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ABSTRACT 

The emission spectra of AO amp-2.5 atm xenon and krypton arc 

discharges are calculated.  The spectral overlap of these spectra and 

the measured emission spectra of tungsten and potassium-mercury arc 

discharges with the measured absorption spectra of Nd:YAG are used to 

determine relative system efficiencies which agree well with measured 

values.   It is found that the K-Hg lamp is four times more efficient 

in pumping Nd:YAG than the studied W, Kr, and Xe lamps.  The spectral 

overlap calculation for a typical ruby oscillator-amplifier at the peak 

of the flash lamp pulse gives a pump efficiency which is much higher than 

measured system efficiencies.  This discrepancy may be caused by the time 

dependent  behavior of the flash lamp pulse and the oscillator pulse. 

A new technique is developed to obtain eleccronic radial wave functions from 

known radial Integrals. In a test case, the Cu As wave function is determined 

within + 8Z. Group theory is applied to the calculation of radial integrals 

Involving hydrogen wave functions and some selection rules are explained. 
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OPTICAL PUMPING OF LASERS 

L. H. Taylor, I. Liberman, 
R. Llebermann, A. Federowicz, L. Armstrong* 

1.  INTRODUCTION 

The optically-pumped solid-state laser provides the highest 

peak power from coherent sources.  However, one of the main energy losses 

in optically pumped lasers is in the energy transfer between the optical 

pump and the laser medium.  This report s'immarizes the progress toward 

measuring and optimizing this energy transfer. 

The energy transfer can best be optimized by maximizing the 

spectral overlap between the emission spectrum of the optical pump and 

the absorption spectrum of the lasing medium.  Since the lasing medium 

is optimized for its lasing properties, it is unlikely that its absorp- 

tion spectra can be significantly altered without reducing its desirable 

lasing properties.  On the other hand, the single job of the optical 

pump is to convert electrical energy to optical energy in such a manner 

that the lasing medium absorption of the optical energy is maximized. 

It then follows that the best approach is to change the opcical pump 

until the spectral overlap is maximized for a particular lasing medium. 

The most common optical pump is a wall-stabilized arc discharge, and 

therefore this type of discharge is the subject of this report. 

The work in this contract is divided into two Phases.  In the 

first Phase the emission spectra of xenon .md krypton arc discharges 

are calculated and measured. This permits an evaluation of the theo- 

retical results.  The measured absorption spectra of Nd:YAG and ruby 

laser slabs are then converted to digital form and the pump efficiencies 

* 
Consultant, permanent address:  The John Hopkins University, Baltimore, 
Maryland. 
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of different lamps for these laser materials are calculated.  In the 

second Phase an atomic radial wave function Is expanded In a power 

series with fitting parameters, and the fitting parameters are then 

adjusted to reproduce the Slater Integrals determined from spectroscoplc 

measurements.  Thus the radial wave function Is "experimentally" deter- 

mined and Is Independent of the atomic shell structure complexities. 

Moreover, the group theoretical properties of hydrogenlc radial wave 

functions are Investigated to establish group theoretical methods for the 

evaluation of radial Integrals. 

These two Phases complement each other. The pump efficiency 

calculation will be possible for both experimental and theoretical 

spectra. However, at present the emission spectra of arc discharges can 

only be calculated for the noble gases and the alkali metal gases. When 

the second Phase Is successfully developed, the emission spectra will be 

calculable for any monatomlc gas provided only that the energy levels of 

the emitting atoms are known (this condition already exists for the 

first Phase). 

The Phase One work In this report Is divided Into two parts. 

The first part Investigates the narrow absorption line Nd:YAG laser 

whereas the second part Investigates the broad absorption band ruby laser. 

In each part the lamp emission spectra, the slab laser absorption spectra, 

and the useful overlap of these spectra are measured or calculated.  In 

the first part the emission spectra of a xenon arc discharge and of a 

krypton arc discharge are calculated and compared to experimental measure- 

ments.  The spectral overlaps of these calculated spectra and of the 

tungsten and potassium-mercury measured emission spectra with the measured 

0.7% Nd:YAG absorption spectra are then computed. The calculations thus 

evaluate the lamp emission efficiencies, the Nd:YAG slab fluorescence 

efficiencies when pumped by the various lamps, and the total system 

efficiencies.  The latter two efficiencies are evaluated as a function 

of the slab thickness.  Since most laser materials are In the form of a 

cylindrical rod, a relationship between slab thickness and rod diameter is 

given. 

: 
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In the second part the spectral overlap for a typical ruby 

laser Is calculated from the measured spectrum at the ptik radiance of 

a xenon flash lamp and the measured absorption spectra (there are two 

spectra because ruby Is anlsotroplc).  The efficiencies are calculated 

from these spectral overlaps.  The difforence between a four-level laser 

such as Nd:YAG and a three-level laser such as ruby are explicitly 

considered. 

Phase Two of this report is concerned with the evaluation of 

radial wave functions.  The energy levels of any free atom or ion are 

experimentally determined by its emission spectrum and theoretically 

determined by radial integrals such as the spin-orbit coupling constant 

and the Slater integrals.  The normal procedure is to parameterize these 

radial integrals and fit them to the experimentally determined energy 

levels.  The parameter fitting (PF) technique developed and tested in 

Phase Two adjusts the parameters in a power series expansion of the radial 

wave function until zhe  experimentally determined radial integrals are 

reproduced. The resulting power series representation of the radial wave 

function can then be used to calculate the transition probabilities which 

are required for the prediction of emission spectra in lanps. 

A more powerful alternative to the PF technique may be group 

theoretical techniques for the evaluation of radial integrals.  The group 

properties of hydroger radial wave functions are examined since they are 

presumably the simplest wave functions.  Although this investigation has 

been short and is not completed, it has already produced significant 

results which explain some apparent "selection rules" of radial integrals. 

To accomodate the reader who may not be interested in all of 

this report, the material has been divided into three large: parts: 

Nd:YAG LASERS, RUBY LASERS, and RADIAL WAVE FUNCTIONS.  Although the 

three parts are interrelated, they are written in a self-contained manner 

so that the reader may read them individually or in any order. 

I. 
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2.  LAMP EMISSION SPECTRA 

The necessary Input Information to obtain the laser pumping 

efficiency of a lamp Is its spectral emittance and the excitation 

spectrum of the lasing medium. The lasing media of Nd:Y Al 0  (Nd:YAG) 

and Cr:Al20-(ruby) will be considered in later chapters, whereas the 

spectral emittance of several lamps is considered in this chapter. 

The lamp spectra are difficult to obtain experimentally. 

Most continuous gas discharges and low to medium energy pulsed discharges 

have considerable line spectra which are difficult and tedious to measure 

experimentally and then convert to computer data cards. It would 

simplify the work considerably if the spectra could be calculated rather 

than measured experimentally. To do this for an arbitrary gas discharge 

under arbitrary operating conditions is not possible at the present 

state of the art.  In fact, the major objective of this contract is to 

make some headway in calculating the properties of one class of atoms. 
12 3 

However, because of many years effort ' * we believe we can calculate 

to a reasonable degree of precision the atomic and ionic spectra of the 

noble gases and the alkali metals. Fortunately, these atoms create 

discharges which have proved to be of interest for pumping lasers. 

Therefore we believe we can measure and optimize spectral overlap 

between pump and rod quicker and better by using calculated rather than 

experimental spectra. 

The work done in 1969 was to verify that the calculated 

spectra compare favorably with the experimental. Therefore careful 

controlled measurements of the spectral radiance of a xenon and a 

krypton continuous arc were made. Computer calculations of these arcs 

were performed, given only the experimental values of lamp dimensions, 

current and pressure. To save time and money only the measured spectral 

radiances were used for a tungsten lamp and a potassium-mercury lamp. 
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2.1 Theoretical Results for Xenon and Krypton 

The gas discharge consists of a cylindrical arc confined by a 

cylindrical tube.  In this wall-stabilized arc, electrical current 

carries power into the positive column of the arc.  Radiation and thermal 

conduction to the wall take power out of the positive column.  Convectlve 

power transport Is negligible In wall-stabilized arcs and will not be 

considered.  An arc discharge has a central plasma core at the tempera- 

ture of the fully Ionized plasma and a cold sheath adjacent to the wall 

at a temperature determined by the rate at which power flows from the 

wall to the outside world.  (A fully Ionized plasma Is a misnomer which 

means that the electron-electron and electron-Ion Interactions are the 

dominant particle-particle interactions,  it does not mean that the gas 

Is completely ionized.) 

The emission from a cylindrical wall-stabilized gaseous arc 

discharge is calculated with a minimal amount of input information. 

The requisite macroscopic parameters are:  (1) the length and diameter 

of the discharge tube, (2) the electrical current Into the tube, (3) the 

tube wall temperature, and (4) the ambient pressure in the discharge. 

These parameters are easily obtained for dc discharges.  The requisite 

microscopic parameters are:  (1) the amounts of each substance (e.g., 

water vapor, water, xenon, etc.) present before the discharge is struck, 

(2) the heat capacities C as a function of the temperature T, (3) the 

heats of formation AH(T) for each species present in the tube before 

and during the discharge, (4) the lower lying energy levels and their 

SLJ classification for each species In the discharge, and (5) the 

momentum-transfer cross sections for the species in the discharge. 

These parameters are difficult to obtain and are approximated whenever 

our knowledge is insufficient. 

Given the necessary input data, the arc discharge properties 

are calculated as a function of temperature In the following order: 

(1) the arc composition, (2) the electrical and thermal conductivities 

of the arc gases, (3) the line radiation, (4) the continum radiation, and 
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(5) the line shifts and broadening. The temperature profile and the 

resultant arc discharge emission can then be calculated. The calcula- 

tion of the line radiation by the present computer programs restricts 

these calculations to arc discharges with only rare and alkali metal 

gases. The development of Phase Two of this contract should extend the 

applicability of these calculations to any atomic gases in arc 

discharges. 

It is easily seen that a little input information generates a 

lot of output information. The computer programs needed in the calcula- 

tions were developed by Westlnghouse on Internal funds and on previous 

government contracts. They were updated and corrected whenever necessary 

during the arc discharge calculations which are summarized in the 

remainder of Section 2.1. 

2.1.1 Arc Composition 

The equilibrium composition of an arc at a given temperature 

and pressure Is usually calculated by assuming local thermodynamlc 
4 

equilibrium (LTE) and then using the Saha Equations.  These equations 

need partition functions and ionlzation potentials for the various 

species in the discharge. However, in a plasma, charges of one sign 

are, on an average, surrounded by an excess charge of the opposite sign. 

This lowers the ionlzation potential and Dcbye has derived the equation 
4 

which gives the magnitude of this lowering.   In practice this Debye 

lowering is introduced into the Saha Equations and, after an initial 

guess of this lowering, the Saha Equations are iterated until a self- 

consistent Debye lowering is obtained.  This method is adequate for 

simple gases such as xenon or krypton but totally inadequate for 

complicated discharges. 

R. Liebermann has developed a more complete approach which is 

applicable to any system (it has been applied to the SF, discharge in 

which each SF, molecule is decomposed into 22 different species).  The 

Gibbs free energy is calculated from given heat capacities and heats of 

formation.  The Gibbs free energy is then minimized, under mass balance 



and charge conservation constraints,  via the geometric programming 

techniques of Duffin et al.       The Debye lowering is  again introduced as 

an iteration parameter and the simultaneous equations  iterated until a 

self-consistent Debye  lowering  is  obtained. 

For the simple pure xenon or krypton discharge,  either 

approach can be used but because  the Liebermann program is more general, 

it was used.     Since the heat  capacity should vary slowly with the Debye 

lowering,  it was held constant  during the iterations  on the Debye 

lowering.    The heats of  formation were used as a function of temperature. 

To simplify the calculation it was assumed that the discharge was 

optically thick below 2000 %. and optically thin above 2000 X.    Thus the 

ultraviolet radiation effects were completely ignored.     The results of 

the calculations  for a pressure of 2.5 atm are given in Figs.   1 and 2. 

The temperature range was between lOOCK  (the assumed wall temperature) 

and 18,000oK.    We expected the highest  temperature in the discharges to 

lie between 6,000oK and 10,000oK, but another calculation on a Na-Br 

discharge led us  to believe that a temperature as high as  15,000°K might 

be possible.    A comparison of  Figs.  1 and 2 shows that  the higher first 

and second ionization potentials of Kr require higher temperatures  for 

ionization.     In fact the concentration of ions  is not significant below 

about  10,000oK for Xe and below about ll,000oK for Kr. 

2.1.2    Transport Properties 

The electrical and thermal conductivities are  calculated by 

the first Chapman-Enskog approximations as  formulated by Yos    and by 
Q 

Brokaw.  The electron-neutral momentum-transfer cross sections for 
9 

xenon have been measured by Frost and Phelps  as a function of tempera- 
?2 

ture.  To simplify the xenon calculations a value of 13.17 A was taken 

for all temperatures.  This was the value measured by Frost and Phelps 

at 10,000oK.  In the highly ionized regime Sptizer's formula  was used. 
11 

The neutral-neutral cross sections were estimated by Brokaw's method. 

I 
I 
1 

The neutral-ion cross sections  are unknown but based on our previous 

experience with other discharges,  a value of 2.5  times  the neutral- 

neutral cross sections seemed reasonable and was taken.     Since the ions 



Il 
should constitute a small part of the discharge, this approximation Is 

not critical and may even be Insignificant.  It also seemed reasonable 
(2 2) 

to Identically equate the unknown Q  *  averaged cross sections to the 

Q •  averaged cross sections.   The xenon conductivity results are 

shown In Figs. 3 and 4. 

10 

Included In Figs.   3 and 4 are the results of Devoto which 
12 13 were published In 1967      and 1969. When the present calculations 

were done only the 1967 Devoto results were known,  and they were thought 

to be In error.    The 1969 Devoto results confirm this and are quite 

close to the present results;   the differences are easily explained.    At 

low temperatures Devoto used a temperature-dependent electron-neutral 

cross section whereas our value was temperature-Independent.    At high 

temperatures Devoto used an Ion-neutral cross section which was about 

10 times  the neutral-neutral value whereas we used a multiplicative 

factor of 2.5. 

The electrical and thermal conductivities were more accurately 

calculated for the krypton discharge. The temperature dependent 

electron-neutra.-! momentum-transfer cross section was used and, as given 
13 

by Devoto,  Is shown In Fig. 5. As a check on our cross sections and 

calculations, the electrical conductivity was calculated at 1.0 atmo- 
13 

spheres and compared with Devoto's results  (Devoto did the calculation 

at 1.0 atmospheres,but not at 2.5 atmospheres). Our results, labeled 

Llebermann, are compared to Devoto's results In Fig. 6. At high tempera- 

tures the electron-Ion momentum-transfer cross sections are significant. 

The curves differ In these regions because Devoto used different values 

for these cross sections. At low temperatures the fourth-order calcula- 
14 

tlon by Devoto  deviates from our first-order results whereas between 

7,000 and 8,000oK the first- and fourth-order theories agree.  Devoto 
14 

found a similar relationship for an argon arc discharge. 

The conductivity calculations for krypton were completed by 

equating Q  *   to Q  *  for the neutral-neutral and the electron- 

neutral Interactions.  The neutral-neutral cross sections were again 

. 
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calculated by Brokaw's method.   The Q  '  neutral-ion cross sections 

were, estimated as twice the neutra]-neutral cross sections, whereas the 
(2 2) 

Q  '  neutral-icn cross sections vere estimated as ten times the neutral- 

neutral cross sections.  The conductivity results are given in Figs. 3 

and 4. These cur/es show a surprisingly small difference between the 

xenon and krypton results, particularly for the electrical conductivity. 

In fact, although small, the different cross section approximations used 

by Üevoto give latger differences than changing the gas from xenon to 

krypton. 

J 
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2.1.3 Line Radiation 

Much of the discharge radiation originates from bound-bound 

transitions, i.e., line radiation. Although much of the science is 

known for these transitions, the problem is most assuredly nontrivial. 

Two simplifying assumptions which are usually made is that there is no 

configuration interaction and that magnetic dipole radiation is insig- 

nificant compared tc the electric dipcle transitions. The first 

approximation should be very good for simple gases such as xenon but is 

very bad for certain gases, e.g., mercury. The second approximation 

should be excellent except for the i    ■• I    transitions in the rare 

earths. Both approx: mat ions are made Sot xenon and krypton. 

The wave fv.notion, which determines the electric dipole 

transition probability rate, is determined from a SLJ listing of the 

energy levels.  For xenon I only the lowest five configurations are 

completely known;  fiese known levels ire listed in TabLj I.  For 

krypton I the lowest nine configurations are completely known.  By 
3 1 

setting the unknown P energy level equal to the P.. energy level 

within each ns configuration for n between eight and twelve, five high 

energy ns configurations can also be included.  The energy levels for 

these fourteen configurations are listed in Table II. 

With this energy level information the theoretical expressions 

for the energy levels can be adjusted to give a least squares fit to the 

experimental levels by using the radial integrals as fitting parameters. 

The resultant intermediate coupling angular wave functions for xenon are 

given in Table III.  For example, in the 5p 5d configurations: 

11 



pl> 0.7171^) - 0.2981^) + 0.6301^)     (1) 

where | > is the intermediate coupling and the |) is the SL coupling 

wave function.  The intermediate coupling angular wave functions for 

krypton are given in Table IV (Tables III and IV do not list the trivial 

one-component eigenvectors).  These last two tables dramatically show the 

well known collapse of SL coupling in the rare gases. 

The Westinghouse intermediate coupling program is only valid 

for the rare gases, and moreover, was found to give incorrect answers. 

Previous to this contract the very versatile electric dipole transition 

computer program written by Cowan  had been obtained and converted from 

the IBM STRETCH Computer to the CDC 6600 Computer.  A comparison of the 

two computer results for xenon located the Westinghouse program error 

which was then circmrvented.  (If the Cowan computer program were to be 

incorporated into the Westinghouse intermediate coupling program, any 

atom with two open shells or less could be handled.) The resultant 

radial Integral values for xenon and krypton are listed in Table V. The 

n'd spin-orbit coupling parameters must be positive. The two small 

negative values are therefore unrealistic and are a result of cumulative 

errors or configuration interaction.  In any event these values are too 

small to significantly affect the results. 

The radial p.irt of the wave functions must also be known to 

calculate the value of \<ty   |r|ij/ >|  which is needed to calculate the 

transition probability rate. These radial wave functions are very 

difficult to calculate.  For simple atoms (less than two equivalent 

electrons) the radial wave functions are calculated from the Bates and 
18 

Damgaard Coulomb approximation  or the Thomas-Fermi approximation, 

whichever is most appropriate.  Both of these methods require one electron 

energies and consequently break down whenever more than one equivalent 

electron is present. The development of Phase 2 of this contract will 

remove this restriction and also make this part of the calculation con- 

sistent with the intermediate coupling determined radial integrals. 

. 
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The Thomas-Fermi method was exclusively used for xenon and 

for the five lowest configurations of krypton. The more Important values 

üf the resultant t-ansitlon probability rates and transition wavelengths 

nre listed in Tablf VI.  As a check of our results, the thirty 5s-5p 

transition probabilities for krypton were compared to the results of 
19 

Murphy.   The agreement is within 6%  which is very satisfactory.  The 

results of Table VI show that both atoms emit considerable energy in 

the ultraviolet although xenon radiates about twice as much energy in 

tiiis wavelength region as does krypton.  Consequently, the ultraviolet 

optical thickness assumption made in the arc discharge calculations 

will be a worse approximation for xenon than for krypton.  In the 

infrared region xenon essentially has no radiation whereas krypton does 

have a small amount of radiation.  The total line radiation as a 

function of temperature has been calculated and is given in the next 

subsection where it :.s compared to the continuum radiation. 

' 

• 

i 
2.1.4 Continuuir Radiation 

The free-bound and free-free electronic transitions yield 

r continuum radiation, out the theory for these transitions is rather 

crude.  The spectral ibsorptivity for these transitions in  given by 

K(X,T)  - t g4 O.   (X) exp (-E./kT)/Zn (2) 
.11 10 

where Z is the internal partition function, g. is the statistical weight 

of the initial state, E. is the energy, and o. is the photoelectric cross 

section for the ith species. The exponential factor is simply the 
20 

Boltzmann factor.  Unsold  showed for hydrogen how the summation could 
21 

be changed to in integration.  Schlüter  has generalized Unsold's work 

to give 

2 6 
K = 32Tr VA |- X3 exp (-x/kT)[exp(hc/XkT)-l]YC   (3) 

3/3 he   o 

where x is the ionization energy, y  is the statistical weight of the core 

state, and 5 is a temperature dependent factor with 0(1).  The latter 

13 



factor is very difficult to determine. The values given In Schlüter's 

paper for xenon are reproduced In Fig. 7.  The Schlüter curves should be 
22 

the most accurate.  Blberman et al.  used the hydrogenlc approximation 
23 

whereas Yankov  used a modified hydrogenlc approximation.  For short 

wavelengths £ increases exponentially with increasing wavelength.  In 
■ 

the intermediate range between 5000 and 6500 A, the £ factor is extremely 

difficult to determine.  In this region the absorption edges appear, but 

they are shifted to longer wavelengths by plasma interactions and there 

is no satisfactory theory for these shifts.  Hence, the C factor is 
o 

extremely crude between 5000 and 6500 A.  The absorption edges should be 

sharper than those shown by Schlüter, and might appear as Liebermann's 

curve shows in Fig. 7. The £ factor for krypton is given in Fig. 8. 

The evaluation of Eq. (3) in the literature has led to some 

confusion. The value of y for xenon should technically be four, since 
2       2 

the core state is split into the ?.,_ and P^o states and the J - 3/2 

state is the ground state. However, a few people such as Schlüter use 

a value of six. Schlüter has shown that the value of y  is not important 

if one is consistent because the £ factor contains a y      factor. However, 

we used the partition function for y  (which is approximately four) but 

used Schlüter*s £ which contained the value of y * 6.    This confusion 

lead to a few Incorrect early results but was eventually corrected. 

The continuum radiation is calculated from the effective 

spectral absorptivity 

K'  - K[l - exp(-hc/XkT)] (4) 

which is the difference between the true absorption and induced emission. 

Equation (4) is also valid for the line absorptivltles. The radiation is 

then calculated as the radiated power per unit volume, as is given by the 

spectral emission coefficient 

e(X,T)  - B^' (5) 

14 
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where B, Is th.» Planck black, bod/ intensity which Is given by 

Bx =  2hc/X3[exp(hc/AkT)-l] (6) 

The l:'.ne and contlnui m radiation results are given in Figs. 9 

;md 10.* The former figure shows that the line radiation is more important 

in xenon than in krypton and is always significant for both arc discharges 

within the specified temperature range. The latter figure shows that 

below 12,000oK the xenon arc discharge emits more radiation than the 

krypton arc discharge.  The radiation peaks in Fig. 10 are a result of 

two competing factors; as the temperature is increased each atom increases 

its radiation but, at constant pressure, the atomic density decreases. 

This situation is in contrast to the normal experimental situation where 

the atomic density is held constant and the pressure is allowed to change. 

2.1.5 Tempergture Profile 

24 
Lowke,  at Westinghouse, his developed a very powerful computer 

program for the determination of temperature profiles. Given the tube 

radius, the wall tenperature and the central temperature of the arc, the 

program uses a relaxation method to determine a profile, the current and 

the electric field strength.  Of cours<>, the electrical und thermal con- 

ductivities and the radiation must also be given.  The electric field 

strength is guessed and then iterated until a self-consistent solution 

is obtained. The discharge is assumed to be optically thin. 

The electrical characteristics of the xenon and krypton arc 

discharges are shown In Fig. 11.  Two characteristics are shown for 
12 

xenon; one was determined from Devoto's  conductivities and one was 

determined from our calculated conductivities (see Figs. 3 and 4).  The 

measured values are also given.  At the measured current of forty amperes, 

the electric field strength calculated from our conductivities is 4% too 

- 

! 

I 
I 
I 

* 
The xenon continuum results in this report differ from those given in 
Technical Report No. 1.  Subsequent to the printing of the latter report 
a keypunching error in the continuun computer program was discovered 
and corrected. 
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low for xenon and 8% too high for krypton. This agreement between the 

measured and calculated values of the electric field strengths Is very 
25 

good, particularly since, as Mottschmann  explains, the ultraviolet 

radiation which was ignored should lower the calculated value. •• 

A qualitative dependence of the electrical characteristic upon 

the thermal and electrical conductivities, and thus on the cross sections, 

is obtained by comparing the two xenon characteristics.  Figures 3 and A 

show that Devoto's conductivities are higher than ours and Fig. 11 shows 

that as a result of Ohm's law these higher conductivities yield a lower 

electric field strength (40% too low at 40 amp) which in turn leads to 

a lower central core temperature of the arc discharge. 

The calculated temperature profiles for a central core 

temperature of 9200oK (xenon) and 97750K (krypton) are given in Fig. 12. 

They are quite flat over most of the tube volume. Every other point is 

calculated and the Intervening points are Interpolated. Linear Inter- 

polation explains the small dip at about 2 mm. The wall temperature was 

fixed at 1000eK for the calculation, although the lamp was water cooled. 

The stacp slope near the wall shows that a crude approximation of wall 

temperature is sufficiently accurate. 

2.1.6 Arc Emission 

The wavelength shifts and broadening of the line radiation is 
4 

first calculated. Griem's electron impact mechanism is evaluated as 

well as the van der Waals Interaction between different species. 

Resonance broadening is calculated for all transitions in which either 

the lower or upper state has an allowed electric dipole transition to 

the ground state. Whenever ions are present the charges cause a 

polarization effect which also shifts the lines and which is also 

calculated. The broadening varied from zero to two or three angstroms, 

and a typical wavelength shift was one angstrom. 

These broadenings and shifts are calculated for each line at 

six different temperatures (see Fig. 12). The absorptlvities of these 

lines are calculated and extended by interpolation. The line radiation 
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is then integratec along a diameter to give an "effective" line which 

is the actual emission observed by the experimentalist. The integration 

is also performed for the continuum radiation. The xenon and krypton 

results are  shown with the experimental results in the next section. 

2.2 Compartson of Theoretical and Experimental Results 

The lamps used for spectral measurements were built at the 

Research Laboratories.  They have been already tested as laser pumps, 

and spectroscoplc measurements were previously made under slightly 
26 

different operating conditions.   An important parameter in all calcu- 

lations is atom density or pressure. In sealed lamps, the fill pressure 

is known, but the operating pressure changes with power and can only be 

calculated if the inactive or dead volume of the lamp is known. To 

eliminate this possible source of error, the lamps were not sealed but 

were connected to a large reservoir of fill gas kept at 2.5 atm. Other 

measured parameters were arc diameter ■' 0.56 cm, arc length > 7.3 cm, 

current = 40 A, and voltage - 82 V for xenon and 69 V for krypton. 

Another lamp of 14.1 cm arc length was operated under ideitical conditions 

in order to determine the electrode loan which then was calculated to be 

12 V. Therefore, the electric field in the positive column is 9.6 V/cm 

for xenon and 7.8 V/cm for krypton, and the electrical input power 
2 

densities (power per unit surface area) are 226 and 192 watts/cm 

respectively. 

Spectral measurements were performed using a Jarrell-Ash 1/2 m 

Ebert monochromator. tot  measurement of the line spectra the curved 
o 

slits were 40 y wide corresponding to a dispersion of 0.64 A. In 

measuring the continuum the slits were opened to 100 u in order to 

increase the detected signal of the relatively weak continuum radiance. 

The detector used was a silicon p-l-n phctodiode.  The system was cali- 

brated using a calibrated tungsten spectral radiance standard and auto- 
o 

nntlcally corrected for nonlinearity between 5000 - 10,000 A by using a 

variable attenuator. 

17 



2.2.1 Xenon 

The experimental results are shown and compared with the 

computer calculations in Fig. 13.  Figure 13a shown the experimentally 
o 

obtained radiance spectrum of xenon between 7500 - 10,000 A. The 

computerized equivalent spectrum is shown in Fig. 13b.  The two spectra 

compare well in the location of the lines.  Three lines around 9500 A 

which appear in the experimental spectrum do not appear in the calculated 

spectrum. The reason for this discrepancy is not certain, but it appears 

that these lines originate from high lying configurations of xenon which 

were not included in the calculation. 

Other differences in data include the relative amplitudes of 

the lines. By examining the experimental data, it appears that all the 

lines have about the same width. The narrower lines have greater intensity 

relative to the measured spectrum. The wider the line the closer is the 

agreement. This discrepancy could be a result of inadequate spectral 

resolution of the monochromator. 

When taking the experimental spectrum we also measured in 
0 

detail the line shape of the most Intense line occurring at about 8232 A. 

This measurement is compared with the calculated results at two different 

core temperatures in Fig. 14.  The ordlnate and abslssa are the same for 

both curves. A comparison of the experimental line and the 8450oK 
• 0 

computed line shows that the experimental half width of 3.66 A is 1.0 A 

greater than the calculated half width. The dispersion limited resolu- 
o 

tion of the monochromator is 0.64 A but the aberration in the instrument 
o 

could decrease the true resolution to about 1 A although the manufacturer 
o 

places the aberration resolution at 0.1 A. Regardless of the resolution, 

the energy in the line, which is proportional to the area under the line. 

I.e., the product of radiance and angstroms, remains constant. Comparing 

the energies of the calculated and experimental results, we find that the 

calculated energy is 15% smaller. This difference is surprisingly small 

since neither spectral curve was expected to be accurate to within 20%. 
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A ciiparison of  the experimental line and  the 9200oK computed 
o 

line shows that i;he experimental half width Is 1.48 A smaller than the 

computed half wic'th, and that the calculated energy Is 125% larger. 

These results Indicate that a central core temperature of 84500K is 

slightly too low whereas 9200oK Is considerably too high.  These line 

shape measurements indicate a central core temperature of 8530 + 150oK. 

The calculated curves also show some fine structure not 

present in the experimental spectrum because of limited resolution. The 

notch in the short wavelength side of the peak is real and due to self 

absorption of the hot core by the cool gas near the wall which has its 

peak absorptivity at shorter wavelengths than the core.  There is also 
e 

a difference in the location of the peak radiance of about 1.3 A. 

However, neither value is sufficiently accurate to determine which curve 

is in error. 

In addition to calculating the spectral radiance, the computer 

also calculates the peak absorptivity, and the emittance.  These calcu- 

lations for the 8232 A line are shown In Figs. 15 and 16.  The emittance 

is the information needed to calculate the spectral overlap.  From the 

spectral absorptivity we can determine the degree of optical thickness 
o 

of the line.  In thlii way we have detemlned that the 82:2 A line does 

not have the strongest core radiance, but it Is less absorbed by the 

cooler gas so that its emitted radiance is greatest.  Howaver, its 

radiation is also appreciably absorbed; so that the line radiation from 

a relatively small diameter low-current discharge is already becoming 

optically thick.  In fact at 9200oK the discharge is 80% optically thick 

and below 6000oK the discharge is 100% optically thin (based on a 

maximum spectral absorptivity within the specified wavelength region of 

10 cm  as being 100% optically thick). 

The experimentally measured continuum spectrum is shown in 

Fig. 17 and a calculated continuum spectrum in Fig. 18.  Because of a 

programming error the ordinate was corrected as shown in the curve. 
o 

Beyond 7000 A, comparison becomes difficult because of the contribution 
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of the wings of the lines to the continuum. A quick glance at the two 

curves shows that the agreement Is poor since the shapes of the curves 
o 

below 6000 A are different.  (A keypunching error rendered Impossible 

any absolute comparison of continuum radiation amplitudes for this figure 

although the line radiation results are correct.) We also tried the less 
23 

sophisticated approach of Yankov.   The result appeared to be just 

slightly better but the shape of the curve still disagreed with the 

measured curve. 

As explained In the section describing the method of calculating 
o 

the continuum, the bound-free absorption edges occur In the 5000 - 6500 A 

region.  Therefore, the shape of the continuum depends strongly on 
21 

correctly choslng Schlüter's £ function.   Schlüter could not himself 

get good agreement with experiment for xenon. We considered the possi- 

bility of Ionic species causing the difficulty, but our calculated results 

show that this Is not a significant factor.  We also modified Schlüter's 

£ function as shown by the dotted line In Fig. 7 to account for temperature 

shifts and obtained the spectrum shown In Fig. 19. The change In spectrum 

Is considerable, and the shape above 5100 A Is In much better agreement 

with experiment.  A comparison of the measured and calculated continuum 

amplitudes shows fair agreement below 6000 A but the calculated amplitude 
■ 

Is more than a factor of two too low above 6000 A. Our purpose Is not 

to find a better Schlüter factor by fitting It to the measured spectrum 

but rather to show that a much better knowledge of the Schlüter factor 

Is necessary If better contlnua are to be calculated.  In the remaining 

calculations the calculated continuum of Fig. 19 Is used. 

2.2.2 Krypton 

The experimental results are shown and compared with the 

computer calculations In Fig. 20.  Figure 20a shows the experimentally 
o 

obtained spectral radiance of krypton between 7500 - 10,000 A.  The 

computerized equivalent spectrum Is shown In Fig. 20b. A comparison 

of the line positions shows excellent agreement between the two spectra. 

As explained In the previous subsection the amplitudes of the two spectra 

do not compare as well because the computer resolution is finer than the 

experimental resolution. 
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The c.xperimentaliy meaMired 7,606 A line and the same line 

computed with a core temperature of 9,7750K are compared in Fig. 21. 
■ 

The computed line exhibits a -5 A shift relative to the measured line. 
15 0 

Since the unshl:tcd line  should occur at 7,604 A, the experimental 
o 

apparatus is in error by at least 2 A. The remaining discrepancy is 

small but may indicate a slightly too high core temperature. A com- 

parison of the energy under each line shows that the computed line has 

21% more energy.  This very good agreement is well within the experi- 

mental and computed accuracies but again indicates that the computed 

core cemperature may be just slightly too high. 

As for the xenon discharge the emittance and spectral 

absorptivities were also calculated. The krypton discharge is 23% 

optically thick at 97750K and 100% optically thin below 7,000oK. 

The experimentally measured continuum spectrum is shown in 

Fig. 22 while the calculated continuum spectrum is shown in Fig. 23. 

As explained in the previous subsection the continuum calculation is 

crude.  The Schlüter factor shown in Fig. 8 was used although it again 
o 

lead to the wrong curve shape below 6,000 A.  The amplitudes agree 
o 

fairly well below 6.000 A, but the calculated amplitude is about a 
0 

factor of two, too low above 6,000 A. These figures again show that a 

better knowledge of the Schlüter factor is necessary if better con- 

tinuums are to be calculated. 

2.3 Measured Spectra for W and K-Hg Lamps 

The spectral radiance of the commonly used tungsten lamp was 

obtained by multiplying the black body radiance at 3,200oK by the 
27 

measured emissivity at 3,200oK.   The spectral emittance was obtained 

by multiplying by TT steradians. This multiplication factor is correct 

for an optically thick infinite plane emitter radiating onto an infinite 

plane absorber of finite thickness, or for an infinitely long cylinder 

of finite radius radiating onto an infinitely long concentric annulus 

where the annulus thickness is much smaller than the annulus radius. 
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The Input power to the tungsten lamp was calculated as toT where e 

is the average emissivity at T = 3,200oK and a is the Stefan-Boltzmar.n 

constant. 

The potassium-mercury spectral emittance could be theoretically 

calculated as in the last section but to save time and money the 

experimental spectral radiance, shown in Fig. 24, was used since it 

was already available.  The spectral emittance was obtained by 

multiplying the spectral radiance by three. The factor of three was 

obtained by averaging the factors calculated for the xenon arc dis- 

charge which should be about as optically thick as the potassium-mercury 

discharge.  The input power density is given by the 100 volt voltage 

drop multiplied by the 5 amp current divided by the 2.36 cm circum- 

ference times the 3.5 cm arc length . This answer is then reduced by 

15% to exclude the end losses. 

2.A Discussion 

Because of the narrowness of the lines, It takes about 80 
o 

minutes to make one monochromator scan from 5,000 - 10,000 A, but the 

major time consumption is spent in building the lamp,set-up time, 

erroneous starts, etc. The entire procedure would have to be repeated 

for every parameter change such as current density, pressure, and wall 

diameter.  In addition, after obtaining the data it still has to be 

converted to computer data cards. This spectrum provides the spectral 

radiance through the center of the arc. To get the spectral emittance, 

i.e., the radiation emitted at the wall from all portions of the arc, 

one would have to obtain the radiance from various rays through the 

arc and calculate the emittance. The above discussion points out the 

difficulty of doing the spectral overlap calculation from experimental 

data.  Furthermore, if a pulsed arc were studied the experimental degree 

of difficulty would be further Increased. 

The object of comparing the Xe and Kr calculated spectra with 

the experimental spectra was to determine how close the calculations 

match the experiments. The results indicate that the line spectra 
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calculations are appreciably better than the experimental data.  There 

is no absolute wav of knowing which spectrum is correct, but it is 

certain that the experimental data Is limited in resolution to at least 
o 

0,75  A,  Since tho measured lines are only a few angstroms wide, a 
o 

resolution of 0.7!' A will cause noticeable error.  However, the measured 

energv within a line is independent of the resolution.  The agreement 

for krypton to within 21% between calculation and experiment is better 

than the accuracy of each method and therefore impossible to determine 

which method is nearer reality.  The xenon line profile at different 

core temperatures shows how accurate line profiles can be compared to 

determine the actual core temperature. We therefore conclude that it 

is very desirable to calculate the line spectrum.  It is stressed that 

the measurements and calculations were carried out completely 

independently.  The calculated line spectra were never altered to fit 

the experimental spectra.  If the experimental measurements were never 

made, the identical calculated spectr.i would have been presented. 

The calculated continua spectra were only about a factor of 

two in agreement with experiment.  The difference was net only in 

magnitude, but in wavelength dependence.  Since the experimental radiance 

is estimated to have an absolute certeinty of ±20% and a relative 

accuracy with wavelength of better than 5%, it is believed that the 

calculated continua are in error.  We believe that the problem is 

associated with the C factor of Schlüter although attempts at modifying 

it, after making spectral comparisons, were not entirely successful 

even though It was apparent that this factor can exert a strong influence. 

As shown in Figs. 7 and 8, the Schlüter factor appears to be too small 
o 

above 6,000 A. 

The true value for the continuum radiation from the xenon 

discharge can be crudely approximated by forming an energy balance of 

the arc: 

2TTE 

rr 

Jo 
or'dr' = -2TTrK ~   +  ^r2^ + Rc) (7) 
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where r is Che discharge tube radius. The left hand side Is the 

electrical Input power per cm and the right hand side Is the output 

power per cm as determined by the thermal conduction and the line and 

continuum radiation, given by IL and R , respectively (see Fig. 10). 

By assuming a nearly isothermal, optically thin discharge, the left hand 

side becomes 

2 2 
irS or (8) 

The temperature gradient dT/dr can now be evaluated by using the cal- 

culated value of 9.2 volts/cm for E and using Figs. 3, 4, and 10 to 

obtain the other unknown values at 9,200oK. This value of the tempera- 

ture gradient is now assumed constant and the conductivities are used 

for 8,530oK (the core temperature determined by a comparison of the 

calculated line profiles to the measured profile).  The value of R at 

8,530oK is determined from Figs. 9 and 10, and the value of R is 

determined from Eqs. 7 and 8.  In other words, the electrical input 

power Is held constant but the temperature of the discharge is lowered 

from 9,200oK to 8,530oK.  This temperature decrease lowers the con- 

duction and line radiation losses and consequently the true continuum 

radiation loss must Increase to exactly cancel these decreased losses. 

The result is that the continuum radiation at 8,530oK is approximately 
-3    -1 

99.4 watts cm  ster  which is nine times as much continuum radiation 

as given by Figs. 9 and 10, although the total radiation has only been 
-3   -1 

reduced from 165 to 155 watts cm ster  . Thus the continuum radiation 

at 8,530oK is 64% of the total radiation. This compares favorably with 

the 55% calculated for the krypton discharge and leads us to believe 

that the continuum radiation calculated for the krypton discharge is 

about right. 

In the determination of the temperature profiles and electrical 

characteristics, the discharge is assumed to be optically thin. The 

effect of this assumption is to Increase the voltage gradient value at 

a given current. This increase can be seen in the xenon discharge by 

assuming an isothermal temperature profile.  Then 
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IR = IK/a (9) 

1 
I 
I 
I 
I 
I 
I 

where E and I are given in Fig. 11 and a is the electrical conductivity 

given in Fig. 3.  The constant K is determined to be 6.44 by setting 

I equal to 40 amp and using the E and a values appropriate for 9,200oK. 

If the electrical conductivity is now changed to the value for 8,530oK 

(the core temperature determined by a comparison of the calculated line 

profiles to the measured profile), the voltage gradient is determined 

from Fq. (7) to be 12.27 volts/cm. 

On the other hand, the krypton discharge is 23% optically 

thick and the calculated voltage gradient is 8% too high.  Since the 

xenon discharge is 80% optically thick its voltage gradient should be 

(80/23) 8% too high.  In other words the calculated voltage gradient 

should be 12.27 volts/cm. 

The above two calculations give the same result and show 

that the difference between the calculated and measured voltage gradients 

Increases in direct proportion to the optical thickness of the discharge. 

However, the calculated core temperature is Independent of the optical 

thickness. These results also show that the -4% agreement between the 

calculated and measured voltage gradients for xenon is fortuitous and 

should be 27.8%. 

The purpose of the previous discussion is to understand the 

present limitations of the calculations. Thus the errors have been 

discussed and estimated. It is consequently very easy to be too 

concerned about the limitations and overlook the successes. We believe 

that the theoretical results are so good for the purpose of evaluating 

relative pump efficiencies that the original calculations of Section 2.1 

are used without modification.  In fact, despite the errors, we believe 

that the best spectral overlap calculations will be done with calculated 

rather than experimental spectra because the calculated spectra are 

better resolved. This increased resolution is particularly important 

for line emitting arc discharges pumping a line absorbing laser rod 

such as the rare earth activated lasers. 
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3.  LASER ABSORPTION SPECTRA 

The necessary input information to obtain the pumping 

efficiency of a lamp is its spectral emittance and the excitation 

spectrum of the lasing medium.  The lasing media we wish to consider 

are Nd:Y Al 0  (Nd;YAG) and CriA^O  (Ruby).  The absorption spectra 

of these crystals which closely follow the excitation spectra in the 

region of interest can be obtained by experimental measurement.  This 

data must then be converted from a chart recorder to computer data 

cards.  This operation is easily done for ruby since the absorption 

spectrum varies slowly with wavelength and will be included in a 

later chapter. 

The Nd:YAG absorption spectrum consists of a large number of 

narrow lines and requires considerably more data points to describe it 

compared to ruby.  However, prior to this contract, we have developed a 

program which requires knowing only a few data points per line to 

calculate and describe the spectrum. The general interpolation 

technique used is called GOOP, and for determining the YAG spectrum 

it is called YAGOOP.  The YAGOOP program is complete and available for 

use.  The general technique of YAGOOP is to fit a series of Lorenzian 

profiles to the measured spectrum.  Each Lorenzian profile is completely 

specified by its center frequency, peak value and width at half the 

peak value. Prior to this contract the Nd:YAG absorption spectrum 

shown in Fig. 24 was fitted by YAGOOP.  Fifty-one Lorenzian profiles 

are needed to reproduce the measured spectrum.  In other words, 153 

specified variables give a complete mathematical description of the 

absorption spectrum.  The details of this fit are given in Ref. 1 and 

will not be described here. 
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SYSTEM EVALUATION 
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How well does a particular lamp pump a given laser rod? This 

is a question of considerable interest which we will attempt to 

answer in this chapter.  In particular the efficiencies of the potassium- 

mercury, tungsten, krypton, and xenon lamps specified in Chapter 2 will 

be evaluated for pumping slab lasers of different thicknesses. 

The system which is considered is a simplication of actual 

laser systems. The lamp is considered to be an infinitely long cylinder 

whose light is focused by an idealized optical system onto an infinite 

laser slab of thickness t. The lamp light is transmitted to the slab 

through a perfectly transparent medium and perpendicularly strikes the 

slab with the same emittance at which it left the lamp. The light which 

enters the slab is then absorbed or transmitted. The absorbed light pumps 

the laser ion whereas the transmitted light is lost to the system. Although 

this simple system is obviously different than real laser system it will 

be shown that it produces excellent quantitative results. 

: 

i 

i 

4.1 Lamp Efficiency 

The lamp efficiency is defined here as the percentage of 
o 

electrical power into the lamp which is emitted in the 5,000 to 10,000 A 

wavelength region which includes all the useful absorption bands of 

Nd:YAG.  The input power per unit surface area for the four lamps under 
2 

consideration was given in Chapter 2.  The output power per cm is 

obtained by numerically integrating the spectral emittance over the 
o 

5,000 to 10,000 A region.  This integration has an accuracy of better 

than 5% and shows that the lamp efficiencies are 67%, 36%, 35%, and 

14% for the potassium-mercury, tungsten, xenon, and krypton lamps, 

respectively.  Note that the xenon lamp is 2.5 times more efficient 

than the krypton lamp.  These lamp efficiencies do not include electrode 

I 
I 
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losses which are normally about 15% of the input power to a 3" lamp 

and can be included in the above efficiencies by a multiplication 

factor of 0.87. 

The efficiency of the simple system described in the beginning 

of this chapter is particularly interesting if the slab is 0.7% Nd:YAG. 

This laser material is a line absorber and is widely used in laser 

systems.  The former property makes it a difficult test of the lamp 

emission calculations. 

4.2   Slab Efficiency 

The slab efficiency is defined here as the percentage of the 
2 

power density (watts/cm ) incident on the slab which is emitted at the 

fluorescing wavelength of 1.064 p.  In other words, the slab efficiency 

measures the effectiveness of the slab in absorbing incident energy 

and transforming this absorbed energy to useful emission. The power 

density incident on the slab was calculated in the last subsection. 

The power density emitted at 1.064 u is determined by the spectral 

overlap: 

fV2 
S -  C  It(v)[l - exp(-a(v)t)](voMQ(v)dv (10) s 

where I. is the spectral emittance of the lamp, a is the spectral 

absorptivity of the slab and Q is the quantum efficiency of the laser 

material. The v is the fluorescent frequency corresponding to 1.064 VJ ; 

v1 and v„ are the frequencies corresponding to wavelength of 1.0 and 

0.5 M, the wavelength region of the lamp emission.  The quantum 

efficiency is assumed to be unity. The spectral emittance was calculated 

in Chapter 2, and the slab absorptivity was obtained as described in 

Chapter 3.  Thus everything in Eq. (10) is üpecified and the integrand 

can be numerically integrated.  Before doing the integration, however, 

it is interesting to study the integrand, I, for various values of slab 

thickness. 
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The spectral overlap Integrand for the tungsten lamp is shown 

in Fig, 25.  As the thickness is increased the broad emission bands 

from the tungster are   increasing alsorbed by the unsaturated absorption 

line«.  .\;; Hie -ibsorption lines become saturated ,the spectral distribution 

of the Lungstcn lamp becomes prominent and is very evident in Fig. 25f. 

It would be too bulky to include all the spectral overlap 

Integrand plots.  Therefore, only the results for a 1.2 cm slab thickness 

are shown in Figs. 26, 27 and 28 for the remaining three lamps.  These 

plots clearly show that most of the spectral overlap contribution la 
o 

from above 7,000 A.  The line emission of these three lamps gives a 

more jagged appearance to the plots than present in the tungsten plots. 

Xenon obviously has the worst spectral overlap. 

The spectral overlap integrand is numercially integrated to 

an accuracy of at least 5%, and the slab efficiency is obtained by 

dividing by the incident power density.  The results are shown in 

Fig. 29.  The krypton lamp clearly has the best spectral match with a 

Nd:YAG slab. 

A. 3   Pump Efficiency 

The pump efficiency is defined here as the percentages of the 

electrical power density into the laim (neglecting electrode losses) 

which is emitted by the slab at the fluorescing wavelength of 1.064 u. 

Thus the pump efficiency measures the effectiveness of the slab laser 

system.  Since the e lab properties reuain constant as tie optical pump 

is changed, it is really a measure of the optical pump effectiveness 

and explains the teni "pump" efficiency. 

The pump efficiency is the product of the lamp efficiency 

and the slab efficiency and is the final goal of these calculations 

since it is the best method of evaluating slab laser systems.  All the 

requlroO numbers have been calculated in the previous subsections and 

the [tump efficiencies are plotted in Fig. 30.  The most efficient pump 

by far is the potassium-mercury lamp.  This is a result of being the 

most efficient lamp of the four and having a very good spectral overlap, 
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although the spectral overlap of the tungsten lamp is considerably better 

than that of the xenon lamp. The krypton lamp is quite inefficient but 

the spectral overlap is so large that the pump efficiency is very close 

to that of the tungsten lamp. 

A comparison of the krypton and tungsten pump effirencies 

is rather interesting.  The tungsten pump is more efficient for slabs 

thinner than 1.2 cm or thicker than 2.4 cm.  The krypton pump is very 

slightly more efficient in the intermediate range of thicknesses. 

This behavior demonstrates how the absorption saturation of individual 

lines can change the relative efficiencies of two pumps with pump 

efficiencies which are very close to each other. 

These results can be compared with experimental laser measure- 

ments.  Appendix 1 shows our published results on comparing tungsten, 

krypton, and xenon lamps for pumping a 5 mm diameter,  50 mm long Nd:YAG 

laser rod. Figure 31 Includes these results and also shows some more 

recent work on potassium-mercury lamps.  These lamps appear to be very 

promising as Nd:YAG pumps.  Currently they must operate in a vacuum 

to prevent atmospheric attack of the Nb end caps which operate at 

temperatures in excess of 700oC.  The quartz vacuum jacket presently 

used degrades the coupling efficiency to the laser rod and the vacuum 

operation considerably decreases the input power to the lamp since the 

sapphire walls of the lamp are cooled only by radiation.  By eliminating 

the vacuum jacket and protecting the end caps through coatings or other 

means we have predicted previous, to this contract the experimental 

results designated as air-cooled K-Hg lamp. 

Although the slope efiiciencies are eai>xl> iuunU from Fig. Jl, 

the relationship between the rod diameter and the slab thickness must 

still be determined in order to compare the measured and calculated 

efficiencies. An approximation can be made by equating the slab 

thickness to the effective chord length in the rod, c: 

t - cD (11a) 
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where U is the ratio of the activator doping in the rod to the doping 

in the slab.  The effective chord length in a cylindrical rod of diameter 

d is shown in Appendix 2 to be given by 

'4'/ T  + 0.27)d (lib) 
- d + 6.AA 
r 

This calculation does not include the cavity coupling efficiency and 

assumes a Lambertian distribution of the light intensity in the rod. For 

the 1.3% doped, 0.5 x 5 cm rod used for the experimental measurements 

of Fig. 31, Eqs. (11a) and (lib) give an equivalent slab thickness of 

0.8A cm (see Appendix 1).  The experimental slope efficiencies are 

included in Fig. 30 at this slab thickness.  The agreement between the 

calculated and measured relative pump efficiencies is excellent. This 

agreement is rather surprising when all the approximations are considered. 

The comparison for the tungsten pump only tests the spectral 

overlap calculation and the rod to slab thickness transformation since 

a measured lamp spectrum was used.  The agreement at the sharply rising 

curve for the potassium-mercury pump is good considering the crude 

"measured" value. This comparison is another test for the spectral 

overlap and rod to slab transformation calculations. 

The calculated xenon pump efficiency is too low and must be 

attributed to the low value calculated for the contiuum radiation. The 

calculated value can be adjusted by reducing the total lamp radiation 
-3    -1 

from 165 to 155 watts cm  ster  and by assuming that 64% of the radiation 

is continuum (see Section 2.3).  The lamp efficiency is thus reduced from 

35.2% to 33.1%.  Since the radiation contributing most to the spectral 

overlap is the continuum radiation, the slab efficiency should be close 

to that for tunpsten.  The adjusted xenon pump efficiency is 2.5% which 

is In good agreement with the measured laser efficiency of 3.1%. 
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The real test for the theoretical calculations is given by 

a comparison of the calculated and measured results for the krypton 

pump.  The continuum calculation is good and no adjustments need to 

made.  The measured value of 3.7% is  30%   higher than the calculated 

value of 2.6%.  This agreement is excellent in view of the lengthy 

ab initio calculation.  This is the first time such a calculation of 

this type has succeeded.' 

4. 4   Activator Efficiency 

Although the electrical input energy and the pump efficiency 

is all that is normally needed, another efficiency is interesting to 

know.  This additional efficiency will be called here the activator 

efficiency and is the percentage of time spent fluorescing by an 
-2 

average activator ion.  If the slab emits R watts cm , each activator 
3 

emits R/tn watts where n is the number of activator ions per cm .  Each 

emitted photon has an energy of hc/A where A  is 1.064 x 10  cm for 
o       o 

NdrYAG.  Thus the number of photons emitted per second by the activator 

ion Is given by 

N - (R/tn)(X /he) (12) 
o 

The fraction of time spent by the activator ion in the fluorescing 

process is simply N times the lifetime of the excited activator Ion, 

T.  The activator efficiency is thus 

E = Nx (13) 
a 

28 
The lifetime has been measured at 230 ysec.    Equation (13) can then 

be evaluated and the results are plotted in Fig. 32 (Note that the 

input pov/er densities have been normalized).  The low values show that 

the use of the Nd ion is surprisingly inefficient because an activator 

never spends more than about 0.06% of its time in fluorescence. 
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4.5 Discussion 

The important results in this chapter are summarized in Table 

VII.  The agreement between the relative experimental laser efficiencies 

and the relative calculated pump efficiencies is excellent I  Ranked in 

order of decreasing lamp efficiency, the four lamps are potassium-mercury, 

tungsten, xenon and krypton.  The ranking for the greatest slab efficiency 

is krypton, potassium-mercury, tungsten, and xenon whereas the ranking 

for the largest pump efficiency is potassium-mercury, tungsten, krypton, 

and xenon. These rankings clearly indicate the interplay of the lamp 

and slab efficiencies to give the pump efficiency. 

The pump efficiencies as a function of thickness are important 

but it would be more convenient if pumps could be ranked by a single 

number.  One possible system would be to use the activator efficiency 

at zero thickness.  This efficiency is finite and is independent of the 

slab thickness.  It is given in Table VII in the E column. This ranking 

system which is independent of slab thickness would rank the pumps in 

descending order as the potassium-mercury, tungsten, krypton, and xenon 

pumps. 
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5.  SUMMARY 

The emission spectra of a xenon and a krypton arc discharge 

have been measured on this contract, and the absorption spectra of 

Nd:YAG and ruby were measured previous to this contract.  The xenon and 

krypton arc discharge spectra have been calculated from theory.  The 

line spectra (which comprise about 50% of the total emission) agree so 

well with the measured spectra that one cannot determine which Is the 

more accurate, although the calculated line profiles appear to be more 

accurate than the measured line profiles (due to the low resolving power 

of the spectrometer).  The calculated continua only agree with the 

measured continua to within a factor of two.  In order to save time and 

money, available measured emission spectra of a tungsten and a potassium- 

mercury lamp have been used. 

The overlap between the emission spectra of these four lamps 

and the Nd:YAG absorption spectrum has been calculated as a function of 

the slab laser thickness.  Combined with the calculated lamp efficiencies, 

the spectral overlap yields the system efficiency for an optically pumped 

slab laser.  A cylindrical rod laser in a cavity was approximately trans- 

formed to an equivalent slab thickness of a fixed thickness and thus 

actual laser system efficiencies were calculated. 

The agreement between the theoretical and measured relative 

laser efficiencies for the four lamps is excellent.  This agreement is 

remarkable because the calculations for the krypton and xenon pumps 

only used: (1) lamp dimensions, (2) lamp gas, (3) lamp pressure and 

current, (A) laser rod absorption spectra, and (5)  laser rod 

dimensions and activator doping as the necessary laser system variables 

which have  to be experimentally measured.   Therefore, for the 

. 
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first time it has been shown that relative laser system efficiencies can be 

calculated from very basic laser system parameters.    The results show 

that  the potassium-mercury lamp  is  four  times more efficient  in pumping 

Nd:YAG  for all  rod diameters of  interest  than  the  tungsten and krypton 

lamps which are  slightly better  than  the xenon lamp.     The calculations 

clearly demonstrate how the theory can be applied to evaluate simple 

optical pumps  for a  given laser rod,  thereby bypassing costly and 

lengthy experimental measurements. 
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6. INTRODUCTION 

29 30 
The ruby laser was the first successful laser  *  and is still 

not completely understood.  Since it is a three-level laser, more than 

50% of the ground state chromium ions must be excited before lasing can 

occur.  This requirement necessitates a very powerful flash lamp which 

can invert the population before the excited ions can return to the 

ground state via spontaneous emission (fluorescence). 

The required 50% inversion automatically decreases the laser 

system efficiency.  However, theoretical calculations of this and other 

losses in ruby amplifiers predict laser efficiencies which are usually 

an order of magnitude higher than the measured values.  This discrepancy 

is still unexplained although many possible explanations have been pro- 

posed. 

One proposed explanation is that the flash lamp is not efficiently 

pumping the ruby.  This special report investigates this problem by cal- 

culating the pumping efficiency for fluorescence.  It is found that the 

pumping efficiency for fluorescence is quite high at the peak of the 

flash lamp pulse.  In fact, it is found that a 1.27 cm diameter ruby 

amplifier should have an overall efficiency of 6% based on pumping con- 
2 

siderations alone.  Depopulation of the E energy level by excited state 

absorption would decrease the efficiency by a small amount but excessive 

bleaching of the ruby rod or premature arrival of the ruby oscillator 

pulse appear to be the best explanations for the measured low amplifier 

efficiencies. 
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7.  LAMP EMISSION SPECTRUM 

The necessary input information to obtain the pumping 

efficiency of a lamp for a given laser material is the spectral emittance 

of the lamp and the excitation spectrum of the lasing medium.  The 

excitation spectrum of ruby will be considered in the next chapter, where- 

as the spectral emittance of a xenon flash lamp is considered in this 

chapter. 

The spectral radiance of a typical xenon flash lamp has been 
31 

measured by Church et al and is shown in Figure 33. The 12300 0K black 

body radiance is also shown for comparison.  The xenon radiation is 

clearly continuum radiation.  A comparison of the calculated radiance 

and the measured radiance again illustrates the inadequacy of the 

continuum radiation theory.  For the following calculations the measured 

radiance is always used. 

Although Figure 33 shows the peak radiance from the flash lamp, 

the light pulse is actually very time dependent.  This is clearly seen 

in Figure 34. The calculation in this report neglects this time dependence 

and simply uses the peak radiance values.  This is a good assumption 

since by employing pulse forming techniques nearly rectangular pulses 

may be obtained. 

Efficiency calculations require the electrical power into the 

lamp.  Tills xenon lamp, at its peak radiance, operated at a current 
2 

density of 4480 amps/cm with an electrical conductivity of 63 mho/cm. 
4 2 

The electrical input power is thus 1.0 x 10 watts per cm of surface 

area.  This calculation assumes that the voltage drop at the electrodes 

is negligible. 

Although the radiance is measured, the emittance is required 

for the efficiency calculations.  The emittance is obtained to a good 

approximation by multiplying the radiance by TT steradians, the value for 

a perfect Lambertian radiator. 
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8. RUBY ABSORPTION SPECTRA 

The absorption spectra of ruby closely follow the excitation 

spectra in the region of interest and are easily measured with a Gary 
32 

spectrophotometer.  The results of Maiman are shown in Figure 35. Since 

ruby is anisotropic, two absorption spectra are shown, one for light 

propagating parallel and one for light propagating perpendicular to the 

c-axis of the ruby crystal.  The chromium concentration was determine^ 

by chemical analysis to be 0.0515 weight percent of Cr„0.:Al_0. which 

corresponds to a chromium ion density of 1.62 x 10  ions/cm-^.  The 

absorption data for the R lines are shown in Figure 35 but were not used 
3334 

in the present calculations.  Excited state absorption   was also not 

considered; however, this is expected to cause no major error. 

A comparison of the two spectra in Figure 35 Indicates that 

light propagating parallel to the c-axis should pump the ruby crystal 

more effectively than light propagating perpendicular to the c-axis. 

We will show later that this is indeed the case, although the difference 

is not as large as one might expect from the absorption spectra. 

The absorption coefficient given in Figure 35 is for small 

amplitude pumping when virtually all the absorbing ions are in the ground 

state.  However, under hard pumping at least half of the ions are in the 

excited state and unavailable for excitation.  In this case, the absorption 

coefficients are half the values shown.  During long-pulse laser operation, 

stimulated emission automatically keeps the ground state about one-half 

filled and therefore the efficiencies are calculated from absorption 

coefficients which are one-half the values given in Figure 35. 
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9.  SYSTEM EVALUATION 

How well does the xenon lamp pump the ruby?  This is the basic 

question which will be examined in this chapter.  However, only the 

fluorescence pumping efficiency is calculated; the details of the lasing 

process which could modify this efficiency are not considered. 

The model used is a simplification of the actual laser system. 

It is thought to be a good approximation to the "first pass" in a 

focusing elliptical or spherical pumping cavity.  The lamp is considered 

to be an Infinitely long cylinder whose radiation impinges onto an 

infinitely long ruby slab of thickness t. The lamp radiation is trans- 

mitted to the slab through a perfectly transparent medium and perpendicularly 

strikes the ruby slab with the same emlttance at which it left the lamp. 

The light which enters the slab is then absorbed or transmitted. The 

absorbed light pumps the chromium ions whereas the transmitted light is 

lost to the system. Although this simple model is obviously different 

than the real laser system, It produced excellent results for the 

pumping of Nd:YAG and should be equally applicable to the pumping of 

ruby. 

9 .1 Lamp Efficiency 

The lamp efficiency is defined here as the percentage of 

electrical power into the lamp which is emitted in the 3000 to 7000 A 

wavelength region which includes all the useful absorption bands of ruby. 

The input power per unit surface area for the xenon lamp was calculated 

in Chapter 7,  The output power per unit surface area is obtained by 
0 

numerically integrating the spectral emlttance over the 3000 to 7000 A 

region.  This integration has an accuracy of better than 5% and shows 

that the xenon lamp efficiency is 36%. This calculation assumes that 

the electrode losses are negligible. 



9. 2 Slab Efficiency 

The slab efficiency is «iefined here as the percentage of the 

power density (watts/cm ) incident on the slab which is emitted as ruby 

fluorescence,  in other words, the slab efficiency measures the effective- 

ness of the slab in absorbing incident energy and transforming this 

absorbed energy into useful emission.  The power density incident on 

the slab was calculated in the last section.    The power density emitted 
o 

at 6943 A (assuming that all the ruby fluorescence takes place at this 

wavelength) is determined by the spectral overlap: 

v2 
S =  / ^ Il(v) 11 - exp (-a(v)t)](vo/v) Q(v) dv     (10) 

Vl 

where 1. is the spectral emittance of the lamp, a is the spectral 

absorptivity of the ruby slab and Q is the quantum efficiency of the 

ruby. As explained in Chapter 8, the absorptivity used in Equation (10) 

is one-half of the values shown in Figure 35. The v is the fluorescent 
o o 

frequency corresponding to 6943 A; v. and v9 are the frequencies 

corresponding to wavelengths of 7000 and 3000 A, the effective wavelength 

region of lamp emission. The quantum efficiency has been measured by 
32 31 32 

Maiman and is shown in Figure 36 (although the results of Maiman '  ate 

rather old, they are in a more convenient form to use and do not 
33 3^ 

significantly differ from more recent results * ). The power efficiency 

curve shown in this figure is the v /v ratio times the quantum efficiency. 

Thus everything in the integrand is specified. 

The spectral overlap integrand is numerically integrated to 

an accuracy of at least 5%, and the slab efficiency is obtained by dividing 

by the incident power density. The results are shown in Figure 37. As 

expected from the absorption data, light propagating parallel to the ruby 

c-axis gives better slab efficiencies. 

42 



9. 3     Pump Efficiency 

The pump efficiency is defined here as  the percentage of the 

electrical power density into the lamp  (neglecting electrode losses) 
o 

which is emitted by the slab at the fluorescing wavelength of 6943 A 

(i.e., the product of lamp and slab efficiency).  Thus the pump efficiency 

measures the fluorescence effectiveness of the slab laser system.  Since 

the slab properties remain constant as the optical pump is changed, it 

is really a measure of the optical pump effectiveness and explains 

the term "pump" efficiency. 

All the required numbers have been calculated in the previous 

seccions and uhe pump efficiencies are plotted in Figure 38.  It was 

shown in Section 4.3 that, to a good approximation, the diameter of a 

laser rod may be equated to about the same value of slab thickness. 

Consequently, the abscissas of Figures 5 and 5 may be considered as 

laser rod diameters.  For a rod with the same diameter as the xenon lamp 

(1.27 cm) the pumping efficiency is about 6%.  It is then apparent that 

the pumping efficiency of ruby is quite high and does not explain the 
35 

measured low ruby laser efficiencies  . 

9.4 Activator Efficiency 

Although the electrical input energy and the pump efficiency 

are all that are normally needed, another efficiency is needed for lasers 

which are pumped hard.  This additional efficiency will be called here 

the activator efficiency and is the percentage of time spent in the 

excited state by an average chromium ion. If the ruby slab emits R watts per 

unit surface area, each chromium ion emits R/tn watts where n is the 
3 

number of activator ions per cm and t is the slab thickness.  Each 
o 

emitted photon has an energy of hc/A where A  is taken as 6943 A.  Thus 

the number of photons emitted per second by each chromium ion is 

approximately given by 

N - (R/tn) (Ao/hc) (12) 
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Equation (12) is  slightly different  for a laser rod.     If we 

take  the  rod  diameter  d  to be  the  same  as   the  slab  thickness   (this   is 
2 probably  accurate   to within  10%),   each   chromium   ion emits  4(iTd?,)R/(trd   £)n 

watts,  where   i   is   the   Length of   the  rod.      In other words,   eacli  chromium 

ion emits  4R/dn watts  and Equation (12)   becomes 

N  =   (AR/dn)   (A   /he) (12a) 
o 

for a ruby rod.  This expression assumes that no pump light is absorbed 

by the ends of the rod. 

The fraction of time spent by the activator ion in the excited 

state is simply N times the lifetime of the excited chromium ion, T. 

The activator efficiency is thus 

E = Ni (13) 
a 

32 
The measured lifetime at low pumping levels is 3.0 msec at 300oK.  At 

this lifetime the calculated activator efficiency varies with slab thick- 

ness from 150% to 1300%!  Since the activator efficiency can never exceed 

100%, it is clear that the activator efficiency cannot be calculated as 

described.  The problem is the excited^state lifetime. At low pumping 

levels the measured values are appropriate, but at high pumping levels 

many excited ions will go to the ground state via stimulated emission. 

If stimulated emission is prevented, the power absorbed and reemitted 

by the ruby decreases due to bleaching.  By assuming that stimulated 

emission takes place^the number of stimulated emission transitions is 

sufficient to lower the average excited-state lifetime. This lowered 

lifetime due to stimulated emission can be calculated from Equation (13) 

by setting the activator efficiency at the desired value of 50%.  The 

results are plotted in Figure 39, which show? that the lifetime of a 1.27 

cm diameter ruby rod is lowered from 30 msec at low pumping levels to 

about 120p sec at the high pumping levels of the xenon flash lamp used 

for these calculations. 
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10.  SUMMARY 

The calculated pump efficiency of about 6% for a 1.27 cm diameter 

ruby rod is considerably higher than measured laser efficiencies, particularly 
35 

in oscillator-amplifier combinations.  One possible cause for this difference 
2 

is depopulation of the  E state (see Figure 40) via transitions to the charge 
0£ 0-7 O 

transfer band. '  This transition occurs at 3600 A and decreases the pump 

efficiency.  However, the xenon flash lamp radiance shown in Figure 33 

decreases in this wavelength region, and can be filtered out without changing 

the pump efficiency appreciably.  Depopulation should consequently have a 

measurable but small effect on the pump efficiency. 

Another possible source of the discrepancy between calculated 

pump efficiencies and laser efficiencies is the time dependence of the 

pump pulse.  Figure 34 shows the time history of one xenon line and Figure 

40 shows the energy level diagram of ruby with measured lifetimes. As the 

pulse radiance increases, the pump spectrum changes and becomes a more 

efficient pump. Thus, the initial part of the pump pulse decreases the 

total pump efficiency.  This effect is also present during the final 

stages of the pulse when the pump radiance is decreasing. This loss can 

be minimized by pulse forming networks. 

The above arguments hold for oscillators as well as amplifiers. 

Amplifiers have an additional mechanism for loss of efficiency which we 

believe could be very large.  Above it was assumed that stimulated emission 

kept the ground state population at 50%.  In oscillators this occurs 

automatically, but in amplifiers this condition depends on the proper 

timing of the input laser energy.  If the input laser power arrives too 

soon.it will be absorbed by the amplifier rod rather than amplified. If 

it arrives too late^the pump pulse will have bleached the rod to the 

point where the pump radiation is no longer being absorbed by the rod. 

This problem can only be accurately analyzed by a time-dependent study. 
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A time-dependent analysis of lamp emission, excited populations, absorption 

coefficients, quantum efficiencies, and pump efficiencies would give a 

better understanding of ruby amplifiers and perhaps lead to increased 

efficiencies. 
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11.  PARAMETER FITTING FROM SLATER INTEGRALS 

The objective of this work phase is to determine atomic radial 

wave functions by fitting a power series expansion with parametric co- 

efficients of the radial wave function to experimentally determined Slater 

integrals of the radial wave functions.  These wave functions can then 

be used to calculate the transition probabilities required in the arc 

discharge emission calculations.  The parameter fitting (PF) technique 

has the advantage of being independent of the complex electronic shell 

structure.  This independence is in contrast to the conventional methods 
4 18 

such as the Thomas-Fermi and Bates and Damgaard coulomb  approximations 

which only work for simple shells of one or two electrons.  We con- 

sequently expect PF to succeed where all other methods fail. 

To initiate PF the constraints must be enumerated which a radial 

wave function must satisfy, and reasonable forms for the PF power series 

expansion with fitting parameters must be formulated.  The constraints 

and expansions are given in the next two sections.  The selection of the 

numerical procedure to adjust the fitting parameters to satisfy the 

constraints and reproduce the experimentally determined Slater integrals 

is a critical selection which forms the heart of the PF technique. Two 

iterative numerical procedures are examined in Section 11.3. The initiation 

of both procedures requires an approximation of the fitting parameters. 

This approximation is best achieved with the aid of screening constants 

which are discussed in Section 11.4.  Finally, the PF technique must be 

proven in a case where the radial wave function is known.  The Hartree- 
38 

Fock calculations  of the Cu 4s Slater Integrals and radial wave function 

provide an excellent test case. 

48 



11.1  PF CONSTRAINTS 

An atomic wave function is usually given by 

Into) = r'^^r) ^(e,*) (14) 

where P  (r) is the normalized radial wave function to which PF will be 

applied and is given below in atomic units. The radial wave function 

must satisfy the following general requirements. 

38 
As r approaches zero Mann  has shown that 

Pn£<r)7T-o^^a-I-hr) (15) 

where Z is the nuclear charge.  On the other hand, as r approaches 
39 

infinity Handy et al.  have shown that the asymptotic form of the radial 

wave function is 

,1/2 Pn(,(r)r—* f(r) exp (-(-E   T'r) (16) 

where f (r) is a function of r which does not have as critical dependence 

on r as the exponential. The E , , (whose value is negative) is the 
38 n ^ 

Hartree-Fock binding energy  of the least bound electron of the atom, 

i.e., not necessarily of the electron under consideration.  The 

constraints in Eq. (15) and (16) result from the Hartree-Fock Equation 

and may not be physically correct.  However, because the Hartree-Fock 

formulation is so extensively used and generally gives good results, 

these constraints will be accepted as valid for PF. 

Three other common constraints are the number of nodes and 

orthonormality.  The number of nodes, excluding end values, is given by 

n - j, - 1.  This condition will be used although certain wave functions 
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are more accurately obtained when this condition is dropped. The 

orthonormallty condition: 

/o Pn.(r) Pn^r) dr " 6nn' (17) 

is one of mathematical convenience. 

Üf the above constraints, only the asymptotic form given in 
->■ 

Eq. (16) poses any problem in principle. The f(r) is unknown as is the 
38 

binding energy (except for the ground states of atoms).   Consequently, 

the implementation of this constraint requires an approximate approach. 

-> 
The f(r) will be guessed based on our experience. The choice 

of f(r) should not be critical because (a) it is only pertinent in the 

extreme outer portion of the wave function, (b) its r dependence is 

less than that of the exponential, and (c) any error in f(r) will be 

largely ameliorated by the fitting of the adjustable parameters to 

reproduce the measured Slater integrals. 

The determination of the binding energy is more important 

since it appears in the exponential. Fortunately, the binding energy 

is valuable for other purposes and approximations for its value have 

already been devised.  The finding energy is given by 

En* " -<Z - 0nÄ
)/n <18> 

where n is the principal quantum number and o is a screening constant. 

Thus Z - a  is the effective nuclear charge as seen by an electron in 

the (nlOth orbit. Methods for estimating the screening constant have 
40 Al 42 

been developed *  and tables of their values have appeared. 
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11.2 PF BASIS SETS 

The choice of a basis set of functions into which the radial 

wave function can be expanded is a rather arbitrary choice.  Except for 

trivial problems the true analytic form (if one exists) of the radial 

wave function is unknown. Approximate analytic forms are usually 

obtained by assuming an analytic form with varlational parameters and 

then varying these parameters until the energy is minimized. These 

varlational techniques are very dependent upon a good choice for the 

analytic form. On the other hand, the least-squares fit of an analytic 

function with fitting parameters to a numerical function is not very 

dependent upon the choice of the analytic form (this fact has often 

allowed experimentalists to fit their data to wrong theories, and 

vice versa). This advantage of PF will tend to be offset by the large 

smoothing of the integrand e.g., the radial wave functions, by the 

double integrals in the Slater integrals. In other words, integrals 

tend to be independent of the detailed integrand structure and this 

independence allows poor radial wave functions to give good Slater 

Integrals. That is why constraints on the analytic radial wave function 

are imperative. 

Since the choice of the PF basis set is somewhat arbitrary, 

it would be best to investigate several sets so as to obtain ehe best 
A3 

one.  The five best known sets are hydrogenic orbitals.  Slater 
44 45 46 46 

orbitals,  Boys orbitals,   Bessel orbitals  and Gaussian orbitals. 

Economic realities dictate that only one basis set be investigated (at 

least until PF becomes a proven and useful tool).  The Slater orbitals 

are chosen because they satisfy constraints (15) and (16), are very 

flexible, and are the most commonly used basis set.  The PF expansion is 

they written as 
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n - 1 

^(r) - AP^ax) + > (o) (19) 
j = «' + -jnj  j 

+CP(o)   .(ex) n,n - 1N  ' 

where, for Slater orbitals 

Pn° (ar) " (2a/(2Ä + 2)ll   (2ar)£ + 1«XP (-«) (20) 

This PF expansion has A, B., C a, b , and c for the fitting parameters. 

As stated the fitting parameters always occur In pairs, even though 

there frequently are an odd number of Slater Integrals which can be 

used for fitting.  Whenever this situation exists the value of c will 

be approximated by Eq. (18).  Since only Slater orbitals are considered 

here, these fitting parameters will be called the Slater parameters. 
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11.3    NUMERICAL PROCEDURES 

The numerical evaluation of  Integrals  such as  the Slater in- 

tegrals and those  in Eq.   (17)  is a mundane,  but  imoortant numerical 

problem since these integrals are evaluated  thousands of times  in a lone 

PF iteration.       The most  commonly used technique  is  to use a variable 
A7 48 

step  size Simpson's  rule.     Herman and Skillman       and Mann      tabulate 

their wave functions  in  a step size which starts  from 0.01 for x between 

0.00 and 0.10 and is  doubled for succeeding ranges until 1.28 is  the 

largest step size used for large values of x.     It is important  to note 

that the variable which is usually tabulated,  and used as the variable 

of integration is not r, but x, which is a Thomas-Fermi normalized 

radius.    The relationship between the two variables is given by 

r =   (9TT
2
/128 Z)1/3 X = Kx (21) 

where Z is the nuclear charge. 

Although Simpson's rule is the most convenient integration 

method to use, it is neither the fastest nor the most accurate. The 

trapezoidal rule is  faster and only slightly less  accurate.    However, 

the best integration procedure for integrals which contain radial wave 
49 functions is probably Laguerre integration of the Gaussian type: 

n 

0 '    ' k=l     "k 
/       f(x)   dx i, E,     Wi   f   (v ) (22) 

The abscissa x, are fixed at the zeros of the n  order Laguerre 

polynomial and the weights w are determined from the values of the 

(n+1) order Laguerre polynomial at the x. values. The weights and 
50 

abscissa are tabulated in the literature for many values of n.   It is 
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easily shown that when f(x) contains radial wave functions, the Laguerre 

Integration rapidly converges to the correct value as n Increases without 

limit. 

A comparison of these numerical Integration methods Is nlven 

In Tables VIII and IX where the Integrals are between the Cu 4s electron 

and inner shell electrons. The true values of the Integrals have been 
38 

evaluated by Mann.   Simpson's rule with 100 points Is the most accurate 

method, but extremely slow. The trapezoidal rule Is slightly faster and 

slightly less accurate. The 15-point Laguerre Integration Is about fiftv 

times faster, but a little too Inaccurate for most work. The 48-ooint 

Laguerre Integration Is five times faster and as accurate as Simpson's 

rule integration. 

It is clear that Laguerre integration is the best method for 

PF, but the application of Laguerre integration requires more facts. The 

Hartree-Fock radial wave functions which appear in the f(x) of Eq. (22) 

are evaluated at the x. values by six-point Lagrange Interpolation. The 

upper limit of the Integral cannot practically be infinite, but must be 

some value of x beyond which the integrand must be negligible. For the 

15-point integration the upper limit is simply taken to be x.,, i.e., 

48.03.  For the 48-polnt integration the upper limit is the last tabulated 

value of the radial wave function which is larger than 0.0001. For the 

Cu 4s radial wave function this upper limit is 66.46. 

The selection of the numerical integration technique now 

allows the iterative PF methr^ to be selected. A conventional problem 

in physics is to fit via least squares parameterized functions to a given 

curve. The PF problem is different in that the parameterized functions 

are first integrated and the integrals are fitted to known values. This 

difference poses a problem as to which Iterative procedure should be used. 

A Newton's method for systems of simultaneous non-linear equations and 

a Direct Search method have been tried in which the sum of the squares 

of the differences between the known and calculated radial integrals is 

minimized. 
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The Newton's method for solving a set of simultaneous non- 

linear equations has been slightly modified for PF.    This method should 

quickly converge and has the advantage over other methods In that If It 

does not work,   the method specifies the reason for the Impasse and, hopefully, 

corrective action may be taken.    The details of the procedure are given 

In Appendix 3 where  f    Is  the difference between the n      calculated and 
n * 

experimentally determined Slater Integral,  and the x    are the n fitting 
n 

parameters of the basis set. 

A constant danger In all non-linear Iterations Is that the 

procedure will settle Into a rather high local minimum and be unable to 

adequately search parameter space for lower minima (In non-linear problems 

many minima usually exist and the lowest minimum Is usually not found). 

Unfortunately, this danger was actually reality for the Newton's method. 

It was all too clear from the beginning that the Newton's method was 

Inadequate for PF.  The cause of the problem was traced to the almost 

linear dependency  of some of the Slater parameters. A detailed analysis 

of the problem Is given In Appendix 4. 

The Direct Search method should work In all cases because It 

Is essentially an organized trial and error technique, and. Indeed, It 

does work very well. If a bit slow.  The Direct Search program has been 

Internally developed by Westlnghouse and basically works In the following 

manner.  From the Initial set of Slater parameters, the sum of the square 

of the differences between the known and calculated radial Integrals Is 

calculated.  The base set of Slater parameters Is equated to the Initial 

set and a set of exploratory moves Is made, adjusting Individual Slater 

parameters one at a time. The sum of the squares Is computed after each 

move. A particular move is retained if it produces a lower sum of 

squares, but is otherwise rejected.  If a set of exploratory moves lowers 

the sum of squares, the adjusted Slater parameters replace the base 

Slater parameters and the procedure is repeated.  If a set of exploratory 

moves does not lower the sum of squares, the base set of Slater parameters 

is retained and a new set of exploratory moves tried. Direct Search con- 

tains a set of rules for determining the step size of the exploratory moves 
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for individual Slater parameters. These step sizes depend on the success 

or failure of previous exploratory moves. 
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11.4   SCREENING CONSTANTS 

Tiie usage of PF requires  Che approximation of  the Slater 

parameters.    The PF expansion is given by Eq.   (19), but  is written in 

a more compact  form as 

M ,   . 
P .(x)  - I    AP (a x) (23) nx. .mm m 

m-1 

where the P        are the Slater orbitals.    This expansion is more sensitive 

to the a    values  than to the A    values since the a    parameters appear in m m m r r 

exponentials.    This expansion is also implicitely dependent on the choice 

of the M Slater orbitals, I.e., on the choice of the ni  for each orbital 

as given In Eq.   (20)   (Although the Slater orbitals are independent of n, 

the nil notation Is retained to indicate which atomic crbltal the Slater 

orbital is approximating).    Since each Slater orbital is nodeless,  the 

selection of the M orbitals will be made such that the sum of orbitals 

reproduces  the nodes of the P .(x)  as closely as possible. 

The selection of the M orbitals is mainly based on experience 

and is explored in the next section.    The approximation of the A    Is not 
m 

critical and crude methods (such as guesses) suffice. However, the 

approximation of the a is an Important function and is based on the con- 

cept of screening constants.  From Eqs. (16), (18), and (21) we see that 

a - K [ (Z - o J/n]1/2 (24) 
m nJc 

gives a method  for approximating these parameters. 

40 Slater      has given some  rules  for the estimation of screening 

constants which are convenient  to use, but very inaccurate,     A more 
41 accurate set of rules is given by Burns      who fit a single Slater orbital 
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to more than 90 Hartree-Fock wave functions. The results are given In 

Table X. If n' Is less than n-2, a ,., is 1 and If n* Is larger than 
n x. 

n + 2, a , , Is 0. The screening constant In Eq. (24) Is obtained by 
n Xi 

summing the screening t «nstants for each n'H'  electron (excluding the 

ni th electron)   In the atom.    Thus, 

£      ».,,. (25) 
nT 'ni.   _:.,    n't' 

For example, the screening constant for the Cu 4s electron is Riven by 

oA8 - 10+2(0.90)+6(0.75)+10(0.50) - 21.3 (26) 

In other words, the 4s electron sees an effective nuclear charge of 7.7 

since Z for copper Is 29. 

An alternate method of obtaining screening constants is to 
38 

use Eq. (18) by putting Mann's values  of the binding energy on the left 

hand side and solving for the screening constant. This can je done for 

the first 103 atoms and the resulting screening constants averaged. The 

result Is given In Table XI. In this case the screening constant for the 

Cu 4s electron Is given by 

a,    - 10+2(0.875)+6(0.776)+10(0.918) - 25.586        (27) 

or an effective nuclear charge of 3.414.    This value Is considerably lower 

than the value calculated from Bums'  rules.    This Is consistent with the 

different rule derivations since Bums fit the entire wavefunctlon whereas 

the Mann's rules are obtained from Eq.   (16) which Is only valid for the 

outer portion of the wavefunctlon. 
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11.5 APPLICATION TO THE Cu 4s ELECTRON 

The final proof of any new numerical technique is in the ap- 

plication of the technique to a good test case. A good test case for 

PF is the Cu As electronic radial wave function. This wave function is 

sufficiently compressed that 15-point Laguerre integration can be used, 

thereby reducing computer expenses. On the other hand it is sufficiently 

complicated, e.g., it has three nodes, to tax any radial wave function 

generating technique. It may at first appear that a s wave function is 

too simple and that a p or d wave function should be selected. However, 

these latter wave functions are too extended for IS-point Laguerre in- 

tegration or have too few nodes.  Furthermore, although there is a con- 

siderable difference between different i  value angular wave functions, 

there is no explicit difference between different I  value radial wave 

functions. 

Values of some <r > integrals and Slater integrals between 

the 4s electron and some inner shell electrons are given in Table XII. 

The F0 Slater integral, the normalization integral, and the three ortho- 

gonality integrals with the 38, 2s, and Is electrons gives values of 

five integrals which the PF 4s wave function must reproduce. Thus, the 

PF expansion will have five fitting parameters. The 3s, 2s, and Is wave 
48 

functions needed for the orthogonality integrals will be those of Mann, 

as will be the 4s wave function which will be considered as the "true" 

wave function with which the PF wave function will be compared. 

There are many different ways of selecting the Initial PF 

expansion.  Seven different methods were tried; the first four expansions 

have three Slater orbltals with the last exponent being fixed, and the 

last three expansions have five Slater orbltals with all the exponents 

being fixed. Thus, the first four expansions ran have at most two nodes 

while trying to reproduce a three node wave function.  This may lead 
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to some Inaccuracy near the origin. However, these same expansions have 

two fitting parameters In the exponents which would appenr to give them 

a greater flexibility than the five-term expansions. These seven ex- 

pansions were tested by comparing, after 100 seconds of computing time 

on a Burroughs B5S00 Computrr, the standard deviation between the five 

PF Integrals and the flvt M.artree-Fock Integrals. The results are 

summarized In Tables XIII and XIV. These expansions will now be described 

In detail. 

Set 1; Switched Input.  This set was actually set 3, but an 

accidental shuffling of data cards exchanged the a» and A- parameters. 

The result was that the first and second Slater orbltals almost cancelled. 

In other words, this set represents an extremely bad Initial expansion 

and should consequently yield relatively bad results. However, as 

Table XIII shows, the PF procedure was able to recover from this extremely 

bau set (note the Initial standard deviation of 8.983!) and produce a 

respectable final standard deviation of 0.069! Although this final 

standard deviation was the highest found, It is not bad and proves the 

great stability of PF. 

Set 2; Optimized Set.  Since the As wave function has one 

very prominent hump, a good starting expansion might be obtained by first 

optimizing the fit between a three-term expansion and the single hump. 

The result of this optimization Is given In Table XIII. Although there 

are no nodes In this set, the PF procedure Inserted one. 

Set 3;  Bums Set. This set has Its exponents determined from 
41 

the Burns  screening constants. The A parameters are arbitrarily fixed. 

Set 4; Mann's Set. This set has Its exponents determined from 
38 

Mann's binding energies.   The A parameters are arbitrarily fixed. 

Three of these three-term expansions resulted in two node PF 

wave functions. This seems to indicate that the PF wave function is 

using one Slater orbital to reproduce the main hump of the 4s wave function 

(and thereby the F0 and normalization integrals) and two Slater orbltals 

to accomodate the orthogonality constraints. 
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Set 5; Mann's Set.  This five-term expansion Is determined 

from Mann's binding energies as was the case for Set 4. It Is Interesting 

that although the Initial standard deviation Is worse than that of Set 4, 

the final standard deviations arc almost Identical. The five Slater 

orbltals for this and later sets are chosen so that there Is a is, 2s, 

and 38 Slater orbital for the orthogonality conditions, a 4s orbital 

for the normalization, and a 3d orbital to help form the main hump of 

the wave function. 

Set 6: a Peaked.  The location of the maximum value of a 
 m  

Slater orbital Is given by 

x   - p /a (28) max   mm 

where p    Is the power of x (or r)  In the Slater orbital  (see Eq.   (20)). 

The x        of the Hartree-Fock orbltals which these Slater orbltals are max 
approximating are given in Table XV.    The a    are determined by setting 

p    to the conventional value of £ + 1.    The A    in all  the five-term 
m . 

expansions are arbitrarily set to the x   value of the n  orbital 
max 

divided by the square root of the sum of the squares of all the x 
max 

values. The signs are selected to give three nodes. This procedure 

yields the same accuracy as the last two sets. 

Set 7: p Peaked.   Instead of letting p be £ + 1, the a 
 jm  0 rm m 

could be set to those values of Set 5 and p could be found from Eq. (28). 
m 

The result is given in Table XV.  These "exact" p can then be rounded 
m 

to the nearest integer value, and the a solved for.  Thus s Slater m 
orbltals approximate  the Is  and 3d Hartree-Fock orbltals whereas p 

Slater orbltals approximate  the 2s,  3s, and 4s Hartree-Fock orbltals. 

This set gives a standard deviation at least three times lower than the 

previous sets.    This  Illustrates  the Importance of having each Slater 

orbital accurately represent  the main hump of the orbital it is approximating. 
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Set 8;  Final Set.  This set is simply a continuation of Set 7 

and Illustrates the capability of PF to obtain accurate wave functions. 

In several minutes of computing time the standard deviation is reduced 

from 0.0100 to 0.0002.  In detail the errors in the five Integrals are 

given by 

-7 
<As | ls> - - 8x10 

<4s | 2i> - - 3xlO"7 

<4s | 3s> -  2x10 
i -A 

<48 | 4P> -  3x10 

F0     - - 3xl0"4 (29) 

The orthogonality constraints are the best satisfied. 

The final result of Set 5 has two nodes whereas the results 

of the last three sets have three nodes. The most accurate sets possessed 

three nodes although this is clearly no guarantee of a good set. 

Thus far the various expansion sets have been compared as to 

Mow well they reproduce the five radial Integrals of (29). However, the 

real question is how well they reproduce the 4s Hartree-Fock wave function. 

The answer Is given in Table XVI where, in particular, the percent standard 

deviation between the PF and Hartree-Fock wave functions is given in the 

third column.  It is quite evident that a good fit of the Integrals in 

(29) does not guarantee a good fit of the wave function. Actually, of 

the first six sets, the Bums Set and Optimized Set give the best re- 

sults. Of course. Set 7 (and therefore Set 8) yields the best wave 

function. The <r > integrals describe where the PF expansion gives a 

poor fit. The fits are usually poorest at very small x, very good in 

the main portion of the wave function, and gradually become poorer in the 

tail. The wave function derived by PF Set 8 is compared to the Hartree- 

Fock wave function in Fig. (41). This figure gives ample proof that the 

PF method works and works well. 
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12.  CROUP PROPERTIES 

Group theory has successfully elucidated and simplified the 

angular portion of atomic wave functions.  It is hardly an exaggeration to 

state that much, if not most, of our knowledge of the actinide and rare 

earth atoms has come from their group properties. However, the present 

status of the radial portion of atomic wave functions is quite primitive with 

respect to the angular portion of the wave function. The best radial wave 

functions presently obtainable result from some type of Hartree-Fock calcula- 

tion. This type of calculation is very difficult and time consuming, even 

with the use of modern computers. In addition, there are many unsolved 

theoretical problems in the Hartree-Fock procedure. 

The greatest weakness of Hartree-Fock procedures is that the re- 

sulting wave function has no known transformation properties with respect 

to any symmetry groups of the atom. Because the angular wave functions do 

transform in known ways with respect to certain groups, many selection rules 

are known, and even more important, many matrix elements are known which 

are proportional to each other. This latter result, a consequence of the 

Wigner-Eckart theorem, enables one to calculate the values of one set. of 

matrix elements and, after finding a single constant of proportionality, to 

write down directly the values for another set having the same transforma- 

tion properties. Unfortunately, since the transformation properties of the 

radial wave functions are unknown, such a labor-saving simplification cannot 

be used to relate radial matrix elements. 

The mathematical techniques to be used in this work are not well 

defined. Although a great deal of effort has gone into the general prob- 

lem , it is not certain that the techniques exploited by mathematicians are 

the best techniques to apply to physical problems.  Because of the uncer- 

tainty in the techniques and the associated inherent difficulties, the 

present investigation is confined to the hydrogen atom, since the radial 

wave functions are well known and well studied in this case. 
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Although the hydrogen atom has been extensively studied, most of 

the group theoretical work which Involves radial wave functions has consisted 

of studies of hydrogen using the orthogonal groups 0(4), 0(4,1), etc. How- 

ever in this case, the radial wave function has not been studied directly 

since the basic functions for these groups are composed of product of 

radial and angular parts. This report studies the group properties of the 

hydrogen radial wave function themselves. 

Two approaches for this study Immediately come to mind.  The 

first approach Is to search for a selection rule based on a symmetry group 

of the hydrogen atom: R(4), the proper rotation group In four dimensions. 

The second approach Is to study the groups for which Laguerre polynomials 

form bases of representation. These groups may be pertinent because the 

hy.'rogen radial wave function Is proportional to a Laguerre polynomial. 

Thene approaches are studied In detail In Appendix 5. The R(4) 

group does explain some selection rules and has promise for explaining 

some vanishing matrix elements. The second approach leads to the complex 

3-dlmenslonal rotation group. In order to search for the desired selection 

rules, the representation to which the operators r   belong must be known. 

The latter problem is not trivial and the solution is not known. 

Another approach is examined In Appendix 6. Here hyc'rogenlc 

radial wave functions are shown to form bases for representations of the 

algebra of a three dimensional .-.on-compact group. Powers of r are found 

to transform as tensors with respect to this algebra. Through the proper- 
-N 

ties of the group, matrix elements of r  (N positive) can be expressed In 

terms of the familiar Clebsch-Gordan coefficients for R(3). For the first 

time these coefficients explain the known selection rules of the radial 

wave functions of hydrogen. 

r 
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13.  SUMMARY 

The calculation of atomic spectra requires the knowledge of 

radial wave functions which determine the transition probabilities 

between the atomic energy levels. Transition probabilities are very 

difficult to measure and they are therefore calculated whenever possible. 

For example, In arc discharge emission calculations the angular wave 

functions are calculated In Intermediate coupling from experimentally 

determined Slater Integrals and the radial wave functions are calculated 
4 18 

from the Thomas-Fermi or the Bates and Damgaard coulomb  approximation, 

but these latter methods are limited to light atoms with one or two 

valence electrons. However, It should be possible to determine the radial 

wave function for any atom by fitting a power series expansion with 

parametric coefficients of the radial wave function to the experimentally 

determined Slater Integrals (used for the angular wave function) of the 

radial wave functions, keeping the radial wave function normalized and 

orthogonal to closed shell electrons. This parameter fitting (FF) 

technique has the advantage of being Independent of the complex electronic 

shell structure. Thus, PF should succeed where all other methods fail. 

An alternative to the PF method Is to apply group theory directly 

to the calculation of the transition probability matrix elements, thus 

bypassing the need for an exact knowledge of the radial wave function. 

This technique has worked extremely well for angular wave functions but 

thus far has failed for radial wave functions. 

This study of radial wave functions has progressed with some 

significant progress. The PF technique has been developed and tested 

on a Hartree-Fock Cu As radial wave function which was reproduced by PF 

to within +8%. This technique is relatively slow but for the first 

time a method is available for the determination of radial wave functions 

for any atom. Moreover, this technique is more consistent than other 

methods since the same Slater Integrals are used for both the angular 

and radial wave functions. 
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The knowledge of "experimentally determined" radial wave func- 

tions via PF is intriguing.  Transition probabilities may be calculated 

more accurately and for more complex atoms than presently done in arc dis- 

charge calculations such as described in the first six chapters of this 

report.  Furthermore, these transition probabilities would be "experimentally 

determined", i.e., not from ab initio theoretical calculations. 

A potentially more interesting application of PF is to determine 

the radial wave functions of atoms in crystals. Whenever the crystal 

field parameters are known, they can be treated as additional Slater integrals 

in PF.  Thus, the radial wave function of an atom can be studied in differ- 
3+ 

ent crystals, e.g., Nd  in YAG, LaCl-j, "^O-, Y^-S, etc.  The correlation 

between the physical extent of the radial wave function and the fluorescing 

or lasing properties of the atom can then be studied. 

Significant progress has also been achieved in the application 

of group theory to the calculation of matrix elements over the radial 

wave functions of hydrogen. In particular^ hydrogenic radial wave 

functions have been shown to form bases for representations of the algebra 

of a three dimensional non-compact group.  Through the properties of this 

group, matrix elements of r  (N positive) were expressed in terms of 

the familiar Clebsch-Gordan coefficients for the proper rotation group 

in three dimensions, R(3). For the first time these coefficients explain 

the known selection rules of the radial wave functions of hydrogen. 

This successful group theoretical investigation of the hydrogen 

radial wave function is of particular long~range significance and should 

be immediately applicable to heavier atoms via at least two methods:  the 

quantum defect method and the 1/Z expansion method.  Both methods use 

hydrogenic radial wave functions.  The PF method could also be used by 

replacing the Slater orbitals in the PF expansion with hydrogenic wave 

functions. 
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This successful investigation strongly suggests that group 

theoretical investigations of more complicated radial wave functions may 

be possible.  In addition, it is particularly gratifying to demonstrate 

that the radial and angular parts of the atomic wave function can be 

placed on a more even footing and theoretically treated with the same 

general techniques. 
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APPENDIX 1 

Reprinted (rom APPLIED OPTICS, Vol. 8, page 1875, September 1969 
Copyright 1%9 by the Optical Society of America and reprinted by permission o( the copyright ( 

A Comparison of Lamps for Use in High 
Continuous Power Nd:YAG Lasers 

I. Liberman and R. L. Grassel 

Tho efflcienry of krypt xruon, .and tungsten iodine lamps for pumping Nd:YA(i are compared both 
spedrosmpicully and by lasci pumping. The relal ive pumping eflidenciesof xenon and tungsten to kryp- 
lon are ().S(i and 1.1, respectively. However, because the tungsten filament, uses a higher per- 
centage of its power in overcoming the laser threshold, the krypton lamp with its larger power density 
yielded the best over-all efficiency. An output power of 100 W was obtained at an input power of 3610 W 
for an over-all efficiency of 2.9%. 

Introduction 
The tuiiRsten filament lump was the first and is today 

the most common lamp used for pumping Nd:YAG 
in the c\v mode of operation. Because of the develop- 
ment of the tungsten-iodine cycle these lamps are com- 
pact and can operate for appreciable duration near the 
melting point of tungsten. Even at this temperature, 
the radiance of tungsten is low compared to some gas 
discharges. However, if the radiance from continuous 
discharges is to compete with the radiance from a 
tungsten filament, lamps must be constructed having 
electrodes and envelopes which can withstand the 
average power dissipated at high current densities. 

The diameter of Nd:YAG rods used for cw applica- 
tions is limited to the order of 1 cm because of the 
radial thermal gradients occurring at high average 
power and because of growth considerations. In 
any imaging pump cavity, there is no advantage to 
lamp diameters being larger than rod diameters since 
the imaged radiance can never be greater than the 
source radiance and that it is desirable to collect the 
radiation over 4ir sr. At current densities obtainable 
continuously in a 1-cm diam discharge, the plasma is 
optically thin. That is, the radiation from the contin- 
uum is much less than that of a blackbody at the same 
temperature as the plasma. The radiance from the 
line spectrum may be orders of magnitude greater than 
that from the continuum. Therefore if the line spec- 
trum of a ga.s has a good overlap with the absorption 
spectrum of Nd ;YAG it might be superior gas for use as 
a laser pump. However, although intense, the lines 
are usually narrow and therefore may only contain a 
negligible part of the energy dissipated by the lamp. 

The authors are with the Westinghouse Research Laboratories, 
Pittsburgh, Pennsylvania l.i2;{."). 

Received 12 February 1969. 

It has been observed1"'1 that the line spectrum from 
krypton is a better mutch to Nd:YAG than the line 
spectrum of xenon. For pulsed pumping of lasers, 
xenon is superior to krypton because the current densi- 
ties are sufficiently high that the line spectrum is 
negligible4 and xenon, because of its large atomic 
weight, is a more efficient continuum radiator than 
krypton.5 For continuous discharge lamps the com- 
parison becomes difficult because both the continuum 
and the line radiation may be nearly equivalent. A 
number of methods can be used to compare lamps al- 
though none of them are entirely satisfactory. 

The simplest method is to measure the fluorescence 
from a Nd.VAd sample when irradiated by various 
sources placed at large distances from the YAG sample. 
This experiment is difficult to perform because the 
intensity is low, the total radiation is orders of magni- 
tude greater than the fluorescence, and the radiation 
around 1.06 M is comparable to the fluorescence. Head1 

performed an experiment of this type and concluded 
that the relative fluorescence resulting from Kr, Xe, 
and W-Ia lamps was 1.90:1.00:0.63, respectively. 

A second approach is based on spectral measure- 
ments. While this technique yields a great deal more 
information, the interpretation is difficult, tedious, and 
requires very precise wavelength measurements. The 
importance of wavelength precision is a result of the 
narrow absorption lines of Nd ^ in YAG (about 10 Ä) 
and, as will be shown, the even narrower line radiation 
from Xe and Kr. Previous spectral measurements24 

of continuous noble gas discharges have been made 
using relatively poor resolution. In one comparison be- 
tween Xe and Kr2 the resolution stated was ZiO.O A, 
However, the hand replotted curves show full widths 
at half height of over 100 A which is over an order of 
magnitude greater than the actual line width and thus 
distorts the actual contribution from the lines.    There- 
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Fig. 1.    Lin«! spectrum of (a) krypton and (b) xenon lamp air 200 
ß\ full sr-ale.    Spectral radiance = l.r>..r( MW(sr - Ä - mm1 — 

MV)-'. 

fore before spectral measurements can be used to com- 
pare gases, high resolution must be obtained. 

A third method of comparison is the actual laser test. 
Here comparison is difficult unless the laser head is 
optimized for each specific lamp. Since a tungsten 
filament lamp has well defined radiating dimensions 
while a gas discharge does not, this comparison can be 
subject to criticism. Read found that Kr had a slope 
efficiency about 2.4 times as great as Xe or W-I2. How 
ever, since no absolute numbers are given, the degree 
of optimization cannot be determined. 

Experimental Apparatus 
The discharge lamps used for our tests are very 

similar to the lamp described by Steam and Colliver.6 

That is, cooling water not only flowed over the quartz 
envelope, but also circulated inside the hollow elec- 
trodes. The electrode spacing was r> cm and the bore 
diameter 5.5 mm. The electrode diameter was 5 mm 
so that the gas space behind the electrode tips was kept 
at a minimum thus building up the operating pressure 
as much as possible over the fill pressure of 2 atm. 

The rod used was 5 mm X 50 mm and had antire- 
flection coatings placed on the flat ends. The rod was 
centered in an optical cavity of 4l-cm length terminated 
by two dielectric mirrors of 1-m radius of curvature. 
The output reflectivity was 95% which for Kr and Xo 
pumping was found to be more nearly optimal than 
98% or 92% reflectivity. The pump cavity consisted 
of a 25-cm diam gold coated sphere.7 While we believe 
this cavity is superior to an elliptical cylinder, it has a 
further advantage when comparing lamps in that it 
provides a one to one image. Therefore good geo- 
metric coupling is always assured if the lamp diameter 
is equal to or smaller than the rod diameter. In an 
elliptical cylinder having an appreciable eccentricity, 
the image coming from over J the solid angle of the 
lamp radiation is magnified. 

Spectral measurements were performed using a Jar- 
rell-Ash |-m Ebert monochromator.   The curved slits 

were 40 n wide corresponding to a resolution of 0.64 Ä. 
The detector used was a silicon p,i,n photodiode. The 
system was calibrated with a calibrated tungsten spectral 
radiance standard and automatically corrected for non- 
linearity between 5000-10,000 Ä by using a variable at- 
tenuator. 

The laser power was measured with a Spectra-Physics 
model 401 photovoltaic cell in conjunction with two 
quartz plate beam splitters. It was calibrated using a 
TRG model 107 ballistic thermopile. Each quartz 
plate deflects the radiation 7.5° from the normal, and 
in mutually perpendicular planes. This allows for 
relatively easy alignment and removes any calibration 
variations with polarization. The discharge lamps 
were dc excited, while the tungsten lamp ran on fi0-Hz 
ac. 

Spectral Measurements 
The spectra of the krypton and xenon lamps operat- 

ing at 35 A are shown in Figs. 1 and 2. Since the peak 
intensity of the continuum is orders of magnitude lower 
than that of the lines, the continuum radiation is 
clearly optically thin.    Line widths were obtained by 

Fig. 2.   Continimm spectrum of (a) krypton lamp at 2 pV full 
scale ami (l>) xenon lamp at "> ii\ full scale.   Spectral radiance - 

lfl.ft/»W(sr - A - mm« - MV)-'. 

m —\ 1  

Krypton 

11m / / 
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Fig. 3     Power conversion of 5 mm X 50 mm Nd:YA(i 
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Table I.   Comparative Spectral Efficiency of Lamps for Pumping Nd:VA6 

Useful 

2 'iS-kW krypton 2 73-kW xenon 2.4-kW t 

AVK. 

mgsten 
Wavelength Avg. Avg. 

region portion Weighling intensity product intensity product intensity product 
(M) (A) factor (MV) (A-MV) (MV) (Ä.MV) (MV) (Ä-MV) 

0.50-0 60 :«H) 0.50 0.8 120 1.4 210 III 150 
0.74-0 83 600 0.75 0.6 271) 1.0 4.-i0 1  !l H!)") 
0.86-0 «JO ■M) 0.85 0.5 13 1.0 2:> 111 4H 
Lines 2- II 7.ri HtM)" 4.,i() — — — — 

Tot»! s5;i (is:. 1053 
Total/kW 374 2511 1311 
Kluoresrenl effluiency 4.3'/;, 2 «I", 5.0% 

" Average line width of krypton. 
' Total absorption of ail lines. 

using a much slower scan speed. For each gas the 
line width of the various lines varied about 20%. An 
average measured full width at half height for krypton 
was 2.0 A and for xenon it was 4.9 A. Therefore, 
despite the lower peak intensities and fewer number of 
lines, the xenon lamp is a superior emitter of line radi- 
ation in the wavelength region studied. In the con- 
tinuum the xenon lamp is also more efficient than kryp- 
ton by about 30%. 

Because of the spectral overlap of the krypton lines 
with the Nd: YAG absorption spectrum the krypton 
lamp can be more efficient than a xenon lamp for pump- 
ing Nd:YAG. The overlap was measured by placing 
a spectroscopic Nd:YAG sample in front of the mono- 
chromator entrance slit. The results show that the 
overlap for krypton lines is appreciable while for xenon 
the overlap is negligible. As shown in Table I an 
estimate of the relative pumping efficiency of the lamp 
is given based on the spectral measurments. The effect 
of reflection from the Nd: YAG spectroscopic sample 
was taken into account in making the calculation. It 
was assumed that all photons absorbed in the measured 
wavelength region contribute equally to photons emit- 
ted at 1.064 ß. However, the energy absorbed tit 
each wavelength was multiplied by the ratio of the 
wavelength to 1.0G4 M- Since the spectral measure- 
ments are absolute numbers, a calculation of laser 
efficiency can be approximated. This was done as 
given in the last row of Table I. The collected energy 
was assumed to be 0.75 (3ir sr) of the emitted radiance 
based on a computation of the spherical pump cavity 
efficiency. Due to the difficulty in determining the 
spectral overlap the accuracy of the over-all efficiency 
is no better than 30%. The tungsten measurements 
were obtained using a 2550 K spectral radiance standard 
and converted to 3200 K by using a table of blackbody 
radiance. The 2.4-kW input power was calculated as 
the radiation from a 5 mm X 50 mm cylinder of 0.4 
emissivity at 3200 K having an 80% radiative efficiency. 
These calculations show that tungsten is about 16% 
superior than krypton in spectral efficiency for pumping 
NdrYAG. 

Laser Tests 
One lamp was used for both the xenon mid the 

krypton tests so that all other parameters would be 
unchanged. The lamp was lirst filled with two-atm 
xenon and pinched off. After the test, only a negli- 
gible amount of blackening was observed on the 
quartz wall. The lamp was opened, refilled with 2-atm 
krypton and pinched closed. For the case of tungsten 
pumping, no lamp was available for a proper geo- 
metric match to the laser rod. A 2 mm X 50 mm 
single coil filament was used which limited the input 
power to 1070 W. The results are shown in Fig. :{. 
The saturation of the output under xenon pumping is 
not peculiar to the xenon lamp. Saturation was ob- 
served with the krypton lamp when the resonator spac- 
ing was increased to 50 cm. It is believed that the 
saturation is a result of a strong lens effect in the rod 
due to the radial thermal gradient present. In pump- 
ing the rod without the resonators, and placing a Hc:No 
beam axially through the rod, a positive lens was ob- 
served with it waist minimum occurring less than 'JO cm 
from the rod. This strong lensing should wicmise the 
losses for many of the oscillating modi's. It is further 
hypothesized that since the xenon lamp is more effi- 
cient than the krypton lamp in pumping the visible 
absorption bands, more heat is dissipated in the rod for 
the same output power. Therefore, the equivalent 
lensing should occur at lower outpu! power levels for 
the xenon lamp. With tungsten pumping, because of 
the low input power, a 1)8% output mirror produced an 
over-all efficiency of 1.4% compared with 1.23% usiii«!; 

Table II.   Summary of Pumping Efficiency of Lamps 
Calculated by Several Ways 

Absolute % It dative 
Efflcienoy Kr Xe W Kr Xe W 

Spectral 4.3 2.9 5.0 III 0.68 1. 10 
Slope 3 74 3.22 — 1.0 0.76 — 
At 80 W 2.63 2.13 — 1.0 0.81 — 
At 15 W 1.16 0.80 1 22 111 II 77 1.06 
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the 95% mirror.    However, for comparison purposes 
the 95% mirror results are shown. 

Because of the threshold power required to obtain 
oscillations, the over-all efficiency of the system is a 
function of input power thus making comparisons sub- 
ject to interpretation. Assuming the spectral effi- 
ciency of the lamp does not vary with power, the slope 
efficiency should be proportional to the spectral effi- 
ciency and equal to it for a lossless system. Row 2 of 
Table II gives these results. How .'{ and 4 of Table II 
gives the over-all efficiencies at outputs of 80 W and 
l.r)W. 

Discussion and Conclusions 

The comparison of efficiency by spectral and laser 
tests agree within experimental error. We believe 
that because of the difficulty in interpreting the spec- 
tral data, the slope efficiency is the most accurate mea- 
surement. Therefore our best estimate of relative effi- 
ciency between Kr, Xe, and W is 1:0.86:1.1, re- 
spectively. This is in considerable disagreement with 
Read.1 Our spectral data look quite different from 
those previously published2'4 because their spectral 
resolution is much poorer than the true line width of 
xenon and krypton operating under the conditions 
described. 

Using the krypton lamp an output power of 105 W at 
an efficiency of 2.92% has been obtained. A potas- 
sium-mercury spectral additive lamp has been de- 
veloped" which has a spectral efficiency over three 
times that of tungsten  which  in turn  has a  belter 

spectral efficiency than krypton. Therefore we pre- 
dict that with development a cw Nd:YAG laser will 
have an efficiency appreciably greater than the results 
reported here. 

We wish to thank C. Spontak, K. Kowal, and A. Zot- 
tola for constructing the electrode's used in the dis- 
charge lamps. We also thank C. H. Church for de- 
veloping the foundation of this work. 

Sole mlilid in proof: Additional data mi rare; nas |)imi|iiiiK ef- 
tldencies has been recently jmhlislu'd by J. it. Oliver and V. S. 
Barnen, IKKK I. Qnantiiin Kleclmn. QK5,22/5, 232 (1908). AH in 
Kef. I, laser test, residls are in arbitrary units whieh eould lead 
to erroneous eoneiiisions if all parameters are not fidlv opti- 
mized. Also, as in lief. 2, the spectral resolution was UNI A which 
is estimated to be an order of maKnitiideKreater than the actual 
line width under their operatiiiK conditions. However, their 
concliisions are similar to ours. 
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APPENDIX 2 

ROD TO SLAB TRANSFORMATION 

Al' hough the simple slab laser geometry has been used for 

the computer calculations reported in the text, the most common laser 

geometry is that of a cylindrical rod in a cavity.  In order to fully 

utilize the computed results for the slab laser geometry, the cylindrical 

rod in a cavity geometry must be transformed to an equivalent slab laser 

geometry.  This transformation is given in this appendix. 

The emittance (power per unit surface area) absorbed by an 

arbitrary body as a function of wavelength is given by 

(2.1) P = P / [1 - exp (-oc)] düj 

where a  is the spectral absorptivity, c is the chord length traversed 

by the light in the body, P is the incident light emittance, and tu 

is the solid angle. The integration is over the entire absorbing body. 

An effective chord length c can be defined as that length which absorbs 

from a single light ray the same power density as the actual body, i.e., 

(2.2) Pa 
H P  [1 - exp (-ac)] 

3     O 

Thus an effective chord length can be found for a given wavelength for 

any absorbing body from an evaluation of Eq. (2.1). 

The effective chord length for the slab geometry is easily 

found when the light is perpendicularly incident on the slab because 

then 

(2.3) Pa = Po [1 - exp (-ast)] 
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where t Is the slab thickness and a    Is the absorptivity of the slab. 
s 

Therefore 

_ 
(2.4) c - t 

s 

which is rather obvious. 

The effective chord length for a laser rod geometry can be 

found from Eq. (2.1) with one modification.  The rod in a spherical 

laser cavity subtends a very small solid angle when viewed from the 

lamp and therefore almost all the light absorbed by the laser rod is 

first reflected by the laser cavity walls. The rod is thus bathed in 

this reflected lamp light. However, the light Intensity emitted by 

the lamp has an approximate Lambertian distribution with respect to 

the angle 9 between the emitted light ray and the normal to the outer 

lamp wall. Specular reflecting laser cavities maintain this Lambertian 

distribution at the rod surface. A surface roughened rod will slightly 

modify the Lambertian distribution but probably not by a factor 

larger than the accuracy of the general pump efficiency calculations. 

In any event, we assume the light distribution within the rod to be 

Lambertian and that Eq. (2.1) can be written as 

(2.5) P - (P /tr) Ml - exp (-a c)] cos 9  du 
a    o r 

where the Integration Is over the laser rod and a is the rod absorptivity. 

► 

The TT in the denominator keeps the same light emittance incident on the 

laser rod and &lab. The integral In Eq. (2.5) has not been analytically 

solved but Fukhov  has numerically evaluated it for an infinite cylinder 

of diameter d and expressed his results in the simple form: 

(2.6) c - ( j4  ., + 0.27) d 
r   a d+6.44 

r 
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The rod to slab transformation Is completed by equating the 

emlttance absorbed by the slab to the emittance absorbed by the rod, 

provided the Incident emlttance Is the same.  In other words Eq. (2.2) 

Is the same value irrespective of which effective chord length is used, 

i.e., 

(2.7) a c = a c 
s s   r r 

which implies that 

(2.8) t - D Hr 

where D is the activator doping of the rod relative to the activator 

doping of the slab. 

The transformation is strictly valid for only one wavelength 

but for the 5 x 50 mm Nd:YAG rod used for the laser system efficiency 

measurements Eq. (2.8) is fairly constant for all wavelengths, as can 

be seen by using the experimental parameters to obtain 

(2.9) D - 1.3/0.7 

and 

(2.10) 0.63 cm < t < 0.93 cm 

where,using Eqs. 2.6 and 2.8,the maximum absorptivity (10 cm ) within 

the main absorption bands of the rod determines the lower limit and 

zero absorptivity determines the upper limit.  An average value for 

the absorptivity is roughly 2 cm  which gives an average value of 

(2.11) t = 0.84 cm 
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This value Is better than one might expect at a causal glance. The 

average value of 2 cm  for the absorptivity is admittedly crude but 

only appears in the denominator of Eq. (2.6) and a + 1 cm error in this 

average value only gives an error of + 0.04 cm for the effective slab 

thickness. Thus, to a good approximation, the laser rod used in the 

experimental measurements reported in Appendix 1 is equivalent to a 

slab of thickness 0.84 cm. 

! 
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APPENDIX 3 

'  4 

NEWTON'S METHOD FOR PARAMETRIC FITTING 
OF RADIAL WAVE FUNCTIONS IN INTEGRALS 

A. J. Federowicz 
■ • 

The radial wave fitting problem has already been formulated 

as one of solving sets of simultaneous non-linear equations in which the 

number of fitting parameters (variables in the fitting problem) equal 

the numbers of equations.    These simultaneous equations result from 

applying normality and orthogonality conditions which the radial wave 

function must satisfy and from attempting to obtain agreement with 

certain experimental observations. 

If the number of equations were larger than the number of 

parameters, this proposed procedure would be modified, but not drastically. 

What would then be done would be to fit such overdetermined sets of 

equations using least squares.    As will be seen,  a least squares 

criterion is suggested here for a different reason and to apply this 

criterion to overdetermined sets of equations would be a minor 

modification. 

The proposed procedure is to use a modified form of Newton's 

method for solving systems of simultaneous non-linear equations.    The 

modifications are aimed at guaranteeing convergence of the iteration 

and at avoiding the use of analytic partial derivatives. 

Newton1 s method for solving a set of simultaneous non-linear 

equations is as follows:    as the problem is generally phrased, for a 

set of m functions of m variables, one is to find a point at which the 

m functions are simultaneously zero, that is,  find 
-** x   = (x *, xJ* ... x *)    such that 12 m 

(3.1) ^(x*)    =    f2(x»)    =    ... = fm(x*)    =   0 

or in compact form 

(3.2) f(x*)    =   0. 
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Newton's method consists of making simultaneous linear approximations 

to the m functions at some point, x     , and solving this set of linear 

approximations for the point where all will be zero.    That is 

(3.3) 
i. <. m 

f   (x)     -      f   (x^"')   +  f AY     +   f Av     + +   f 
i < mm 

,. 
f (x)    ±    f (x(n)) + f       Ax   + f       Ax   + ... + f       Ax 

m    ' m mx,      1       mx«      2 mx       m 1 « m 

which upon being set equal to zero yields 

(3.A) 

- 

^1 

ix2 

• = _ 
• 

m 
L       . 

flx.  flx0 *•• flxm 1         < m 

^x,     f2x0 •••    f2xm LA m 

f f f mx.      mx0    *"      n« id m 

-      H 

i -1 
fl 

fz 
• • • 

fm 
m       , 

v» 

.. 

or in compact form 

Kn)    _ (3.5) ^n)   = . [ Ut^yl   ^n)) (n)- ^,-J (n). 

The iteration then consists of using the obvious recurrence relation 

(3.6) x^    =   ^n)
+^ 

If there is only one equation in one unknown, this formulation reduces 

to the familiar form of Newton1s method in which 
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Ax(n)    =   -ll2L(n)' 

(3.7) 

(n+l) (n) ^ A (n) x =   x       + ^x 

In the radial wave function fitting problem some of the 

equations will not be in analytic form but only as numerical approxima- 

tions to integrals.    Difference approximations to the partial derivatives 

should thus be used in constructing the [f^] matrix.    This modification 

will considerably simplify the necessary computer programming since 

only one subroutine, which simply evaluates f, will be necessary in 
-». r-» n 

setting up f and If-*] for each case.    It is necessary to use differences 

which will estimate f-* accurately, however.    Attention must thus be 

paid to the question of how many significant digits result from the 

differencing process. 

In order to guarantee convergence of the iteration, x 

computed using (l.6), will be accepted only if it represents a better 
-Kn) solution to the set of simultaneous equations than x       does.    For 

reasons of simplicity "better" will be taken to mean that 

(3.8) llf(x(n+l))||2<||1(x(n))||2 

with weighting of the components of f being an option. Equation (l.8) 

says that the sum of the squared errors must be reduced from one step 

to the next. 

If x   ' results in an increase in ||f(x)|| then the chord 

joining x   and x    will be searched for a better value. This can 
J.       -*(n)   -'(n+l) be done assuming linearity of f between x   and x    as follows; 

(3.9) f(x(n)+ s^
(n)) = f(x(n)) + s(f(x(n+l)) - f(x(n))) 

= ^(n) + s^(n) 
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The point at which the norm of this linear approximation is minimized 

can be used to determine s. The minimizing s is given by 

-£(n)t ^(n) 
(3.10)       s» = -  f  - f 

l*fl 

If this interpolating procedure does not produce a smaller ||f||    at 
-»(n)   —^(n) -*(n; x   + s*AxN ', then it may be repeated several times using x   and 

xx ' + s* Ax   as new end points. If this strategy fails then a 

different one dimensional search strategy, such as interval halving, 

may be employed. 

In the case that f = 0 has no solution, as is likely to be 

the case in this problem, the determinant of [f-*] will tend to zero as 

11 f 11 tends to a positive value.  The analogy with the one dimensional 

case is that f'Cx  ) is zero at any point where ||f || is 

minimized, if that minimum is non-zero, which is the case when f = 0 

has no solution. It is instructive to examine what Newton's method 

does when used to look for a zero of f which does not exist in the one 

dimensional case. The method will usually oscillate, neither approaching 

a limit nor diverging, in such a case. For example, if the problem is 
2 

to find a zero of f = 1 + x then one has 

(n) _   l+x(n)2 

| 

(3.12) x (rrH) _ *M 1 
2^ 

For large |x  | the term l/2x   can be ignored and this formula says 

that x   will be halved at each step. As Ix  I becomes small, 
(n) however, this term dominates and causes |x  | to again become large. 
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in) while also causing x       to change sign.    A similar behavior occurs in 
a 

multi-dimensional problems in which f = 0 has no solution.    By insisting 

that ||fj|    be reduced on each step, this possibility of oscillation is 
avoided. 

A problem which may also occur is that f = 0 may have 

several solutions and/or that 11 f11 may have several local minima. 

Since this problem can be rigorously resolved only in the case that one 

is dealing with a convex function, different starting points should be 

tried for the iteration. Then if the iteration consistently converges 

to the same answer in a given case, one can be reasonably certain that 

the answer is unique; if convergence to different answers occurs, then 

the best answer should be sleeted and one must be careful about finding 

the best answer in other cases. 

As a final point, it should be mentioned that a number of 

other optimum search procedures are potentially applicable to this 

problem. These include Direct Search, GOOP and a non-linear least 

squares program written by R. D. Fardo, three methods which have been 

used extensively at this location. An essential feature, which must 

be maintained in any computer program of this proposed procedure in 

order to make such other techniques easily usable, is the separation 

of the functional evaluation subroutine from the logic of the 

iterative method. 
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APPENDIX 4 

COMPARISON OF DIRECT SEARCH AND NEWTON'S METHOD 

A. J. Federowlcz 
. 

,. 

This appendix Is a post-mortem on why Newton's method, suggested 

In Appendix 3, did not work well on the radial wave function parametric 

fitting problem. Conversely light Is shed on the question why Direct 

Search did a relatively much better job. 

The characteristic exhibited by the modified Newton's method 

was that It became hung up In local areas during the search. Very little 

Improvement In the least squares criterion would occur for many Iterations. 

At the time that this occurred, a computer program bug was suspected. A 

bug was not the cause, however, but rather the problem Is an Ill-conditioned 

one for Newton's method. As an example of slow convergence, the following 

sums of squares occurred In one case: 

Iteration //     Error Sum of Squares 

0 6.319567 

1 3.107108 

2 3.103914 

3 3.102053 

4 3.101231 

By comparison. Direct Search produced the following sequence starting near 

the parameter point of Iteration #li 
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teration // Error Sum of 

0 3.108122 

1 2.538027 

2 .603644 

3 .338447 

A .217630 

5 .116751 

12 .012570 

There are a number of equivalent ways of explaining the observed 

phenomena. One explanation is that the radial wave function parameters 

are highly correlated in their effect upon the sum of square criterion. 

The result of this correlation is that Newton's method selects a very poor 

direction for minimizing the sum of squares locally. The selected direction 

would be very good if the linear approximation used by Newton's method 

were valid far from the current point. However, the problem is highly 

non-linear and the use of a linear approximation to select a point far 

from the current one is thus weak. 

In order to illustrate what can occur, assume for the moment 

that there are two functions, f.. and f„, for which zeroes are being sought 

and two parameters x. and x» which are being searched for these zeroes. 

Then the search procedure of Appendix 3 consists of making linear approxi- 

mations to both and solving for where these linear approximations are 

simultaneously zero. A case in which the two parameters are correlated in 

their effect upon the sum of squares Is Illustrated in the Fig. 42. The 

correlation is identified by the nearly parallel gradients Vf and Vf». 

Based upon these gradients, a good local direction in which to search is 

the x» direction.  Based upon the contours, the step length to take would 

be approximately the length of the pictured Vf .  However, the modified 

Newton's method selects the intersection of the zeroes of the linear 

approximations.  The resultant step length overtaxes the linear approxi- 

mations and only a small improvement in the sum of squares can be achieved 

in this direction. 
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A measure of the correlation between parameters In the Illustrated 

case Is  the sine of the angle between the two gradient vectors.    This 

is given by 

1   Det     [Vf    7f  ]| 
sinCVf-.Vf ) = 3 i S-. 

1     2 IvfJ  |Vf | 

I 
As this measure increases from 0 to 1, the gradient vectors go from 

parallel to being orthogonal. 

The similar statistic in 3 parameters measures how nearly co- 

planar the 3 gradient vectors would be.  The identity 

Det [Vf Vf Vf ]      ^    . 
i— i ^-r^ = sin (Vf^VfJ sin (Vf Vf Vf ) 
IvfJ  |vf2|  |vf3| 1     2 1   2     3 

puts this co-planar relationship into terms similar to the 2 dimensional 

case. In 3 dimensions the measure equals the product of the sine between 

two of the gradients multiplied by the sine of the angle between the 

last gradient and the plane of the first two. This final product of sines 

relationship extends to an arbitrary number of dimensions, one sine term 

being added for each additional dimension. 

For the 5 parameter case noted earlier in which the modified 

Newton's method converged very slowly, this measure was found equal to 

.00019, a value indicating that the 5 gradients are very nearly co-planar 

and thus explaining the slow convergence. 

Direct Search, by contrast, works directly with the sum of squares 

criterion, computing it at neighboring points to the current point. 

Referring to Fig. 42, Direct Search would choose a direction more nearly 

in line with the gradients and would thus achieve a bigger local improve- 

ment in the criterion. It does not extrapolate a long distance for zero 

and come up with nothing as a result. 
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APPENDIX 5 

GROUP THEORETICAL PROPERTIES OF RADIAL WAVE FUNCTIONS 

Lloyd Armstrong, Jr. 

Group theory has been applied with great success to studies of 

the angular portion of atomic wave functions.  It Is hardly an exaggeration 

to state that much, if not most, of the present day knowledge of the actlnlde 

and rare earth atoms could scarcely have been obtained without use of this 

powerful tool.  The state-of-the-art concerning the radial portion of 

atomic wave functions Is, however, quite primitive with respect to that 

of the angular portion of the wave function.  The best radial wave functions 

obtainable result from some type of Hartree-Fock calculation.  This type of 

calculation Is very difficult and time consuming to carry out, even using 

the best of modern computers.  In addition, there are many unsolved theo- 

retical problems relating to the Hartree-Fock procedure. 

Rather than discuss any of these difficulties, however, let me 

point out what I consider to be the greatest weakness of such a procedure: 

the resulting wave function has no known transformation properties with 

respect to any symmetry groups of the atom.  Because the angular wave 

functions do transform in known ways with respect to certain groups, one 

is able to Immediately write down a number of selection rules on angular 

matrix elements and, even more Important, to pick out types of matrix 

elements that must differ In value by only a proportionality factor.  This 

latter result, a consequence of the Wigner-Eckart theorem, enables one to 

calculate the values for one set of matrix elements and, after finding 

a single constant of proportionality, to write down directly the values 

for another set having the same transformation properties. Unfortunately, 

since no transformation properties of the radial wave functions are known, 

such a labor-saving simplification cannot be used to relate radial matrix 

elements. 
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The purpose of this report is to describe ways In which one might 

hope to determine the transformation properties of radial wave functions 

We wish to start by studying the simplest possible system, hydrogen. 

Pasternack and Sternhelmer  have reported a very Interesting selection 

rule on hydrogenlc radial wave functions: 

D     D 

(5.1)    / S*    "*■ dr = 0        s - 2,3...,|ä-JII| + 1, 
s 

r 

where the complete hydrogenlc wave function Is written 

*   - -2=  Y  (9,*). 
nlm '    im 

This selection rule, which has successfully defied all attempts to give 

It a simple explanation, looks suspiciously like the type of selection rule 

that results from a group property. Thus the primary goal of this type 

of research must be to explain the above result using group theory. 

Two avenues of Investigation immediately present themselves. 

The first Involves searching for a selection rule based on a symmetry 

group of the hydrogen atom: R(4), the proper rotation group In four 

dimensions. The second Involves a study of the groups for which Laguerre 

polynomials form bases of representation. This latter Is of Interest 
2Ä.+1 

because R , Is proportional to a Laguerre polynomial, L . . The former 

may perhaps be the most susceptable to study, so we shall consider It 

first. 
53 

a) The Symmetry Group of the Hydrogen Atom. 

The R(4) symmetry group of the hydrogen atom has an algebra 

consisting of the three components of the angular momentum vector ^ and 

the three components Lenz vector 

V 
M -(l/2p)(P xL-LxP) -k- 

2 
where k = ze . Only one of the commutators of the algebra Is of real 

Interest at the moment 

[L2,M+] - - 2MzL+ + 2M+L2 + 2M+. 
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If we consider the operation of this commutator on the state ty  .., we find 

L2ttVW = (£+1) (i+2) ^Au) 

which Implies  that 

VnU " ^nH+ljÄ+l 

where A Is some constant.    A detailed calculation reveals  that 

(5.2) M^        .!*±L*±i_^!l    *±1 
/2U3    M 

l3r        r    + )l+lJ V* 

We shall return to this below. 

One can, In fact, find a simple commutator which explains Eq. (5.1) 
54 55 

if one uses the raising operator for hydrogenic radial wave functions  * , 

^•3a) R+   d?    r +i+r 

(5-3b> R!RnÄ-
B,Wl. 

We consider first the commutator 

2mr2  q 

^2  , .2   ^22    2 
-m  1 d r  m L   ze_ 

and C is a spherical tensor of rank k. Multiplying the commutator on 
q i i 

the left by OLul. on  the right by |«n, j^,), and obtain 
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<En* " V*'* (^m lCql K'Vm') 
2       Ck 

For n«!!1, £.=£,.,. The angular portion of the matrix element nx»   n * 

the right above can easily be seen to be non-vanlshlng for at least 

value of k, q, leaving the result 

on 

one 

a _ , RnÄ Rn£' 
a   "   J  ^    ar {,1 

X 

which implied 

(5.4) . Rn£ \V 

r2 

dr a(Ä+l) - V(V+l)) 

dr = 0       if £ ^ A« 
r 

Consider next the commutator 

TH  ^L2 rk 1 d  .  n 

2mr2  ^ r dr 

Proceeding as before,  and letting n - n1 

nÄm    ''q r3 dr r    V'm,; 

(5.5) 
_  /.., rk 1 d        1      , 

nJlm |Vq r dr l    2" VV 
or 

k r 

nÄm  '   31   ^nA1 m' 

Again, we can carry out the angular Integration which is the same for both 

matrix elements and which has at least one non-vanishing value.    We then 
have 
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R 0 . 

r 

+ aA'dl'+l) / nfc 3
n<l  dr = 0 

r 

Assume that V>i,  and use Eqs. (5.3a) and (5.3b) to treat the J
-
 R ji 

term above.  One obtains 

[*(*+!) - fc'U'+D] / -Sf t—^R.^ 
r 

+ F+rRnÄ' + B Rn,  Jl'+l3 dr 

R      R 
- -2A,(ü'+l)  /    n£  3^'   dr. 

r 

Because of Eq. (5.4), the above simplifies greatly, leaving 

r 

0r R  R  , 
(A'+l) [)l(Ä+l) - H'^'-l)] / "^ =SÜ dr =■ 0 

r 
which Implies 

R  R 
/ "^ 3

n£' dr > 0    Ä^Ä+1. 
r 

All the remaining selection rules can be proven by considering commutators 

of the type 

[H  2m 2» Cq r ,, n]  0» 
r   ^  dr 

and proceeding as above. 

The next step is clearly to try to express the simple commutators 

above In terms of the generators of R(4).  In particular, if we consider 
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equations such as Eq. (5.5) with m=£, m'^ft', we should be able to replace, 

in some fashion, — with M. (Eq. (5.2)). This approach provides a very 

encouraging method of studying the vanishing matrix elements; one can 

hope for early success in the use of R(4) symmetry to obtain selection 

rules on the radial matrix elements. 

b) Symmetry Groups of Laguerre Polynomials. 

This subject has been studied, in some detail by Miller. 

We shall only mention here some of the major results of his work. He 

considers the general 4 dimensional complex Lie Algebra defined by 

[J+,j"] - 2a2J3 - bE; [J3,J+] - J+; 

[J3,J"] » - J"; [J+,E] - [J",E]- 

tJ3,E] » 0. 

for all complex a,b. 

Clearly, if a=l, b=0, one has the algebra for the complex three dimensional 

rotation group. Miller has shown that the basis functions for a realization 

in two variables of this algebra are confluent hypergeometric functions. 

(The Laguerre polynomials are simply a special case of the confluent hyper- 

geometric functions.)  In addition, he finds that when b=«l, a^O, one also 

may construct basis functions from confluent hypergeometric functions. 

The algebra in this case is the complex form of the algebra of S,.  It 

would appear, at this time, that this latter group is of little value and 

we shall confine our attention to'the case a=l, b"0. 

The realization in two variables of the algebra with a-1, b»0 

(G(1,0)) can be written 

E = u, 

where u is a complex constant; k(x) and j(x) must be determined so as to 

make the above operators satisfy the proper commutation relations. Miller 

finds two possible types of solutions for k(x) and j(x): 
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Type A  k(x) = cot (x+p), j (x) = ^^■ 
x+p) 

Type B  k(x) = i,  j(x) = qe"lx 

58 
where p,q are complex constants.   As an example, we consider Type B 

representations of the variety labelled D(u,mn). We first change co- 
— ix 

ordlnate systems by  letting T=y-lTr/2,z = -le  .  Then 

J " 97' J  = e   (zäl * 37 + ^ 

If the solution Is written In the form f = Z em , we find m        m 

(^ + m - qz)  Zm = -   (m - u)   Z^ 

J 

(ZT m + qz)  Z    = -   (m + u)  Z    . v dz ^        m v m-1 

which has solutions 

Zin -   (2qz)U+1 e"qZ  .F.   (u-mfl;     2u+2;   2qz) 

and 

Z'   -   (2qz)"U e'qZ  .F.   (-u -m;  -2u;   2qz) 
m 11 

where .F.. Is a confluent hypergeometrlc function.  In terms of Laguerre 

polynomials, we have 

,„  vU+1 -qz T2u+l  /0 x Zm - (2qz)   e   L^^  (2qz) 

Z' - (2qz)-U e'^ L^"-1 (2qz). 
m m+u 

This type of representation has u + m ^ Integer. 

Of greater Interest to us are the basis states f for represen- a m 
tatlon labelled 4-   ;  here 

u 

f    = r(2u)n!    L2u-1   .  v     u+n 
fm      r(n+2u)      n U;  t 
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where u,n, are Integers. Acting on this state with raising operators, 

one finds 

J+ L2u-1 ^ L2u-1# 
n     n+1 

Basically, this result implies that a basis for the representation ^ 

can be formed by the collection of states of the hydrogen atom obtained 

by holding Z  fixed and letting the principal quantum number run over 

all possible values.  One can work out Clebsch-Gordan Coefficients for the 

Kronecker product + x «I- , without too much difficulty. 

One therefore has the transformation properties of the hydrogenic 

radial wave functions with respect to the complex 3-dimensional rotation 

group. In order to search for the desired selection rules, one must 

determine the representation to which the operators l/rS belong.  This is 

not trivial and at the present time the solution is unknown. 

This latter approach would appear to be more general and powerful 

than that of (a), but the problems Involved are correspondingly more dif- 

ficult. None the less, both approaches seem at the present to be rather 

hopeful. 
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Most contemporary studies of atomic structure depend 

heavily on the use of group theory.    In the central field model 

of the atom, wavefunctions can be written as a product of an 

angular function and a radial function.    The radial function is 

usually calculated through use of some variational technique 

(e. g. , Hartree-Fock) or simply treated in terms of a variable 

parameter; the angular portion is expressed in terms of pro- 

ducts of spherical harmonics.    It is to this angular portion of 

the wavefunction that group theory has traditionally been applied.' 

Quite impressive simplifications have resulted from this 

application   of groups to the angular wavefunction.    For example, 

selection rules based on Kronecker products permit one to 

identify many matrix elements as being identically zero without 

explicit (and often laborious) calculation.    Use of the Wigner- 

Eckart theorem often enables one to ascertain sets of angular 

matrix elements which are proportional to one another, thus saving 

a great deal of computational effort. 

The use of group theory has been invaluable in advancing 

the understanding of angular wavefunctions and atomic shell 

structure to its present state.    Unfortunately, although very im- 

pressive techniques have been developed in the last few years 

for the calculation of radial wavefunctions, very little has been 

done on the study of the symmetry properties of radial wave- 

functions.    Most of the group theoretical work which involves 

I 
I 
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radial wavefunctions has consisted of studies of hydrogen using 

0(4),  0(4, 1), etc.    In this case, however,  the radial function 

has not been studied directly,  since the basis functions for these 

groups are composed of a product of radial and angular parts. 

We wish to report on a study of the group properties of the 

hydrogenic radial functions themselves. Two previous results 

suggested strongly that these functions should be amenable to 

a group-theoretic study.    First, a well-known result of Paster- 
52 

nack and Sternheimer    shows that, for hydrogenic radial wave- 

functions, 

I       n^   n^'   dr   «      0 ■' 
0 r8 ar " s   * 2,3,...-t--{,•+1 

(we choose our radial wavefunction to be   R   .(r)/r).    This result 

is quite suggestive of a group-theoretical selection rule. 

Second, the expectation values of   r11   (n both positive and nega- 

tive) evaluated with hydrogenic functions60 can be seen to be 

proportional to Clebsch-Gordan coefficients61 in which   £    plays 

the part of the angular momentum, and n, the projection of the 

angular momentum. 

The group algebra pertinent to this study is formed by the 

operators 

J3   a   -lFF 
(1) 

J± s e    (z T5+ l «JT + r) 
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which satisfy the commutation relations 

[J+.JJ   =   2J3 

[Jyj±]    =    ±J± 
(2) 

(Operators of this same general type have been considered by 

Miller.   )   We wish to construct functions   f.     such that 

3  ^n tn 

J±iln   =        il{l+l)-n(n±ltfiln±l     . (3) 

(4) 

A function satisfying Eqs.   (3) is given by 

.   ,(■.■^■1)1(2^1)^   (4l)n./-l .../2 S+l L2t+1    (z)e 

2it(n+<,)!  ' ""■'•"' 

a 62 where   L .   is the Laguerre polynomial of Morse and Feshback. 

For fixed n, this function is,  of course, proportional to the radial 
62 

wavefunction for hydrogen.      We define a Hilbert space as the 

space of functions   f       with inner product 
<■ 

J <ilnKn'>   "   KnWdn 

-2 where   dQ = z     dTdz; the parameter   T   can range from 0 to 2IT, 

the parameter   z   from 0 to » .    One can easily show that 

I <^nlW>   s   M^^)Mn.n«)       . 

In addition,  one has 
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<ftnlJ3lW>"   <J3^nlfW>      ' 

Consideration of the operators shows that 

providing a lower bound to the set of functions   f    ; clearly, 

there is no upper bound.    The representation thus formed is 

infinite dimensonal.    It can also be shown to be irreducible, 

implying that the group described by the algebra (1) and (2) 

is non-compact. 

We define a spherical tensor   Tx  '    by the relationships 

[j±.T
(k)

q]   «   [k(k+l)-q(q±l)]*     T(k)
q±1 

[J3.T(k)
q]    -     qT(k)

q    . (5) 

(kl This definition assures that the operators   Tv  '    transform in 
<1 

the same way as a state   f.   .    Note, however, that the operators Kq 

T^  '    (or the states   f    ) with   |q| £ k   form a finite dimensional q Kq 

representation of the algebra.    We shall be concerned here only 

with operators of this type.    Because of the transformation 

properties of the   T'  '    we can use the Wigner-Eckart theorem 

to show that 

<f<tn|T
(k)

q|ftlnl>   «   A(kq,^n'MUllT(kV) (6) 
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where (/ HT^    ||-f ') is a reduced matrix element which is inde- 

pendent of q, n',  and n; and A(kq; ■t-'n'l'f.n) is a coefficient which 

(k) depends on the transformation properties of   f.   •  f.,   i i and TN  ' 

but not on their explicit form.    One can determine the coefficients 

63 A   following the technique of Racah.      By considering the matrix 

elements of   [J. ,T^  '] between the states   < f.   |   and   U^i-^ » 

and the coupling of states   f.,   ,   and   f,      to a state   i.   ,  one 

can easily obtain recursion relations which demonstrate that the 

dependence of  A(kq,-fn'j-tn) on k,  q,  l%,  n1,   L and   n   is identical 

to the dependence of the algebraic form of the Clebsch-Gordan 

coefficient (kq, -t'n1 j-tn) on the same quantum numbers.    The   A 

coefficient is not strictly identical to the corresponding Clebsch- 

Gordan coefficient, however,  since in the present case n > -t,, 

n1 > V, values for which the Clebsch-Gordan coefficient vanishes 

identically.    Nonetheless, one can obtain an algebraic expression 

for   A(kq, «t'n1 |.ln) for a fixed   k   and   q,  and general   -t'.n'^.n 

by determining the algebraic expression for the equivalent Clebsch- 

Gordan coefficient and relaxing the restriction that jn'( </' , 

ln|< I. 

Changing for convenience from Clebsch-Gordan to   3-j 

symbols, we can write 

^J^VW •   (-^-n     f'     k      "')   UllT(1V)     (7) 
^ \ -n   q     n* y 
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where the subscripted   3-j   symbol refers to the algebraic form 

of the usual   3-j   symbol with the restrictions on the range of 

n   and   n'   relaxed.    Algebraic forms of certain   3-j   symbols 
61 64 

have been given by e. g. ,  Edmonds    and Falkoff et al.    . 

We now consider the tensorial ranks of the operators 

eim  /r      (Na 0).    By using Eqs.   (5),  one can easily show that 

such an operator corresponds to the mth component of a tensor 

of rank N,  Tx   'm.      By relating the function (A)  to the radial wave- 

function of hydrogen, we can therefore make the identification  (N>    1) 

J   TT"   "       rr   v n' [(U+i){zit+i)]i   \  -n     0        n/a 

(tllT(N-2)lU') (8) 

One notes immediately that the selection rules of Pasternack 
52 

and Sternheimer   are contained in the triangular selection rules 

of the   3-j   symbol contained in Eq.  (8). 
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is also made obvious by Eq. (8). 
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In order to fully utilize Eq,   (8) one must be able 

to evaluate the pertinent reduced matrix elements.    This is 

easily done:   assume that   {,>/*, and consider matrix elements 

in which the bra is the state <f     , . i | •    Then, for example 

I k       I 

)       0     1+ 
t |T<k'lf »■   -/    * k      l'\ Kl|T(k)lk') 

' [(u+\y.u+v+\)\i  J   (fl)     J e      z ki/' 'z' 

The integral above can be simply evaluated, as can the   3-j 

symbol.    One then obtains 

r(2^-H)(2^'+l)k!2(/+^-k)!        A 
^k+^+^'+l)! {I rPTEJI {l+k-W. J 

(10) 
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Use of these expressions in conjunction with algebraic forms 

of   3-j   symbols leads immediately to the known expectation 

-N values   r      (N positive). 

This successful application of the techniques o. proup 

theory to a study of radial wavefunctions suggests strongly 

that such studies of more complicated radial functions may be 

possible.    In addition,  it is particularly gratifying to demon- 

strate that the radial and angular parts of the atomic wave- 

function can be placed on a more even footing and treated 

theoretically using the same general techniques. 

The author gratefully acknowledges invaluable discussions 

with Professors B.  R.  Judd and G.  Domokos. 
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TABLE I. The Measured Energy Levels15 and SLJ Labels for the Lowest 
Five Configurations of Xe I. 

5 2 The core configuration is always 5p ( P) and therefore is 
not listed. 

n'l'    SLJ    ECcm"1)    n'l' 

5p     lS0 0     5d 

6s     3P2 67,068 

3P-L 68,046 
3P0 76,197 
1?1 77,186 

6p     3Di 77,270 

3D2 78,120 
3D3 78,404 
3P1 78,957 
3P2 79,213 
3P0 80,119 

^S1 88,380 
1I>2 89,163     7s 
1?1 89,279 

^^Sn 89,861 

SLJ ECcm"1) 

3-o 79,772 

3D, 79,987 

X 80,197 
3F2 80,323 

3F3 80,971 

3D2 81,926 

3D3 82,431 

3Pl 83,890 

\ 91,153 

lD2 91,448 

^3 91,747 

^1 93,619 

X 85,189 

\ 85,441 

\ 95,721 

^1 95,801 
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16 
TABLE II. The Measured Energy Levels  and SLJ Labels for Fourteen 

Configurations of Kr I. 
5 2 

The core configuration is always Ap ( P) and therefore is 
not listed.  The values in parentheses are approximate 
values. 

n'T SLJ Eicm'1) n'l' SLJ ECcm"1) 

Ap 

5s 

5p 

Ad 

0 

D, 

0 

79,973 

80,918 

85,192 

85,8A8 

91,169 

92,295 

92,308 

92,965 

93,12A 

9A,09A 

97,597 

97,920 

97,9A6 

98,856 

96,772 

97,086 

97,689 

97,798 

98,227 

6s 

6p 

5d 

99,628 

99,895 

105,092 

105,1A7 

102,888 

103,116 

103,122 

103,31A 

103,363 

103,762 

108,A39 

108,515 

108,569 

108,822 

103,803 

104,07A 

10A,631 

10A,917 

105,008 

105,164 
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TABLE II.  (Continued) 

111 n'l SLJ E(cm"1) n'l' SLJ E(cm"1) 

4d 

7s 

4f 

98,868 

99,080 

99,647 

103,267 

103,443 

103,702 

104,888 

105,648 

105,772 

(111,004) 

111,004 

105,965 

105,966 

105,990 

(105,990) 

106,022 

106,022 

106,048 

106,048 

111,379 

111,379 

5d 

9s 

10s 

11s 

12s 

105,209 

105,649 

110,104 

110,123 

110,238 

110,734 

109,753 

109,780 

(115,128) 

115,128 

110,609 

110,620 

(115,961) 

115,961 

111,155 

111,172 

(116,527) 

116,527 

111,529 

111,537 
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Table II.     (Continued) 

n'l' SLJ ECcm'1) 

4f 
\ 

111,381 

\ 
111,382 

8s \ 
108,326 

\ 
108,374 

\ 
(113,711) 

\ 
113,711 

n'l' SLJ E(cm"  ) 

12s 3P0 (116,904) 

l? 116,904 
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TABLE IV.    The Intermediate coupling wave functions for fourteen 

configurations of KrI.    The core configuration Is always 

4p5(2P). 

n'l' 

5p 

6p 

5s 

5p 

4d 

6s 

6p 

5d 

SL Eigenvei :tors 

3P 0.738 -0.675 

h 0.675 0.738 

3P 0.786 -0.618 

h 0.618 0.786 

3P 0.717 -0.697 

X? 0.697 0.717 

3D 0.192 0.908 0.370 0.027 

3P 0.725 0.059 -0.487 -0.484 

3S 0.482 -0.068 -0.147 0.861 

h 0.453 -0.408 0.777 -0.153 

3D 0.144 0.961 0.237 

3P -0.712 -0.065 0.699 

lP 0.687 -0.269 0.675 

3P 0.798 -0.603 

h 0.603 0.798 
3D 0.225 0.843 0.486 0.045 

3P -0.767 -0.091 0.474 0.424 

3S 0.474 -0.151 -0.038 0.867 

h 0.370 -0.508 0.733 -0.259 

3D 0.173 0.945 0.277 

3P 0.766 0.048 -0.641 
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11 » n'l 

7s 

8s 

9s 

10s 

11s 

12s 

5p 

4d 

6p 

TABLE IV.  (Continued) 

SL Eiger 

-0.323 

ivectors 

l? 0.620 0.716 

3P 0.809 -0.588 

h 0.588 0.809 

3P 0.814 -0.581 

h 0.581 0.814 

3P 0.815 -0.580 

h 0.580 0.815 

3P 0.816 -0.578 

l? 0.578 0.816 

3P 0.815 -0.579 

h 0.579 0.815 

3P 0.816 -0.578 

^ 0.578 0.816 

3D 0.653 -0.208 -0.728 

3P 0.477 0.860 0.181 

h 0.589 -0.466 0.661 

3F 0.357 0.844 0.401 -0.015 

3D -0.615 0.024 0.518 0.594 

3P 0.373 0.081 -0.472 0.795 

h 0.596 -0.530 0.590 0.124 

3D 0.653 -0.265 -0.709 

3P 0.483 0.867 0.121 
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* J    n'l' 

i 

I 

5d 

4f 

Ad 

5d 

4f 

4f 

TABLE IV.  (Continued) 

SL Eigenvectors 

h 0.583 -0.422 0.694 

3F 0.372 0.795 0.479 0.009 
3D -0.658 -0.014 0.524 0.541 
3P 0.447 -0.034 -0.307 0.840 

h 0.479 -0.605 0.634 -0,047 
3F 0.617 0.786 0.021 

3D -0.539 0.404 0.739 

h 0.573 -0.467 0.674 

3F -0.493 0.292 0.819 

3D 0.610 0.788 0.086 

^ 0.620 -0.542 0.567 

3F -0.620 0.200 0.759 

3D 0.520 0.829 0.206 

h 0.588 -0.522 0.617 

3G 0.485 0.674 0.558 -0.001 
3F -0.652 0.001 0.566 0.505 
3D 0.336 0.073 -0.380 0.859 
lF -0.477 0.735 -0.474 -0.086 
3G -0.750 -0.011 0.661 

3F 0.327 0.863 0.386 

:LG 0.575 -0.505 0.643 
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TABLE V. The values of Slater integrals and spin-orbit coupling constants which was 

determined by fitting the theoretical energy levels to the measured levels. 

The parameters and the rms deviation, a, of the fit are given in cm" . 

Atom n'l' Fo F2 G0 Gl G2 G3 G.   6 . 
4    nl 6n'l' 

6 

Xe 6s 71040 951 6239 233 

6p 81866 173 629 33 7005 382 105 
5d 84161 186 298 28 6892 -175 191 

78 88875 175 7001 32 

Kr 5s 82512 800 3482 4 

5p 94118 176 650 42 3538 153 46 

4d 99747 175 177 14 3501 - 35 138 

6s 101626 176 3608 54 

6p 104922 45 204 13 3556 60 17 

5d 106520 105 88 6 3539 11 245 

7s 107507 73 3545 40 

4f 107800 4 0 0   3580 0 1 

8s 110150 29 3580 16 

9s 111561 16 3578 8 

10s 112399 6 3566 3 

11s 112956 10 .''578 5 

128 113326 5 3582 3 

114 



■^M^^im^i  ■.«■■■. ■■^-^^^^——ipw^ 

I 

i 

I 

I 

I 

I 

I 

I 

I 

I 

i 

I 

I 

I 

I 

I 

I 

! 

I 

TABLE VI.  The transition probability rates A  for emission between r       '       mn 
the energy levels of the five lowest configurations of Xe I 

and between the energy levels of fourteen configurations of Kr I. 
5 2       5 2 

The core configuration Is always 5p ( P) and 4p  ( P) for 

xenon and krypton, respectively.  Only values of A  larger than 
ft   i 

0.1 x 10 sec  was listed. 

Atom 

St« 

n'l' 

ite n 

SLJ 

State 

n"l" 

m 

SLJ 

X 
0 
A 

A 
Rmn -1 

108sec 1 

Xe 5p \ 7s \ 1044 0.9 

5d \ 1068 27.8 

7s 
\ 1170 1.1 

5d 1192 

1250 

13.0 

1.1 

6s 1296 

1470 

5.2 

3.9 

68 \ 6p 
\ 7644 0.3 

\ \ 7890 0.4 

\ \ 8209 0.1 

\ \ 8234 0.3 

\ \ 8269 0.1 

\ \ 8282 0.4 

\ \ 8349 0.4 

\ \ 
8822 0.3 

\ \ 8933 0.2 

\ \ 8955 0.1 

\ \ 
9048 0.1 
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TABLE VI.     (Continued) 

Atom 

State 

n'l' 

n 

SLJ 

State 

n"l" 

m 

SLJ 

X 
0 
A 

A 
Rmn , 

108sec 1 

\ ^1 
9165 0.3 

\ \ 
9802 0.2 

\ \ 
9926 0.2 

Kr 4p \ 
6s 

\ 
951 0.8 

4d 
\ 

953 11.9 

6s 
\ 

1001 1.1 

4d 1004 

1030 

9.9 

1.2 

5s 1165 

1236 

4.7 

3.9 

5s 
\ 5p \ 

7589 0.5 

\ \ 
7604 0.3 

\ \ 
7687 0.4 

\ \ 
7857 0.2 

5p \ 
5d 

\ 
7916 0.1 

5s 
\ 5p \ 

8062 0.2 

\ 
8107 

8115 

0.1 

0.4 

\ \ 
8192 0.1 

\ 
8266 

8283 

0.4 

0.2 
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TABLE VI.     (Continued) 

Atom n'l1 

State n 

SLJ 

State m 

SLJ 

X 
0 
A 

A 

lO^ec-1 

\ \ 8300 0.3 

\ \ 8511 0.2 

\ s 8779 0.2 

\ \ 8931 0.2 
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TABLE VIII. A comparison of accuracy and speed of different integration 
methods for the evaluation of orthononnality and Slater 
integrals for the Cu As electron. 

Two Laguerre integrations with n = 15 (L^^) and n = 48 (L^g) 
are compared with Simpson's rule of integration. The 
per cent errors in the Gk values for the L15 integration 
were invalidated by a programming error and are not given. 
However, the quoted execution times are for the evaluation 
of all integrations.  Only errors larger than 0.1% are listed. 

i 

I 

I 

1 

I 

I 

I 

I 

Absolute Execution 
Error in Time 

Integration Orthogonality Per Cent Errors In 
n'l' Method Integral F0 G0 G1 G2 Seconds 

4s* Ll5 

L48 

S 

20.3 

0.1 

0.1 

3d Ll5 
L48 

S 

1.4 

1.6 

0.6 

0.7 

6.2 

32.8 

3p Ll5 

L48 

S 

0.5 

2.0 

0.5 

0.6 

5.7 

30.3 

3s L15 2 x 10"5 0.6 0.5 

L48 <io-6 1.0 5.1 

S <10-6 0.2 27.0 

2s Ll5 1 x lO-3 2.9 0.5 

L48 <io-6 3.1 4.9 

S 7 x lO"5 0.1 27.0 

Is Ll5 4 x lO"3 12.4 1.3 

L48 <io-6 8.8 4.9 

S <io-6 0.3 26.7 

* These execution times are included in Table IX. 
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TABLE IX. A comparison of accuracy and speed of different integration 
methods for the evaluation of <rn> radial integrals for the 
Cu 4s electron. Two Laguerre Integrations with n = 15 (L15) 
and n = 48 (L^ß) are compared to the trapezoidal rule (T) 
and Simpson's rule integration (S). The accuracy is given 
in per cent. Errors less than 0.1% are not listed. 

Execution 
Time 

Integration n in <r > in 
Method     -2-101246   Seconds* 

L15 10.1 2.0                  0.1    0.7 

L48 3'3 

T 6.4 0.1  0.1 0.1 0.1 0.1 0.1   13.9 

S 4.5 15.0 

* Includes the calculation of F0. 

120 



I 
- 

41 TABLE X. The screening constants proposed by Burns. 

( i sV n - 1 n    n + 1 

s s 0.90 0.40 0.10 

P 0.75 0.35 0.10 

d 0.50 0.35 0.10 

f 0.40 0.20 

p s 1.00 0.50 

P 0.90 0.35 

d 0.70 0.35 

f 0.30 0.20 

d s 1.00 0.75 0.15 

P 1.00 0.50 0.05 

d 0.90 0.35 0.05 

f 1.00 0.20 

f s 1.00 1.00 0.50 

P 1.00 0.75 0.15 

d 0.85 0.50 

f 1.00 0.35 
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TABLE XI.     Average screening  constants obtained  from Mann's  binding 
energies.^° 

Hg'X" n-2 n-1        n n + 1 n + 2 n + 3      n + 4      n + 5      n + 6 

s         s 1.000 0.875 0.644 0.133 0.157 0.141      0.103      0.062      0.025 

p 1.000 0.776 0.505 0.286 0.200 0.130      0.070      0.028 

d 1.000 0.918 0.560 0.321 0.183 0.115      0.062       0.025 

f 0.982 0.884 0.610 0.354 0.186 0.072      0.029 

p        s 1.000 1.000 0.397 0.079 0.150 0.162      0.135      0.085 

p 1.000 1.000 0.706 0.308 0.237 0.168      0.105 

d 1.000 0.936 0.576 0.322 0.220 0.150      0.095 

f 1.000 0.918 0.628 0.358 0.187 0.106 

d        s 1.000 1.000 1.000 -0.134 0.038 0.148      0.155 

p 1.000 1.000 1.000 0.231 0.235 0.198 

d 1.000 1.000 0.747 0.313 0.237 0.175 

f 1.000 0.996 0.661 0.362 0.224 

f        s 1.000 1.000 1.000 1.000 0.020 0.020 

p 1.000 1.000 1.000 0.801 0.113 

d 1.000 1.000 1.000 0.218 0.120 

f 1.000 1.000 0.866 0.352 
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TABLE XU.     Hartree-Fock values of radial integrals involving the Cu 4s 
wave function.38,48 

Slater Integrals between 4s and n'j,1  Wave Functions        4s Radial Integrals 
nV F0 k Gk n <rn> 

4s .5450896 -2 .8077270 

3d .7122117 2 .0636135 -1 .3822107 

3p .7235111 1 .0232793 0 1.000000 

3s .7248400 0 .0164793 1 

2 

4 

6 

3.331133 

13.08433 

310.3408 

12034.72 

i 

! 

I 
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TABLE XIII.  Initial and final Slater parameters for four different 
three-term expansions. The final parameters are the values 
after 100 seconds of computing time. The standard deviation 
is between the five true radial integrals and the five 
calculated radial integrals. 

Expansion 
Set 
No. m y 

am A» Standard 
Initial 

Deviation 
Description InitiaF Final InltiaT Final FlnaF 

Switched Input 1 0.53 0.26 0.70 2.15 

0.50 0.8A -0.50 -1.49 

1.25 1.03 -0.31 8.983 0.069 

Optimized Set 2 0.22 0.23 -0.64 -0.71 

0.21 0.35 2.27 0.35 

0.23 -0.79 1.21 0.871 0.052 

Burns 3 0.53 0.16 0.70 1.11 

1.03 3.46 -0.50 0.23 

1.25 0.50 -0.59 0.559 0.041 

Mann 4 0.20 0.11 0.95 -1.38 

0.29 0.28 0.23 2.21 

0.72 -0.23 0.14 0.187 0.030 

0 
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TABLE XIV.  Initial and final Slatar parameters for three different 
five-term expansions. The final parameters for the first 
three sets are the result of 100 seconds of computing time. 
Set no. 8 Is the continuation of set no. 7. The standard 
deviation la between the five true radial Integrals and the 
five calculated radial Integrals. 

: 

Expanalon 
Set 
No. m  «U •m 

A» Standard 
Initial 

Deviation 
Description Initial Final Final 

Mann 5 1  3d 0.29 0.90 0.70 

2  4s 0.20 0.43 -0.44 

3  3s 0.91 -0.09 -0.10 

A  2s 2.60 0.03 0.03 

5  Is 7.39 -0.01 -0.01 0.554 0.032 

«m Peaked 6 1  3d 0.10 0.23 -0.41 

2  4s 0.11 0.94 -0.60 

3  3s 0.47 -0.23 -0.02 

4  2s 1.43 0.07 0.07 

5  Is 8.33 -0.01 -0.01 1.321 0.030 

pm Peaked 7 1  3s 0.47 0.23 0.42 

2  4p 0.23 0.94 0.97 

3  3p 0.93 -0.23 -0.67 

4  2p 2.86 0.07 0.06 

5  Is 8.33 -0.01 -0.03 0.130 0.010 

Final Set 8 1   38 0.47 0.42 -0.01 

2  4p 0.23 0.97 1.06 

3  3p 0.93 -0.67 -0.31 

4  2p 2.86 0.06 0.10 

5  Is 8.33 -0.03 -0.02 0.010 0,0002 
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TABLE XV. The determination of the initial set of Slater parameters 
for expansion sets 5, 6, and 7. 

nl xmax 

Set S 

«m 

Set 6 

am 

Set 7 

m 
Pm 
exact 

Pm 
rounded nV «m 

1 3d 2.14 0.29 1.40 0.61 1 38 0.47 

2 4i 8.86 0.20 0.11 1.76 2 4p 0.23 

3 38 2.14 0.91 0.47 1.95 2 3p 0.93 

4 2s 0.70 2.60 1.43 1.82 2 2p 2.86 

5 Is 0.12 7.39 8.33 0.89 1 Is 8.33 
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TABLE XVI. Accuracy of the PF wave functions for the eight final PF 
expansions given in Tables XIII and XIV. 

Standard Percentage 
Expansion Deviation  Standard 

Set      of Deviation 
No.    Integrals of Wave 
  Function 

-2 

Percentage Errors of <r > 

-1 

1                0.069 69.1 

2                0.052 35.2 

3                0.041 32.2 

4                0.030 84.7 

5                0.032 46.4 

6                0.030 50.5 

7                0.010 13.1 

8              0.0002 8.2 

74.6 20.4 -4.4 -16.7 -31.2 -59.2 -78.3 

53.1 -2.9 0.9 5.8 8.1 5.1 -4.1 

53.4 12.6 1.2 -5.9 -8.2 -1.2 18.1 

76.6 -13.7 1.6 11.4 25.8 140.3 574.1 

80.8 -17.7 2.4 14.7 22.2 22.7 7.7 

17.0 2.6 2.5 18.3 52.3 208.9 574.7 

24.8 3.6 -1.5 -6.0 -10.5 -19.1 -27.5 

48.1 -3.2 -0.0 0.3 -0.8 -6.0 -14.0 

I 

I 

I 
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T, 10- 

Fig. 1-Chemical composition of a 2.5 atmosphere xenon arc discharge 
as a function of temperature 



Curve 592297-B 

T. 10- 

Fig. 2-Chemical composition of a 2.5 atmosphere krypton arc discharge 
as a function of temperature 



Curve 591388-B 

T, 10'oK 

Fig. 3-Electrical conductivity of a 2.5 atmosphere arc discharge. 
Devoto' s values are for xenon 



Curve 591389-B 

Fig. 4-Thermal conductivity of a 2.5 atmosphere arc discharge. 
Devoto' s values are for xenon 



Curve 592295-A 

T, 10- 

Fig. 5-Average electron-neutral momentum-transfer cross sections for krypton 
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Fig. 6-Electrical conductivity of a 1.0 atmospheric krypton arc discharge 
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Fig. 7 -^-Factor for xenon — Schlüter-, Biberman et al-, 
•—Yankov, Llebermann; o measurements by Berge et al 
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Curve 592293-A 

2000 4000 
X, angstroms 

6000 

Fig. 8-^-factor for krypton —Schlüter-, - - Biberman et al; 
Ameasurements by Carls 



Curve 5923OO-B 

I 
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T. 10- 

Fig. 9-Percentage of the total radiation from a 2.5 atmospheres arc discharge 
which is continuum radiation. The wave iength interval is from 2000 

to 20,000 angstroms 



Curve 592298-B 

Fig. 10-Total radiation from a 2.5 atmospheres arc discharge in the wave 
length interval from 2000 to 20,000 angstroms 
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Fig. 11-The electrical characteristics of a 2.5 atmospheres arc 
discharge. The central core temperatures are given in 10^ 0K. The 

points on the curves indicate the temperatures at which the 
characteristics were calculated 
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Fig. 12-Calculated temperature profiles of a 40 amp-2.5 atm arc discharge. 
The D and «denote calculated values 
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Fig. 13-Spectral radiance at the surface of a 40 amp-2.5 atm 
xenon arc discharge 
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Fig. 14-Spectral radiance of the 8232Ä line at the surface of a 
40 amp-2.5 atm xenon arc discharge 
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Flg. 15-Spectral absorptivity of an emission line at 9200^ In a 
40 amp-2,5 atm xenon arc discharge 
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Fig. 16-Radiant emittance of an emission line at 9200oK in a 
40 arrp-2.3 atm xenon arc discharge 
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Fig. ly-Measured spectral radiance of a 40 amp-2.5 atm xenon arc discharge. 

Full scale is 4.96 x 10    watts/(cni ster A) 
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Fig. 19-Spectral radiance at the surface of a 40 amp-2.5 atm 
xenon arc discharge 
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Fig. 21-SpectraI radiance of the 7606 A line at the surface of a 
40 amp-2.5 atm krypton arc discharge 
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FIG. 35 Spectrophotometric absorption spectrum of ruby. The 
absorption cross section a (right scale) is given hy a^a/No, where 
a is the linear absorption coefficient and iVo the number of ab- 
sorbing centers per cm3. 

I 
I 
i 



6? 80 
>- 

LÜ 

ÜJ 

§50 

|40 
o 
Q30 

tr. 20 
UJ 

EFFICIENCY 

g 10 
3000 4000 5000 6000 

WAVELENGTH, ANGSTROM UNITS 

FIG. 36 Fluorescent quantum and power efficiencies for ruby: 
ratio of output fluorescence to input absorption as a function of 
wavelength. 



3 
I 
r 
m 
E 
3 

E 

c 
o 
c 
a> x 

i 
05 

I 
CO 

\ud2 jsd 'fouaom Q^IS 



• 

UJaajad 'ADuapu^ duinj 



.. 

oesm 'auif^n 



30 

25 

Curve 59273I-A 

V////////A 

Fig. 40-Energy level diagram of ruby with lifetimes at SO^K 



c 
o 
u c 

a» 
> re 
5 

-a« 

8 
t 
I E 
re 

re 
c 

o 

B 
B 
1 

P c 

5S 
I 
I 

I 
O) 
> re 
3 

=3 

u. 
Q. 
O) 

I 

I 
I 



CD 
2 
Q 

1 
I 

O 
E 

CO 

5 
(/) 

E 
«o 

      a 

1 

(O 

| 

f 
E 

c 
I 
f 



'****''*'—^'ffK' ***?:..: -        "■ — 

BLANK PAGE 

I 
, 

h 

J 



UNCLASSIFIEn 
Security Classification 

DOCUMENT CONTROL DATA • R&D 
(Smcurily elm*»illemllon of (/(/•, body of mbilrmcl and indexing annotaflon muaf 6a enlarad wfian (fta ovmrmll report it elattllimd) 

I    OBICINATIN G ACTIVITY fCorpora(e auffior; 

Westinghouse Research Laboratories 
Pittsburgh, Pa.     15235 

2a     REPORT  1ECUHITV    CLASSIFICATION 

Unclassified 
2b    SROUP 

3   nEPOHT^ITLB 

OPTICAL PUMPING OF LASERS 

4   DESCRIPTIVE NOTES (Typt of raporl and ineluaiva daia») 

Final Report 1 June 1969 to 31 March 1970 
5   AUTHORS; rLaat nama. flrat nama, Initial; 

Lyle H. Taylor, Irving Liberman, Richard Liebermann, Alex Federowicz, 
Lloyd Armstrong, Jr. (Consultant) 

6   REPORT DATE 

31 May 1970 

, 

P 

: 

• a.   CONTRACT OR  GRANT  NO. 

N00014-69-C-0428 
6.   PROJECT NO. 

ARPA Order No. 1312 

„       Code 5704 

7a.   TOTAL NO.  OF   PAGES 

174 
7b.   NO.  OF RIFI 

64 
• a.   ORIGINATOR'* REPORT NUMBERfS; 

70-9C1-SOOPL-R3 

fb. OTHER REPORT NOfSJ f^ny olftar numbar« tfiaf may ba aaal^nad 

10   A VA IL ABILITY/LIMITATION NOTICE* 

Distribution of this document  Is unlimited. 

11   SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY 

13   ABSTRACT 

The emission spectra of 40-amp 2.5 atm xenon and krypton arc dlscharg 
are calculated. The spectral overlap of these spectra and the measured 
emission spectra of tungsten and potassium-meruary arc discharges with the 
measured absorption spectra of Nd:YAG are used to determine relative system 
efficiencies which agree well with measured values. It Is found that the 
K-Hg lamp Is four times more efficient In pumping Nd:YAG than the studied 
W, Kr, and Xe lamps. The spectral overlap calculation for a nominal ruby 
oscillator-amplifier at the peak of the flash lamp pulse gives a pump 
efficiency which Is much higher than measured system efficiencies. This 
discrepancy may be caused by the time dependent behavior of the flash lamp 
pulse and the oscillator pulse. A new technique Is developed to obtain electro 
radial wave functions from known radial Integrals. In a test case, the Cu 4s 
wave function Is determined within + 8%. Group theory Is applied to the 
calculation of radial Integrals Involving hydrogen wave functions and some 
selection rules are explained. 

lie 

DD ,FÄ1473 UNCLASSIFIED 
Security Classification 

RM 35054 



UNCLASSIFIED 
Security Classification 

14 
KEY WORDS 

Absorption 
Arcs 
Configurations 
Emission 
Gases 
Lasers 
Theory 
Optical 
Pumping 
Wave Functions 
Group Theory 

LINK A LINK B LINK C 
ROLE 

INSTRUCTIONS 
I.   ORIGINATING ACTIVITY:   Enter the name and addreaa 
of the contractor, aubcontractor, grantee, Department of De- 
fenae activity or other organization fcoiporele author) iaauing 
the report. 

2a.   REPORT SECURTY CLASSIFICATION:   Enter the over- 
all aecurity claaaification of the report.   Indicate whether 
"Restricted Data" ia included.   Marking ia to be in accord- 
ance with appropriate aecurity regulations. 

2b.   GROUP:   Automatic downgrading is specified in DoD Di- 
rective S200.10 and Armed Forcea Industrial Manual.  Enter 
the group number.   Also, when applicable, show that optional 
markings have been used for Group 3 and Group 4 n-, author- 
ized. 

3. REPORT TITLE:   Enter the complete report title in all 
capital letters.   Titles in all caaea should be unclassified. 
If a meaningful title cannot be selected without classifica- 
tion, show title classification in all capitala in parenthesis 
immediately following the Utle. 

4. DESCRIPTIVE NOTES:   If appropriate, enter the type of 
report, e.g., interim, progress, summary, annual, or final. 
Give the inclusive dates when a specific reporting period is 
covered. 
5. AUTHOR(S):   Enter the naine(a) of authors) as ahown on 
or in the report.   Entei last name, first name, middle initial. 
If military, show rank and branch of service.   The name of 
the principal «;<thor iu an abaolute minimum requirement. 

6. REPORT DATE:   Enter the date of the report aa day, 
month, year; or month, year.   If more than one date appeara 
on the report, use date of publication. 

7a.   TOTAL NUMBER OF PAGES:   The total page count 
should follow normal pagination procedures, i.e., enter the 
number of pages containing information. 
7b.   NUMBER OF REFERENCES:   Enter the total number of 
references cited in the report. 
Ba.   CONTRACT OR GRANT NUMBER:   If appropriate, enter 
the applicable number of the contract or grant under which 
the report was written. 
8b, Be, flt 8d. PROJECT NUMBER: Enter the appropriate 
military department identification, such as project number, 
subproject number, system numbers, task number, etc. 

9a.   ORIGINATOR'S REPORT NUMBER(S):   Enter the offi- 
cial report number by which the document will be identified 
and controlled by the o. iginating activity.   This number must 
be unique to this report. 
9b. OTHER REPORT NUMBER(S): If the report has been 
assigned any other repcrt numbers (either by the originator 
or by the sponsor), alto enter this number(s). 

10.   AVAILABILITY/LIMITATION NOTICES:   Enter any lim- 
itations on further dissemination of the report, other than those 

imposed by security classification, using standard statement* 
such as: 

(1) "Qualified requesters may obtain copies of this 
report from DDC" 

(2) "Foreign announcement and dissemination of this 
report by DDC is not authorized." 

(3) "U. S. Government agencies may obtain copies of 
this report directly from DDC.   Other qualified DDC 
users shall requeat through 

(4)    "U. S. military agencies may obtain copies of this 
report directly from DDC   Other qualified uaers 
shall request through 

(5)    "All distribution of this report is controlled. Qual- 
ified DDC uaers shall requeat through 

If the report has been furnished to the Office of Technical 
Services, Department of Commerce, for aale to the public, indi- 
cate this fact and enter the price, if known. 

11. SUPPLEMENTARY NOTES: Use for additional explana- 
tory notes. 

12. SPONSORING MILITARY ACTIVITY: Enter the name of 
the departmental project office or laboratory sponsoring (pay- 
ing lor) the research and development.   Include addreaa. 

13. ABSTRACT:   Enter an abstract giving a brief and factual 
summary of the document indicative of the report, even though 
it may also appear elsewhere in the body of the technical re- 
port.   If additional space is required, a continuation sheet shall 
be attached. 

It is highly desirable that the abatract of classified reports 
be unclassified.   Each paragraph of the abatract shall end with 
an indication of the military aecurity classification of the in- 
formation in the paragraph, represented aa CTS.), (S), (C), or (U) 

There is no limitation on the length of the abstract.   How 
ever, the suggested length is from 150 to 225 words. 

14. KEY WORDS:   Key words are technically meaningful terms 
or short phrases that characterize a report and may be used aa 
index entries for cataloging the report.   Key words must be 
selected so that no security classification is required.   Identi- 
fiers, such as equipment model designation, trade name, military 
project code name, geographic location, may be used as key 
words but will be followed by an indication of technical con- 
text.   The assignment of links, rules, and weights is optional. 

"^ 

I 

Security Classification 


