other
methods since the same Slater integrals are used for both the angular

and radial wave functions.
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The knowledge of "experimentally determined" radial wave func-
tions via PF is intriguing. Transition probabilities may be calculated
more accurately and fér more complex atoms than presently done in arc dis-
charge calculations such as described in the first six chapters of this
report. Furthermore, these transition probabilities would be "experimentally
determined", i.e., not from ab initio theoretical calculations.

A potentially more interesting application of PF is to determine
the radial wave functions of atoms in crystals. Whenever the crystal
field parameters are known, they can be treated as additional Slater integrals
in PF. Thus, the radial wave function of an atom can be studied in differ-
ent crystals, e.g., Nd3+ in YAG, LaC13, Y203, Y2028, etc. The correlation
between the physical extent of the radial wave function and the fluorescing
or lasing properties of the atom can then be studied.

Significant progress has also been achieved in the application
of group theory to the calculation of matrix elements over the radial
wave functions of hydrogen. In particular,hydrogenic radial wave
functions have been shown to form bases for representations of the algebra
of a three dimensional non-compact group. Through the properties of this
group, matrix elements of r—N (N positive) were expressed in terms of
the familiar Clebsch-Gordan coefficients for the proper rotation group
in three dimensions, R(3). For the first time these coefficients explain
the known selection rules of the radial wave functions of hydrogen.

This successful group theoretical investigation of the hydrogen
radial wave function is of particular long~range significance and should
be immediately applicable to heavier atoms via at least two methods: the
quantum defect method and the 1/Z expansion method. Both methods use
hydrogenic radial wave functions. The PF method could also be used by
replacing the Slater orbitals in the PF expansion with hydrogenic wave

functions.
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This successful investigation strongly suggests that group
theoretical investigations of more complicated radial wave functions may
be possible. In addition, it is particularly gratifying to demonstrate
that the radial and angular parts of the atomic wave function can be
placed on a more even footing and theoretically treated with the same

general techniques.
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APPENDIX 1

) Reprinted fromt APPLIED OPTICS, Vot. 8, page 1875, September 19
Cuapyright 1969 by the Opl«cal Soceety of America and repnaled by perm‘i)ssion e;r’ lthsg copyright owner

A Comparison of Lamps for Use in High
Continuous Power Nd:YAG Lasers

I. Liberman and R. L. Grassel

The efficiency of krypton, xcnon, and tungsten -iodine lamps for pumping Nd: YAG are compared hoth
spectroscopically nnd hy laser pmmping.  The relatives pumping efficiencies of xenon and timgsten to kryp-

ton are 086G and 1.1, respectively,

However, heenuse the tangsten filunent nses a higher per-

centage of its power in overcoming the laser threshold, the krypton kunp with its larger power density

yielded the hest over-nll efficiency.,
foran over-all efficiency of 2.99.,

Introduction

The tungsten filament lamp was the first and is today
the most common lamp used for pumping Nd:YAG
in the ew mode of operation. Because of the develop-
ment of the tungsten—iodine eycle these lamps are com-
pact and can operate for appreciable duration near the
melting point of tungsten. Even at this temperature,
the radiance of tungsten is low compared to some gas
discharges. However, if the radianee from continuous
discharges is to compete with the radiance from a
tungsten filament, lamps must be constructed having
electrodes and envelopes which ean withstand the
average power dissipated at high current densities.

The diameter of Nd:YAG rods used for ew applica-
tions is limited to the order of 1 em because of the
rudial thermal gradicuts vecurving at high average
power and because of growth considerations. In
ey dnygitg pavmng evity thee s o addantuge. lo
lnmp diameters being larger than rod diameters since
the imaged radianee can never be greater than the
source radinnce and that it is desirable to collect the
radiation over 4r sr. At current densities obtainable
continuously in a l-em diam discharge, the plusma is
optically thin. That is, the radiation from the contin-
uum is much less than that of a blackbody at the same
temperature as the plasma. The radiance from the
line spectrum may be orders of magnitude greater than
that from the eontinuum. Therefore if the line spec-
trum of a gas has o good overlap with the absorption
spectrum of Nd: YAG it might be superior gas for use as
a laser pump. However, although intense, the lines
are usually narrow and therefore may only contain a
negligible part of the energy dissipated by the lamp.

The anthors are with the Westinghouse Research Lahoratories,
Pittsburgh, Pennsylvania 1.,235.
Received 12 Febrnimry 1964.

An outpat power of 105 W was obtained at an input power of 3610 W

It has been observed'—# that the line spectrum fram
krypton is a better mateh to Nd:YAG than the line
spectrum of xenon. Ior pulsed pumping of lasers,
xenon is superior to krypton beeause the current densi-
ties are sufficiently high that the line spectrum ix
negligible! and xenon, beeause of its large atomie
weight, is & more efficient continuum radiator than
kryptan®  For continuons discharge lamps the com-
parison beeomes difficult because both the continuum
and the line radiation may be nearly equivalent. A
number of methads can be used to compare lamps al-
though none of them are entirely satisfactory.

The simplest method is to measure the fluorescence
from a Nd:YAG sample when irradiated by various
sottrees plated ot large distivices Trumi the Y AU samplo.
This experiment is difficult to perform because the
ety i bow, thic vt mediation s orders of mrgnd-
tude -greater than the fluorescence, and the radiation
around 1.06 g is camparable to the fluorescence, Read!
performed an experiment of this type and concludel
that the relative fluorescence resulting from Ikr, Xe,
and W-I; lamps was 1.90:1.00:0.63, respectively.

A second approach is based on spectral measure-
ments. While this technique yields a great deal more
information, the iuterpretation is difficult, tedious, and
requires very precise wavelength measurements. The
importance of wavelength preeision is a result of the
narrow absorption lines of Nd+%in YAG (about 10 &)
and, as will be shown, the even narrower line radiation
from Xe and Kr. Previous speetrul measurements?®
of continuous noble gas discharges have been made
using relatively poor resolution.  In one comparison be-
tween Xe and KKr? the resolution stated was 50.0 A,
However, the band replotted curves show full widths
at half height of over 100 A which is over an order of
magnitude greater than the actual line width and thus
distorts the actual contribution from the hines. There-
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Fig. 1. Line spectrum of (a) krypton and (b) xenon lamp at 200
uV full seale.  Spectral radiance = 15.5 yWisr — A — mm? —
V)

fore before spectral measurements can be used to com-
pare gases, high resolution must be obtained.

A third method of comparison is the actual laser test.
Here comparison is difficult unless the laser head is
optimized for each specific lamp. Since a tungsten
filament lamp has well defined radiating dimensions
while a gas discharge does not, this comparison can be
subject to criticism., Read found that Kr had a slope
efficiency about 2.4 times as great, as Xeor W-I,, How
ever, since no absolute numbers are given, the degree
of optimization cannot be determined.

Experimental Apparatus

The discharge lamps used for our tests are very
similar to the lamp described by Stearn and Colliver.
That is, cooling water not only flowed over the quartz
envelope, but also cirenlated inside the hollow elec-
trodes. The electrode spacing was 5 em and the bore
diameter 5.5 mm. The electrode diameter was 5 mm
so that the gas space behind the electrode tips was kept
at a minimum thus building up the operating pressure
as much as possible over the fill pressure of 2 atm,

The rod used was 5 mm X 50 mm and had antire-
flection coatings placed on the flat ends. The rod was
centered in an optical cavity of 41-cm length terminated
by two dielectric mirrors of 1-m radius of curvature.
The output reflectivity was 959 which for Kr and Xe
pumping was found to be more nearly optimal than
989, or 929, reflectivity. The pump cavity consisted
of a 25-em diam gold coated sphere.” While we believe
this cavity is superior to an elliptical eylinder, it has a
further advantage when comparing lamps in that it
provides a one to one image. Therefore good geo-
metric coupling is always assnred if the lamp diameter
is equal to or smaller than the rod diameter. In an
elliptical cylinder having an appreciable eccentricity,
the image coming from over 4 the solid angle of the
lamp radiation is magnified.

Spectral measurements were performed using a Jar-
rell-Ash }-m Ebert monochromator. The curved slits
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were 40 u wide corresponding to a resolution of 0.64 A.
The detector used was a silicon p,i,n photodiode. The
system was calibrated with a ealibrated tungsten spectral
radiance standard and automatjeally corrected for non-
linearity between 5000-10,000 A by using a variable at-
tenuator.

The laser power was measured with a Spectra-Physics
model 401 photovoltaic cell in conjunction with two
quartz plate beam splitters. It was calibrated using a
TRG model 107 ballistic thermopile. Each quartz
plate deflects the radiation 7.5° from the normal, and
in mutually perpendicular planes. This allows for
relatively easy alignment and removes any calibration
variations with polarization. The discharge lamps
were dc excited, while the tungsten lamp ran on 60-Hz
ac.

Spectral Measurements

The speetra of the krypton and xenon lamps operat-
ing at 35 A are shown in Figs. 1 and 2. Since the peak
intensity of the continuum is orders of magnitude lower
than that of the lines, the continuum radiation is
clearly optieally thin. Line widths were obtained by

B J ‘ ) | ) | o B i ] AL., ! -
Fig. 2. Continuum spectrum of (a) krypton Jamp at 2 uV full

scale and (b) xenon lamp at 5 uV full scale.  Spectral radiance —
15.5 uW(sr — A — mm? — uV)-t,
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Fig. 3 Power conversion of 5 mm X 50 mm Nd:YAG.
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Table I. Comparative Spectral Efficlency of Lamps for Pumping Nd:YAG
2.28-kW krypton 2.73-kW xenan 2. 4-kW tungsten
Wavelength Useful Avg. Avg. Avg.
region portion Weighting intensity producet intensity product intensity product
(w) &) factor MY (R-uV) uV) (R-uv) uV) (R-uV)
0.50-0.60 300 0.50 0.8 120 1.4 210 1.4 150
0.74-0.83 600 0.75 0.6 270 1.0 450 1.4 855H
0.86-0 .90 30 0.85 0.5 13 1.0 25 1.9 8
Lines 20 0.75 3000 450 —_ —_ —_ =
Total %53 ((EY) 1053
Total/kW 374 200 430
Floorescent. efficiency 4.3, 2.9, H.04,,

¢ Average line width of krypton.
b Total absorption of all lines.

using a much slower sean speed. For each gas the
line width of the various lines varied about 209%,. An
average measured full width at half height for krypton
was 2.0 and for xenon it was 4.9 Thercfore,
despite the lower peak intensities and fewer number of
lines, the xenon lamp is a superior emitter of line radi-
ation in the wavelength region studied. In the con-
tinuum the xenon lamp is also more efficient than kryp-
ton by about 309,

Because of the spectral overlap of the krypton lines
with the Nd:YAG absorption spectrum the krypton
lamp ean be more efficient than a xenon lamp for pump-
ing Nd:YAG. The overlap was measured by placing
a spectroscopic Nd: YAG sample in front of the mono-
chromator entrance slit. The results show that the
overlap for krypton lines is appreciable while for xenon
the overlap is negligible. As shown in Table I an
estimate of the relative pumping efficiency of the lamp
is given based on the spectral measurments. The effect
of reflection from the Nd:YAG spectroscopic sample
wns taken into account in making the calculation. It
was assumed that all photons absorbed in the measured
wavelength region contribute equally to photons emit-
ted at 1.064 u. However, the energy absorbed at
each wavelength was multiplied by the ratio of the
wavelength to 1.064 u. Since the spectral measure-
ments are absolute numbers, a calculation of laser
efficiency can be approximated. This was done as
given in the last row of Table I. The collected energy
was assumed to be 0.75 (3 sr) of the emitted radiance
based on a computation of the spherical pump cavity
efficiency. Due to the difficulty in determining the
spectral overlap the accuracy of the over-all efficiency
is no better than 30%. The tungsten measurcments
were obtained using a 2550 K spectral radiance staudard
and converted to 3200 K by using a table of blackbody
radiance. The 2.4-kW input power was calculated as
the radiation from a 5 mm X 50 mm cylinder of 0.4
emissivity at 3200 K having an 809, radiative efficiency.
These calculations show that tungsten is about 169,
superior than krypton in spectral efficiency for pumping
Nd:YAG.
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Laser Tests

Oue lamp was used for hoth the xenon and the
krypton tests so that all other parameters would be
unchanged. The lamp was first filled with two-atm
xenon and pinched off.  After the test, only a negli-
gible amount of blackening was observed on the
quartz wall. The lamp was opened, refilled with 2-atm
krypton and pinched closed. For the case of tungsten
pumping, no lamp was available for a proper geo-
metric match to the laser rod. A 2 mm X 50 mm
single coil filament was used which limited the input
power to 1070 W. The results are shown in Fig, 3.
The saturation of the output under xenon pumping is
not peculiar to the xenon lamp. Saturation was ob-
served with the krypton lamp when the resovator spac-
ing was increased to 50 em. It is belicved that the
saturation is a result of a strong leus effect in the rod
duc to the radial thermal gradient present.  In pump-
ing the rod without the resonators, and plaeing o He:Ne
beam axially through the rod, a positive lens was ob-
served with a waist minimum oceurring less than 20 em
from the rod. This strong lensing should inerease the
losses for many of the oseillating modes, 1t ix further
hypothesized that sinee the xenon lamp is more ofli-
cient than the krypton lamp in pumping the visible
absorption bands, more heat is dissipated in the rad for
the same output power. Therefore, the equivalent
lensing should oceur at lower output power levels for
the xenon lamp.  With tungsten pumping, beeause of
the low input power, a 989, output mirror produced an
over-all efficiency of 1.4%, eompared with 1.239; using

Table li. Summary of Pumping Efficiency of Lamps

Calculated by Several Ways

Absolute % L _ Relative
Efficiency Kr Xe w Kr Xe w

Spectral 4.3 2.9 H.0 A 0.68 116
Slope 3.74 3.22 - 1.0 0.76 =
At 80 W 2.03 2.13 -— 1.0 0.51 ==
At 15 W 1.16 0.5 1.22 1.4 0.77 1.06
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the 959 mirror. However, for comparison purposes
the 95%, mirror results are shown,

Because of the threshold power required to obtain
oscillations, the over-nll efficicncy of the system is a
funetion of input power thus making compurisons sub-
ject to interpretation. Assuming the speetral coffi-
cieney of the lamp does not vary with power, the slope
cfficiency should be proportional to the speetral effi-
ciency and equal to it for n lossless system.  Row 2 of
Table H gives these results.  Row 3 and 4 of Tuble 11
gives the over-all efficicncies at outputs of 80 W and
Ih W,

Discussion and Conclusions

The eomparison of efficieney by speetral and laser
tests agree within experimental error. We  believe
that beeause of the diffieulty in interpreting the spee-
tral data, the slope efficieney is the most aceurate men-
surement.  Therefore our best estimate of relative effi-
ciency between Kr, Xe, und W is 1:0.86:1.1, re-
spectively. This is in eonsiderable disagreement with
Read.! Our spectral data look quite different from
those previously published?* because their spectral
resolution is much poorer than the true line width of
xenon and krypton operating under the conditions
deseribed.

Using the krypton lamp an output power of 105 W at
an cfficiency of 2.929% has been obtained. A potas-
sium-mereury speetral additive lamp has been de-
veloped® whieh has a spectral efficicney over three
times that of tungsten which in tirn has o better
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spectral efficiency than krypton. Therefore we pre-
diet that with development u ¢w Nd:YAG laser will
have an efficieney appreciubly greater than the results
reported here.

We wish to thank C. Spontak, E. Kowal, mud A, Zot-
tola for construeting the electrodes used in the dis-
charge lamps. We also thank C. H. Chureh for de-
veloping the foundation of this work.

Note wlded in proof: Additional data on vare gas pumping ef-
ficiencies has heen receutly published hy J. R, Oliver and 19, 8,
Barves, IKEE L Quantum Electron, QES, 2235, 222 (1968). As in
Ref. 1, laser test results are in arhitrary units which conld lead
to cerroncons canclusions if all parameters wre not fully opti-
mized.  Also, axin Ref. 2, the speetenl resolution was 100 X which
is estimated ta he an order of magunitude greater than the nwetnal
line width under their opcerating conditions,  Hawever, their
conclusions are similar to ours,
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APPENDIX 2
ROD TO SLAB TRANSFORMATION

Al'hough the simple slab laser geometry has been used for
the computer calculations reported in the text, the most common laser
geometry 1s that of a cylindrical rod in a cavity. In order to fully
utilize the computed results for the slat laser geometry, the cylindrical
rod in a cavity geometry must be transformed to an equivalent slab laser
geometry, This transformation is given in this appendix.

The emittance (power per unit surface area) absorbed by an

arbitrary body as a function of wavelength is given by
(2.1) Pa = Po S [1 - exp (-ac)] dw

where o is the spectral absorptivity, c 1is the chord length traversed
by the 1light in the body, Po is the incident light emittance, and w

is the solid angle. The integration is over the entire absorbing body.
An effective chord length ¢ can be defined as that length which absorbs
from a single light ray the same power density as the actual body, i.e.,

(2.2) Pa B Po [1 - exp (-ac)]
Thus an effective chord length can be found for a given wavelength for
any absorbing body from an evaluation of Eq. (2.1).

The effective chord length for the slab geometry is easily
found when the light is perpendicularly incident on the slab because
then

(2.3) Pa = Po [1 - exp (-ast)]
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where t is the slab thickness and ag is the absorptivity of the slab.

Therefore

nl
L}
(2]

(2.4)

which is rather obvious.

The effective chord length for a laser rod geometry can be
found from Eq. (2.1) with one modification. The rod in a spherical
laser cavity subtends a very small solid angle when viewed from the
lamp and therefore almost all the light absorbed by the laser rod is
first reflected by the laser cavity walls. The rod is thus bathed in
this reflected lamp light. However, the light intensity emitted by
the lamp has an approximate Lambertian distribution with respect to
the angle @ between the emitted light ray and the normal to the outer
lamp wall. Specular reflecting laser cavities maintain this Lambertian
distribution at the rod surface. A surface roughened rod will slightly
modify the Lambertian distribution but probably not by a factor
larger than the accuracy of the general pump efficiency calculations.
In any event, we assume the light distribution within the rod to be
Lambertian and that Eq. (2.1) can be written as

(2.5) Pa = (PO/n) S [1 - exp (-arc)] cos O dw

where the integration is over the laser rod and a. is the rod absorptivity.
The 7 in the denominator keeps the same light emittance incident on the
laser rod and slab. The integral in Eq. (2.5) has not been analytically
solved but Pukhov51 has numerically evaluated it for an infinite cylinder

of diameter d and expressed his results in the simple form:

4.7

(2.6) ¢ (ard+6.44

+ 0.27) d
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The rod to slab transformation is completed by equating the
emittance absorbed by the slab to the emittance absorbed by the rod,
provided the incident emittance is the same. In other words Eq. (2.2)

is the same value irrespective of which effective chord length is used,

i.e.,

(2.7) ac, =a c
which implies that

(2.8) t =D c.

where D is the activator doping of the rod relative to the activator
doping of the slab.

The transformation is strictly valid for only one wavelength
but for the 5 x 50 mm Nd:YAG rod used for the laser system efficiency
measurements Eq. (2.8) is fairly constant for all wavelengths, as can

be seen by using the experimental parameters to obtain

(2.9) D =1.3/0.7
and
(2.10) 0.63 cm < t < 0.93 cm

where,using Eqs. 2.6 and 2,8, the maximum absorptivity (10 cm-l) within
the main absorption bands of the rod determines the lower limit and
zero absorptivity determines the upper limit. An average value for

the absorptivity is roughly 2 cm-1 which gives an average value of

(2.11) t = 0.84cm
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This value is better than one might expect at a causal glance. The

average value of 2 crn-1 for the absorptivity is admittedly crude but
only appears in the denominator of Eq. (2.6) and a *+ 1 cm error in this
average value only gives an error of + 0.04 cm for the effective slab
thickness. Thus, to a good approximation, the laser rod used in the
experimental measurements reported in Appendix 1 is equivalent to a
slab of thickness 0.84 cm.
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APPENDIX 3

NEWTON'S METHOD FOR PARAMETRIC FITTING
OF RADIAL WAVE FUNCTIONS IN INTEGRALS

A, J, Federowicz

The radial wave fitting problem has already been formulated
as one of solving sets of simultaneous non-linear equations in which the
number of fitting parameters (variables in the fitting problem) equal
the numbers of equations, These simultaneous equations result from
applying normality and orthogonality conditions which the radial wave
function must satisfy and from attempting to obtain agreement with
certain experimental observations,

If the number of equations were larger than the number of
parameters, this proposed procedure would be modified, but not drastically.
What would then be done would be to fit such overdetermined sets of
equations using least squares, As will be seen, a least squares
criterion is suggested here for a different reason and to apply this
criterion to overdetermined sets of equations would be a minor
modification.

The proposed procedure is to use a modified form of Newton's
method for solving systems of simultaneous non-linear equations. The
modifications are aimed at guaranteeing convergence of the iteration
and at avoiding the use of analytic partial derivatives.

Newton's method for solving a set of simultaneous non-linear
equations is as follows: as the problem is generally phrased, for a
set of m functions of m variables, one is to find a point at which the
m functions are simultaneously zero, that is, find

e
X = (xl*, X¥ es xm*) such that

-5
(3.1) £ = £,(%) = .=£G*) = 0
or in compact form

(3.2) tGx*) = o.
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Newton's method consists of making simultaneous linear approxim tions

(n)

to the m functions at some point, X s and solving this set of linear

approximations for the point where all will be zero. That is
b, + f Oy

(3.3) £ = £GM)+¢ bt g b

1 lx1 1 lx2 2 lxm m
X) % (n)yt¢ 4 bx,. -
) m m
F) 2 £Myre B +f . Bx 4 ...+ f Iy
m mx 2 ** mx m
1 2 m
which upon being set equal to zero yields
r— 1 p— -. 1 - -
(3.4) Ax f f [N ] f E - f
1 lx1 lx2 lxm: 1
by f f doo 9 f
2 2x1 2x2 2xm 2
Ox f eee f f
| ™ L mx, mx, "D%L L n[

or in compact form
- S0 21 =,
3.5 &M = BaMt 1)
The iteration then consists of using the obvious recurrence relation

(3.6) 3P o ), R

If there is only one equation in one unknown, this formulation reduces
to the familiar form of Newton's method in which
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s e s

(n) _ fgx(n)%
i =
" £1(x\")

L) _(n) s (n)

(3.7)

In the radial wave function fitting problem some of the
equations will not be in analytic form but only as numerical approxima-
tions to integrals. Difference approximations to the partial derivatives
should thus be used in constructing the [?;] matrix. This modification
will considerably simplify the necessary computer programming since
only one subroutine, which simply evaluates ?, will be necessary in
setting up f and [f*] for each case, It is necessary to use differences
which will estimate f* accurately, however, Attention must thus be
pald to the question of how many significant digits result from the
differencing process.

In order to guarantee convergence of the iteration, x x(ml)
computed using (1.6), will be accepted only if it represents a better
gsolution to the set of simultaneous equations than x does. For
reasons of simplicity "better" will be taken to mean that

(3.8)  |[EG™D)| |2 ¢ | EGM)) |2

with weighting of the components of ? being an option, Equation (1.8)
says that the sum of the squared errors must be reduced from one step
to the next.

1 *™1) regults tn an increase in [|$(X)||? then the chord
<(n) 2(nr+1)

be done assuming linearity of f between x

will be searched for a better value, This can
=(n) S(nr+1)

joining x and X

and x as follows:

(3.9) TG )y 2 3n)y 4 gdx(m)y C 30y

?(n) ~ 0 Z?(")

78



The point at which the norm of this linear approximation is minimized

can be used to determine S, The minimizing s is given by

2(n), z3(n)

(3.10) s = -
|13 %

-
If this interpolating procedure does not produce a smaller ||| 2 at

2(n) | x2(n) 2(n
X + s*f\x""’, then it may be repeated several times using x and

=(n)

—
X + s¥ Ax(n) as new end points. If this strategy fails then a

different one dimensional search strategy, such as interval halving,

may be employed.

-
In the case that f = O has no solution, as is likely to be
-
the case in this problem, the determinant of [f;] will tend to zero as
-l
| I'£]| tends to a positive value. The analogy with the one dimensional

case is that f'(x'"’) is zero at any point where ||f2|| is
minimized, if that minimum is non-zero, which is the case when f = 0
has no solution, It is instructive to examine what Newton's method

does when used to look for a zero of f which does not exist in the one

dimensional case. The method will usually oscillate, neither approaching

a limit nor diverging, in such a case, For example, if the problem is

to find a zero of f =1 + x2 then one has

2
(3.11) &M = 1)
2x n
and
(n)
(nt1) _ 1
(3.12) X = 2—— - ;‘(m

For large Ix(n)l the term 1/2x(n)

can be ignored and this formula says

that x n) wiil be halved at each step. As |x(n)| becomes small,

however, this term dominates and causes |x n | to again become large,
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(n)

while also causing x to change sign. A similar behavior occurs in
multi-dimensional problems in which ? = 0 has no solution. By insisting
that ||£||? be reduced on each step, this possibility of oscillation is
avoided,

A problem which may also occur is that ? = O may have
several solutions and/or that ||f||? may have several local minima.
Since this problem can be rigorously resolved only in the case that one
is dealing with a convex function, different starting points should be
tried for the iteration. Then if the iteration consistently converges
to the same answer in a given case, one can be reasonably certain that
the answer is unique; if convergence to different answers occurs, then
the best answer should be slected and one must be careful about finding
the best answer in other cases.

As a final point, it should be mentioned that a number of
other optimum search procedures are potentially applicable to this
problem. These include Direct Search, GOOP and a non-linear least
squares program written by R. D, Fardo, three methods which have been
used extensively at this location. An essential feature, which must
be maintained in any computer program of this proposed procedure in
order to make such other techniques easily usable, is the separation
of the functional evaluation subroutine from the logic of the
iterative method.
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APPENDIX 4
COMPARISON OF DIRECT SEARCH AND NEWTON'S METHOD
A. J. Federowicz

This appendix is a post-mortem on why Newton's method, suggested
in Appendix 3, did not work well on the radial wave function parametric
fitting problem. Conversely light is shed on the question why Direct
Search did a relatively much better job.

The characteristic exhibited by the modified Newton's method
was that it became hung up in local areas during the search. Very little
improvement in the least squares criterion would occur for many iterationms.
At the time that this occurred, a computer program bug was suspected. A
bug was not the cause, however, but rather the problem is an ill-conditioned
one for Newton's method. As an example of slow convergence, the following

sums of squares occurred in one case:

Iteration # Error Sum of Squares
0 6.319567
1 3.107108
2 3.103914
3 3.102053
4 3.101231

By comparison, Direct Search produced the following sequence starting near

the parameter point of iteration #1:
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Iteration # Error Sum of Squares

3.108122
2.538027
.603644
+338447
.217680
+116751

(S N - VO - ]

12 .012570

There are a number of equivalent ways of explaining the observed
phenomena. One explanation is that the radial wave function parameters
are highly correlated in their effect upon the sum of square criterion.

The result of this correlation is that Newton's method selects a very poor

direction for minimizing the sum of squares locally. The selected direction

would be very good if the linear approximation used by Newton's method
were valid far from the current point. However, the problem is highly
non-linear and the use of a linear approximation to select a point far
from the current one is thus weak.

In order to illustrate what can occur, assume for the moment

that there are two functions, f1 and f£,, for which zeroes are being sought

’
and two parameters Xy and x, which arezbeing searched for these zeroes.
Then the search procedure of Appendix 3 consists of making linear approxi-
mations to both and solving for where these linear approximations are
simultaneously zero. A case in which the two parameters are correlated in
their effect upon the sum of squares is illustrated in the Fig. 42. The
correlation is identified by the nearly parallel gradients Vfi and Vfé.
Based upon these gradients, a good local direction in which to search is
the X, direction. Based upon the contours, EE? step length to take would
be approximately the length of the pictured Vfl. However, the modified
Newton's method selects the intersection of the zeroes of the linear
approximations. The resultant step length overtaxes the linear approxi-
mations and only a small improvement in the sum of squares can be achieved

in this direction.
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A measure of the correlation between parameters in the illustrated
case is the sine of the angle between the two gradient vectors. This

is given by

N —N
| Det e, Vf2]|

sin(Vf Vfl) = :
1 ve,| 194,

As this measure increases from 0 to 1, the gradient vectors go from
parallel to being orthogonal.
The similar statistic in 3 parameters measures how nearly co-
planar the 3 gradient vectors would be. The identity
Det [7£) Tf, V]
AR ARIA

= gin (Vfl’VfZ) sin (VfIVfZ’Vf3)

puts this co-planar relationship into terms similar to the 2 dimensional
case. In 3 dimensions the measure equals the product of the sine between
two of the gradients multiplied by the sine of the angle between the

last gradient and the plane of the first two. This final product of sines
relationship extends to an arbitrary number of dimensicns, one sine term
being added for each additional dimension.

For the 5 parameter case noted earlier in which the modified
Newton's method converged very slowly, this measure was found equal to
.00019, a value indicating that the 5 gradients are very nearly co-planar
and thus explaining the slow convergence.

Direct Search, by contrast, works directly with the sum of squares
criterion, computing it at neighboring points to the current point.
Referring to Fig. 42, Direct Search would choose a direction more nearly
in line with the gradients and would thus achieve a bigger local improve-
ment in the criterion. It does not extrapolate a long distance for zero

and come up with nothing as a result.
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APPENDIX 5
GROUP THEORETICAL PROPERTIES OF RADIAL WAVE FUNCTIONS
Lloyd Armstrong, Jr.

Group theory has been applied with great success to studies of
the angular portion of atomic wave functions. It is hardly an exaggeration
to state that much, if not most, of the present day knowledge of the actinide
and rare earth atoms could scarcely have been obtained without use of this
powerful tool. The state-of-the-art concerning the radial portion of
atomic wave functions is, however, quite primitive with respect to that
of the angular portion of the wave function. The best radial wave functions
obtainable result from some type of Hartree-Fock calculation. This type of
calculation is very difficult and time consuming to carry out, even using
the best of modern computers. In addition, there are many unsolved theo-
retical problems relating to the Hartree-Fock procedure,

Rather than discuss any of these difficulties, however, let me
point out what I consider to be the greatest weakness of such a procedure:
the resulting wave function has no known transformation properties with
respect to any symmetry groups of the atom. Because the angular wave
functions do transform in known ways with respect to certain groups, one
is able to immediately write down a number of selection rules on angular
matrix elements and, even more important, to pick out types of matrix
elements that must differ in value by only a proportionality factor. This
latter result, a consequence of the Wigner-Eckart theorem, enables one to
calculate the values for one set of matrix elements and, after finding
a single constant of proportionality, to write down directly the values
for another set having the same transformation properties. Unfortunately,
since no transformation properties of the radial wave functions are known,
such a labor-saving simplification cannot be used to relate radial matrix

elements.
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The purpose of this report is to describe ways in which one might
hope to determine the transformation properties of radial wave functions.
We wish to start by studying the simplest possible system, hydrogen.,
Pasternack and Sternheimer 32 have reported a very interesting selection

rule on hydrogenic radial wave functions:

an an'

S
r

(5.1) s dr = 0 s = 2,3...,[2-2"] +1,

where the complete hydrogenic wave function is written

R ., (r)
v =2y (p,4).
m

nim r L

This selection rule, which has successfully defied all attempts to give
it a simple explanation, looks suspiciously like the type of selection rule
that results from a group property. Thus the primary goal of this type
of research must be to explain the above result using group theory.

Two avenues of investigation immediately present themselves.
The first involves searching for a selection rule based on a symmetry
group of the hydrogen atom: R(4), the proper rotation group in four
dimensions. The second involves a study of the groups for which Laguerre
polynomials form bases of representation. This latter is of interest
because an is proportional to a Laguerre polynomial, Lﬁizl. The former
may perhaps be the most susceptable to study, so we shall consider it
first.

a) The Symmetry Group of the Hydrogen Atom.53

The R(4) symmetry group of the hydrogen atom has an algebra

consisting of the three components of the angular momentum vector L and

~

the three components Lenz vector
r
M=(1/2W(( x L - L x B) -kz

where k = ze2. Only one of the commutators of the algebra is of real

interest at the moment

2
[LM,] = - 2M L+ 2M L + 2M.
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If we consider the operation of this commutator on the state wnll’ we find
2
L2y g ) = (D) (42) (¥, 0)
which implies that

M¥nee = Mape e

where A is some constant. A detailed calculation reveals that

(5.2) M - Y2+1,2+1 (®,9) L4+1
+" nll /-—2“_3 " r

3 _ %41 ko
ar r + 2+1] Rnl’

We shall return to this below.
One can, in fact, find a simple commutator which explains Eq. (5.1)

if one uses the raising operator for hydrogenic radial wave functions 54’5%
A
Ry
g4 _a+l ky
(5.3a) R+ dr r o
(5.3b) R*R_ =BR
+ nyg ng+l.

We consider first the commutator

212

[H = 2? Cl;] =0
2nr
h H 2 1 d2r +'ﬁ2L2 ze2
where H = =y = -
2m r dr2 2mr2 r

and Ck is a spherical tensor of rank k, Multiplying the commutator on

the left by (wnmzl’ on the right by|¢n.2.2.), and obtain
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k
Ere = Bargr) O 1C 1 ¥og i)

£2 o
= E (wnll.m l—%l wn'z'm') [2(24'1) - 9"(9/""1)]
r

For n = n', Enz = E The angular portion of the matrix element on

n'z"
the right above can easily be seen to be non-vanishing for at least one

value of k, q, leaving the result
Rnl an'

2
r

8 =/ dr (2(a+1) - 2'(2'+1))

which implie556

R 2 Rhl'
(5.4) s —IL—E——— dr = 0 if 2 # 2
T
Consider next the commutator
2.2
[““‘5‘%’ Ck%-:—rr] - 0.
2mr q

Proceeding as before, and letting n = n'

k1l d
LD (U, e T | ¥ )

(5.5)
kld 1 -
= Coem ICq rdr © ;EI Ynetnt) =0

or k

t t CA d

(BG4 - 2" @D G 157wl v

ck '
-4 =

a4 (wnzm lr3l wnl'm') 0

Again, we can carry out the angular integration which is the same for both
matrix elements and which has at least one non-vanishing value. We then

have
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an'g_

— o' (9!
[2(e+1) L' ('+1)) s rz dr an. dr
R. R ,
+ 200 (L'+1) S -1917fyi— dr = 0
r
Assume that %'>%, and use Eqs. (5.3a) and (5.3b) to treat the %; an,
term above. (ne cbtains
Rnl L'+1
- o'fo! L, (D Ui
[2(24+1) - &' (2'+1)] S 2 == R,
ku
YU Rper T BRy gl
%ag R

= =20'(L'+1) S dr.

r

Because of Eq. (5.4), the above simplifies greatly, leaving

{[o(o41) = L' (L'4+1)] (L'+1) + 22'(L'+1)}

R R
ni ni'
S -3 dr = 0
r
°F Rnl Rnl'
(L'+1) [R(e+1) - ' ('-1)] S -3 dr = 0
r

which implies

; R Ragt

3
r

dr = 0 L'>e+1,

All the remaining selection rules can be proven by considering commutators

of the type

and proceeding as above.
The next step 1s clearly to try to express the simple commutators

above in terms of the generators of R(4). In particular, if we consider
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equatione such as Eq. (5.5) with m=%, m'=L', we should be able to replace,
in some fashion, %; with M+ (Eq. (5.2)). This approach provides a very
encouraging method of studying the vanishing matrix elements; one can
hope for early success in the use of R(4) symmetry to obtain selection
rules on the radial matrix elements,

b) Symmetry Groups of Laguerre Polynomials.

This subject has been studied, in some detail by Miller.57

We shall only mention here some of the major results of his work. He
considers the general 4 dimensional complex Lie Algebra defined by

(Jt,071 = 24233 - bE; [J3,J+] = J+;

(33,071 = - 375 (N,E] = (07,E]=

(33,g] = o.

for all complex a,b.
Clearly, if a=1, b=0, one has the algebra for the complex three dimensional

rotation group. Miller has shown that the basis functions for a realization
in two variables of this algebra are confluent hypergeometric functions.
(The Laguerre polynomials are simply a special case of the confluent hyper-
geometric functions.) In addition, he finds that when b=1, a=0, one also
may construct basis functions from confluent hypergeometric functions.

The algebra in this case is the complex form of the algebra of Sé' It
would appear, at this time, that this latter group 1is of little value and
we shall confine our attention to’the case a=1, b=0,

The realization in two variables of the algebra with a=1, b=0

(G(1,0)) can be written

[ &
n

3_3  t_ ty .3 _ 3
ay"] =e (iﬁ k (x) ay+J(x))

E = u,

where u is a complex constant; k(x) and j(x) must be determined so as to
make the above operators satisfy the proper commutatiou relations. Miller

finds two possible types of solutions for k(x) and j(x):
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Type A  k(x) = cot (x+p), j(x) = 513%2157

Type B k(x) =1, 3(x) = qe ¥
58
where p,q are complex constants. As an example, we consider Type B

representations of the variety labelled D(u,mo). We first change co-

ordinate systems by letting T =y - in/2, z = - ie-ix. Then

3 ) + b § 9 9 =
J L J e (23; * 5?-+ qz)

If the solution is written in the form fm = ZmemT, we find
(22— +ma-qz) 2 =-(m=-u) 2
dz m m+1
(Zg- -m+qz) Z =~ (m+u) Z
dz m m=-1

which has solutions

ut+l -qz

z = (2qz) e (u-mtl, 2ut+2; 2q2)

11
and

-u -qz
Z& = (2qz) U 1F1 (-u -m; -2u; 2qz)

where 1Fl is a confluent hypergeometric function. In terms of Laguerre

polynomials, we have

ut+l Pt 2u+l

Lm—u-l (292)

Zm = (2qz)

' . -u =-qz .-2u-1
Zm (2qz) " e Lm+u (2qz).

This type of representation has u + m # integer.

Of greater interest to us are the basis states fm for represen-

tation labelled +u; here

- I'(2u)n! ;2u-1 u+n
fm T (n+2u) Ln (2) ¢
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where u,n, are integers. Acting on this state with raising operators,
one finds
+ L2u-1 2u~-1

-+ L .

4 n n+l

Basically, this result implies that a basis for the representation +u
can be formed by the collection of states of the hydrogen atom obtained
by holding £ fixed and letting the principal quantum number run over
all possible values. One can work out Clebsch-Gordan Coefficients for the
Krrnecker product +u X +u' without too much difficulty.s7

One therefore has the transformation properties of the hydrogenic
radial wave functions with respect to the complex 3-dimensional rotation
group. In order to search for the desired selection rules, one must
determine the representation to which the operators 1/rs belong. This 1is
not trivial and at the present time the solution is unknown.

This latter approach would appear to be more general and powerful
than that of (a), but the problems involved are correspondingly more dif-
ficult. None the less, both approaches seem at the present to be rather

hopeful.
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APPENDIX 6
*
GROUP PROPERTIES OF HYDROGENIC RADIAL WAVEFUNCTIONS
Lloyd Armstrong, Jr.

The Johns Hopkins University
Baltimore, Maryland 21218

*
This work was partially supported by the U.S. Atomic Energy Commission.
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Most contemporary studies of atomic structure depend
heavily on the use of group theory. In the central field model
of the atom, wavefunctions can be written as a product of an
angular function and a radial function. The radial function is
usually calculated through use of some variational technique
(e. g., Hartree-Fock) or simply treated in terms of a variable
parameter; the angular portion is expressed in terms of pro-
ducts of spherical harmonics. It is to this angular portion of
the wavefunction that group theory has traditionally been appliet:l.59

Quite impressive simplifications have resulted from this
application of groups to the angular wavefunction. For example,
selection rules based on Kronecker products permit one to
identify many matrix elements as being identically zero without
explicit (and often laborious) calculation. Use of the Wigner-
Eckart theorem often enables one to ascertain sets of angular
matrix elements which are proportional to one another, thus saving
a great deal of computational effort.

The use of gro(:p theory has been invaluable in advancing
the understanding of angular wavefunctions and atomic shell
structure to its present state. Unfortunately, although very im-
pressive techniques have been developed in the last few years
for the calculation of radial wavefunctions, very little has been
done on the study of the symmetry properties of radial wave-

functions. Most of the group theoretical work which involves
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radial wavefunctions has consisted of studies of hydrogen using
O(4), O(4,1), etc. In this case, however, the radial function
has not been studied directly, since the basis functions for these
groups are composed of a product of radial and angular parts,
We wish to report on a study of the group properties of the
hydrogenic radial functions themselves. Two previous results
suggested strongly that these functions should be amenable to
a group-theoretic study. First, a well-known result of Paster-

nack and Sternheimer shows that, for hydrogenic radial wave-

functions,
® 1>
[ Inlew 4. .
0 r‘ 8 =2,3..:.L-L'+1

(we choose our radial wavefunction to be RnL(r)/r). This result
is quite suggestive of a group-theoretical selection rule.
Second, the expectation values of . (n both positive and nega-
tive) evaluated with hydrogenic functions® can be seen to be

6l in which 4 plays

proportional to Clebsch-Gordan coefficients
the part of the angular momentum, and n, the projection of the
angular momentum.,

The group algebra pertinent to this study is formed by the

operators

(1)
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which satisfy the commutation relations

[3,,3] = 23,

tJi . (2)

[33.3,]

(Operators of this same general type have been considered by

57
Miller. ) We wish to construct functions an such that

J3f‘f4n = nfl.n
L i
I = (@D en(me1), o . (3)
A function satisfying Eqs. (3) is given by
1 o - % 4
£ = [(n-l,-l)! (Z{,-;l)]2 (i)™ {-1 s z/2 zL+1 L:f:.l.l (z) & (4)
2n(n+4)!
62

where Lab is the Laguerre polynomial of Morse and Feshback.
For fixed n, this function is, of course, proportional to the radial
wavefunction for hydrogen.62 We define a Hilbert space as the

space of functions £,n with inner product

P
<fy lfpe> = S £ 40
where d0 = z~2d7dz; the parameter T can range from 0 to 2w,

the parameter z from O to« . One can easily show that
<an|fL,n, > = 6(4,4') §(n,n")

In addition, one has
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<Eyn I > = <dpf, 600>

<fnlI3lipn > = <I5f >

Llnl lf

4n'“4'n?

Consideration of the operators shows that

J £ 041 = 0

providing a lower bound to the set of functions f, _; clearly,

in
there is no upper bound. The representation thus formed is
infinite dimensonal. It can also be shown to be irreducible,
implying that the group described by the algebra (1) and (2)

is non=-compact.

We define a spherical tensor 'I‘(k)q by the relationships

1
5 T® ) = e -q@en)? T

(k) y . (k)

This definition assures that the operators T(k)q transform in
the same way as a state fkq‘ Note, however, that the operators

T(k)q (o the states f, ) with |a] = k form a finite dimensional

representation of the algebra. We shall be concerned here only

with operators of this type. Because of the transformation
properties of the 'I‘(k) we can use the Wigner-Eckart theorem

to show that

<t | TH > = Alkg, 4ntlem) (4 b PI) (6)

Llnl
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where (1 ||T(k)|ll ') is a reduced matrix element which is inde-

pendent of g, n', and n; and A(kq; 4'n'|4n) is a coefficient which

depends on the transformation properties of an. f,, ,,» and ']'.‘(k)q

'n
but not on their explicit form. One can determine the coefficients

A following the technique of Racah.®3

By considering the matrix
elements of [J-.t' T(k)q] between the states < an‘ and |f&'n'> :
and the coupling of states fL'n' and fkq to a state an. one
can easily obtain recursion relations which demonstrate that the
dependence of A(kgq, L'n'ILn) onk, q, 4!, n', £ and n is identical
to the dependence of the algebr‘aic form of the Clebsch~Gordan
coefficient (kq, 4'n' |tn) on the same quantum numbers. The A
coefficient is not strictly identical to the corresponding Clebsch-
Gordan coefficient, however, since in the present case n> ¢,
n!' > ', values for which the Clebsch~-Gordan coefficient vanishes
identically. Nonetheless, one can obtain an algebraic expression
for A(kq,4'n' |L n) for a fixed k and q, and general 4',n',{,n
by determining the algebraic expression for the equivalent Clebsch-
Gordan coefficient and relaxing the restriction that |n'| <',
In|< ¢.

Changing for convenience from Clebsch-Gordan to 3-j

symbols, we can write

(k) _ o ten [t k4 K 4
<f, T qlfUn'> (=1) (_n . “')a“"T [ EAN I )
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where the subscripted 3-j symbol refers to the algebraic form
of the usual 3-j symbol with the restrictions on the range of
n and n' relaxed. Algebraic forms of certain 3-j symbols
have been given by e.g., Edmonds61and Falkoff .c_t_a_l.ﬁa.

We now consider the tensorial ranks of the operators
'™ T/rN (N2 0). Byusing Eqs. (5), one can easily show that
such an operator corresponds to the mth component of a tensor

of rank N, T(N)m. By relating the function (4) to the radial wave-
‘function of hydrogen, we can therefore make the identification (N> 1)

J‘Rnl Rn{,' P 1 (E)N (‘1)4-n({i){"-‘: ({1 N-2 L')
N Zn ' [(2¢+1)(2¢+1)]2 \ =-n O n

a

@ TN e o

One notes immediately that the selection rules of Pasternack
52 )
and Sternheimer are contained in the triangular selection rules

of the 3-j symbol contained in Eq. (8).
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The proportionality of expectation values of r-N to 3-j symbols

is also made obvious by Eq. (8).

In order to fully utilize Eq. (8) one must be able
to evaluate the pertinent reduced matrix elements. This is
easily done: assume that {42/', and consider matrix elements

in which the bra is the state <f Then, for example

Lid+l |-

L k 1!
<f |7 ¢ >= -( @It e
a1 T oty e PRI | I+
" ' i od! - e '
- [(L-i, )'.(ZLL:ILZ’.H)]Z (+i)“ 4 [e"2 St kLi!_'Jl(z) iz .(®)

The integral above can be simply evaluated, as can the 3-j

symbol. One then obtains

@hr®ey = @b (et

[(ZL+1)@L 1 )it 201449 -k)! X (10)
(RFLF DT {L = TF KT (LFk=17)!
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Use of these expressions in conjunction with algebraic forms
of 3-j symbols leads immediately to the known expectation
values r Y (N positive).

This successful application of the techniques o. group
theory to a study of radial wavefunctions suggests strongly
that such studies of more complicated radial functions may be
possible. In addition, it is particularly gratifying to demon-
strate that the radial and angular parts of the atomic wave=~
function can be placed on a more even footing and treated

theoretically using the same general techniques,

The author gratefully acknowledges invaluable discussions

with Professors B. R. Judd and G. Domokos.

100



10.

11.

12,

13.

14.

15.

16.

REFERENCES

I. Liberman, et al., "Optical Pumps for Lasers-Phase II,"
Contract No. DA-28-043-AMC-02097(E), AD679143, Ft. Monmouth,
New Jersey (1968).

C. H. Church, et al., "Arc Discharge Sources,'" Contract Nonr
4647(00) (1967).

C. H. Church, R. G. Schlecht and I. Liberman, J. Quant.
Spectrosc. Rad. Trans., 8, 403 (1968).

H. R. Griem, Plasma Spectroscopy, McGraw=Hill Book Co.,
New York (1964).

W. P. White, S. M. Johnson and G. B. Danzig, J. Chem. Phys., 28,
751 (1958). '

R. J. Duffin, E. L. Peterson and C. M. Zener, Geometric Programming:
Theory and Application, John Wiley and Sons, New York (1967).

J. M. Yos, AVCO Technical Memorandum RAD-TM-63-7, AD435053 (1963).
R. S. Brokaw, J. Chem. Phys., 32, 1005 (1960).
L. S. Frost and A. V. Phelps, Phys. Rev., 136, A1538 (1964).

L. Spitzer, Jr., Physics of Fully Ionized Gases, Interscience
Publishers, New York (1956).

R. S. Brokaw, NASA TR R-81 (1960).

R. S. Devoto (private communication, also see Ref. 2).
R. S. Devoto, AIAA 7, 199 (1969).

R. S. Devoto, Phys. of Fluids 10, 354 (1967).

C. E. Moore, Atomic Energy Levels III, NBS, U. S. Govt. Print.
Off. (1958).

C. E. Moore, Atomic Energy Levels III, NBS, U. S. Govt. Print.
Off. (1952).

101



17.

18.

19.

20.
21.

22,

23.
24,
25.
26.

27.

28,
29.
30.

31.

32,

33.

34,

R. D. Cowan, J. Opt. Soc. Am., 58, 808 (1968).

D. R. Bates and A. Damgaard, Phil, Trans. Roy. Soc., London
A242, 101 (1949).

P. W. Murphy, "Transition Probabilities in the Spectra of Neon I,
Argon I, and Krypton I," Technical Note BN-523, University of
Maryland (1967).

A. Uns5lid, Ann. Phys. Lpz., 33, 607 (1938).
D. Schliter, Z. Phys., 210, 80 (1968).

L. M. Biberman, G. E. Norman, and K. N. Ulyanov, Soviet Astron.,
AJ6, 77 (1963).

V. V. Yankov, Opt. and Spectr., 14, 14 (1963).

J. J. Lowke, J. App. Phys., (1970).

H. Mottschmann, Z. Phys., 214, 42 (1968).

I. Liberman and R. L. Grassel, Appl. Optics, 8, 1875 (1969).

M. Pivovonsky, and M. R. Nagel, Tables of Blackbody Radiation
Functions, The Macmillan Co., New York (1961).

J. A. Koningstein and J. E. Gausic, Phys. Rev. 136, A711 (1964).
T. H. Maiman, Brit. Commun. Elect. 7, 674 (1960).
T. H. Maiman, Nature 187, 493 (1960).

C. H. Church, R. G. Schlecht and 1. Liberman, J. Quant. Spectrosc.
Radiat. Transfer 8, 403 (1968).

T. H. Maiman, R. H. Hoskins, I. J. D'Haenens, C. K. Asawa and
V. Eutuhov, Phys. Rev. 123, 1151 (1961).

D. M. Doff, D. L. Wood and R. L. Barnes, J. Appl. Phys. 35, 1183
(1964) .

E. E. Bukke and Z. L. Morgenshtern, Optics and Spectros. 14, 362
(1963) .

102



= - 3 sesbsbpmpat-al

35.

36.

37.

38.

39.

40.

41.
42,

43.

44,
45,

46.

47.

48.

49.

50.

For example the Korad K1500 Q-switched ruby oscillator-amplifier
has a laser system efficiency of 0.01%.

T. H. Maiman, Phys. Rev. Letters 4, 564 (1960).
J. W. Huang and H. W. Moos, Phys. Rev. 173, 440 (1968).

J. B. Mann, "Atomic Structure Calculations I. Hartree-Fock Energy
Results for the Elements Hydrogen to Lawrencium,' LA-3690,
Los Alamos (1967).

N. C. Handy, M. T. Marron and H. J. Silverstone, Phys. Rev.,
180, 45 (1969).

J. C. Slater, Quantum Theory of Atomic Structure. I, McGraw-Hill
Book Co., New York (1960).

G. Burns, J. Chem. Phys., 41, 1521 (1964).
E. Clementi and D. L. Raimondi, J. Chem. Phys., 38, 2686 (1963).

L. I. Schiff, Quantum Mechnaics, 85 McGraw-Hill Book Co.,
New York (1955).

P. Léwdin, Phys. Rev., 90, 120 (1953).

W. Kauzmann, Quantum Chemistry, 334, Academic Press, New York (1957).

I. Shavitt, Methods in Computational Physics. II, Academic Press,
New York (1963).

F. Herman and S. Skillman, Atomic Structure Calculations, Prentice-
Hall, Englewood Cliffs, New Jersey (1963).

J. B. Mann, "Atomic Structure Calculations II. Hartree-Fock
Wavefunctions and Radial Expectation Values: Hydrogen to
Lawrencium," LA-3691, Los Alamos (1968).

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,
NBS Applied Mathematics Series No. 55 (1964).

A. H. Stroud and D, Secrest, Gaussian Quadrature Formulas, Prentice-
Hall, Englewood Cliffs, New Jersey (1966).

103



51. V. I. Pukhov, Sov. Phys. (Tech. Phys.) 1, 1055 (1956).

52. S. Pasternack and R. M. Sternheimer, J. Math. Phys. 3, 1280 (1962).
53. M. Bander and C. Itzykson, Rev. Mod. Phys. 38, 330, 346 (1966).
54. L. Infield and T. E. Hull, Rev. Mod. Phys. 23, 21 (1951).

55. Z. W. Salsborg, Am. J. Phys. 33, 36 (1965).

56. This particular result has also been obtained via another method
by G. Feinberg, Phys. Rev. 112, 1637 (1958).

57. W. Miller, Lie Theory and Special Functions, Academic Press,
New York (1968).

58. This classification is based on the work of Infield and Hull

(reference 54).

59. B. R, Judd, Operator Techniques in Atomic Spectroscopy, McGraw-
Hill Book Co., New York (1963).

60. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and
Two-Electron Atoms, Academic Press, New York (1957).

61. A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton

University Press, Princeton, New Jersey (1957).

62. P. M, Morse and H. Feshback, Methods of Theoretical Physics,
Vols. I and II, McGraw-Hill Book Co., New York (1953).
63. G. Racah, Phys. Rev. 62, 438 (1942).

64. D. L. Falkoff, G. S. Holladay and R. E. Sells, Can. J. Phys.
30, 253 (1952).

104



TABLE I. The Measured Energy Levels15 and SLJ Labels for the Lowest
Five Configurations of Xe I.

The core configuration is always 5p5(2P) and therefore is
not listed.

n'l’ SLJ E(cm 1) n'l' SLJ E(cn 1)
5p 1s, 0 5d 37, 79,772
6s 3p, 67,068 3p, 79,987

3p, 68,046 3, 80,197
3pg 76,197 3rp 80,323
1p, 77,186 3F, 80,971
6p 30, 77,270 3p, 81,926
3p, 78,120 3p, 82,431
3p, 78,404 3p, 83,890
3p, 78,957 3, 91,153
3p, 79,213 1p, 91,448
3p, 80,119 ry 91,747
35, 88,380 lpy 93,619
1p, 89,163 7s 3p, 85,189
lp, 89,279 3p, 85,441
s, 89,861 B, 95,721

1p, 95,801

105



16
TABLE II. The Measured Energy Levels and SLJ Labels for Fourteen
Configurations of Kr I.

The core configuration is always 4p5(2P) and therefore is
not listed. The values in parentheses are approximate

values.

n'l' SLJ E(cm-l) n'l' SLJ E(cm_l)
i 1so 0 68 3P2 99,628
56 b, 79,973 ’, 99,895

>, 80,918 b, 105,09
390 85,192 'p, 105,147
', 85,808 6p b, 102,888
5p b, 91,169 o, 103,116
303 92,295 3n2 103,122
b, 92,308 103,314
391 92,965 392 103,363
®, 93,12 %, 103,762
By 94,09 3s1 108,439
%, 97,597 'p, 108,515
'p, 97,920 b, 108,569
', 97,946 's, 108,822
s, 98,856 54 ’, 103,803
4d B, 96,772 %, 104,074
, 97,086 ’F, 104,631
’F, 97,689 ’F, 104,917
®, 97,798 %, 105,008
k, 98,227 b, 105,164
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TABLE II. (Continued)
n'l' SLJ E(cn™ L) n'l' SLJ E(cn™ L)
4d 3D2 98,868 5d 3D3 105,209
3D3 99,080 105,649
3p1 99,647 ', 110,104
', 103,267 ®, 110,123
b, 103,443 ¥, 110,238
', 103,702 ‘', 110,734
1P1 104,888
7s %, 105,648 9s %, 109,753
105,772 >, 109,780
%P, (111,004) %,  (115,128)
lpl 111,004 lpl 115,128
4t >, 105,965 10s ®, 110,609
3F2 105,966 . 110,620
%6, 105,990 ’,  (115,961)
%,  (105,990) ‘s, 115,961
6, 106,022 11s b, 111,155
’, 106,022 11,172
’F, 106,048 %, (116,527)
3F4 106,048 'p, 116,527
164 111,379 12s 3P2 111,529
3D3 111,379 3P1 111,537
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Table II. (Continued)
n'l' SLJ E(cm ) n'l' SLJ E(em 1)
4f e, 111,38 12s 3%,  (116,904)
p, 111,38 lp, 116,904
8s %, 108,326
%, 108,37
%, (113,711)
lp, 13,71
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TABLE 1V. The intermediate coupling wave functions for fourteen

configurations of Krl. The core configuration is always

4p°(2P).
J n'l' SL Eigenvectors
0 5p 3% 0.738 -0.675
1g 0.675 0.738
6p 3% 0.786 -0.618
1 0.618 0.786
1 58 3 0.717 -0.697
lp 0.697 0.717
5p 3 0.192 0.908 0.370 0.027
3p 0.725 0.059 -0.487 ~0.484
35 0.482 -0.068 ~0.147 0.861
lp 0.453 -0.408 0.777 -0.153
4d 3 0.144 0.961 0.237
3% -0.712 -0.065 0.699
lp 0.687 -0.269 0.675
68 3 0.798 ~0.603
lp 0.603 0.798
6p 3 0.225 0.843 0.486 0.045
3p ~0.767 -0.091 0.474 0.424
35 0.474 -0.151 -0.038 0.867
lp 0.370 -0.508 0.733 ~0.259
5d 3 0.173 0.945 0.277
3 0.766 0.048 -0.641
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TABLE IV. (Continued)
J n'l’ SL Eigenvectors
lp 0.620 -0.323 0.716
7s % 0.809 -0.588
lp 0.588 0.809
8s 3p 0.814 -0.581
lp 0.581 0.814
9s % 0.815 -0.580
lp 0.580 0.815
10s % 0.816 -0.578
1p 0.578 0.816
11s % 0.815 ~0.579
lp 0.579 0.815
128 3 0.816 -0.578
lp 0.578 0.816
2 5p 3 0.653 -0.208 ~0.728
% 0.477 0.860 0.181
o) 0.589 -0.466 0.661
4d 3 0.357 0.844 0.401 -0.015
b -0.615 0.024 0.518 0.594
3 0.373 0.081 ~0.472 0.795
1 0.596 -0.530 0.590 0.124
6p b 0.653 -0.265 -0.709
% 0.483 0.867 0.121
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TABLE IV. (Continued)
n'l' SL Eigenvectors
o) 0.583 ~0.422 0.694
5d 3p 0.372 0.795 0.479 0.009
3 -0.658 ~0.014 0.524 0.541
3 0.447 ~0.034 -0.307 0.840
) 0.479 -0.605 0.634 ~0.047
4f 3g 0.617 0.786 0.021
3 ~0.539 0.404 0.739
o) 0.573 ~0.467 0.674
4d 3p -0.493 0.292 0.819
) 0.610 0.788 0.086
1 0.620 ~0.542 0.567
5d 3p -0.620 0.200 0.759
3 0.520 0.829 0.206
lp 0.588 -0.522 0.617
4f 36 0.485 0.674 0.558 ~0.001
3p -0.652 0.001 0.566 0.505
3 0.336 0.073 ~0. 380 0.859
lp ~0.477 0.735 ~0.474 ~0.086
4f 3 ~0.750 -0.011 0.661
3 0.327 0.863 0.386
e 0.575 -0.505 0.643
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TABLE V. The values of Slater integrals and spin-orbit coupling constants which was
determined by fitting the theoretical energy levels to the measured levels.

The parameters and the rms deviation, o, of the fit are given in cm-l.
Atom n'l' Fo F, Gy G, G2 G, G, Gnl Gn'l' 8
Xe 6s 71040 951 6239 233
6p 81866 173 629 33 7005 382 105
5d 84161 186 298 28 6892 -175 191
7s 88875 175 7001 32
Kr 58 82512 800 3482 4
5p 94118 176 650 42 3538 153 46
4d 99747 175 177 14 3501 - 35 138
6s 101626 176 3608 54
6p 104922 45 204 13 3556 60 17
5d 106520 105 88 6 3539 11 245
78 107507 73 3545 40
4f 107800 4 0 0 3580 0 1
8s 110150 29 3580 16
9s 111561 16 3578 8
10s 112399 6 3566 3
11s 112956 10 2578 5
12s 113326 5 3582 3
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TABLE VI. The transition probability rates Amn for emission between
the energy levels of the five lowest configurations of Xe I
and between the energy levels of fourteen configurations of Kr I.
The core configuration is always 5p5(2P) and 4p5 (2P) for
Xenon and krypton, respectively. Only values of Amn larger than

0.1 x lossec”1 was listed.

State n State m A A
o g™ _g
Atom n'l' SLJ n'1" SLJ A 10 sec
1 1
Xe 5p S 7 p 1044 0.9
0 1
5d 1p1 1068 27.8
78 3P1 1170 1.1
5d 3Pl 1192 13.0
3D1 1250 1.1
68 1P1 1296 5.2
391 1470 3.9
3 1
68 P, 6p P, 7644 0.3
1 1
P, S 7890 0.4
3 3
2, 5 8209 0.1
3 3
P, P, 8234 0.3
1 1
P, P, 8269 0.1
3 3
P, P, 8282 0.4
1 1
P, D, 8349 0.4
3 3
P, D, 8822 0.3
1 3
P, 5 8933 0.2
3 3
P, P, 8955 0.1
3 3
P, D, 9048 0.1
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TABLE VI. (Continued)
State n State m A A
-] mn -
Atom n'l' SLJ n"1l" SLJ A 10 sec
3 3
P, P, 9165 0.3
3 3
P, D, 9802 0.2
3 3
P, D, 9926 0.2
Kr 4 lg 6s lp 951 0.8
p 0 1 0
4d lpl 953 11.9
65 391 1001 1.1
4d 391 1004 9.9
391 1030 1.2
5 191 1165 4.7
391 1236 3.9
3 3
56 P, 5p 7, 7589 0.5
3 3
P, P, 7604 0.3
1 1
P, 5o 7687 0.4
3 1
P, P, 7857 0.2
5p ’, 5d ’n, 7916 0.1
3 3
5s Po 5p Sl 8062 0.2
3 3
P, D, 8107 0.1
303 8115 0.4
3 3
P, P, 8192 0.1
1 1
P, , 8266 0.4
191 8283 0.2
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TABLE VI. (Comtinued)

o g, o g e e 5 A R AP A, S A by Yy b 9 U AL R SRRV S ST TIPS S VP Sl GTOUPURIORY TR vy WA
R s - :

State n State m A
o g™t _;

Atom n'l' SLJ n''1" SLJ A 10 sec

3 3

Pl P1 8300 0.3

1 3

Pl S1 8511 0.2

3 3

P1 D2 8779 0.2

3 3

P2 Dl 8931 0.2
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TABLE VIII. A comparison of accuracy and speed of different integration
methods for the evaluation of orthonormality and Slater

integrals for the Cu 4s electron.

Two Laguerre integrations with n = 15 (Ljs5) and n = 48 (Lsg)
are compared with Simpson's rule of integration. The

per cent errors in the GK values for the Lis integration

were invalidated by a programming error and are not given.
However, the quoted execution times are for the evaluation

of all integrations. Only errors larger than 0.1% are listed.

Absolute Execution
Error in . Time
Integration Orthogonality Per Cent Errors In
n'l' Method Integral F° G° ¢l G2 Seconds

4g* Lis 20.3
Lsg 0.1
S 0.1

3d Lis 1.4 0.7

L4g 1.6 6.2

s 0.6 32.8

3p L1s 0.5 0.6

Lyg 2.0 5.7

S 0.5 30.3

3s Lys 2 x 107 0.6 0.5

Lyg <1076 1.0 5.1

S <10-6 0.2 27.0

2s L15 1 x 1073 2.9 0.5

Lig <10-6 3.1 4.9

S 7 x 107 0.1 27.0

1s L1s 4 x 1073 12.4 1.3

Lyg <106 8.8 4.9

S <10-6 0.3 26.7

* These execution times are included in Table IX.
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TABLE IX.

A comparison of accuracy and speed of different integration
methods for the evaluation of <rn> radial integrals for the
Cu 4s electron. Two Laguerre integrations with n = 15 (Lys)
and n = 48 (L,g) are compared to the trapezoidal rule (T)

and Simpson's rule integration (S). The accuracy is given
in per cent, Errors less than 0.1% are not listed.

Execution
n Time
Integration n in <r > in
Method -2 -1 0 1 2 4 6 Seconds*
L15 10.1 2.0 0.1 0.7
L48 3.3

T

6.4 0,1 0.1 0.1 0.1 0.1 0.1 13.9

4.5 15.0

* Includes the calculation of F°,
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TABLE X,

The screening constants proposed by Burns.l'l

n -1 n n+ 1
s s 0.90 0.40 0.10
) 0.75 0.35 0.10
d 0.50 0.35 0.10
f 0.40 0.20
p s 1.00 0.50
) 0.90 0.35
d 0.70 0.35
f 0.30 0.20
d s 1.00 0.75 0.15
P 1.00 0.50 0.05
d 0.90 0.35 0.05
f 1.00 0.20
f s 1.00 1.00 0.50
) 1.00 0.75 0.15
d 0.85 0.50
f 1.00 0.35
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TABLE XI. Average screening constants obtained from Mann's binding
energies.
Q'\n' n-2 n-1 n n+l1l n+2 n+3 n+4 n+5 n+6
s 1.000 0.875 0.644 0.133 0.157 0.141 0.103 0.062 0.025
P 1.000 0.776 0.505 0.286 0.200 0,130 0.070 0.028
d 1.000 0.918 0.560 0.321 0.183 0.115 0.062 0.025
£ 0.982 0.884 0.610 0.354 0.186 0.072 0.029
s 1.000 1.000 0.397 0.079 0.150 0.162 0.135 0.085
p 1.000 1.000 0.706 0.308 0.237 0.168 0.105
d 1.000 0.936 0.576 0.322 0.220 0.150 0.095
f 1.000 0.918 0.628 0.358 0.187 0.106
s 1.000 1.000 1.000 -0.134 0.038 0.148 0.155
p 1.000 1.000 1.000 0.231 0.235 0.198
d 1.000 1.000 0.747 0.313 0.237 0.175
f 1.000 0.996 0.661 0.362 0.224
s 1.000 1.000 1.000 1.000 0.020 0.020
p 1.000 1.000 1.000 0.801 0.113
d 1.000 1.000 1.000 0.218 0.120
f 1.000 1.000 0.866 0.352
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TABLE XII, Hartree~-Fock values of radial integrals involving the Cu 4s
wave function,38,48

Slater Integrals between 4s and n'%' Wave Functions 4s Radial Integrals

n'y F° k Gk n <rn>

4s +5450896 -2 .8077270

3d .7122117 2 .0636135 -1 .3822107

3p «7235111 1 .0232793 0 1.000000

3s . 7248400 0 .0164793 1 3.331133
2 13.08433
4 310.3408
6 12034,72
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TABLE XIII. Initial and final Slater parameters for four different
three-term expansions. The final parameters are the values
after 100 seconds of computing time. The standard deviation
is between the five true radial integrals and the five
calculated radial integrals.

Expansion
Set am M Standard Deviation
Description No. m_nt Initial Final Initial Final TInitial Final

—

Switched Input 1 4s  0.53 0.26 0.70 2.15

2 3d 0.50 0.84 -0.50 =-1.49

3 3p 1.25 1.03 -0.31 8.983 0.069
Optimized Set 2 1l 48 0.22 0.23 -0.64 -0.71
id o0.21 0.35 2.27 0.35

3p 0.23 -0.79 1.21 0.871 0.052
Burns 3 1 48 0.53 0.16 0.70 1.11
3d 1.03 3.46 =0.50 0.23

3p 1.25 0.50 -0.59 0.559 0.041
3d 0.29 0.28 0.23 2.21

3p 0.72 -0.23 0.14 0.187 0.030
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TABLE XIV. Initial and final Slater parametera for three different
five-term expansione. The final parameters for the firat
three aets are the result of 100 aeconds of computing time.
Set no. 8 is the continuation of set no. 7. The standard
deviation is between the five true radiel integrals and the
five calculated radial integrals.

Expansion
Set Ag Standard Deviation
Description No. m 0f &y Initial Final Initial Final
Mann 5 1 3 0.29 0.90 0.70
2 4s 0.20 0.43 =0.44
3 3 0.91 -0.09 -0.10
4 28 2.60 0.03 0.03
5 1ls 7.39 =0.01 =0.01 0.554 0.032
a, Peaked 6 1 3 o0.l10 0.23 -0.41
2 4s 0,11 0.94 -0.60
3 3 0.47 <-0.23 =-0,02
4 28 1.43 0.07 0.07
5 1s 8.33 =0.01 -0.01 1.321 0.030
Pm Peaked 7 1 3 0.47 0.23 0.42
2 4p 0.23 0.94 0.97
3 3 0.93 -0.23 -0.67
4 2p 2.86 0.07 0.06
5 1s 8.33 -0.01 -0.03 0.130 0.010
Final Set 8 1 38 0.47 0.42 =-0.,01
2 4p 0.23 0.97 1.06
3 3 0.93 -0.67 <-0.31
4 2p 2.86 0.06 0.10
5 1ls 8.33 =-0.03 -0.02 0.010 0.0002
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TABLE XV. The determination of the initial set of Slater parameters
for expansion sets 5, 6, and 7.
Set 5 Set 6 Set 7
m Pm
m n Xmax ap ap exact rounded n'e! ap
1 3d 2.14 0.29 1.40 0.61 1 3s 0.47
2 4s 8.86 0.20 0.11 1:76 2 4p 0.23
3 3s 2.14 0.91 0.47 1.95 2 3p 0.93
4 28 0.70 2.60 1.43 1.82 2 2p 2.86
5 ls 0.12 7.39 8.33 0.89 1 1s 8.33
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TABLE XVI. Accuracy of the PF wave functions for the eight final PF
expansions given in Tables XIII and XIV,

Standard Percentage i
Expansion Deviation Standard Percentage Errors of <r >
Set of Deviation
No. Integrals of Wave ns= <2 -1 0 1 2 4 6
Function
1 0.069 69.1 74.6 20,4 <4.4 -16.7 -31.2 -59.2 -78.3
2 0.052 3502 -53.1 -209 0.9 508 801 501 -aol
3 0.041 3202 -5304 1206 102 -509 -802 -102 18.1
4 00030 8407 -7606 -13.7 106 1104 2508 14003 57‘.01
5 0.032 46.4 -80.8 ~-17.7 2.4 14.7 22.2 22.7 7.7
6 0.030 50.5 -17.0 2.6 2,5 18.3 52,3 208.9 574.7
7 0.010 13.1 -2408 306 -105 -600 -1005 -1901 -2705
8 000002 802 -4801 -302 -000 003 .008 -600 -1400
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Curve 591387-8
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Fig. 1—=Chemical compusition of a 2.5 atmosphere xenon arc discharge
as a function of temperature




Curve 592297-8
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Fig. 2=Chemical composition of a 2,5 atmosphere krypton arc discharge
as a function of temperature
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Fig. 3—Electrical conductivity of a 2.5 atmosphere arc discharge,
Devoto' s values are for xenon



Curve 591389-8
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Fig. 4—=Thermal conductivity of a 2.5 atmosphere arc discharge.
Devoto' s values are for xenon
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Curve 592295-A
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Fig. 5—Average electron-neutral momentum-transfer cross sections for krypton
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Curve 592299-8
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Fig. 6—Electrical conductivity of a 1.0 atmospheric krypton arc discharge
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Curve 591385-A
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o =mc=Yankov; e¢¢-+ Liebermann: o measurements by Berge et al
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Fig. 9—Percentage of the total radiation from a 2.5 atmospheres arc discharge
which is continuum radiation. The wave length interval is from 2000
to 20,000 angstroms
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Fig. 10—Total radiation from a 2.5 atmospheres arc discharge in the wave
length interval from 2000 to 20,000 angstroms
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Fig. 11—The electrical characteristics of a 2.5 atmospheres arc
discharge. The central core temperatures are given in 103 °K. The
points on the curves indicate the temperatures at which the
characteristics were calculated
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Curve 592294-A
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Fig. 12—Calculated temperature profiles of a 40 amp-2.5 atm arc discharge.
The o and e denote calculated values
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Fig. 14=Spectral radiance of the 8232A line at the surface of a
g 40 amp=2.5 atm xenon arc discharge
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Fig. 15=Spectral absorptivity of an emission line at 9200°K in a
40 amp=2.5 atm xenon arc discharge
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Fig. 16~Radiant emittance of an emission iine at 9200°K in a
40 amp=2.5 atm xenon arc discharge
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Fig. 21=Spectral radiance of the 7606A line at the surface of a

40 amp~2.5 atm krypton arc discharge
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Fig. 27—Spectral overlap integrand for the Kr-Nd: YAG system for a 1. 2 cm slab thickness
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Fig. 28—Spectral overfap integrand for the Xe-Nd: YAG system for a 1.2 cm slab thickness
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FIG. 33 Linear plot of the experimental and theoretical vialues for the spectral radiance of a 1:27 ¢em
thick xenon plasma of homogeneous temperature corresponding to the 6400J — 4480 A ¢cm? peak
current density series. Flashtube : 1:27 em inside dia.. 30 ¢m long. filled to 150 torr xenon.
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